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Abstract
This study delves into the exploration and analysis of the fractional orderDrinfeld-Sokolov-Wilson
(FDSW) systemwithin the framework of theCaputo operator. To address this complex system, two
innovativemethods, namely theAboodh transform iterationmethod (ATIM) and the Aboodh
residual power seriesmethod (ARPSM), are introduced and applied. Thesemethods offer efficient
computational tools to investigate the FDSWsystem, particularly in the fractional order context
utilizing theCaputo operator. TheATIMandARPSMare employed to solve and analyze the FDSW
system, allowing for the derivation of solutions and insights into the system’s behavior and dynamics.
The utilization of these novelmethods showcases their efficacy in handling the intricate characteristics
of the FDSW systemunder fractional differentiation, offering a deeper understanding of its
mathematical properties and behaviors.

1. Introduction

Fractional calculusfinds diverse applications across numerous scientific and engineering fields. Complex
systemswithmemory and non-local behaviormay nowbemodeled and analyzedwith its help. In control
theory, for instance, it is essential in planning systemswith complex dynamics. Fractional calculus is also
important in signal processing because it helps to explain and control signals that exhibit fractal-like behavior.
It’s useful inmaterial science for characterizing viscoelasticmaterials, whichmay behave both like solids and
liquids [1–5]. Its adaptability and importance in solving a broad variety of real-world issues is further shown by
its applicability tofields as diverse as electrochemistry,medicine, finance, and geophysics [6–12]. Classical
derivatives have a local character, allowing us to evaluate changes in the vicinity of a point, whereas Caputo
fractional derivatives have a nonlocal nature, allowing us to analyze changes in an interval. This traitmakes the
Caputo fractional derivative applicable tomodeling awider variety of physical phenomena, including ocean
climate, atmospheric physics, dynamical systems, earthquakes, vibrations, polymers, etc (refer to the scholarly
literature cited in [13–18] for additional details).

Here, in our present study, we start by examining theDrinfeld-Sokolov-Wilson systemprovided by

j h j h
j h

h

j h
j h

h
j h

j h
h

j h
j h

h

¶
¶

+
¶

¶
=

¶
¶

+
¶

¶
+

¶
¶

+
¶

¶
=

, 3 ,
,

0,

, 2
,

2 ,
,

,
,

0,

a b
b

b
b

a
b

b
a

3

3


 














( ) ( )
( )

( )
( )

( )
( )

( )
( )

OPEN ACCESS

RECEIVED

5November 2023

REVISED

3December 2023

ACCEPTED FOR PUBLICATION

20December 2023

PUBLISHED

2 January 2024

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 4.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2024TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1402-4896/ad1796
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0002-9798-9868
https://orcid.org/0000-0002-9798-9868
mailto:a.ganie@seu.edu.sa
mailto:hhassain@kfu.edu.sa
mailto:aaldramy@kku.edu.sa
mailto:rasool.shah@lau.edu.lb
mailto:shhaly70@yahoo.com
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad1796&domain=pdf&date_stamp=2024-01-02
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad1796&domain=pdf&date_stamp=2024-01-02
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0


subject to the initial condition:
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Exact solution given in [19] as:
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The nonlinear Drinfeld-Sokolov-Wilson (DSW)model is a fundamentalmathematicalmodel in
mathematical physics [19–22]. It has applications in a variety offields, including fluid dynamics, plasma physics,
geochemistry, astrophysics, chemical kinematics, chemical chemistry, solid state physics, and opticalfiber.
Several scientists andmathematicians have recently studied theDSWequation in both fractional and integer
orders [27–30].Wave packets that travel in a nonlinear dispersivemedium are known as solitarywaves. Notable
scholars like Abdulloev et al [23], Bona et al [24], etc havewrittenwork in this area. Thesemathematicalmodels
are also crucial for studying shallowwater waves, ion-acoustic plasmawaves, and nonlinear dispersive waves
[25, 26]. In a recent publication, Yang [31] defined and proposed generalized fractional operators and their
applications in engineering and research. A unique fractional operatorwith a non-singular kernel was proposed
byYang et al [32] and its applications in the study of constant heat flowwere suggested. Another novel fractional
derivative with a non-singular kernel for the normalized sinc functionwas introduced byYang et al [33, 34]
found solution to problem in the exponential decay kernel ofmodels of anomalous diffusion.Nonlinear
differential equations with a fractional derivative, power, and aMittag-Leffler kernel were numerically solved by
Yepez-Martinez andGomez-Aguilar [35]. The numerical approximation of the Riemann-Liouville definition of
a fractional operator was provided byAtangana andGomez-Aguilar [36]. In order tomanage linear partial
differential equations with a fractional operator connectedwith a non-singular kernel,Morales-Delgado et al
[37] used the Laplace homotopy analysismethod. Fractional operators with the no-index law property were used
to chaos theory and statistical analysis byAtangana andGomez-Aguilar [38]. For the time-fractional Korteweg–
deVries problem, Yokus [39] used thefinite difference approach to evaluate theCaputo and conformable
operators.

The fractionalizedDSWequationmay bewritten as:
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OmarAbuArqub, amathematician from Jordan, created the residual power seriesmethod (RPSM) in 2013
[40]. The RPSM is a semi-analyticalmethod that combines the residual error functionwith Taylor’s series. The
offered convergence series techniquesmay be used to solve both linear and nonlinear DEs. Thefirst timeRPSM
was used to fuzzyDE resolutionwas in 2013. Arqub et al [41] created a unique set of RPSMalgorithms to
effectively get power series solutions for extensiveDEs.Fractional order non-linear boundary value problems are
also addressed by a novel and appealing RPSMmethod developed byArqub et al [42]. To approximate solutions
toKdV-burgers equations of fractional order, El-Ajou et al [43] devised a unique RPSM iterative approach.It was
first proposed byXu et al [44] initially proposed utilizing fractional power series solutions to solve second- and
fourth-order Boussinesq differential equations (DEs). By combining RPSMwith least squaremethods, Zhang
et al [45] developed a robust numerical approach (Formore detail see [46–48]).

