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Introduction

In this thesis we treat the equivariant theory of Lie groupoids and try to describe aspects
of it using the non-commutative geometry of the convolution algebra. The main goal is
to present a general theory spanning two extremes:

� The treatment of geometry, locally and globally, on manifolds via differential forms,
vector fields and deRham-cohomology. This leads to a framework in which a variety
of disciplines in physics, for instance classical mechanics and electromagnetism, can
be described. Mathematically more involved results, like the Atiyah-Singer Index
Theorem, then help to obtain qualitative information about the physical systems
described. As it turns out, this can be fully describing using algebraic properties
of the algebra of smooth functions of the underlying manifold.

� The theory surrounding the convolution algebra of a Lie group, in particular the
connections between the convolution algebra, the representation theory of the
group, the adjoint representation and linear Poisson manifolds.

We first give a gentle introduction into the worlds of Lie groupoids and non-commutative
geometry.

Symmetries and Lie groupoids

Classically, a symmetry on a space M is encoded by letting a Lie group G act on M .
Symmetries are common in physics, where the presence of symmetries eases the treat-
ment of the physical system by replacing the relevant tensors by those that are invariant
under the action. Similar to how vector fields, differential forms and cohomology can
be pulled out of the algebra of smooth functions by algebraic means, we shall see their
siblings that are invariant under the action can be pulled algebraically out of the convo-
lution algebra, which combines structure of the algebra of smooth functions on M and
the convolution algebra of G.

1



2 Introduction

Lie groupoids are a way to describe symmetries on a space which in some sense
are point-dependent in nature, i.e. not globally defined. Heuristically, a Lie groupoid
is a combination of two manifolds G and M , called the space of arrows and the base
respectively, with maps

� s, t : G →M called the source and target,

� u : M → G called the unit,

� i : G → G called the inversion,

� m : {(g, h) ∈ G2 : s(g) = t(h)} → G, called the multiplication, defined when the
second arrow begins where the first arrow ends1.

These maps should satisfy group-like properties and should be smooth. The structure
maps should be used to see elements of G as ‘local symmetries’ on M in the following
sense:

� An arrow g ∈ G should be seen as a symmetry from s(g) to t(g);

� The symmetry u(x) should be thought of as the trivial symmetry from x to itself;

� For g ∈ G, the arrow i(g) represents reversing the symmetry that g described;

� For g, h ∈ G such that s(g) = t(h) the arrow m(g, h) represents the symmetry that
first applies h and then g.

The two extremes we alluded to in the beginning are present in this framework: any
manifold can be interpreted as a Lie groupoid where G =M with all the structure maps
the identity, while a Lie group is the same thing as a Lie groupoid with M consisting of
only one point.

On top of this, the classical notion of a symmetry is contained in this framework: a
manifold M with an action by a Lie group G can be encoded by a Lie groupoid M ×G
over M , where the arrow (x, g) should be thought of as going from x to xg.

In this, it becomes clear why Lie groupoids encode a more general notion of symmetry:
while in the case of a global symmetry the ‘collection of symmetries out of a point x’
is independent of the point x, in a groupoid these can vary from point to point. A
very down to earth slogan: ‘Solving a Rubiks Cube is a group, solving a 15 Puzzle is a
groupoid’.

As we shall see, Lie groupoids also have a convolution algebra attached to them, with
the product being defined by

(f1 ∗ f2)(g) :=
�
m(g1,g2)=g

f1(g1)f2(g2).

1Remark that composition is read from right to left in this context.
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Here the elements f1, f2 of the convolution algebra are tensors which are like smooth
functions, but can be canonically integrated. Details will be treated thoroughly in the
text.

The notion of equivariant theory of Lie groupoids now makes sense, namely it is
describing the geometry of M invariant under the point-dependent symmetries that G
describe. The overarching philosophy, inspired by the noted examples, that we will try
to convey in this thesis is that the equivariant theory of a Lie groupoid can be describing
using the convolution algebra, in particular using the tools of non-commutative geometry.

Geometry beyond spaces

Non-commutative geometry, due to Connes [Co94], is the machinery that allows us to
interpret statements in the world of algebras in ‘geometrical’ terms. It is what enables to
distinguish between the real line R and the circle S1 using only their algebras of smooth
functions, which are the smooth functions C∞(R) and the 1-periodic smooth functions
C∞

per(R) respectively.
To wit, we look at the following maps

C∞(R3)
b−→ C∞(R2)

B←− C∞(R)

where
(bF )(x, y) := F (x, x, y)− F (x, y, y) + F (x, y, x)

and
(BF )(x, y) := F (y).

One checks that
C∞(R2)/b(C∞(R3)) ∼= C∞(R)

via a map that takes F ∈ C∞(R2) to the map x 7→ D2(F )(x, x). In this way, the map B
factors to the quotient C∞(R2)/b(C∞(R3)) to be simply the derivative

C∞(R)
d
dx←− C∞(R).

Using the Fundamental Theorem of Calculus, we know that this map is surjective, so
that

dim

(
C∞(R2)

b(C∞(R3)) +B(C∞(R))

)
= 0.

Doing this for the circle, we can write down a similar collection of maps

C∞
per(R3)

b−→ C∞
per(R2)

B←− C∞
per(R)

where periodicity in higher dimensions means 1-periodic in every entry. The formulas
for b and B are the same as before. The first step is now similar:

C∞
per(R2)/b(C∞

per(R3)) ∼= C∞
per(R)



4 Introduction

with C∞
per(R)

B←− C∞
per(R) becoming the derivative. However, in the periodic case this

map is not surjective, but has a 1-dimensional cokernel. In particular, we have

dim

(
C∞

per(R2)

b(C∞
per(R3)) +B(C∞

per(R))

)
= 1.

What we have calculated here very roughly, is the cyclic homology (in degree 1) of these
two algebras, and their difference can be thought of as a reformulation of the fact that

dim(H1
dR(R)) = 0 and dim(H1

dR(S
1)) = 1.

This is the central idea of non-commutative geometry, and we will discuss the proper
interpretation.

One of the main tools in non-commutative geometry is to associate chain complexes
to an associative algebra A, that have specific meaning when we plug in A = C∞(M)
for M a manifold. For instance, the Hochschild complex CHoch

• (A,A) is defined by

CHoch
• (A,A) := A⊗(•+1)

with differential b : CHoch
n (A,A)→ CHoch

n+1 (A,A) set by

b(a0 ⊗ · · · ⊗ an) :=
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

By work of, among others, Connes [Co94], Feigin-Tsygan [FT87], Hochschild-Kostant-
Rosenberg [HKR62] and Rinehart [Ri63], we obtain the following dictionary between
algebraic invariants of an associative algebra, and geometric quantities associated to a
manifold:

Algebra A Manifold M

Hochschild homology HH•(A,A) Differential forms Ω•(M)
Hochschild cohomology HH•(A,A) Multivector fields Λ•X(M)

(Periodic) cyclic homology HC•(A), HP•(A) deRham cohomology H•
dR(M)

(Periodic) cyclic cohomology HC•(A), HP•(A) deRham homologhy HdR
• (M).

This is the central idea of non-commutative geometry: the geometry of a space M is
contained in in its algebra of smooth functions C∞(M) by using the algebraic properties
of this algebra. Applying this to arbitrary (non-commutative) algebras, we obtain a rich
theory whose properties closely resembles geometric considerations for manifolds.

If we do this for the non-commutative algebra made out of a Lie groupoid, we end up
with what we are looking for: a fair description of the quotient, even when this quotient
is not a nice space. All together we end up with a coherent philosophy on how to deal
with symmetries described by Lie groupoids: we calculate the algebraic properties of
our non-commutative algebra and interpret them as equivariant geometric information
on the base of the groupoid.
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Contents of the text

In technical terms, the overarching philosophy can be summarized by saying that:

� The (cyclic (co)homology of the) convolution algebra of a Lie groupoid G is closely
related to the equivariant theory of the groupoid, in particular to the geometry
of the classifying space BG (for the case of an action groupoid we discuss this in
Chapter 3).

� The symmetric powers of the adjoint representation, interpreted as higher order
deformation elements, calculate the Hochschild cohomology of the relevant induced
algebras, both locally and globally:

– For a Lie groupoid, the symmetric powers of the adjoint are closely related
to the Hochschild cohomology of the convolution algebra (Chapter 2);

– For a Lie-Rinehart algebra, the symmetric powers of the adjoint calculate the
Hochschild cohomology of the universal enveloping algebra (Chapter 4).

To expand the general philosophy into actual mathematics, this text covers three
parts:

� The relation between the deformation theory of a Lie groupoid, the adjoint rep-
resentation and the Hochschild cohomology of the convolution algebra, following
[KP21].

� Equivariant characteristic classes for manifolds with a group action, and their
relationship to the convolution algebra of the action groupoid, following [KP22].

� The relationship between the universal enveloping algebra of a Lie-Rinehart al-
gebra, the symmetric powers of its adjoint representation, and inroads to under-
standing pseudodifferential calculus on Lie algebroids, following [KP23].

We now give a detailed overview of the text:

Chapter 1: Setting the stage

We start in Chapter 1 by properly defining the framework in which we will work. In par-
ticular, in Section 1.1 we define the main tools of non-commutative geometry: Hochschild
(co)homology, and (periodic) cyclic (co)homology, and discuss their general properties,
and relations to differential geometry. Then, in Section 1.2 we describe our main objects
of interest: Lie groupoids. We discuss examples, their local equivalents in Lie algebroids
and their algebraic counterparts in Lie-Rinehart algebras.
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Chapter 2: Lie groupoid deformations and convolution algebras

Chapter 2 is devoted to treating the results of [KP21]. The goal is to relate the defor-
mation theory of a Lie groupoid with the deformation theory of its convolution algebra
AG. Such a relation is not surprising heuristically, as changing the structure of a Lie
groupoid in turn changes the structure of the convolution algebra. The deformation the-
ory of a Lie groupoid G is governed the deformation complex C•

def(G) of Crainic, Mestre
and Struchiner [CrMS20], while the deformation theory of the convolution algebra is
governed by the Hochschild complex C•

Hoch(AG,AG).
We will describe this connection between the two via a cochain map

Φ: C•
def(G)→ C•

Hoch(AG,AG)

from the deformation complex of a Lie groupoid G to the Hochschild complex of its
convolution algebra AG.

This chain map links into the known theory in the following ways:

� The deformation complex C•
def(G) consists of certain classes of vector fields on

the nerve G(•) of the groupoid, with the differential incorporating the group-like
properties of the groupoid. This is mirrored by the complex C•

diff(G) computing
differential cohomology, which is given by smooth functions on the nerve. Work of
Pflaum, Posthuma and Tang [PPT15] relate the differentialble cohomology H•

diff(G)
with the cyclic cohomology HC•

Hoch(AG), and we show that our map Φ is compatible
with this connection, in a way generalizing from ‘smooth functions on the nerve’
to ’vector fields on the nerve’.

� The deformation complex C•
def(G) is shown by Crainic, Mestre and Struchiner

[CrMS20] to canonically incorporate source-constant deformations of the Lie groupoid
G, i.e. a smooth family of division maps mϵ, by associating to such a deformation
the element ξ ∈ C2

def(G) given by

ξ(g, h) :=
d

dϵ

∣∣∣∣
ϵ=0

mϵ(gh, h).

By deforming the convolution product, we also obtain a Hochschild cochain β ∈
C2

Hoch(AG,AG) given by

β(a1, a2)(g) :=
d

dϵ

∣∣∣∣
ϵ=0

�
h∈s−1(s(g))

a1(mϵ(g, h))a2(h).

We will show that our chain map links these deformation elements:

Φ(ξ) = β.

� There is a localization procedure linking the deformation theory of a Lie groupoid
G to that of its algebroid A(G). In the case of a Lie group G with Lie algebra g,
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this was extensively studied by van Est [vE53a, vE53b], and for the groupoid case
the results were generalized by Crainic, Mestre and Struchiner [CrMS20] to obtain
a van Est-map

V : C•
def(G)→ C•

def(A(G)).

The manifold underlying the vector bundle A(G)∗ is canonically a linear Poisson
manifold, and the complex C•

def(A(G)) can canonically be interpreted as the linear
Poisson complex of this Poisson manifold. Parallel to this, we can view the con-
volution algebra AG as a strict deformation quantization of the Poisson manifold
A(G)∗ in the sense of Landsman and Ramazan [LR01] via quantization maps

qt : Sc(A(G)∗)→ AG.

We show that the van Est-map V can be interpreted as a classical limit of our
chain map Φ:

V(c)(f1, . . . , fk) = Fµ

(
lim
t→0

(∑
σ∈Sk

(−1)σ 1

(it)k−1
Φ(c)(qt(fσ(1)), . . . , qt(fσ(k)))

))

where c ∈ Ck
def(G) and we see V(c) as a Poisson cochain on A(G)∗ in which we plug

in f1, ..., fk ∈ Sc(A(G)∗).

� Representation theory of Lie groupoids isn’t as well-serving to the needs of the
theory of Lie groupoids as the representation theory of Lie groups is well-serving
to the needs of the theory of Lie groups. In particular, there is no proper definition
of an adjoint representation for a Lie groupoid G. This is solved by Abad and
Crainic [AC13] by defining representations up to homotopy and in particular the
adjoint representation up to homotopy for a Lie groupoid G, which fulfils the same
that the adjoint representation of a Lie group does. However, a priori the adjoint
representation up to homotopy needs the choice of a connection on the Lie algebroid
to be defined. Parallel to this, there are the symmetric powers of the adjoint
representation up to homotopy, which was defined by Abad and Crainic [AC13]
as a way to calculate the cohomology of the classifying space BG, generalizing the
Chern-Weil construction for Lie groups to the Lie groupoid setting.

The deformation complex C•
def(G) is a way to give an intrinsic model of the adjoint

representation up to homotopy, in that it does not need a choice of connection
to be defined, but is isomorphic to the adjoint representation up to homotopy
under the choice of a connection. We discuss in Chapter 2 how extending from
smooth functions and vector fields to differential operators might be a way to
combine our chain map Φ, the Gerstenhaber structure on the Hochschild complex
C•

Hoch(AG,AG) and the deformation complex C•
def(G) to obtain an intrinsic model

for the symmetric powers of the adjoint representation up to homotopy.
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The chapter starts in Section 2.1 by defining the convolution algebra of Lie groupoid as
introduced by Connes [Co94], and seeing how it reduces to known algebras in specific ex-
amples. Then, in Section 2.2 we recall work by Crainic, Mestre and Struchiner [CrMS20]
and treat the deformation complex of a Lie groupoid. In Section 2.3 we then define our
chain map and discuss its properties, while in Section 2.4 we discuss what it means to
take its classical limit and how it relates to the van Est-map. Lastly, in Section 2.5 we
discuss some ideas on how to proceed with these results in the context of the symmetric
powers of the adjoint.

Chapter 3: Action groupoids and equivariant characteristic classes

In Chapter 3 we discuss the results [KP22], in particular we study orientable manifoldsM
with an action of a unimodular group G and the relation between the convolution algebra
of the underlying groupoid M × G ⇒ M and the equivariant cohomology HG(M). We
generalize work of Connes [Co94], Gorokhovsky [Go99], Block-Getzler [BG94], Getzler
[Ge94], Getzler-Jones [GJ93] and Ponge [Po18].

The equivariant cohomology HG(M) is defined [Tu20] to be

H•
G(M) := H•((EG×M)/G)

i.e. the cohomology of the homotopy quotient. If the action of G on M is free and
proper this calculates the cohomology of the quotient M/G, and generally if the group
G is compact it is calculated by the Cartan model [Ca50], which is given by the complex

((Sym•(g∗)⊗ Ω•(M))G, dGdR)

where the equivariant differential dGdR is given by

dGdR(α)(X) := ddR(α(X))− ιXM
(α(X)).

For the non-compact case, the equivariant cohomology presents a way to understand the
‘smooth geometry of the quotient’ even if the quotient is not a manifold. As such, it is
the natural place where characteristic classes of equivariant vector bundles over M live,
with the classical equivariant Chern character

ChG : VectG(M)→ Hev
G (M)

defined by
ChG(E) := Ch((pr∗E)/G),

where pr : EG ×M → M is the (equivariant) projection and (pr∗E)/G is the resulting
(topological) vector bundle over the homotopy quotient.

The main goal of the chapter is to relate the equivariant cohomology H•
G(M) with the

periodic cyclic cohomology HP•(G ⋉ C∞
c (M)) of the convolution algebra and describe

the resulting Chern character with values in HP•(G⋉C∞
c (M)) in purely algebraic terms

internal to the convolution algebra. This was already done in the case where the group
G is discrete by Connes [Co94] and Gorokhovsky [Go99]. We do this in the following
steps:
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� The theory of (generalized) cycles, which was defined by Connes [Co94] and re-
fined by Gorokhovsky [Go99], is a way to generlize the connection between (pe-
riodic) cyclic cohomology of C∞

c (M), deRham currents, differential forms on M
and deRham-cohomology H•

dR(M) to obtain for any algebra A cyclic cohomology
classes in HC•(A). This is done by embedding A into via a map ρ : A → Ω0 into
a differential graded algebra Ω with a closed graded trace

�
: Ωn → K and the

resulting generalization of a deRham current is a cyclic n-cochain given by

(a0, ..., an) 7→
 
ρ(a0)d(ρ(a1)) · · · d(ρ(an)).

We exploit a version of this procedure involving curvature to associate to an equiv-
ariant vector bundle E →M with a connection a (curved) DGA ΩE which is given
by

ΩE := C∞
c (G, Sym(g∗)⊗ Ωc(M,End(E))).

with curvature related to the curvature of the connection, and differential given
by a combination of the Cartan differential and a term measuring the defect of
the connection to be G-invariant. The resulting cyclic class is invariant of the
connection and hence we obtain a Chern character

ChΩ : VectG(M)→ HPdim(M)(G⋉ C∞
c (M)).

� Following work of Brylinski [Br87a] and Ponge [Po18] we use the Eilenberg-Zilber
Theorem [EZ53] and its cyclic version due to Khalkali and Rangipour [KR04] to
calculate the cyclic homology of G⋉C∞

c (M) by a double complex C•,•(G,M) given
by

Cp,q(G,M) := C∞
c (G×(q+1) ×M×(p+1))

with the structure in one direction given by a G-twisted variant of the Hochschild
complex of C∞

c (M) and the structure in the other direction given by the group
homology complex for the G-module C∞

c (M×(p+1)).

Using an equivariant HKR-map as defined by Block and Getzler [BG94], we refine
this double complex to a double complex C•,•(G,Ωg(M)) defined by

Cp,q(G,Ωg(M)) := C∞
c (G×q, C∞(g,Ωp

c(M))),

which serves as our model for cyclic homology of the convolution algebra.

� A generalization of the Cartan model for equivariant cohomology to the non-
compact case was defined by Getzler [Ge94]. Replacing G-invariants by the whole
group cohomology complex, Getzler’s model is a double complex C•,•(G,Ωg(M))
given by

Cp,q(G,Ωg(M)) := C∞(G×q, Sym(g∗)⊗ Ωq(M)).
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Combining integration of functions G×q and the pairing between Ωc(M) and Ω(M)
we obtain a pairing

Cp,q(G,Ωg(M))⊗ Cdim(M)−p,q(G,Ωg(M))→ R.

� Apart from writing down his model for equivariant cohomology, Getzler also writes
down an explicit cochain in his model representating the equivariant Chern char-
acter of an equivariant vector bundle E with connection ∇. Plugging this into the
pairing we defined, we obtain a diagram relating the equivariant vector bundles,
equivariant cohomology and periodic cyclic cohomology of the convolution algebra

VectG(M) //

))

Hev
G (M)

��

HPdim(M)(G⋉ C∞
c (M))

We show that this diagram commutes on the level of chains for proper group
actions, and discuss ideas to prove its commutativity on the level of cohomology
for arbitrary orientation-preserving actions of unimodular groups.

The chapter starts with Section 3.1 where we discuss Connes’ [Co94] and Gorokhovsky’s
[Go99] theory of generlized cycles. Then in Section 3.2 we write down our model for the
cyclic homology of the convolution algebra using the Eilenberg-Zilber Theorem. We pair
with equivariant cohomology in Section 3.3 and show in Section 3.4 that the resulting
diagram (as drawn above) is commutative. In Section 3.5 we discuss how this procedure
is a common generalization of known ‘equivariant Chern characters’ in several specific
cases.

Chapter 4: Hochschild cohomology of Lie-Rinehart algebras

In Chapter 4 we discuss local analogues to the ideas from Chapter 2, taking place in
the context of Lie algebroids and their algebraic analogues Lie-Rinehart algebras. In
particular, we discuss modules over Lie-Rinehart algebras (L,R), discuss the cohomology
associated to those in the form of Hochschild cohomology of modules over the universal
enveloping algebra U(L,R) and derive ways to link this concept from the world of algebra
to cohomology theories more akin to the Lie algebra-like nature of Lie-Rinehart algebras.

The central point of discussion is a result by Blom [Bl17] that relates Hochschild
cohomology of the universal enveloping algebra U(Γ(A), C∞(M)) and the linear Poisson
cohomology of the Poisson manifold A∗ for a Lie algebroid A→M :

HH•(U(Γ(A), C∞(M)),U(Γ(A), C∞(M))) ∼= H•
Pois,poly(A

∗).

The result stems from using the Poincare-Birkhoff-Witt Theorem of Rinehart [Ri63] to
induce a Poisson structure on Γ(SymA) from the commutator bracket of the universal
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enveloping algebra, which coincides with the Poisson bracket of fibrewise polynomial
functions on the Poisson manifold A∗. This observation allows for a spectral sequence to
be written down which has the Poisson cohomology H•

Pois,poly(A
∗) on its second page and

which converges to the Hochschild cohomology HH•(U(Γ(A), C∞(M)),U(Γ(A), C∞(M))).
Using Kontsevitch’ formality for the Poisson manifold A∗ Blom shows that this spectral
sequence collapses and in turn establishes the isomorphism.

Perpendicular to this is a fully algebraic consideration of this phenomenon for a Lie
algebra g, where using the fact that the Poincare-Birkhoff-Witt map pbw: Sym(g) →
U(g) is an intertwiner of g-representations one writes down an explicit chain map

C•
Hoch(U(g),U(g))→ C•

CE(g, Sym(g))

given by a combination of restriction to g, composition with pbw and antisymmetriza-
tion. An argument with a filtration and the associated graded quotient complexes (or
equivalently, with the induced spectral sequence) then shows this map to be a quasi-
isomorphism.

Recognizing that the Lie algebra cohomology complex C•
CE(g, Sym(g)) is isomorphic

to the polynomial Poisson complex of the Poisson manifold g∗, and more generally the
polynomial Poisson complex associated to the dual of a Lie algebroid A is an intrinsic
model for the symmetric powers of the adjoint representation up to homotopy of the
algebroid of Abad and Crainic [AC12], we will in this chapter use the ideas of the Lie
algebra-case to generalize the results of Blom to the Lie-Rinehart algebra-case, circum-
venting explicit arguments with the spectral sequence by establishing explicit chain maps
calculating an isomorphism

HH•(U(L,R),U(L,R)) ∼= H•(L, Sym(ad))

for the case where R is a smooth algebra and L is projective as an R-module.
We proceed in the following steps:

� Following Kordon-Lambre [KL21] and Lambre-le Meur [LLM18] we recognize that
the functor (−)U(L,R) that takes a U(L,R)-bimodule and returns its U(L,R)-
invariants is a composition of functors, first taking the R-invariants of the under-
lying R-bimodule, and then inside the R-invariants taking the invariants of the
diagonal Lie algebra-representation of L. In turn, it is argued by Kordon and
Lambre that for a U(L,R)-bimodule M there is a spectral sequence

Ep,q
2
∼= Hp

CE(L,HH
q
Hoch(R,M))⇒ HHp+q(U(L,R),M)

which converges to the desired Hochschild cohomology.

