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INTRODUCTION

The space charge limit of an alternating
gradient synchrotron is usually estimated by
computing the change in betatron frequency of
individual particles within the beam due to the
space charge force and then imposing the
condition that the working point should stay
within the original integer-half-integer dia-
mond. The significance of such a condition
is not entirely clear. For one thing, the cen-
tral ray is not alfected by the internal space
charge forces if the system is linear, so that
coherent oscillations occur at the frequency
determined by external forces only. In parti-
cular, closed orbit deviations due to alignment
and field errors do not depend on beam inten-
sity except through the asymmetry of image
charges and currents. Furthermore, a signi-
ficant instability with respect to gradient errors
does not necessarily occur just because the
internal frequencies are integral or half-in-
tegral for a certain beam diameter, because
the space charge force is certainly non-linear
with respect to beam diameter and a tendency
for the beam to increase in diameter is inhibi-
ted by the change in internal irequency. It is
the purpose of this paper to obtain a quanti-
tative estimate of this non-linear effect.

EQUATIONS OF MOTION

A very useful formulation of the problem is
given in a paper by Kapchinsky and Vladi-
mirsky [1]. Although the paper deals with
space charge effects in linear accelerators, the
basic equations are equally applicable to an
AGS synchrotron, since the centrifugal force
is negligible. The authors considered a beam
which is represented in transverse phase space
(x, x', y, ¥') as a uniform distribution on the
surface of a hyper-ellipsoid. This distribution
is fairly realistic; in its simplest configuration,
it corresponds to a beam of circular cross
section and uniform density, with transverse
velocities distributed uniformly in azimuth

at each point in the beam. The uniform spatial
density leads to space charge forces (neglecting
image effects) which are linear in displacement
from the central ray whatever the axis, ratio
and orientation of the projections; and thus
the individual particles obey linear equations
of motion provided that the external forces are
also linear. Under these circumstances it is
possible to deduce relatively simple difieren-
tial equations for the width of the beam enve-
lope in the x and v planes. The present cal-
culation is based on those eduations [Equa-
tions (46) and (47) of Ref. [1], with some
change in notation]:
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where: r,, ry,—half-width of beam envelope
in x and y planes, respectively,
K., Ky~—external focusing functions,

A—%times beam emittance (in

displacement x angle] phase
space),
N —number of particles per unit
length,
v — beam velocity,
R — synchrotron radius,
and the nonrelativistic form of the space
charge term has been used for simplicity.
The second derivatives in (1) and (2) are
each equal to the sum of three terms; na-
mely, the external force on a boundary par-
ticle, the space charge force on a boundary
particle, and a term which takes into account
the finite beam quality and has the form of
a centrifugal force in a two-dimensional sys-
tem in which r, or r, is a radius in polar
coordinates. The familiar laminar flow appro-
ximation is obtained by setting A=0.
Equations (1) and (2) are amenable to com-
puter solution in the full generality of alter-
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nating gradient K-functions, including gradient
errors, but this note shall be restricted to a
simplified problem. We assume cylindrical
symmetry (ry=ry=r) and set
2 .

Kx=1<y=7§-2—[1+ecos_ne1, (3)
where v = v, =v, = betatron frequency at zero
intensity and ¢ is the amplitude of an n’th
harmonic gradient error.

With a few more changes in notatlon, Egs.
(1) and (2) become
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The radius is now measured in units of the
radius of a matched, unperturbed, beam of
emittance A; i. e., the solution (periodic in e)
of (4) for AvsC_Avs—O is p=const = 1. Av,, is
the change in frequency an individual particle
would see if the beam radius were constrained
to its matched value; this is the shift usually
used to compute the space charge limit.

In order to find the variation of ¢ due to
the combined effect of space charge and gra-

. A A
dient error, we regard —;—'s— and ——vvic- as small

quantities and use the variation of parame-
ters perturbation method. The general solution
of (4) with Avs,=Av,=0 is:

=V 1+ A%+ Asin (2v0 +a), (5)

where A and a are arbitrary constants. Regar-
ding A and « as slowly varying functions of 0,
related in such a way that:

0= de =vA cos (2v0-}+ a), (6)

we deduce the following coupled first order
equations from Eq. (4):
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All rapidly varying terms have been dropped
from Egs. (7) and (8).
Equatlons (7) and (8) yield a first integral:
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where @=(2v—n)0+a, C is a constant of
integration, and Av is the diiference between
the frequency at zero intensity and the hali-
integer at which the stop-band occurs.