Two reliablemethodswere used by the researchers to tackle fractional-order differential equations (FODEs).
This newmethod, which is a hybrid of the Sumudu transform and the homotopy perturbation technique [49],
works by firstmapping the initial equation onto the space of the Aboodh transform, thenfinding a series of
solutions for themodified formof the equation, andfinallyfinding the solution to the original equation via the
inverse Aboodh transform. The unique technique generates solutions for linear and nonlinear PDEs using
power series expansions, eliminating the need for linearization, perturbation, or discretization. In contrast to
RPSM,which needs a large number of iterations during the solution phases to compute different fractional
derivatives, finding the coefficients involves just a small number of calculations. The suggestedmethodmay
provide an approximation solution that is both closed-form and accurate since it uses a quick convergence
series.

The solution of fractional partial differential equations via the AboodhTransform IterativeMethod (NITM)
stands as a significantmathematical achievement of the past century. Because of their computational complexity
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and lack of convergence, partial differential equationswith fractional derivatives are famously difficult to solve
using traditionalmethods. In order to get around these limitations, our novel approach continuously improves
approximate solutions, thus increasing their precisionwhile reducing the computingweight. This strategy has
been demonstrated to enhance solutions for awide range of difficultmathematical and physical problems by
tailoring iterations to the properties of fractional derivatives [50–52].We can now tackle challenging issues in
physics, engineering, and appliedmathematics because of the improvements gained in describing and
understanding complicated systems governed by fractional partial differential equations. The scientific
landscape is a tapestry wovenwith diverse threads of research spanning various disciplines. The recent
publications acrossmultidisciplinary domains reflect the rich tapestry of scientific inquiry. Noteworthy
contributions include pioneering studies onmanipulating terahertz wavefronts through cascadedmetasurfaces
[53], the discovery of the first hidden-charmpentaquarkwith strangeness [54], and investigations into the
dynamical properties and chaotic behaviors of nonlinear coupled Schrodinger equations infiber Bragg gratings
[55]. Additionally, innovativemethodologies, such as an Iterative Threshold algorithmof Log-Sum
Regularization for Sparse Problems [56], and novel control strategies for uncertain nonlinear systems [57], stand
as testament to the diverse research endeavors in various scientific domains. Furthermore, pioneering
approaches inmachinery failure identification [58], threat assessment of aerial targets [59], and their respective
methodologies signal the continuous evolution and interdisciplinary nature of scientific exploration across
fields like engineering, physics,mathematics, and biosciences.

In order to solve fractional differential equations, two of the simplestmethods are the Aboodh residual
power seriesmethod (ARPSM) [60, 61] and theAboodh transform iterativemethod (NITM) [50–52]. These
methods offer approximate numerical solutions to both linear and nonlinear differential equationswithout
necessitating linearization or discretization, further providing immediate and observable symbolic terms of
analytic solutions. The primary purpose of this research is to apply and compare two distinct approaches,
namely ARPSMandNITM, to the solution of theDSW system, a nonlinear partial differential equations. It
should be noted that these two approaches have been used to solve a variety of nonlinear fractional differential
problems.

2. Basic definitions

Definition 2.1. [62] Letj h, ( ) is of exponential order and piecewise continuous function. For t 0 , the
Aboodh transformofj h, ( ) is define as:

òj h h n
n

j h n= Y = n
¥

-A e d r r, ,
1

, , ,
0

1 2  [ ( )] ( ) ( )  

Wemaywrite the inverse Aboodh transform as:

òh n j h
p

h nY = = Y n-

- ¥

+ ¥
A

i
e d, ,

1

2
,

u i

u i
1   [ ( )] ( ) ( )

Where η= (η1, η2,L ,ηp) and Îp 

Lemma2.1. [63, 64] Letj h,1 ( ) andj h,2 ( ) be of exponential order and piecewise continuous on ¥0,[ [. Assume
that j h h j h h= Y = YA A, , , , ,1 1 2 2   [ ( )] ( ) [ ( )] ( ) and l l,1 2 are constants. Then the following properties
are true:

1. l j h l j h l h n l h n+ = Y + YA , , , ,1 1 2 2 1 1 2 2 [ ( ) ( )] ( ) ( ),

2. l h l h l j h n l j h nY + Y = +-A , , , ,1
1 1 2 2 1 1 2 2 [ ( ) ( )] ( ) ( ),

3. j h = h n
n

YA J ,p ,
p[ ( )] ( ) ,

4. j h n h n= Y - å - < Îj h
n=

-
- +A D r p r r, , , 1 ,p p

K
r

0
1 , 0K

K p 2[ ( )] ( ) ( )  .

Definition 2.2. [65]j h, ( ) of order p has the following definition for its fractional derivative in theCaputo
sense:

j h j h= - <-D J r m p m, , , 0, 1 ,p m p m  ( ) ( )( )  

where h h h h= Î, , , p
p

1 2( )  and Î -m p R J, , m p
 is the R-L integral ofj h, ( ).
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Definition 2.3. [66]The power series is shown in the following form:

å h - = - + - + - +
=

¥

,
r

r
rp p p

0
0 0 0

0
1 0 2 0

2           ( )( ) ( ) ( ) ( ) 

where Îp  and h h h h= Î, , , p
p

1 2( )  . This kind of series is calledmultiple fractional power series (MFPS)
about 0 , where the series coefficients are h ¢sr ( ) and  indicates a variable.

