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Abstract According to the optical theorem, the imaginary
part of the one-loop radiative shift of the electron energy in
an external field (IP1L) determines the total probability of
photon emission by the electron. We calculate IP1L and then
the probability and power of radiation of an electron in a
constant background tensor field, which simulates the viola-
tion of Lorentz invariance in the framework of the Standard
Model Extension. Using current experimental constraints on
the background field strength, we show that the considered
radiation effect can manifest itself under astrophysical con-
ditions at ultrahigh electron energy.

1 Introduction

The Standard Model (SM) is complete [1] but it is not a com-
plete theory due to a number of fundamental problems that
cannot be solved in its framework (see, e. g., [2]): it does not
include gravity; no explanation of charge quantization; too
many input parameters; a huge hierarchy of particle masses
and energy scales of interactions; a generation problem; no
solutions to dark matter and dark energy, baryon asymmetry
in the Universe; etc. These problems stimulate the develop-
ment of theories generalizing the SM (see a detailed dis-
cussion of a number of them in [3]). Some of these theories
include violation of Lorentz invariance, among which we sin-
gle out the effective field theory, which is called the Standard
Model Extension (SME) [4–6]. The SME Lagrangian is the
sum of the SM Lagrangian and additional terms represent-
ing various combinations of SM fields with free Lorentzian
indices (this violates Lorentz invariance), which are convo-
luted with constant tensors of the corresponding ranks and
mass dimensions. Such a structure of the Lagrangian expands
the concept of effective field theory [7], and the indicated ten-
sors, considered as constant background fields, simulate the
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complex structure of the vacuum induced by the new physics
beyond the SM (in particular, the effects of quantum gravity).

Various effects have been investigated within the SME
framework, and we note only a few works (see also refer-
ences therein), limited to the case of an electron interacting
with an axial-vector background field (AVBF): production of
an electron-positron pair by a photon and emission of a pho-
ton by an electron and a positron [8,9], synchrotron radiation
of an electron taking into account its anomalous magnetic
moment and interaction with the AVBF [10], effect of the
AVBF on the radiation of a hydrogen-like atom [11], gener-
ation of a vacuum current by the AVBF [12].

In our works, we investigated the one-loop mass and ver-
tex (at zero momentum transfer) operators in a tensor back-
ground field (of quasi-magnetic type) [13] and the emission
of a photon by an electron in this field [14], using the follow-
ing Lagrangian1:

L = LQED + LT. (1)

Here

LQED = ψ̄
(
γ μ

(
i∂μ + eAμ

) − m
)
ψ

−1

4
FμνF

μν − 1

2

(
∂μA

μ
)2 (2)

is the Lagrangian of the standard QED in the Lorentz gauge,
ψ is the electron-positron field (m and −e < 0 are the
electron mass and charge), Aμ and Fμν = ∂μAν − ∂ν Aμ –
4-potential and tensor of the electromagnetic field strength;

LT = −1

2
ψ̄σμνHμνψ (3)

is the Lagrangian of interaction with a tensor constant back-
ground field Hμν .

In the present paper, we generalize the results of [14] by
calculating the probability and power of the electromagnetic

1 A system of units is used in which h̄ = c = 1, α = e2/4π �
1/137, and a pseudo-Euclidean metric with signature (+ − − −); γ 5 =
iγ 0γ 1γ 2γ 3, σμν = i[γ μ, γ ν ]/2.
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radiation of an electron with an arbitrary orientation of its
momentum relative to the vector of the background field
strength. In contrast to [14], where the standard calculation
method is used based on the amplitude of the radiative tran-
sition in the first order in the electromagnetic coupling, here
we calculate the imaginary part of the one-loop radiative shift
of the electron energy in the initial state, which, according to
the optical theorem, determines the radiation probability.

