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Abstract

This study delves into the exploration and analysis of the fractional order Drinfeld-Sokolov-Wilson
(FDSW) system within the framework of the Caputo operator. To address this complex system, two
innovative methods, namely the Aboodh transform iteration method (ATIM) and the Aboodh
residual power series method (ARPSM), are introduced and applied. These methods offer efficient
computational tools to investigate the FDSW system, particularly in the fractional order context
utilizing the Caputo operator. The ATIM and ARPSM are employed to solve and analyze the FDSW
system, allowing for the derivation of solutions and insights into the system’s behavior and dynamics.
The utilization of these novel methods showcases their efficacy in handling the intricate characteristics
of the FDSW system under fractional differentiation, offering a deeper understanding of its
mathematical properties and behaviors.

1. Introduction

Fractional calculus finds diverse applications across numerous scientific and engineering fields. Complex
systems with memory and non-local behavior may now be modeled and analyzed with its help. In control
theory, for instance, it is essential in planning systems with complex dynamics. Fractional calculus is also
important in signal processing because it helps to explain and control signals that exhibit fractal-like behavior.
It’s useful in material science for characterizing viscoelastic materials, which may behave both like solids and
liquids [1-5]. Its adaptability and importance in solving a broad variety of real-world issues is further shown by
its applicability to fields as diverse as electrochemistry, medicine, finance, and geophysics [6—12]. Classical
derivatives have alocal character, allowing us to evaluate changes in the vicinity of a point, whereas Caputo
fractional derivatives have a nonlocal nature, allowing us to analyze changes in an interval. This trait makes the
Caputo fractional derivative applicable to modeling a wider variety of physical phenomena, including ocean
climate, atmospheric physics, dynamical systems, earthquakes, vibrations, polymers, etc (refer to the scholarly
literature cited in [13—18] for additional details).

Here, in our present study, we start by examining the Drinfeld-Sokolov-Wilson system provided by
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subject to the initial condition:

@, (1, 0) = Qao(n),
(1, 0) = Rpo(n).

., €) = %seehz(\g(n - 66)),
wp(n, €) =c¢ sech(\/g(n — ce)).

The nonlinear Drinfeld-Sokolov-Wilson (DSW) model is a fundamental mathematical model in
mathematical physics [19-22]. It has applications in a variety of fields, including fluid dynamics, plasma physics,
geochemistry, astrophysics, chemical kinematics, chemical chemistry, solid state physics, and optical fiber.
Several scientists and mathematicians have recently studied the DSW equation in both fractional and integer
orders [27-30]. Wave packets that travel in a nonlinear dispersive medium are known as solitary waves. Notable
scholars like Abdulloev et al [23], Bona et al [24], etc have written work in this area. These mathematical models
are also crucial for studying shallow water waves, ion-acoustic plasma waves, and nonlinear dispersive waves
[25, 26]. In arecent publication, Yang [31] defined and proposed generalized fractional operators and their
applications in engineering and research. A unique fractional operator with a non-singular kernel was proposed
by Yang et al [32] and its applications in the study of constant heat flow were suggested. Another novel fractional
derivative with a non-singular kernel for the normalized sinc function was introduced by Yang et al [33, 34]
found solution to problem in the exponential decay kernel of models of anomalous diffusion. Nonlinear
differential equations with a fractional derivative, power, and a Mittag-Leffler kernel were numerically solved by
Yepez-Martinez and Gomez-Aguilar [35]. The numerical approximation of the Riemann-Liouville definition of
a fractional operator was provided by Atangana and Gomez-Aguilar [36]. In order to manage linear partial
differential equations with a fractional operator connected with a non-singular kernel, Morales-Delgado et al
[37] used the Laplace homotopy analysis method. Fractional operators with the no-index law property were used
to chaos theory and statistical analysis by Atangana and Gomez-Aguilar [38]. For the time-fractional Korteweg—
de Vries problem, Yokus [39] used the finite difference approach to evaluate the Caputo and conformable
operators.

The fractionalized DSW equation may be written as:

Exact solution given in [19] as:

0 , €
Dfp@a(n) E) + 390b(77, G)M =0,
an
3
Df‘Pb(U, 6) + ZM =+ 2<pa(n, E)M —+ 9017(77’ G)M — 0’ Where 0 < p g 1
o’ on on

Omar Abu Arqub, a mathematician from Jordan, created the residual power series method (RPSM) in 2013
[40]. The RPSM is a semi-analytical method that combines the residual error function with Taylor’s series. The
offered convergence series techniques may be used to solve both linear and nonlinear DEs. The first time RPSM
was used to fuzzy DE resolution was in 2013. Arqub et al [41] created a unique set of RPSM algorithms to
effectively get power series solutions for extensive DEs.Fractional order non-linear boundary value problems are
also addressed by a novel and appealing RPSM method developed by Arqub et al [42]. To approximate solutions
to KdV-burgers equations of fractional order, El-Ajou et al [43] devised a unique RPSM iterative approach.It was
first proposed by Xu et al [44] initially proposed utilizing fractional power series solutions to solve second- and
fourth-order Boussinesq differential equations (DEs). By combining RPSM with least square methods, Zhang
et al[45] developed a robust numerical approach (For more detail see [46-48]).

Two reliable methods were used by the researchers to tackle fractional-order differential equations (FODEs).
This new method, which is a hybrid of the Sumudu transform and the homotopy perturbation technique [49],
works by first mapping the initial equation onto the space of the Aboodh transform, then finding a series of
solutions for the modified form of the equation, and finally finding the solution to the original equation via the
inverse Aboodh transform. The unique technique generates solutions for linear and nonlinear PDEs using
power series expansions, eliminating the need for linearization, perturbation, or discretization. In contrast to
RPSM, which needs a large number of iterations during the solution phases to compute different fractional
derivatives, finding the coefficients involves just a small number of calculations. The suggested method may
provide an approximation solution that is both closed-form and accurate since it uses a quick convergence
series.

The solution of fractional partial differential equations via the Aboodh Transform Iterative Method (NITM)
stands as a significant mathematical achievement of the past century. Because of their computational complexity
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and lack of convergence, partial differential equations with fractional derivatives are famously difficult to solve
using traditional methods. In order to get around these limitations, our novel approach continuously improves
approximate solutions, thus increasing their precision while reducing the computing weight. This strategy has
been demonstrated to enhance solutions for a wide range of difficult mathematical and physical problems by
tailoring iterations to the properties of fractional derivatives [50-52]. We can now tackle challenging issues in
physics, engineering, and applied mathematics because of the improvements gained in describing and
understanding complicated systems governed by fractional partial differential equations. The scientific
landscape is a tapestry woven with diverse threads of research spanning various disciplines. The recent
publications across multidisciplinary domains reflect the rich tapestry of scientific inquiry. Noteworthy
contributions include pioneering studies on manipulating terahertz wavefronts through cascaded metasurfaces
[53], the discovery of the first hidden-charm pentaquark with strangeness [54], and investigations into the
dynamical properties and chaotic behaviors of nonlinear coupled Schrodinger equations in fiber Bragg gratings
[55]. Additionally, innovative methodologies, such as an Iterative Threshold algorithm of Log-Sum
Regularization for Sparse Problems [56], and novel control strategies for uncertain nonlinear systems [57], stand
as testament to the diverse research endeavors in various scientific domains. Furthermore, pioneering
approaches in machinery failure identification [58], threat assessment of aerial targets [59], and their respective
methodologies signal the continuous evolution and interdisciplinary nature of scientific exploration across
fields like engineering, physics, mathematics, and biosciences.

In order to solve fractional differential equations, two of the simplest methods are the Aboodh residual
power series method (ARPSM) [60, 61] and the Aboodh transform iterative method (NITM) [50-52]. These
methods offer approximate numerical solutions to both linear and nonlinear differential equations without
necessitating linearization or discretization, further providing immediate and observable symbolic terms of
analytic solutions. The primary purpose of this research is to apply and compare two distinct approaches,
namely ARPSM and NITM, to the solution of the DSW system, a nonlinear partial differential equations. It
should be noted that these two approaches have been used to solve a variety of nonlinear fractional differential
problems.