Using this as a starting point we write down a double complex C•,•
LR(L,R;M) given

by
Cp,q

LR(L,R;M) := Hom(ΛpL,Hom(R⊗q,M))

with the vertical differential given by the Hochschild differential of the complex
Hom(R⊗•,M) and the horizontal differential given by the Lie algebra differential
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associated to a certain L-representation on Hom(R⊗q,M). In the case where the
anchor of (L,R) vanishes, this is a natural complex to consider in this context, with
Hom(ΛpL,−) replaced by HomR(Λ

pL,−). However, in the general case, the L-
representation of Hom(R⊗q,M) is not R-linear. Writing down explicit homotopies
which measure the defect of R-linearity, we write down a ‘non-linear’ Chevalley-
Eilenberg complex C•

nl(L,R;M) incorporating a ‘symbol equation’ relating the
defect of the cochains to be R-linear and the homotopy. We show by exhibiting an
explicit chain map

s : C•
Hoch(U(L,R),M)→ Tot•(CLR(L,R;M))

that the this non-linear complex is quasi-isomorphic to the Hochschild complex

HH•(U(L,R),M) ∼= H•
nl(L,R;M)

in the case where R is a smooth algebra and L is projective over R.

� Using the Poincaré-Birkhoff-Witt Theorem of Rinehart in the Lie-Rinehart set-
ting, we can see U(L,R) as a quantization of SymRL and in turn induce a Pois-
son bracket on SymRL using the commutator bracket of U(L,R). The resulting
Poisson complex due to Huebschmann [Hu90] can be used as an intrinsic model
for the symmetric powers of the adjoint representation up to homotopy of the Lie-
Rinehart algebra (L,R) following Abad and Crainic [AC12], resulting in a complex
C•

def(L, Sym(ad)).

With the Lie algebra-case in mind, we can write down a chain map

Φ: C•
def(L, Sym(ad))→ Tot•(CLR(L,R;U(L,R)))

which is in essence given by composition with pbw∇ : SymRL→ U(L,R) under the
choice of a connection. By making an argument with a filtration and the resulting
graded quotient complexes, we obtain an isomorphism

H•(L, Sym(ad)) ∼= H•
nl(L,R;U(L,R)),

and in turn an isomorphism

HH•(U(L,R),U(L,R)) ∼= H•(L, Sym(ad))

in the case when R is a smooth algebra and L is projective over R.

In Section 4.1 we discuss the work of Kordon, Lambre and le Meur an how to use
its ideas to define the non-linear complex C•

nl(L,R;M) calculating the Hochschild co-
homology HH•(U(L,R),M) of a U(L,R)-bimodule. Section 4.2 treats the relationship
between the non-linear complex C•

nl(L,R;U(L,R)) with the symmetric powers of the
adjoint representation of (L,R). The chapter has an appendix in Section 4.3 in which
we discuss proofs of several Lemmata in the chapter whose proofs, while necessary to
discuss, are of such high density of calculations that they would break up the pace of
the text.
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Appendix A: Constructions in homological algebra

In Appendix A we discuss the general machinery underlying most of the homological
algebra we use in the text:

� Mixed complexes (Appendix A.1);

� Homological Pertubation Theory (Appendix A.2);

� Chain complexes and mixed complexes induced by simplicial and cyclic vector
spaces (Appendix A.3);

� Cylindrical spaces and their induces mixed double complexes (Appendix A.4);

� The Eilenberg-Zilber Theorem relating the homology of a bisimplicial vector space
and the homology of its simplicial diagonal (Appendix A.5).





Chapter 1

Setting the stage

This chapter is meant to give a concise introduction to the objects we will be working
with. As such, this chapter is fully a review of known work. This chapter has two parts:

� Using the techniques described in the Appendix, we define the main notions in
non-commutative geometry we are interested in. In particular, we discuss the
simplicial and cyclic vector spaces that induce the complexes calculating Hochschild
(co)homology and cyclic (co)homology.

� Then, we discuss the general theory of Lie groupoids and Lie algebroids: their
definitions, classes of examples and going from groupoids to algebroids. We also
describe the algebraic counterpart to Lie algebroids that are Lie-Rinehart algebras,
and the universal enveloping algebra induced by such a Lie-Rinehart algebra.

1.1 Non-commutative geometry

Non-commutative geometry is the study of the ‘geometry’ of (possibly non-commutative)
algebras. The general philosophy is that we describe ‘geometry’ of an algebra using
algebraic invariants, strengthened by results which relate these very natural constructions
to geometric quantities if we plug in the smooth functions on a manifold. We outline
the concepts that we will use in this dissertation: Hochschild homology, Hochschild
cohomology, cyclic homology and cyclic cohomology, which in the framework described
correspond to differential forms, multi-vector fields, deRham cohomology and deRham
homology, respectively. The main resources for this section are Connes [Co94], Loday
[Lo98] and Nest-Tsygan [NT].

15
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1.1.1 Hochschild (co)homology

Hochschild homology

Let K be a field of characteristic zero1, and let A be an associative K-algebra. Let M
be a bimodule over A. Unless otherwise stated, in what follows the tensor product is
simply the algebraic tensor product of K-vector spaces.

Definition 1.1.1 (Hochschild homology) We define a complex CHoch
• (A,M) by

CHoch
k (A,M) :=M ⊗ A⊗k

with differential b : CHoch
k (A,M)→ CHoch

k−1 (A,M) given by

b(m⊗ a1 ⊗ · · · ⊗ ak) :=ma1 ⊗ a2 ⊗ · · · ⊗ ak

+
k−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak

+ (−1)kakm⊗ a1 ⊗ · · · ⊗ ak−1.

We define Hochschild homology to be the homology of this complex:

HH•(A,M :== H•(C
Hoch(A,M))

Remark 1.1.2 This complex originates from the machinery of simplicial vector spaces
that we describe in detail in Appendix A. In particular, Vk = M ⊗ A⊗k has face maps
given by

d0(m⊗ a1 ⊗ · · · ⊗ ak) := ma1 ⊗ a2 ⊗ · · · ⊗ ak,
di(m⊗ a1 ⊗ · · · ⊗ ak) := m⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak, (0 < i < k)

dk(m⊗ a1 ⊗ · · · ⊗ ak) := akm⊗ a1 ⊗ · · · ⊗ ak−1,

which make it into a semi-simplicial vector space.
If A is unital, there are also degeneracy maps given by

si(m⊗ a1 ⊗ · · · ⊗ ak) := m⊗ a1 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ ak,

such that the semi-simplicial vector space M ⊗ A⊗• is simplicial.
From the discussion in the Appendix, this means that for a unital A we can also write

down a normalized Hochschild-complex, quasi-isomorphic to the complex we wrote down
above, where the chains in degree k are given by M ⊗ (A/K)⊗k.

Remark 1.1.3 The Hochschild complex, and by extension Hochschild homology is func-
torial in two ways. First, if A and B are K-algebras, M is a B-bimodule and φ : A→ B
is a morphism of K-algebras, M can canonically be considered a A-bimodule, and φ
induces a chain map CHoch

• (A,M) → CHoch
• (B,M). Second, if A is a K-algebra, M and

N are A-bimodules and f : M → N is a morphism of A-bimodules, we obtain a chain
map CHoch

• (A,M)→ CHoch
• (A,N).

1In practice this means K = C or K = R.
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Remark 1.1.4 Define Ao to be opposite algebra of A and Ae = A ⊗ Ao to be the
envelopping algebra. An A-bimodule is then the same thing as a left Ae-module. If A is
unital, one can identify HH•(A,M) ∼= TorA

e

• (M,A). Indeed, to compute Tor one needs
to write down a projective resolution of A as an Ae-module, and the bar resolution is
such a resolution. The bar-resolution is given by

· · · d−→ A⊗ A⊗ A d−→ A⊗ A d−→ A→ 0

with differentials given by

d(a1 ⊗ · · · ⊗ ak) :=
k−1∑
i=1

(−1)i+1a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak.

Using the unit of A, we can write down a contraction s : A⊗k → A⊗(k+1) of this resolution
by

s(a1 ⊗ · · · ⊗ ak) := 1⊗ a1 ⊗ · · · ⊗ ak.
With this resolution, one checks that M ⊗Ae A⊗(k+1) = M ⊗ A⊗k with the induced
differential given precisely by the Hochschild differential b.

In general, the bar-resolution may be acyclic even if there is not a unit, and in that
case the algebra is called H-unital (cf. [Wo89]).

Example 1.1.5 We can interpret K as a K-algebra. If A is any K-algebra, and M is a
bimodule over A, we can view M as a K-bimodule. In this case

CHoch
• (K,M) ∼= M,

with the differential under this isomorphism given by

b : CHoch
k (K,M)→ CHoch

k−1 (K,M) =

{
0 if k is odd
id if k is even

and we conclude that

HHk(K,M) =

{
M if k = 0
0 else

Remark 1.1.6 If A is not unital, we can adjoin a unit to obtain a unital K-algebra
A+ = A⊕K with product

(a1, λ1)(a2, λ2) := (a1a2 + λ1a2 + λ2a1, λ1λ2).

Any A-bimodule M can be canonically seen as a A+-bimodule by letting the K-factor
acting by scalar multiplication. There is a canonical short exact sequence of algebras

0→ A→ A+ → K→ 0

that takes a to (a, 0) and (a, λ) to λ. Using this short exact sequence, one checks that
the Hochschild homology can be recovered from the Hochschild homologies of the two
unital algebras A+ and K by

HH•(A,M) ∼= ker(HH•(A
+,M)→ HH•(K,M)).
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We study Hochschild homology because of its connection to differential forms in the
commutative case. So for now let A be a commutative K-algebra. In this situation we
can define objects akin to differential forms in the following way:

Definition 1.1.7 (Kähler differentials) We define Ω1
A/K to be the quotient of A⊗A

where we identify f0 ⊗ (f1f2) with (f0f2) ⊗ f1 + (f0f1) ⊗ f2. We write f0df1 for the
element induced by f0 ⊗ f1. In higher degree we define Ω•

A/K to be the exterior algebra

defined by Ω1
A/K

Ωk
A/K = Λk

AΩ
1
A/K.

There is a canonical surjective map A⊗(k+1) → Ωk
A/K sending f0⊗· · ·⊗fk to f0df1∧· · ·∧dfk.

If we now look at the Hochschild complex CHoch
• (A,A) we observe two things in

degree 1. First, all elements are closed, since the differential out of degree 1 is just the
commutator in this case. Second, the exact elements are spanned by elements of the
form f0f1 ⊗ f2 − f0 ⊗ f1f2 + f0f2 ⊗ f1. Together we see that there is an immediate
isomorphism

HH1(A,A) ∼= Ω1
A/K.

The important result from the 60’s due to Hochschild, Kostant and Rosenberg [HKR62]
then fully identifies the Hochschild homology with the Kähler differentials.

Theorem 1.1.8 (Hochschild-Kostant-Rosenberg) If A is smooth, the canonical
map A⊗(k+1) → Ωk

A/K induces an isomorphism HHk(A,A) ∼= Ωk
A/K.

Note that for A = C∞(M) the seemingly ‘obvious’ identification Ω1
C∞(M)/R = Ω1(M)

is not true, since Kähler differentials only behave well with polynomial relations, not
with any smooth functions2. In particular, forM = R we have that d(ex) does not equal
exdx in Ω1

C∞(R)/R.
To counteract this, we can play the Hochschild-game with topological vector spaces

and topological tensor products. As described by Connes [Co85] and Pflaum [Pf98], if
E →M is a vector bundle we can endow Γ(E →M) with a Fréchet topology using the
family of seminorms induced by partial derivatives over compact domains. Using the
inductive tensor product ⊗̂ we then have the isomorphism

Γ(E →M)⊗̂Γ(E ′ →M ′) ∼= Γ(E ⊠ E ′ →M ×M ′),

in particular we have the isomorphism

C∞(M)⊗̂C∞(N) ∼= C∞(M ×N).

With this, we can set up the bar-resolution of C∞(M) with this new tensor product,
and in turn obtain a continuous Hochschild complex

· · · → C∞(M×3)→ C∞(M×2)→ C∞(M)→ 0

2This is why these kind of algebraic constructions work so well in algebraic geometry, where every-
thing is polynomial or rational.
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Within this framework the canonical map A⊗•+1 → Ω•
A/K now takes the form of a map

C∞(M×(k+1))
HKR−−−→ Ωk(M)

which, as an example, for k = 1 is given by

HKR(f)x(γ̇) :=
d

dt

∣∣∣∣
t=0

f(x, γ(t)).

The HKR-theorem now takes the following form:

Theorem 1.1.9 (Continuous HKR) [Pf98, Thm 3.3] The continuous Hochschild com-
plex CHoch,cont

• (C∞(M), C∞(M)) defined using the topological tensor product has homol-
ogy

Hk(C
Hoch,cont
• (C∞(M), C∞(M))) ∼= Ωk(M).

Hochschild cohomology

Dual to Hochschild homology, there is Hochschild cohomology. We return to the general
case where A is a K-algebra which is assumed to be neither nor commutative and M is
an A-bimodule.

Definition 1.1.10 Define the Hochschild cohomology complex C•
Hoch(A,M) by

Ck
Hoch(A,M) := HomK(A

⊗k,M),

with differential b : Ck
Hoch(A,M)→ Ck+1

Hoch(A,M) given by

(bf)(a1, ..., ak+1) := a1f(a2, ..., ak+1)

+
k∑

i=1

(−1)if(a1, ..., aiai+1, ..., ak+1)

+ (−1)k+1f(a1, ..., ak)ak+1.

and we define the Hochschild cohomology of A with coefficients in M by

HHk(A,M) := Hk(C•
Hoch(A,M)).

Remark 1.1.11 Similar to the dual case, the Hochschild cochain complex, and in turn
Hochschild cohomology, are functorial in both A and M . However, the functoriality in
A is reversed, since an algebra map A→ B induces a map C•

Hoch(B,M)→ C•
Hoch(A,M).

Remark 1.1.12 Dually to writing Hochschild homology as Tor’s, we can use the bar-
resolution to obtain natural isomorphisms HH•(A,M) ∼= Ext•Ae(A,M).
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In a certain sense, the cochain complex we have just written down comes from a
‘cosimplicial vector space’, a sequence of vector spaces with face maps increasing the
degree and degenaracy maps decreasing the degree. Indeed, this structure is just the
dual structure to the one for the Hochschild homology complex. In particular, also here
we can normalize and find a quasi-isomorphic subcomplex, consisting of those maps
f : A⊗k →M that satisfy f(a1, ..., ak) = 0 whenever 1 ∈ {a1, ..., ak}.

Example 1.1.13 Starting with A and M , we can see M as a K-bimodule and then
Ck

Hoch(K,M) ∼= M for every k with the differential given under this isomorphism by

b : Ck
Hoch(K,M)→ Ck+1

Hoch(K,M) =

{
0 if k is even
id if k is odd

and so we obtain the following calculation for the Hochschild cohomology

HHk(K,M) ∼=
{
M k = 0
0 else

Remark 1.1.14 If M is some A-bimodule, then M∗ = HomK(M,K) is also naturally
an A-bimodule, where the structure is given by

(a1fa2)(m) := f(a2ma1).

From this, it is clear that the Hochschild cochain complex C•
Hoch(A,M

∗) is naturally
isomorphic to the dual complex of CHoch

• (A,M).

Let us now look at the case where A is a bimodule over itself. In this case we can
quite easily describe the closed and exact elements in degrees 0 and 1. In degree 0 we
have that cochains are just elements of A with differential ba = [−, a], so that

HH0(A,A) = Z(A),

the center of A.
In turn, the image of b : C0

Hoch(A,A) → C1
Hoch(A,A) is by definition all the maps

A→ A which are defined as commutating with a given element of A. These maps called
inner derivations, and written as Inn(A).

The closed elements of degree 1 are those maps f : A→ A such that

a1f(a2)− f(a1a2) + f(a1)a2 = 0

which by definition is the same thing as f being a derivation. In the end this gives us

HH1(A,A) = Der(A)/Inn(A).

When A is commutative, the center Z(A) is the whole algebra itself, and there are no non-
trivial inner derivations, so that in this case HH0(A,A) = A and HH1(A,A) = Der(A). In
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that case, we can actually go further. Indeed we can embed Λk
ADer(A) into Ck

Hoch(A,A),
by seeing the wedge product of D1, ..., Dk ∈ Der(A) as a k-cochain by the formula

(D1 ∧ · · · ∧Dk)(a1, ..., ak) :=
1

k!

∑
σ∈Sk

(−1)σD1(aσ(1)) · · ·Dk(aσ(k)).

One then checks that D1 ∧ · · · ∧Dk is always a closed cochain. The dual version of the
HKR-theorem is then

Theorem 1.1.15 (HKR) If A is commutative and smooth, the map Λ•
ADer(A) ↪→

C•
Hoch(A,A) induces an isomorphism

Λ•
ADer(A)

∼= HH•(A,A).

Similar to before, we can play the same game for A = C∞(M) with the topological
tensor product, and we obtain the multi-vector fields as the (continuous) Hochschild
cohomology of C∞(M) [Pf98, Thm 3.3].

We can also calculate Hochschild cohomology of C∞(M) with coefficients in the dual
C∞(M)∗ and this turns out to consist of deRham-currents on M , i.e. the linear dual
Ω•(M) [Co85, p.310].

Deformation theory side of Hochschild cohomology

Apart from the relations of Hochschild cohomology to differential geometry, the Hochschild
cohomology also has plays a central role in deformation theory of associative algebras.

To wit, let A be a topological vector space with a continuous product ∗. Suppose we
have a continuous deformation of A, that is the datum of a continuous map

I × A× A→ A

(ϵ, a1, a2) 7→ a1 ∗ϵ a2,

where I ⊂ R is an open interval containing 0, that satisfies

� For every ϵ ∈ I, the map ∗ϵ defines an associative product on the underlying vector
space of A;

� At ϵ = 0 we have ∗0 = ∗;

� For every a1, a2 ∈ A the following limit is defined as an element of A

d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ϵ a2.

From this data we can construct a 2-cochain ξ ∈ C2
Hoch(A,A) in the (algebraic) Hochschild

complex by the formula

ξ(a1, a2) :=
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ϵ a2.
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Lemma 1.1.16 The 2-cochain ξ is closed.

Proof. Writing out the explicit differential, we have

(bξ)(a1, a2, a3) =a1ξ(a2, a3)− ξ(a1a2, a3) + ξ(a1, a2a3)− ξ(a1, a2)a3

=
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗0 (a2 ∗ϵ a3)−
d

dϵ

∣∣∣∣
ϵ=0

(a1 ∗0 a2) ∗ϵ a3

+
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ϵ (a2 ∗0 a3)−
d

dϵ

∣∣∣∣
ϵ=0

(a1 ∗ϵ a2) ∗0 a3

=
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ϵ (a2 ∗ϵ a3)−
d

dϵ

∣∣∣∣
ϵ=0

(a1 ∗ϵ a2) ∗ϵ a3

=
d

dϵ

∣∣∣∣
ϵ=0

Ass(∗ϵ)(a1, a2, a3).

Here in the last line, for a map f : A⊗A→ A, the associator Ass(f) measures the defect
of f to be associative:

Ass(f)(a1, a2, a3) = f(a1, f(a2, a3))− f(f(a1, a2), a3).

Then since ∗ϵ is assumed to be an associative product for all ϵ, we see that Ass(∗ϵ) = 0
for every ϵ, and so ξ is closed.

Even more specific, a deformation Aϵ of A is trivial if Aϵ
∼= A as associative algebras

for ϵ close enough to 0. This means that there is a linear automorphism φϵ : A → A
such that ∗e = φ−1

ϵ ◦ ∗ϵ ◦ (φϵ ⊗ φϵ). In this Hochschild-setting, trivial deformations are
cohomologically trivial:

Lemma 1.1.17 If Aϵ is a trivial deformation described by a family of automorphisms
φϵ. Then ξ = bξ′ with

ξ′(a) =
d

dϵ

∣∣∣∣
ϵ=0

φϵ(a).

Proof. Doing the explicit calculation we have

(bξ′)(a1, a2) =
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ φϵ(a2)−
d

dϵ

∣∣∣∣
ϵ=0

φϵ(a1 ∗ a2) +
d

dϵ

∣∣∣∣
ϵ=0

φϵ(a1) ∗ a2

=
d

dϵ

∣∣∣∣
ϵ=0

φϵ(a1) ∗ φϵ(a2)−
d

dϵ

∣∣∣∣
ϵ=0

φϵ(a1 ∗ a2)

=
d

dϵ

∣∣∣∣
ϵ=0

φ−1
ϵ (φϵ(a1) ∗ φϵ(a2))

=
d

dϵ

∣∣∣∣
ϵ=0

a1 ∗ϵ a2

= ξ(a1, a2)

which completes the proof.
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In the end the resulting philosophy is that HH2(A,A) measures the non-trivial defor-
mations of A as an associative algebra, as we see from this discussion that it calculates
deformations modulo trivial deformations.

More algebraic structure on Hochschild cochains

An important point in later discussion is the existence of graded product and graded Lie
algebra structures on the Hochschild cochain complex C•

Hoch(A,A).
To wit, consider the operation ∪ : Cp

Hoch(A,A)⊗Cq
Hoch(A,A)→ Cp+q

Hoch(A,A) given by

(f ∪ g)(a1, ..., ap+q) := f(a1, ..., ap)g(ap+1, ..., aq).

This is obviously associative and is compatible with b in the sense that

b(f ∪ g) = (bf ∪ g) + (−1)p(f ∪ bg).

On top of this, there is a generalization of composition in the form of an operation
◦ : Cp

Hoch(A,A)⊗ Cq
Hoch(A,A)→ Cp+q−1

Hoch (A,A) given by

(f ◦ g)(a1, ..., ap+q−1) :=

p−1∑
i=1

(−1)q(p+i−1)f(a1, ..., g(ai, ..., ai+p), ..., ap+q−1).

Even though it is not associative, we can construct from this operation the Gerstenhaber
bracket [−,−] : Cp

Hoch(A,A)⊗ Cq
Hoch(A,A)→ Cp+q−1

Hoch (A,A) by setting

[f, g] := f ◦ g + (−1)(p−1)(q−1)g ◦ f.

Again, this is compatible with b in the sense that

b([f, g]) = [bf, g]± [f, bg].

In particular both ∪ and [−,−] descend down to Hochschild cohomology:

Proposition 1.1.18 On HH•(A,A) the operations ∪ and [−,−] satisfy

� a ∪ b = (−1)pqb ∪ a,

� [a, b] = (−1)(p−1)(q−1)[b, a],

� (−1)(p−1)(r−1)[a, [b, c]] + (−1)(q−1)(p−1)[b, [c, a]] + (−1)(r−1)(q−1)[c, [a, b]] = 0,

� [a, b ∪ c] = [a, b] ∪ c+ (−1)(p−1)qb[a, c].

In particular we see that HH•(A,A) exhibits the structure of a graded associative ring
and a (shifted) graded Lie algebra, so that the Lie bracket is (graded) Poisson over the
product. This structure is called a Gerstenhaber algebra, introduced by Gerstenhaber
[Ge63].
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1.1.2 Cyclic and periodic cyclic (co)homology

Cyclic homology

If we think about Hochschild homology as differential forms, we want a way to add the
exterior differential into the picture. This is what cyclic homology will do for us. So we
start with A an associative K-algebra, for simplicity we assume that A is unital, and
introduce an extra differential on the Hochschild complex CHoch

• (A,A):

Definition 1.1.19 (Connes’ cyclic differential) We define the mapB : CHoch
n (A,A)→

CHoch
n+1 (A,A) to be

B(a0 ⊗ · · · ⊗ an) =
n∑

i=0

(−1)in1⊗ an−i+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ an−i

+
n∑

i=0

(−1)(i+1)nan−1 ⊗ 1⊗ an−i+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ an−i.