2 Wave functions and an electron propagator in a
tensor background field

The wave function of an electron in a tensor background field
satisfies the Dirac equation, which follows from (1), (2), (3):
(
iγ μ∂μ − m − 1

2
σμνHμν

)
ψ = 0. (4)

As in [14], we consider the case of a background field of
the quasi-magnetic type for which

HμνHμν > 0, Hμν H̃μν = 0,

where H̃μν = εμναβHαβ/2 (ε0123 = −ε0123 = −1). Then,
as is known, there is a special reference frame in which,
with an appropriate choice of the orientation of the axes, the
nonzero components of the tensors are as follows:

H21 = −H12 = h, H̃03 = −H̃30 = h, (5)

so that the tensor field is equivalent to the axial vector (we
put h > 0)

h = hez, h = [
HμνHμν/2

]1/2
. (6)

Let us represent Eq. (4) in this reference frame in the
Hamiltonian form:

i
∂ψ

∂t
= Ĥψ, Ĥ = α · p̂ + mβ − β�3h, (7)

where the momentum operator p̂ = −i∇ and the Dirac matri-
ces α = γ 0γ , β = γ 0, �3 = iγ 1γ 2.

The solution of (7) has the form [14]:

ψpζ (t, r) = 1√
V
u(p, ζ ) exp (−i Et + ip · r),

u(p, ζ ) = 2−3/2

⎛

⎜
⎜
⎝

A+ (B+ + ζ B−)

−ζ A− (B+ − ζ B−) eiφ

A+ (B+ − ζ B−)

ζ A− (B+ + ζ B−) eiφ

⎞

⎟
⎟
⎠ . (8)

Here V is the normalization volume;

A± =
(

1 ± ζ
m

ε⊥

)1/2

, B± =
(

1 ± pz
E

)1/2
. (9)

The wave function (8) describes the stationary state of an
electron in the background field and is an eigenfunction of the

Hamiltonian Ĥ , the momentum operator p̂, and the operator
of the spin projection onto the direction h (Oz axis),

Π̂ = γ 5γ μ H̃μν p
ν/h = γ 5

(
γ 0 pz − γ 3E

)
, (10)

where pν = (E,p); the spin quantum number ζ = ±1 is
related to the eigenvalue of the operator (10) by the relation

Π̂ψpζ = (ζ ε⊥ − h)ψpζ ;
the electron energy

E =
[
(ε⊥ − ζh)2 + p2

z

]1/2
(11)

depends on ζ , the longitudinal pz and transverse p⊥ =√
p2
x + p2

y (via ε⊥ =
√
m2 + p2⊥) components of the

momentum p; the angle φ in (8) specifies the direction of the
transverse momentum p⊥ = (px , py) = p⊥(cos φ, sin φ).

Note that the function (8) can be obtained from the wave
function of a neutron moving in an external constant mag-
netic field [15] by replacing μn Fμν → Hμν , where μn is
the anomalous magnetic moment of the neutron, with the
corresponding change in notations.

Consider now the electron propagator in the background
field

G(x, x ′) =
∫

d4q

(2π)4 G(q)e−iq·(x−x ′). (12)

It satisfies the equation (see (4))
(
iγ μ∂μ − m − 1

2
σμνHμν

)
G(x, x ′) = δ(4)(x − x ′), (13)

or in the momentum representation
(

γ μqμ − m − 1

2
σμνHμν

)
G(q) = 1. (14)

The explicit form of the propagator G(q) (the solution of the
matrix equation (14)) follows from the expression obtained
in [16] for the neutrino propagator moving in a constant mag-
netic field by the obvious renaming:

G(q) = Q̂(q)R(q),

Q̂(q) =
{(

q2 − m2
)

(γ · q + m)

−h2 (γ · q − m) − 2Hμν(Hq)νγ μ

+2m(H̃q)μγ μγ 5

+σμν
[1

2

(
q2 + m2 − h2

)
Hμν − 2(Hq)μqν

]}
,

R(q) =
[(

q2 − m2
) (

q2 − m2 + i0
)

− 2h2
(
q2 + m2

)

+4(Hq)2 + 1

2
h2

]−1
, (15)

where (Hq)μ = Hμνqν , (H̃q)μ = H̃μνqν .
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3 Radiative shift of the electron energy and the optical
theorem

