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Abstract
The generalised second law of black hole thermodynamics states that the sum of a black hole’s
entropy and the entropy of all matter outside the black hole cannot decrease with time. The
violation of the generalised second law via the process in which a distant observer extracts work by
lowering a box arbitrarily close to the event horizon of a black hole has two profound
ramifications: (1) that the entropy of the Universe can be decreased arbitrarily via this process; and
(2) that it is not appropriate to apply the laws of thermodynamics to systems containing black
holes. In this paper, we argue that for the generalised second law to not be violated, entropy must
be produced during the lowering process. To demonstrate this, we begin by deriving an equation
for the locally measured temperature of the vacuum state of an observer that is a finite distance
from the event horizon of a Schwarzschild black hole. Then, using this locally measured
temperature and the Unruh effect, we derive an equation for the force required to hold this
observer in a stationary position relative to a Schwarzschild black hole. These equations form a
framework for calculating the change in black hole entropy as a result of the lowering process both
in the case where the process is isentropic and in the case where entropy is produced during the
lowering process. In the latter case, two requirements: (1) that the resultant change in black hole
entropy is finite; and (2) that the resultant change in common entropy is finite, are used to identify
two conditions that the form of an entropy production function must satisfy. These, in turn, are
used to identify a set of possible functions describing the production of entropy. Using this set of
functions, we demonstrate that the production of entropy limits the amount of work that the
distant observer can extract from the lowering process. We find that this allows for the generalised
second law to be preserved, provided that a coefficient in this set of functions satisfies a given
bound. To conclude, we discuss two natural choices of this coefficient that allow for the generalised
second law to be preserved in this lowering process. In addition to providing a resolution to this
violation of the generalised second law, the framework presented in this paper can be applied to
inform theories of gravity and quantum gravity on the form of their entropy relations, such that
they do not violate the generalised second law.

1. Introduction

The generalised second law of black hole thermodynamics underpins the interpretation that the governing
laws of black hole mechanics are the ordinary laws of thermodynamics applied to a system containing a black
hole [1–3]. Its apparent violation via the process in which a distant observer extracts work by lowering a box
arbitrarily close to the event horizon of a black hole has two profound ramifications: (1) it is not appropriate
to apply the ordinary laws of thermodynamics to systems containing black holes [1, 2], and (2) that the
entropy of the Universe can be decreased arbitrarily via this process [4, 5]. In this paper, we argue that for the
generalised second law to be preserved, entropy must be produced during the lowering process. By
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postulating a set of possible functions describing the production of entropy, we demonstrate that the
production of entropy limits the amount of work that the distant observer can extract via the lowering
process, allowing for the generalised second law to be preserved.

The argument that entropy must be produced during the lowering process is in contrast to previous
attempts to resolve this violation by Unruh, Wald [2] and Bekenstein [6], where the lowering process is
assumed to be isentropic. Unruh and Wald postulated the existence of a buoyancy force opposing the
acceleration of the box which, by requiring work to be done to overcome, limits the amount of work that can
be extracted by the distant observer [2]. This resolution, however, suffers from two major limitations: it is
only applicable to reflective boxes and the buoyancy force is generally not sufficient enough to preserve the
generalised second law in macroscopic systems [7, 8]. On the other hand, Bekenstein’s resolution to this
violation hinges on the existence of a universal entropy bound [6]. Although there are examples of systems
for which such a bound does hold [7, 9–16], there are also examples of systems, particularly those with
strong gravitational fields, where this bound is known to fail [3, 16–25]. Our notion that the lowering
process must generate entropy for the generalised second law to remain preserved does not require the use of
Unruh–Wald buoyancy or a universal entropy bound.

More recently, concepts from black hole thermodynamics have found renewed interest in the fields of
quantum gravity [26–30], entropic gravity [31–36] and entropic cosmology [37–44]. The bedrock of these
fields is the holographic principle [45, 46]; the conjecture that the information of the matter contained
within some volume is encoded on the surface that bounds that volume [47]. A defining feature of systems
that obey the holographic principle is that their entropy is proportional to one-fourth of their surface area
[25, 47]. As we will see, this is a feature of black holes, whose entropy satisfies this area law. The implication
of this is clear; black holes obey the holographic principle and therefore act as a case study to understand it
and, the theories that invoke it, in greater detail. To physically understand why black holes obey the
holographic principle, consider an observer external to the event horizon of a black hole who is watching
matter accrete to the black hole. To this external observer, due to gravitational red-shifting, it would take an
infinite amount of time for the matter to reach the black hole’s event horizon [48, 49]. Given a sufficient
amount of time, to this observer, the matter (and crucially all of its information) that has been accreted to the
black hole will be contained within an arbitrarily thin volume asymptotically close to the event horizon. In
this sense, one can interpret the information of the matter accreted to the black hole as being, at least
approximately, stored on its event horizon. This interpretation, that the information of the contents of a
black hole is stored on its event horizon, will be used regularly throughout this paper.

The outline of this paper is as follows: in section 2, the necessary fundamentals of black hole
thermodynamics are introduced. This includes the four laws of black hole mechanics [50], black hole
entropy, the Hawking effect [51], the Fulling–Davies–Unruh effect [49, 52, 53], the generalised second law [4,
5] and the process by which it can be violated. In section 3, a brief overview of Schwarzschild black holes and
their properties is given. Following this, the core assumptions made in this paper are discussed and, in turn,
used to derive an equation for the locally measured temperature of the vacuum state of an observer that is a
finite distance from the event horizon of a Schwarzschild black hole. Using this locally measured temperature
and the Fulling–Davies–Unruh effect, an equation for the force required to hold this observer in a stationary
position relative to the black hole is derived. In section 4, using this force and by assuming that the lowering
process is isentropic, the change in black hole entropy resulting from a box, with negligible volume, being
lowered arbitrarily close to the black hole’s event horizon is calculated. This change in black hole entropy is
found to be arbitrarily small, allowing for the violation of the generalised second law [1–5]. We then argue
that, for the generalised second law to be preserved in this process, entropy must be produced in the
space-time surrounding the box (that is, the lowering process is not isentropic). This production of entropy
will result in a loss of work to the surrounding space-time, limiting the amount of work that can be extracted
by the distant observer and preventing the change in black hole entropy from being made arbitrarily small. In
this case, to calculate the resultant change in black hole entropy and ensure that the generalised second law is
not violated, a function describing the production of entropy, which is dependent on the box’s distance from
the black hole, is required. In the absence of such a function in the literature, two requirements: (1) that the
resultant change in black hole entropy is finite; and (2) that the resultant change in common entropy is finite,
are used to identify two conditions that such a function must satisfy. Using these conditions, a set of such
functions is identified and shown to result in a change in generalised entropy that is non-negative provided
that a coefficient in this set of functions satisfies a given bound. To conclude, we discuss two natural choices
of this coefficient which allow for the generalised second law to be preserved in this lowering process.
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2. Black hole thermodynamics

In this section, we introduce the fundamentals of black hole thermodynamics. This will include a review of
the four laws of black hole mechanics, black hole entropy, the Hawking effect, the Fulling–Davies–Unruh
effect and the generalised second law. At the end of this section, the process by which the generalised second
law can be violated is introduced and two proposed resolutions to this violation are discussed.

2.1. Classical black hole mechanics
A black hole is a region of space-time, enclosed by a causal horizon, out of which not even light can escape
[1]. This causal horizon, better known as an event horizon, prevents the communication of information
about the region of space-time it encloses across it [36, 54]. Information about the internal structure and
contents of the black hole is unavailable to an external observer. Consequently, the external observer is left to
characterise the black hole using only its externally observable properties. In the case of a black hole that has
reached a steady, final state –a stationary black hole– these parameters are the black hole’s massM, charge Q
and angular momentum J [1, 54, 55]. Using these three parameters, additional parameters that are of use
(such as the surface area of the black hole’s event horizon) can be defined, but for any stationary black hole,
the black hole’s mass, charge and angular momentum are sufficient to characterise it uniquely [1, 54, 55]. As
in thermodynamics, where there exists a set of laws defining the characteristic parameters of a
thermodynamic system, there also exists a set of laws defining the characteristic parameters of a system
containing a stationary black hole. This set of laws, which are known as the four laws of black hole mechanics
[50], are as follows:

The Zeroth Law The surface gravity κ of a stationary black hole is uniform across the black hole’s event
horizon [1, 50, 55].

