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Cosmological data indicate that the expansion of the universe is currently accelerating [1].
The simplest way to explain this is a fine-tuned cosmological constant, which is unexplained
by the Standard Model of particle physics [2]. Moreover, tensions in recent observational
evidence, if not due to systematics, seem to require a more phenomenologically complex
ingredient than a constant [3]. Observations also suggest tensions for the dark sector at smaller
scales [4], suggesting the need for more detailed modelling of the entire dark sector. This has
motivated studies of extensions to the Standard Model of cosmology and general relativity.

Here we present results from a novel explanation of the late-time accelerating expansion
caused by a modified version of the symmetron [5, 6]. The symmetron is a real scalar field with
an environment-dependent mass term using the Anderson-Higgs mechanism; in low-density
environments, its vacuum expectation value (VEV) drifts away from the origin, causing a phase
of out-of-equilibrium transition for the scalar field. The environmental dependence comes from
the scalar’s non-minimal coupling to the matter sector, the type of which generically occurs in
Horndeski models of modified gravity [7], of which the symmetron is a subset. The VEV also
degenerates and takes on a non-trivial topology, leading to the appearance of domain walls at
cosmological scales. The resulting model has a wide range of phenomenological consequences,
which individually may seem to be able to account for the cosmological observations and
alleviate tensions [6, 8–13]. Whether the symmetron, or some variant of it, can simultaneously
account for the cosmological tensions remains an open question.

Phase-transitions as a cause for cosmic acceleration have been considered in the past, in
e.g. [14], where a frustrated defect network forms as the result of a phase transition in the
early universe, showing that the walls’ curvature has to be very small. This gives an equation
of state parameter ω ≥ −2/3. In [15], the authors agnostically consider a sudden transition
in the equation of state parameter of the accelerator field, going from an initial ω0 = 0
to some freely chosen ωf at the cosmological redshift zt. Combining CMB data with LSS
and supernova data, they indicate parameters of the phase transition of (zt, ωf ) ∼ (1.5, −1),
occurring in the late-time universe. The latter is similar to the situation that we will consider,
though we will be a step less agnostic and try to realise this situation in a specific variant
of the symmetron model.

The classical symmetron contains a cosmological constant that is included to drive the
late-time accelerating expansion [6], which in turn is fine-tuned. In the following, we add a
prescription that we take as representative of some more fundamental model containing a
degravitation mechanism. The prescription continuously removes constant contributions as
sources to the Einstein equations (which is what we will mean by degravitation here); instead
we try to account for the cosmic acceleration through the dynamic behaviour of the scalar field.

Recent advances in cosmological simulations of the symmetron [12, 16] allow the compre-
hensive treatment of the scalar field’s energy contribution for some parameter ranges, that we
present the results for here. By extrapolating our results, we indicate a region of the model
parameter space that is interesting with regards to producing the late-time cosmic expansion,
though we still appear to require fine-tuning of the Lagrangian parameters.

The field equations of the symmetron ϕ ∈ R on a flat cosmological background is [6]

ϕ̈ − 1
a2 ∇2ϕ + 3Hϕ̇ = Veff,ϕ ≡ V,ϕ − A,ϕ(ϕ)

A(ϕ) T, (1)
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where a is the scale factor, H is the Hubble function, T is the trace of the stress-energy
tensor of the matter sector, dotted quantities are differentiated with respect to cosmic time,
Veff is the effective scalar field potential and V is the potential

V = −1
2µ2ϕ2 + λ

4 ϕ4, (2)

with mass µ and self-coupling strength λ. In the non-relativistic limit, T ∼ −ρm is the energy
density of matter. A(ϕ) ≡ 1 + 1