Lemma2.2. Let us assume thatj h, ( ) is an exponentially ordered function. Subsequently, j h h n= YA , ,[ ( )] ( )
represents the Aboodh transform.Hence,

åj h n h n n j h= Y - <
=

-
- -A D D p, , , 0 , 0 1, 1rp rp

j

r
p r j jp

0

1
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where h h h h= Î, , , p
p

1 2( )  and Îp  and = -D D D D r times. . .rp p p p
    ( )

Proof. Let’s use induction to verify equation (1). By setting r= 1 in equation (1), we obtain:

j h n h n n j h n j h= Y - -- -A D D, , , 0 , 0 .p p p p p2 2 2 2 2 [ ( )] ( ) ( ) ( )

Part (4) of lemma 2.1 supports the validity of equation (1) for r= 1. Putting r= 2 in equation (1) gives us

j h n h n n j h n j h= Y - -- -A D D, , , 0 , 0 . 2r
p p p p p2 2 2 2 2 [ ( )] ( ) ( ) ( ) ( )

Considering L.H.S. of equation (2), we get

j h=L H S A D. . , . 3p2 [ ( )] ( )

The equation (3)may be expressed in a particularmanner as

j h=L H S A D. . , . 4p [ ( )] ( )

Let

h j h=z D, , . 5p ( ) ( ) ( )

As a result, equation (4) becomes

h=L H S A D z. . , . 6p [ ( )] ( )

By using theCaputo type fractional derivative.

h= ¢-L H S A J z. . , . 7p1 [ ( )] ( )

TheAboodh transform’s R-L fractional integral formulamay be found in equation (7), which gives

h
n

=
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Through the use of the Aboodh transform’s differential property, equation (8) is converted as:
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where h h n=A z Z, ,[ ( )] ( ). As a result, equation (9) is transformed into
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equation (1) and equation (10) are compatible. Let us now suppose that for r= K, equation (1)holds. Put r= K
in equation (1) as a result:

åj h n h n n j h= Y - <
=

-
- -A D D D p, , , 0 , 0 1. 11Kp Kp

j

K
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Here, we’ll show that equation (1) is true for = +r K 1. To derive equation (1)wewrite

åj h n h n n j h= Y -+ +
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Using equation (12) left-hand side, we get

=L H S A D D. . . 13Kp Kp
 [ ( )] ( )

Consider

h=D g , .Kp  ( )

equation (13) gives us

h=L H S A D g. . , . 14p [ ( )] ( )

The following is an expression for equation (14) using theR-L integral formula and theCaputo fractional
derivative:

n j h
h

n
= -

-
L H S A D

g
. . ,

, 0
. 15p Kp

p2
[ ( )] ( ) ( )

By ulatizing equation (11), equation (15) is transformed into

ån h n n j h= Y -
=
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- -L H S D. . , , 0 , 16rp

j

r
p r j jp

0

1
2
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Weget the following result by using equation (16).

j h=L H S A D. . , 0 .rp
[ ( )]

It implies that the formula equation (1) hold for = +r K 1. Consequently, we used themathematical induction
approach to show that the formula equation (1) holds true for all positive numbers. In the following lemma,we
provide a revised version of themultiple fractional Taylor’s formula thatwill be useful for theARPSM. ,

Lemma2.3. Suppose thatj h, ( ) is an exponentially ordered function. Then, j h h n= YA , ,[ ( )] ( ) represents
the Aboodh transform ofj h, ( ) as amultiple fractional Taylor’s series:

åh n
h

n
nY = >

=

¥

+
, , 0, 17

r

r
rp

0
2
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where, h h h= Î Îs p, , , ,p
p

1 2( )  .

Proof.When fractional order analysis of Taylor’s series is performed, we get

j h h h h= +
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By using theAboodh transformon 18, we get the equality that follows:

j h h h h= +
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p p
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Thus, by using the Aboodh transform’s properties, we obtain

j h h
n

h
n

h
n

= +
G +
G +

+
G +
G ++ +

A
p

p

p

p
,

1 1

1

1 2 1

2 1

1
p p0 2 1 2 2 2 2
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As a result, 17, a newTaylor’s series in theAboodh transform, is obtained. ,

Lemma2.4. Suppose that theMFPS representation of the function j h h n= YA , ,[ ( )] ( ) exists in the new form of
Taylor’s series 17.

h n h n j h= Y =
n¥
lim , , 0 . 190

2 ( ) ( ) ( ) ( )

Proof.This previous is based on the new formof Taylor’s series.

h n h n
h

n
h

n
= Y - - -, 20

p p0
2 1 2

2
  ( ) ( ) ( ) ( ) ( )

The necessary result, denoted by 19, is obtained by applying n¥lim to equation (20) and performing a short
computation. ,

Theorem2.5. Let j h h n= YA , ,[ ( )] ( ) be the function for which theMFPS representation is provided by

åh n
h

n
nY = >

¥

+
, , 0,r

rp
0

2

( ) ( )
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where h h h h= Î, , , p
p

1 2( )  and Îp . Thenwe have

h j h= D , 0 ,r r
rp ( ) ( )

where, = -D D D D r times. . .rp p p p
    ( ) .

Proof. From themodified Taylor’s series format, we have

h n h n n h
h

n
h

n
= Y - - - -+ , 21p p

p p1
2

0
2 3

2
   ( ) ( ) ( ) ( ) ( ) ( )

After solving equation (21)with n¥lim , we get

h n h n n h
h

n
h

n
= Y - - - -

n n n¥

+

¥ ¥
lim , lim limp p

p p1
2

0
2 3

2
   ( ) ( ( ) ( )) ( ) ( ) 

After taking the limit, we have the following equality:

h n h n n h= Y -
n¥

+lim , . 22p p
1

2
0 ( ) ( ( ) ( )) ( )

Using lemma 2.2 alongwith equation (22), it becomes

h n j h n=
n¥

A Dlim , . 23p
1

2 ( ) ( [ ( )]( )) ( )

Moreover, using lemma 2.3 alongwith equation (23), it becomes

h j h= D , 0 .p
1 ( ) ( )

Using n  ¥ and themodified formof Taylor’s series, we get

h n h n n h n h
h

n
= Y - - - -+ ,p p p

p2
2 2 2

0 1
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Lemma 2.3 gives us

h n n h n n h n h= Y - -
n¥

- -lim , . 24p p p
2

2 2 2 2
0

2
1  ( ) ( ( ) ( ) ( )) ( )

Using lemmas 2.2 and 2.4 again, equation (24) becomes

h j h= D , 0 .p
2

2 ( ) ( )

Using the newTaylor’s series and the same procedure, we have

h n j h n=
n¥

A D plim , .p
3

2 2 ( ) ( [ ( )]( ))

When lemma 2.4 is applied, the final equation is produced.

h j h= D , 0 .p
3

3 ( ) ( )

In general we get

h j h= D , 0 .r
rp ( ) ( )

Thus, the proof is ended. ,

In the following theorem,we demonstrate the necessary and sufficient conditions for the convergence of the
modifiedTaylor formula.