The First Law Following an infinitesimally small change in mass∆M, the change in surface area∆A,
angular momentum∆J and charge∆Q of a stationary black hole is given by [50, 55]

κ∆A= 8πG(∆M−Ω∆J−Φ∆Q) , (1)

where Ω is the angular velocity of the black hole’s event horizon, Φ is the electrostatic
potential of the black hole and G is Newton’s gravitational constant.

The Second Law The surface area A of a black hole’s event horizon cannot decrease with time. Additionally,
if two black holes merge, the surface area of the final black hole’s event horizon must be
greater than the sum of the initial black holes’ event horizons [1, 50, 55–58].

The Third Law For a stationary black hole, a surface gravity κ equal to zero cannot be reached within a
finite number of processes [1, 50, 55, 59].

As noted by Bardeen, Carter, and Hawking, these laws share remarkable parallels with the four laws of
thermodynamics [50]. The zeroth, second, and third laws of black hole mechanics are identical to their
thermodynamic counterparts if one identifies that the surface gravity and event horizon’s surface area are
analogous to the black hole’s temperature and entropy, respectively. The first law can be made identical to its
thermodynamic counterpart if one identifies that the mass, angular velocity, and angular momentum are
analogous to the black hole’s energy, pressure, and volume, respectively [1, 50, 55]. At this point, however,
with the exception of the black hole’s mass and energy E=Mc2, the equivalences between the black hole’s
properties and general thermodynamic properties are purely mathematical [1, 50].

2.2. Black hole entropy and temperature
Motivated by entropy’s interpretation as a measure of the lack of information about a system’s internal
configuration, and given that an external observer has no information about the internal configuration of a
black hole, Bekenstein argued that it was natural to associate a physical entropy to a black hole [4]. To derive
an explicit expression for a black hole’s entropy, Bekenstein associated a minimum entropy increase
(equivalent to one bit of information) with a minimum increase in the black hole’s radius (equivalent to one
Compton wavelength) for a process in which one particle is absorbed by the black hole [4]. Using this
argument, Bekenstein concluded that the entropy of a black hole must be proportional to the ratio of its
event horizon’s surface area to the square of the Plank length [4]. Shortly after this, Hawking identified that
the proportionality constant in this relationship was equal to one-fourth of the Boltzmann constant [48].
That is to say, the entropy Sbh of a black hole with an event horizon of area Abh is given by [1, 4, 55]

Sbh =
kbc3Abh

4Gh̄
, (2)
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where kb is the Boltzmann constant, c is the speed of light and h̄ is the reduced Plank’s constant. The second
law of black hole mechanics can now be physically interpreted in a natural form; the entropy of a stationary
black hole cannot decrease with time [1, 50, 55].

To further solidify this physical interpretation, consider the process where matter with an entropy S is
accreted to a black hole. Assuming that no entropy is produced in this process, once the matter crosses the
black hole’s event horizon, the entropy of all matter outside of the black hole Sm (henceforth referred to as
the ‘common entropy’) will decrease by S [4]. Prior to crossing the event horizon, an observer can perform a
measurement to obtain information about the matter’s internal configuration. Doing so will decrease the
matter’s entropy and, by extension, the common entropy. However, once the matter has passed the event
horizon of the black hole, measuring its internal configuration is no longer possible and any associated
information becomes inaccessible to the observer [4]. Given that this process results in a loss of accessible
information, we can equally conclude that it should increase the Universe’s entropy, as opposed to decreasing
it [4]. This apparent contradiction can only be solved by accepting that the source of this entropy increase is
an increase in the black hole’s entropy and that the Universe’s entropy must consist of both the black hole’s
entropy and the common entropy. This way, whilst the common entropy decreases in this process, the
entropy of the Universe still increases due to the black hole gaining the matter’s entropy [4]. This concept can
be formulated more concisely into the generalised second law [4, 5]:

The Generalised Second Law The generalised entropy S′, which is the sum of the black hole’s entropy Sbh
and the common entropy Sm, cannot decrease with time. In a process that
results in a change in black hole entropy∆Sbh or common entropy∆Sm, the
change in generalised entropy∆S ′ must be greater than, or equal to, zero
[1, 4, 5];

∆S ′ =∆Sbh +∆Sm ⩾ 0. (3)

The formulation of black hole entropy and the generalised second law was fundamental steps toward
reconciling the four laws of black hole mechanics with the four laws of thermodynamics. However, for this
reconciliation to be complete, a physical interpretation of black hole temperature was required. This was
achieved when Hawking [51] demonstrated that the vacuum state of the space-time surrounding a black hole
is a thermal state with a well-defined temperature [1, 51, 60]

TH =
h̄κ

2π kbc
. (4)

That is, a black hole emits thermal radiation into its surrounding space-time analogous to how a black body
with a well-defined temperature emits thermal radiation [1, 48, 51]. This is known as the Hawking effect and
it allows the remaining three laws of black hole mechanics to be physically interpreted as their
thermodynamic counterparts applied to a system containing a black hole [1].

A closely related effect, known as the Fulling–Davies–Unruh effect [49, 52, 53] (henceforth referred to as
the ‘Unruh effect’), occurs in Minkowski and curved space-times. The Unruh effect predicts that the vacuum
state of a uniformly accelerating observer will be a thermal state, populated by thermal radiation, with a
well-defined temperature [1]. In Minkowski space-time, this temperature TU is proportional to the
observer’s acceleration a and is given by [2, 53, 55]

TU =
h̄a

2π kbc
. (5)

In a curved space-time that admits an event horizon, such as the space-time surrounding a black hole, this
temperature T is given by [1, 2]

T=
TH

χ
, (6)

where χ is a gravitational red-shift factor which, for a given space-time metric tensor gµν , is given by
χ =

√
gtt [2]. χ is dependent on the observer’s distance from the event horizon and is normalised such that it

is zero at the event horizon and one infinitely far from it [1, 2].
An important consequence of the Hawking effect is its ramifications on the second law of black hole

mechanics. The Hawking effect provides a process by which black holes can radiate their energy into the
surrounding space-time and, by doing so, reduce their mass, surface area, and entropy [1, 51]. This
immediately violates the second law of black hole mechanics by allowing a black hole’s entropy to decrease
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with time [1, 51]. The generalised second law, however, endures. This is because whilst the emission of
thermal radiation decreases the black hole’s entropy, it also increases the common entropy. Consequently, the
change in generalised entropy remains equal to, or greater than, zero [1, 48, 51].

2.3. The violation of the generalised second law
Naturally, the resilience of the generalised second law is of considerable interest within the field of black hole
thermodynamics. Its violation might suggest that it is not appropriate to apply thermodynamics to a system
containing a black hole [1, 2]. One suggested violation of the generalised second law is the following process:
An observer who is an infinite distance from the event horizon of a black hole –a distant observer– extracts
work by lowering a box of negligible volume with massm, energymc2 and entropy Sbox towards the event
horizon of a Schwarzschild black hole using a rope. At some distance from the event horizon, the observer
allows the box to fall freely into the black hole [1–5]. Assuming that no entropy is produced during the
lowering process, the change in the common entropy when the box crosses the black hole’s event horizon will
be∆Sm =−Sbox [1–5]. The black hole’s entropy change will be determined by the change in its event
horizon’s surface area and therefore by its change in energy. However, as the box approaches the black hole’s
event horizon, its energy decreases due to gravitational red-shifting. As a result of this red-shifting, the
energy change of the black hole∆Ebh once the box crosses the event horizon will be∆Ebh = χmc2 [1, 2].
Consequently, if the observer lowers and releases the box at an arbitrarily small distance from the event
horizon, the energy of the box and therefore the black hole’s energy change can be made arbitrarily small
(recall that χ is zero at the event horizon of the black hole) [1–5]. Such a process would result in no entropy
change for the black hole and a negative entropy change for all matter outside the black hole, violating the
generalised second law [1–5].