2

(
ϕ
M

)2
is the conformal factor, with the conformal coupling

strength M . Both the conformal factor A(ϕ) and the potential V (ϕ) can be viewed as Taylor
expansions of a more fundamental model, in the event where their smallness parameters
ϵA ∼ (ϕ/M)2 and ϵV ∼ (ϕ/Mpl)2 are small. The conformal coupling gives a term for the
effective potential which provides a stable minimum at the origin as long as ρm > ρ∗ = µ2M2.
As ρm becomes smaller, the effective potential becomes the Mexican hat potential, and
develops two stable minima ṽ (VEVs) at non-zero field values. The VEVs are found locally
(at time t and position x) by minimising Veff and are given by

ṽ±(t, x) = ± µ√
λ

√
1 + T (t, x)

ρ∗
. (3)

We define the true VEV v0 ≡ ṽ+(T = 0). The potential V , equation (2), in the true vacuum
can be related to phenomenological quantities [16]

V0 = λ

4 v4
0 = 9β2

∗L2
C

2a6
∗

H4
0 Ω2

m,0, (4)

where a∗ = (1 +z∗)−1 is the scale factor of the phase transition in a homogeneous universe, β∗
is the relative strength of the gravitational force in the true VEV v0, and LC is the Compton
wavelength related to the mass µ as LC = 1√

2µ
. H0 is the current time Hubble parameter

and Ωm,0 is the current time energy fraction of matter.
For nonlinear fields such as the symmetron, that may develop large spatial gradients

due to screening and topological defects, the gradients may have a significant effect on the
background evolution. It has been shown in [12] that inhomogeneities in the density field
cause the field to undergo phase transition much earlier than it would on the background. To
include this effect into the vacuum, we define the generalised potential Vgen whose derivative
Vgen,ϕ ≡ Veff,ϕ + 1

a2 ∇2ϕ includes the Laplacian term from equation (1). The generalised VEV
v is found by minimising Vgen, i.e. solving

∇2v2 = −a2∂vVeff(v), (5)

and is equivalent to finding the symmetron’s quasistatic limit (equation (1) with ϕ̇, ϕ̈ → 0).
In the usual approach, such as for quintessence dark energy, the potential contains a

constant term, ⟨V (ϕ = 0)⟩, which contributes to the Friedmann equation, and is the driver of
cosmic acceleration. To get a constant term that can account for cosmic acceleration requires
a high degree of fine-tuning (this is the smallness problem of the cosmological constant). We
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therefore propose a model where the potential contribution to the Friedmann equation is1

ΩV (ϕ, v) = λ

4ρc

〈(
ϕ2 − v2

)2
〉

, (6)

which automatically removes all vacuum contributions, and eliminates the need to fine-tune
the cosmological constant, if a similar prescription can be thought to act on all of the
standard model fields. The full contribution to the Friedmann equation includes the kinetic
and gradient terms that are expanded around the VEV,

Ωϕ = ΩV + 1
2ρc

⟨(ϕ̇ − v̇)2 + ∂i(ϕ − v)∂i(ϕ − v))⟩, (7)

and we will refer to the last two terms as Ωkin and Ωgrad respectively. ρc(a) is the critical
density of the Universe and the brackets mean that we take the spatial average of their
argument, because the Friedmann equation is evaluated on the background.
Since v is the quasistatic solution of the field equation, ΩV has contributions from the dynamic
parts of the field. In the absence of large inhomogeneities in the scalar field (when ∇2ϕ −→ 0,
and Vgen,ϕ = Veff,ϕ), then v → ṽ±, and we recover the classical symmetron energy contribution,
with an additional term proportional to v4

±. In the late universe, large inhomogeneities in
the symmetron field are sourced by the inhomogeneous matter component that it is coupled
to, or caused by the formation of topological defects in the field.

We define the dynamical and topological contributions to the equation (6) as ΩV =
Ωdyn + Ωtop. If the dynamic field, ϕ, develops topological defects through a phase transition,
then there is a question of how to solve the VEV v in equation (5). If we solve it using the
same vacuum manifold as is obtained in the dynamical solution, by which we mean that we
are solving the VEV around the same topological defects, then we remove the contribution
of topological defects in equation (6). Alternatively, we can solve the VEV using a trivial
vacuum manifold (i.e. all fields with the same positive sign minimum and no defects). In
this case, the topological defects that develop in the field ϕ will introduce large gradients for
ϕ that are absent in the VEV v and will therefore give large contributions in equation (6).
Considering both solutions for the VEV allows us to separate the effect of topology Ωtop.

