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INTRODUCTION 
The space charge limit of an alternating 

gradient synchrotron is usually estimated by 
computing the change in betatron frequency of 
individual particles within the beam due to the 
space charge force and then imposing the 
condition that the working point should stay 
within the original integer-half-integer dia­
mond. The significance of such a condition 
is not entirely clear. For one thing, the cen­
tral ray is not affected by the internal space 
charge forces if the system is linear, so that 
coherent oscillations occur at the frequency 
determined by external forces only. In parti­
cular, closed orbit deviations due to alignment 
and field errors do not depend on beam inten­
sity except through the asymmetry of image 
charges and currents. Furthermore, a signi­
ficant instability with respect to gradient errors 
does not necessarily occur just because the 
internal frequencies are integral or half-in­
tegral for a certain beam diameter, because 
the space charge force is certainly non-linear 
with respect to beam diameter and a tendency 
for the beam to increase in diameter is inhibi­
ted by the change in internal frequency. It is 
the purpose of this paper to obtain a quanti­
tative estimate of this non-linear effect. 

EQUATIONS OF MOTION 
A very useful formulation of the problem is 

given in a paper by Kapchinsky and Vladi-mirsky 
[1]. Although the paper deals with 
space charge effects in linear accelerators, the 
basic equations are equally applicable to an 
AGS synchrotron, since the centrifugal force 
is negligible. The authors considered a beam 
which is represented in transverse phase space 
(x, x', y, y') as a uniform distribution on the 
surface of a hyper-ellipsoid. This distribution 
is fairly realistic; in its simplest configuration, 
it corresponds to a beam of circular cross 
section and uniform density, with transverse 
velocities distributed uniformly in azimuth 

at each point in the beam. The uniform spatial 
density leads to space charge forces (neglecting 
image effects) which are linear in displacement 
from the central ray whatever the axis ratio 
and orientation of the projections; and thus 
the individual particles obey linear equations 
of motion provided that the external forces are 
also linear. Under these circumstances it is 
possible to deduce relatively simple differen­
tial equations for the width of the beam enve­
lope in the x and v planes. The present cal­
culation is based on those eduations [Equa­
tions (46) and (47) of Ref. [1], with some 
change in notation]: 
1 d2rx + Kx(θ)rx - A2 - 4 Ne

2 1 = 0, R2 dθ2 + Kx(θ)rx - r3x - 4 mυ2 (rx+ry) = 0, 
(1) 

1 d2rx + Ky(θ)ry -
A2 - 4 Ne

2 1 = 0, R2 dθ2 + Ky(θ)ry - r3y - 4 mυ2 (rx+ry) = 0, 
(2) 

where: rx, ry - half -width of beam envelope in x and y planes, respectively, 
Kx, Ky - external focusing functions, 

A 1/π times beam emittance (in 
displacement x angle phase 
space), 

N — number of particles per unit 
length, 
υ — beam velocity, 

R — synchrotron radius, 
and the nonrelativistic form of the space 
charge term has been used for simplicity. 

The second derivatives in (1) and (2) are 
each equal to the sum of three terms; na­
mely, the external force on a boundary par­
ticle, the space charge force on a boundary 
particle, and a term which takes into account 
the finite beam quality and has the form of 
a centrifugal force in a two-dimensional sys­
tem in which rx or ry is a radius in polar coordinates. The familiar laminar flow appro­
ximation is obtained by setting A=0. 

Equations (1) and (2) are amenable to com­
puter solution in the full generality of alter-
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nating gradient K-functions, including gradient 
errors, but this note shall be restricted to a 
simplified problem. We assume cylindrical 
symmetry (rx—ry = r) and set 

Kx = Ky = v2/R2 [1 + ε cos'nθ] (3) 
where v = vx = vy = betatron frequency at zero intensity and ε is the amplitude of an n'th 
harmonic gradient error. 