Several resolutions to the above violation of the generalised second law have been proposed. Bekenstein
argued that the violation only arises if one takes the box to have a negligible volume [4, 5]. If the box’s
dimensions are not treated as negligible, its centre of mass cannot be lowered arbitrarily close to the event
horizon before the box crosses it. Therefore, the black hole’s energy change cannot be made arbitrarily small
[3–5]. By postulating the existence of a universal upper bound on the entropy of an object with a given
circumscribing radius and energy –the Bekenstein bound– [6], Bekenstein demonstrated that the change in
generalised entropy for this process was generally non-negative [2, 3, 6]. The existence of the Bekenstein
bound is crucial to this resolution, and whilst there are systems for which this bound holds [7, 9–16], there
are also systems, particularly those with strong gravitational fields, where this bound is known to fail [3,
16–25].

Uneasy with a universal bound on entropy, Unruh and Wald attempted to resolve the violation of the
generalised second law by postulating the existence of a buoyancy force that opposes the acceleration of the
box [2]. Their resolution is as follows: if a distant observer were to extract work by lowering a reflective box
with a non-negligible volume towards the event horizon of a black hole, by virtue of the Unruh effect, the
box’s vacuum state would be a thermal state, populated by thermal radiation, with a locally measured
temperature T= TH/χ [1, 2]. As the box approaches the event horizon (which corresponds to the limit
χ → 0), the local temperature and the density of the thermal radiation of the box’s vacuum state increase.
Due to the box’s reflectivity, this increase in thermal radiation density will result in a buoyancy force that acts
against the box’s acceleration (away from the event horizon) [1, 2]. At the point where the energy densities of
the box and thermal state are equal, this buoyancy force is sufficient to hold the box in a stationary position
relative to the black hole [1, 2]. Consequently, if the distant observer wishes to lower the box past this point
and to the event horizon, they must do work to overcome the buoyancy force. This limits the amount of
work the distant observer can extract by lowering the box to the event horizon, increasing the black hole’s
energy gain [1, 2]. Considering this buoyancy force, it was shown by Unruh and Wald that the black hole’s
energy change is minimised by releasing the box at the point of equal energy densities [2]. The associated
minimum change in generalised entropy at this point was shown to be non-negative, allowing for the
preservation of the generalised second law [1, 2]. Whilst this resolution does not require the use of the
Bekenstein bound, it has its limitations. The most evident of which is that it is only applicable to a reflective
box, which severely limits its applicability as a general resolution. In addition to this, analysis by Bekenstein
of this buoyancy force for the lowering of macroscopic systems has shown that it is insufficient to preserve
the generalised second law [7, 8]. This is due to the point of equal energy densities being located very close to
the black hole’s event horizon [7, 8]. This further limits its applicability as a resolution to this violation of the
generalised second law.
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3. Locally measured temperature

In this section, we begin by providing a brief overview of Schwarzschild black holes and some of their
properties. Following this, we will present and discuss the initial assumptions made in this paper. These,
along with the concepts introduced in section 1, will then be used to derive an equation for the locally
measured temperature of the vacuum state of an observer that is a finite distance from a Schwarzschild black
hole. Finally, using this equation and the Unruh effect, an equation for the force required to hold this
observer in a stationary position relative to the black hole will be derived. Both of these equations will be
necessary for section 4, where they will be used to calculate the change in generalised entropy following the
process in which a distant observer extracts work by lowering a box arbitrarily close to the event horizon of a
black hole.

3.1. Schwarzschild black holes
From here on out, we will focus our analysis on Schwarzschild black holes, which have a massM but no
charge Q and no angular momentum J [1]. The curvature of space-time for an observer external to a
Schwarzschild black hole is described by the Schwarzschild metric tensor. Taking the mostly minus metric
signature (+ − −−), the Schwarzschild metric tensor gµν is given by

gµν = diag

((
1− Rs

r

)
, −
(
1− Rs

r

)−1

, −r2, −r2 sin2 θ

)
, (7)

where µ,ν = (t, r,θ,ϕ) denote space-time indices, t is the time coordinate, r is the observer’s distance from
the centre of the black hole, θ and ϕ are the observer’s polar and azimuthal angles, respectively, and Rs is the
Schwarzschild radius of the black hole, which itself is given by [61]

Rs =
2GM

c2
. (8)

The gravitational red-shift factor for an observer in a generic space-time is given by χ =
√
gtt [2]. Using

equation (7) for the Schwarzschild metric tensor, we can identify the gravitational red-shift factor for an
observer in the space-time surrounding a Schwarzschild black hole as

χ =

(
1− Rs

r

) 1
2

. (9)

An important property of χ is that it is normalised such that χ → 0 as r→ Rs and χ → 1 as r→∞ [1, 2].
The surface gravity κ of a Schwarzschild black hole is given by [2]

κ=
c4

4MG
. (10)

Hence, equation (4) for the Hawking temperature TH of a black hole, as defined by a distant observer, can be
expressed as [1, 51]

TH =
h̄c3

8πGMkb
(11)

for a Schwarzschild black hole. Using this expression for the Hawking temperature, equation (2) for the
entropy of a black hole and equation (10) for the surface gravity of a Schwarzschild black hole, the first law of
black hole mechanics for a Schwarzschild black hole can be expressed in the following form:

∆Ebh = TH∆Sbh, (12)

where∆Ebh and∆Sbh are the black hole’s energy and entropy changes, respectively, following a process that
alters the black hole’s mass [1]. To distinguish between this form of the first law of black hole mechanics and
that given in section 2, the above equation will henceforth be referred to as ‘the first law of Schwarzschild
black hole thermodynamics’.
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3.2. The equipartition rule
Analogous to [4, 31], we assume that the maximum amount of information that can be stored in a unit area
is one bit per Plank length squared lp

2. Thus, the maximum amount of information, measured in the number
of bits N, that can be stored on the event horizon of a spherically symmetric black hole with an area
Abh = 4πRs

2 is [31]

N=
Abhc3

Gh̄
. (13)

Next, we associate an average thermal energy of 1
2kbTH with each bit of information stored on the black

hole’s event horizon [31]. This can be justified using either an equipartition theory or an information theory
argument. The equipartition argument is as follows: consider a stationary black hole with N bits of
information stored on its event horizon. Under the zeroth law of black hole mechanics, the temperature of
the black hole must be uniform across the black hole’s event horizon [1, 50, 55]. Thus, each bit of
information must have the same temperature TH. By invoking the equipartition theorem, we can associate an
average thermal energy of n

2kbTH to each bit of information, where n is the number of degrees of freedom of
each bit [31]. As each bit of information has one degree of freedom [4], we can associate an average thermal
energy of 1

2kbTH to each bit on the event horizon. Here, our invocation of the equipartition theorem requires
the black hole to be in a thermal equilibrium. This, however, is strictly not true. Due to the Hawking effect,
the black hole continuously emits thermal radiation, preventing it from reaching thermal equilibrium [48].
The information theory argument does not suffer from this hamartia. This argument is as follows: consider a
process in which a collection of particles with N bits of information crosses the event horizon of a black hole,
thus becoming inaccessible to any external observers. To these external observers, this process corresponds to
the erasure of N bits of information [36]. Landauer’s principle then allows us to associate an energy of
ln(2)kbTH ≈ 1

2kbTH with each bit of information that the black hole has erased [36, 62].
Having associated an average thermal energy of 1

2kbTH with each bit of information, we can express the
total energy E of the information stored on the event horizon as [31]

E=
1

2
NkbTH, (14)

where N is the number of bits stored on the black hole’s event horizon. Equation (11) for the Hawking
temperature and equation (13) for the maximum amount of information stored on the event horizon can be
substituted into equation (14) for the total energy of the information stored on the event horizon to give

E=
Abhc6

16πG2M
. (15)

By substituting the surface area of the event horizon Abh = 4πRs
2 into the above equation we obtain

E=
Rs

2c6

4G2M
, (16)

which, by substituting equation (8) for the Schwarzschild radius into the above result, allows us to reach

E=Mc2. (17)

That is, the total energy of the information stored on the event horizon of the black hole is equal to the total
energy of the black hole [31, 63];

Mc2 =
1

2
NkbTH. (18)

Equation (18) will henceforth be referred to as the ‘equipartition rule’ [31].