With the cyclic map t : CHoch
k (A,A)→ CHoch

k (A,A) defined by

t(a0 ⊗ · · · ⊗ ak) := ak ⊗ a0 ⊗ · · · ⊗ ak−1

one recognizes that, together with the simplicial maps d and s from Remark 1.1.2,
(CHoch

• (A,A), d, s, t) is a cyclic vector space, with B the second differential obtain via
Proposition A.3.6, so that we obtain:

Proposition 1.1.20 The maps

B : CHoch
• (A,A)→ CHoch

•+1 (A,A)

and
b : CHoch

• (A,A)→ CHoch
•−1 (A,A)

together make (CHoch
• (A,A), b, B) into a mixed chain complex.

Remark 1.1.21 Note that we can also write down the induced B on the normalized
Hochschild complex A⊗ (A/K)⊗• where it is given by

B(a0 ⊗ · · · ⊗ an) =
n∑

i=0

(−1)in1⊗ an−i+1 ⊗ · · · ⊗ an ⊗ a0 ⊗ · · · ⊗ an−i

where for a0 ∈ A, a0 ∈ A/K is the induced element in the quotient.

Definition 1.1.22 If A is unital, we define HC•(A) to be the homology of the complex
(CCHoch

• (A,A), b+B) induced by the mixed complex (CHoch
• (A,A), b, B).

Remark 1.1.23 Since the cyclic map t is natural in A, and the simplicial vector space
(CHoch

• (A,A), d, s) was already seen to be natural in A, we conclude that the association
A 7→ HC•(A) is functorial in A.
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Example 1.1.24 If we see K as an algebra over itself, we obtain

HCn(K) ∼=
{
K n even
0 n odd

.

Definition 1.1.25 If A is any associative K-algebra, we define HC•(A) to be the kernel
of the induced map HC•(A

+)→ HC•(K). If A was unital to begin with this is consistent
with the definition above.

If we now restrict ourselves to the case where A is commutative, we can easily see
that the map CHoch

• (A,A)→ Ω•
A/K fits into a commutative diagram

CHoch
p (A,A) B //

��

CHoch
p+1 (A,A)

��

Ωp
A/K

(p+1)d
// Ωp+1

A/K

where d is the map sending f0df1 ∧ · · · dfp to df0 ∧ · · · ∧ dfp.
In particular, we can upgrade the statement of the HKR Theorem to say that the

map CHoch
• (A,A) → Ω•

A/K as described is a quasi-isomorphism between the two with
respect to b on the domain and 0 on the codomain, as well as with respect to B on the
domain and d on the codomain.

Looking at the structure of the mixed complex (Ω•
A/K, 0, d) we can conclude the

following cyclic version of the HKR-theorem.

Corollary 1.1.26 [Lo98, Thm 3.4.12] If A is unital, commutative and smooth, then

HCn(A) ∼= (Ωn
A/K)cl ⊕

 ⌊n
2
⌋⊕

i=1

Hn−2i(Ω
•
A/K, d)


Doing this for A = C∞(M) with the topological tensor product ⊗̂ one can also calcu-

late the cyclic homology of the topological Hochschild complex, to obtain HCcont
• (C∞(M))

which is then calculated ([Co85, Thm 46]) to be:

HCcont
n (C∞(M)) ∼= Ωn

cl(M)⊕

 ⌊n
2
⌋⊕

i=1

Hn−2i
dR (M)


Cyclic cohomology

We can dualize the discussion from above to obtain the notion of cyclic cohomology. So
for a unital algebra A, we start with the Hochschild complex C•

Hoch(A,A
∗), which under

the adjunction between tensor products and duals we see as

Cn
Hoch(A,A

∗) := Hom(A⊗(n+1),K)
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so that the Hochschild differential becomes

(bf)(a0, ..., an+1) :=
n∑

i=0

(−1)if(a0, ..., aiai+1, ..., an+1)

+ (−1)nf(an+1a0, a1, ..., an).

and we can define the cyclic differential B : Cn
Hoch(A,A

∗)→ Cn−1
Hoch(A,A

∗) to be

(Bf)(a0, ..., an−1) :=
n∑

i=0

(−1)inf(1, an−i+1, ..., an, a0, ..., an−i)

+
n∑

i=0

(−1)(i+1)nf(an−i, 1, an−i+1, ..., an, a0, ..., an−i−1).

Since the resulting structure is obviously the dual to the mixed complex (CHoch
• (A,A), b, B),

it is itself a mixed cochain complex (C•
Hoch(A,A

∗), b, B).

Definition 1.1.27 We define HC•(A) to be the cohomology of (CC•
Hoch(A,A

∗), b+B).

We can now in essence dualize the whole discussion we did for cyclic homology.
First, note that HC•(A) is also calculated by the cyclic subcomplex C•

λ(A) of (C
•
Hoch(A,A

∗), b)
consisting of those maps f : A⊗k+1 → K that satisfy

f(ak, a0, ..., ak−1) = (−1)kf(a0, ..., ak)

Second, we note that in the normalized case we obtain a quasi-isomorphic subcomplex
given by chose maps f : A⊗(n+1) → K such that f(a0, ..., an) = 0 if 1 ∈ {a1, ..., an}. The
B-differential reduces to

(Bf)(a1, ..., an) =
n∑

i=0

(−1)inf(1, an−i+1, ..., an, a0, ..., an−i)

and using Lemma A.1.14 we also know that HC•(A) is calculated by the cyclic complex
coming out of the normalized complex.

Third, it is clear that a map A → B of K-algebras induces a map C•
Hoch(B,B

∗) →
C•

Hoch(A,A
∗) that intertwines both the Hochschild and cyclic differentials, and we obtain

a map HC•(B)→ HC•(A).
From this we can also define cyclic cohomology for non-unital algebras by setting

HC•(A) to be the cokernel of the map HC•(K)→ HC•(A+).
Lastly, if we do the whole construction for A = C∞(M) together with the topological

tensor product and the continuous Hom-functor, we obtain continuous cyclic cohomology
HC•

cont(C
∞(M)) which, similarly to the case for cyclic homology before, can be calculated

to be

HCn
cont(C

∞(M)) ∼= (Ωn(M))cl ⊕

 ⌊n
2
⌋⊕

i=1

HdR
n−2i(M)


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where Ω•(M) is the coalgebra of deRham-currents on M , i.e. Ωk(M) = (Ωk(M))∗, en-
dowed with the dual d∗ of the deRham-differential d : Ω•(M)→ Ω•+1(M) as homological
differential, leading to the notion of deRham-homology HdR

• (M) of M .

Periodic cyclic homology and cohomology

For a unital algebra A, starting with the mixed complexes (CHoch
• (A,A), b + B) and

(C•
Hoch(A,A

∗), b + B), we can also write down the induced periodic cyclic complexes
(CP•(A), b + B) and (CP•(A), b + B) respectively, leading to the definition of HP•(A)
and HP•(A).

We will not fully repeat the whole discussion, but we will give the relevant calculations
when for the commutative case.

When A is commutative and smooth we have

HPn(A) ∼=
⊕
i

Hn+2i(Ω
•
A/K, d)

where i ranges such that n+ 2i ≥ 0.
Similarly, when A = C∞(M), using the topological tensor products we obtain

HPcont
n (C∞(M)) ∼=

⊕
i

Hn+2i
dR (M),

HPn
cont(C

∞(M)) ∼=
⊕
i

HdR
n+2i(M).

1.2 Lie groupoids and Lie algebroids

As is now mentioned a few times, Lie groupoids form are at the center of attention of
this text. Groupoids and algebroids play an important role in the mathematical side of
physics, as outlined by Landsman [La06]. We will now thoroughly discuss their definition,
the definition of Lie algebroids and the procedure of going from a Lie groupoid to a Lie
algebroid. We will also describe Lie-Rinehart algebras and the universal enveloping
algebra of a Lie-Rinehart algebra. References for the parts about Lie groupoids and Lie
algebroids are Mackenzie [Mack87, Mack05] and Moerdijk-Mrčun [MM03]. References
for the parts about Lie-Rinehart algebras are Huebschmann [Hu04], Moerdijk-Mrčun
[MM10] and Rinehart [Ri63].

1.2.1 Lie groupoids

We start this section with the definition of a Lie groupoid.

Definition 1.2.1 A Lie groupoid G ⇒M is given by:

� Two smooth manifolds G, M ;
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� Two smooth submersions s, t : G →M ;

� A smooth map m : G(2) : = {(g, h) ∈ G;× G : s(g) = t(h)} → G;

� A smooth map i : G → G;

� A smooth map u : M → G.

These are compatible in the following way

� s(m(g, h)) = s(h),

� t(m(g, h)) = t(g),

� s(i(g)) = t(g),

� t(i(g)) = s(g),

� m(g, i(g)) = u(t(g)),

� m(i(g), g) = u(s(g)),

� s(u(x)) = x,

� t(u(x)) = x,

� m(u(t(g)), g) = g,

� m(g, u(s(g))) = g.

for any g, h ∈ G such that s(g) = t(h) and any x ∈M .

Remark 1.2.2 The compatibility conditions in the previous definition is the same as
saying that (G,M) has the structure of a category with M as objects and G as arrows,
where every arrow is an isomorphism. Here s and t encode source and target, so that we
see g ∈ G as an arrow t(g)

g←− s(g), m encodes the composition of arrows, so that gh is

the composed arrow t(g)
g←− s(g) = t(h)

h←− s(h), i encodes inverses and u encodes units.

Remark 1.2.3 We ask for s and t to be submersions so that we are able to require m
to be smooth. Indeed the fact that G(2) is an embedded submanifold of G×2 follows from
the fact that s and t are smooth submersions.

Example 1.2.4 (Trivial groupoids) For any manifold M , we can define the trivial
groupoid over M , M ⇒M . Here s, t, u and i are the identity, M (2) is just the diagonal
in M ×M and we define m : M (2) →M to be the map sending (x, x) to x.

Example 1.2.5 (Étale groupoids) A special class of Lie groupoids is that of groupoids
where the dimension of G and M agree, or equivalently either (and then both) of s or t
are local diffeomorphisms: those groupoids are called étale.

Example 1.2.6 (Fundamental groupoid) A generalization of the fundamental group,
the fundamental groupoid Π(M) ⇒M of a manifold M extends fundamental groups by
going from loops to paths. The arrows of this groupoid are homotopy classes of paths
in M , were source and target are the start and end points of paths, multiplication is
concatenation, units are constants paths and inversion is given by tracing a path in the
opposite direction. This set of arrows can be topologized and given the structure of a
smooth manifold in the following way: given a homotopy class [γ] of a path from x to y
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and let Ux, Uy be contractible open neighbourhoods of x and y respectively. Then there
is an injective map from Ux×Uy to Π1(M) which takes a point x′ ∈ Ux and y′ ∈ Uy and
sends this to the homotopy class of the path that is the concaternation of the (homotopy
unique) path through Ux from x′ to x, the path γ and the (homotopy unique) path in Uy

from y to y′, and we can declare this map to a diffeomorphism onto an open submanifold.

Example 1.2.7 (Groupoids associated to foliations) Slightly altering the example
of homotopy groupoids sketched above, let M be a manifold with F a foliation on M .
Then we can define a groupoid called the monodromy groupoid of the folation, denoted by
Mon(M,F) of which the arrows are homotopy classes of paths parallel to the foliation.
Again, source and target are the start and end points of paths and multiplication is
concatenation. Note that the homotopy groupoid of a manifoldM is just the monodromy
of the folation F = TM , while the trivial groupoid over M is the monodromy of the
foliation F = 0.

Example 1.2.8 (Lie groups) A Lie group is easily seen to the same thing as a Lie
groupoid where M = {pt}.

Example 1.2.9 (Action groupoids) When M is a manifold that is acted upon (from
the left) by a Lie group G, there is a groupoid G×M ⇒M , called the action groupoid,
that encodes this action. The structure maps are given by

� s(g, x) = x

� t(g, x) = gx

� m((h, gx), (g, x)) = (gh, x)

� u(x) = (e, x)

� i(g, x) = (g−1, gx)

For right actions we can either transform it into a left action by setting g ·x = x ·g−1,
or we can write down a slightly twisted variant of the construction above by giving a
groupoid structure on M ×G⇒M .

Example 1.2.10 (Pair groupoids) When M is any manifold, we see M ×M as a Lie
groupoid over M . Here, we set the structure maps by

� s(x, y) = y

� t(x, y) = x

� m((x, y), (y, z)) = (x, z)

� i(x, y) = (y, x)

� u(x) = (x, x)

In particular, one has to think as (x, y) as the unique arrow x
(x,y)←−− y.

Example 1.2.11 (Groupoids associated to a submersion) When f : M → N is any
submersion, we can define a variant on the pair groupoid. WritingM f×fM = {(x, y) ∈
M ×M : f(x) = f(y)} we can define the groupoid associated to f , M f ×f M ⇒ M
with the structure maps
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� s(x, y) = y

� t(x, y) = x

� m((x, y), (y, z)) = (x, z)

� i(x, y) = (y, x)

� u(x) = (x, x)

Note that the pair groupoid is this construction applied to the trivial mapM → {pt},
while the trivial groupoid over M is this construction applied to the identity M

=−→M .
In full generality the relevant observation is that M f ×f M can be written as

(f, f)−1(∆) and hence is the pre-image of a submanifold under a submersion, and hence
itself is a submanifold. Its tangent space can be described as

T(x,y)M
f ×f M = {(v, w) ∈ TxM × TyM : df(v) = df(w)},

from which it is immediately clear that s and t are submersions, since their derivatives
are given by (v, w) 7→ w and (v, w) 7→ v respectively.

Example 1.2.12 (Bundle of Lie groups) If G ⇒M is a groupoid such that the source
and target maps agree, every source fiber s−1(x) is a Lie group, and the groupoid is then
nothing more than a family of Lie groups, parametrized by M . The easiest example of
this is taking the constant fibre M ×G⇒M , but to see that the fibres can be different,
we consider the G = S1 × (R\{0}) ⊔ R × {0}. We can topologize this set and give it a
smooth structure if we require that S1 × (R\{0}) is an open submanifold, and that the
map

{(x, t) ∈ R : 4x2 < t2} → G
(x, 0) 7→ (x, 0)

(x, t) 7→ (e2πi
x
t , t) (t ̸= 0)

is a diffeomorphism onto an open submanifold.
We can then make a groupoid G ⇒ R by taking the source and target to be the

projection onto the second factor, with multiplication given by m((x, 0), (y, 0)) = (x +
y, 0) and m((z, t), (w, t)) = (zw, t). Clearly we see that the source fibres outside of t = 0
are isomorphic to S1, while at t = 0 the fibre is isomorphic to R.

In Chapter 2 we will discuss the adiabatic groupoid associated to a groupoid. The
example here is the adiabatic groupoid associated to the Lie group S1.

Example 1.2.13 (Vector bundles) As a special case of the previous example, any
vector bundle π : E → M can canonically be made into a Lie groupoid E ⇒ M , in the
following way: We set the source and target maps to be s = t = π, the multiplication
will be fibrewise addition in E, taking inverses will be multiplying with −1 and the units
consist of the zero-section.

Example 1.2.14 (Tangent groupoid) As a kind of meta-example, we can make a
new Lie groupoid out of a given Lie groupoid G ⇒M , called the tangent groupoid. It is
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given by TG ⇒ TM , with the all the structure maps replaced by their derivatives. We
remark that this works since as submanifolds of TG×2 the following are equal

TG(2) = {(v, w) ∈ TG×2 : ds(v) = dt(w)}.

Representations of Lie groupoids

A representation of a Lie group is the group acting linearly on a vector space. If we want
to define an equivalent concept for a Lie groupoid G ⇒ M , we need to replace a vector
space with a collection of vector spaces indexed by M : a vector bundle.

Definition 1.2.15 A representation of a Lie groupoid G ⇒ M is a vector bundle E →
M , together with for every g ∈ G a linear isomorphism Ag : Es(g) → Et(g) such that

� Au(x) = idEx ,

� AgAh = Agh.

We denote the set of G-representations by Rep(G).

Definition 1.2.16 From a representation E ∈ Rep(G) we can define groupoid cohomol-
ogy with coefficients in E via the complex C•

diff(G, E) which is set by

C0
diff(G, E) := Γ(E →M)

and for n ≥ 1 by
Cn

diff(G, E) := Γ(t∗E → G(n))

where t : G(n) → M is given in terms of the target map t of G by t(g1, ..., gn) = t(g1).
The differential is given by

(dc)(g) := Ag(c(s(g))− c(t(g))

for c ∈ C0
diff(G, E) and

(dc)(g1, ..., gn+1) :=Ag1(c(g2, ..., gn+1))

+
n∑

i=1

(−1)ic(g1, ..., gigi+1, ..., gn+1)

+ (−1)n+1c(g1, ..., gn)

for c ∈ Cn
diff(G, E) where n ≥ 1.

Example 1.2.17 For any Lie groupoid G ⇒ M , the trivial bundle R → M can be
canonically given the structure of a representation of G by setting Ag = idR for any
g ∈ G. We denote the resulting Lie groupoid cohomology complex by C•

diff(G) and call
it the differentiable cohomology of G. Notice that on the level of chains it is given by
Cn

diff(G) = C∞(G(n)).
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Example 1.2.18 For a Lie group G, seen as a groupoid G ⇒ {pt}, a representation
is the same thing as a Lie group representation: a vector space V and a Lie group
morphism G→ GL(V ).

Example 1.2.19 If M is a manifold acted upon by a Lie group G, a representation of
the action groupoid is the same thing as a G-equivariant vector bundle over M .

Example 1.2.20 For the pair groupoid M ×M ⇒M , the only representations are the
trivial vector bundles. Indeed, fixing a base point x0 ∈ M the isomorphism Ex0 → Ey

induced by the arrow (y, x0) induces an isomorphism between E and the trivial vector
bundle with fibre Ex0 .

Remark 1.2.21 As seen by the previous example, in general a Lie groupoid does not
have many representations. In particular, there is no analogue of the adjoint represen-
tation. We will discuss this further in Section 2.5.

Example 1.2.22 If G ⇒ M is an étale groupoid, we can make TM → M into a
representation of G by setting Ag : Ts(g)M → Tt(g)M to be

Ag := dtg ◦ (dsg)−1

The fact that this is indeed is a representation follows from looking at composable pair
of arrows (g, h), a vector v ∈ Ts(h)M and noticing that

dsg(((dsg)
−1 ◦ dth ◦ (dsh)−1)(v)) = dth((dsh)

−1(v))

so that

dm(g,h)(((dsg)
−1 ◦ dth ◦ (dsh)−1)(v), (dsh)

−1(v)) ∈ TghG

is defined. Using the fact relations between the source-, target- and multiplication-maps,
we have that

dtgh(dm(g,h)(((dsg)
−1 ◦ dth ◦ (dsh)−1)(v), (dsh)

−1(v))) = (dtg ◦ (dsg)−1 ◦ dth ◦ (dsh)−1)(v)

and

dsgh(dm(g,h)(((dsg)
−1 ◦ dth ◦ (dsh)−1)(v), (dsh)

−1(v))) = v.

All in all we see that

Agh(v) = dtgh((ds)
−1
gh (v))

= dtgh(dm(g,h)(((dsg)
−1 ◦ dth ◦ (dsh)−1)(v), (dsh)

−1(v)))

= (dtg ◦ (dsg)−1 ◦ dth ◦ (dsh)−1)(v)

= Ag(Ah(v)).
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1.2.2 Lie algebroids

Definition 1.2.23 A Lie algebroid is a vector bundle A→M together with the following
two points of data:

� A Lie bracket [−,−] on Γ(A)

� A vector bundle map ρ : A→ TM

that are compatible in the sense that ρ encodes how [−,−] fails to be C∞(M)-linear,
i.e. for α, β ∈ Γ(A) and f ∈ C∞(M) it holds that

[α, fβ] = f [α, β] + ρ(α)(f)β.

The main class of examples consists of Lie algebroids induced by Lie groupoids,
following a procedure similar to how a Lie group induces a Lie algebra.

Proposition 1.2.24 Let G ⇒ M be a Lie groupoid and let A(G) be the vector bundle
given by ker ds|M →M . Write X(G)inv for the space of right-invariant vector fields on G:
vector fields X ∈ X(G) which are tangent to the s-fibres and satisfy dRg(X(h)) = X(hg).

1. A section α ∈ Γ(A(G)) can be extended to a right-invariant vector field −→α ∈
Xinv(G) by the formula −→α (g) = dRg(α(t(g)),

2. The map α 7→ −→α is a linear isomorphism between Γ(A(G)) and Xinv(G),

3. The Lie bracket of two right-invariant vector fields on G is right-invariant,

4. The vector bundle A(G) together with the bracket induced by the previous points
and ρ = dt is a Lie algebroid.

Remark 1.2.25 For Lie groups and algebras, Lie’s Third Theorem states that every
finite dimensional Lie algebra is induced by some Lie group. As discussed in [CF03] the
equivalent statement is false for Lie groupoids and Lie algebroids.

Using the Lie algebroid associated to a Lie groupoid, we can write down a Lie
groupoid dual to the tangent groupoid.

Example 1.2.26 (Cotangent groupoid) Given a Lie groupoid G ⇒ M , we have
the cotangent groupoid T ∗G ⇒ A(G)∗. Its source map takes ξ ∈ T ∗

g G and maps it to
s(ξ) ∈ A(G)∗s(g) given by the formula

s(ξ)(v) = −ξ(d(Lg ◦ ι)u(s(g))v)

where v ∈ ker(ds)u(s(g)). Similarly, the target t(ξ) ∈ A(G)∗t(g) is given by

t(ξ)(w) = α(d(Rg)u(t(g))w).
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The multiplication of two composable elements ξ ∈ T ∗
g G and ζ ∈ T ∗

hG, is given by
m(ξ, ζ) ∈ T ∗

ghG determined by the formula

m(ξ, ζ)(dm(g,h)(v, w)) = ξ(v) + ζ(w).

The fact that this is well-defined, i.e. ξ(v) = −ζ(w) whenever dm(g,h)(v, w) = 0 is
precisely the fact that s(ξ) = t(ζ).

Next, the unit associated to an element α ∈ A(G)∗x is given by u(α) ∈ T ∗
u(x)G given

by the formula

u(α)(v) = α(v − d(u ◦ s)v).

Lastly, the inversion is given by ι(ξ) = ι∗ξ.

Using Proposition 1.2.24, we can take the examples of the previous section to produce
examples of Lie algebroids.

Example 1.2.27 (Trivial algebroids) The trivial vector bundle 0 → M canonically
has the structure of a Lie algebroid with the zero bracket and the zero map 0→ TM as
anchor. This example is the Lie algebroid associated to any étale groupoid over M , in
particular trivial groupoids.

Example 1.2.28 (Action algebroids) When ξ : g→ TM is any Lie algebra-morphism
(i.e. a Lie algebra action), we can induce the structure of a Lie algebroid on the trivial
vector bundle M × g→M . Sections of this vector bundle are smooth functions from M
to g and elements of that are finite sums of functions of the form fcv for f ∈ C∞(M)
and v ∈ g, where by this notation we mean (fcv)(x) = f(x)v. The bracket on C∞(M, g)
is then given by

[fcv, gcw] = fgc[v,w] + fξ(v)(g)cw − gξ(w)(f)cv.

If M is a manifold with a smooth left G-action, then we can induce an action on M by
the Lie algebra g = Lie(G) of G by the formula

ξ(v)(x) =
d

dt

∣∣∣∣
t=0

(etv · x).

The action algebroid associated to this action is then the Lie algebroid associated to the
original action groupoid.

Example 1.2.29 (Tangent bundle) When M is any manifold, the tangent bundle
TM → M canonically exhibits the structure of a Lie algebroid, with the bracket given
by the Lie bracket of vector fields, and the anchor TM → TM given by the identity.