The one-loop radiative energy shift of an electron in the state
(8) is defined as (see, e.g., [17])

ΔE = − ie2

T

∫
d4xd4x ′ψ̄pζ (x)γ

μG(x, x ′)γ νψpζ (x
′)

×Dμν(x, x
′), (16)

where T (→ ∞) is the interaction time, the photon propaga-
tor in the Lorentz gauge

Dμν(x, x
′) = gμν

∫
d4k

(2π)4 D(k)e−ik·(x−x ′),

D(k) = (k2 + i0)−1. (17)

Substituting (8), (12), and (17) into (16), after integrating
over x and x ′ and taking into account (15), we obtain,

ΔE = − ie2

(2π)4

∫
d4qD(p − q)R(q)

×ū(p, ζ )γ μ Q̂(q)γμu(p, ζ ). (18)

Using well-known relations from the algebra of Dirac matri-
ces [17] and taking into account (15) and (5), we transform
(18):

ΔE = − iα

2π3

∫
d4qD(p − q)R(q)F(q), (19)

where

F(q) = (q2 − m2)〈2m − γ · q〉 + h2〈2m + γ · q〉
+2h2〈γ 1qx + γ 2qy〉 + 2hm〈(γ 0qz − γ 3q0)γ

5〉
(20)

with 〈· · · 〉 = ū(p, ζ )(· · · )u(p, ζ ).
In further calculations, taking into account the axial sym-

metry of the background field (6), without loss of generality
we set py = 0 and then the angle φ = 0 in (8). Using the
explicit form of the bispinor u(p, ζ ), we find (for ζ = −1,
see a comment below):

〈1〉 =
(

1 + h

ε⊥

)
m

E
,

〈γ · q〉 = q0 −
(

1 + h

ε⊥

)
qx px
E

− qz pz
E

,

〈
γ 1qx + γ 2qy

〉
=

(
1 + h

ε⊥

)
qx px
E

,

〈
(γ 0qz − γ 3q0)γ

5
〉
= m

ε⊥

(
q0 − qz pz

E

)
. (21)

According to the optical theorem [17], which follows from
the unitarity of the S-matrix, the imaginary part of the elec-
tron energy shift determines the total photon emission prob-
ability as

w = −2ImΔE . (22)

In turn, this imaginary part is determined from (19) accord-
ing to the Cutkosky rules (see, e. g., [17]) by the following
replacement in the integrand of the right-hand side (19):

2iImΔE = ΔE
(
D(p − q) → −2π iδ(D−1(p − q)),

R(q) → +2π iδ(R−1(q))
)
. (23)

Note that the “+” sign in front of the second delta function
is due to the additional factor q2 − m2 in the denominator
of the electron propagator (15) and the well-known relation
δ(x)/a = sgn(a)δ(ax).

From (19), (22) and (23), taking into account (5), (15)
and (17), we obtain the representation of the total radiation
probability in the form

w = 2α

π

∫
d4qδ(Xγ )δ(Xe)F(q),

Xγ = D−1 = (p − q)2,

Xe = R−1 = (q2 − m2 − h2)2 − 4h2(q2⊥ + m2). (24)

Note that the energy spectrum (the eigenvalues of the Hamil-
tonian (7)) is determined by the poles of the electron prop-
agator (15) with respect to the variable q0 [17], i.e., by the
roots of the equation Xe(q0) = 0:

q0 = ±
[
q2 + m2 + h2 ± 2h

√
q2⊥ + m2

]1/2

, (25)

which agrees with (11), and negative values of q0 correspond
to the positron.