3.3. Derivation of locally measured temperature
We now wish to derive an equation analogous to the equipartition rule for an observer that is a finite distance
from the black hole’s event horizon. This will enable us to derive an equation for the locally measured
temperature of such an observer’s vacuum state which, in turn, will be used to derive an equation for the
force required to hold such an observer in a stationary position relative to the black hole.

Consider an observer at a distance R⩾ 0 from the event horizon of a black hole. This observer defines a
spherically symmetric surface S with radius r= Rs +R that encloses the black hole and with it, the

7
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information contained on its event horizon. We assume that the maximum information N ′ ⩾ N enclosed by
S will be given by

N ′ =
4π r2c3

Gh̄
. (19)

The information contained within S was erased at the event horizon of the black hole, thus we can once
again associate the average thermal energy of 1

2kbTH with each bit of information. The total energy of the
information contained within S is therefore related to the energy of the black hole via the following
equation:

Mc2 =
1

2
N ′kbTH. (20)

As the observer is a finite distance from the black hole’s event horizon, by virtue of the Unruh effect in curved
space-time, the observer’s vacuum state will be a thermal state with a locally measured temperature
T= TH/χ [1, 2]. This naturally allows us to account for the gravitational red-shifting, which occurs because
of the observer’s finite distance from the black hole’s event horizon, and to relate the energy of the black hole
with the red-shifted energy of the information contained within S via the following equation:

Mc2

χ
=

1

2
N ′kbT. (21)

This equation will henceforth be referred to as the ‘red-shifted equipartition rule’. Substitution of
equation (19) for the maximum number of bits N ′ contained within S into the red-shifted equipartition rule
allows the following equation for the locally measured temperature T of the observer’s vacuum state to be
obtained:

T=
h̄GM

2π kbcr2χ
, (22)

where r is the observer’s distance from the centre of a black hole. The acceleration a required to hold the
observer in a stationary position relative to the black hole can be found using the Unruh effect. Equating the
above equation with equation (5) for the Unruh temperature yields

a=
GM

r2χ
. (23)

Lastly, Newton’s second law of motion can be used to equate this acceleration to the force F required to hold
an observer in a stationary position relative to the black hole. Doing so yields

F=
GMm

r2χ
, (24)

wherem is the observer’s mass. This is the force as measured locally by the stationary observer. As shown in
appendix A, the same expressions for both the force required to hold an observer in a stationary position and
the locally measured temperature of the observer’s vacuum state can be derived using general relativity by
calculating the four-acceleration required to hold an observer in a stationary position relative to a
Schwarzschild black hole. Our reason for displaying the derivation method presented in this section as the
primary derivation method is that, by making direct use of the holographic principle and treating the
information content of a black hole as erased to any external observers, it has the potential to shed light on
both the holographic principle and the black hole information paradox.

4. The production of entropy

In this section, the force required to hold an observer in a stationary position relative to a black hole will be
used to calculate the change in generalised entropy resulting from the process in which a box, with negligible
volume, is lowered by a distant observer to the event horizon of a black hole. As will be shown, the resultant
change in generalised entropy can be made negative by lowering the box arbitrarily close to the black hole’s
event horizon, reproducing the violation of the generalised second law discussed in [1–5]. This will motivate
our conjecture that in order to preserve the generalised second law, entropy must be produced during the
lowering process.

8
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4.1. The isentropic lowering process
Consider a distant observer that extracts work by slowly lowering a box of negligible volume, massm, energy
mc2 and entropy Sbox to a distance rf ⩾ Rs from the centre of a Schwarzschild black hole of massM and
Schwarzschild radius Rs. Once the box reaches rf, it is allowed by the distant observer to fall freely towards the
black hole [1–5]. To investigate whether the generalised second law is violated in this process, the resultant
change in common entropy∆Sm and change in black hole entropy∆Sbh must be calculated. If one assumes
that the lowering process is isentropic, that is, during the lowering process no entropy is produced and the
box’s entropy does not change, the change in the common entropy once the box crosses the event horizon
will be∆Sm =−Sbox [1–5]. The black hole’s change in entropy can be determined using the first law of
Schwarzschild black hole thermodynamics and the black hole’s corresponding change in energy∆Ebh, which
itself can be found by calculating the amount of work extracted by the distant observerW∞ in lowering the
box to rf [1, 2, 5]. The amount of work that is extracted by lowering the box to a distance rf is given by [1, 2]

W∞ =

ˆ ∞

rf

Fdr, (25)

where F is the force exerted on the box by the distant observer as given by equation (24). Thus, the maximum
amount of work the distant observer can extract by lowering the box to a distance rf is given by

W∞ = GMm

ˆ ∞

rf

1

r2

(
1− Rs

r

)− 1
2

dr. (26)

By making the change of variables u= 1− Rs
r , the integral in the above equation can be solved to yield

W∞ =
GMm

Rs

ˆ r→∞

r=rf

u−
1
2 du, (27)

W∞ =
2GMm

Rs

[√
1− Rs

r

]∞
rf

, (28)

W∞ =mc2
[
lim
r→∞

(√
1− Rs

r

)
−
√
1− Rs

rf

]
, (29)

W∞ =mc2
(
1−

√
1− Rs

rf

)
. (30)

Upon the box crossing the event horizon, the black hole’s change in energy will be given by the energy of the
box subtracted by the amount of work the distant observer has extracted [1, 2]. That is,

∆Ebh =mc2 −W∞, (31)

∆Ebh =mc2
(
1− Rs

rf

) 1
2

. (32)

Thus, by lowering the box arbitrarily close to the event horizon, which in equation (32) corresponds to
taking the limit rf → Rs, the black hole’s change in energy can be made to be zero. Using the first law of
Schwarzschild black hole thermodynamics, the corresponding change in the black hole’s entropy will be zero
(∆Sbh = 0). Consequently, the change in generalised entropy will be

∆S ′ =∆Sbh +∆Sm, (33)

∆S ′ =−Sbox, (34)

violating the generalised second law. Here we have exactly reproduced the violation of the generalised second
law discussed in section 2 and [1–5].

Recalling that to an external observer it would take an infinite amount of time for the box to reach the
event horizon, the perceptive reader might note that, for the distant observer, it would take an infinite
amount of time to lower the box such that the black hole’s entropy change is zero. Whilst this is true, to
violate the generalised second law, the distant observer need only lower the box to a distance that results in
the black hole’s entropy change being less than the box’s entropy. Such a distance can be reached within a
finite amount of time.

9
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4.2. Entropy production in the lowering process
Hitherto, it has been assumed that the lowering process is isentropic. This assumption is commonly made in
the literature [1–5] and, as demonstrated above, results in the violation of the generalised second law. We will
now dispose of this assumption and instead assume that entropy is produced in the space-time surrounding
the box during the lowering process. This entropy production will result in a loss of work to the surrounding
space-time [64] which, by limiting the amount of work that the distant observer can extract, allows for the
generalised second law to be preserved.