2. Basic definitions

Definition 2.1.[62] Let o (1, ¢) is of exponential order and piecewise continuous function. For 7 > 0, the
Aboodh transform of ¢ (7, €)is define as:

1 [ee}
Ale, €)1 =¥, v) = —fo @, e)e"¥de, n<v<n,
v
We may write the inverse Aboodh transform as:

1 u + ioco
AN ] = )= — [0, revde
211 Ju—ico
Wheren = (11,1, -+ ;np)and p € N

Lemma2.1. 63, 64]Let (1, €)and @,(n, €) beof exponential order and piecewise continuous on [0, ool. Assume
that Alo,(n, €)] = W, €), Alp,(n, €)] = W, €)and N, A, are constants. Then the following properties
aretrue:

L AlNe (M, €) + X, (1, )] = MW, v) + LU0, v),
2. AN, €) + MW, )] = g, (1, v) + Xe, (), v),
3. AU, )] = T2,

4. A[DPo(, )] = P, v) — YL 2®0 1 < p<rreN.

K=0 ,K-—p+2

Definition 2.2.[65] ¢ (1, €) of order p has the following definition for its fractional derivative in the Caputo
sense:

Do, €) =J" Po™@m, €),r>0,m—1<p<m,

where n = (n,, Mye-+5m,) € RP andm, p € R, J/" Pisthe R-Lintegral of p(n, ¢).
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Definition 2.3. [66] The power series is shown in the following form:

Do) (e — )P = lig(e — €0)° + ln(e — €)P + 7y(e — )+,

r=0
where p € Nand n = (1, 1,,-+»1,) € RP. Thiskind of series is called multiple fractional power series (MFPS)
about ¢y, where the series coefficients are 7, (17)’s and ¢ indicates a variable.
Lemma 2.2. Let us assume that @ (1), €) isan exponentially ordered function. Subsequently, A[p(n, €)] = ¥(n, v)

represents the Aboodh transform. Hence,

r—1
A[DPo(n, )] = v?U(n, v) — Y P D=2DPp(n, 0),0 <p < 1, (1
j=0

where 1) = (1, 1,--,1,) € RPand p € Nand D? = D2.D?.---.DF (r — times)
Proof. Let’s use induction to verify equation (1). By setting r = 1 in equation (1), we obtain:
AIDZ o(p, €)1 = PV, v) — v %p(n, 0) — vP-*DLp(n, 0).
Part (4) oflemma 2.1 supports the validity of equation (1) for r = 1. Putting r = 2 in equation (1) gives us

AIDP o, )] = v?PV(), v) — v 2(1), 0) — vP DL o (n, 0). @
Considering L.H.S. of equation (2), we get
L.H.S = A[D¥* o(n, €)]. 3)
The equation (3) may be expressed in a particular manner as
L.H.S = A[Df¢(n, €)]. 4)
Let
z(n, €) = DFp(, €). )
Asaresult, equation (4) becomes
L.H.S = A[D?z(n, €)]. (6)

By using the Caputo type fractional derivative.

LH.S = A[J]'"?Z'(n, €)]. @)
The Aboodh transform’s R-L fractional integral formula may be found in equation (7), which gives
Alz'(n, )] '

LH.S = e 8)
Through the use of the Aboodh transform’s differential property, equation (8) is converted as:
LHS=vtZ(n, v) — 20, O), 9
v2P
From equation (5), we get
Z(n, v) = vPU(n, v) — AURY) ,
2P
where A[z(, €)] = Z(n, v). Asaresult, equation (9) is transformed into
_ @, 00 DFy(n, 0)
LH.S =v?¥(n, v) — o — NE (10)

equation (1) and equation (10) are compatible. Let us now suppose that for r = K, equation (1) holds. Putr = K
in equation (1) asaresult:

K-1
A[DFP oy, )] = vKPU(n, v) — Y vPED=2DIDIP p(n, 0),0 < p < 1. (11)
j=0

Here, we’ll show that equation (1) is true for r = K + 1. To derive equation (1) we write

K
A[DETP o, €)] = vEEDPT(n, v) — ST pPEED=D=2DF (7, 0). (12)
j=0
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Using equation (12) left-hand side, we get

L.H.S = A[DXP(DFP)]. (13)
Consider
D =g, e).
equation (13) gives us
L.H.S = A[Dfg(n, €)]. (14)

The following is an expression for equation (14) using the R-L integral formula and the Caputo fractional
derivative:

£, 0

L.H.S = vPA[DX? p(n, €)] ) (15)
v2p
By ulatizing equation (11), equation (15) is transformed into
r—1
LHS = v?U(n, v) — > vP=D=2DP o(n, 0), (16)

j=0
We get the following result by using equation (16).
L.H.S = A[D?¢(n, 0)].

Itimplies that the formula equation (1) hold for r = K + 1. Consequently, we used the mathematical induction
approach to show that the formula equation (1) holds true for all positive numbers. In the following lemma, we
provide a revised version of the multiple fractional Taylor’s formula that will be useful for the ARPSM. O

Lemma 2.3. Suppose that o (1, €) isan exponentially ordered function. Then, A[p(n, €)] = VU(n, v) represents
the Aboodh transform of ¢ (1, €) asamultiple fractional Taylor’s series:

oo ﬁr
w0 = 2D,

r=0

v >0, (17)

where, = (si, 7,m,) € RP, p € N.

Proof. When fractional order analysis of Taylor’s series is performed, we get

124 e
++ﬁz(77)r— + e (18)

o, €) = Tig(n) + 71(n) T 2p 1 1]

[p + 1]
By using the Aboodh transform on 18, we get the equality that follows:

p e
Alp(, )] = Ao + Al s ——— | + Al () —F—— | +
[p(m, €)] [Zo(m)] [ l(n)F[er 1]} [ 1(77)F[2ij 1]]

Thus, by using the Aboodh transform’s properties, we obtain

1 Llp+1] 1 I'izp+11 1
Al €)] = o) — + /() ————— + /iz(1) ———— ”
L €01 = Aal) -+ ) T s+ A
Asaresult, 17, anew Taylor’s series in the Aboodh transform, is obtained. O

Lemma 2.4. Suppose that the MEPS representation of the function Alp(n, €)] = Y(n, v) exists in the new form of
Taylor’s series 17.
o) = lim v2W(n, v) = (1, 0). (19)

V—00

Proof. This previous is based on the new form of Taylor’s series.

A )

— 1,2 _
ho(n) = v¥(n), v) o T

(20)

The necessary result, denoted by 19, is obtained by applying lim,, , . to equation (20) and performing a short
computation. O

Theorem 2.5. Let A[p(n, €)] = V(n, v) be the function for which the MEPS representation is provided by
_ 3 ()
‘I’(??, V) - Z Vrp+2 >

0

v>0,
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wheren = (1, 0,+-+1,) € RPand p € N. Then we have

7r(n) = Do, 0),
where, Df = DF.DP.---.DP (r — times).
Proof. From the modified Taylor’s series format, we have

) s

fn(n) = VP20, v) — vPio(n) — — >
1% 14

After solving equation (21) with lim,,_, ., we get

() = lim (WP2¥(n, v) — vP74y(n)) — lim 52—(;7) — lim LUV
v

V—00 l/zp

After taking the limit, we have the following equality:

() = lim P2, v) — vP7ig(n)).

Usinglemma 2.2 along with equation (22), it becomes

fa(n) = lim ?A[DF o, €)1(V)).

V—00

Moreover, using lemma 2.3 along with equation (23), it becomes

(1) = DP (1, 0).

Using ¥ — 00 and the modified form of Taylor’s series, we get

7
Tia(i) = VP21, v) — V2o — V() — % -

Lemma 2.3 gives us

fiy(n) = lim v2 (WU (n, v) — vP2/i(n) — VP~ ().

Using lemmas 2.2 and 2.4 again, equation (24) becomes

7i(n) = DX o(n, 0).

Using the new Taylor’s series and the same procedure, we have

fi3(n) = lim v2(A[DX @ (n, p)I(V)).

V—00

When lemma 2.4 is applied, the final equation is produced.
fi3(n) = DX (1, 0).
In general we get
/ir(n) = DF (1, 0).

Thus, the proofis ended.

A Hamid Ganie et al

21

(22)

(23)

(24)

In the following theorem, we demonstrate the necessary and sufficient conditions for the convergence of the

modified Taylor formula.

Theorem 2.6. Lernma 2.3 presents a revised Multiple Fractional Taylor’s formula represented as A (n, €)] =
W(n, v). The remainder Ry (1, v) of the new multiple fractional Taylor’s formula for (0 < v < s)with0 < p < 1)

corresponds to the following inequality if [v"A[DX VP o (n, €)]| < T.

T
|R1<(’I7, l/)| < W’ 0 <v S S.