4 Probability and power of radiation

Let us consider the angular distribution of the radiation prob-
ability. Having made in (24) the change of integration vari-
ables, k = p − q (it is the photon 4-momentum),

d4q = dk0d
3k,

δ
(
Xγ

) → 1

2ω
δ (k0 − ω) ,

ω = |k| ,k = ωn, |n| = 1,

and after trivial integration over k0 we obtain

dw

dΩ
= α

π

∫
dωωδ (Xe)F(q),

q = (E − ω,p − ωn), (26)

where dΩ is the solid angle element in the n direction. Next,
we transform the argument of the delta function in (26) with
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use of (24):

Xe = 4
(
E2
n − h2n2⊥

)
ω(ω − ωn), n

2⊥ = 1 − n2
z ,

En = E − n · p,

ωn = 2h(ε⊥En − hnx px )

E2
n − h2n2⊥

. (27)

Using (27), we integrate over ω in (26) and obtain the angular
distribution of the radiation probability:

dw

dΩ
= αF(q)

4π(E2
n − h2n2⊥)

,

q = (E − ωn,p − ωnn), (28)

where F(q) is defined by (20) and (21).
As follows from (27), the radiation frequency ωn is deter-

mined by the radiation direction n, and the radiative tran-
sition is due to the electron spin flip (see (11) and (25)):
ζ = −1 → ζ ′ = +1.

Expression (28) is exact in terms of the background field
strength h, the value of which is strictly limited from above
[6]:

h � 10−17 eV. (29)

Therefore, in what follows, we restrict ourselves to taking
into account only the leading terms in the expansion with
respect to the parameter h.

In this approximation, for the function F in (28), taking
into account (20) and (21), we obtain

F = 4h3
√

1 − v2
z

f (v,n)

(1 − v · n)2 ,

f (v,n) = (1 − nzvz)
2
(

1 + 1 − v2

1 − v2
z

)

−(1 − v2)(1 − n2
z ) − v2

xn
2
x , (30)

where v = p/ε = (vx , 0, vz) is the velocity of a free electron
(ε = E(h = 0) = √

m2 + p2). Substituting (30) into (28),
we obtain (in the leading approximation with respect to h)

dw

dΩ
= w0

√
1 − v2

z
1 − v2

(1 − v · n)4 f (v,n),

w0 = αh3

πm2 . (31)

Multiplying (31) by the photon energy (see (27))

ωn =
2h

√
1 − v2

z

1 − v · n , (32)

we obtain the angular distribution of the radiation power

dW

dΩ
= ωn

dw

dΩ
= W0(1 − v2

z )
1 − v2

(1 − v · n)5
f (v,n),

W0 = 2αh4

πm2 . (33)

In a spherical coordinate system with a polar axis Oz, the
components of the unit vector n in (30), (31) and (33) are as
follows:

nx = sin θ cos ϕ, ny = sin θ sin ϕ, nz = cos θ, (34)

and dΩ = sin θdθdϕ. To calculate the total probability and
power of radiation, it is convenient to express the angles
in (34) in terms of the angles (marked with the index 0)
in the reference frame moving with the velocity vz along
the axis Oz (as in the theory of synchrotron radiation [18]),
using the corresponding boost, which does not change the
configuration of the quasi-magnetic background field (6):

nz = n0z + vz

1 + vzn0z
, nx =

√
1 − v2

z n0x

1 + vzn0z
,

vx = v0x

√
1 − v2

z , dΩ = 1 − v2
z

(1 + vzn0z)2 dΩ0. (35)

Using (35), we represent (31) and (33) as

dw

dΩ0
=

√
1 − v2

z
dw(0)

dΩ0
= w0

√
1 − v2

z
1 − v2

0

(1 − v0n0x )
4 f0,

dW

dΩ0
= (1 + vzn0z)

dW (0)

dΩ0
= W0

(1 + vzn0z)(1 − v2
0)

(1 − v0n0x )5
f0,

f0 = 1 − v2
0n

2
0x + (1 − v2

0)n2
0z . (36)

Here v0 ≡ v0x is invariant under boosts along the axis Oz:

v0 = p⊥
ε⊥

= v⊥√
1 − v2

z

(37)

with v⊥ =
√

v2 − v2
z .

From (36) we get relations for total probability and power
of radiation

w =
√

1 − v2
zw

(0), W = W (0) (38)

in agreement with the special relativity. We emphasize that
the total radiation power is a Lorentz invariant (see, e.g.,
[19]).