To demonstrate that the production of entropy results in a non-negative change in generalised entropy,
the change in the black hole and common entropy must be determined. As in the isentropic lowering
process, the change in black hole entropy can be found using the first law of thermodynamics and the black
hole’s corresponding change in energy, which itself can be found by calculating the work extracted by the
distant observer. In this case, however, the work extracted by the distant observer will be limited by the loss of
work to the surrounding space-time. Considering this, the maximum amount of work the distant observer
can extractW ex is given by

Wex =W∞ −Wlost, (35)

whereW∞ is the amount of work the distant observer would extract were there no entropy production and
Wlost is the amount of work lost to the surrounding space-time which, in lowering the the box to a distance
rf, is itself given by [64]

Wlost =−
ˆ

TdSsur, (36)

Wlost =−
ˆ ∞

rf

T
dSsur
dr

dr, (37)

where T is the locally measured temperature of the box’s vacuum state, dSsur is the change in the surrounding
space-time’s entropy and dSsur

dr is the rate of change of the surrounding space-time’s entropy with respect to
the box’s distance r. Thus, the maximum amount of work the distant observer can extract by lowering the
box to a distance rf is given by

Wex =

ˆ ∞

rf

Fdr+

ˆ ∞

rf

T
dSsur
dr

dr. (38)

Taking into account the entropy produced in the surrounding space-time by lowering the box to a distance rf,
the change in the common entropy will be given by

∆Sm =−
ˆ ∞

rf

dSsur
dr

dr− Sbox. (39)

To determine the change in generalised entropy, a function Ssur(r) describing the production of entropy,
which is dependent on the box’s position r, must be identified. In the absence of such a function in the
literature, we are left to postulate what the form of this function might be. To aid in this task, we impose two
requirements on the change in black hole and common entropy following the lowering process. These
requirements will provide two conditions on the form of Ssur(r). First, we require that the change in black
hole entropy is finite. This is to ensure that the black hole’s entropy remains finite following the lowering
process [3, 48]. To satisfy this requirement, the black hole’s energy change and hence, the work lost to the
surrounding space-time, must also be finite. Using this requirement and equation (37) for the work lost to
the surrounding space-time, we obtain our first condition: The function Ssur(r)must be of a form such that
the integral

ˆ
T
dSsur
dr

dr (40)

converges in both of the limits r→∞ and r→ Rs. Second, we require that the change in common entropy is
finite. This is to avoid an unsatisfactory resolution of the violation of the generalised second law on the basis
of an infinite increase in common entropy. Using this requirement and equation (39) for the change in
common entropy, we obtain our second condition: The function Ssur(r)must be of a form such that the
integral

ˆ
dSsur
dr

dr (41)

10
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converges in both of the limits r→∞ and r→ Rs.
Equipped with these two conditions, we can identify functions that might describe the production of

entropy during the lowering process. There are a multitude of functions that satisfy both of these conditions.
We begin by identifying one such function to demonstrate that the production of entropy allows for the
generalised second law to not be violated via the lowering process. This is the function

Ssur (r) =
α

r2
+ const, (42)

which has the following derivative with respect to r:

dSsur
dr

=−2α

r3
, (43)

where α is some positive constant with units m2JK−1 and const is an arbitrary integration constant. Taking
equation (42) to describe the production of entropy, we now proceed with determining the change in
generalised entropy following the lowering of the box arbitrarily close to the event horizon of the black hole.
We begin by finding the black hole’s change in entropy by calculating the work extracted by the distant
observer. The maximum amount of work the distant observer can extract by lowering a box of entropy Sbox
to the event horizon is

Wex =

ˆ ∞

Rs

Fdr+

ˆ ∞

Rs

T
dSsur
dr

dr. (44)

Applying equation (22) for the locally measured temperature of the box’s vacuum state, (24) for the force
required to hold an observer in a stationary position and (43) for the derivative of our choice of Ssur(r) yields

Wex = GMm

ˆ ∞

Rs

1

r2

(
1− Rs

r

)− 1
2

dr− αh̄GM

π kbc

ˆ ∞

Rs

1

r5

(
1− Rs

r

)− 1
2

dr. (45)

Via the change of variables u= 1− Rs
r , both of the above integrals can be solved to obtain

Wex =mc2 − 32αh̄GM

35π kbcRs
4 , (46)

which, by applying equations (8) and (11) for the Schwarzschild radius and Hawking temperature,
respectively, can be simplified to

Wex =mc2 − 64αTH

35Rs
2 . (47)

Upon the box crossing the event horizon of the black hole, the resultant change in energy of the black hole
will be

∆Ebh =mc2 −Wex, (48)

∆Ebh =
64αTH

35Rs
2 . (49)

Using the first law of Schwarzschild black hole thermodynamics, the corresponding change in the black hole’s
entropy will be

∆Sbh =
64α

35Rs
2 . (50)

Having obtained the black hole’s entropy change, we now turn to calculating the change in common
entropy. Considering the production of entropy during the lowering process, the change in common entropy
following the lowering of the box to the event horizon will be

∆Sm =−
ˆ ∞

Rs

dSsur
dr

dr− Sbox, (51)

Applying equation (43) for the derivative of our choice of Ssur(r) yields

∆Sm = 2α

ˆ ∞

Rs

1

r3
dr− Sbox, (52)

11
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∆Sm =
α

Rs
2 − Sbox. (53)

Therefore, the resultant change in generalised entropy will be

∆S ′ =∆Sbh +∆Sm, (54)

∆S ′ =
99α

35Rs
2 − Sbox, (55)

which is non-negative if α⩾ 35Rs
2Sbox
99 . That is, taking α= Rs

2Sbox would give a positive change in generalised
entropy. For this choice of α, the associated function describing entropy production in the surrounding
space-time is

Ssur (r) =
Rs

2Sbox
r2

+ const=
AbhSbox
4π r2

+ const. (56)

The corresponding change in generalised entropy when the box is lowered arbitrarily close to the event
horizon is∆S ′ = 99Sbox

35 .

4.3. A set of functions describing entropy production
The previous subsection’s analysis can be generalised further by identifying a set of functions describing the
production of entropy in the surrounding space-time that result in a non-negative change in generalised
entropy. The reason for identifying a set of such functions is to make as few assumptions as possible about
the mechanism by which entropy is produced during the lowering process. The first step in identifying such a
set of functions is to notice that both of our conditions for Ssur(r) are satisfied when Ssur(r) is of the form

Ssur (r) =
α

rn
+ const, (57)

where n ∈ Z+ and α is a positive non-zero constant with units mnJK−1 that will be chosen such that
∆S ′ ⩾ 0. Here, const is once again an arbitrary integration constant. Next, for this form of Ssur(r), the change
in generalised entropy resulting from the lowering process must be calculated. This is done to identify the
values of α for which the change in generalised entropy is non-negative. As before, to calculate the change in
black hole entropy, the change in the black hole’s energy and hence, the work extracted by the distant
observer, must be calculated. In the process of lowering the box to the black hole’s event horizon, the
maximum amount of work extracted by the distant observerW ex will be given by equation (44), where the
derivative of Ssur(r) with respect to the box’s distance r is

dSsur
dr

=− αn

rn−1
. (58)

Applying equation (22) for the locally measured temperature of the box’s vacuum state, (24) for the force
required to hold the box in a stationary position and (58) for the derivative of Ssur(r), equation (44) for the
maximum amount of work extracted can be expressed as

Wex = GMm

ˆ ∞

Rs

1

r2

(
1− Rs

r

)− 1
2

dr− αnh̄GM

2π kbc

ˆ ∞

Rs

1

rn+3

(
1− Rs

r

)− 1
2

dr. (59)

Via the change of variables u= 1− Rs
r , the first integral in this expression can be solved to yield

Wex =mc2 − αnh̄GM

2π kbc

ˆ ∞

Rs

1

rn+3

(
1− Rs

r

)− 1
2

dr. (60)

The remaining integral can be solved for all n ∈ Z+ by making the same change of variables and then
expanding the integrand using the binomial theorem. This is shown explicitly in appendix B. Doing so gives
the maximum amount of work extracted as

Wex =mc2 − αnh̄GMΣn

2π kbcRs
n+2 , (61)

where

Σn =
22n+3

2n+ 3

(
2n+ 2

n+ 1

)−1

. (62)