Proof. We make the following assumption to start the proof, A[DF ¢ (1, €)](v)isdefinedon 0 < v < s for
r=0,1,2,--,K + 1. As given, assume that |v?A [D x+1p(n, tau)]| < T, on 0 < v < s. Consider the relation-

ship that follows from the new form of Taylor’s series:

6
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K
Re(, ) = W ) — 32 220,

r=0

By applying theorem 2.5, equation (25) becomes

K DP
Re(n, v) =¥(n, v) = ) Dlp @, 0)

= Vrp+2
Multiply both sides of equation (26) by /(K+D4 + 2 Agwe have
K
V(K+1)p+2RK(77, V) = UZ(V(K'H)p\If(n, V) — Z V(K+1_r)p_2D5rp<P(7], 0)).
r=0

Applyinglemma 2.2 to equation (27) yields

&P 2R (), v) = VPA[DE P o (n, €)).
When we apply the absolute sign to equation (28), we get

DRI (1, v)| = PAIDE PP o, €]

The following is the result we get by applying the condition given in equation (29), and hence

SRK(”% V) g

pK+Dp+2 p&+Dp+2 :
Equation (30) provides the necessary outcome.
T
<—
|RK(77) V)l X V(K+1)P+2 .

This leads to the establishment of the new series convergence condition.

3. Road map for the suggested techniques

3.1. The ARPSM method for solving time-fractional PDEs with arbitrary coefficients
We provide the guiding principles of the ARPSM for solving our generic model.
Step 1: Rewrite the equation in general. As we have

DF (1, €) + V(N (p) — ¢, ) = 0,
Step 2: Aboodh transformation applied to both sides of equation (31) gives
A[DF @, €) + YN (9) — (O, )] = 0,

Usinglemma 2.2, we transform equation (32).

q-1 D]
T, s) = Lp(, 0)  VYE) |, E,s)

—0 sap+2 sap sar

where, A[((1), )] = F(1), ), AIN(¢)] = Y(s).
Step 3: To solve equation (33), take into account the following form:

o) ﬁr
U(n, s) = Z Srp(fz) , s >0,
0

r=

Step 4: Follow the steps given below:
fio(n) = lim s2¥(n, 5) = 9, 0),
and we get the following by using theorem 2.6.
/() = DFo(n, 0),
7o) = DX p(n, 0),

Ziw(m) = D7 @ (n, 0),
Step 5: Obtain (1), s) as the K "h_truncated series as follows:

K
2
Tt 9) = 3 20

r=0

,$>0,

A Hamid Ganie et al

(25)

(26)

(27)

(28)

(29)

(30)

(3D

(32)

(33)
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Wk (1), 5) = sh+2 swp+2 iz’

ﬁos(zn) BN N )R 1)
r=w+1

Step 6: The Aboodh residual function (ARF) of equation (33) to be examined independently of the
K™ truncated Aboodh residual function in order to get

-1 ;
ARes(, s) = U(y, s) — qz Dl 0) | dY() _ Fps)

=0 Sjp+2 sp Y4
and
=1 pJ
_ I Dipm 0) | Y Fap )
AResg (1), s) = Ug(n), 5) JZ:% G T o (34)
Step 7: In equation (34), substitute the expansion form of Wg(n, s).
_ (7ot | ) @) S~ fir()
ARes (1), s) —( 7 Tttt T r:ZW:H s
Dm0 | YY) Fp 9 35)
— sip+2 sip sip
Step 8: Multiply both sides of equation (35) by s “* 2
fio(n) | 7a() @) S frm)
Kp+2 — Kp+2f 720
s AResi (1, 5) = 5 [ 2 + sh+2 +ot SWP+2 + r:ZW:H $P+2
I Dlp(n, 0 Y F
-3 Aé(ﬂz, )Jr VY _ EMm 9 | (36)
= st sip sib

Step 9: Taking lim;_, . on both sides of equation (36):

. . 5o(n) 7 (n) 7w(n) Ko7 (n)
Kp+2 _ Kp+2| 720 1 E : r
Shrgcs ‘AResg (1, s) = Shm shP ( 2 + 2 + -+ e + 2

r=w+1

5jP+2 sp 4

H Dm0 | dwYe  Fo s)]‘

Step 10: We need to solve the following equation for fix().
lim (sXP*2AResk (1, 5)) = 0,

whereK=w+ 1, w+2,---.

Step 11: The K-approximate solution of equation (33) may be found by substituting the obtained values of
hx(n) into the K-truncated series of W(7, s).

Step 12:The K-approximate solution (7, €) may be obtained by using the inverse Aboodh transform on
W, 9).

3.2.Problem
Consider the fractional DSW system as:
iy, (1), €)
DI €) + 3,01 =R =0, (37)
o , 0 ) I, (n,
Df@h(n’ €) + 2M M + ¢, (0, G)M =0, where 0 <p <1 (38)

o + 2¢,(n, €)

Subjected to the following IC’s:

©,(n, 0) = % sech? (\/gn) (39)
wp(n, 0) = ¢ sech(\/gn). (40)
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Applying AT to Eq (37) and (38) and making use of equation (39) and (40) respectively, we get

3¢ c
Zsech?(./=n A"
@a(n, 6) — 2—2(\/>2) + 3 Agl:Aflwb(n) 6) X M] = 0) (41)
s on
¢ sech (\/gn) L ~1
B 21 Ppp ) 2 -1 A o, (1, €)
@y (1> €) 2 + sP[ pe ] + SPAF[AE 0., €) x o
-1
+LAE Af_lwb(/)’]’ (f) X M — 0’ (42)
sP on
and so the k"-truncated term series are
= sech? k
Sou(n’ 5)25—2<\/—Z)+Zf;52;15)’ r:1, 2’ 3,4.... (43)
r=1
c sech(./5n K o (n, 5)
(1, S)Z#—FZ&S;}H , r=1,2,3,4-. (44)
Aboodh residual functions (ARFs) are
3c c
Zsech?(./<n OA-!
AcRes(n, ) = ¢, (1, €) — 2—2((2) + %Af[AJsﬂb(n, €) x w] =0 (45)
s s on
c sech(./<n > [ 8 ) DA
AcRes(n, 5) = ¢y (> €) = L + _p[M] i _““‘[““f‘m €) w]
s s on sP on
-1
+5ipAf[Afls0b(n, o) x A aulm ©) g‘;}(”’ 6)} —0
(46)
and the k""-LRFs as:
3c c
=sech?(./<n -1
3 0A, ,
AcResi (1, 5) = @ar(n, €) — 2—2(\/_2) + —pAf[Aflsobk(n, €) X M] =0 (47)
s s on
c sech(./5n 5 [ 8 )
AcRes (1), ) = (1, €) — SE\/: ) + 5—p[ (pg‘g E)] + 5—pAf[Ale0ak(?7, €)
-1 -1
% 8"4( ‘Pbk(n) 6) + LAF Azlwbk(n> 6) % aAF %k(n> 6) -0 (48)
an sP on

In order to calculate f,(1), s) and g,(1), 5), we multiply the resultant equations by s "', replace the r™_truncated
series equation (43) and (44) into the r™-Aboodh residual function equation (47) and (48), and solve the relation
lim,_, o (sPT'A. Res,,,, (1, s)) = Oiteratively,r =1,2,3,---.

Here are the first few of terms:

3¢5/ tanh (” 0 ) sech? (ﬂ)

7 7
’S - bl
fin, $) = N
¢3/2 tanh (\/5 ) sech (Ij)
,8) = - SRiAy 49
& ) NG (49)

L, s) = %C‘*(cosh(ff@ —2) sech4(

),
). (50)

SERE

&, s) = ic‘*(cosh(x/_\/—n) —3) sech3(

and soon.
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Figure 1. ARPSM solution ¢,(1, €) forp = 1.0 and e = 1.5.