With a few more changes in notation, Eqs. 
(1) and (2) become: 
1 d2 + ( - 1 

) = 
2∆vsc 1 - 2∆υs cos nθ, v2 dθ2 + ( - ) = V 

-
V cos nθ, 

(4) 
where 

= r√ υ , = r√ AR , 
∆vs = 1 εV = ∆vs = 2 εV = total width of zero intensity stop-band 

and 
∆vsc = Ne

2 R . ∆vsc = mυ2 A . 

The radius is now measured in units of the 
radius of a matched, unperturbed, beam of 
emittance A; i. e., the solution (periodic in θ) 
of (4) for ∆vSc = ∆vs = 0 is = const = 1. ∆vSc is the change in frequency an individual particle 
would see if the beam radius were constrained 
to its matched value; this is the shift usually 
used to compute the space charge limit. 

In order to find the variation of due to 
the combined effect of space charge and gra­
dient error, we regard ∆vs/v and ∆vsc/v as small quantities and use the variation of parame­
ters perturbation method. The general solution 
of (4) with ∆vsc = ∆vs = 0 is: 

= √1 + A2 + A sin(2vθ + α), (5) 
where A and a are arbitrary constants. Regar­
ding A and a as slowly varying functions of θ, 
related in such a way that: 

= = vA cos(2vθ + α), (6) = dθ = vA cos(2vθ + α), (6) 
we deduce the following coupled first order 
equations from Eq. (4): 
dA = - ∆vs √1 + A2 cos [(2v - n)θ+ α], (7) dθ = - ∆vs √1 + A2 cos [(2v - n)θ+ α], (7) 

A da = ∆vs √1 + A2 sin[(2v - n)θ + α] — A dθ = ∆vs √1 + A
2 sin[(2v - n)θ + α] — 

- 2∆vsc √1 + A
2 — 1 (8) - 2∆vsc A (8) 

All rapidly varying terms have been dropped 
from Eqs. (7) and (8). 

Equations (7) and (8) yield a first integral: 
sin φ = - 2∆v √1+A2 + sin φ = - ∆vs A + 

+ ∆vsc 1 1n A
2(√1 + A2 + 1 + c , (9) + ∆vs A 1n (√1 + A2 - 1) + A , (9) 

where φ = (2v — n)θ + α, C is a constant of 
integration, and ∆v is the difference between 
the frequency at zero intensity and the half-integer 
at which the stop-band occurs. 
Equation (9) is equivalent to the more fami­

liar integral curves in ( ) space which 
arise in non-linear problems after rapidly 
oscillating terms have been dropped. It is 
somewhat simpler in form than the correspon­
ding expression in ( ) and therefore pre­
ferable for the present purpose. 
With the approximation, A « 1, (9) becomes: 

sin φ ~ K - ( 
2∆υ—∆υsc )A + sin φ ~ A - ( 2∆vs )A + 

+ ( 4∆v—3∆vsc )A3, (10) + ( 16∆vs )A3, (10) 
where K is an arbitrary constant, different 
from C. 
Since sin φ must lie in the range ± 1, Eq. (10) 

determines the range of variation of A. Of 
particular interest are the fixed points in 
(A, φ); i. e., particular values of A and φ which 
remain constant in time. These fixed points, 
which are easily seen to be stable, represent 
«matched» solutions in the presence of space 
charge and gradient errors; i. e., solutions for 
which the beam radius oscillates with the 
periodicity of the error. The remainder of this 
note will be concerned with determining the 
fixed points and calculating the maximum 
excursion of for the corresponding values of 
A, through Eq. (5). 
From Eq. (7), A is constant if φ = const = 

=± π • =± 2 • The condition for constant φ is then 
obtained from Eq. (8): 
2A∆v-2∆vsc √1+A

2 — 1 ± ∆vs √1 + A2 = 0. 2A∆v-2∆vsc A ± ∆vs √1 + A2 = 0. 
(11) 

