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Localized multibunch modes in accelerators
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This paper will explore the possibility of the formation of localized modes in the coupled transverse
oscillations of bunches in an accelerator. Such modes are characterized by a large amplitude excitation
of one of the bunches, with little or no excitation of the other bunches. They are very similar to
intrinsic localized modes predicted to appear in lattice excitations of anharmonic condensed matter
systems. The existence of the phenomenon in accelerators requires long-range coupling between the
bunches, and quartic terms in the effective potential experienced by the bunches. The discussion in
this paper considers the specific cases of a long-range coupling due to the resistive wall impedance,
and nonlinearities in the transverse force caused by octupoles. The general equations for the localized
mode frequencies and amplitudes are derived. The equations are applied to the specific cases of 9 and
21 equally spaced, equally populated bunches in the Cornell electron storage ring. For both cases, with
the currently available octupole strength, and with currents of 8 mA per bunch, localized modes with
amplitudes of about 2 mm, and with frequency shifts of 50 100 s21 relative to the linear coupled-bunch
mode frequencies, may be possible.

PACS numbers: 29.27.Bd, 41.85.–p, 63.20.Pw
I. INTRODUCTION

It has been suggested [1,2] that the phenomenon
of intrinsic localized modes in anharmonic condensed
matter systems [3–7] may also be observed in the
excitations of multibunch modes in accelerators, in the
presence of significant lattice nonlinearities. In this paper,
this possibility is explored quantitatively, for multibunch
coupling produced by the resistive wall impedance, and
an octupole-generated nonlinearity.

The basic physical mechanism involved in the devel-
opment of localized modes is quite straightforward. In a
machine with many bunches, every bunch will be coupled
to the other bunches through the machine impedance. This
coupling results in a spectrum of normal modes, with some
spread in the normal mode frequencies. Because of the
coupling, transverse excitation of a single bunch will even-
tually result in oscillation amplitudes for all the bunches.
However, in the presence of an octupole, the oscillation
frequency for a bunch will be a function of its oscillation
amplitude. If the frequency shift due to the oscillation am-
plitude of a single bunch is substantially larger than the
frequency spread of the linear normal modes, this bunch
no longer couples to the others, and the oscillation will re-
main “localized” on a single bunch. This type of behavior
is referred to as a localized mode.

The standard formalism for the treatment of coupled
bunch oscillations forms the starting point for the analysis.
The normal mode frequencies are specified in terms of a
general effective transverse impedance. The impedance
is taken to be that due to the resistive wall. As specific
1098-4402�99�2(9)�094401(8)$15.00
examples, the normal mode spectrum is displayed for 9
and 21 equally spaced, equally populated bunches in the
Cornell electron storage ring (CESR). An octupole is then
introduced, which produces a dependence of the tune on
amplitude, makes the coupled bunch equations nonlinear,
and allows for the possibility of localized modes. A
Green’s function approach is developed to allow an itera-
tive solution to the nonlinear coupled bunch equations.
The equations which exhibit the localized modes are
developed using this Green’s function. These equations
give the frequency shift (relative to the linear coupled
bunch frequencies) and the mode pattern for the localized
modes. The equations are applied to the cases of 2 mm
amplitude excitations of 9 and 21 bunches in CESR, using
the parameters corresponding to the existing octupoles in
the machine. As a check on the approximations used
in the analytical treatment, a numerical simulation of the
localized mode evolution is also carried out.

II. LINEAR NORMAL MODES

Consider M equally spaced bunches in a ring, of
equal population. Let yn�t� �n � 0, 1, . . . , M 2 1� be the
“snapshot” transverse (vertical) displacement of the nth
bunch. The displacement is given by

yn�t� � ỹn exp�2iVt� , (1)

where ỹn (a complex number) represents the amplitude
and phase of bunch n at time t � 0.

The equation of motion [8] for bunch n, in the rigid-
beam approximation is
d2yn�t�
dt2 1 v2

byn�t� � 2
Nr0c
gT0

X̀
k�0

M21X
m�0

W1

µ
2kC 2

m 2 n
M

C

∂
ym

µ
t 2 kT0 2

m 2 n
M

T0

∂
. (2)
© 1999 The American Physical Society 094401-1



PRST-AB 2 G. DUGAN 094401 (1999)
In this equation, W1�z� is the transverse dipole wake function, vb � nv0 is the vertical betatron frequency, N is the
number of particles per bunch, C is the ring circumference, T0 �

c
C �

2p

v0
is the revolution period, and g �

E
m0c2 .

