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This paper will explore the possibility of the formation of localized modes in the coupled transverse
oscillations of bunches in an accelerator. Such modes are characterized by a large amplitude excitation
of one of the bunches, with little or no excitation of the other bunches. They are very similar to
intrinsic localized modes predicted to appear in lattice excitations of anharmonic condensed matter
systems. The existence of the phenomenon in accelerators requires long-range coupling between the
bunches, and quartic terms in the effective potential experienced by the bunches. The discussion in
this paper considers the specific cases of a long-range coupling due to the resistive wall impedance,
and nonlinearities in the transverse force caused by octupoles. The general equations for the localized
mode freguencies and amplitudes are derived. The equations are applied to the specific cases of 9 and
21 equally spaced, equally populated bunches in the Cornell electron storage ring. For both cases, with
the currently available octupole strength, and with currents of 8 mA per bunch, localized modes with
amplitudes of about 2 mm, and with frequency shifts of 50—100 s™! relative to the linear coupled-bunch

mode frequencies, may be possible.

PACS numbers. 29.27.Bd, 41.85.—, 63.20.Pw

. INTRODUCTION

It has been suggested [1,2] that the phenomenon
of intrinsic localized modes in anharmonic condensed
matter systems [3—7] may aso be observed in the
excitations of multibunch modes in accelerators, in the
presence of significant lattice nonlinearities. In this paper,
this possibility is explored quantitatively, for multibunch
coupling produced by the resistive wall impedance, and
an octupole-generated nonlinearity.

The basic physica mechanism involved in the devel-
opment of localized modes is quite straightforward. In a
machine with many bunches, every bunch will be coupled
to the other bunches through the machineimpedance. This
coupling resultsin a spectrum of normal modes, with some
spread in the normal mode frequencies. Because of the
coupling, transverse excitation of a single bunch will even-
tually result in oscillation amplitudes for al the bunches.
However, in the presence of an octupole, the oscillation
frequency for a bunch will be a function of its oscillation
amplitude. If the frequency shift due to the oscillation am-
plitude of a single bunch is substantially larger than the
frequency spread of the linear normal modes, this bunch
no longer couples to the others, and the oscillation will re-
main “localized” on asingle bunch. Thistype of behavior
isreferred to as alocalized mode.

The standard formalism for the treatment of coupled
bunch oscillations forms the starting point for the analysis.
The normal mode frequencies are specified in terms of a
general effective transverse impedance. The impedance
is taken to be that due to the resistive wall. As specific

joe]

examples, the norma mode spectrum is displayed for 9
and 21 equally spaced, equally populated bunches in the
Cornell electron storage ring (CESR). An octupoleisthen
introduced, which produces a dependence of the tune on
amplitude, makes the coupled bunch equations nonlinear,
and alows for the possibility of localized modes. A
Green's function approach is developed to alow an itera-
tive solution to the nonlinear coupled bunch equations.
The equations which exhibit the localized modes are
developed using this Green's function. These equations
give the frequency shift (relative to the linear coupled
bunch frequencies) and the mode pattern for the localized
modes. The equations are applied to the cases of 2 mm
amplitude excitations of 9 and 21 bunches in CESR, using
the parameters corresponding to the existing octupoles in
the machine. As a check on the approximations used
in the analytical treatment, a numerical simulation of the
localized mode evolution is also carried out.

[I. LINEAR NORMAL MODES

Consider M equally spaced bunches in a ring, of
equal population. Lety,(t) (n = 0,1,...,M — 1) bethe
“snapshot” transverse (vertical) displacement of the nth
bunch. The displacement is given by

ya(t) =, exp(—iQdr), 1)

where 7, (a complex number) represents the amplitude
and phase of bunch n at time r = 0.