The integration of the angular distributions (36) is greatly
simplified if we choose Ox as the polar axis (in the reference
frame, where vz = 0). Then n0x = cos α, n0z = sin α sin β,
which allows independent integration over α and β. As a
result, we obtain explicit expressions for (38):

w = 8αh3

3m2

√
1 − v2

z
2 + v2

0

1 − v2
0

,

W = 32αh4

3m2

1 + v2
0

(1 − v2
0)2

. (39)

For an unpolarized electron, it is necessary to introduce an
additional factor 1/2 into the right-hand sides of (39).
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5 Discussion

Expressions (39) are valid for an arbitrary angle between the
electron momentum p and the direction of the background
field h. Let’s consider two special cases.

For the case of transverse motion of an electron, putting
in (39) vz = 0, v0 = v, we obtain

w⊥ = 8αh3

3m2 (2 + v2)γ 2, W⊥ = 32αh4

3m2 (1 + v2)γ 4, (40)

where γ = ε/m = (1 − v2)−1/2 is the Lorentz factor.
For the case of longitudinal motion (vz = v, v0 = 0), we

have

w‖ = 16αh3

3m2 γ −1, W‖ = 32αh4

3m2 . (41)

Results (40) and (41) are consistent with those obtained
earlier in our paper [14]. Note that due to the Lorentz invari-
ance of the radiation power (see (38)) W‖ = W⊥(v = 0), so
that an electron at rest also radiates.

Consider the average emitted energy of an electron, i.e.,
the average photon energy

〈ω〉 =
∫

ωdw
∫
dw

= W

w
. (42)

According to (42) and the remark after (28), over a time
interval

τR = 1/w (43)

an electron emits a photon, having made a spin-flip transi-
tion to a state that is radiatively stable: a radiative transition
from it is forbidden (see (11)). Consequently, if the electron
beam is initially unpolarized, then as a result of radiation
it becomes completely polarized along the direction of the
background field h, and the characteristic polarization time is
equal to (43). A similar effect of polarization due to a radia-
tive transition with spin flip was noted for neutrons moving
in a magnetic field [15], as well as for neutrinos in a magnetic
field and matter (neutrino spin light) [20,21].

Substituting (39) into (42), we obtain

〈ω〉 = 4h(1 + v2
0)

√
1 − v2

z (1 − v2
0)(2 + v2

0)

,

〈ω〉⊥ = 4hγ 2 1 + v2

2 + v2 , 〈ω〉‖ = 2hγ. (44)

It follows from (40)–(44) that the effects of Lorentz viola-
tion increase with increasing electron energy, and are much
more noticeable for the transverse motion. For this case, for
γ 
 1 and hγ � 1, we find the radiative polarization length
LR = vτR (see (43)) in ordinary units [14]

LR � c

w⊥
� λ̄e

8α

(m
h

)3
γ −2, (45)

whereλ̄e is the Compton wavelength of the electron.
For a numerical estimation, we set h = 10−17 eV (see

(29)) and ε = 1016 GeV (the energy scale of the Grand
Unification of the three fundamental interactions [2,3]). Then
from (44) and (45) we obtain 〈ω〉⊥ � 1013 GeV that two
orders of magnitude greater than the maximum registered
energy of particles in cosmic rays � 1011 GeV (see, e.g., the
review [22]) and LR � 2.3 × 1020 cm (for comparison, the
distance from the Sun to the nearest star � 4×1018 cm [23],
and from the Sun to the center of the Galaxy � 2.5×1022 cm
[1]).

6 Conclusion

Using the optical theorem, we calculated the probability and
power of electromagnetic radiation by an electron in a con-
stant background field of the quasi-magnetic type simulating
a Lorentz-violating vacuum. It is shown that the radiative
transition due to spin flip leads to complete polarization of
the initially unpolarized electron beam along the direction
of the background field. The results obtained generalize the
results of our previous work to the case of an arbitrary angle
between the electron momentum and the background field
strength vector. We have shown that the considered radiative
effect can be noticeable under astrophysical conditions for
ultrahigh-energy electrons.
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