Theorem2.6. Lemma 2.3 presents a revisedMultiple Fractional Taylor’s formula represented as j h =A , [ ( )]
h nY ,( ). The remainder h nR ,K ( ) of the newmultiple fractional Taylor’s formula for n< s0( ) with < p0 1)

corresponds to the following inequality if n j h+A D T,a K p1 ∣ [ ( )]∣( )  .

h n
n

n<
= +

R
T

s, , 0 .K K p1 2
∣ ( )∣ ( ) 

Proof.Wemake the following assumption to start the proof, j h nA D ,rp [ ( )]( ) is defined on n< s0  for
= +r K0, 1, 2, , 1 . As given, assume that n j h n<+A D tau T on s, , 02 K 1∣ [ ( )]∣   . Consider the relation-

ship that follows from the new formof Taylor’s series:
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åh n h n
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By applying theorem2.5, equation (25) becomes
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, ,

, 0
. 26K

r

K rp

rp
0

2
( ) ( ) ( ) ( )

Multiply both sides of equation (26) by n + +K a1 2( ) . Aswe have

ån h n n n h n n j h= Y -+ + +

=

+ - -R D, , , 0 . 27K p
K

K p

r

K
K r p rp1 2 2 1

0

1 2
( ) ( ( ) ( )) ( )( ) ( ) ( )

Applying lemma 2.2 to equation (27) yields

n h n n j h=+ + +R A D, , . 28K p
K

K p1 2 2 1 ( ) [ ( )] ( )( ) ( )

Whenwe apply the absolute sign to equation (28), we get

n h n n j h=+ + +R A D, , . 29K p
K

K p1 2 2 1 ∣ ( )∣ ∣ [ ( )]∣ ( )( ) ( )

The following is the result we get by applying the condition given in equation (29), and hence

n
h n

n
-
+ + + +

T
R

T
, . 30

K p K K p1 2 1 2
( ) ( )( ) ( ) 

Equation (30) provides the necessary outcome.

h n
n + +

R
T

, .K K p1 2
∣ ( )∣ ( )

This leads to the establishment of the new series convergence condition. ,

3. Roadmap for the suggested techniques

3.1. TheARPSMmethod for solving time-fractional PDEswith arbitrary coefficients
Weprovide the guiding principles of the ARPSM for solving our genericmodel.

Step 1: Rewrite the equation in general. Aswe have

j h J h j z h j+ - =D N, , 0, 31qp  ( ) ( ) ( ) ( ) ( )

Step 2: Aboodh transformation applied to both sides of equation (31) gives

j h J h j z h j+ - =A D N, , 0, 32qp [ ( ) ( ) ( ) ( )] ( )

Using lemma 2.2, we transform equation (32).

åh
j h J h h

Y = - +
=

-

+
s

D

s

Y s

s

F s

s
,

, 0 ,
, 33

j

q j

qp qp qp
0

1

2
( ) ( ) ( ) ( ) ( ) ( )

where,A[ζ(η,j)]= F(η, s),A[N(j)]= Y(s).
Step 3: To solve equation (33), take into account the following form:

åh
h

Y = >
=

¥

+
s

s
s, , 0,

r

r
rp

0
2

( ) ( )

Step 4: Follow the steps given below:

h h j h= Y =
¥

s slim , , 0 ,
s

0
2 ( ) ( ) ( )

andwe get the following by using theorem 2.6.

h j h= D , 0 ,p
1 ( ) ( )

h j h= D , 0 ,p
2

2 ( ) ( )


h j h= D , 0 ,w

wp ( ) ( )

Step 5: ObtainΨ(η, s) as theKth-truncated series as follows:

åh
h

Y = >
=

+
s

s
s, , 0,K

r

K
r
rp

0
2

( ) ( )
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åh
h h h h

Y = + + + +
+ +

= +
+

s
s s s s

, ,K p
w
wp

r w

K
r
rp

0
2

1
2 2

1
2

   ( ) ( ) ( ) ( ) ( )

Step 6: TheAboodh residual function (ARF) of equation (33) to be examined independently of the
Kth-truncated Aboodh residual function in order to get

åh h
j h J h h

= Y - + -
=

-

+
ARes s s

D

s

Y s

s

F s

s
, ,

, 0 ,
,

j

q j

jp jp jp
0

1

2
( ) ( ) ( ) ( ) ( ) ( )

and

åh h
j h J h h

= Y - + -
=

-

+
ARes s s

D

s

Y s

s

F s

s
, ,

, 0 ,
. 34K K

j

q j

jp jp jp
0

1

2
( ) ( ) ( ) ( ) ( ) ( ) ( )

Step 7: In equation (34), substitute the expansion formofΨK(η, s).