The equation of motion [8] for bunch =, in the rigid-
beam approximation is

Eynlt) | o (;)—_MZISIW(—/CC—”’_"C) (t—kT—m_nT> @
dr? wWgYn yTy & & 1 M Ym 0 M 0]-
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In this equation, W,(z) is the transverse dipole wake function, wg = vwy is the vertical betatron frequency, N is the

number of particles per bunch, C is the ring circumference, Ty = &
Using the above form for y,(¢), we can write Eq. (2) (for Q ~ wg) as

d2yn(t) 2 NrOC = Mt (
— o T wgyt) = - Wil —
TS 22

_ 2 — L
= 5, is the revolution period, and y = ;=.

(0]

C) exp[iw,;T()(k + T

. @

Transforming to the frequency domain and introducing the transverse impedance Z+(w), we have

d2 (1 M—1
ji}ﬂ( ) + w,%o’yn(t) - Z ym()L(m — n) =0, (%)
=0
with
47TNr0 —n
Lim —n) = ZHwpg + pw )exp( 27sz ) (5)
pocyT; p_Zoo p 0 M

The norma modes of the M bunches are obtained by ! given by inverting Eq. (6), using Eq. (11),

the usua technique. Let the normal modes ¢, given in
terms of y,, by the relation

o d

q=C" vy, (6)
in which C is amatrix. In matrix form, the equation of
motion (4) is

y+5-y=0, (7)
in which
Sin = wéﬁmn — L(n — m). (8)

Using Eg. (6) to introduce the norma modes, this be-
comes

g+C-S-C'q=o0. 9)

The matrix C is required to diagonalize S. The eigen-
values are the normal mode frequencies. The required

matrix is
1
Cln = exp<

VM

The matrix C obeys the following orthonormality condi-
tion:
M-1 M—1 .
. 1 2mia(n — 1
Z Clacan = M Z exp(#) = 6n*l,rM,
a=0 a=0
(11)

in which r is any integer. Since Cj, = C5, = C,,', C
is a unitary matrix. Using Eqg. (11), it follows that the
eigenvalues are

0 = w} - 4TM

—27Till’l>

i (10

Z ZHwp + (M + Do),
M067T0 r=—o
12

in which [ is the norma mode index. This relation
between the mode frequency and the mode number is
the analog of the w(k) dispersion relation encountered
in condensed matter systems. The relation between the
displacement of the nth bunch and the normal modes ¢; is
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(t) — A/Ii:lc—l (t) _ L Mi‘f@( (27Tiln> (t)
Yn P nl 91 JM = p M qi (13)

We can define the frequency shift of normal mode [ using
the approximation (for ); = wg)

QZZ - wé = (Q; — a)ﬁ) Q; + wﬂ) = 2AQ[G)B.
(14)
So we have
AQ, = _'M Z ZJ'(a)B + (rM + Dwo).

wag cyT [
pREOTITO (15)
The above expression is correct only for a point bunch,
with zero chromaticity. To include the effects of a finite
bunch length (assumed Gaussian, of width o-,) and afinite
chromaticity &, we make the replacement [9]

cTy

i ZH(wp + (M + Do) — i Z\/_

y=—0o0

(Z] et »
(16)
with

e Z (0 )W (0, we, 0))
(Z[" )eit = = . . @
Zr=7oc W(wr,la wfs O-Z)

In this expression,

— b 2.2
W(a,b,0;) = ap(-%)
C
wr = wg + (rM + Doy, (18)
wg = —fwﬁ
I3 n .
So we get
. 7T Nr
AQy — —i YT L@ (9)
wBMO?’U'z
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[Il. COUPLING IMPEDANCE
We will consider only the resistive wall impedance, for the sake of simplicity. The existence and general character of
the localized modes is not expected to depend sensitively on the details of the frequency dependence of the impedance.
The transverse impedance associated with the resistive wall [10] is, for low frequencies 0 < (5% 62)1/3

n ZC. 12 [1 — sgn(w)i]
ZHw) = s el P
In this equation, o is the conductivity of the vacuum chamber wall, b is the radius of the (assumed round) vacuum
chamber, and Z; is the impedance of free space (377 Q0).
For the resistive wall, then, we have, combining Egs. (19) and (20),

(20)