For A « 1, Eq. (11) becomes: 
± 1 =( 2∆v—∆vsc )A - ( 4∆v—3∆vsc )A3, ± 1 =( ∆vs )A - ( 4∆vs )A3, 

(12) 
where the appropriate sign of sin φ = ± 1 must 
be used to obtain a positive value of A. 
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As a simple example of the application 
of (12), consider the case ∆vsc = 0, ∆vs « 1. ∆vsc = 0, ∆v « 1. 
Then A ~ ∆vs and Then A ~ 2∆v and 

~ 1 + 1 | ∆vs |. (13) ~ 1 + 2 
| 
∆v |. (13) 

This is the known result for the beat factor 
indtroduced by the existence of stop-bands [2]. 
If | ∆vs « 1, then If | 2∆v—∆vsc « 1, then 

~ 1 + 1 | ∆vs | (14) ~ 1 + 2 
| 
∆v -1 ∆vsc 

| (14) ~ 1 + 2 
| 
∆v -2 ∆vsc 

| (14) 

Fig. 1. — 1 as a function of ∆vs ∆v at reso­
nance (∆vsc = 2∆v). 

It is evident from the form of Eqs. (12) and 
(14) that the situation leading to large excur­
sions in radius is given by ∆vSc= 2∆v, which 
is twice the value usually assumed in compu­
ting the space charge limit of an accelerator. 
Some insight into this unconventional result 
can be obtained by returning to the basic 
Eqs. (1) and (2). If these equations are linea­
rized for small deviations from the equilibrium 
radius and the gradient error set equal to zero, 
one finds that the system possesses a symmetric 
normal mode (δrx = δry) and an anti-symmetric 
one (δrx = — δry). The symmetric mode, which 
is driven by the symmetric perturbation (3), 
has a natural frequency shifted by an amount 
½ ∆vSc which leads to the resonance denomi­
nator of Eq. (14). The anti-symmetric mode, 
which would be excited by a perturbation of 

quadrupole character, exhibits a shift equal 
to ¾ ∆vsc; the appropriate change in Eq. (14) 
yields a valid formula for this case. One is 
led to conclude that the usual criterion is too 
simple, for the motion of individual particles 
is altered by the modulations in beam diame­
ter and it is misleading to use a frequency 
shift which would apply only if the modula­
tions in beam diameter were ignored. 
Unfortunately, the averaging process lea­

ding to Eqs. (7) and (8) proved to be very dif­
ficult for the anti-symmetric case, but a com­
putational program is under way for that 
problem. It is anticipated that the results will 
be qualitatively similar to those presented 
below. 
Returning to the symmetric case, we set 

∆vsc = 2∆v and find from Eq. (12): 

A = ( 2∆vs ) ⅓ . (15) A = ( ∆v ) ⅓ . (15) 
Therefore, 

~ 1 + | 2∆vs |⅓. (16) ~ 1 + | 
∆v 

|⅓. (16) 

As a numerical example, take ∆v = ¼, 
∆vs = 0.025. Then = 1.6. 
That is, a «matched» beam would oscillate 

in radius by ±30% about its unperturbed 
matched radius, and at the frequency of the 
perturbing gradient. Fig. 1 shows — 1 
at resonance (∆vsc=2∆v) as a function of ∆vs/∆v , 
as obtained numerically from the more exact 
expression (11). The growth is not exorbitant 
even for very wide stop-bands, and it would 
appear that a machine designed conservatively 
regarding aperture and injector emittance could 
easily handle more beam than the usual space 
charge limit. The treatment is, of course, not 
limited to the nearest stop-band; if that one 
can be made very narrow by suitable correc­
tion, the next ones would not be as bothersome 
(∆v = 3/4, 5/4, etc.). In a sense, space charge 
effects are beneficial in that they provide a non­
linear element which prevents an indefinitely 
increasing amplitude of oscillation. 
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