Using the above form for yn�t�, we can write Eq. (2) (for V � vb) as

d2yn�t�
dt2

1 v2
byn�t� � 2

Nr0c
gT0

X̀
k�0

M21X
m�0

W1

√
2kC 2

m 2 n
M

C

!
exp

∑
ivbT0

µ
k 1

m 2 n
M

∂∏
ym�t� . (3)

Transforming to the frequency domain and introducing the transverse impedance Z��v�, we have

d2yn�t�
dt2 1 v2

byn�t� 2

M21X
m�0

ym�t�L�m 2 n� � 0 , (4)

with

L�m 2 n� � i
4pNr0

m0cgT2
0

X̀
p�2`

Z��vb 1 pv0� exp

µ
22pip

m 2 n
M

∂
. (5)
The normal modes of the M bunches are obtained by
the usual technique. Let the normal modes qn given in
terms of yn by the relation

q �
$
C ? y , (6)

in which
$
C is a matrix. In matrix form, the equation of

motion (4) is

ÿ 1
$
S ? y � 0 , (7)

in which

Smn � v2
bdmn 2 L�n 2 m� . (8)

Using Eq. (6) to introduce the normal modes, this be-
comes

q̈ 1
$
C ?

$
S ?

$
C21q � 0 . (9)

The matrix
$
C is required to diagonalize

$
S . The eigen-

values are the normal mode frequencies. The required
matrix is

Cln �
1

p
M

exp

µ
22piln

M

∂
. (10)

The matrix
$
C obeys the following orthonormality condi-

tion:
M21X
a�0

ClaC�
an �

1
M

M21X
a�0

exp

µ
2pia�n 2 l�

M

∂
� dn2l,rM ,

(11)

in which r is any integer. Since C�
ln � C�

nl � C21
nl ,

$
C

is a unitary matrix. Using Eq. (11), it follows that the
eigenvalues are

V2
l � v2

b 2 i
4pMNr0

m0cgT2
0

X̀
r�2`

Z����vb 1 �rM 1 l�v0��� ,

(12)

in which l is the normal mode index. This relation
between the mode frequency and the mode number is
the analog of the v�k� dispersion relation encountered
in condensed matter systems. The relation between the
displacement of the nth bunch and the normal modes ql is
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given by inverting Eq. (6), using Eq. (11),

yn�t� �
M21X
l�0

C21
nl ql�t� �

1
p

M

M21X
l�0

exp

µ
2piln

M

∂
ql�t� .

(13)

We can define the frequency shift of normal mode l using
the approximation (for Vl � vb)

V2
l 2 v2

b � �Vl 2 vb� �Vl 1 vb� � 2DVlvb .

(14)

So we have

DVl � 2i
2pMNr0

vbm0cgT2
0

X̀
r�2`

Z����vb 1 �rM 1 l�v0��� .

(15)

The above expression is correct only for a point bunch,
with zero chromaticity. To include the effects of a finite
bunch length (assumed Gaussian, of width sz) and a finite
chromaticity j, we make the replacement [9]

X̀
r�2`

Z����vb 1 �rM 1 l�v0��� !
cT0

2Msz
p

p
�Z�

l �eff ,

(16)

with

�Z�
l �eff �

P`
r�2` Z��vr ,l�W �vr ,l, vj , sz�P`

r�2` W �vr ,l, vj , sz�
. (17)

In this expression,

W �a, b, sz� � exp

µ
2

�a 2 b�2s2
z

c2

∂
,

vr ,l � vb 1 �rM 1 l�v0 , (18)

vj �
jvb

h
.

So we get

DVl � 2i

p
p Nr0

vbm0gszT0
�Z�

l �eff . (19)
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III. COUPLING IMPEDANCE
We will consider only the resistive wall impedance, for the sake of simplicity. The existence and general character of

the localized modes is not expected to depend sensitively on the details of the frequency dependence of the impedance.
The transverse impedance associated with the resistive wall [10] is, for low frequencies v ø � m0s

4p

c4

b2 �1�3,

Z��v� �
Z0C
4pb3

s
8

m0s
jvj1�2 �1 2 sgn�v�i�

v
. (20)

In this equation, s is the conductivity of the vacuum chamber wall, b is the radius of the (assumed round) vacuum
chamber, and Z0 is the impedance of free space �377 V�.