å

å

h
h h h h

j h J h h

= + + + +

- + -

+ +
= +

+

=

-

+

ARes s
s s s s

D

s

Y s

s

F s

s

,

, 0 ,
. 35

K p
w
wp

r w

K
r
rp

j

q j

jp jp jp

0
2

1
2 2

1
2

0

1

2

   



⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )



Step 8:Multiply both sides of equation (35) by s Kp+2

å

å

h
h h h h

j h J h h

= + + + +

- + -

+ +
+ +

= +
+

=

-

+

s ARes s s
s s s s

D

s

Y s

s

F s

s

,

, 0 ,
. 36

Kp
K

Kp
p

w
wp

r w

K
r
rp

j

q j

jp jp jp

2 2 0
2

1
2 2

1
2

0

1

2

   



⎜
⎛

⎝

⎞

⎠
⎟

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )



Step 9: Taking ¥lims on both sides of equation (36):

å

å

h
h h h h

j h J h h

= + + + +

- + -

¥

+

¥

+
+ +

= +
+

=

-

+

s ARes s s
s s s s

D

s

Y s

s

F s

s

lim , lim

, 0 ,
.

s

Kp
K

s

Kp
p

w
wp

r w

K
r
rp

j

q j

jp jp jp

2 2 0
2

1
2 2

1
2

0

1

2

   



⎜
⎛

⎝

⎞

⎠
⎟

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )



Step 10:We need to solve the following equation for ÿK(η).

h =
¥

+s ARes slim , 0,
s

Kp
K

2( ( ))

whereK= w+ 1,w+ 2,L .
Step 11: TheK-approximate solution of equation (33)may be found by substituting the obtained values of

ÿK(η) into theK-truncated series ofΨ(η, s).
Step 12:TheK-approximate solutionjK(η, ò)may be obtained by using the inverse Aboodh transformon

ΨK(η, s).

3.2. Problem
Consider the fractional DSW system as:

j h j h
j h

h
+

¶
¶

=D , 3 ,
,

0, 37p
a b

b 


 ( ) ( )
( )

( )

j h
j h

h
j h

j h
h

j h
j h

h
+

¶
¶

+
¶

¶
+

¶
¶

= <D p, 2
,

2 ,
,

,
,

0, where 0 1 38p
b

b
a

b
b

a
3

3









 ( )

( )
( )

( )
( )

( )
( )

Subjected to the following IC’s:

j h h=
c c

, 0
3

2
sech

2
. 39a

2 ⎛
⎝

⎞
⎠

( ) ( )

j h h= c
c

, 0 sech
2

. 40b
⎛
⎝

⎞
⎠

( ) ( )
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Applying AT to Eq (37) and (38) andmaking use of equation (39) and (40) respectively, we get

j h
h

j h
j h
h

- + ´
¶

¶
=-

-

s s
,

sech 3
,

,
0, 41a

c c

p b
b

3

2
2

2

2
1

1

 


 


 
⎡

⎣⎢
⎤
⎦⎥

( )
( ) ( )

( )
( )

j h
h j h

h
j h

j h
h

j h
j h
h

- +
¶

¶
+ ´

¶
¶

+ ´
¶

¶
=

-
-

-
-

c

s s s

s

,
sech 2 , 2

,
,

1
,

,
0, 42

b

c

p
b

p a
b

p b
a

2

2

3

3
1

1

1
1










 


 


 


 


⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )
( )

( )

( )
( )

( )

and so the k th-truncated term series are

åj h
h h

= + =
=

+
s

s

f s

s
r,

sech ,
, 1, 2, 3, 4 . 43a

c c

r

k
r

rp

3

2
2

2

2
1

1

( )
( )

( )
( )

åj h
h h

= + =
=

+
s

c

s

g s

s
r,

sech ,
, 1, 2, 3, 4 . 44b

c

r

k
r

rp

2

2
1

1

( )
( )

( )
( )

Aboodh residual functions (ARFs) are

h j h
h

j h
j h
h

= - + ´
¶

¶
=-

-

Res s
s s

, ,
sech 3

,
,

0 45a

c c

p b
b

3

2
2

2

2
1

1

 


  


  
⎡

⎣⎢
⎤
⎦⎥

( )
( ) ( ) ( )

( )
( )

h j h
h j h

h
j h

j h
h

j h
j h
h

= - +
¶

¶
+ ´

¶
¶

+ ´
¶

¶
=

-
-

-
-

Res s
c

s s s

s

, ,
sech 2 , 2

,
,

1
,

,
0

46

b

c

p
b

p a
b

p b
a

2

2

3

3
1

1

1
1










  


 


  


 


⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( )

( )
( )

( )

( )
( )

( )

and the k th-LRFs as:

h j h
h

j h
j h
h

= - + ´
¶

¶
=-

-

Res s
s s

, ,
sech 3

,
,

0 47k ak

c c

p bk
bk

3

2
2

2

2
1

1

 


  


  
⎡

⎣⎢
⎤
⎦⎥

( )
( ) ( ) ( )

( )
( )

h j h
h j h

h
j h

j h
h

j h
j h
h

= - +
¶

¶
+

´
¶

¶
+ ´

¶
¶

=

-

-
-

-

Res s
c

s s s

s

, ,
sech 2 , 2

,

, 1
,

,
0 48

k bk

c

p
bk

p ak

bk
p bk

ak

2

2

3

3
1

1
1

1











  


 



  


 



⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( )

( )
[ ( )

( )
( )

( )
( )

In order to calculate fr(η, s) and gr(η, s), wemultiply the resultant equations by s rp+1, replace the r th-truncated
series equation (43) and (44) into the r th-Aboodh residual function equation (47) and (48), and solve the relation

h =j¥
+s A Res slim , 0s

rp
r

1
,( ( )) iteratively, r= 1, 2, 3,L .

Here are thefirst few of terms:

h

h

=

=

h h

h h

f s
c

g s
c

,
3 tanh sech

2
,

,
tanh sech

2
, 49

c c

c c

1

5 2
2

2
2

1

5 2
2 2

( ) ( )

( ) ( )
( )

( ) ( )

h h
h

h h
h

= -

= -

f s c c
c

g s c c
c

,
3

2
cosh 2 2 sech

2
,

,
1

4
cosh 2 3 sech

2
. 50

2
4 4

2
4 3

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ( ) )

( ) ( ( ) ) ( )

and so on.
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Putting the values of fr(η, s) and gr(η, s), r= 1, 2, 3,L , in equation (43), (44), we get

j h

h h

=

+
-

+ +

h h

h

+

+

s
c

s

c c

s

c

s

,
3 tanh sech

2

3 cosh 2 2 sech

2

3 sech

2
. 51

a

c c

p

c

p

c

5 2
2

2
2

1

4 4
2

2 1

2
2

( ) ( )

( ) ( )
( )

( ( ) ) ( )
( )

j h
h h

= +
-

+ +

h h h

+ +
s

c

s

c c

s

c

s
,

tanh sech

2

cosh 2 3 sech

4

sech
.