12
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By applying equations (8) and (11) for the Schwarzschild radius and Hawking temperature, respectively,
equation (61) for the maximum amount of work extracted can be simplified to

Wex =mc2 − αnTHΣn

Rs
n . (63)

Thus, once the box crosses the event horizon of the black hole, the energy change of the black hole will be

∆Ebh =mc2 −Wex, (64)

∆Ebh =
αnTHΣn

Rs
n . (65)

Using the first law of Schwarzschild black hole thermodynamics, we obtain the corresponding change in
black hole entropy,

∆Sbh =
αnΣn

Rs
n . (66)

Having found the change in the black hole’s entropy, the change in common entropy must now be
determined. For all n ∈ Z+, the change in common entropy resulting from the box being lowered to the
event horizon of the black hole will be

∆Sm =−
ˆ ∞

Rs

dSsur
dr

dr− Sbox, (67)

∆Sm =−
ˆ ∞

Rs

αn

rn+1
dr− Sbox, (68)

∆Sm =
α

Rs
n − Sbox. (69)

Therefore, upon the box crossing the event horizon, the resultant change in generalised entropy∆S ′ will be

∆S ′ =∆Sbh +∆Sm, (70)

∆S ′ =
α(nΣn + 1)

Rs
n − Sbox. (71)

To ensure that the change in generalised entropy is non-negative, such that the generalised second law is not
violated as a result of the lowering process, we require

α⩾ Rs
nSbox

nΣn + 1
. (72)

Thus, provided that the entropy produced in the space-time surrounding the box is described by a function
within the set of functions given by equation (57) and α satisfies this bound, the lowering process will not
violate the generalised second law.

Even with the bound on α given in equation (72), there remains some ambiguity in identifying potential
values for α. Ideally, we would like there to be some physical motivation for our choice in α. For the
remainder of this section, we will discuss two natural choices for α that ensure that the generalised second
law is not violated as a result of the lowering process.

First is the choice α= Rs
nSbox, where n ∈ Z+. This choice of α corresponds to there being no change in

common entropy. That is, the amount of entropy produced is equal to the entropy of the box. In this case,
the change in generalised entropy is∆S ′ = nΣnSbox which, for some n ∈ Z+, is non-negative if Σn ⩾ 0. From
the expression for Σn given in equation (62), it is evident that Σn > 0 for all n ∈ Z+. Thus, the choice
α= Rs

nSbox will always give a non-negative change in generalised entropy. For this choice of α, The
corresponding function describing the production of entropy during the lowering process, for a general
n ∈ Z+, is

Ssur (r) =
Rs

nSbox
rn

+ const. (73)

Second is the choice α= Rs
nSbox
nΣn

, where n ∈ Z+. This corresponds to imposing that the change in black hole

entropy is equal to the entropy of the box. In this case, the change in generalised entropy is∆S ′ = Sbox
nΣn

, which
is non-negative and finite for all n ∈ Z+ as Σn > 0 for all n ∈ Z+. Here, the corresponding function
describing the production of entropy during the lowering process, for a general n ∈ Z+, is

Ssur (r) =
Rs

nSbox
nΣnrn

+ const. (74)
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5. Conclusion

In this paper, we have argued that to ensure the generalised second law is not violated via the process in which
a distant observer extracts work by lowering a box, of negligible volume, arbitrarily close to the event horizon
of a black hole, entropy must be produced in the space-time surrounding the box. Using the Hawking
temperature, Unruh effect, and concepts from quantum information, equations for the locally measured
temperature of the box’s vacuum state and the force required to hold this box in a stationary position relative
to the black hole were derived. These equations form the framework for determining the change in
generalised entropy as a result of this lowering process both in the case where the process is isentropic and in
the case where entropy is produced during the process. In the former case, it was shown that the generalised
second law is violated in the exact fashion as in the literature [1–5]. In the latter case, it was argued that the
production of entropy in the surrounding space-time would limit the amount of work the distant observer
can extract, allowing for the generalised second law to be preserved. To explicitly demonstrate this, a function
describing entropy production in the space-time surrounding the box during the lowering process was
required. In the absence of such a function in the literature, our imposition of two requirements: (1) that the
resultant change in black hole entropy is finite; and (2) that the resultant change in common entropy is finite,
was used to obtain two conditions that the form of such a function must satisfy. These conditions were in
turn used to identify a set of possible functions describing the production of entropy during the lowering
process. For this set of functions, the change in generalised entropy resulting from the lowering process was
calculated and shown to be non-negative provided that a coefficient in this set of functions satisfies a given
bound. Finally, two natural choices of this coefficient, which allow for the generalised second law to be
preserved in the lowering process, were discussed. The first choice, which arose from imposing that the
entropy produced be equal to the entropy of the box, corresponds to the following set of functions:

Ssur (r) =
Rs

nSbox
rn

+ const. (75)

The second choice, which arose from imposing that the change in black hole entropy be equal to the entropy
of the box, corresponds to the following set of functions:

Ssur (r) =
Rs

nSbox
nΣnrn

+ const. (76)

The reason for identifying a set of possible functions describing the production of entropy during the
lowering process was two-fold. First, it enabled us to make as few assumptions as possible about the
mechanism by which entropy is produced during the lowering process. Second, it aided in demonstrating the
flexibility of our argument. This flexibility being that the preservation of the generalised second law on the
basis of entropy production during the lowering process is not reliant on the validity of any particular
entropy production mechanism. This is particularly important as the set of functions presented in this paper
does not exhaust all possible forms of such a function that allow for the preservation of the generalised
second law. Thus, in the event that an alternative function is proposed, the framework presented in this paper
provides a way by which the changes in black hole entropy, common entropy and generalised entropy can be
found for the discussed lowering process.

In addition to providing a resolution to the discussed violation of the generalised second law, the
framework presented in this paper can be applied to test and inform theories of gravity and quantum gravity.
The reason for this is that any theory of gravity or quantum gravity must have entropy relations that satisfy
the two conditions required by the form of an entropy production function, such that changes in black hole
entropy, common entropy and generalised entropy remain finite, and the generalised second law is not
violated, as a result of the discussed lowering process. Whilst we make no comment on its validity, an
intriguing example of this is Verlinde’s theory of entropy gravity [31], which postulates a linear relationship
between a particle’s position and entropy. This relationship violates the second condition required by an
entropy production function, and consequently, if one were to take it to describe entropy production during
the lowering process, one would find that the resultant change in common entropy is infinite.

Whilst the framework presented in this paper is specific to Schwarzschild black holes, it has the potential
to be expanded to charged and massive Reissner–Nordström black holes. The first step towards this is
deriving an equation for the locally measured temperature of a charged box’s vacuum state. As shown in
appendix C, by using the Hawking temperature and gravitational red-shift factor for a Reissner–Nordström
black hole, this can be done by following the method presented in section 3. Next, an equation for the force
required to hold the charged box in a stationary position relative to the black hole must be derived. It is not,
however, immediately clear how the Unruh effect alone could be used to obtain an expression for this force
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that is dependent on the box’s charge. In addition to this, whilst the production of entropy during the
lowering process would limit the amount of work an external observer can extract, it is not clear whether the
set of functions presented in this paper would apply to the case of a Reissner–Nordström black hole.
Nevertheless, the requirements that both the change in the black hole entropy and the change in common
entropy remain finite could once again be used to obtain two conditions on the form of such a function. It is
not immediately clear how the framework of this paper could be expanded to rotating and massive Kerr
black holes. The lack of an equivalent to the Unruh effect in the space-time surrounding a Kerr black hole
[1, 65] would make this a challenging task.
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Appendix A. General relativity: stationary observer

In section 3.3, an equation for the force required to hold an observer in a stationary position relative to a
Schwarzschild black hole is derived. This is done by deriving an equation for the locally measured
temperature of the observer’s vacuum state and then using the Unruh effect to relate this temperature to an
acceleration. In this appendix, we derive the same equations for the force required to hold an observer in a
stationary position relative to a Schwarzschild and the locally measured temperature of the observer’s
vacuum state using general relativity. This is done to verify that the force derived in section 3.3 is indeed the
force required to hold the observer in a stationary position.