We simulate the matter and scalar field evolution through the phase transition from
initially small amplitude perturbations ϕ/v0 ∼ 10−20 as in [12]. Now, we additionally keep
track of the vacuum field v, by solving the equation (5), considering both options for the
vacuum topology as mentioned in the previous paragraph. We conveniently express the model
parameters (µ, M, λ) in terms of phenomenological parameters (z∗, LC , β∗), as in [16], where
z∗ is the redshift of the phase transition, LC is the interaction length scale and β∗ is the
relative strength of the gravitational force in the true vacuum v0 = µ/

√
λ. The parameters

are chosen in the same range as in [12] (z∗, LC , β∗ ∼ 0, 1 Mpc/h, 10), where the simulations’
convergence and consistency has been studied in detail, and we are resolving the relevant
scales. This corresponds to Lagrangian parameters µ, M , λ of around 10−30 eV, 10−4 Mpl and
10−104 respectively. For these choices, the smallness parameters ϵA, ϵV ∼ 10−5, 10−12. ϵA ≪ 1

1Using v± instead, without a prescription for smoothing of T , we would have contributions from arbitrarily
small underdense regions.
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Figure 1. Energy density contribution from the scalar field potential, normalised to the critical
density of the Universe (Ω = ρ/ρc), as a function of redshift z. The left panel shows the case where
the domain wall contribution is removed. Right panel includes the contribution of the domain walls.

is required by the simulation scheme, see [16]. We record the resultant volume averaged
energy contributions according to equations (6) and (7).

In figure 1, we plot the volume average, equation (6), for some different parameter choices.
We see that 1) In all cases, there is an initial spike in the energy density at the start of
the phase transition; 2) for this choice of parameters, the energy scale is of the order of
ΩV (z = 0) ∼ 10−9. To obtain the energy scale O(1) required for the accelerating expansion,
we have to extrapolate in the model parameters; 3) the effect of changing β∗ is very well
approximated2 by the change in amplitude given by the equation (4), which means that
⟨V ⟩ ∝∼ β2

∗ . Considering all of the parameter scalings, we find V ∝∼
β2

∗L5
C

a9
∗

; and 4) in all cases
where the domain wall contribution (topology) is included in the energy density, there is a
rapidly increasing potential energy in the later stages of the phase transition.

We define the effective equation of state through the energy contribution of the scalar
field [16], ρ, as

ω = 1
3

d log ρ

d log a
− 1. (8)

Figure 2 shows the effective equation of state parameter carrying the energy of the
potential in equation (6). We are neglecting the kinematic and gradient contributions
Ωkin, Ωgrad for now. In all cases in figure 2 where we remove the effect of the domain walls
(topology), the effective equation of state parameter is centred around −1. There is a slight
drift from a phantom regime (ω < −1) to larger values and some oscillation around this
drift. An earlier phase transition seems to reduce the slope of the drift. In the case where
the effect of domain walls (topology) is included, the topological defects seem to push the
equation of state parameter towards the phantom regime. Usually in literature, having a
‘phantom crossing’ is considered problematic [18], but their argument does not apply in our
case due to the degravitation mechanism and matter coupling.