52

b

c c

p

c

p

c5 2
2 2

1

4 3
2

2 1

2( ) ( ) ( ) ( )
( )

( ( ) )

( )



UsingAboodh inverse transform,we get

j h

h h

=
G +

-
G +

+
G +

+ +

h h h

h

s
c

p

c

p

c c

p
c

c

,
3 tanh sech

2 1

3 sech

2 1

3 cosh 2 sech

2 2 1

3

2
sech

2
. 53

a

p c c p c
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 
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⎛
⎝

⎞
⎠
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( )
( )

j h

h h

=
G +

-
G +

+
G +

+ +

h h h

h

s
c

p

c

p

c c

p
c

c

,
tanh sech

2 1

3 sech

4 2 1

cosh 2 sech

4 2 1
sech

2
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b

p c c p c

p c

5 2
2 2

4 2 3
2

4 2 3
2

 


⎛
⎝

⎞
⎠
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( )

Figure 1 portrays the AboodhResidual Power SeriesMethod (ARPSM) solution,ja(η, ò), for a specific set of
parameters (p= 1.0 and ò= 1.5).Meanwhile,figure 2 exhibits the exact solution,ja(η, ò), specifically at ò= 1.5.
Comparing thesefigures reveals the similarity or divergence between the ARPSM-derived solution and the
exact solution at the given parameter values. Figure 3 presents a comparative analysis between the exact solution
ja(η, ò) (at ò= 1.5) and the ARPSM solution for the same parameter values. This direct comparison provides
insights into the accuracy and reliability of the ARPSMmethod in approximating the exact solution under the
specified conditions. Similar tofigures 1 and 2,figure 4 displays theARPSM solutionjb(η, ò) for p= 1.0 and
ò= 1.5, whilefigure 5 showcases the exact solutionjb(η, ò) at ò= 1.5. These graphs allow for an examination of
the ARPSM-derived solution against the exact solution for a different scenario or variable in the system. Figure 6
enables a direct comparison between the exact solutionjb(η, ò) (at ò= 1.5) and theARPSM solutionjb(η, ò) for
the given parameter values. This comparison aids in evaluating the accuracy and reliability of the ARPSM
method in approximating the exact solution under these specific conditions. Table 1 presents a comparison of
different fractional orders of the ARPSMsolutionja(η, ò) for ò= 1.5 and c= 0.1. This tabular representation

Figure 1.ARPSM solutionja(η, ò) for p = 1.0 and ò = 1.5.
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Figure 2.Exact solutionja(η, ò) at ò = 1.5.

Figure 3.Comparison of exact andARPSM solutionja(η, ò) at ò = 1.5.

Figure 4.ARPSM solutionjb(η, ò) for p = 1.0 and ò = 1.5.
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offers a systematic analysis of the ARPSM-derived solutions under various fractional orders, enabling a
quantitative assessment of their accuracy and convergence. Similar to table 1, table 2 provides a comparative
analysis of different fractional orders of the ARPSM solutionjb(η, ò) for ò= 1.5 and c= 0.1. This table allows for
a detailed examination of howdifferent fractional orders affect the accuracy and reliability of the ARPSM-
derived solutions for the specific scenario.

Figure 5.Exact solutionjb(η, ò) at ò = 1.5.

Figure 6.Comparison of exact andARPSM solutionjb(η, ò) at ò = 1.5.

Table 1.The comparison of different fractional order of ARPSM solutionja(η, ò) for ò = 1.5 and c= 0.1.

η ARPSMP=0.6 ARPSMp=0.8 ARPSMP=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0. 0.149 779 0.149 799 0.149 831 0.149 831 0.000 052 837 4 0.000 032 107 9 1.264818 × 10−7

0.1 0.149 918 0.149 947 0.149 981 0.149 981 0.000 063 274 0.000 033 946 2.107553 × 10−7

0.2 0.149 908 0.149 946 0.149 982 0.149 981 0.000 073 459 3 0.000 035 649 8 5.462043 × 10−7

0.3 0.149 748 0.149 794 0.149 832 0.149 831 0.000 083 355 4 0.000 037 214 6 8.770298 × 10−7

0.4 0.149 439 0.149 494 0.149 533 0.149 532 0.000 092 927 4 0.000 038 637 4 1.200463 × 10−6

0.5 0.148 983 0.149 045 0.149 087 0.149 085 0.000 102 143 0.000 039 915 8 1.513842 × 10−6

0.6 0.148 38 0.148 45 0.148 493 0.148 491 0.000 110 971 0.000 041 048 9 1.814650 × 10−6

0.7 0.147 635 0.147 712 0.147 756 0.147 754 0.000 119 387 0.000 042 036 8 2.100546 × 10−6

0.8 0.146 748 0.146 832 0.146 878 0.146 875 0.000 127 366 0.000 042 880 4 2.369398 × 10−6

0.9 0.145 724 0.145 816 0.145 862 0.145 859 0.000 134 889 0.000 043 581 9 2.619308 × 10−6

1. 0.144 567 0.144 665 0.144 712 0.144 709 0.000 141 938 0.000 044 144 1 2.848634 × 10−6
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3.3. Basic idea of the aboodh transform iterativemethod
Take the fractional partial differential equation in space and time of the form.

j h j h j h j h j h j= F <h
j

h
j

h
jD D D D p, , , , , , , , , 0 , 1, 55p 2 3     ( ) ( ( ) ( ) ( ) ( )) ( )

with the initial conditions

j h = = -h k m, 0 , 0, 1, 2, , 1, 56k
k( ) ( )( ) 

j(η, ò) is the unknown function to be determine and j h j h j h j hF h
j

h
j

h
jD D D, , , , , , ,2 3   ( ( ) ( ) ( ) ( )) can be

linear or nonlinear operator ofj h j h j hh
j

h
jD D, , , , ,2  ( ) ( ) ( ) and j hh

jD ,3 ( ) For convenience we
representj(η, ò)withj, Thus, we get the following equation by applying the Aboodh transform to both sides of
equation (55):

åj h
j h

j h j h j h j h= + F h
j

h
j

h
j

=

-

- +
A

s s
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, , , , , , , , 57

p
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2
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⎛
⎝

⎞
⎠
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Inverse Aboodh transformation yields the following equation:

åj h
j h

j h j h j h j h= + F h
j

h
j

h
j-
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-
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A

s s
A D D D,
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p
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⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
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( )

An infinite series represents the solution obtained by the Aboodh transform iterative approach.