Putting the values of f,(n, s) and g,(n, s), r = 1,2, 3, --- , in equation (43), (44), we get

3¢%/2 tanh (@) sech? (ﬂ)

N 7 7
@ (> 5) = e
3c*(cosh (v/2 VEn) — 2) sech? (“j;’) (3¢)sech? (\/577)
+ . + 4o (51)
252 F1 2s
/2 tanh (J%’) sech (%) c*(cosh (V2 Ven) — 3)sech? (J%’) csech (\/gn)
(1, 5) = e + pwrEs + - + e
(52)
Using Aboodh inverse transform,we get
3¢/2¢P tanh (%) sech? (ﬂ;) 3c*e? sech* (%)
a( > 5) = . -
el V2T(p + 1) rQp+ 1)
3cte? cosh (V2 /on) secht (222
( ﬁ ) + ic SeCh2 (ﬂ) + en (53)
2I'2p + 1) 2 V2
¢3/2¢P tanh (%) sech (@) 3cte?P sech’ (ﬂ)
RUDE : LT -
’ V2T(p + 1) AT(2p + 1)
c*e? cosh (72 J/En) sech? (ﬂ;) N
+ - + csech(—n) + . (54)
Aar@p +1) V2

Figure 1 portrays the Aboodh Residual Power Series Method (ARPSM) solution, ¢,(7, €), for a specific set of
parameters (p = 1.0 and € = 1.5). Meanwhile, figure 2 exhibits the exact solution, (), €), specifically at e = 1.5.
Comparing these figures reveals the similarity or divergence between the ARPSM-derived solution and the
exact solution at the given parameter values. Figure 3 presents a comparative analysis between the exact solution
wa(n, €) (at e = 1.5) and the ARPSM solution for the same parameter values. This direct comparison provides
insights into the accuracy and reliability of the ARPSM method in approximating the exact solution under the
specified conditions. Similar to figures 1 and 2, figure 4 displays the ARPSM solution (7, €) for p = 1.0 and
€ = 1.5, while figure 5 showcases the exact solution ¢y(1), €) at € = 1.5. These graphs allow for an examination of
the ARPSM-derived solution against the exact solution for a different scenario or variable in the system. Figure 6
enables a direct comparison between the exact solution ¢y (1, €) (at € = 1.5) and the ARPSM solution (), €) for
the given parameter values. This comparison aids in evaluating the accuracy and reliability of the ARPSM
method in approximating the exact solution under these specific conditions. Table 1 presents a comparison of
different fractional orders of the ARPSM solution (1, €) for e = 1.5 and ¢ = 0.1. This tabular representation

10



I0OP Publishing Phys. Scr. 99 (2024) 015253 A Hamid Ganie et al

Figure 2. Exact solution ¢,(7, €) ate = 1.5.
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r — ARPSM |
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-10 -5 0 5 10

n

Figure 3. Comparison of exactand ARPSM solution (7, €) ate = 1.5.

Figure 4. ARPSM solution ¢y(1, €) forp = 1.0and e = 1.5.
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Figure 5. Exact solution (1, €) ate = 1.5.
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Figure 6. Comparison of exactand ARPSM solution (1, €) ate = 1.5.
Table 1. The comparison of different fractional order of ARPSM solution ¢,(7, €) for e = 1.5and c=0.1.
n ARPSMp_q ¢ ARPSM,,— s ARPSMp_, o Exact Error,—o.7 Error,—os Error,—1.0
0. 0.149 779 0.149 799 0.149 831 0.149 831 0.000 052 837 4 0.000 032 107 9 1.264818 x 1077
0.1 0.149918 0.149 947 0.149 981 0.149 981 0.000 063 274 0.000 033 946 2.107553 x 1077
0.2 0.149 908 0.149 946 0.149 982 0.149 981 0.000 073 459 3 0.000 035 649 8 5.462043 x 10~
0.3 0.149 748 0.149 794 0.149 832 0.149 831 0.000 083 355 4 0.000 037 214 6 8.770298 x 107
0.4 0.149 439 0.149 494 0.149 533 0.149 532 0.000 092 927 4 0.000 038 637 4 1.200463 x 10~°
0.5 0.148 983 0.149 045 0.149 087 0.149 085 0.000 102 143 0.000 039915 8 1.513842 x 10~°
0.6 0.148 38 0.148 45 0.148 493 0.148 491 0.000 110 971 0.000 041 048 9 1.814650 x 10~°
0.7 0.147 635 0.147 712 0.147 756 0.147 754 0.000 119 387 0.000 042 036 8 2.100546 x 107°
0.8 0.146 748 0.146 832 0.146 878 0.146 875 0.000 127 366 0.000 042 880 4 2369398 x 107°¢
0.9 0.145 724 0.145 816 0.145 862 0.145 859 0.000 134 889 0.000 043 5819 2.619308 x 10~°
1. 0.144 567 0.144 665 0.144 712 0.144 709 0.000 141 938 0.000 044 144 1 2.848634 x 107°

offers a systematic analysis of the ARPSM-derived solutions under various fractional orders, enabling a
quantitative assessment of their accuracy and convergence. Similar to table 1, table 2 provides a comparative
analysis of different fractional orders of the ARPSM solution (1, €) for ¢ = 1.5 and ¢ = 0.1. This table allows for
adetailed examination of how different fractional orders affect the accuracy and reliability of the ARPSM-
derived solutions for the specific scenario.

12
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Table 2. The comparison of different fractional order of ARPSM solution ¢,(), €) for e = 1.5and c=0.1.

n ARPSMp_q ¢ ARPSM;,—3 ARPSMp_ Exact Error,—o.7 Error,—os Error,—1.0

0. 0.099 926 2 0.099 933 1 0.099 943 8 0.099 943 8 0.000 017 596 6 0.000 010 686 8 2.635513 x 10°°
0.1 0.099 972 6 0.099 982 4 0.099 993 8 0.099 993 8 0.000 021 131 8 0.000 011 349 9 4391807 x 107°
0.2 0.099 969 1 0.099 981 8 0.099 993 9 0.099 993 8 0.000 024 614 3 0.000 011 984 7 1.139237 x 1077
0.3 0.099 915 7 0.099 931 2 0.099 944 0.099 943 8 0.000 028 036 1 0.000 012 590 3 1.832369 x 1077
0.4 0.099 812 6 0.099 830 8 0.099 844 2 0.099 844 0.000 031 389 4 0.000 013 165 5 2.514403 x 1077
0.5 0.099 659 9 0.099 680 8 0.099 694 8 0.099 694 5 0.000 034 666 6 0.000 013 709 5 3.181293 x 1077
0.6 0.099 458 0.099 481 7 0.099 496 3 0.099 495 9 0.000 037 861 0.000 014 221 6 3.829159 x 1077
0.7 0.099 207 5 0.099 233 8 0.099 248 9 0.099 248 5 0.000 040 965 9 0.000 014 701 5 4.454334 x 1077
0.8 0.098 909 0.098 937 8 0.098 953 5 0.098 953 0.000 043 975 4 0.000 015 148 6 5.053397 x 1077
0.9 0.098 563 2 0.098 594 5 0.098 610 6 0.098 61 0.000 046 884 0.000 015 563 5.623208 x 107
1. 0.098 170 9 0.098 204 6 0.098 221 2 0.098 220 5 0.000 049 686 8 0.000 015 944 5 6.160938 x 1077

3.3. Basicidea of the aboodh transform iterative method
Take the fractional partial differential equation in space and time of the form.

Do, €) = ®(o(, €), DY o, €), D;}?p(n, €), Di¥ (1, €)), 0 < p, ¢ < 1

with the initial conditions

©(n, €) is the unknown function to be determine and ®(p (7, ¢), D,
linear or nonlinear operator of (7, ¢), D,

Qo(k)(/r]) 0) - hk7 k= O) 1: 2:

7o, €), DY p(n, e)and

)m_l)

(55)

(56)

50(77: €), D,%¢QO(?7, €), Ds*’go(n, €)) canbe
90(77> €) For convenience we

represent (1, €) with ¢, Thus, we get the following equation by applying the Aboodh transform to both sides of
equation (55):

Inverse Aboodh transformation yields the following equation:

An infinite series represents the solution obtained by the Aboodh transform iterative approach.

As D(ip,

1
Alp(n, €)] = S_P(kzo

follows:

D (p,

Y

i=0

m_1¢®0%0)+
§2—ptk

o, e) =A"! —(Z U]

®(n, 0)

§2— p+k

oM €)= ¢

Dy @, D%, Dy ) = ®(py, Dy @5 Dy¥ 00 Dy )

i i—1
Q(Z(wk, DY ¢y DYy, Di*’w)) —~ <I>(Z(<pk, D¢ Dy¥ gy, DS‘”sok)) :
k=0 k=1

A[®(e(, €), DF o, €), D}¥ o, €), Dy¥p(n, 6))]),

+ A[®(o(), €), DY p(n, €), DX p(n, €), DY o, f))])

The following equation is obtained by substituting equations (60) and (59) into equation (58):

Yowim, ) = A

i=0

+A!

*wl’_‘

‘%IH

Al

2

S i=0

(1, 0)

g e

k=0

(PZ(SOk’ va P Dr% P st ‘Pk))

( Z (@ DY 01 DY gy DY @k))

+ A[®(py, DY g, Dy i D;¢ ‘Po)])

(57)

(58)

(59)

Dy, D;“Q ©, DS ¥ p) is an operator that can be either linear or nonlinear and is decomposable as

(60)

(61)

13
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®(n, 0
@y, €) = [ (Z % 2(Z+k))l)
e = AII:S_P(A[(I)(QPO’ va@o» D;W‘Poa Dg'“?s@o)])],
= LP( lz(ézwk’ Dy ¢ Dy” i D?‘Pk))l)]
1=0 k=0
i—1
_Allip[Al((I)Z(LPk, DY ¢4 D2y DS%)”]], m=1,2
5 k=1

Equation (55) yields the following analytically approximate solution for the m-term:

m—1
e, €)= ¢

i=0

3.3.1. Problem with NITM
0 , €
PP €)= 3¢ D,
3
Dfpgpb(n’ f) = _ZM — 2(1061(77’ f)M — Spb(n’ f)M) where 0 < p < 1
on? on 0

Subjected to the following IC’s:

©,(n, 0) = %sechz(\/gn).
wp(n, 0) = ¢ sech(\/gn).