Finally, there are the kinetic and gradient terms, Ωkin and Ωgrad, which we also expect
to contribute to the Friedmann equation. Our results show that they both peak early in the

2We have generally found a very small effect of varying β on the scalar field configuration [12].
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Figure 2. Effective equation of state parameters as a function of cosmological redshift z. The
kinematic and gradient contributions (7) are neglected here. The left panel shows the case where the
domain wall contribution is removed. The right panel includes the domain wall contribution. Error
bars show 95% confidence intervals due to the intrinsic scatter in the data. The band labelled DESI+
demonstrates the 68% preferred region for the flat ω0ωaCDM model, presented in [17].

phase transition, after which the gradient contribution decays rapidly and Ωkin dominates
between the two. We also find that the vacuum v generally evolves slowly |v̇| ≪ |ϕ̇| and so
Ωkin is the contribution of the scalar field kinetic energy ϕ̇2/2 coming from the oscillations of
the field. We find that the kinetic term is larger than the potential contribution, equation (6),
for all of the models. The kinetic energy decays as ρkin ∼ a−2.

Comparing different simulations, we see no effect of parameter variation on the relative
amplitude of the kinetic and potential components. However, we do see a smaller injection
of kinetic energy at the start of the phase transition in the case of stronger screening (or
larger a∗). The height of the peak compares to the plateau as Ω(peak)

kin /Ωkin ∝∼
√

LC
a∗

. This
factor is Ω(peak)

kin /Ωkin ≈ 2.7 for the fiducial simulation (z∗, LC , β∗ = 0.1, 1, 8). While for the
same parameters, today (z = 0), Ωkin/ΩV ∼ 4.

From the above, we can see that in order to dynamically generate an energy density that
mimics the cosmological constant by the mechanism proposed here, the following problems
must be solved by moving to an appropriate region of the parameter space

A The initial spike of energy density occurring at the start of the phase transition.

B The late rise in energy owing to a growing contribution of the domain walls to the
energy budget.

C The large amplitude of the kinetic energy relative to the potential Ωkin/ΩV .

D The small amplitude of the energy density ΩV .

Therefore, we note the following part of the symmetron parameter space as interesting
with regards to issues A-D: small critical energy densities ρ∗ (equivalently large a∗ > 1)
and small interaction length scales LC . Finally the force strength β∗ is chosen to obtain
the correct energy density amplitude.

– 5 –
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By having small critical energy densities ρ∗ we ensure that only the least dense regions,
which are mostly disjunct up to the present time undergo the phase transition. Since the
domains are mostly disjunct, we expect a suppression of the final increase in energy density (B)
that is caused by the formation of domain walls. a∗ > 1 increasingly depends on nonlinearities
in the density field to undergo collapse before the current time, so the scale LC is chosen to
make the field interact with these small-scale nonlinearities. In this regime, we expect an
almost quasistatic transition, since the timescale of the scalar field is smaller and the spatial
scale resolves the filaments. We therefore expect a suppression of the initial spike (A) that
we understand to be caused by an initial period of out-of-equilibrium dynamics for the scalar.

We do not see a clear effect of varying the parameters on the relative amplitude between
the kinetic and potential energies, but we have found nonlinearities in the dependence on z∗
and LC , that make the extrapolation difficult. As the initial spike (A) is the first injection of
kinetic energy into the field, we expect a suppression of the relative amplitude of the kinetic
energy (C). The problem (C), may therefore be resolved in the interesting limit of small LC , z∗.

To be explicit, we make the following estimates: to remove the initial spike (A), we
assume that it is sufficient that the spatial scale of the symmetron is of order LC ≲ O(kpc).
For such a choice, considering the inferred scaling of aSSB ∝∼ L0.22

C a0.59
∗ , keeping zSSB ∼ 0.6,

we set a∗ ∼ 12. This is motivated by cosmological data, where the cosmic acceleration
happens around 0.4 ≲ z ≲ 1 [1]. Finally, to obtain the correct energy amplitude (D), given
the reported scaling of V , we set β∗ = 1018. Although this may seem unreasonably large
compared to the values of β∗ ∼ O(1) typically considered in the literature, we point out that
the screening is also set very large, so that the force operates only inside of the least dense
voids, where the clustering constraints are at their worst and the effect of a fifth force is
minimal. Moreover, this force strength is still 107 times weaker than the weak force and
1018 times weaker than electromagnetism.