åj h j=
=

¥

, . 59
i

i
0

( ) ( )

As j j j jF h
j

h
j

h
jD D D, , ,2 3( ) is an operator that can be either linear or nonlinear and is decomposable as

follows:
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Table 2.The comparison of different fractional order of ARPSM solutionjb(η, ò) for ò = 1.5 and c= 0.1.

η ARPSMP=0.6 ARPSMp=0.8 ARPSMP=1.0 Exact Errorp=0.7 Errorp=0.8 Errorp=1.0

0. 0.099 926 2 0.099 933 1 0.099 943 8 0.099 943 8 0.000 017 596 6 0.000 010 686 8 2.635513 × 10−8

0.1 0.099 972 6 0.099 982 4 0.099 993 8 0.099 993 8 0.000 021 131 8 0.000 011 349 9 4.391807 × 10−8

0.2 0.099 969 1 0.099 981 8 0.099 993 9 0.099 993 8 0.000 024 614 3 0.000 011 984 7 1.139237 × 10−7

0.3 0.099 915 7 0.099 931 2 0.099 944 0.099 943 8 0.000 028 036 1 0.000 012 590 3 1.832369 × 10−7

0.4 0.099 812 6 0.099 830 8 0.099 844 2 0.099 844 0.000 031 389 4 0.000 013 165 5 2.514403 × 10−7

0.5 0.099 659 9 0.099 680 8 0.099 694 8 0.099 694 5 0.000 034 666 6 0.000 013 709 5 3.181293 × 10−7

0.6 0.099 458 0.099 481 7 0.099 496 3 0.099 495 9 0.000 037 861 0.000 014 221 6 3.829159 × 10−7

0.7 0.099 207 5 0.099 233 8 0.099 248 9 0.099 248 5 0.000 040 965 9 0.000 014 701 5 4.454334 × 10−7

0.8 0.098 909 0.098 937 8 0.098 953 5 0.098 953 0.000 043 975 4 0.000 015 148 6 5.053397 × 10−7

0.9 0.098 563 2 0.098 594 5 0.098 610 6 0.098 61 0.000 046 884 0.000 015 563 5.623208 × 10−7

1. 0.098 170 9 0.098 204 6 0.098 221 2 0.098 220 5 0.000 049 686 8 0.000 015 944 5 6.160938 × 10−7
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Equation (55) yields the following analytically approximate solution for them-term:
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The following equations are obtained by applying the inverse Aboodh transform to equations (68) and 69:
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By using theAboodh transform iteratively, the following equation is obtained:
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Applying RL integral to equations (64) and (65), we get the equivalent form
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Figure 7 displays the solutionja(η, ò) obtained using theNITMmethod for p= 1.0 and ò= 1.5. In contrast,
figure 8 exhibits the exact solutionja(η, ò) at ò= 1.5. Figure 9 provides a comparative analysis between the
NITMsolution and the exact solutionja(η, ò) for ò= 1.5. The comparison elucidates the closeness or deviation
between theNITM-derived solution and the exact solution, offering insights into the accuracy of themethod for
this specific scenario. Similarly, figures 10, 11, and 12 depict theNITMsolutionjb(η, ò), the exact solutionjb(η,
ò) at ò= 1.5, and the comparison of both solutions, respectively, for p= 1.0. Thesefigures provide an analogous

Figure 7.NITM solutionja(η, ò) for p = 1.0 and ò = 1.5.

Figure 8.Exact solutionja(η, ò) at ò = 1.5.
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Figure 9.Comparison of exact andNITMsolutionja(η, ò) at ò = 1.5.

Figure 10.NITM solutionjb(η, ò) for p = 1.0 and ò = 1.5.

Figure 11.Exact solutionjb(η, ò) at ò = 1.5.
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comparative analysis to the previous set, focusing on a different variable or parameter within the system,
shedding light on the accuracy of theNITMmethod for another aspect of the problem. Figures 13 and 14 present
the comparison of absolute errors forja(η, ò) andjb(η, ò), respectively, at ò= 1.5. Thesefigures showcase the
deviations or differences between theNITM-derived solutions and the exact solutions in terms of absolute
errors. Analyzing these plots allows for an understanding of the accuracy and precision of theNITMmethod in
approximating the exact solutions.

Tables 3 and 4 provide a comprehensive comparison of different fractional orders of theNITM solutions
ja(η, ò) andjb(η, ò), respectively, for ò= 1.5 and c= 0.1. These tables present a systematic overview of how

Figure 12.Comparison of exact andNITM solutionjb(η, ò) at ò = 1.5.

Figure 13.Comparison of absolute error forja(η, ò) at ò = 1.5.

Figure 14.Comparison of absolute error forjb(η, ò) at ò = 1.5.
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varying fractional orders impact the solutions obtained through theNITMmethod, allowing for an assessment
of the sensitivity of solutions to changes in fractional order parameters. Tables 5 and 6 offer a comparison of the
absolute errors between the ARPSMandNITMsolutionsja(η, ò) andjb(η, ò), respectively, at ò= 1.5. These
tables facilitate a direct comparison between two differentmethods, highlighting their accuracies and potential
discrepancies in approximating the exact solutions for the given scenario. In summary, the graphical figures and
tables collectively provide a detailed insight into the accuracy, precision, and sensitivity of theNITMand
ARPSMmethods in approximating solutions forja(η, ò) andjb(η, ò) under varying fractional orders and
specific parameter settings, enhancing our understanding of the numerical solutions derived for this complex
mathematical system.