(62)

(63)

(64)

(65)

(66)

(67)

When the Aboodh transform is applied to both sides of equations (64) and (65), the following equations develop:

1 (= P, 0) A, (1, €)
p —_ Ta *07 7 _ _rorp =7
AID?, 0, e)]sp[kzjo S A e 0=

stz st on’ on on

P, 0 o, (, ERCE d¢g,(n,
A[D!’wb(n, e)] = I(Z L + A[ZW _ 2¢a(n, E)M _ 30;,(77, E)M

® A (1,
o= | {8 S w4l 02222

§2— p+k

(k) 93 , 9 ’ 9 ’
<P(7], 6) - l (Z SO (n) 0) A[—ZM — 290“(77’ 6) Sﬁh(n E) _ Qob('r}) 6) %(77 6)

on? on

By using the Aboodh transform iteratively, the following equation is obtained:

(= e, 0 [eam o
Pag(1), €) = A 1[;[2 Ttk =4 1[%]

k=0 s
3¢ c
=" sech? \/j ,
2 ( 277)

(68)

] ) (69)

The following equations are obtained by applying the inverse Aboodh transform to equations (68) and 69:

(70)
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1 m—1 (k)( ,0) 0
ot © —Alls—p(z o)) fa0o)

k=0 S
c
pr— h —_— 5
c sec ( /2 77)

Applying RL integral to equations (64) and (65), we get the equivalent form

(pa(n; 6) = 3—Csech2 (\/z’r]) -+ Al:_3(pb(77’ 6) 6@}1(7’]: LC):l (72)
2 2 —677

3
Spb(’r], 6) =C Sech(\/zn) + A[_zw — Zgoa(n, G)M _ (pb(qf]’ E)M:l (73)
2 on? on on

According to NITM procedure, we get the following few terms

3¢ c
a 5 = —S8 h2 _ ),
Pao (> €) 5 ec ( /2 n
Ypo(n, €) = ¢ sech( /%n),

3¢5/2¢P tanh (ﬂ;) sech? (“?77)

Ca (0, €) = &
al\'p \/Ep].—\(p)
e, N
¥ (Tl €)= ¢*/%el tanh (f]) SeCh( \5])
e V2D(p + 1)

Ca/zzzpf%fpr@ + %)(sinh(ﬁﬁﬁ) — 4tanh (%))
JTL(p + DI'(3p + 1)

3 42 4(\/?77)
(1, €) = =c¢ sech
Pl €)= e 2

| 2cosh (V2 ve) — 2)
I'ep+1)

«/577) 3c3/222P+%6P1—‘(p + %) (sinh (3£") — 6sinh (%)) sech’ (J%’)

— 1 4_2p 3(
, €) = —C sech
Poalih € = e 7T + DIGp + 1)

| cosh (V2 ven) — 3)

I'p+1
(74)
By NITM algorithm final solution is under
%(7% 6) = %o(ﬂ) 6) + <Pa1(77) 6) + %2(7% 5) + e (75)
@1 €) = Puo() €) + P (0, €) + Py (1 €) + - (76)
~en ~Jen
G, ) = 2c sechz(ﬁn) + sc*/2ettanh (5 )sect (:3))
) V2 V2pI'(p)
/292p—% Y (si _ e
3, (v 3/ 5PF(p+ 2)(51nh(\/§ﬁn) 4tanh<ﬁ))
+=c*e¢*P sech
4 V2 JED(p + DIGp + 1)
_~_2(C05h(\/5x/f77) -2 T 77)
I'p+1
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Figure 7. NITM solution ¢,(n, €) forp = 1.0and e = 1.5.

Figure 8. Exact solution ¢,(1), €) ate = 1.5.

¢%/2¢P tanh (%) sech (j;)
V2T(p + 1)
3632256 (p + 1) (sinh (%) — 6sinh (%)) sech’ (%)

JaT(p+ DI'Gp + 1)

wp(n, €) = csech(\/\/?) +

—l—lc“ezl’ sech? ( en )
4 V2

L cosh (V2 ven) — ) + o (78)
TCp + 1)

Figure 7 displays the solution ¢,(1), €) obtained using the NITM method for p = 1.0 and € = 1.5. In contrast,
figure 8 exhibits the exact solution (), €) at e = 1.5. Figure 9 provides a comparative analysis between the
NITM solution and the exact solution ¢,(), €) for € = 1.5. The comparison elucidates the closeness or deviation
between the NITM-derived solution and the exact solution, offering insights into the accuracy of the method for
this specific scenario. Similarly, figures 10, 11, and 12 depict the NITM solution (1, €), the exact solution (7,
€)ate = 1.5, and the comparison of both solutions, respectively, for p = 1.0. These figures provide an analogous
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Figure 10. NITM solution ¢(n, €) forp = 1.0 and € = 1.5.

Figure 11. Exact solution ¢(1, €) ate = 1.5.
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Figure 12. Comparison of exact and NITM solution ¢(1, €) ate = 1.5.
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Figure 13. Comparison of absolute error for ¢,(1, €) ate = 1.5.
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Figure 14. Comparison of absolute error for ¢y(1, €) ate = 1.5.

comparative analysis to the previous set, focusing on a different variable or parameter within the system,
sheddinglight on the accuracy of the NITM method for another aspect of the problem. Figures 13 and 14 present
the comparison of absolute errors for ¢,(1, €) and (), €), respectively, at e = 1.5. These figures showcase the
deviations or differences between the NITM-derived solutions and the exact solutions in terms of absolute
errors. Analyzing these plots allows for an understanding of the accuracy and precision of the NITM method in
approximating the exact solutions.

Tables 3 and 4 provide a comprehensive comparison of different fractional orders of the NI'TM solutions
wa(n, €) and py(n, €), respectively, for e = 1.5 and ¢ = 0.1. These tables present a systematic overview of how

18



10P Publishing

Phys. Scr. 99 (2024) 015253 A Hamid Ganie et al
Table 3. The comparison of different fractional order of NITM solution ¢,(n, €) fore = 1.5and ¢ = 0.1.

n NITMp_y ¢ NITM,—os NITMp_ o Exact Error,—o6 Error,—os Error,—1.0

0. 0.149 779 0.149 799 0.149 831 0.149 831 0.000 052 837 4 0.000 032 107 9 1.264818 x 10”7
0.1 0.149 918 0.149 947 0.149 981 0.149 981 0.000 063 401 9 0.000 034 055 6 1.265208 x 1077
0.2 0.149 908 0.149 945 0.149 982 0.149 981 0.000 073 713 8 0.000 035 867 7 3.785758 x 1077
0.3 0.149 748 0.149 794 0.149 832 0.149 831 0.000 083 734 0.000 037 538 9 6.276754 x 107
0.4 0.149 439 0.149 493 0.149 533 0.149 532 0.000 093 426 3 0.000 039 064 6 8.718533 x 107’
0.5 0.148 982 0.149 045 0.149 086 0.149 085 0.000 102 757 0.000 040 441 9 1.109212 x 10~¢
0.6 0.148 38 0.148 45 0.148 493 0.148 491 0.000 111 695 0.000 041 668 8 1337950 x 10°°
0.7 0.147 634 0.147 711 0.147 755 0.147 754 0.000 120 213 0.000 042 744 3 1.556383 x 10~¢
0.8 0.146 747 0.146 832 0.146 877 0.146 875 0.000 128 287 0.000 043 668 9 1.762970 x 10~¢
0.9 0.145 723 0.145 815 0.145 861 0.145 859 0.000 135 895 0.000 044 443 9 1.956327 x 10~°
1. 0.144 566 0.144 664 0.144 711 0.144 709 0.000 143 021 0.000 045 071 7 2.135244 x 107°

Table 4. The comparison of different fractional order of NI'TM solution (1, €) for e = 1.5and ¢ = 0.1.