Zr—foo{lw |1/2 [1- sgﬂt)l((ﬂ r1)i] W(w,, we, o))}
AQ, = — 2z aheibdich 21)
4\/;0)13/1,0')/710 a-z rf—oo W(wrhwf? O-Z)
V. SPECTRUM OF THE NORMAL MODES ! in which
We choose the following specific case to calculate the w= 3 kL B(s1)? (23)
normal mode spectrum for CESR. We take N = 1.3 X 1677 6 Bo

10" (corresponding to about 8 mA per bunch), v = 9.61,
and C =778 m. We take an auminum [0 = 3.5 X
107 (@ m~1)] vacuum chamber of radius b = 25 mm.
We take n = 0.01, and a bunch length of o, = 20 mm.
The chromaticity is set to & = 2, which makes al of

the multibunch modes stable (i.e., they have a negative ,

In this equation, k3 = Bp d 28 is the octupole strength, L
is the octupole length, ,B(sl) is the beta function at the
location of the octupole, and By is the beta function at the
point at which the oscillation amplitude is a.

imaginary parts of the frequency shift [Eq. (21)], as a To solve the nonlinear equations which result from
function of the mode number, for M = 21 bunches. the inclusion of the octupole, we will use the techniques

Figure 3 shows the frequencies at which the various  giscussed in Refs. [3-5]. This involves the development
modes would be observed on a spectrum analyzer. of Green's function for the equation of motion, Eq. (4).

Figures 4-6 present the same information, but for | that equation, if welet y,(t) = 7, exp(—i€t), we have
M = 9 bunches.

M_
—Q%, + 035, — $uL(m —n) =0. 24
V. OCTUPOLE NONLINEARITY P mZO @9
Weintroduce an octupoleinto thering at the location s;. T We define the matrix
Provided that we are not operating close to a second-order Run(Q) = (-02% + wfg)émn — Lin —m), (25
or fourth-order resonance, the octupole field perturbation

A then the equation of motion is
results primarily in a dependence of the betatron tune, e«

M—1
= Y8 i -
v = 4, onamplitude, Z Rum(Q)5n = 0. (26)
v(a) = v + ud?, (22) m=
400 o

a - _a0-
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FIG. 1. The red pat of AQ, vs mode number u, for FIG. 2. The imaginary part of A}, vs mode number w, for
M = 21. M = 21.
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FIG. 3. The coupled-bunch mode spectrum for M = 21.

Green'sfunction is G,,,(Q}) =
equation

R, 1(Q)) and it satisfies the

M—1

Z an(Q)Gmn’(Q) = Oun' - (27)
m=0

To find it, we expand Green's function using the normal

| mode eigenvectors as a basis set

Gmn (Q)
=0

| MM 2miml 2minl’\ =
Y > ZE) ( )exp( ; >G11'(Q),
M—1

1! 2ariml 2arinl’ )
~ Tim min
Gll’(Q) = M ,,,Z:O nz < >eXp<_ M >Gmn(Q) 5
substitute into Eq. (27) and make use of Eg. (11) to get
1 M—1 exp[Zﬂ'll(m n)]
Gnn(AQ) = 2Mwp & (AQ - AQ)° 29
inwhich AQ) = Q) — wg, and AQ); isgiven by Eq. (19). Thisresult will be used in the following section.
VII. LOCALIZED MODES
Returning to the original equation of motion, we have, including the octupole nonlinearity,
dz)’n([) dz)’n(t) 2 ;2 =
dl‘z B(an yn Z ))m(t)L(m - ) 7 + wﬁ))n(t) + M anyn(t) - Z ym(t)L(m - n) = 0,
m=0 (30)
where | above, Eq. (32) becomes
'=2 , 31 Ml
M HWpBWo ( ) Z an(Q)am _ _M/az’ (33)
and we assume that wa’ < v. =0

We now look for solutions of the form y,(¢) =
a, exp(—iQt), in which a, is the osctillation amplitude.
Equation (30) becomes
-0%a, + wéan Z awL(m — n) = —p'al.  (32)
The equation with u/ = 0 is the same one for which we
have found Green's function. Thus, referring to Eq. (26)
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FIG. 4. Thereal part of AQ),, vs mode number u, for M = 9.
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for which we have the solution, using Green’s function,

M-1
a, = —u' Z R 1 Q)ad = —u' Z Gum(AQ)a>
_ w M-1M-1 exp[Zml(n m) ]a3 ()
Mwg =) = (AQ — AQ) ™
8 .
£ -7
7
> -75
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% -80 o
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Mode number

FIG. 5. The imaginary part of A}, vs mode number w, for
M =9.
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FIG. 6. The coupled-bunch mode spectrum for M = 9.