For the resistive wall, then, we have, combining Eqs. (19) and (20),

DVl � 2i
Nr0

4
p

p vbm0gT 2
0

Z0

szb3

s
8

m0s

P`
r�2`�jvr ,lj

1�2 �12sgn�vr,l �i�
vr,l

W �vr ,l , vj , sz�	P`
r�2` W �vr ,l, vj , sz�

. (21)
IV. SPECTRUM OF THE NORMAL MODES

We choose the following specific case to calculate the
normal mode spectrum for CESR. We take N � 1.3 3

1011 (corresponding to about 8 mA per bunch), n � 9.61,
and C � 778 m. We take an aluminum [s � 3.5 3

107 �V m21�] vacuum chamber of radius b � 25 mm.
We take h � 0.01, and a bunch length of sz � 20 mm.
The chromaticity is set to j � 2, which makes all of
the multibunch modes stable (i.e., they have a negative
imaginary part). Figures 1 and 2 give the real and
imaginary parts of the frequency shift [Eq. (21)], as a
function of the mode number, for M � 21 bunches.

Figure 3 shows the frequencies at which the various
modes would be observed on a spectrum analyzer.

Figures 4–6 present the same information, but for
M � 9 bunches.

V. OCTUPOLE NONLINEARITY

We introduce an octupole into the ring at the location s1.
Provided that we are not operating close to a second-order
or fourth-order resonance, the octupole field perturbation
results primarily in a dependence of the betatron tune,
n �

vb

v0
, on amplitude,

n�a� � n 1 ma2, (22)
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FIG. 1. The real part of DVm vs mode number m, for
M � 21.
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in which

m �
3

16p

k3L
6

b�s1�2

b0
. (23)

In this equation, k3 �
1

Br

d3B
dy3 is the octupole strength, L

is the octupole length, b�s1� is the beta function at the
location of the octupole, and b0 is the beta function at the
point at which the oscillation amplitude is a.

VI. DEVELOPMENT OF GREEN’S FUNCTION

To solve the nonlinear equations which result from
the inclusion of the octupole, we will use the techniques
discussed in Refs. [3–5]. This involves the development
of Green’s function for the equation of motion, Eq. (4).
In that equation, if we let yn�t� � ỹn exp�2iVt�, we have

2V2ỹn 1 v2
b ỹn 2

M21X
m�0

ỹmL�m 2 n� � 0 . (24)

If we define the matrix

Rmn�V� � �2V2 1 v2
b�dmn 2 L�n 2 m� , (25)

then the equation of motion is
M21X
m�0

Rnm�V�ỹm � 0 . (26)
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FIG. 2. The imaginary part of DVm vs mode number m, for
M � 21.
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FIG. 3. The coupled-bunch mode spectrum for M � 21.
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Green’s function is Gmn�V� � R21
mn �V� and it satisfies the

equation

M21X
m�0

Rnm�V�Gmn0�V� � dnn0 . (27)

To find it, we expand Green’s function using the normal
mode eigenvectors as a basis set
Gmn�V� �
1
M

M21X
l�0

M21X
l0�0

exp

µ
2piml

M

∂
exp

µ
2pinl0

M

∂
G̃ll0 �V� ,

G̃ll0 �V� �
1
M

M21X
m�0

M21X
n�0

exp

µ
2

2piml
M

∂
exp

µ
2

2pinl0

M

∂
Gmn�V� ;

(28)

substitute into Eq. (27) and make use of Eq. (11) to get

Gmn�DV� � 2
1

2Mvb

M21X
l�0

exp� 2pil�m2n�
M �

�DV 2 DVl�
, (29)

in which DV � V 2 vb , and DVl is given by Eq. (19). This result will be used in the following section.

VII. LOCALIZED MODES

Returning to the original equation of motion, we have, including the octupole nonlinearity,

d2yn�t�
dt2

1 v2
b�an�yn�t� 2

M21X
m�0

ym�t�L�m 2 n� �
d2yn�t�

dt2
1 v2

byn�t� 1 m0a2
nyn�t� 2

M21X
m�0

ym�t�L�m 2 n� � 0 ,

(30)
where

m0 � 2mvbv0 , (31)

and we assume that ma2 ø n.
We now look for solutions of the form yn�t� �

an exp�2iVt�, in which an is the oscillation amplitude.
Equation (30) becomes

2V2an 1 v2
ban 2

M21X
m�0

amL�m 2 n� � 2m0a3
n . (32)