n NITMp_ ¢ NITM,, 5 NITMp_, o Exact Error,—o6 Error,—os Errory—1.0

0. 0.099 926 2 0.099 933 1 0.099 943 8 0.099 943 8 0.000 017 596 6 0.000 010 686 8 2.635513 x 10~®
0.1 0.099 972 2 0.099 982 1 0.099 993 5 0.099 993 8 0.000 021 5152 0.000 011 678 3 2.086800 x 10~
0.2 0.099 968 4 0.099 981 1 0.099 993 4 0.099 993 8 0.000 025 376 5 0.000 012 637 5 3.881233 x 1077
0.3 0.099 914 6 0.099 930 2 0.099 943 2 0.099 943 8 0.000 029 167 5 0.000 013 559 3 5.620196 x 10~/
0.4 0.099 811 1 0.099 829 5 0.099 843 2 0.099 844 0.000 032 876 0.000 014 438 8 7.278125 x 1077
0.5 0.099 658 0.099 679 3 0.099 693 6 0.099 694 5 0.000 036 490 3 0.000 015 271 4 8.831037 x 1077
0.6 0.099 4559 0.099 479 8 0.099 494 9 0.099 4959 0.000 039 999 5 0.000 016 053 2 1.025698 x 10~
0.7 0.099 205 1 0.099 2317 0.099 247 3 0.099 248 5 0.000 043 393 5 0.000 016 780 7 1.153645 x 10~°
0.8 0.098 906 3 0.098 935 5 0.098 951 7 0.098 953 0.000 046 663 4 0.000 017 450 9 1.265269 x 10~°
0.9 0.098 560 2 0.098 592 0.098 608 7 0.098 61 0.000 049 801 1 0.000 018 061 5 1.359200 x 10~
1. 0.098 167 7 0.098 201 9 0.098 219 1 0.098 220 5 0.000 052 799 7 0.000 018 610 7 1.434386 x 10~°

Table 5. The comparison of absolute error for € = 1.5 of ARPSM and NITM solution ¢,(1, €).

n Exact NITM,—1 o ARPSMp_, ¢ NITMError,—1.¢ ARPSMErtror,—, o
0. 0.149 831 0.149 831 0.149 831 1.264818 x 10~ 1.264818 x 10~
0.1 0.149 981 0.149 981 0.149 981 1.265208 x 1077 2.107553 x 1077
0.2 0.149 981 0.149 982 0.149 982 3.785758 x 1077 5.462043 x 1077
0.3 0.149 831 0.149 832 0.149 832 6.276754 x 1077 8.770298 x 10~
0.4 0.149 532 0.149 533 0.149 533 8.718533 x 1077 1.200463 x 10°°
0.5 0.149 085 0.149 086 0.149 087 1.109212 x 10~° 1.513842 x 10~°
0.6 0.148 491 0.148 493 0.148 493 1.337950 x 10~° 1.814650 x 10~°
0.7 0.147 754 0.147 755 0.147 756 1.556383 x 10~° 2.100546 x 10~°
0.8 0.146 875 0.146 877 0.146 878 1.762970 x 10~° 2.369398 x 107°
0.9 0.145 859 0.145 861 0.145 862 1.956327 x 10~° 2.619308 x 107°¢
1. 0.144 709 0.144 711 0.144 712 2135244 x 10~° 2.848634 x 107°

varying fractional orders impact the solutions obtained through the NITM method, allowing for an assessment
of the sensitivity of solutions to changes in fractional order parameters. Tables 5 and 6 offer a comparison of the
absolute errors between the ARPSM and NITM solutions ¢,(n, €) and ¢,(7, €), respectively, at e = 1.5. These
tables facilitate a direct comparison between two different methods, highlighting their accuracies and potential
discrepancies in approximating the exact solutions for the given scenario. In summary, the graphical figures and
tables collectively provide a detailed insight into the accuracy, precision, and sensitivity of the NITM and
ARPSM methods in approximating solutions for ¢,(7, €) and ¢,(1), €) under varying fractional orders and
specific parameter settings, enhancing our understanding of the numerical solutions derived for this complex
mathematical system.
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Table 6. The comparison of absolute error for ¢ = 1.5 of ARPSM and NITM solution ¢y, (7, €).

n Exact NITM,—1 o ARPSMp_; NITMError,—,. ARPSMErrory,_1 o
0. 0.099 943 8 0.099 943 8 0.099 943 8 2.635513 x 10°° 2.635513 x 10°°
0.1 0.099 993 8 0.099 993 5 0.099 993 8 2.086800 x 10~ 4391807 x 1078
0.2 0.099 993 8 0.099 993 4 0.099 993 9 3.881233 x 1077 1.139237 x 1077
0.3 0.099 943 8 0.099 943 2 0.099 944 5.620196 x 1077 1.832369 x 107
0.4 0.099 844 0.099 843 2 0.099 844 2 7.278125 x 1077 2.514403 x 1077
0.5 0.099 694 5 0.099 693 6 0.099 694 8 8.831037 x 1077 3.181293 x 1077
0.6 0.099 495 9 0.099 494 9 0.099 496 3 1.025698 x 10° 3.829159 x 1077
0.7 0.099 248 5 0.099 247 3 0.099 248 9 1.153645 x 10~° 4454334 x 1077
0.8 0.098 953 0.098 951 7 0.098 953 5 1.265269 x 10~° 5.053397 x 1077
0.9 0.098 61 0.098 608 7 0.098 610 6 1.359200 x 10~° 5.623208 x 10~/
1. 0.098 220 5 0.098 219 1 0.098 221 2 1.434386 x 107° 6.160938 x 10’

4. Conclusion

In conclusion, we have successfully employed the Aboodh transform iteration method and the Aboodh residual
power series method to solve a fractional-order system of the Drinfeld-Sokolov-Wilson equation within the
Caputo operator framework. Through our analysis and numerical experiments, we have demonstrated the
accuracy and reliability of these methods in obtaining solutions for this particular system. The results not only
provide a valuable contribution to the field of fractional calculus but also enhance our understanding of the
behavior and dynamics of the Drinfeld-Sokolov-Wilson equation in the fractional-order context. These findings
open up opportunities for further research and applications in related areas of science and mathematics.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for
funding this work through the Small Group Research Project under grant number RGP1,/216/44. This work
was supported by the Deanship of Scientific Research, the Vice Presidency for Graduate Studies and Scientific
Research, King Faisal University, Saudi Arabia (Grant No. 5355).

Data availability statement

The data cannot be made publicly available upon publication because they are not available in a format that is
sufficiently accessible or reusable by other researchers. The data that support the findings of this study are
available upon reasonable request from the authors.

ORCID iDs

Humaira Yasmin @ https:/orcid.org/0000-0003-0199-6850
Rasool Shah @ https:/orcid.org/0000-0002-9798-9868

References

[1] El-Mesady AT, Hamed Y S and Alsharif A M 2021 Jafari transformation for solving a system of ordinary differential equations with
medical application Fractal and Fractional 5 130

[2] AlhazmiSE, Abdelmohsen S A, Alyami M A, Ali A and Asamoah J K K 2022 A novel analysis of generalized perturbed zakharov-
kuznetsov equation of fractional-order arising in dusty plasma by natural transform decomposition method J. Nanomater. 2022

[3] El-Mesady A, Elsonbaty A and Adel W 2022 On nonlinear dynamics of a fractional order monkeypox virus model Chaos, Solitons
Fractals 164112716

[4] AliA, ZadaLand Nawaz R 2022 Approximate Solution of Generalized Modified b-Equation by Optimal Auxiliary Function Method
International Journal of Emerging Multidisciplinaries: Mathematics 1 102—10

[5] AliA, Ullah S and Khan M A 2022 The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model
Nonlinear Dyn. 110 3921-40

[6] Allehiany FM, Alqahtani A M, Bilal M, Ali A and Eldin S M 2023 Fractional study of radiative Brinkman-type nanofluid flow across a
vertical plate with the effect of Lorentz force and Newtonian heating AIP Adv. 13 6

[7] Oldham K B 2010 Fractional differential equations in electrochemistry Adv. Eng. Software 41 9—12

[8] Kbiri Alaoui M, Nonlaopon K, Zidan A M and Khan A 2022 Analytical investigation of fractional-order Cahn-Hilliard and gardner
equations using two novel techniques Mathematics 10 1643

20


https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0003-0199-6850
https://orcid.org/0000-0002-9798-9868
https://orcid.org/0000-0002-9798-9868
https://orcid.org/0000-0002-9798-9868
https://orcid.org/0000-0002-9798-9868
https://doi.org/10.3390/fractalfract5030130
https://doi.org/10.1155/2022/7036825
https://doi.org/10.1016/j.chaos.2022.112716
https://doi.org/10.54938/ijemdm.2022.01.1.2
https://doi.org/10.54938/ijemdm.2022.01.1.2
https://doi.org/10.54938/ijemdm.2022.01.1.2
https://doi.org/10.1007/s11071-022-07798-5
https://doi.org/10.1007/s11071-022-07798-5
https://doi.org/10.1007/s11071-022-07798-5
https://doi.org/10.1063/5.0151572
https://doi.org/10.1016/j.advengsoft.2008.12.012
https://doi.org/10.1016/j.advengsoft.2008.12.012
https://doi.org/10.1016/j.advengsoft.2008.12.012
https://doi.org/10.3390/math10101643