This is the Lie algebroid associated to both the pair groupoid M ×M ⇒M and the
homotopy groupoid Π1(M) ⇒M .
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Example 1.2.30 (Foliation algebroids) A foliation F on M is the same thing as a
Lie algebroid on M with injective anchor, since both can be described as a vector sub-
bundle of TM whose sections are closed under the Lie bracket of vector fields. Foliation
algebroids have been studied extensively by Winkelnkemper [Wi83].

In general, this algebroid is the algebroid associated to the monodromy groupoid of
the foliation. If the foliation is given by the fibres of a submersion, then the algebroid
associated to the submersion-groupoid is also the algebroid associated to the foliation.
This is the generalization of the fact that the pair groupoid and the fundamental groupoid
have the same algebroid associated to them.

Example 1.2.31 (Bundle of Lie algebras) If A→M is a Lie algebroid such that the
anchor A→ TM is zero, the Lie bracket is C∞(M)-bilinear. In particular, using bump-
functions we can localize it to any fibre to obtain fibrewise Lie brackets. This presents Lie
algebroids with vanishing anchor as bundles of Lie algebras, i.e. vector bundles A→M
with a smooth family of Lie brackets [−,−]x on Ax for x ∈M with the bracket of Γ(A)
given by

[α, β](x) = [α(x), β(x)]x.

If G ⇒ M is a bundle of Lie groups, the algebroid associated to it is simply the bundle
of corresponding Lie algebras.

In particular, looking at the case where all the brackets themselves also vanish, we
have a commuting triangle where a vector bundle E → M induces a Lie groupoid
E ⇒ M , and Lie algebroid E → M with vanishing bracket and anchor, and the Lie
algebroid associated to the Lie groupoid E ⇒ M is precisely the Lie algebroid E → M
with vanishing bracket and anchor.

Apart from the examples coming from Lie groupoids, there are also examples which
are internal to the theory of Lie algebroids.

Example 1.2.32 (Poisson manifolds) Let M be a manifold with a Poisson bivector
π ∈ Λ2TM . Then there is a Lie algebroid structure on T ∗M due to Coste, Dazord
and Weinstein [CDW87] in the following way: the anchor is given by the induced map
π♯ : T ∗M → TM and the bracket is given for α, β ∈ Ω1(M) by

[α, β] = Lπ♯α(β)− Lπ♯β(α)− d(π(α, β)).

1.2.3 Lie-Rinehart algebras

There is a way to lift the definition of a Lie algebroid from the world of geometry to the
world of algebra, replacing a vector bundle with an associative algebra, leading to the
definition of a Lie-Rinehart algebra.

Definition 1.2.33 A Lie-Rinehart algebra is the combination of a commutative algebra
R, a Lie algebra L, a R-module structure on the underlying vector space of L and a Lie
algebra map ρ : L→ Der(R) such that

[α, fβ] = f [α, β] + ρ(α)(f)β
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for α, β ∈ L and f ∈ R.

Remark 1.2.34 If R = C∞(M) and L is a finitely generated R-module, the Serre-Swan
Theorem states that there is a vector bundle A→M such that L = Γ(A), and the rest
of the structure can be translated in such a way that we recover the definition of a Lie
algebroid over M .

Apart from this there are certain examples which will come back later in our consid-
eration.

Example 1.2.35 For any associative algebra R, the space of derivations Der(R), to-
gether with the commutator bracket as Lie bracket and the identity as anchor, describes
a Lie-Rinehart algebra.

Example 1.2.36 If M is any R-module, we may see (M,R) as a Lie-Rinehart algebra
by setting the bracket and anchor to 0.

There are also examples which are explicitly associated to physics-phenomena, for
instance there is a Lie-Rinehart algebra constructed by Blohmann, Schiavina and Wein-
stein [BSW22], relating to constraints of initial value problems in General Relativity.

1.2.4 The universal enveloping algebra of a Lie-Rinehart alge-
bra

Let (L,R) be a Lie-Rinehart algebra. Out of it, we can create a Lie algebra-structure
on L⊕R, where we define the bracket by

[(α, f), (β, g)] := ([α, β], ρ(α)(f)− ρ(β)(g)).

Then, from this Lie algebra, we can make the universal enveloping algebra U(L ⊕ R),
and from this we can make the universal enveloping algebra of the Lie-Rinehart algebra.

Definition 1.2.37 The universal enveloping algebra is defined by

U(L,R) = U(L⊕R)/⟨fX − f ·X, fg − f · g, f, g ∈ R, X ∈ L⟩

the quotient of the universal enveloping algebra of the Lie algebra L ⊕ R by the ideal
generated by the elements fX − f ·X and fg − f · g for f, g ∈ R and X ∈ L.

Remark 1.2.38 The universal enveloping algebra U(L,R) is the algebra linearly gen-
erated by L and R, with the relations

fX = f ·X, XY − Y X = [X, Y ],

Xf − fX = ρ(X)f, fg = f · g.

As such, it is the universal algebra with respect to having maps ιR : R→ A and ιL : L→
A to an algebra A such that
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� ιR is a algebra map,

� ιL is a Lie algebra map with respect to the commutator bracket on A,

� ιL(fX) = ιR(f)ιL(X) for f ∈ R and X ∈ L,

� ιL(X)ιR(f)− ιR(f)ιL(X) = ιR(ρ(X)f) for f ∈ R and X ∈ L.

The main example to have in mind when taking the universal enveloping algebra is
for the case of vector fields over a manifold:

Example 1.2.39 For the Lie-Rinehart algebra coming from the algebroid TM →M we
have U(X(M), C∞(M)) = Diff(M), the algebra of differential operators on M .

Example 1.2.40 More generally, for a Lie algebroid A(G) → M associated to a Lie
groupoid, there is a canonical identification between the universal enveloping algebra
U(Γ(A(G)), C∞(M)) and right-invariant differential operators on G.

In general the universal enveloping algebra is not commutative, but it admits the
structure of an almost commutative algebra.

Definition 1.2.41 An almost commutative algebra A is an associative filtered algebra,
where the filtration satisfies that if a1 ∈ A≤k and a2 ∈ A≤l then a1a2 − a2a1 ∈ A≤k+l−1.

Lemma 1.2.42 The filtration on U(L,R) defined by setting that R lives in filtered
degree 0 and L lives in filtered degree L makes U(L,R) into an almost commutative
algebra.

Proof. Investigating the commutation relations of the generators R and L, and seeing
that for X, Y ∈ L and f, g ∈ R we have

XY − Y X = [X, Y ] ∈ U(L,R)≤1,

Xf − fX = ρ(X)f ∈ U(L,R)≤0,

fg − gf = 0 ∈ U(L,R)≤−1.

Which shows that U(L,R) is an almost commutative algebra.

Since the algebra is almost commutative, the graded quotient is commutative, and
so since the filtered quotient is a commutative graded algebra generated on R in degree
0 and L on degree 1, it is quite immediate to try and relate U(L,R) to SymR(L).
Indeed, this is also what one does in the case of a Lie algebra, where the Poincaré-
Birkhoff-Witt theorem stipulates that the symmetrization map Sym(g) → U(g) is a
linear isomorphism of filtered vector spaces, whose induced map between the graded
quotients is an isomorphism of graded commutative algebras.

For a general Lie-Rinehart algebra, the symmetrization map will not make sense as
a map SymRL → U(L,R). Indeed, already in degree 2 the map L×2 → U(L,R) given
by

(X, Y ) 7→ 1

2
(XY + Y X)
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is not R-bilinear. To see this, we look at the images of (X, fY ) and (fX, Y ) in U(L,R)
and see that

(X, fY ) 7→ 1

2
(XfY + fY X),

(fX, Y ) 7→ 1

2
(fXY + Y fX) =

1

2
(XfY + fY X − ρ(X)(f)Y + ρ(Y )(f)X).

However, we see that the deficiency is in lower order terms. By work of Laurent-
Gengoux, Stiénon and Xu [LSX21], the deficiency can be resolved using a connection on
L.

Definition 1.2.43 If (L,R) is a Lie-Rinehart algebra, an L-connection on L is an K-
bilinear map ∇ : L× L→ L satisfying

∇fXY = f∇XY

∇X(fY ) = f∇XY + ρ(X)(f)Y

for all X, Y ∈ L and f ∈ R.

Remark 1.2.44 If L is projective as an R-module, then it admits an L-connection (see
[AF74]).

Using a connection ∇, we can write down a variant of the PBW-map, following
Laurent-Gengoux, Stiénon and Xu [LSX21].

Definition 1.2.45 Under the choice of an L-connection ∇ on L, the PBW-map

pbw∇ : SymRL→ U(L,R)

is recursively defined by

pbw∇(f) = f, (f ∈ R)

pbw∇(X) = X, (X ∈ L)

and for X1, ..., Xn ∈ L by

pbw∇(X1 ⊙ · · · ⊙Xn) =
1

n

n∑
i=1

Xipbw
∇(X1 ⊙ · · · X̂i · · · ⊙Xn)

− 1

n

∑
1≤i ̸=j≤n

pbw∇(∇Xi
Xj ⊙X1 ⊙ · · · X̂iX̂j · · · ⊙Xn).

We remark that this is indeed well-defined, and also R-linear. To see this, we note
that it is clearly symmetric and K-multilinear, so that we only need to see what happens
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when we replace X1 by fX1, and we get

pbw∇((fX1)⊙X2 · · · ⊙Xn) =
1

n
(fX1)pbw

∇(X2 ⊙ · · · ⊙Xn) (a)

+
1

n

n∑
i=2

Xipbw
∇((fX1)⊙X2 ⊙ · · · X̂i · · · ⊙Xn) (b)

− 1

n

n∑
j=2

pbw∇(∇fX1Xj ⊙X2 ⊙ · · · X̂j · · · ⊙Xn) (c)

− 1

n

n∑
i=2

pbw∇(∇Xi(fX1)⊙X2 ⊙ · · · X̂j · · · ⊙Xn) (d)

− 1

n

∑
2≤i ̸=j≤n

pbw∇(∇XiXj ⊙ (fX1)⊙X2 ⊙ · · · X̂iX̂j · · · ⊙Xn)

(e)

Now we can use the commutation relations in U(L,R), the properties of the connection,
and the inductive assumption that pbw∇ is well-defined and R-linear when restricted to
Sym<n

R L to work the f forward, and we obtain

(a) =
1

n
f(X1pbw

∇(X2 ⊙ · · · ⊙Xn))

(b) =
1

n

n∑
i=2

f(Xipbw
∇(X1 ⊙ · · · X̂i · · · ⊙Xn))

+
1

n

n∑
i=2

ρ(Xi)(f)pbw
∇(X1 ⊙ · · · X̂i · · · ⊙Xn) (∗)

(c) =− 1

n

n∑
j=2

fpbw∇(∇X1Xj ⊙X2 ⊙ · · · X̂j · · · ⊙Xn)

(d) =− 1

n

n∑
i=2

fpbw∇(∇Xi
X1 ⊙X2 ⊙ · · · X̂i · · · ⊙Xn)

− 1

n

n∑
i=2

ρ(Xi)(f)pbw
∇(X1 ⊙ · · · X̂i · · · ⊙Xn) (∗∗)

(e) =− 1

n

∑
2≤i ̸=j≤n

fpbw∇(∇Xi
Xj ⊙X1 ⊙ · · · X̂iX̂j · · · ⊙Xn)

We see that (∗) and (∗∗) cancel each other, and the remaining terms precisely reconstruct
f(pbw∇(X1⊙· · ·⊙Xn)). So we can indeed conclude that pbw∇ is a well-defined R-linear
map SymRL→ U(L,R). The important result is then:

Theorem 1.2.46 [LSX21, Thm 2.2] For any connection ∇, the map pbw∇ : SymRL→
U(L,R) is an isomorphism of filtered R-modules and induces an isomorphism of R-
algebras between SymRL and the graded quotient of U(L,R).





Chapter 2

Lie groupoid deformations and convolution
algebras

In this chapter we discuss the results obtained [KP21]. Apart from the last section of
this chapter, most is a transcription of this paper, with some extra remarks or exposition
which were deemed appropriate for this text.

The main results of this chapter are a relationship between the deformation theory of
a Lie groupoid and the deformation theory of its convolution algebra, and showing that
a localization principle in connection with the deformation theory of the Lie algebroid
can be interpreted as a ‘classical limit’ of our connection with the convolution algebra.

The deformation complex C•
def(G) for a Lie groupoid G ⇒ M was introduced by

Crainic, Mestre and Struchiner [CrMS20] to encode the deformation theory of the Lie
groupoid. We link it to the Hochschild complex C•

Hoch(AG,AG) of the groupoid. The con-
volution algebra, introduced first by Renault [Re80] using counterparts to Haar measures
and defined intrinsically using half-densities by Connes [Co82], forms the main algebra
encoding the group-like properties of the groupoid. Slightly changing the construction of
Connes to make it more digestible in connection to the deformation complex, we define
the convolution algebra using s-fibred densities. This allows us to properly define the
convolution product by the formula

(a1 ∗ a2)(g) =
�
h∈s−1(s(g))

a1(gh
−1)a2(h).

In the end, we define a cochain map

Φ: C•
def(G)→ C•

Hoch(AG,AG)

roughly by exhibiting deformation elements as vector fields (with parameters) and then
interpreting those as Hochschild cochains by applying a Lie-derivative-like procedure.
We will show that one of the main properties this chain map possesses is that it links
groupoid deformations to their induced algebra deformations. Following [CrMS20], we

41
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encounter a class of deformations of a Lie groupoid G which deform the division map m
on G s×s G to a family mϵ of division maps, inducing an element ξ ∈ C2

def(G) by

ξ(g, h) :=
d

dϵ

∣∣∣∣
ϵ=0

mϵ(gh, h),

and also a deformation element β ∈ C2
Hoch(AG,AG) describing the induced deformation

of the convolution product

β(a1, a2)(g) :=
d

dϵ

∣∣∣∣
ϵ=0

�
h∈s−1(s(g))

a1(mϵ(g, h))a2(h).

We will show that our chain map Φ satisfies

Φ(ξ) = β

establishing the map Φ as a key connection between the deformation theory of the Lie
groupoid and the deformation theory of the convolution algebra.

Furthermore, there is a localization procedure to relate the deformation theory of G
and that of its algebroid A(G). In the case where G is a Lie group G, this goes back
to the work of van Est [vE53a, vE53b], and in the general context of this deformation
complex the van Est map

V : C•
def(G)→ C•

def(A(G))

was defined by Crainic, Mestre and Struchiner [CrMS20]. By seeing the convolution
algebra AG as a deformation quantization of the Poisson manifold A(G)∗ induced by the
algebroid, following Landsman and Ramazan [LR01], we will show that we can see the
convolution algebra AG as a kind of deformation quantization of the Poisson manifold
A(G)∗ by quantization maps

qt : S(A(G)∗)→ AG.

We will use this to show that the van Est-map can be interpreted as a ‘classical limit’
of our map Φ:

V(c)(f1, . . . , fk) = Fµ

(
lim
t→0

(∑
σ∈Sk

(−1)σ 1

(it)k−1
Φ(c)(qt(fσ(1)), . . . , qt(fσ(k)))

))

where c ∈ Ck
def(G), f1, ..., fk ∈ S(A(G)∗) and Fµ is a Fourier transform.

Lastly, we discuss the relationship the deformation complex has with the adjoint
representation up to homotopy as defined by Abad and Crainic [AC13], and sketch ideas
on how to use our chain map, the Gerstenhaber structure on the Hochschild complex
and differential operators to obtain intrinsic models for the tensor powers of this repre-
sentation.
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2.1 The convolution algebra of a groupoid

Convolution algebras form a central tool for the study of the structure of given groups,
as they are in some sense the ‘easiest’ associative algebras encoding the group structure.
However, between certain classes of groups, there are many variants on the precise, or
common, definition of the convolution algebra, as we see in the following examples.

Example 2.1.1 (Finite groups) For a finite group G the space of all maps f : G→ C
constitutes the convolution algebra, spanned as a linear space by the functions δg for
g ∈ G which are 1 at g and 0 elsewhere. The product is then simply given by δg∗δh = δgh,
or, if one writes it internal to the definition with functions, as

(f1 ∗ f2)(g) :=
∑
h∈G

f1(gh
−1)f2(h).

It is a classical result of Webberburn [St12, Thm 5.5.6] that the convolution algebra
AG = {f : G→ C} contains all the information about the irreducible representations of
G:

AG
∼=
⊕
π∈Ĝ

End(Vπ).

Example 2.1.2 (Compact Lie groups) When G is a compact Lie group, the group
algebra does not convey the right information, indeed one loses the information about G
being a manifold, indeed here is it more natural to consider smooth functions C∞(G,C).
Then the sum from the previous example needs to be replaced by an integral. To do
this, we choose a Haar measure dλ and define the convolution product ∗ by

(f1 ∗ f2)(g) :=
�
G

f1(gh
−1)f2(h)dλ(h).

Square integrating against dλ induces a space of L2-functions on G with a convolution
product, and similar to the finite case the Peter-Weyl Theorem [Kn86, Thm 1.12] in
essence states that all the relevant information about the group is contained in the
convolution algebra

L2(G) ∼=
⊕̂

π∈Ĝ
End(Vπ).

Restricting this to smooth functions, Fourier inversion exhibits the smooth convolution
algebra as a subalgebra of the right hand side above, consisting of those functions which
are rapidly decreasing in a suitable fashion (see [NN90] for details).

However, even though Haar measures are well-defined up to a constant, picking a
Haar measure still involves making a choice. To counteract this, we need objects that are
canonically integrable, and this what densities do. To see how this makes the convolution
algebra of a Lie group a canonical object, and also how they help define the convolution
algebra of a Lie groupoid, we discuss densities along the fibres of a submersion.
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2.1.1 Densities along the fibres of a submersion

Definition 2.1.3 Let V be an n-dimensional vector space. A density on V is a map
a : ΛnV → R such that for every invertible linear map A ∈ GL(n,R) it holds that

a(Av1, ..., Avn) = | det(A)|a(v1, ..., vn).

Remark 2.1.4 The collection of densities on V forms a linear space that is 1-dimensional.

More generally, from a vector bundle E → M , one constructs a line bundle of den-
sities DE → M . Then if one has a vector bundle isomorphism Ψ: E → E covering a
diffeomorphism Φ: M →M , one obtains an action on the sections of DE, defined by

(Ψ∗a)x(v1, ..., vn) := aΦ(x)(Ψv1, ...,Ψvn).

Remark 2.1.5 If E →M is a rank n vector bundle and U1, U2 ⊂M are opens over which
E trivializes with transition function φ : U1 ∩ U2 → GL(n,R), then DE also trivializes
over U1 and U2 with transition function | det | ◦ φ : U1 ∩ U2 → R×. As such, we can
always find a cover of local trivializations for DE such that all the transition functions
are positive, so that we can conclude that for every vector bundle E → M the density
bundle DE →M admits a nowhere-vanishing section.

Remark 2.1.6 There is a clear connection between the bundle of densities of E and
the bundle of top forms ΛtopE∗, most canonically obtained by the absolute-linear map
sending a form ω to its absolute value |ω|.

Importantly, over domains where ΛtopE∗ trivializes, i.e. domains over which E is
oriented, there is an isomorphism between both bundles, canonical after choosing an
orientation. In this case one sends a top-form to its absolute value if it is positively
oriented and to minus its absolute value if it is negatively oriented.

Example 2.1.7 The case E = TM is of particular interest, because for a compactly
supported section a of DTM the integral

�
M
a is canonically defined. Indeed, differential

top-forms transform like the determinant, while coordinate transformations of the Lesbe-
gue integral introduce a factor of the absolute value of the determinant of the Jacobian.
To make integral of a top-form well-defined this results in the need of an atlas where all
determinants of the all Jacobians are positive, i.e. an orientation of M . Since we define
a density to transform with the absolute value of the determinant, this problem does not
arise, and hence integrals are canonically defined, even for non-orientable manifolds.

Further in the case E = TM , one obtains an action of a vector field X ∈ X(M) on
the densities on TM , namely:

Xa :=
d

dt

∣∣∣∣
t=0

(Φt
X)

∗a, (2.1)

where Φt
X denotes the flow of X.
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We will be mostly interested in densities along the fibers of a submersion. For this,
let f : M → N be a submersion, and denote by Df the bundle of densities of the vector
bundle ker df ⊂ TM . In this case, by doing the density-integration along every f -fiber
f−1(x) for x ∈ N the fiber integral�

f

: Γc(M,Df )→ C∞
c (N)

is canonically defined. Now for a vector field to act on Df in a canonical way, we need
to make sure that the flow of the vector field preserves the distribution ker(df).

Definition 2.1.8 Let f : M → N be a submersion. A vector field X ∈ X(M) is called
f -projectable if there is a vector field σ(X) ∈ X(N) such that df ◦ X = σ(X) ◦ f . We
denote the space of f -projectable vector fields by Xf (M). The projection σ(X) (which
is unique if X is f -projectable) will also be called the symbol of X.

Lemma 2.1.9 Let X ∈ Xf (M) be a complete vector field, the following hold:

� The flow of X preserves the fibres of f , and in turn the distribution ker(df).

� The formula (2.1) induces a well defined action of X on Γ(Df ).

Proof. The first item is directly checked by noting that Φt
X ◦ f = f ◦Φt

σ(X), and in turn

we see that if γ : R → M maps into a single fibre of f , so does Φt
X ◦ γ and hence dΦt

X

preserves ker(df) for every t.

The second item is then immediate since (2.1) is well-defined in this case, as (Φt
X)

∗

is well-defined as an operator on Γ(Df ) for all t ∈ R.

Remark 2.1.10 We can extend the action of complete vector fields to that of non-
complete vector fields. Indeed, while (Φt

X)
∗a may not be globally defined on any open

neighbourhood of t = 0, fixing a point p ∈ M , ((Φt
X)

∗a)p can be defined on an open
neighbourhood of t = 0.

In the next Lemma, we describe the locality of the action of projectable vector fields
on densities along the fibres. This is essentially the same statement and proof as the
properties of the Lie-derivative on differential forms.

Lemma 2.1.11 Let a ∈ Γ(Df ), y ∈ N and x ∈ f−1(y), and let X ∈ Xf (M) be an
f -projective vector field. If X vanishes on an open neighbourhood of x in f−1(y), then
(Xa)x = 0.

Proof. Let U ⊂ f−1(y) be an open neighbourhood of x such that X(p) = 0 for all p ∈ U .
Then Φt

X(p) = p for all p ∈ U . This means that for all v ∈ ker(df)x we have dΦt
X(v) = v

so that for all t it holds that ((Φt
X)

∗a)x = ax, so that (Xa)x = 0.

Remark 2.1.12 The previous Lemma allows us to define (Xa)x for x ∈ f−1(y), a ∈
Γ(Df ) and X ∈ Xf (M)|f−1(y). Indeed, we can choose Y ∈ Xf (M) to be an extension of
X to a global vector field and define (Xa)x = (Y a)x. The previous Lemma then implies
that this definition is independent of the choice of Y .
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2.1.2 The convolution algebra

Let G ⇒ M be a Lie groupoid. Heuristically, we want to write down a convolution
product which looks like

(f1 ∗ f2)(g) =
�
g1g2=g

f1(g1)f2(g2)

where f1, f2 are objects which are like functions G → C. Since not all arrows in G can
be multiplied, the rewriting to an integral over a single explicit variable changes a bit,
into the following

(f1 ∗ f2)(g) =
�
h∈s−1(s(g))

f1(gh
−1)f2(h)

From this heuristic picture we see that to define such a product, we need to have objects
which can be integrated along source fibres. This is precisely why we discussed densities
before, and so we set the underlying space of the convolution algebra to be compactly
supported smooth densities along the source fibres of the groupoid.