The equation with m0 � 0 is the same one for which we
have found Green’s function. Thus, referring to Eq. (26)
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FIG. 4. The real part of DVm vs mode number m, for M � 9.
above, Eq. (32) becomes
M21X
m�0

Rnm�V�am � 2m0a3
n , (33)

for which we have the solution, using Green’s function,

an � 2m0
M21X
m�0

R21
nm�V�a3

m � 2m0
M21X
m�0

Gnm�DV�a3
m

�
m0

2Mvb

M21X
m�0

M21X
l�0

exp� 2pil�n2m�
M �

�DV 2 DVl�
a3

m . (34)
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FIG. 5. The imaginary part of DVm vs mode number m, for
M � 9.
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FIG. 6. The coupled-bunch mode spectrum for M � 9.

Using Eq. (31), we have

an �
mv0

M

M21X
m�0

M21X
l�0

exp� 2pil�n2m�
M �

�DV 2 DVl�
a3

m . (35)

This is essentially a nonlinear eigenvalue equation. There
will be normal modes, corresponding to some linear com-
bination of the an amplitudes, and for each mode there
will be a frequency shift DV. Because of the nonlinear-
ity, the mode eigenvector and frequency shift will depend
on the amplitude of the oscillation. We are interested
in specific modes, which are “localized” to one or two
bunches. If m is negative, the localized mode will have
094401-5
a frequency below the lowest normal mode frequency
shown in Fig. 1 (which is mode 11 for M � 21). If
m is positive, the localized mode will have a frequency
above the highest normal mode frequency shown in Fig. 1
(which is mode 1 for M � 21).

Following Ref. [5], let an � ajn, with a a measure
of the oscillation amplitude, and max�jn� � 1. Then we
have

jn �
ma2v0

M

M21X
m�0

M21X
l�0

exp� 2pil�n2m�
M �

�DV 2 DVl�
j3

m . (36)

Note that ma2v0 is just the frequency shift produced by
the octupole for an oscillation amplitude a. Equation (36)
can be solved iteratively as follows. We first assume that
only the n � 0 bunch is excited, so j0 � 1, and all other
jn are zero. Then we have

1 �
ma2v0

M

M21X
l�0

1
DV�0� 2 DVl

, (37)

in which DV�0� is the zero-order eigenfrequency shift.
Equation (37) is solved for DV�0�, and the result is
substituted into Eq. (36) to get

j1 �
ma2v0

M

M21X
l�0

exp� 2pil
M �

DV�0� 2 DVl
. (38)

Then, with this value for j1, we solve
1 �
ma2v0

M

√
M21X
l�0

1
DV�1� 2 DVl

1 j3
1

M21X
l�0

exp�2 2pil
M �

DV�1� 2 DVl

!
, (39)
to get the first-order eigenvalue shift DV�1�. This is then
used with j1 to get j2, and so on. The iterative process
converges as long as jn ø 1 for n . 0.

Another approach is to observe that Eq. (36) is a set
of M simultaneous nonlinear equations; the M unknowns
are the jn (except for j0 � 1) and the frequency shift
DV. The M equations can then be solved for the M
unknowns. This procedure gives the same result as the
iteration technique for the example discussed in the next
section.

VIII. ANALYTICAL RESULTS

In CESR, there are two octupoles at locations with large
vertical beta functions (23.56 m and 22.68 m). Each has
a length L � 0.391 m. The frequency shift that appears
in Eq. (36) can be written as

Dvoct � ma2v0 � v0
3

16p

k3L
6

b�s1�2 a2

b0

� v0
3´y

16p

k3L
6

b�s1�2

µ
a

sy

∂2

, (40)

in which the rms vertical emittance is ´y �
s2

y

b0
and sy is

the rms vertical beam size at the observation point. Using
v0 � 2.45 3 106 s21 and ´y � 3 3 1029 m rad, we get,
summing over the two octupoles,

Dvoct � 0.0306k3�m24�
µ

a

sy

∂2

s21. (41)

For example, for k3 � 249 m24 in both octupoles and
a � 8sy (2 mm at b � 20 m), we have Dvoct �
296 s21.

With this nonlinearity, the solution of Eq. (36) for
M � 21 gives a localized mode with a frequency shift
of 2504.9 2 85.6i s21. It is shifted down by about
63 s21 from the linear coupled-bunch mode 11 frequency.
Figure 7 plots jn, for n � 0, 1, . . . , 20, around the ring;
the distance from the dot to the circle is proportional to
the oscillation amplitude of each bunch. The largest value
corresponds to j0; n increases in the clockwise direction.
The maximum amplitude is about 2 mm at b � 20 m.