Consider an observer that is in a stationary position relative to the exterior of a Schwarzschild black hole
with massM. The curvature of this observer’s space-time is described by the Schwarzschild metric line
element ds2, which in spherical polar coordinates (t, r,θ,ϕ) is given by [66]

ds2 =

(
1− Rs

r

)
c2dt2 −

(
1− Rs

r

)−1

dr2 − r2dθ2 − r2 sin2 θdϕ2, (A.1)

where t is the time coordinate, r is the observer’s distance from the centre of the black hole, θ and ϕ are the
observer’s polar and azimuthal angles, respectively, and Rs is the Schwarzschild radius of the black hole.

As the observer is stationary, that is, r, θ and ϕ are all constant, dr= dθ = dϕ = 0. Therefore, for the
stationary observer, the metric in equation (A.1) reduces to

ds2 =

(
1− Rs

r

)
c2dt2. (A.2)

As the observer has mass, we can define the proper time τ as ds2 =−c2dτ 2. Substitution of the proper time’s
definition into equation (A.2) for the stationary observer’s metric yields

dτ 2 =

(
1− Rs

r

)
dt2, (A.3)

which can be rearranged to obtain

dτ

dt
=

(
1− Rs

r

) 1
2

, (A.4)

dτ

dt
= χ, (A.5)

where we have identified the Schwarzschild metric gravitational red-shift factor χ =
(
1− Rs

r

) 1
2 .
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To find the force required to hold the observer in a stationary position, the magnitude of the observer’s
four-acceleration and therefore, the observer’s four-velocity must be found. The four-velocity Uµ is defined
as

Uµ =
dxµ

dτ
, (A.6)

where xµ = (ct, r,θ,ϕ) and µ= (t, r,θ,ϕ) denotes space-time indices. The above equation for the
four-velocity can be expressed as

Uµ =
dxα

dτ

dxµ

dxα
, (A.7)

Uµ =
dt

dτ

dxµ

dt
+

dr

dτ

dxµ

dr
+

dϕ

dτ

dxµ

dϕ
+

dθ

dτ

dxµ

dθ
, (A.8)

which, as dr= dθ = dϕ = 0 for the stationary observer, reduces to

Uµ =
dt

dτ

dxµ

dt
. (A.9)

Hence, the four-velocity of the stationary observer is

Uµ =
dt

dτ

d

dt
(ct, r,θ,ϕ) , (A.10)

Uµ = χ−1 (c,0,0,0) . (A.11)

As is to be expected for a stationary observer, the only non-zero component of the four-velocity is Ut.
Having obtained the stationary observer’s four-velocity, we can now proceed with determining their

four-acceleration. The stationary observer’s four-acceleration Aµ can be defined using the geodesic equation
as [66]

Aµ =
d2xµ

dτ 2
+Γµ

αβ

dxα

dτ

dxβ

dτ
, (A.12)

where Γµ
αβ denotes the Christoffel symbols of the Schwarzschild metric. Equation (A.12) for the

four-acceleration can be rearranged to obtain

Aµ =
d2xµ

dτ 2
+Γµ

αβ

dxα

dτ

dxβ

dτ
, (A.13)

Aµ =
dxγ

dτ

dτ

dxγ
d2xµ

dτ 2
+Γµ

αβ

dxα

dτ

dxβ

dτ
, (A.14)

Aµ =
dxγ

dτ

d

dxγ
dxµ

dτ
+Γµ

αβ

dxα

dτ

dxβ

dτ
, (A.15)

Aµ = UγUµ,γ+Γµ
αβU

αUβ , (A.16)

where ,γ denotes the partial derivative with respect to xγ . Expanding the summation of γ in the above
expression yields

Aµ = UtUµ,t+UrUµ,r+UθUµ,θ+UϕUµ,ϕ +Γµ
αβU

αUβ , (A.17)

which, as Ur = Uθ = Uϕ = 0, reduces to

Aµ = UtUµ,t+Γµ
αβU

αUβ . (A.18)

As the four-velocity of the stationary observer is independent of t, Uµ,t= 0. The above expression therefore
reduces further to

Aµ = Γµ
αβU

αUβ . (A.19)

The summation of α in the above expression can be expanded to yield

Aµ =
(
Γµ
tβU

t +Γµ
rβU

r +Γµ
θβU

θ +Γµ
ϕβU

ϕ
)
Uβ , (A.20)
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which again, as Ur = Uθ = Uϕ = 0, can be reduced to

Aµ = Γµ
tβU

tUβ . (A.21)

This can be repeated for the summation of β to obtain

Aµ = Γµ
ttU

tUt. (A.22)

As the Christoffel symbols Γt
tt, Γ

θ
tt and Γϕ

tt for the Schwarzschild metric are all zero [66], the only non-zero
component of the four-acceleration will be

Ar = Γr
ttU

tUt, (A.23)

where [66]

Γr
tt =

Rs

2r2

(
1− Rs

r

)
, (A.24)

Γr
tt =

Rsχ
2

2r2
. (A.25)

Using the above expression for Γr
tt, U

t = cχ−1, and equation (A.23) for the non-zero component of the
stationary observer’s four-acceleration, we can express Ar as

Ar =
Rsc2

2r2
, (A.26)

Ar =
GM

r2
. (A.27)

The magnitude of the stationary observer’s four-acceleration a is given by a=
√
AµAµ, where

AµA
µ = gµνA

νAµ (A.28)

and gµν is the Schwarzschild metric tensor, which is given in equation (7). Expanding the summation of µ
and ν in the above expression gives

AµA
µ = gttA

tAt + grrA
rAr + gθθA

θAθ + gϕϕA
ϕAϕ, (A.29)

which as At = Aθ = Aϕ = 0, reduces to

AµA
µ = grrA

rAr, (A.30)

where grr = χ−2 for the stationary observer. Applying equation (A.27) for the non-zero component of the
stationary observer’s four-acceleration yields

AµA
µ =

1

χ2

(
GM

r2

)2

. (A.31)

Hence, the magnitude of the stationary observer’s acceleration a, in their reference frame, is

a=
GM

r2χ
. (A.32)

Newton’s second law of motion and equation (A.32) for the magnitude of the stationary observer’s
acceleration can be used to obtain

F=
GMm

r2χ
, (A.33)

where F is the force required to hold the observer in a stationary position (as measured by the stationary
observer) andm is the stationary observer’s mass. Additionally, equation (A.32) for the magnitude of the
stationary observer’s acceleration can be equated to equation (5) for the Unruh temperature to obtain

T=
h̄GM

2π kbcr2χ
(A.34)

where T is the locally measured temperature of the stationary observer’s vacuum state, kb is the Boltzmann
constant and h̄ is the reduced Plank’s constant. Both of the latter two equations are the same as those derived
in section 3.3.
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Appendix B. Integral of a set of functions

Consider the following integral:

I=

ˆ ∞

Rs

1

rn+3

(
1− Rs

r

)− 1
2

dr, (B.1)

where n ∈ Z+ and Rs denotes the Schwarzschild radius of a black hole. To solve this integral ∀n ∈ Z+,
we begin by making the change of variables u= 1− Rs

r such that du= Rs
r2 dr. This yields

I=

ˆ ∞

Rs

1

rn+3

(
1− Rs

r

)− 1
2

dr, (B.2)

I=
1

Rs

ˆ r→∞

r→Rs

1

rn+1
u−

1
2 du, (B.3)

I=
1

Rs
n+2

ˆ r→∞

r→Rs

(1− u)n+1 u−
1
2 du. (B.4)

Next, the term (1− u)n+1 can be expanded using the binomial theorem to obtain

I=
1

Rs
n+2

ˆ r→∞

r→Rs

(
n+1∑
k=0

(
n+ 1

k

)
(−u)k

)
u−

1
2 du, (B.5)

I=
1

Rs
n+2

n+1∑
k=0

(
n+ 1

k

)
(−1)k

ˆ r→∞

r→Rs

uk−
1
2 du, (B.6)

I=
1

Rs
n+2

n+1∑
k=0

(
n+ 1

k

)
(−1)k

[
uk+

1
2

k+ 1
2

]r→∞

r→Rs

, (B.7)

I=
1

Rs
n+2

n+1∑
k=0

(
n+ 1

k

)
(−1)k

k+ 1
2

[(
1− Rs

r

)k+ 1
2

]r→∞

r→Rs

, (B.8)

I=
1

Rs
n+2

n+1∑
k=0

(
n+ 1

k

)
(−1)k

k+ 1
2

[
lim
r→∞

((
1− Rs

r

)k+ 1
2

)

− lim
r→Rs

((
1− Rs

r

)k+ 1
2

)]
.