To define the convolution product, we first note that there is a canonical isomor-
phism between ker ds and t∗A(G) using right translations. In particular, for g ∈ G the
differential of the map dRg : s

−1(t(g))→ s−1(s(g)) at the unit u(t(g)) induces an isomor-
phism between ker(ds)u(t(g)) = At(g) and ker(ds)g. Using this identification, we define
the convolution product for two compactly supported densities a1, a2 ∈ Γc(Ds) by

(a1 ∗ a2)g(v1, ..., vn) :=
�
h∈s−1(s(g))

(a1)gh−1(v1, ..., vn)(a2)h.

In this notation v1, ..., vn ∈ At(g) = At(gh−1) so that the product in the integrand yields a
well-defined compactly supported density along s−1(s(g)) that can be integrated. Col-
loquially this product will be written as:

(a1 ∗ a2)(g) =
�
g1g2=g

a1(g1)a2(g2) =

�
h∈s−1(s(g))

a1(gh
−1)a2(h)

We define the convolution algebra AG of G to be AG = (Γc(Ds), ∗). This definition of
the convolution algebra differs slightly (but is isomorphic as a complex algebra) from
the more usual one in e.g. [Co82] using 1/2-densities along source and target fibres.
The usage of half-densities has the advantage that it allows for a C∗-algebra to be made
out of a completion of the convolution algebra, with the differential of the inverse map
ι : G → G inducing the involution. We do not need a C∗-structure in the discussion that
follows, so we stick to the construction using source-fibred densities.

2.1.3 Haar systems

If we want to align our convolution algebra more with known examples, where the
underlying space of the algebra is the space of smooth functions, we can backtrack the
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path we took in the example of compact Lie groups (2.1.2). In particular we can replace
integrating tensor-like objects with integrating functions against a measure. This leads
to the notion of (right) Haar-systems.

Definition 2.1.13 A right Haar-system on a groupoid G ⇒M is a collection of measures
{λx}x∈M , where λx is a Borel measure on s−1(x), that satisfies three properties:

� (Positivity) For every x ∈ M and every non-empty open subset U ⊂ s−1(x) it
holds that λx(U) > 0;

� (Right-invariance) For every g ∈ G and every f ∈ C∞
c (G) it holds that

�
s−1(t(g))

f(hg)dλt(g)(h) =

�
s−1(s(g))

f(h)dλs(g)(h);

� (Smoothness) For every f ∈ C∞
c (G) it holds that the function λ(f) on M defined

by

λ(f)(x) :=

�
s−1(x)

f(h)dλx(h)

is smooth.

Remark 2.1.14 The second property is essentially the same as asking for the right
translation by g to be a measure preserving diffeomorphism

Rg : (s
−1(t(g)), λt(g))→ (s−1(s(g)), λs(g)).

If we have chosen a Haar system we can define a convolution product on the space
of compactly supported functions C∞

c (G) by

(f1 ∗ f2)(g) :=
�
s−1(s(g))

f1(gh
−1)f2(h)dλ

s(g)(h)

Now given a positive section a ∈ Ds, we can cook up a collection of Borel measures on
the source fibres by setting

λxa(U) :=

�
U

a|U

With this definition, the last property of a Haar system is automatic since a is a smooth
section. The first property is taken care of if the section a has no zeroes. The second
property is taken care of by this Lemma of which the proof is clear:

Lemma 2.1.15 Given a ∈ Γ(Ds), the collection of measures λa is right-invariant if and
only if a(h) depends only on t(h) under the right trivialization ker(ds) ∼= t∗A(G), i.e. is
determined by a section of DA(G) →M .
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This process can essentially be reversed, so that given a Haar system λ we find
a density a inducing it. It is then clear that the map f 7→ fa is an isomorphism
between C∞

c (G) with the λ-convolution product and Γc(Ds) with the intrinsic convolution
product.

Note however, that this isomorphism does not preserve the action of s-projectable
vector fields, since for any X ∈ Xs(G), f ∈ C∞

c (G) and a ∈ Γ(Ds) we have

X(fa) = X(f)a+ fXa.

In the end we see that any nowhere vanishing section of DA(G) →M induces a Haar
system. As any density bundle has a nowhere vanishing section, we obtain the following
result, originally due to Westman [We67].

Proposition 2.1.16 Any Lie groupoid G ⇒M admits a right Haar system.

2.1.4 Examples

We discuss some examples.

Example 2.1.17 (Trivial groupoids) For a trivial groupoidM ⇒M , the source map
is a diffeomorphism, so ker(ds) is the zero bundle. By convention Λ0V = R for any
vector space V , and so Ds is a trivializable line bundle, with canonical trivialization
given by the section that sends every point to the identity R → R. This trivialization
induces an isomorphism Γc(Ds) ∼= C∞

c (M). Under this isomorphism, the convolution
product becomes simply the commutative product

(f1 ∗ f2)(x) = f1(x)f2(x).

Note that a Haar system on this groupoid is a collection of non-zero measures on the
point spaces {x}, that ‘vary smoothly’ with x, i.e. nothing more than a strictly positive
smooth map on M . Consequently, we see that the isomorphism above is the same as
the isomorphism induced by the Haar system that is constant equal to 1.

Example 2.1.18 (Étale groupoids) Let G ⇒ M be an étale groupoid. Similar to
the example above, the source-fibres density bundle canonically trivializes, and so again
Γc(Ds) ∼= C∞

c (G), with the convolution product in this case given by

(f1 ∗ f2)(g) =
∑

h∈s−1(s(g))

f1(gh
−1)f2(h)

where the integral is replaced by a sum because source fibres are discrete, and furthermore
this sum is finite since f1 and f2 have compact support (and hence finite support along
every source or target fibre).

Similar to the example above, we can identify Haar systems with strictly positive
continuous functions on G that are right invariant, and the canonical isomorphism is
associated to the function that is constant equal to 1.
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Example 2.1.19 (Lie groups) Since for a Lie group G the source map is the trivial
map, the source-fibred densities are simply the densities of G as a manifold.

As for the convolution product the discussion is generally the same as for compact
Lie groups discussed previously. Here, the choice of a Haar system is nothing but a Haar
measure, which is equivalent to a left-invariant section of the density bundle. The con-
volution algebra is in this case normally represented by compactly supported functions
under the choice of a Haar measure λ with convolution product

(f1 ∗ f2)(g) =
�
G

f1(gh
−1)f2(h)dλ(h).

Example 2.1.20 (Action groupoids) For the action groupoid M × G ⇒ M of a
manifold M with a right G-action, it holds that ker(ds)(x,g) = TgG, and so source-fibred
densities are simply densities on G, parametrized by M .

For this case, Haar systems are simply choices of measures λx on G for every x ∈M
such that λxg = λx · g. Of course, simply choosing λx = λ for λ some Haar measure on
G suffices, and we get a quasi-canonical isomorphism between the convolution algebra
AM×G of M ×G and C∞

c (M ×G) where the convolution product is then given by

(f1 ∗ f2)(x, g) =
�
G

f1(x, h)f2(xh, h
−1g)dλ(h).

Example 2.1.21 (Pair groupoids) For a pair groupoid M ×M ⇒ M we have that
ker(ds)(x,y) = TxM so that Γc(Ds) = Dc(M)⊗̂C∞

c (M). Now to calculate the convolution
product we pick a1, a2 ∈ Dc(M) and f1, f2 ∈ C∞

c (M) and see that

((a1 ⊗ f1) ∗ (a2 ⊗ f2))(x, y)(v1, ..., vn) =
�
M

a1(x)(v1, ..., vn)f1(z)a2(z)f2(y)dz

which simplifies to saying that

(a1 ⊗ f1) ∗ (a2 ⊗ f2) =
(�

M

f1a2

)
(a1 ⊗ f2).

By the Schwarz Kernel Theorem, we can see elements of this convolution algebra as
kernels of the smoothing operators on M . Under this identification the convolution
product is precisely given by composition of smoothing operators, see also [vEY19].

2.2 The deformation complex of a Lie groupoid

The deformation complex of a groupoid, as defined by [CrMS20], is the model for defining
cohomology classes associated to deformation problems. We discuss a slightly altered
variant of this complex (c.f. Remark 2.2.2 below) that fits into the picture we are
sketching between deformations of groupoids and that of convolution algebras.
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Definition 2.2.1 For k ≥ 1 define Ck
def(G) to be the set of sections of the vector bundle

pr∗1TG over G(k), that are s-projectable in the sense that there is a section sc of the vector
bundle t∗TM over G(k−1) satisfying

ds(c(g1, ..., gk)) = sc(g2, ..., gk).

The differential δ : Ck
def(G)→ Ck+1

def (G) is defined by setting:

(δc)(g1, ..., gk+1) :=− dm(c(g1g2, g3, ..., gk+1), c(g2, ..., gk+1))

+
k∑

i=2

(−1)ic(g1, ..., gigi+1, ..., gk+1) + (−1)k+1c(g1, ..., gk).

The deformation complex is defined by the graded vector space

C•
def(G) :=

⊕
k≥1

Ck
def(G)

equipped with the differential δ, its cohomology is denoted by H•
def(G).

Remark 2.2.2 It is possible, as in [CrMS20], to extend the deformation complex in de-
gree zero by putting C0

def(G) = Γ(M,A(G)) with differential defined for α ∈ Γ(M,A(G))
by

(δα)(g) := (dRg)(α(t(g)) + (d(lg ◦ ι))(α(s(g))
We exclude these elements in degree 0 because, as we will see, these elements cannot
correspond to Hochschild 0-cochains.

Remark 2.2.3 The fact that the differential is well-defined (i.e. that δc also has a
symbol), follows from the fact that one immediately checks that the following describes
a symbol for δc:

sδc(g2, ..., gk+1) =− dt(c(g2, ..., gk+1))

+
k∑

i=2

(−1)isc(g2, ..., gigi+1, ..., gk+1)

+ (−1)k+1sc(g2, ..., gk).

Remark 2.2.4 It is shown in [CrMS20, Lem 2.2] that the map δ is indeed a differential,
i.e. δ2 = 0, by using the associativity of the multiplication.

Remark 2.2.5 It follows from the definition above that the closed elements in degree 1
are exactly the multiplicative vector fields, c.f. [CrMS20, §4.3]. These are vector fields
X ∈ X(G) that are s and t-projectable to the same image in X(M), satisfying the
following equation:

dm(g,h)(X(g), X(h)) = X(gh),

where we used that the tangent space to the nerve G(2) is given by

T(g,h)G(2) = {(v, w) ∈ TgG × ThG : ds(v) = dt(w)}.
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For certain purposes, most importantly applying the Van Est map, it is often nec-
essary to impose more strict relations on elements c ∈ Ck

def(G) and their symbol sc. To
this end we also introduce the normalized deformation complex:

Definition 2.2.6 The normalized deformation complex is the subcomplex Ĉ
•
def(G) of

C•
def(G) consisting of those elements c ∈ Ck

def(G) which satisfy

c(1x, g2, ..., gk) = du(sc(g2, ..., gk))

and

sc(g2, ..., 1x, ..., gk) = 0,

where the unit is put in any of the k − 1 slots.

It is shown in [CrMS20, Prop 11.8] that the inclusion of the normalized deformation
complex into the whole deformation complex is a quasi-isomorphism.

2.2.1 Examples

Example 2.2.7 (Trivial groupoids) For a trivial groupoid G = M ⇒ M , the k-
nerve G(k) is always canonically diffeomorphic to M (indeed there are only identities,
so every chain of composable arrows is a chain of identities). From this it follows that
pr∗1TG → G(k) is simply TM → M with every section having a symbol (namely itself).
We conclude that

Ck
def(G) = X(M)

for all k ≥ 1.

As for the differential we have that dm(v, v) = v for every v ∈ TG, so that the
differential δ : Ck

def(G)→ Ck+1
def (G) is given by

δ =

{
id k odd
0 k even

and we conclude that the deformation cohomology of M ⇒M is concentrated in degree
1 where it is given by X(M).

Example 2.2.8 (Étale groupoids) More generally for étale groupoids, every chain in
the deformation complex is uniquely determined by its symbol, since

s(g1, ..., gk) = (dsg1)
−1(sc(g2, ..., gk))

As such, for an étale groupoid G ⇒ M we have an equivalent description of the
deformation complex as

Ck
def(G) = Γ(t∗TM → G(k−1))
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where t∗TM → G(0) means TM →M . The formula for the differential in this description
follows from the formula for the symbol of the differential in the general deformation
complex and is given for a ∈ Γ(t∗TM → G(k−1)) by

(δa)(g1, ..., gk) =− dtg1((dsg1)−1(a(g2, ..., gk))

−
k−1∑
i=i

(−1)ia(g1, ..., gigi+1, ..., gk)

− (−1)ka(g1, ..., gk−1),

so we see that -up to a sign in the differential and a shift of 1 in degrees- the deformation
complex of G is given by the groupoid cohomology of G with coefficients in TM → M ,
where TM is the representation of G as given in Example 1.2.22, with g acting Ts(g)M →
Tt(g)M by

g · v = dtg(dsg−1(v)).

In particular we have
H•

def(G) ∼= H•−1
diff (G, TM).

We also note that for this and the previous example, the not-considered degree 0 part
mentioned in Remark 2.2.3 is trivial since the Lie algebroid is trivial.

Example 2.2.9 (Lie groups) For Lie groups, we note that the symbol-property is
void, since ds = 0, so the deformation complex consists of all sections of the bundle
pr∗1TG → Gk. Using the right-trivialization of TG, we again rewrite the complex to
something that we already know

Ck
def(G) = C∞(G×k, g)

with differential given by

(δf)(g1, ..., gk+1) =Adg1(f(g2, ..., gk+1))

+
k∑

i=1

(−1)if(g1, ..., gigi+1, ..., gk+1)

+ (−1)k+1f(g1, ..., gk)

and so we see that the deformation complex is nothing more than the group cohomology
complex with values in the adjoint representation, in particular

H•
def(G)

∼= H•(G,Ad).

Example 2.2.10 (Action groupoids) For the action groupoid G = G ×M ⇒ M of
a manifold M with a left G-action, we have natural inverse diffeomorphisms between
Gk ×M and G(k) given by

(g1, ..., gk, x) 7→
(
g1 · · · gkx

(g1,g2···gkx)←−−−−−−− g2 · · · gkx← · · · ← gkx
(gk,x)←−−− x

)
,
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(
x0

(g1,x1)←−−−− x1 ← · · · ← xk−1
(gk,xk)←−−−− xk

)
7→ (g1, ..., gk, xk).

Using this description, and using the right-trivializations of the previous example, the
fibre of the bundle pr∗1TG → G(k) over (g1, ..., gk, x) is given by g⊕Tg2···gkxM . The symbol-
property now means that the TM -factor is only dependent on (g2, ..., gk, x), while the
g-factor is completely free. In the end we have the description of the deformation complex

Ck
def(G) ∼= C∞(Gk, C∞(M, g))⊕ C∞(Gk−1,X(M)),

where for F1 ∈ C∞(Gk, C∞(M, g)), F2 ∈ C∞(Gk−1,X(M)), the deformation element
c(F1, F2) associated to it is given by

c(F1, F2)(g1, ..., gk, x) = (dRg1(F1(g1, ..., gk, x)), F2(g2, ..., gk, x)(g2 · · · gkx))

as elements of Tg1G⊕ Tg2···gkxM .
Then we have

δ(F1, F2) = (δ1,1F1, δ
1,2F1 + δ2,2F2)

where the parts of the differential are given by

(δ1,1F1)(g1, ..., gk+1) =g1 · F1(g2, ..., gk+1)

+
k∑

i=1

(−1)iF (g1, ..., gigi+1, ..., gk+1)

+ (−1)k+1F (g1, ..., gk),

(δ1,2F1)(g1, ..., gk, x) =ξF1(g1,...,gk)(x)(x),

(δ2,2F2)(g1, ..., gk) =− g1 · F2(g2, ..., gk)

+
k−1∑
i=1

(−1)i+1F2(g1, ..., gigi+1, ..., gk)

+ (−1)k+1F2(g1, ..., gk−1).

So we see that the deformation complex in this case inherits a lot of structure from the
group cohomology of G with coefficients in both X(M) and C∞(M, g).

Example 2.2.11 (Pair groupoids) Next we consider a pair groupoid G =M×M ⇒M
with s(x, y) = y. In this case the k-nerve G(k) is canonically isomorphic to M×(k+1) and
we may write a section of pr∗1TG → G(k) as

c(x1, ..., xk+1) = (X1(x1, ..., xk+1), X2(x1, ..., xk+1))

with X1(x1, ..., xk+1) ∈ Tx1M and X2(x1, ..., xk+1) ∈ Tx2M .
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The symbol-propery in this case translates to X2 not depending on x1, and so we
can write the deformation complex as

Ck
def(G) ∼= Γ(pr∗1TM →M×(k+1))⊕ Γ(pr∗1TM →M×k)

and using this description, the differential becomes

δ(X1, X2)(x1, ..., xk+2) =

(
k+2∑
i=2

(−1)i+1X1(x1, ...x̂i..., xk+2),

X1(x2, ..., xk+2) +
k+2∑
i=3

(−1)i+1X2(x2, ...x̂i..., xk+2)

)
.

One checks that if (X1, X2) ∈ C1
def(G) then δ(X1, X2) = 0 if and only if X1(x, y) only

depends on x and X2(x) = X1(x, y). Furthermore, if (X1, X2) ∈ Ck
def(G) for k > 1 with

δ(X1, X2) = 0, then (X1, X2) = δ(X2, 0). In particular

Hk
def(G) ∼=

{
X(M) k = 1

0 else
.

2.2.2 Deformations of groupoids

We briefly discuss the results of Crainic, Mestre and Struchiner relating actual deforma-
tions of groupoids to elements of the deformation complex we have just written down.

As written in [Me16, Prop 5.67], the structure of a Lie groupoid on a pair of spaces
(G,M) can also be seen as a tuple (s,m) of a smooth submersion s : G → M and a
smooth map m : G s×s G → G taking the rôle of source and division, satisfying the
obvious relations.

Definition 2.2.12 An s-constant deformation of a groupoid (G,M, s,m) is a family of
division maps (mϵ)ϵ∈I for I an open interval containing 0 that is smooth in the sense
that the induced map G s×sG×I → G×I is smooth, such that (s,mϵ) defines a groupoid
structure for every ϵ ∈ I, and such that m0 = m.

The relevant result of [Me16, Lem 5.31] is then

Proposition 2.2.13 For an s-constant deformation (mϵ)ϵ∈I , the element ξ ∈ C2
def(G)

given by

ξ(g, h) :=
d

dϵ

∣∣∣∣
ϵ=0

mϵ(gh, h)

defines a closed element of C2
def(G), whose cohomology class [ξ] ∈ H2

def(G) only depends
on the equivalence class of the deformation.

Remark 2.2.14 There is a way to assign deformation classes to deformations of the
groupoid that are not s-constant, as is done in [Me16, Prop 5.38]. The construction
there uses certain choices to reduce to the s-constant case in a way that is invariant
under choices after passing to cohomology.
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2.3 From deformation elements to Hochschild chains

As we saw in the last section, the deformation complex of a groupoid G ⇒ M indeed
encodes deformations of a Lie groupoid. On the other hand, the Hochschild complex
C•

Hoch(AG,AG) essentially encodes the deformation theory of the associative algebra that
is the convolution algebra of said Lie groupoid.

Now, an s-constant deformation of a Lie groupoid is nothing more than a deforma-
tion of the division map, and in turn quite canonically induces a deformation of the
convolution product (indeed, the fact that the deformation is s-constant means that the
underlying vector space Γc(Ds) does not change).

This suggests a close connection between both complexes, and in this section we
make this precise by defining a cochain map from the deformation complex of G to the
Hochschild complex of the convolution algebra AG.

As a first hint that the correspondence is indeed encoded by a chain map, we make
the following observation:

Proposition 2.3.1 Let G ⇒M be a Lie groupoid. Multiplicative vector fields on G act
as derivations on the convolution algebra.

Proof. Recall the definition of a multiplicative vector field from Remark 2.2.5. Since
a multiplicative vector field on G is by definition s-projectable to M , its action on an
s-density is well-defined by the discussion in Section 2.1.1, c.f. equation (2.1).

The key ingredient in the proof is the observation that the flow of a multiplicative
vector field is a groupoid map, that is if X ∈ X(G) is a multiplicative vector field then
Φt

X(gh
−1) = Φt

X(g)Φ
t
X(h)

−1 whenever defined. A simple calculation when X is complete
then shows

X(a1 ∗ a2)(g) =
d

dt

∣∣∣∣
t=0

(a1 ∗ a2)(Φt
Xg)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(Φt

Xg))

a1((Φ
t
Xg)h

−1)a2(h)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(g))

a1((Φ
t
Xg)(Φ

t
Xh)

−1)a2(Φ
t
Xh)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(g))

a1(Φ
t
X(gh

−1))a2(Φ
t
Xh)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(g))

a1(Φ
t
X(gh

−1))a2(h)

+
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(g))

a1(gh
−1)a2(Φ

t
Xh)

= (Xa1 ∗ a2)(g) + (a1 ∗Xa2)(g)

which proves the proposition.
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Note that since we take the derivative at t = 0 and since a2 has compact support we
may pretend that X is complete along the source fibers (note that if G is not source-
proper this may fail). Indeed, fixing g, we first find ϵ so that Φt

X(g) is defined for
all −ϵ ≤ t ≤ ϵ. Then let K be the compact set which is the support of a2 along
s−1(s(Φ

[−ϵ,ϵ]
X (g)) (this is the intersection of a compact with a closed and hence compact).

Next fix ϵ′ ≤ ϵ such that Φt
X is defined on K for all −ϵ′ ≤ t ≤ ϵ′ (this is possible since

K is compact). Then, in the second line of the calculation above, for every t ∈ [−ϵ′, ϵ′]
the only h that contribute to the integral are h inside K, for which Φt

X is defined, and
hence we may change variables. From this point on the calculation is well-defined and
the abuse of notation is resolved.

2.3.1 Defining a chain map

In the following we write C•
Hoch(AG,AG) for the Hochschild complex of the convolution

algebra AG with values in the bimodule AG with differential bHoch. Even though the
theory below is well-defined for the algebraic Hochschild complex (using algebraic tensor
products and Hom), it is more natural to consider AG as an inductive limit of Fréchet
spaces and use completed tensor products and continuous homomorphism to define the
continuous version of the Hochschild cochain complex. We refer to [NPPT06] for more
details, the cochain map below naturally extends to this topological Hochschild complex.

We now describe the cochain map C•
def(G)→ C•

Hoch(AG,AG).

Definition 2.3.2 The map Φ: C•
def(G)→ C•

Hoch(AG,AG) is defined for c ∈ Ck
def(G) by

(Φc)(a1, ..., ak)(g) :=

�
g1···gk=g

(c(−, g2, ..., gk)a1)(g1)a2(g2) · · · ak(gk).

This formula should be read as an inductive convolution (first over g1g2 = h1, then over
h1g3 = h2, et cetera).

Remark 2.3.3 The formula for Φ above is justified by Lemma 2.1.11: c ∈ Ck
def(G) is s-

projectable and therefore, if we keep (g2, ..., gk) ∈ G(k−1) fixed, the action of c(−, g2, ..., gk)
on a ∈ AG along s−1(t(g2)) is well-defined. In particular (c(−, g2, ..., gk)a)(g1) is a well-
defined density at g1 for (g1, ..., gk) ∈ G(k).

Showing that Φ is a chain map is done by a calculation similar to the one in Theo-
rem 2.3.1. In particular we need to deal with the term Φt

X(g)(Φ
t
X(h))

−1 for divisible g
and h when t goes to 0. In the mulitplicative case this is precisely Φt

X(gh
−1), but for

general deformation elements we need a more general description.