For k3 � 49 m24 units in both octupoles and a �
8sy , we have Dvoct � 96 s21. With this nonlinearity,
the solution of Eq. (36) with M � 21 gives a localized
mode with a frequency shift of 2317.7 2 86.6i s21. It is
shifted up by about 89 s21 from the linear coupled-bunch
mode 1 frequency. The bunch pattern corresponding to
this localized mode is shown in Fig. 8.

For M � 9, Dvoct � 296 s21 gives a frequency shift
of 2511.3 2 85.3i s21 (shifted down by 85.5 s21 from
094401-5
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FIG. 7. The localized mode bunch pattern for Dvoct �
296 s21 and M � 21.

linear coupled-bunch mode 8); the localized mode pattern
is shown in Fig. 9.

For M � 9 and Dvoct � 96 s21, we get a frequency
shift of 2320.9 2 85.9i s21 (shifted up by 91.9 s21

from linear coupled-bunch mode 4). The localized mode
pattern is shown in Fig. 10.

IX. NUMERICAL SIMULATION RESULTS

To provide a confirmation of the approximations made
in the analytical approach, a numerical simulation has
been performed. This simulation starts with a given set
of initial conditions y0, �y0. The corresponding initial
values of the normal modes are given from Eq. (6) by
q0 �

$
C ? y0, �q0 �

$
C ? �y0. The evolution of the normal

modes over one turn is, from Eq. (9),

qi�T0� � qi0 cos�ViT0� 1
�qi0

Vi
sin�ViT0� ,

�qi�T0� � �qi0 cos�ViT0� 2 Viqi0 sin�ViT0� ,
(42)

in which Vi � vb 1 DVi , with DVi from Eq. (19).
(For simplicity, the imaginary part of the frequency shift
has been neglected.) The values of y , �y after one turn

FIG. 8. The localized mode bunch pattern for Dvoct �
96 s21 and M � 21.
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FIG. 9. The localized mode bunch pattern for Dvoct �
296 s21 and M � 9.

are then calculated from y�T0� �
$
C21 ? q�T0�, �y�T0� �

$
C21 ? �q�T0�. The effect of the octupole is to produce a
kick on each turn given by

�yi�T0� ! �yi�T0� 2
ck3

6
�yi�T0��3. (43)

The resulting values of y�T0�, �y�T0� are used as initial
conditions to find initial normal mode values to start the
next turn. The process is repeated for as many turns as
required.

The results are shown in Figs. 11 and 12, for M � 9,
and for the other parameters as given in Sec. VIII above
(with k3 . 0). In each figure, the maximum values of yi

during a betatron oscillation are shown, for each of the
nine bunches, for 200 000 turns. The initial conditions in
each case have yi0 � 0 for all i except i � 1, for which
y10 � 2.5 mm, and �yi0 � 0 for all i.

Figure 11 corresponds to the linear case: As the normal
modes evolve, bunches other than bunch 1 develop
some oscillation amplitude, due to the dispersion in the
system. Figure 12 is the result obtained with the nonlinear
term included. In this case, the oscillation remains
localized on the original bunch, confirming the presence
of the localized mode as predicted by the analytical
results.

FIG. 10. The localized mode bunch pattern for Dvoct �
96 s21 and M � 9.
094401-6
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FIG. 11. The evolution of the linear normal modes. The plots show the maximum amplitude of the oscillation (in mm) vs turn
number (in thousands of turns), for bunches 1 to 9 (left to right, from top left to bottom right).
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FIG. 12. The evolution of the localized mode. The plots show the maximum amplitude of the oscillation (in mm) vs turn number
(in thousands of turns), for bunches 1 to 9 (left to right, from top left to bottom right).
X. CONCLUSION

Localized modes may be possible in the coherent motion
of arrays of bunches in CESR, in the presence of nonlin-
earities generated by octupoles. With a bunch-to-bunch
coupling produced by the resistive wall impedance, with
vertical oscillation amplitudes of about 2 mm (at by �
20 m), and for octupole strengths of about 50 m24, these
094401-7
modes appear for both 21 and 9 equally spaced, equally
populated bunches of 1.3 3 1011 electrons per bunch.
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