Using Eqg. (31), we have
M—-1M—1

p[27rzl(n m)]

7(AQ—AQ)Q’"' (35)

Thisis essentially a nonlinear eigenvalue equation. There
will be normal modes, corresponding to some linear com-
bination of the a,, amplitudes, and for each mode there
will be a frequency shift A(). Because of the nonlinear-

a frequency below the lowest normal mode frequency
shown in Fig. 1 (which is mode 11 for M = 21). If
o is positive, the localized mode will have a frequency
above the highest normal mode frequency shown in Fig. 1
(whichismode 1 for M = 21).

Following Ref. [9], let a, = aé,, with a a measure
of the oscillation amplitude, and max(¢,) = 1. Then we
have

ex [27711(n m)]

(AQ — AQ))

Ali:l

=0

M-
Z Ene (36)
Note that wa’w is just the frequency shift produced by
the octupole for an oscillation amplitude «. Equation (36)
can be solved iteratively as follows. We first assume that
only the n = 0 bunch is excited, so £, = 1, and al other
&, are zero. Then we have

2 M
Ma”wo

1
= IZO AQO — AQ;”

(37)

in which AQ© is the zero-order eigenfrequency shift.
Equation (37) is solved for AQ©, and the result is
substituted into Eq. (36) to get

ity, the mode eigenvector and frequency shift will depend Ma @0 exp(zml )
on the amplitude of the oscillation. We are interested €1 Z 100 — AQ (38)
. . " 13 H ti Z
in specific modes, which are “localized” to one or two
bunches. If w is negative, the localized mode will have | Then, with this value for &;, we solve
Ma2w0 M-1 1 gM_l 27711)
= e — + o P S £ S —

: M (ZO AQ0 - Ag, T ,ZO AQ 1) - AQI>’ (39)
to get the first-order eigenvalue shift AQ(". Thisisthen | summing over the two octupoles,
used with £; to get &,, and so on. The iterative process o \2
converges aslong as &, < 1 forn > 0. Awoer = 0.0306ks[m 4] <—> sl (41)

Another approach is to observe that Eq. (36) is a set Ty

of M simultaneous nonlinear equations; the M unknowns
are the &, (except for &, = 1) and the frequency shift
AQ. The M equations can then be solved for the M
unknowns. This procedure gives the same result as the
iteration technique for the example discussed in the next
section.

VIII. ANALYTICAL RESULTS

In CESR, there are two octupoles at locations with large
vertical beta functions (23.56 m and 22.68 m). Each has
alength L = 0.391 m. The frequency shift that appears
in Eq. (36) can be written as

3 kL a?
Awe = pa’wy = OF3_'B( )2%
32, k3L ?
= w0 es B (). (40
167
in which the rms vertical emittance is e, = E and oy is

the rms vertical beam size at the observation point. Using
wp =245 X 10° s 'and e, = 3 X 1077 mrad, we get,

094401-5

For example, for k3 = —49 m~* in both octupoles and
a =280y (2 mm a B =20m), we have Awy, =
—96 s 1.

With this nonlinearity, the solution of Eg. (36) for
M = 21 gives a localized mode with a frequency shift
of —504.9 — 85.6i s™'. It is shifted down by about
63 s~! from the linear coupled-bunch mode 11 frequency.
Figure 7 plots &,, for n = 0,1,...,20, around the ring;
the distance from the dot to the circle is proportional to
the oscillation amplitude of each bunch. The largest value
corresponds to &p; n increases in the clockwise direction.
The maximum amplitude is about 2 mmat 8 = 20 m.