Streamlining this, we introduce the notationmc for c ∈ C•
def(G) for the term involving

dm in the formula for δc. That is, we set:

(mc)(g1, ..., gk+1) := dm(c(g1g2, ..., gk+1), c(g2, ..., gk+1)).
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We notice that this formula also makes sense along s-fibres. In particular, if X ∈
Xs(G)s−1(x) is an s-projectable vector field along a single s-fibre, the formula

(mX)(g1, g2) = dm(X(g1g2), X(g2))

defines an s-projectable vector field defined along {(g1, g2) ∈ G(2) : s(g2) = x}. With
this in mind, we have the following relation:

m(c(−, g3, ..., gk+1))(g1, g2) = (mc)(g1, ..., gk+1),

which makes sure that for dealing withmc, we only need to deal with the first two entries
g1 and g2 as variables, while the other entries g3, ..., gk can be seen as parameters.

The key Lemma is then as follows:

Lemma 2.3.4 Let x ∈ M , X ∈ Xs(G)|s−1(x) and a1, a2 ∈ AG. Then for all h ∈ s−1(x)
we have mX(−, h) ∈ Xs(G)|s−1(t(h)) and for g ∈ s−1(x) we have

X(a1 ∗ a2)(g) = (a1 ∗Xa2)(g) +
�
h∈s−1(x)

((mX(−, h))a1)(gh−1)a2(h).

Proof. By definition we have:

mX(gh−1, h) = dm(X(g), X(h)) ∈ Tgh−1G

with s-projection

ds(mX(gh−1, h)) = dt(X(h))

so indeed mX(−, h) ∈ Xs(G)|s−1(t(h)).

Next we assume that X is a globally defined s-projectable vector field (otherwise, we
choose an extension at this point). Then we know that mX(−, h) is generated by the
path Φt through s-fibres preserving diffeomorphisms of G, which along s−1(t(h)) looks
like

Φt(gh
−1) = Φt

X(g)(Φ
t
X(h))

−1,

so that we see that:

�
h∈s−1(x)

((mX(−, h))a1)(gh−1)a2(h) =
d

dt

∣∣∣∣
t=0

�
h∈s−1(x)

a1(Φ
t
X(g)(Φ

t
X(h))

−1)a2(h).
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Using this we calculate X(a1 ∗ a2)(g):

X(a1 ∗ a2)(g) =
d

dt

∣∣∣∣
t=0

(a1 ∗ a2)(Φt
Xg)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(s(Φt

Xg))

a1((Φ
t
Xg)h

−1)a2(h)

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(x)

a1((Φ
t
Xg)(Φ

t
Xh)

−1)a2(Φ
t
X(h))

=
d

dt

∣∣∣∣
t=0

�
h∈s−1(x)

a1((Φ
t
Xg)(Φ

t
Xh)

−1)a2(h)

+
d

dt

∣∣∣∣
t=0

�
h∈s−1(x)

a1(gh
−1)a2(Φ

t
Xh)

=

�
h∈s−1(x)

((mX(−, h))a1)(gh−1)a2(h)

+ (a1 ∗Xa2)(g),

which finishes the proof.

Note that we run into the same problem as in Theorem 2.3.1 as before, namely that
Φt

X need not be defined on the whole s-fiber. However, we use change of variables using
Φt

X on an integral where one of the terms is a2(h). Furthermore, we are only interested
in the behaviour for small t, so we only need a find an ϵ > 0 such that for all −ϵ ≤ t ≤ ϵ
we have that Φt

X(h) is defined whenever h is in the support of a2. Similar to Proposition
2.3.1, since the support of a2 is compact, such an ϵ can be found, and we may carry the
abuse of notation with Φt

X as if it is globally defined.

Proposition 2.3.5 The map Φ: C•
def(G) → C•

Hoch(AG,AG) is a morphism of cochain
complexes.

Proof. This proof is essentially writing out all the parts of the Hochschild differential
and applying some bookkeeping. We start with c ∈ Ck

def(G) for k ≥ 1, and write down
the definition of the various parts of bHoch(Φc).

(a1 ∗ (Φc)(a2, ..., ak+1))(g) =

=

�
g1···gk+1=g

a1(g1)(c(−, g3, ..., gk+1)a2)(g2)a3(g3) · · · ak+1(gk+1), (⋆)

− (Φc)(a1 ∗ a2, a3, ..., ak+1)(g) =

= −
�
h·g3···gk+1=g

(c(−, g3, ..., gk+1)(a1 ∗ a2))(h)a3(g3) · · · ak+1(gk+1), (⋆⋆)
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k∑
i=2

(−1)i(Φc)(a1, ..., ai ∗ ai+1, ..., ak+1)(g) =

=
k∑

i=2

�
g1···gk+1=g

(−1)i(c(−, g2, ..., gigi+1, ..., gk+1)a1)(g1)a2(g2) · · · ak+1(gk+1),

(−1)k+1((Φc)(a1, ..., ak) ∗ ak+1)(g) =

= (−1)k+1

�
g1···gk+1=g

(c(−, g2, ..., gk)a1)(g1)a2(g2) · · · ak+1(gk+1).

The latter two terms we recognize from the differential of the deformation complex, while
the first two terms can be rewritten to:

(⋆) + (⋆⋆) =

�
hg3···gk+1=g

((a1 ∗ (c(−, g3, ..., gk+1)a2)− c(−, g3, ..., gk+1)(a1 ∗ a2)) (h)

a3(g3) · · · ak+1(gk+1).

Then by Lemma 2.3.4 we can rewrite this to

(⋆) + (⋆⋆) =−
�
g1···gk+1=g

((mc)(−, g2, ..., gk+1)a1)(g1)a2(g2) · · · ak+1(gk+1)

Putting this all together we conclude that:

(bHoch(Φc))(a1, ..., ak+1)(g) = (Φ(δc))(a1, ..., ak+1)(g),

so we see that Φ is indeed a chain-map.

2.3.2 Properties of the chain map

Comparing deformation classes

As we described before, an s-constant deformation mϵ of a Lie groupoid G induces a
closed deformation element ξ ∈ C2

def(G) given by

ξ(g, h) =
d

dϵ

∣∣∣∣
ϵ=0

mϵ(gh, h).

As mentioned, such a family of division maps also induces a deformation of the convo-
lution product. Indeed, for every ϵ we have that mϵ is a division map to the original
s, so that the convolution algebra of groupoid Gϵ has the same underlying vector space
Γc(Ds). The deformation of the product then naturally takes its form as a Hochschild
2-cycle for AG given by

β(a1, a2)(g) =
d

dϵ

∣∣∣∣
ϵ=0

�
h∈s−1(s(g))

a1(mϵ(g, h))a2(h).
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So out of one s-constant deformation of our groupoid, we end up with canonical closed
elements of the domain and codomain of our chain map respectively. They are related
as follows:

Proposition 2.3.6 The chain map Φ sends ξ to β.

Proof. This follows from the observation that if s(h) = s(g), then

ξ(gh−1, h) =
d

dϵ

∣∣∣∣
ϵ=0

me(g, h).

With this we see that

β(a1, a2)(g) =

�
h∈s−1(s(g))

(ξ(−, h)a1)(gh−1)a2(h) = Φ(ξ)(a1, a2)(g),

exactly as needed.

Remark 2.3.7 In [CrMS20, Prop 5.12] a deformation cocycle ξ ∈ C2
def(G) is assigned to

any deformation (in particular those who are not s-constant), such that the cohomology
class is canonical. Then Φ(ξ) induces a Hochschild cohomology class of degree 2, which
is not immediately linked to a deformation of the convolution product, since if the source
map changes the underlying space of the convolution algebra also changes as it consists
of densities along the s-fibers. Indeed, in [CrMS20] the authors need an auxillary choice
of a vector field on the larger deformation space to define the cocycle. This choice of
an auxillary vector field is precisely what is needed to compare the various convolution
algebras when the source map varies, and in this way Φ maps [ξ] ∈ H2

def(G) to the
Hochschild class of the deformation of the convolution product thus defined.

The case k = 0

For the chain map between C•
def(G) and C•

Hoch(AG,AG) we have just defined, a natural
question is whether it can be extended to degree k = 0, c.f. Theorem 2.2.2. For this,
one must find a a map Φ0 : Γ(A) → AG which extends the chain map Φ. This is only
possible if Φ(δ(α)) ∈ Der(AG) is an inner derivation for every α ∈ Γ(A).

Intuitively it is clear that is should not be always possible, since the derivation
Φ(δ(α)) includes taking derivatives, while an inner derivation ∂H(a) only includes inte-
grations. The following example presents a concrete counterexample:

Example 2.3.8 Consider the pair groupoid R × R ⇒ R. For this groupoid, a bundle
of densities is trivialized by |dx|, so that every compactly supported density is of the
form f |dx| for a compactly supported smooth function f . Furthermore, a section of the
algebroid is simply a vector field X ∈ X(R) and for this example we take X = ∂

∂x
. We

have

δ(X)(x, y) = (X(x), X(y))
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so that in this case δ(X) = ∂
∂x

+ ∂
∂y
. This vector field has flow

Φt
δ(X)(x, y) = (x+ t, y + t).

Next we consider Φ
(
δ
(

∂
∂x

))
, so we look at the action of ∂

∂x
+ ∂

∂y
on a density f(x, y)|dx| ∈

AR×R. We see

(Φt
δ(X))

∗(f(x, y)|dx|) = f(x+ t, y + t)|d(x+ t)| = f(x+ t, y + t)|dx|,

so that:

Φ(δ(X))(f |dx|) =
(
∂f

∂x
+
∂f

∂y

)
|dx|.

Now suppose that there is some g|dx| ∈ AR×R, such that Φ(δ(X)) = ∂H(g|dx|). Then
since always ∂H(g|dx|)(g|dx|) = 0, we see that:

∂g

∂x
+
∂g

∂y
= 0

so that
g(x+ t, y + t) = g(x, y).

Since g has to be compactly supported, the only possibility is that g = 0, which is
obviously not a solution to Φ(δ(X)) = ∂H(g|dx|). We conclude that Φ(δ(X)) is not an
inner derivation.

In fact, using the fact that Lie derivatives preserve support, we can deduce that Φ(X)
can never be an inner derivation for any X ∈ Xs(G).

Proposition 2.3.9 Let D ∈ Hom(AG,AG) be a non-zero Hochschild-1-cochain. If D
satisfies supp(Da) ⊂ supp(a), then there is no b ∈ AG such that D = [−, b].

Proof. Suppose by contrary that there is a b such that D = [−, b]. Let g ∈ G and let
a ∈ AG be supported arbitrarily close to g. For h ∈ t−1(s(g)) outside of the isotropy of
s(g) we obtain:

(a ∗ b)(gh) =
�
k

a(gk−1)b(kh)

which, using that is chosen to be supported arbitrarily close to g behaves like a(g)b(h).
where we use that a is only non-zero close enough to g. For the other part of the
commutator we have

(b ∗ a)(gh) =
�
k

b(gk−1)a(kh),

which is 0, since there is no way to let kh come arbitrarily close to g since h is not in
the isotropy of s(g).

Since supp(Da) ⊂ supp(a) we see that (a∗b)(gh) also has to be supported arbitrarily
close to g, so that b is identically zero outside of the isotropy of G.
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If we look at an isotropy element h of G we see that the second term acts like
b(ghg−1)a(g), so that we see that b is invariant under conjugation. However, if b is
invariant under conjugation we conclude that b ∈ Z(AG), which is in contradiction to
the fact that D is non-zero. We conclude that there is no b that solves D = [−, b].

Corollary 2.3.10 If X ∈ C1
def(G) is non-zero, then Φ(X) can never be an inner deriva-

tion.

Proof. This follows from the previous proposition by the observation that Φ(X) is local
since it involves taking derivatives and the fact that Φ is easily observed to be injective.

Compatibility with the characteristic map to cyclic cohomology

Recall the differentiable cohomology complex (C•
diff(G), δ) of the groupoid G given by

Ck
diff(G) := C∞(G(k)) with differential

δφ(g1, . . . , gk+1) =φ(g2, . . . , gk+1)

+
k∑

i=1

(−1)iφ(g1, . . . , gigi+1, . . . , gk)

+ (−1)k+1φ(g1, . . . , gk).

We can turn this cochain complex into a DGA by introducing the product ∪ : Ck
diff(G)×

Cl
diff(G)→ Ck+l

diff (G) given by

(φ ∪ ψ)(g1, . . . , gk+l) := φ(g1, . . . , gk)ψ(gl+1, . . . , gk+l).

In [CrMS20] it is shown that by replacing φ by a deformation cochain c ∈ Ck
def(G) in

the above formula, C•
def(G) becomes a right module over C•

diff(G). On the other hand,
in [PPT15], the smooth groupoid cohomology was used to construct cyclic cocycles. In
this section we shall see that these two structures are compatible with each other under
the cochain map Φ to Hochschild cohomology of Section 2.3.1. We start by rewriting
the map to cyclic cohomology of [PPT15] in the way described below.

First recall that the Hochschild cochain complex C•(AG,AG) can be given a DGA
structure by introducing the product ∪ : Ck(AG,AG)× Cl(AG,AG)→ Ck+l(AG,AG)

(D ∪ E)(a1, . . . , ak+l) := D(a1, . . . , ak) ∗ E(ak+1, . . . , ak+l).

Construct a map Φ0 : C
•
diff(G)→ C•(AG,AG) by

Φ0(φ)(a1, . . . , ak)(g) :=

�
g1···gk=g

φ(g1, . . . , gk)a1(g1) · · · ak(gk). (2.2)

Lemma 2.3.11 The map Φ0 : (C
•
diff(G), δ,∪)→ (C•(AG,AG), bHoch,∪) is a morphism of

DGA’s.
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Proof. This is a straightforward computation.

With this Lemma we can also equip the Hochschild complex C•(AG,AG) with a mod-
ule structure over C•

diff(G) by using the cup product on Hochschild cochains. Explicitly,
this module structure is given by

D · φ := D ∪ Φ0(φ).

We then have:

Proposition 2.3.12 The cochain map Φ: C•
def(G) → C•

Hoch(AG,AG) defined in Theo-
rem 2.3.2 is a morphism of C•

diff(G)-modules.

Proof. Let us start with the following case: For c ∈ Ck
def(G) and f ∈ C∞(G) = C1

diff(G)
we have

Φ(c ∪ f)(a1, ..., ak+1) = Φ(c)(a1, ..., ak) ∗ (f · ak+1).

The claim follows by carefully writing out the definition

Φ(c ∪ f)(a1, ..., ak+1)(g) =

�
g1···gk+1=g

((c ∪ f)(−, g2, ..., gk+1)a1)(g1)a2(g2) · · · ak+1(gk+1)

=

�
g1···gk+1=g

(f(gk+1)c(−, g2, ..., gk)a1)(g1)a2(g2) · · · ak+1(gk+1)

=

�
g1···gk+1=g

(c(−, g2, ..., gk)a1)(g1)a2(g2) · · ·

· · · ak(gk) (f(gk+1)ak+1(gk+1))

=

�
hgk+1=g

�
g1···gk=h

(c(−, g2, ..., gk)a1)(g1)a2(g2) · · ·

· · · ak(gk) (f(gk+1)ak+1(gk+1))

=

�
hgk+1=g

Φ(c)(a1, ..., ak)(h) (f(gk+1)ak+1(gk+1))

= (Φ(c)(a1, ..., ak) ∗ (f · ak+1)) (g).

Hence by induction we obtain

Φ(c ∪ (f1 ⊗ · · · ⊗ fl))(a1, ..., ak+l) = Φ(c)(a1, ..., ak) ∗ (f1 · ak+1) ∗ · · · ∗ (fl · ak+l).

Writing fa = Φ0(f)(a), we can rewrite this as

Φ(c ∪ (f1 ⊗ · · · ⊗ fl)) = Φ(c) ∪ Φ0(f1) ∪ . . . ∪ Φ0(fl).

From this the general statement of the proposition for φ ∈ Ck
diff(G) = C∞(G(k)) follows.
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Now, analogous to the action of vector fields on differential forms in geometry, the
Hochschild cochains act on Hochschild chains by contraction [NT, Sec 2.5]

Ck(AG,AG)× Cl(AG) −→ Cl−k(AG), (D, a) 7→ ιDa,

given explicitly by

ιD(a0 ⊗ . . .⊗ al) := a0D(a1, . . . , ak)⊗ ak+1 ⊗ . . .⊗ al.

This action satisfies the properties

ιD ◦ ιE = ιD∪E

[b, ιD] = ιδD.

Furthermore we can define a “Lie derivative” using the analogue of the Cartan formula:
LD := B ◦ ιD + ιD ◦B.

Dualizing, we obtain a contraction of cochains

Ck(AG,AG)× Cl−k(AG)→ Cl(AG), (D,φ) 7→ ιDφ

given explicitly by

(ιDφ)(a0, ..., al) = φ(a0D(a1, ..., ak), ak+1, ..., al). (2.3)

Next, recall from [PPT15] that when G is unimodular we can define a trace on the
convolution algebra AG by

τ(a) :=

�
M

aΩ,

with on the right hand side Ω a G-invariant section of the bundle DA∗ ⊗ DTM , and we
use the duality DA × DA∗ → R together with the isomorphism Ds|M = DA, to obtain
a density on M that can be integrated. With this trace (a degree 0 cyclic cocycle), the
cochain map

Ψτ : (C
•
diff(G), δ) −→ (C•(AG), bHoch), (2.4)

constructed in [PPT15] is simply given by Ψτ (c) := ιΦ0(c)τ .

Corollary 2.3.13 Let c ∈ Ck
def(G) and φ ∈ Cl

diff(G). Then the following identity is true:

ιΦ(c∪φ)τ = ιΦ(c)Ψτ (φ).

With this Corollary, we can construct new cyclic cocycles on the convolution alge-
bra. First of all, if we start with a smooth groupoid cocycle φ ∈ Ck

diff(G), we obtain
a Hochschild cocycle by applying Ψτ as in (2.4). A small computation shows that this
cocycle is closed under the B-differential, i.e., BΨτ (φ) = 0, when φ is cyclic:

φ(g1, . . . , gk) = (−1)kφ((g1 · · · gk)−1, g1, . . . , gk−1)

We can work out similar conditions for an element c ∈ Ck
def(G) to satisfy B(Φ(c)) = 0,

but they are more involved. For example, for k = 2 we find

(dι)(c(g, g−1)) = −c(g−1, g).
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2.3.3 Examples

In this section we discuss how the chain map Φ links the deformation cohomology of G
and the Hochschild cohomology ofAG in certain examples, referring back to the examples
of both sides of the equation we gave before.

Example 2.3.14 (Trivial groupoid) We consider the trivial groupoid G = M ⇒
M . On the density side we simply have (AG, ∗) = (C∞

c (M), ·), with H•
Hoch(AG,AG) =

Λ•X(M). At the side of the deformation complex we note that the k-nerve of the trivial
groupoid is M for every k and s-projectability is a void property, so that for k > 0 we
have Ck

def(G) = X(M), with differential alternating between the identity and the zero
map:

C•
def(G) =

[
0→ X(M)

0−→ X(M)
id−→ X(M)→ · · ·

]
.

So the deformation cohomology equals:

Hk
def(G) ∼=

{
X(M) if k = 1

0 else

The chain map Φ: C•
def(G)→ C•

Hoch(AG,AG) simply becomes:

Φ(X)(f1, ..., fk) = (Xf1) · f2 · · · fk.

and we see that under the isomorphism HH1(C∞(M), C∞(M)) ∼= X(M) provided by the
Hochschild–Kostant–Rosenberg Theorem, we have

Hk(Φ) =

{
id if k = 1
0 else

We should also remark for this example that using, the classical Hochschild–Kostant–
Rosenberg theorem, we see that taking exterior powers of deformation elements we re-
trieve the whole Hochschild cohomology of C∞

c (M).

Example 2.3.15 (Étale groupoids) In the case of an étale groupoid G ⇒M , we have
AG = C∞

c (G), since the distribution ker(ds) is the trivial distribution. The convolution
product in this case is commonly written as

(f1 ∗ f2)(g) =
∑

g1g2=g

f1(g1)f2(g2).

In this case the action of vector fields on densities is just the normal action of vector
fields on functions, and the map Φ reduces to

Φ(c)(f1, ..., fk)(g) =
∑

g1···gk=g

(c(g1, ..., gk)f1) · f2(g2) · · · fk(gk).
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In the case that we have a proper étale groupoid (over a connected base M) we can
calculate the cohomologies in both sides of the equation. On the side of the deformation
complex we use [CrMS20, Thm 6.1] to obtain:

H0
def(G) ∼= {0}

H1
def(G) ∼= X(M)inv

Hk
def(G) ∼= {0} (k ≥ 2)

For the Hochschild cohomology of the convolution algebra we refer to [NPPT06, Thm
3.11] to obtain

Hk(AG,AG) ∼=
⊕

O∈Sec(G)

Γinv(Λ
k−codim(O)TO)

where the sum is over the sectors O of G. The action of the chain map Φ on the
cohomology of degree 1 is the inclusion of X(M)inv into this sum as the term for the
sector O =M .

2.4 Relationship to deformation quantization and

the van Est-map

Classically, the theory of Lie group deformations is only one half of the coin, and the
theory of Lie algebra deformations completes this picture. As we saw in Example 2.2.9,
the deformation cohomology of a Lie group is calculated by the group cohomology with
coefficients in the adjoint representation. To recall in general, if V is a representation of
G, then the group cohomology complex with coefficients in V is given by

Ck(G, V ) := C∞(G×k, V )

with differential

(δf)(g1, ..., gk+1) :=g1 · f(g2, ..., gk+1)

+
k∑

i=1

(−1)if(g1, ..., gigi+1, ..., gk+1)

+ (−1)k+1f(g1, ..., gk).

Local to this, we can see V as a g-representation by setting X · v = d
dt

∣∣
t=0

etX · v, and
write down the Lie algebra cohomology complex

Ck(g, V ) := Λkg∗ ⊗ V
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with differential

(δf)(X1, ..., Xk+1) :=
k+1∑
i=1

(−1)i+1Xif(X1, ..., X̂i, ..., Xk+1)

+
∑
i<j

(−1)i+jf([Xi, Xj], X1, ..., X̂i, X̂j, ..., Xk+1).

There are clear connections between these two cohomology theories. For instance, in
degree 0 we have that the group cohomology equals

H0(G, V ) = V G = {v ∈ V : gv = v ∀g ∈ G}

the invariants under the action, while in the algebra case we have

H0(g, V ) = V g = {v ∈ V : Xv = 0∀X ∈ g}.

It is clear from the definition of the g-action on V that H0(G, V ) ⊂ H0(g, V ) and if the
group G is connected, this is even an equality.

The work of van Est [vE53a, vE53b] then gives a precise connection between these
two theories. First we ‘normalize’ the group cohomology complex by requiring chains
f ∈ Ck(G, V ) to satisfy f(1, g2, ..., gk) = 0, and we obtain a subcomplex Ck

norm(G, V ),
which one can show to be quasi-isomorphic. Van Est then writes down a chain map
V : Ck

norm(G, V )→ Ck(g, V ), nowadays called the van Est-map, as

V(f)(X1, ..., Xk) =
∑
σ∈Sk

(−1)σ d

dϵ1

∣∣∣∣
ϵ1=0

· · · d

dϵk

∣∣∣∣
ϵk=0

f(eϵ1Xσ(1) , ..., eϵkXσ(k)).

and the importance of this map is the following result, known as the van Est-theorem

Theorem 2.4.1 [vE53b] If G is q-connected then V induces isomorphisms

Hk(G, V )
∼=−→ Hk(g, V )

for 0 ≤ k ≤ q.

If one plugs in V = R, this is a statement about differentiable cohomology of G, while
for V = g with the adjoint action, this relates deformation cohomology of G with that
of g. There is a similar story for Lie groupoids and Lie algebroids, in the differentiable
case given by a generalization of the van Est-map by Weinstein and Xu [WX91] and in

the deformation case with a generalization to a van Est-map V : Ĉ
•
def(G) → C•

def(A(G))
as defined for Lie groupoids by [CrMS20], which have much the same properties as
the classical van Est map under assumptions on the connectivity of the s-fibres. Here
C•

def(A(G)), defined below, can be thought of as the linear Poisson complex of the linear
Poisson manifold A(G)∗.