Equation (9) is equivalent to the more fami-
liar integral curves in (g, @) space which
arise in non-linear problems after rapidly
oscillating terms have been dropped. It is
somewhat simpler in form than the correspon-
ding expression in (g, ¢’) and therefore pre-
ferable for the present purpose.

With the approximation, A « 1, (9) becomes:
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where K is an arbitrary constant, different
from C.

Since sin @ must lie in the range £ 1, Eq. (10)
determines the range of variation of A. Of
particular interest are the fixed points in
(A, ¢); i. e., particular values of A and ¢ which
remain constant in time. These fixed points,
which are easily seen to be stable, represent
«matched» solutions in the presence of space
charge and gradient errors; i. e., solutions for
which the beam radius oscillates with the
periodicity of the error. The remainder of this
note will be concerned with determining the
fixed points and calculating the maximum
excursion of @ for the corresponding values of
A, through Eq. (5).

From Eq. (7), A is constant if ¢ = const =
=4 % The condition for constant ¢ is then

obtained from Eq. (8):
2AAv — 28wy, YIER=L 4 6y ) T A 0.
(11)
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For A « 1, Eq. (11) becomes:
2Av—Avg, 4Av—3Av,.
+ 1=<'T>A— T 4Av, >A3
(12)

where the appropriate sign of sin ¢ = +1 must
be used to obtain a positive value of A.
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As a simple example of the application

of (12), consider the case Av,, = 0, AAV\j & 1.
Av,
Then A ~ X and
11A
Qhax ~ 1+ 5 |52 (13)

This is the known result for the beat factor

indtroduced by the existence of stop-bands [2].
Avg
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Fig. 1. gmax — 1 as a function of %at reso-
nance (Avy, = 2Av).

It is evident from the form of Eqs. (12) and
(14) that the situation leading to large excur-
sions in radius is given by Av,,= 2Av, which
is twice the value usually assumed in compu-
ting the space charge limit of an accelerator.
Some insight into this unconventional result
can be obtained by returning to the basic
Eqs. (1) and (2). If these equations are linea-
rized for small deviations from the equilibrium
radius and the gradient error set equal to zero,
one finds that the system possesses a symmetric
normal mode (8r, = dr,) and an anti-symmetric
one (0r,=— 0r,). The symmetric mode, which
is driven by the symmetric perturbation (3),
has a natural frequency shifted by an amount

% Av,, which leads to the resonance denomi-

nator of Eq. (14). The anti-symmetric mode,
which would be excited by a perturbation of

quadrupole character, exhibits a shift equal
to %Avsc; the appropriate change in Eq. (14)

yields a valid formula for this case. One is
led to conclude that the usual criterion is too
simple, for the motion of individual particles
is altered by the modulations in beam diame-
ter and it is misleading to use a frequency
shift which would apply only if the modula-
tions in beam diameter were ignored.

Unfortunately, the averaging process lea-
ding to Eqs. (7) and (8) proved to be very dif-
ficult for the anti-symmetric case, but a com-
putational program is under way for that
problem. It is anticipated that the results will
be qualitatively similar to those presented
below.

Returning to the symmetric case, we set
Av,, = 2Av and find from Eq. (12):

A=(Beyn

Therefore,

2A 1/
Qhax ~ 1+ | 252 [, (16)
As a numerical example, take Av = %,

Av, = 0.025. Then @ax = 1.6.

That is, a «matched» beam would oscillate
in radius by +30% about its unperturbed
matched radius, and at the frequency of the
perturbing gradient. Fig. 1 shows @max— 1
at resonance (Avs.= 2Av) as a function of AA\;‘ ,
as obtained numerically ifrom the more exact
expression (11). The growth is not exorbitant
even for very wide stop-bands, and it would
appear that a machine designed conservatively
regarding aperture and injector emittance could
easily handle more beam than the usual space
charge limit. The treatment is, of course, not
limited to the nearest stop-band; if that one
can be made very narrow by suitable correc-
tion, the next ones would not be as bothersome
(Av = 3/4, 5/4, etc.). In a sense, space charge
effects are beneficial in that they provide a non-
linear element which prevents an indefinitely
increasing amplitude of oscillation.
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