(B.9)

In the limit r→∞,
(
1− Rs

r

)
→ 1. Therefore, in this limit

(
1− Rs

r

)k+ 1
2 → 1 ∀k. Similarly, in the limit r→ Rs,(

1− Rs
r

)
→ 0. Therefore, in this limit

(
1− Rs

r

)k+ 1
2 → 0 ∀k. Consequently, taking these limits gives

I=
1

Rs
n+2

n+1∑
k=0

(
n+ 1

k

)
(−1)k

k+ 1
2

. (B.10)

We now wish to solve the remaining sum analytically ∀n ∈ Z+. This is done to show that this sum is
non-negative ∀n ∈ Z+. In section 4.3, the non-negativity of this sum aids in finding a generic choice of α
that results in a non-negative change in generalised entropy. To analytically solve the remaining sum, we
begin by expressing I in the following form:

I=
2

Rs
m+1

m∑
k=0

(
m

k

)
(−1)k

2k+ 1
, (B.11)

wherem= n+ 1. Expressing I in this form allows for the combinatorial identity [67]

m∑
k=0

(
m

k

)
(−1)k

2k+ 1
=

22m

2m+ 1

(
2m

m

)−1

(B.12)

to be used to obtain

I=
1

Rs
m+1

22m+1

2m+ 1

(
2m

m

)−1

, (B.13)
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I=
1

Rs
n+2

22n+3

2n+ 3

(
2n+ 2

n+ 1

)−1

, (B.14)

I=
Σn

Rs
n+2 , (B.15)

where

Σn =
22n+3

2n+ 3

(
2n+ 2

n+ 1

)−1

. (B.16)

Appendix C. Reissner–Nordström black holes

In this appendix, we derive an equation for the locally measured temperature of the vacuum state of an
observer that is a finite distance from the event horizon of a charged and massive Reissner–Nordström black
hole. The method for this follows that given in section 3 for the case of a Schwarzschild black hole, the only
distinction being that expressions for the Hawking temperature and gravitational red-shift factor for a
Reissner–Nordström black hole must be used.

Consider a Reissner–Nordström black hole of massM and geometrized charge Q ′ = Q/
√
4π ϵ0G, where

Q denotes the charge of the black hole, G Newton’s gravitational constant and ϵ0 the permittivity of free
space. The radii R± of the Reissner–Nordström black hole’s event horizons are given by [61]

R± =
G
(
M±

√
M2 −Q ′2

)
c2

. (C.1)

The existence of these event horizons is determined by the relative values ofM2 and Q ′2. WhenM2 > Q ′2,
both event horizons are real with the outermost event horizon being that with radius R+. WhenM2 = Q ′2,
only the event horizon with radius R+ is real. WhenM2 < Q ′2, R± are both imaginary and therefore neither
event horizon exists. We will not consider the latter-most case as, due to the non-existence of the event
horizons, it is not considered to be physically realistic [61, 68, 69]. In the remaining two cases, the event
horizon with radius R+ is either the outermost or the only event horizon. We will therefore take R+ to define
the surface area of the black hole. Assuming that the event horizon with radius R+ is spherically symmetric,
its surface area Abh will be [63]

Abh = 4πR+
2, (C.2)

Abh =
4πG2

c4

(
M+

√
M2 −Q ′2

)2

. (C.3)

For a Reissner–Nordström black hole, the Hawking temperature TH, as defined by a distant observer, is
given by [63]

TH =
2Gh̄

√
M2 −Q ′2

kbcAbh
, (C.4)

where h̄ is the reduced Plank’s constant and kb is the Boltzmann constant.
For an observer at a distance r from the centre of the Reissner–Nordström black hole, the gravitational

red-shift factor χ is given by [7]

χ =

√
(r−R+)(r−R−)

r
. (C.5)

As in the Schwarzschild case, χ is normalised such that χ → 0 as r→ R+ (or r→ R−) and χ → 1 as r→∞
[7].

Following the argument given in section 3.2, we can associate an average thermal energy of 1
2kbTH with

each bit of information stored on the event horizon of the Reissner–Nordström black hole. This way, the total
energy E of the information stored on the event horizon can be given by

E=
1

2
NkbTH, (C.6)
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where N is the maximum number of bits of information stored on the event horizon. Assuming that the
maximum amount of information stored on the event horizon is given by

N=
Abhc3

Gh̄
, (C.7)

and by making use of equation (C.4) for the Hawking temperature of a Reissner–Nordström black hole,
equation (C.6) for the total energy of the information stored on the event horizon can be expressed as [63]

1

2
NkbTH = c2

√
M2 −Q ′2. (C.8)

This is the corresponding equipartition rule for a Reissner–Nordström black hole.
We now proceed with deriving the equipartition rule for an observer that is at a finite distance from the

black hole. Consider an observer at a distance R⩾ 0 from the outermost event horizon of a
Reissner–Nordström black hole. This observer will define a spherically symmetric surface S with a radius
r= R+ +R that encloses the information contained on the event horizon. As in the Schwarzschild case, we
assume that the maximum amount of information N ′ ⩾ N enclosed by S will be

N ′ =
4π r2c3

Gh̄
. (C.9)

An average thermal energy of 1
2kbTH can once again be associated with each bit of information enclosed by S

as each bit was erased at the event horizon. The total energy of the information contained within S is
therefore related to the energy of the black hole via the following equation:

1

2
N ′kbTH = c2

√
M2 −Q ′2. (C.10)

As the observer is at a finite distance from the black hole’s event horizon, by virtue of the Unruh effect in
curved space-time, their vacuum state will be a thermal state with a temperature T= TH/χ. This once again
allows us to account for the gravitational red-shifting, which occurs because of the observer’s finite distance
from the black hole’s event horizon, and to relate the energy of the black hole with the red-shifted energy of
the information contained within S via the following equation:

1

2
N ′kbT=

c2
√
M2 −Q ′2

χ
, (C.11)

This is the corresponding red-shifted equipartition rule for a Reissner–Nordström black hole. As in the
Schwarzschild case, the substitution of equation (C.9) for the maximum number of bits contained within S
into the red-shifted equipartition rule allows for an equation for the locally measured temperature of the
vacuum state of the observer to be obtained. For an observer at a distance r⩾ R+ from the centre of a
Reissner–Nordström black hole, the locally measured temperature T of their vacuum state is given by

T=
Gh̄
√
M2 −Q ′2

2π kbcr2χ
. (C.12)

In the case where Q ′ = 0, R+ = Rs and R− = 0. Hence, when Q ′ = 0 the expression for the red-shift factor χ
reduces to that of the Schwarzschild black hole and the above equation reduces to equation (22) for the
locally measured temperature of an observer at a finite distance from a Schwarzschild black hole. It should be
noted that the locally measured temperature T is imaginary when Q ′2 >M2. This, however, is not
problematic as, due to the non-existence of its event horizons, a black hole with Q ′2 >M2 is not considered
to be physically possible [61, 68, 69].
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