68 Chapter 2. Lie groupoid deformations and convolution algebras

The aim of this section is to weave our map Φ from Definition 2.3.2 into this story
by exhibiting the van Est map V as a ‘classical limit’ of our map Φ. The final result

in Theorem 2.4.23 is the following equation, which holds for k ≥ 1, c ∈ Ĉ
k

def(G) and
f1, . . . , fk ∈ Sc(A∗):

V(c)(f1, . . . , fk) = Fµ

(
lim
t→0

(∑
σ∈Sk

(−1)σ 1

(it)k−1
Φ(c)(qt(fσ(1)), . . . , qt(fσ(k)))

))
Here Fµ : Sc(A(G))→ Sc(A(G)∗) is the Fourier transform with respect to some Haar

system µ, the maps qt : Sc(A(G)∗) → C∞
c (G) are a certain deformation quantization of

the Poisson manifold A(G)∗, and the limit is some kind of normal derivative. All of this
will be properly treated in this section, starting with Lie algebroid deformations.

2.4.1 Lie algebroid deformations

Let A → M be a Lie algebroid. Following [CM08] we define the deformation com-
plex C•

def(A) of A, by setting Ck
def(A) to be those antisymmetric R-multilinear maps

D : Γ(A)×k → Γ(A) that have a symbol, i.e. a map σD : Γ(A)×(k−1) → TM such that

D(α1, ..., αk−1, fαk) = fD(α1, ..., αk) + σD(α1, ..., αk−1)(f)αk

for f ∈ C∞(M). The differential is then set by

(δD)(α1, ..., αk+1) =
k+1∑
i=1

(−1)i+1[αi, D(α1, ..., α̂i, ..., αk+1)]

+
∑
i<j

(−1)i+jD([αi, αj], α1, ..., α̂i, α̂j, ..., αk+1).

We note that this complex is a form of Poisson cohomology. Recall that for a Poisson
manifold (M,π), the Poisson complex C•

Pois(M,π) is given by

Ck
Pois(M,π) := Γ(ΛkTM).

Note that we can see multivector fields as maps

D : Λ•C∞(M)→ C∞(M)

that have a symbol
σD : Λ•−1C∞(M)→ X(M).

The differential on this complex is given by taking the Schouten-Nijenhuis bracket with
the Poisson bivector π, or, if we write it using the (D, σD)-notation, we have

(δD)(f1, ..., fk+1) :=
k+1∑
i=1

(−1)i+1
{
fi, D(f1, ..., f̂i, ..., fk+1)

}
+
∑
i<j

(−1)i+jD({fi, fj}, f1, ..., f̂i, f̂j, ..., fk+1)
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where {−,−} is the Poisson bracket on C∞(M) induced by π.

Also recall that A∗ is canonically a Poisson manifold, with the Poisson bracket on
C∞(A∗) determined by what is does with functions that are constant on fibres, and those
that are fibrewise linear. Setting notation, we write p : A → M for the projection, and
for a ∈ Γ(A) we denote by â ∈ C∞(A∗) the induced smooth map. The Poisson bracket
is now determined by setting

{p∗f, p∗g} = 0,

{â, p∗f} = p∗(ρ(a)f),

{â, b̂} = ̂[a, b].
Using this description we see that the deformation complex of a Lie algebroid is the
linear Poisson complex, i.e. the subcomplex that consists of those multivector fields that
preserve fibrewise linear smooth functions. To see this equivalence, note that fibrewise
linear functions on A∗ are the same thing as sections of A. In that way, if we have an
element D ∈ Ck

Pois(A
∗) of the Poisson complex that preserves fibrewise linear functions,

we can induce a map D̂ : ΛkΓ(A)→ Γ(A) by the requirement that

D(â1, ..., âk) =
̂

D̂(a1, ..., ak).

Notice that D̂ has a symbol, precisely since D has one. So we obtain an element D̂ ∈
Ck

def(A).

Conversely, if we have an element D ∈ Ck
def(A) of the Lie algebroid deformation

complex, we can induce an element Ď ∈ Ck
Pois(A

∗) by reversing this process. First, by
reversing the previous equation, we can define Ď on fibrewise linear functions. Then us-
ing the fact that Ď should be a multivector field, and hence have derivational properties,
we can define its values for any fibrewise polynomial function. By a Taylor approxima-
tion argument, the value on any function on A∗ is now fixed. Notice that by construction,
Ď preserves fibrewise linear functions.

To see that the isomorphisms C•
Pois,lin(A

∗) ↔ C•
def(A) are isomorphisms of cochain

complexes, we note that the differentials get intertwined precisely because

{â, b̂} = ̂[a, b]
for a, b ∈ Γ(A).

So we see that the Lie algebroid deformation complex is a kind of Poisson cohomol-
ogy complex. This is not surprising, since the Poisson cohomology complex encodes
deformations of the Poisson bivector, with linear Poisson cohomology encoding linear
deformations of the linear Poisson bivector, and since linear Poisson bivectors on A∗ are
equivalent to Lie algebroid structures on A, the connection is clear.
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2.4.2 The van Est-map

Next, we recall the van Est-map for Lie groupoids as defined by [CrMS20]. First, we

restrict ourselves to the normalized deformation complex Ĉ
k

def(G) of Definition 2.2.61.

Given a section α ∈ Γ(A(G)) we define maps Rα : Ĉ
k

def(G)→ Ĉ
k−1

def (G) for k > 1 given by

(Rα(c)(g1, ..., gk−1) := (−1)k−1 d

dϵ

∣∣∣∣
ϵ=0

c(g1, ..., gk−1,Φ
ϵ−→α (s(gk−1))

−1)

and a map Rα : Ĉ
1

def(G)→ Γ(A(G)) given by

Rα(c) := [c,−→α ]|M

The van Est-map is now a map V : Ĉ
•
def(G)→ C•

def(A(G)) given by

(Vc)(α1, ..., αk) =
∑
σ∈Sk

(−1)σ(Rασ(k) ◦ · · · ◦Rασ(1))(c),

and the important generalization of the classical van Est Theorem is then:

Theorem 2.4.2 [CrMS20, Thm 10.1] The van Est-map is a chain map V : Ĉ
•
def(G) →

C•(A(G)) with the property that if G has k-connected s-fibres, the van Est-map induces
isomorphisms

Hk
def(G)

∼=−→ Hk
def(A(G))

for 0 ≤ k ≤ q.

2.4.3 Deformation quantization

We want to see the van Est map as some kind of ‘classical limit’ of our chain map, in the
following sense. We note that the van Est map takes values in the Poisson cohomology
complex of A∗ (in particular in the linear Poisson complex), so we can also think of V(c)
as something that eats functions on A∗ and spits out a function on A∗. Suppose now
that f is a smooth function on A∗(G) and we have a family {qt(f) ∈ AG}t∈R\{0} that has
f as their limit is some sense. We may want then to look at the limiting behaviour of

Φ(c)(qt(f1), ..., qt(fn))

as t approaches 0. The consideration of this kind of behaviour is what the idea of a
‘classical limit’ is.

To make this precise, we take a step into the world of deformation quantization.

Definition 2.4.3 Let (A, ·) be a commutative K-algebra with a unit e. A ⋆-product on
A is a product ⋆ on the power series ring A[[ℏ]] satisfying

1With the (k = 0)-part attached!
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� It is bilinear over K[[ℏ]].

� It is associative.

� For a, b ∈ A, writing

a ⋆ b =
∞∑
n=0

Bn(a, b)ℏn

for bilinear maps Bn : A× A→ A, we have B0(a, b) = a · b.

� It has e as a unit.

Remark 2.4.4 If A has any kind of topology, we can assign a numerical value to ℏ and
see whether the induced power series defining a ⋆ b converges in A. If it does, we may
think of the ⋆-product as proper deformation of the product ·, by a family of products
⋆ϵ obtained by setting ℏ = ϵ. Even if the power series does not converge, or if A indeed
has no topology, we may still think of the ⋆-product as a ‘formal deformation’.

From a ⋆-product we can extract certain pieces of information, describing pieces of
‘geometry’ of A.

� Using the associativity of ⋆ we find that

a1B1(a2, a3)−B1(a1a2, a3) +B1(a1, a2a3)−B1(a1, a2)a3 = 0

as this is the order-ℏ-term of the associator of ⋆. In particular B1 is a closed
element of C2

Hoch(A,A). This is similar in spirit, although different in origin, to the
construction of Theorem 1.1.16, since if we assign a value ϵ to ℏ to obtain a formal
product ⋆ϵ on A we see that B1 is the deformation element d

dt

∣∣
ϵ=0

⋆ϵ we described
in Theorem 1.1.16.

� We can induce a Poisson bracket on A out of a ⋆-product by the formula

{a, b} = B1(a, b)−B1(b, a) = lim
ℏ→0

a ⋆ b− b ⋆ a
ℏ

.

That this is indeed a Poisson bracket on A, follows similar to the previous point
from the associativity of ∗.

From these constructions, the following definition arises.

Definition 2.4.5 If (A, ·, {−,−}) is a Poisson algebra, then a formal deformation quan-
tization of A is a ⋆-product on A whose induced Poisson bracket is {−,−}.

In particular we can ponder on the question whether for a Poisson manifold (M,π),
there is a deformation quantization of (C∞(M), ·, {−,−}π). The question is answered
positively by Kontsevich [Ko03] for the formal case.
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This formalism, even though it is well-studied and gives the heuristic picture of
what we’re trying to achieve, does not cover the philosophy that we want to see AG
as deformation of the Poisson manifold A(G)∗. For this we want to have a notion of
deformations where the underlying space changes with the time parameter. To this end,
we make the following definition, which is due to Landsman [LR01, Def 4.3] and Rieffel
[Ri90].

Definition 2.4.6 A strict deformation quantization of a Poisson algebra (A, ·, {−,−})
consists of

� An interval I ⊂ R containing 0

� A continuous field AI of C∗-algebras with evaluations (At)t∈I where A0 = A.

� A linear map q : A→ AI with evaluations qt : A→ At such that q0 = idA, and

– limt→0(qt(a1)qt(a2)− qt(a1 · a2)) = 0 for every a1, a2 ∈ A
– limt→0

1
it
([qt(a1), qt(a2)]− qt({a1, a2})) = 0 for every a1, a2 ∈ A.

Remark 2.4.7 The notion of a continuous field of C∗-algebras more or less means that
an element of AI can be thought of as a collection {a(t) ∈ At}i∈I that is continuous in
a certain sense. Saying that limt→0 a(t) = a0 then means that setting a(0) := a0 makes
sure that {a(t)}t∈I is an element of AI .

The idea is now to define such a strict deformation quantization of the Poisson
manifold A(G)∗ using At = AG for every t ̸= 0. In such a setting we can make sense
of a classical limit of derivations on AG. For instance,suppose we have a family Dt of
derivations of At such that for every a ∈ A we have that limt→0Dt(qt(a)) is defined. We
then see that

D0(a) = lim
t→0

Dt(qt(a))

satisfies

D0({a1, a2}) = {a1, D0(a2)}+ {D0(a1), a2}

by taking the limit of 1
it
((bDt)(qt(a1), qt(a2))− (bDt)(qt(a2), qt(a1))) = 0 as t→ 0.

2.4.4 The adiabatic groupoid

In the theory of deformation quantizations and applications thereof, there is an inherent
place for replacing a groupoid with its adiabatic groupoid, as first described in [Co94].
Furthermore, in the context of deformation quantization as discussed in the last part, the
adiabatic groupoid allows us to define a notion of taking limits that is especially suited to
treatment of the van Est-map. In this subsection we review the theory of the adiabatic
groupoid in a way tailored to our construction of the cochain map in the previous section.
We therefore start by describing the adiabatic groupoid using the division map:
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Definition 2.4.8 Let G ⇒M be a Lie groupoid, with Lie algebroid A
π−→M . We define

the adiabatic groupoid Gad →M × R by:

Gad = A× {0} ⊔ G × R∗

The source and target are defined by:

s(v, 0) = (π(v), 0),

s(g, τ) = (s(g), τ),

t(v, 0) = (π(v), 0),

t(g, τ) = (t(g), τ).

Then we define the inversion map by

ι(v, 0) = (−v, 0),
ι(g, τ) = (ι(g), τ).

Lastly, to define the division map, we note that pairs of divisible arrows come in 2 shapes,
namely pairs (v, 0) and (w, 0) with π(v) = π(w), and pairs (g, τ) and (h, τ) where g and
h are divisible. We then define the division map by:

m((v, 0), (w, 0)) = (v − w, 0),
m((g, τ), (h, τ)) = (m(g, h), τ).

This is just the set-theoretical description, but the remarkable feature is that the
adiabatic groupoid can be given a smooth structure. Here we briefly recall this smooth
structure and show how to extend normalized deformation elements to deformation el-
ements of the adiabatic groupoid. Both will be done in the context of the procedure
known as the deformation to the normal cone.

Deformation to the normal cone

The part of the discussion below concerning the smooth structure and the smooth maps
on the deformation to the normal cone is after [Hi10, §4] and [DS17, §1.1].

Definition 2.4.9 Let S ↪→ M be a submanifold with normal bundle N → S. The
deformation to the normal cone N(M,S) is the manifold defined by:

N(M,S) = N × {0} ⊔M × R∗.

The deformation to the normal cone can be given a topology and smooth structure
in two ways, leading to the same result. Either it is characterized by the fact that the
following two types of maps are smooth:

� The map N(M,S)→M × R that sends (x, τ) for τ ̸= 0 to (x, τ) and sends (v, 0)
with v ∈ Nx to (x, 0).
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� For every f ∈ C∞(M) such that f |S = 0, the map δf : N(M,S)→ R defined by

(δf)(x, τ) =
f(x)

τ
(x ∈M, τ ̸= 0),

(δf)(v, 0) = dnf(v) (v ∈ N).

Here by dnf we mean the smooth map on N that for v ∈ TM |S sends [v] to df(v). This
map is well-defined since f |S = 0.

Equivalently, one uses an exponential map, that is a map θ : U → M from an open
neighbourhood U ⊂ N of the zero-section, with the property that for all p ∈ S and
v ∈ Np it holds that

θ(0p) = p,
d

dτ

∣∣∣∣
τ=0

θ(τv) = v mod TpS.

The smooth structure on N(M,S) can then also be characterized by the fact that the
maps

i1 : M × R∗ → N(M,S) : (x, τ) 7→ (x, τ)

i2 : U
′ = {(v, τ) ∈ N × R : τv ∈ U} → N(M,S) :

(v, τ) 7→ (θ(τv), τ)
(v, 0) 7→ (v, 0)

are smooth open embeddings.
We remark that deformations to normal cones have the action of R×, given on

N(M,S) by:

λ · (x, τ) = (x, λτ),

λ · (v, 0) =
(v
λ
, 0
)
,

where λ, τ ∈ R∗, x ∈M and v ∈ N .
Using this smooth structure, we have the following functoriality result.

Lemma 2.4.10 Let (M1, S1) and (M2, S2) be two pairs of a manifold with a submanifold,
with normal bundles N1 and N2. If F : (M1, S1) → (M2, S2) is a smooth map, the map
NF : N(M1, S1)→ N(M2, S2) defined by

NF (x, τ) = (F (x), τ) (x ∈M, τ ̸= 0),

NF (v, 0) = (dnF (v), 0) (v ∈ N1)

is smooth. Here dnF : N1 → N2 is the normal derivative, which is well-defined since
F (S1) ⊂ S2.

We will describe how to extend a vector field on M that is parallel to S to a vector
field on N(M,S) that is invariant under the R×-action.

This will be done by writing down a vector field on the normal bundle and combining
it with a vector field over M × (R\{0}) to a discrete vector field on N(M,S), and using
an explicit description of the smooth functions on N(M,S) to show that this is in fact
a smooth vector field.
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Definition 2.4.11 [Hi10] Let X be a set and let F = {fα : X → Vα} be a family of
functions from X into smooth manifolds. We say that a function f : X → R is smoothly
composed from the family F if there is a finite collection (fα1 , ..., fαn) ∈ F×n and a
smooth map h : Vα1 × · · · × Vαn → R such that

f(x) = h(fα1(x), ..., fαn(x)).

The smooth structure of N(M,S) then means that all smooth functions on N(M,S)
are smoothly composed of type of functions as described after Theorem 2.4.9. If we then
apply Taylors theorem we conclude the following.

Lemma 2.4.12 A discrete vector field X on N(M,S) is smooth if and only if for every
f ∈ C∞(M) with f |S = 0 and every g ∈ C∞(M×R) the maps δf and g̃ ∈ C∞(N(M,S))
defined by:

(δf)(x, τ) = f(x)
τ

(τ ̸= 0)
(δf)(v, 0) = dnf(v) (v ∈ N)

g̃(x, τ) = g(x, τ) (τ ̸= 0)
g̃(v, 0) = g(x, 0) (v ∈ Nx)

satisfy that X(δf), X(g̃) ∈ C∞(N(M,S)).

We start with writing down the vector field over N . This is the linearization, as also
described in [AZ14, §4.1], that we describe in detail below:

Proposition 2.4.13 Let S ↪→M be a submanifold with normal bundle π : N → S and
X ∈ X(M) a vector field that is parallel to S. Then:

a) The map that sends a smooth function f ∈ C∞(M) satisfying f |S = 0 to the map
dnf ∈ C∞

lin(N) is a surjection onto C∞
lin(N).

b) If f ∈ C∞(M) satisfies f |S = 0 and dnf = 0, then Xf satisfies dn(Xf) = 0.

c) The maps (XN)lin : C
∞
lin(N)→ C∞(N) and (XN)cst : C

∞(S)→ C∞(N) defined by

(XN)lin(dnf) = dn(Xf)

(XN)cst(g) = X|S(g) ◦ π

define a smooth vector field XN ∈ X(N).

Proof. Working down the list:

a) By using a partition of unity this reduces to the local case M = Rm × Rn with
S = Rm × {0}. In this local case there is a canonical diffeomorphism between
M and N and pushing a linear map on N through this canonical diffeomorphism
yields a smooth map on M whose normal derivative equals the linear map on N
we started with.
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b) This is again a computation in the local case M = Rm × Rn with S = Rm × {0}.
Write

X =
m∑
i=1

αi(x, y)
∂

∂xi
+

n∑
j=1

βj(x, y)
∂

∂yj
.

The fact that X is parallel to S means that βj(x, 0) = 0 for all j = 1, ..., n. The
fact that dnf = 0 is equivalent to the fact ∂f

∂yj
(x, 0) = 0 for all j = 1, ..., n. Then

we have

Xf =
m∑
i=1

αi
∂f

∂xi
+

n∑
j=1

βj
∂f

∂yj
,

so that for k = 1, ..., n we have

∂(Xf)

∂yk
=

m∑
i=1

∂αi

∂yk

∂f

∂xi
+

m∑
i=1

αi
∂2f

∂yk∂xi
+

n∑
j=1

∂βj
∂yk

∂f

∂yj
+

n∑
j=1

βj
∂2f

∂yk∂yj
.

Then since respectively we have ∂f
∂xi

(x, 0) = 0 (since f(x, 0) = 0), ∂2f
∂yk∂xi

(x, 0) =(
∂
∂xi

∂f
∂yk

)
(x, 0) = 0 (since ∂f

∂yk
(x, 0) = 0), ∂f

∂yj
(x, 0) = 0 (by assumption) and

βj(x, 0) = 0 (by assumption), we see that

∂(Xf)

∂yk
(x, 0) = 0

which implies that dn(Xf) = 0.

c) First note that (by restriction) a smooth vector field Y ∈ X(E) on a vector
bundle π : E → M is the same as a pair of maps Ylin : C

∞
lin(E) → C∞(E) and

Ycst : C
∞(M) → C∞(E) such that for all f, g ∈ C∞(M) and h ∈ C∞

lin(E) it holds
that

Ycst(fg) = (f ◦ π) · Ycst(g) + (g ◦ π) · Ycst(f)

Ylin((f ◦ π) · h) = (f ◦ π) · Ylin(h) + h · Ycst(f)

We show that these properties hold for the maps (XN)cst and (XN)lin.

First we note that (XN)lin is well-defined by parts a) and b). To show that they
define a smooth vector field we see for f, g ∈ C∞(S) that

(XN)cst(fg) = (X|S(fg)) ◦ π = (f ·X|S(g) + g ·X|S(f)) ◦ π
= (f ◦ π) · (X|S(g) ◦ π) + (g ◦ π) · (X|S(f) ◦ π)
= (f ◦ π)Xcst(g) + (g ◦ π)Xcst(f).

Secondly let f ∈ C∞(S) and h ∈ C∞
lin(N) given by h = dng with g ∈ C∞(M) such

that g|S = 0. Then first we need to find g′ ∈ C∞(M) with g′|S = 0 such that
fh = dn(g

′). This can be done by choosing an extension of f which is ‘constant
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in the normal direction’, which is only well-defined locally or if we choose an
exponential map.

We resort to the local case M = Rm × Rn with S = Rm × {0}. Then the map
g′(x, y) = f(x)g(x, y) clearly satisfies that dng

′ = fh. Then writing X in coordi-
nates as

X =
m∑
i=1

αi
∂

∂xi
+

n∑
j=1

βj
∂

∂yj
,

we have

(Xg′)(x, y) =
m∑
i=1

αi(x, y)
∂f

∂xi
(x)g(x, y) + f(x)(Xg)(x, y)

so that we see

∂(Xg′)

∂yk
(x, 0) =

m∑
i=1

αi(x, 0)
∂f

∂xi
(x)

∂g

∂yk
(x, 0)+

+
m∑
i=1

∂αi

∂yk
(x, 0)

∂f

∂xi
(x)g(x, 0) + f(x)

∂(Xg)

∂yk
(x, 0)

Notice that g(x, 0) = 0 so that the middle term vanishes. Then by recognizing the
relevant terms, we obtain

d(Xg′)(x,0)

(
∂

∂yk

)
= X|S(f)(x) · (dg)x

(
∂

∂yk

)
+ f(x) · d(Xg)(x,0)

(
∂

∂yk

)
so that globally we have

(XN)lin((f ◦ π) · dng) = (XN)lin(dng
′)

= dn(Xg
′)

= (X|S(f) ◦ π)dng + (f ◦ π)d(Xg)
= (XN)cst(f)dng + (f ◦ π)(XN)lin(dng),

so we see that we obtain a smooth vector field XN ∈ X(N).

This completes the proof.

We are now ready to define the R∗-invariant extension of the vector field X.

Proposition 2.4.14 Let S ↪→ M be a submanifold with normal bundle N → S. Let
X ∈ X(M) be a vector field that is parallel to S. Then the discrete vector field Xinv on
N(M,S) defined by

Xinv(x, τ) = X(x), (τ ̸= 0)

Xinv|N×{0} = XN

is a smooth vector field Xinv ∈ X(N(M,S)), which is the unique vector field on N(M,S)
which equals X on M × R\{0} and the unique R×-invariant vector field on N(M,S)
which equals X along M × {1}.
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Proof. The invariance and uniqueness is clear once we know that Xinv is smooth. To
show that it is smooth, by Theorem 2.4.12 the only thing we have to check is that
Xinv(δf) and Xinv(g̃) are smooth for f ∈ C∞(M) with f |S = 0 and g ∈ C∞(M × R).
The definition of XN makes sure that

Xinv(δf) = δ(Xf),

Xinv(g̃) = X̃g,

where in the second equation X acts on C∞(M ×R) as the vector field X(x, τ) = X(x)

on M × R. By definition δ(Xf) and X̃g are smooth and so the result follows.

The adiabatic groupoid as a deformation to the normal cone

We can now apply this to the case M ↪→ G with normal bundle A = ker ds|M , and
we obtain the underlying set of the adiabatic groupoid Gad from Definition 2.4.8. The
fact that the source, target and division maps are smooth, follows from the fact that
away from τ = 0 they are just the respective maps of the original groupoid, while along
τ = 0 they are the normal derivatives of the respective maps. By Lemma 2.4.10 they are
smooth. We note that an exponential map can be obtained by choosing a connection on
A, see [NWX99] and [La98].