Table 3.The comparison of different fractional order ofNITM solutionja(η, ò) for ò = 1.5 and c = 0.1.

η NITMP=0.6 NITMp=0.8 NITMP=1.0 Exact Errorp=0.6 Errorp=0.8 Errorp=1.0

0. 0.149 779 0.149 799 0.149 831 0.149 831 0.000 052 837 4 0.000 032 107 9 1.264818 × 10−7

0.1 0.149 918 0.149 947 0.149 981 0.149 981 0.000 063 401 9 0.000 034 055 6 1.265208 × 10−7

0.2 0.149 908 0.149 945 0.149 982 0.149 981 0.000 073 713 8 0.000 035 867 7 3.785758 × 10−7

0.3 0.149 748 0.149 794 0.149 832 0.149 831 0.000 083 734 0.000 037 538 9 6.276754 × 10−7

0.4 0.149 439 0.149 493 0.149 533 0.149 532 0.000 093 426 3 0.000 039 064 6 8.718533 × 10−7

0.5 0.148 982 0.149 045 0.149 086 0.149 085 0.000 102 757 0.000 040 441 9 1.109212 × 10−6

0.6 0.148 38 0.148 45 0.148 493 0.148 491 0.000 111 695 0.000 041 668 8 1.337950 × 10−6

0.7 0.147 634 0.147 711 0.147 755 0.147 754 0.000 120 213 0.000 042 744 3 1.556383 × 10−6

0.8 0.146 747 0.146 832 0.146 877 0.146 875 0.000 128 287 0.000 043 668 9 1.762970 × 10−6

0.9 0.145 723 0.145 815 0.145 861 0.145 859 0.000 135 895 0.000 044 443 9 1.956327 × 10−6

1. 0.144 566 0.144 664 0.144 711 0.144 709 0.000 143 021 0.000 045 071 7 2.135244 × 10−6

Table 4.The comparison of different fractional order ofNITM solutionjb(η, ò) for ò = 1.5 and c = 0.1.

η NITMP=0.6 NITMp=0.8 NITMP=1.0 Exact Errorp=0.6 Errorp=0.8 Errorp=1.0

0. 0.099 926 2 0.099 933 1 0.099 943 8 0.099 943 8 0.000 017 596 6 0.000 010 686 8 2.635513 × 10−8

0.1 0.099 972 2 0.099 982 1 0.099 993 5 0.099 993 8 0.000 021 515 2 0.000 011 678 3 2.086800 × 10−7

0.2 0.099 968 4 0.099 981 1 0.099 993 4 0.099 993 8 0.000 025 376 5 0.000 012 637 5 3.881233 × 10−7

0.3 0.099 914 6 0.099 930 2 0.099 943 2 0.099 943 8 0.000 029 167 5 0.000 013 559 3 5.620196 × 10−7

0.4 0.099 811 1 0.099 829 5 0.099 843 2 0.099 844 0.000 032 876 0.000 014 438 8 7.278125 × 10−7

0.5 0.099 658 0.099 679 3 0.099 693 6 0.099 694 5 0.000 036 490 3 0.000 015 271 4 8.831037 × 10−7

0.6 0.099 455 9 0.099 479 8 0.099 494 9 0.099 495 9 0.000 039 999 5 0.000 016 053 2 1.025698 × 10−6

0.7 0.099 205 1 0.099 231 7 0.099 247 3 0.099 248 5 0.000 043 393 5 0.000 016 780 7 1.153645 × 10−6

0.8 0.098 906 3 0.098 935 5 0.098 951 7 0.098 953 0.000 046 663 4 0.000 017 450 9 1.265269 × 10−6

0.9 0.098 560 2 0.098 592 0.098 608 7 0.098 61 0.000 049 801 1 0.000 018 061 5 1.359200 × 10−6

1. 0.098 167 7 0.098 201 9 0.098 219 1 0.098 220 5 0.000 052 799 7 0.000 018 610 7 1.434386 × 10−6

Table 5.The comparison of absolute error for ò = 1.5 of ARPSMandNITM solutionja(η, ò).

η Exact NITMp=1.0 ARPSMP=1.0 NITMErrorp=1.0 ARPSMErrorp=1.0

0. 0.149 831 0.149 831 0.149 831 1.264818 × 10−7 1.264818 × 10−7

0.1 0.149 981 0.149 981 0.149 981 1.265208 × 10−7 2.107553 × 10−7

0.2 0.149 981 0.149 982 0.149 982 3.785758 × 10−7 5.462043 × 10−7

0.3 0.149 831 0.149 832 0.149 832 6.276754 × 10−7 8.770298 × 10−7

0.4 0.149 532 0.149 533 0.149 533 8.718533 × 10−7 1.200463 × 10−6

0.5 0.149 085 0.149 086 0.149 087 1.109212 × 10−6 1.513842 × 10−6

0.6 0.148 491 0.148 493 0.148 493 1.337950 × 10−6 1.814650 × 10−6

0.7 0.147 754 0.147 755 0.147 756 1.556383 × 10−6 2.100546 × 10−6

0.8 0.146 875 0.146 877 0.146 878 1.762970 × 10−6 2.369398 × 10−6

0.9 0.145 859 0.145 861 0.145 862 1.956327 × 10−6 2.619308 × 10−6

1. 0.144 709 0.144 711 0.144 712 2.135244 × 10−6 2.848634 × 10−6
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4. Conclusion

In conclusion, we have successfully employed the Aboodh transform iterationmethod and the Aboodh residual
power seriesmethod to solve a fractional-order systemof theDrinfeld-Sokolov-Wilson equationwithin the
Caputo operator framework. Through our analysis and numerical experiments, we have demonstrated the
accuracy and reliability of thesemethods in obtaining solutions for this particular system. The results not only
provide a valuable contribution to thefield of fractional calculus but also enhance our understanding of the
behavior and dynamics of theDrinfeld-Sokolov-Wilson equation in the fractional-order context. Thesefindings
open up opportunities for further research and applications in related areas of science andmathematics.
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