10P Publishing

Phys. Scr. 99 (2024) 015253 A Hamid Ganie et al

[9] Botmart T, Agarwal R P, Naeem M and Khan A 2022 On the solution of fractional modified Boussinesq and approximate long wave

equations with non-singular kernel operators AIMS Math 7 12483-513

[10] Scalas E, Gorenflo R and Mainardi F 2000 Fractional calculus and continuous-time finance Physica A 284 37684

[11] Mukhtar S, Shah R and Noor S 2022 The numerical investigation of a fractional-order multi-dimensional Model of Navier-Stokes
equation via novel techniques Symmetry 14 1102

[12] Weiss CJ, van Bloemen Waanders B G and Antil H 2020 Fractional operators applied to geophysical electromagnetics Geophys. J. Int.
2201242-59

[13] Yasmin H, Aljahdaly N H, Saeed A M and Shah R 2023 Probing families of optical soliton solutions in fractional perturbed
radhakrishnan-kundu-lakshmanan model with improved versions of extended direct algebraic method Fractal and Fractional 7 512

[14] Kumar D, Singh J and Baleanu D 2017 A hybrid computational approach for Klein-Gordon equations on Cantor sets Nonlinear Dyn. 87
511-7

[15] Yasmin H, Aljahdaly N H, Saeed A M and Shah R 2023 Investigating families of soliton solutions for the complex structured coupled
fractional biswas-arshed model in birefringent fibers using a novel analytical technique Fractal and Fractional 7 491

[16] Bhrawy A H, Zaky M A and Baleanu D 2015 New numerical approximations for space-time fractional Burgers’ equations viaa
Legendre spectral-collocation method Rom. Rep. Phys 67 3409

[17] SinghJ, Kumar D, Hammouch Z and Atangana A 2018 A fractional epidemiological model for computer viruses pertaining to a new
fractional derivative Appl. Math. Comput. 316 504—15

[18] Yasmin H, Aljahdaly N H, Saeed A M and Shah R 2023 Investigating symmetric soliton solutions for the fractional coupled konno-
onno system using improved versions of a novel analytical technique Mathematics 11 2686

[19] Zhang W M 2011 Solitary solutions and singular periodic solutions of the Drinfeld-Sokolov-Wilson equation by variational approach
Appl. Math. Sci’5 1887-94

[20] Drinfeld V G and Sokolov V'V 1981 Equations of Korteweg-de Vries type, and simple Lie algebras Doklady Akademii Nauk (Russia:
Russian Academy of Sciences) vol 258, pp 11-16

[21] Drinfel’d V G and Sokolov V'V 1985 Lie algebras and equations of Korteweg-de Vries type Journal of Soviet mathematics 30 1975-2036

[22] Wilson G 1982 The affine Lie algebra C (1) 2 and an equation of Hirota and Satsuma Phys. Lett. A 89 3324

[23] AbdulloevK O, Bogolubsky I L and Makhankov V 1976 One more example of inelastic soliton interaction Phys. Lett. A 56 427-8

[24] Bona] L, Pritchard W G and Scott L R 1985 Numerical schemes for a model for nonlinear dispersive waves J. Comput. Phys. 60 167-86

[25] Benjamin T B, Bona] L and MahonyJ ] 1972 Model equations for long waves in nonlinear dispersive systems Philosophical Transactions
of the Royal Society of London. Series A, Mathematical and Physical Sciences 272 4778

[26] Bona] L, Pritchard W G and Scott L R 1980 Solitary-wave interaction The Physics of Fluids 23 438—41

[27] Inc M 2006 On numerical doubly periodic wave solutions of the coupled Drinfeld-Sokolov-Wilson equation by the decomposition
method Appl. Math. Comput. 172 421-30

[28] Xue-Qin Zand Hong-Yan Z 2008 An improved f-expansion method and its application to coupled drinfeld-sokolov-wilson equation
Commun. Theor. Phys. 50 309

[29] Singh PK, Vishal K and Som T 2015 Solution of fractional Drinfeld-Sokolov-Wilson equation using Homotopy perturbation
transform method Applications and Applied Mathematics: An International Journal (AAM) 10 27

[30] Singh J, Kumar D, Baleanu D and Rathore S 2018 An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson
equation Appl. Math. Comput. 335 12-24

[31] YangX] 2019 General Fractional Derivatives: Theory, Methods and Applications (Boca Raton, FL: CRC Press)

[32] YangX]J, Srivastava H M and Machado J A T 2015 A new fractional derivative without singular kernel: application to the modelling of
the steady heat flow Thermal Science 20 753—6

[33] YangXJ, Gao F, Tenreiro Machado J A and Baleanu D 2017 A new fractional derivative involving the normalized sinc function without
singular kernel The European Physical Journal Special Topics 226 356775

[34] YangX], Feng Y'Y, Cattani C and Inc M 2019 Fundamental solutions of anomalous diffusion equations with the decay exponential
kernel Math. Methods Appl. Sci. 42 4054—60

[35] Yepez-Martinez H and Gomez-Aguilar ] F 2018 Numerical and analytical solutions of nonlinear differential equations involving
fractional operators with power and Mittag-Leffler kernel Mathematical Modelling of Natural Phenomena 13 13

[36] Atangana A and Gomez-Aguilar J F 2018 Numerical approximation of Riemann-Liouville definition of fractional derivative: from
Riemann-Liouville to Atangana-Baleanu Numerical Methods for Partial Differential Equations 34 1502—23

[37] Morales-Delgado V F, Gomez-Aguilar ] F, Yepez-Martinez H, Baleanu D, Escobar-Jimenez R F and Olivares-Peregrino VH 2016
Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel
singular Advances in Difference Equations 2016 1-17

[38] Atangana A and Gomez-Aguilar ] F 2018 Fractional derivatives with no-index law property: application to chaos and statistics Chaos
Solitons Fractals 114 51635

[39] Yokus A 2018 Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite
difference method International Journal of Modern Physics B 32 1850365

[40] Arqub O A 2013 Series solution of fuzzy differential equations under strongly generalized differentiability J. Adv. Res. Appl. Math 5
31-52

[41] Abu Arqub O, Abo-Hammour Z, Al-Badarneh R and Momani S 2013 A reliable analytical method for solving higher-order initial value
problems Discrete Dynamics in Nature and Society 2013

[42] Arqub O A, El-Ajou A, Zhour Z A and Momani S 2014 Multiple solutions of nonlinear boundary value problems of fractional order: a
new analytic iterative technique Entropy 16 471-93

[43] El-Ajou A, Arqub O A and Momani S 2015 Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: a new
iterative algorithm J. Comput. Phys. 293 81-95

[44] XuF, GaoY, Yang X and Zhang H 2016 Construction of fractional power series solutions to fractional Boussinesq equations using
residual power series method Mathematical Problems in Engineering 2016

[45] Zhang], WeiZ,LiLand Zhou C 2019 Least-squares residual power series method for the time-fractional differential equations
Complexity2019 1-15

[46] Jaradat, Alquran M and Abdel-Muhsen R 2018 An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers’ models
with twofold Caputo derivatives ordering Nonlinear Dyn. 93 1911-22

[47] Jaradat], Alquran M and Al-Khaled K 2018 An analytical study of physical models with inherited temporal and spatial memory The
European Physical Journal Plus 133 1-11