The resultant model is one where the nearly quasistatic field’s displacement from the
drifting and environmentally dependent vacuum, is the cause of cosmic acceleration. Despite
the field being strongly screened, we expect observables such as a modification of the density
profile within large cosmic voids, which is expected to give clear signatures in observables such
as the Integrated Sachs-Wolfe (ISW) effect [12, 19–21]. We expect upcoming constraints on
the equation of state parameter from among other the continuation of the DESI survey [17].
And the oscillating energy density and topological defects can leave observable imprints
in gravitational waves [13, 22].

The appeal of this mechanism is manifold:

1. The nearly quasistatic evolution of the field as a generator of cosmic acceleration
addresses the smallness problem of the cosmological constant by suppressing the
energy density contribution to the Friedmann equation relative to that of the original
potential (2).

2. Since the phase transition is triggered by nonlinearities in the overdensity field, the mech-
anism partially solves the coincidence problem by making ‘now’, when nonlinearities
grow large, (i.e. z ≲ 1) a generic time for the accelerated expansion.

– 6 –
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3. The addition of a fifth force at a strength scale midway between electromagnetism and
gravity improves the hierarchy problem of why gravity is uniquely weak, and provides
a more continuous range of force scales among the five forces.

4. In terms of minimality, the symmetron has been considered as a dark matter candidate
for similar parameter choices for the interaction scale LC ∼kpc [8, 9, 11], in which case
it behaves as a fuzzy dark matter with an extended mass spectrum that depends on
the environment.

5. The relatively large energy scale of the degravitated potential V0 and the phantom
behaviour caused by the formation of topological defects may allow the connection of
the low energy, late-time acceleration with the higher energy scale expansion during
inflation [23] in a cyclic universe scenario. In this scenario, the symmetron has the
additional advantage of being symmetry restored during reheating. Looking at the
degravitated potential V0 from the equation (4), we see that it has a scale V0 ∼ 1029 ·
ρc,0 ∼ 1039 GeV/m3 = 1019 (eV)4, which can be made available in the topological defects
or upon symmetry restoration.

However, in spite of these optimistic remarks, a change of perspective from the consid-
eration of the phenomenological parameters (LC , a∗, β), to the Lagrangian ones (µ, M, λ),
reveals caveats. While LC ∼kpc can make the symmetron an interesting fuzzy dark matter
candidate, the mass µ is then of order 10−27 eV, lighter than the typical standard model
mass scale by 27 orders of magnitude. Meanwhile a∗ = 12 corresponds to conformal coupling
parameters M ∼ 1020 eV, or in terms of the Planck mass M/Mpl ∼ 10−8. Finally, the force
strength β∗ = 1018, together with the other two parameter choices, results in the self-coupling
strength λ ∼ 10−114. From naturalness, we expect dimensionless numbers λ ∼ O(1). While,
the nature of the fine-tuning issue here is different from the cosmological constant, where the
prior for a 120 orders of magnitude larger cosmological constant value comes from particle
physics predictions, the discrepancy is of similar magnitude. A first-principles understanding
to explain the apparent fine tuning remains to be found. Furthermore, the resultant smallness
parameters ϵA, ϵV ∼ 1020, 104 both indicate the relevance of higher order operators within
this part of the parameter space, a study into which is beyond the scope of the current work.

In conclusion, the large discrepancy between the cosmological constant expected from
quantum field theory and that required to explain the cosmological acceleration motivates:
1) the introduction of a degravitation mechanism of constant term contributions to the
Friedmann equation and 2) dynamical drivers of the cosmological acceleration. In this
work we have introduced a model where there is a late-time, environment-dependent phase
transition in the dark sector whose dynamic energy component drives the late-time accelerated
expansion. We have studied the evolution and parameter scaling of the energy components
within the parameter space computationally accessible to our simulations. By extrapolation,
we point to a specific part of the symmetron parameter space, (LC , a∗, β∗) ∼ (kpc, 12, 1018),
which can account for the late-time cosmic acceleration.
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