For k3 = 49 m™* units in both octupoles and « =
80y, we have Aw,e = 96 s . With this nonlinearity,
the solution of Eq. (36) with M = 21 gives a localized
mode with afrequency shift of —317.7 — 86.6i s~ !. Itis
shifted up by about 89 s™! from the linear coupled-bunch
mode 1 frequency. The bunch pattern corresponding to
this localized mode is shown in Fig. 8.

For M =9, Awo: = —96 s™! gives a frequency shift
of —511.3 — 85.3i s~! (shifted down by 85.5 s™! from

094401-5
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FIG. 7. The locdized mode bunch pattern for Aw, =
—96 s and M = 21.

linear coupled-bunch mode 8); the localized mode pattern
isshown in Fig. 9.

For M =9 and Aw, = 96 S™!, we get a frequency
shift of —320.9 — 85.9i s™! (shifted up by 91.9s!
from linear coupled-bunch mode 4). The localized mode
pattern is shown in Fig. 10.

IX. NUMERICAL SIMULATION RESULTS

To provide a confirmation of the approximations made
in the analytical approach, a numerical simulation has
been performed. This simulation starts with a given set
of initial conditions yo, yo. The corresponding initial
values of the normal modes are given from Eq. (6) by
qQ = C- Yo, Qo = C- yo. The evolution of the normal
modes over one turn is, from Eq. (9),

4i(To) = qio COSLLTy) + T2 Sin(@iTy).
i 42)
qi(To) = qio €oS(€2;To) — Qigio SIN(Q;Ty), (

in which Q; = wg + AQ;, with AQ; from Eq. (19).
(For simplicity, the imaginary part of the frequency shift
has been neglected.) The values of y, y after one turn

FIG. 8. The locdized mode bunch pattern for Aw, =
96 s and M = 21.

094401-6

FIG. 9. The locdized mode bunch pattern for Aw, =
—-96s!and M =09.

are then calculated from y(7,) = C1 . q(Ty), y(To) =
C ! q(Ty). The effect of the octupole is to produce a
kick on each turn given by

(1) = 5i(T0) — Cn@F. (@

The resulting values of y(7y), y(Ty) are used as initial
conditions to find initial norma mode values to start the
next turn. The process is repeated for as many turns as
required.

The results are shown in Figs. 11 and 12, for M = 9,
and for the other parameters as given in Sec. VIII above
(with k3 > 0). In each figure, the maximum values of y;
during a betatron oscillation are shown, for each of the
nine bunches, for 200000 turns. The initial conditions in
each case have y;o = 0 for al i except i = 1, for which
yio = 2.5 mm, and y;o = 0 for all i.

Figure 11 corresponds to the linear case: Asthe normal
modes evolve, bunches other than bunch 1 develop
some oscillation amplitude, due to the dispersion in the
system. Figure 12 isthe result obtained with the nonlinear
term included. In this case, the oscillation remains
localized on the original bunch, confirming the presence
of the localized mode as predicted by the analytica
results.

FIG. 10. The locaized mode bunch pattern for Aw, =
96 s 'and M = 9.
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FIG. 11. The evolution of the linear normal modes. The plots show the maximum amplitude of the oscillation (in mm) vs turn
number (in thousands of turns), for bunches 1 to 9 (left to right, from top left to bottom right).
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FIG. 12. The evolution of the localized mode. The plots show the maximum amplitude of the oscillation (in mm) vs turn number
(in thousands of turns), for bunches 1 to 9 (left to right, from top left to bottom right).

X. CONCLUSION

L ocalized modes may be possible in the coherent motion
of arrays of bunches in CESR, in the presence of nonlin-
earities generated by octupoles. With a bunch-to-bunch
coupling produced by the resistive wall impedance, with
vertical oscillation amplitudes of about 2 mm (at 8, =
20 m), and for octupole strengths of about 50 m™*, these

094401-7

modes appear for both 21 and 9 equally spaced, equally
populated bunches of 1.3 X 10'! electrons per bunch.
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