21


https://doi.org/10.3934/math.2022693
https://doi.org/10.3934/math.2022693
https://doi.org/10.3934/math.2022693
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.3390/sym14061102
https://doi.org/10.3390/fractalfract7070512
https://doi.org/10.1007/s11071-016-3057-x
https://doi.org/10.1007/s11071-016-3057-x
https://doi.org/10.1007/s11071-016-3057-x
https://doi.org/10.1007/s11071-016-3057-x
https://doi.org/10.3390/fractalfract7070491
https://doi.org/10.1016/j.amc.2017.08.048
https://doi.org/10.1016/j.amc.2017.08.048
https://doi.org/10.1016/j.amc.2017.08.048
https://doi.org/10.3390/math11122686
https://doi.org/10.1007/BF02105860
https://doi.org/10.1007/BF02105860
https://doi.org/10.1007/BF02105860
https://doi.org/10.1016/0375-9601(82)90186-4
https://doi.org/10.1016/0375-9601(82)90186-4
https://doi.org/10.1016/0375-9601(82)90186-4
https://doi.org/10.1016/0375-9601(76)90714-3
https://doi.org/10.1016/0375-9601(76)90714-3
https://doi.org/10.1016/0375-9601(76)90714-3
https://doi.org/10.1016/0021-9991(85)90001-4
https://doi.org/10.1016/0021-9991(85)90001-4
https://doi.org/10.1016/0021-9991(85)90001-4
https://doi.org/10.1063/1.863011
https://doi.org/10.1063/1.863011
https://doi.org/10.1063/1.863011
https://doi.org/10.1016/j.amc.2005.02.012
https://doi.org/10.1016/j.amc.2005.02.012
https://doi.org/10.1016/j.amc.2005.02.012
https://doi.org/10.1088/0253-6102/50/2/05
https://doi.org/10.1016/j.amc.2018.04.025
https://doi.org/10.1016/j.amc.2018.04.025
https://doi.org/10.1016/j.amc.2018.04.025
https://doi.org/10.2298/TSCI151224222Y
https://doi.org/10.2298/TSCI151224222Y
https://doi.org/10.2298/TSCI151224222Y
https://doi.org/10.1140/epjst/e2018-00020-2
https://doi.org/10.1140/epjst/e2018-00020-2
https://doi.org/10.1140/epjst/e2018-00020-2
https://doi.org/10.1002/mma.5634
https://doi.org/10.1002/mma.5634
https://doi.org/10.1002/mma.5634
https://doi.org/10.1051/mmnp/2018002
https://doi.org/10.1002/num.22195
https://doi.org/10.1002/num.22195
https://doi.org/10.1002/num.22195
https://doi.org/10.1186/s13662-016-0891-6
https://doi.org/10.1186/s13662-016-0891-6
https://doi.org/10.1186/s13662-016-0891-6
https://doi.org/10.1016/j.chaos.2018.07.033
https://doi.org/10.1016/j.chaos.2018.07.033
https://doi.org/10.1016/j.chaos.2018.07.033
https://doi.org/10.1142/S0217979218503654
https://doi.org/10.5373/jaram.1447.051912
https://doi.org/10.5373/jaram.1447.051912
https://doi.org/10.5373/jaram.1447.051912
https://doi.org/10.5373/jaram.1447.051912
https://doi.org/10.1155/2013/673829
https://doi.org/10.3390/e16010471
https://doi.org/10.3390/e16010471
https://doi.org/10.3390/e16010471
https://doi.org/10.1016/j.jcp.2014.08.004
https://doi.org/10.1016/j.jcp.2014.08.004
https://doi.org/10.1016/j.jcp.2014.08.004
https://doi.org/10.1155/2016/5492535
https://doi.org/10.1155/2019/6159024
https://doi.org/10.1155/2019/6159024
https://doi.org/10.1155/2019/6159024
https://doi.org/10.1007/s11071-018-4297-8
https://doi.org/10.1007/s11071-018-4297-8
https://doi.org/10.1007/s11071-018-4297-8
https://doi.org/10.1140/epjp/i2018-12007-1
https://doi.org/10.1140/epjp/i2018-12007-1
https://doi.org/10.1140/epjp/i2018-12007-1

10P Publishing

Phys. Scr. 99 (2024) 015253 A Hamid Ganie et al

[48] Alquran M, Al-Khaled K, Sivasundaram S and Jaradat H M 2017 Mathematical and numerical study of existence of bifurcations of the
generalized fractional Burgers-Huxley equation Nonlinear Stud 24 235—44

[49] Zhang M F, Liu Y Q and Zhou X S 2015 Efficient homotopy perturbation method for fractional non-linear equations using Sumudu
transform Thermal. Science 19 1167-71

[50] Ojo G O and Mahmudov N 12021 Aboodh transform iterative method for spatial diffusion of a biological population with fractional-
order Mathematics9 155

[51] Awuya M A, Ojo G O and Mahmudov N 12022 Solution of space-time fractional differential equations using aboodh transform
iterative method Journal of Mathematics 2022

[52] AwuyaM A and Subasi D 2021 Aboodh transform iterative method for solving fractional partial differential equation with Mittag-
Leffler Kernel Symmetry 13 2055

[53] CaiX, TangR, ZhouH, LiQ, Ma S, Wang D and Zhou L 2021 Dynamically controlling terahertz wavefronts with cascaded
metasurfaces Advanced Photonics 3 036003

[54] ChenH, Chen W, Liu X and Liu X 2021 Establishing the first hidden-charm pentaquark with strangeness The European Physical Journal
C81409

[55] YangRand KaiY 2023 Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled
Schrodinger equation in fiber Bragg gratings Mod. Phys. Lett. B 2350239

[56] ZhouX, LiuX, ZhangG, Jia L, Wang X and Zhao Z 2023 An Iterative Threshold Algorithm of Log-Sum Regularization for Sparse
Problem IEEE Trans. Circuits Syst. Video Technol. 33 4728-40

[57] Guo C,HuJ, WuY and Celikovsky S 2023 Non-singular fixed-time tracking control of uncertain nonlinear pure-feedback systems with
practical state constraints IEEE Transactions on Circuits and Systems I: Regular Papers 70 3746-58

[58] LiS, Chen H, ChenY, Xiong Y and Song Z 2023 Hybrid method with parallel-factor theory, a support vector machine, and particle filter
optimization for intelligent machinery failure identification Machines 11 837

[59] YinY, Zhang R and SuQ 2023 Threat assessment of aerial targets based on improved GRA-TOPSIS method and three-way decisions
Mathematical Biosciences and Engineering 20 13250—66

[60] Liagat M I, Etemad S, Rezapour S and Park C 2022 A novel analytical Aboodh residual power series method for solving linear and
nonlinear time-fractional partial differential equations with variable coefficients AIMS Mathematics 7 1691748

[61] Liagat M1, Akgul A and Abu-Zinadah H 2023 Analytical Investigation of Some Time-Fractional Black-Scholes Models by the Aboodh
Residual Power Series Method Mathematics 11 276

[62] Aboodh K S2013 The New Integral Transform’Aboodh Transform Global journal of pure and Applied mathematics 9 35-43

[63] Aggarwal S and Chauhan R 2019 A comparative study of Mohand and Aboodh transforms International journal of research in advent
Technology 7 520-9

[64] Benattia M E and Belghaba K 2020 Application of the Aboodh transform for solving fractional delay differential equations Universal
Journal of Mathematics and Applications 3 93-101

[65] Delgado B B and Macias-Diaz ] E 2021 On the general solutions of some non-homogeneous Div-curl systems with Riemann-Liouville
and Caputo fractional derivatives Fractal and Fractional 5117

[66] Alshammari$, Al-Smadi M, Hashim I and Alias M A 2019 Residual power series technique for simulating fractional bagley-torvik
problems emerging in applied physics Applied Sciences 9 5029

22


https://doi.org/10.2298/TSCI1504167Z
https://doi.org/10.2298/TSCI1504167Z
https://doi.org/10.2298/TSCI1504167Z
https://doi.org/10.3390/math9020155
https://doi.org/10.3390/sym13112055
https://doi.org/10.1117/1.AP.3.3.036003
https://doi.org/10.1140/epjc/s10052-021-09196-4
https://doi.org/10.1109/TCSVT.2023.3247944
https://doi.org/10.1109/TCSVT.2023.3247944
https://doi.org/10.1109/TCSVT.2023.3247944
https://doi.org/10.1109/TCSI.2023.3291700
https://doi.org/10.1109/TCSI.2023.3291700
https://doi.org/10.1109/TCSI.2023.3291700
https://doi.org/10.3390/machines11080837
https://doi.org/10.3934/mbe.2023591
https://doi.org/10.3934/mbe.2023591
https://doi.org/10.3934/mbe.2023591
https://doi.org/10.3934/math.2022929
https://doi.org/10.3934/math.2022929
https://doi.org/10.3934/math.2022929
https://doi.org/10.3390/math11020276
https://doi.org/10.32622/ijrat.712019107
https://doi.org/10.32622/ijrat.712019107
https://doi.org/10.32622/ijrat.712019107
https://doi.org/10.3390/fractalfract5030117
https://doi.org/10.3390/app9235029

	1. Introduction
	2. Basic definitions
	3. Road map for the suggested techniques
	3.1. The ARPSM method for solving time-fractional PDEs with arbitrary coefficients
	3.2. Problem
	3.3. Basic idea of the aboodh transform iterative method
	3.3.1. Problem with NITM


	4. Conclusion
	Acknowledgments
	Data availability statement
	References