Next we want to describe the nerve of the adiabatic groupoid. As a set it equals
(Gad)(k) = G(k)×R∗ ⊔A⊕k×{0}. From the viewpoint of trying to define vector fields on
the nerve of the adiabatic groupoid, this set-theoretic description leads to searching for
a connection between A⊕k and the normal bundle of M inside G(k) seen as the diagonal
of units.

Lemma 2.4.15 Let G ⇒M be a Lie groupoid with ∆: M → G(k) the diagonal inclusion
via the units. The vector bundle map ν : A⊕k → ∆∗TG(k) given by

ν(v1, ..., vk) =

(
v1 +

k∑
i=2

du(dt(vi)), v2 +
k∑

i=3

du(dt(vi)), ..., vk−1 + du(dt(vk)), vk

)

induces an isomorphism between A⊕k and the normal bundle of M inside G(k).

Proof. First one checks that ν indeed maps into the tangent space of G(k) ⊂ G×k,
which is a simple calculation. Next to show that it induces an isomorphism to the
normal bundle to ∆, we first use the decomposition T1xG = Ax ⊕ TxM to see that if
ν(v1, ..., vk) ∈ TxM ⊂ T∆(x)G(k) then (v1, ..., vk) = 0, so that the map into the normal
bundle is injective. A simple case of dimension counting then implies that it the induced
map is an isomorphism.

Corollary 2.4.16 There is a natural isomorphism between N(G(k),M) and G(k)ad which
away from τ = 0 links ((g1, ..., gk), τ) and ((g1, τ), ..., (gk, τ)).
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Haar systems on the adiabatic groupoid

We intend to link deformation quantizations of the Poisson manifold A∗ with the Van

Est map V : C̃
•
def(G) → C•

def(A). To make the syntax line up, we need the convolution
algebra to be given in terms of functions, not densities. Hence as discussed before, we
need to use Haar systems. We therefore briefly discuss Haar systems on the adiabatic
groupoid.

In particular, we describe how to make a Haar system on Gad out of a Haar system
λ on G. We do this by fixing a section a ∈ Γ(Ds) of the density bundle inducing the
Haar system λ. From this we make a section of the the density bundle of Gad. For this
we write down the canonical identifications of the distribution ker(ds)→ Gad:

ker(ds)(g,τ) ∼= ker(ds)g (τ ̸= 0)

ker(ds)(v,0) ∼= ker(ds)u(π(v))

where π : A(G)→M is the projection.

Using this identification, we have a definition of a Haar system λ̂ on Gad due to
Landsman [LR01, p.19], induced by the density â on Gad given by the formula

â(g, τ) = |τ |da(g) (τ ̸= 0),

â(v, 0) = a(π(v)),

where d is the dimension of the s-fibres of G.
Note that in particular we obtain a Haar system on the vector bundle A→M , seen

as a groupoid in the canonical way.
We can also write down the convolution product on the adiabatic groupoid under the

isomorphism given by this Haar system. If we have two compactly supported functions
f1, f2 on Gad we obtain:

(f1 ∗ f2)(g, τ) = |τ |−d

�
s−1(s(g))

f1(gh
−1, τ)f2(h, τ)λs(g)(h) (τ ̸= 0),

(f1 ∗ f2)(v, 0) =
�
Aπ(v)

f1(v − w, 0)f2(w, 0)λπ(v)(w).

At this point we notice that the convolution at τ = 0 does not require the functions
to be compactly supported on Ax, being Schwartz is enough (c.f. the usual theory of
Fourier transform in Rn). This allows us, in the case of Gad, to enlarge the type of
functions/densities on which we let the deformation complex act.

To this end we refer to the work of Carrillo-Rouse [C-R08], where a Fréchet algebra
Sc(Gad) is constructed with evaluations

Sc(Gad)t =

{
Sc(A) t = 0

C∞
c (G) t ̸= 0.
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Here Sc(A) denotes the space of functions that are Schwartz along the fibers of the Lie
algebroid and have compact support along M . This Schwartz type algebra is roughly
defined as consisting of those functions f ∈ C∞(Gad) that have the property that

� f(−, 0) is a Schwartz function on A(G);

� For every t ̸= 0, f(−, t) has compact support on G;

� The behaviour of f in the R-direction of Gad is of Schwartz type.

It is topologized using the usual seminorms to obtain a Fréchet topology and, as such,
it should be thought of as a dense subalgebra of the reduced C∗-algebra C∗

r (Gad).
By the discussion above, the convolution product is perfectly well-defined on Sc(Gad)

and we can extend our viewpoint of the map Φ: C•
def(Gad) → C•

Hoch(AGad
) to let Φ(c)

(for c ∈ Ck
def(Gad)) act on functions in Sc(Gad). At this point it should be remarked that

the isomorphism between functions and densities induced by a Haar system does not
preserve the action of vector fields (indeed on the level of densities one also needs to
compare LXλ with λ!). So really we should introduce in parallel to Sc(Gad) the notion
of densities with are of Schwartz-type along τ = 0, but for the sake of not being overly
pedantic we will not do this and just be careful when writing down the action of Φ(c).

This algebra also allows us to define the suitable notion of a limit of a family of
compactly supported functions on G.

Definition 2.4.17 A smooth family {ft}t̸=0 of compactly supported functions on G
converges to f ′ ∈ Sc(A), with notation

lim
t→0

ft = f ′ (2.5)

if the function F : Gad → R given by

F (g, t) = ft(g)

F (v, 0) = f ′(v)

is an element of Sc(Gad).

Remark 2.4.18 The limit as defined above has the very desirable property that if it
exists, it is unique. Indeed, if F ∈ C∞(Gad) is such that F (g, t) = 0 for every g ∈ G and
t ̸= 0, it follows that F (v, 0) = 0 for every v ∈ A(G).

2.4.5 Fourier transform on vector bundles

We briefly discuss the notion of Fourier transform on a vector bundle E → M under
the choice of a Haar system on E. This discussion follows the results of Landsman
and Ramazan [LR01, §7]. Recall that a vector bundle π : E → M can be seen as a
groupoid overM where both the source and the target map are the projection π and the
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multiplication is the fiberwise addition. Since ker(dπ) ∼= π∗E a choice of a Haar system
is at every v ∈ E a choice of a density on Eπ(v) that is invariant, where invariance in
this case means that the choice is constant along the fiber.

If we choose such a Haar system {µx}x∈M , in [LR01] the Fourier transform Fµ : S(E)→
S(E∗) was defined by

(Fµf)(ξx) =

�
Ex

f(v)e−i⟨ξx,v⟩dµx(v).

Furthermore, it was shown that this map is a linear isomorphism which intertwines
the µ-convolution product on E and the pointwise product on E∗, and when (x, v) are
coordinates on E induced by a frame with dual coordinates (x, ξ), we have for f ∈ S(E),
g ∈ S(E∗) and a ∈ C∞(M) that

Fµ((a ◦ π)f) = (a ◦ π)Fµ(f),

∂Fµ(f)

∂xj
= Fµ

(
∂f

∂xj

)
+

(
∂log(µe)

∂xj
◦ π
)
Fµ(f),

∂Fµ(f)

∂ξj
= −iFµ(vjf),

∂F−1
µ (g)

∂vj
= iF−1

µ (ξjg).

Note that after the choice of a Haar system µ we obtain an isomorphism between the
algebra of functions C∞

c (E) with the µ-convolution product and the convolution algebra
AE of densities with the (intrinsic) convolution product. In particular if X ∈ X(E), we
can see Φ(X) as defined on functions (which is, again, not equal to the usual action of
vector fields on functions), and we can extend the action to Schwartz functions.

Now using the Fourier transform, we can transport the action on the convolution
algebra of E to an action on the usual algebra with the pointwise product on E∗.

Proposition 2.4.19 Let X be a linear vector field on E. Then the map X̂ : S(E∗) →
S(E∗) given by

X̂(f) = Fµ(Φ(X)(F−1
µ (f))),

defines a linear vector field on E∗. Here Φ is the natural chain map from Definition
2.4.8, applied to the vector bundle E seen as a groupoid.

Proof. First we show that X̂ is indeed a vector field, i.e. a derivation with respect to
the pointwise product. Since X̂ is the conjugation of Φ(X) with an isomorphism which
intertwines the convolution product on S(E) and the pointwise product on S(E∗) this
is equivalent to showing that Φ(X) is a derivation for the convolution product. When
we see E → M as a groupoid, this is equivalent to showing that X is a multiplicative
vector field, and it is easy to see that on a vector bundle the multiplicative vector fields
are precisely the linear vector fields.
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To see that X̂ is a linear vector field we do a local computation on a trivial vector
bundle E = Rm

x ×Rn
v → Rm

x with Haar system f(x)dv1 ∧ · · · ∧ dvn. Using the properties
of the Fourier transform stated before it follows that if

X(x, v) =
m∑
i=1

Xi(x)
∂

∂xi
+

n∑
j=1

n∑
k=1

Yjk(x)vj
∂

∂vk
,

then

X̂(x, ξ) =
m∑
i=1

Xi(x)
∂

∂xi
−

n∑
j=1

n∑
k=1

Yjk(x)ξk
∂

∂ξj
,

which indeed shows that X̂ is a linear vector field.

Recall that a linear vector field X ∈ X(E) is the same as a linear map X : Γ(E∗)→
Γ(E∗) with a symbol sX ∈ X(M) such that

X(fα) = fX(α) + sX(f)α (f ∈ C∞(M), α ∈ Γ(E)).

Furthermore, recall the canonical pairing ⟨−,−⟩ : Γ(E∗) × Γ(E) → C∞(M). Then for
a linear vector field X, the local calculation from the proof above generalizes to the
following.

Proposition 2.4.20 Let X ∈ X(E) be a linear vector field, then the linear vector field

X̂ ∈ X(E∗) is uniquely determined by the fact that for β ∈ Γ(E∗) and α ∈ Γ(E)

⟨β, X̂(α)⟩+ ⟨X(β), α⟩ = sX(⟨β, α⟩).

We can play a similar game, albeit slightly more involved in notation, for higher

order deformation elements of the vector bundle. So consider an element X ∈ Ĉ
k

def(E)
in the normalized deformation complex given by

X(v1, ..., vn) = X1(v1)⟨β2, v2⟩ · · · ⟨βk, vk⟩

where X1 is a linear vector field on E and β2, ..., βk ∈ Γ(E∗). One immediately checks

that this is a closed element of Ĉk
def(E), so that the Fourier transform

X̂(f1, ..., fk) = Fµ(Φ(X)(F−1
µ (f1), ...,F−1

µ (fk)))

is a closed element of the Hochschild complex of C∞(E∗). From the specific form of X
it is easy to see that

Φ(X)(a1, ..., ak) = Φ(X1)(a1) ∗ (β2a2) ∗ · · · ∗ (βkak)

where we see the ai as fiberwise linear maps on E∗. In particular we see that

X̂ = X̂1 ⊗ β̂2 ⊗ · · · ⊗ β̂k
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where for β ∈ Γ(E∗), β̂ is the vector field on E∗ given by

β̂(f) = Fµ(βF−1
µ (f)).

A local computation shows that β̂ is identically zero on fiberwise constant maps and
that for the map induced by a section α ∈ Γ(E) we have

β̂(α) =
1

i
⟨β, α⟩.

In particular, we see that if we anti-symmetrize, we obtain the linear multivectorfield
X̂1 ∧ β̂2 ∧ · · · ∧ β̂k on E∗.

2.4.6 Deformation quantization of A∗ and the van Est-map

In this section we apply the theory we recalled above to show that the Van Est map is
in some sense a classical limit of the chain map we defined in the previous chapter. This
also allows us to give an alternative proof that the van Est-map itself is a chain map.

Now, fix a choice of a Haar system of G, which by the discussion above induces a
Haar system on Gad and a Haar system µ on A → M . The last one makes sure that
we can talk about a Fourier transform Fµ : S(A) → S(A∗). Using the construction of
[LR01] in the context of the Schwartz algebra of [C-R08], we obtain the following result.

Proposition 2.4.21 The maps qt : Sc(A∗)→ C∞
c (G), t ̸= 0 given by

qt(f)(g) := χ(g)F−1
µ (f)

(
(
1

t
exp−1(g)

)
,

make Sc(Gad) into a strict deformation quantization of A(G)∗ in the sense of Definition
2.4.6. In particular

lim
t→0

(qt(f1f2)− qt(f1) ∗ qt(f2)) = 0, lim
t→0

(
1

it
[qt(f1), qt(f2)]− qt({f1, f2})) = 0. (2.6)

In the formula for qt here χ ∈ C∞
c (G) is a cut-off function that equals 1 in a neighborhood

of M ⊂ G with support inside an open neighbourhood of the units onto which the
exponential map is a diffeomorphism.

Proof. The bulk of this is in done in [LR01] in a slightly different setting, but for the
parts that are relevant to our consideration the proofs can still be applied. Explicitely,
one of the differences with the results of [LR01] is that we do not need the property
qt(f

∗) = qt(f)
∗ for which the Weyl exponential map expW is used, and instead we can

use the normal exponential map. Secondly, we do not need to restrict to Paley-Wiener
functions, as we allow for Schwarz-type functions at t = 0 and use the cut-off function
on the level of G instead of A, the deviation vanishing as t approaches 0. Lastly, as the
relevant calculations on the local forms in A and A∗ are valid for all Schwarz functions
and not just Paley-Wiener functions, the relevant propositions in [LR01] still hold in
this situation.
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Remark 2.4.22 The variety of quantizations by using different types of exponential
maps is also reflected on the more algebraic level in [NW09] by using different orderings
in the Fedosov construction of formal deformation quantizations of A∗.

Using this strict deformation quantization of A(G)∗, the relation between the van
Est-map and our chain map Φ: C•

def(G)→ C•
Hoch(AG,AG) is now as follows:

Theorem 2.4.23 Let k ≥ 1 and c ∈ Ĉ
k

def(G) and suppose we have chosen a Haar system
on G inducing a Haar system µ on the algebroid A. Given f1, . . . , fk ∈ Sc(A∗), the
following equality is true:

V(c)(f1, . . . , fk) = Fµ

(
lim
t→0

(∑
σ∈Sk

(−1)σ 1

(it)k−1
Φ(c)(qt(fσ(1)), . . . , qt(fσ(k)))

))
.

Remark 2.4.24 The limit in the above equation is the limit as defined in Definition
2.4.17. In particular, if it exists, the limit is a Schwartz function on A, and its Fourier
transform is a Schwartz function on A∗. The proof of the Theorem shows that the
function made out of the content of the RHS, with the LHS at t = 0, is an element of
Sc(Gad), and hence the limit exists and is equal to the LHS.

Proof. We start with the case k = 1. First note that for f ∈ Sc(A∗) the map q(f) : Gad →
R given by

q(f)(g, t) = qt(f)(g)

q(f)(v, 0) = F−1
µ (f)(v)

is an element of Sc(Gad). Then note that the family {c}t̸=0 is a family of vector fields on
G which can be extended to a vector field on Gad, namely to the vector field cinv obtained
by Theorem 2.4.14. Then notice that Φ(cinv)(q(f)) is an element of Sc(Gad) consisting of

Φ(cinv)(q(f))t = Φ(c)(qt(f)), (t ̸= 0)

Φ(cinv)(q(f))0 = Φ(c0)(F−1
µ (f))

where c0 is the linear vector field that is the restriction of cinv to t = 0. Note that it
is linear, since it is the application of Theorem 2.4.13 to the vector field c on G. In
particular we see that

lim
t→0

Φ(c)(qt(f)) = Φ(c0)(F−1
µ (f))

and so we need to show that V(c) = ĉ0.
By Theorem 2.4.20 this means that we need to show that for β ∈ Γ(A∗) and α ∈ Γ(A)

we have
⟨β,V(c)(α)⟩+ ⟨c0(β), α⟩ = sc(⟨β, α⟩).

We note two things. First that every β ∈ Γ(A∗) = C∞
lin(A) can be written as dnh for

h ∈ C∞(G) with h|M = 0. Second that, since we have an explicit inclusion of A into the
tangent bundle of G, this means that:

⟨dnh, α⟩(x) = α(x)(h).
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We are now ready to show the equality. First we have

⟨dnh,V(c)(α)⟩(x) = [c,−→α ](1x)(h)

= c(1x)(
−→α (h))− α(x)(c(h)),

⟨c0(dnh), α⟩(x) = ⟨dn(ch), α⟩(x) = α(x)(c(h)),

and since c1x = du(sc(x)) combined with −→α |M = α we have

sc(⟨dnh, α⟩)(x) = sc(
−→α (h)|M)(x) = c(1x)(

−→α (h)).

For k > 1 we restrict to the case where c = c1 ⊗ h2 ⊗ · · · ⊗ hk with c1 ∈ X(G) and

h2, ..., hk ∈ C∞(G). For c to be an element of Ĉ
k

def(G) it is necessary and sufficient to

have c1 ∈ Ĉ
1

def(G) and hi|M = 0. Similar to the case k = 1 we note that

1

(it)k−1
Φ(c)(qt(f1), ..., qt(fk)) = Φ

(
(

1

(it)k−1
c

)
(qt(f1), ..., qt(fk))

which, as t→ 0, converges to

Φ(c0)(F−1
µ (f1), ...,F−1

µ (fk))

if we find a vector field c0 on A that together with the family { 1
(it)k−1 c}t̸=0 defines a

smooth deformation element of Gad.
To calculate this localization we remark that we can do the calculation in Gk using

the cartesian product of the exponential map A → G, instead of working in G(k) and
using the machinery of the previous section. This is for two reasons: firstly our definition
of c extends to Gk. Secondly the difference of (v1, ..., vk) ∈ A⊕k seen as tangent vectors
on Gk and (v1, ..., vk) ∈ A⊕k seen as tangent vectors in G(k) which are normal to the
units, using the isomorphism of Theorem 2.4.15, are tangent vectors in Gk which are
along the units. Since c vanishes along the units, we can neglect this.

Now to do the actual calculation we consider the chart θ : A⊕k×R∗ → Gk×R∗ given
by

θ(v1, ..., vk, t) = (exp(tv1), ..., exp(tvk), t).

Then if we look at the family { 1
(it)k−1 c}t̸=0, we see that if we take the pullback along θ

we obtain:

θ∗({ 1

(it)k−1
c}t̸=0)(v1, ..., vk, t) =

1

(it)k
c1(exp(tv1))h2(exp(tv2)) · · ·hk(exp(tvk))

Distributing the k powers of 1
t
over the k different terms we see that

c0(v1, ..., vk) =
1

ik−1
(c1)0(v1)dnh2(v2) · · · dnh2(vk)

since
1

t
c1(exp(tv1))→ (c1)0(v1)
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1

t
h(exp(tv))→ dnh(v)

as t → 0, so we see that c0 = 1
ik−1 (c1)0 ⊗ dnh2 ⊗ · · · ⊗ dnhk, which is a linear deforma-

tion element, and we want to show that V(c) is the anti-symmetrization of the Fourier
transform ĉ0. By the discussion at the end of the previous subsection we see that ĉ0 is
determined for α1, ..., αk ∈ Γ(A) by

ĉ0(α1, ..., αk) =
1

i2(k−1)
(̂c1)0(α1)⟨dnh2, α2⟩ · · · ⟨dnhk, αk⟩

Next we investigate Rα(c), we obtain:

Rα(c)(g1, ..., gk−1) = (−1)k−1 d

dϵ
|ϵ=0c1(g1)h2(g2) · · ·hk−1(gk−1)hk(Φ

ϵ−→α (s(gk))
−1)

= (−1)k−1c1(g1)h2(g2) · · ·hk−1(gk−1)dhk(dι(α(s(gk)))).

Then since fk|M = 0 and for v ∈ Ax we have dι(v) = −v + d(u ◦ t)(v) we obtain

Rα(c)(g1, ..., gk−1) = (−1)kc1(g1)h2(g2) · · ·hk−1(gk−1)dnhk(α(s(gk−1)).

Doing this inductively, and using that the flow of −→α preserves source fibers, we see

(Rα2 ◦ · · · ◦Rαk
)(c)(g) = (−1)

(k−1)(k−2)
2 c1(g)dnh2(α2(s(g)) · · · dnhk(αk(s(g)).

Since this is simply c1 multiplied with a function that is constant along the s-fibers, we
then obtain:

(Rα1 ◦ · · · ◦Rαk
)(c) = (−1)

(k−1)(k−2)
2 V(c1)(α1)⟨dnh2, α2⟩ · · · ⟨dnhk, αk⟩

= i(k−1)(k−2)V(c1)(α1)⟨dnh2, α2⟩ · · · ⟨dnhk, αk⟩.

Since already know by the calculation in the case k = 1 that V(c1)(α1) = (̂c1)0(α1) we
see that

(Rα1 ◦ · · · ◦Rαk
)(c) = ik(k−1)ĉ0(α1, ..., αk).

Then note that there is a mismatch in the summation over Sk in V(c) and in the right
hand side of the theorem. In particular the right hand side in the last equation corre-
sponds to the identity permutation in the statement of the theorem, while the right hand
side corresponds to the permutation in the definition of V(c) that sends j to k− j. The
sign of this permutation is (−1)

k(k−1)
2 , for which we have to correct, so that we obtain

V(c)(α1, ..., αk) =
∑
σ∈Sk

(−1)σ(Rασ(k)
◦ · · ·Rασ(1)

)(c)

=
∑
σ∈Sk

(−1)σik(k−1)(Rασ(1)
◦ · · · ◦Rασ(k)

)(c)

=
∑
σ∈Sk

(−1)σi2k(k−1)ĉ0(ασ(1), ..., ασ(k))

=
∑
σ∈Sk

(−1)σ ĉ0(ασ(1), ..., ασ(k)).
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So we see that V(c) equals the linear multivector field that is the antisymmetrization of
ĉ0. In particular this means that for f1, ..., fk ∈ Sc(A∗) we have

V(c)(f1, ..., fk) =
∑
σ∈Sk

(−1)σ ĉ0(fσ(1), ..., fσ(k))

=
1

ik−1
Fµ

(
lim
t→0

(∑
σ∈Sk

(−1)σ 1

(it)k−1
Φ(c)(qt(fσ(1)), . . . , qt(fσ(k)))

))
.

This completes the proof.

Remark 2.4.25 This theorem, restricted to multiplicative vector fields, can be viewed
as a statement about the ‘classical limit’ of certain derivations of the convolution algebra,
and looks very similar to certain aspects of the proof of the Atiyah–Singer index theorem
given in [ENN96]. Indeed, it would be interesting to investigate its use in index theory
for Lie groupoids, as it exactly fits into the framework of relating the van Est map
to the classical limit, as shown in the index theorem of [PPT15] for smooth groupoid
cohomology H•

diff(G), by replacing the characteristic map C•
diff(G)→ C•(AG) of [PPT15]

by the map

C•
def(G) → C•(AG)
c 7→ ιΦ(c)(τ)

obtained by using the contraction from Equation (2.3).

In the previous proof we have only used the fact that qt(f) converges to F−1
µ (f) in

Sc(Gad) as t goes to 0, we have not used the properties which makes the family {qt}t̸=0

a family of quantization maps, namely their compatibility with the Poisson bracket.
However, we have not introduced these specific maps without reason, since we will use
the fact that

lim
t→0

(
1

it
[qt(f1), qt(f2)]

)
= lim

t→0
qt({f1, f2}))

to give an alternative proof of the fact that the Van Est map is a chain map, i.e,
compatible with the differentials:

Corollary 2.4.26 The van Est map V : Ĉ
•
def(G)→ C•

Pois,lin(A
∗) is a chain map.

Proof. Let c ∈ Ĉ
k

def(G) for k ≥ 1 and we start by dissecting V(δc). Using the previous
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theorem we obtain

V(δc)(f1, ..., fk+1) =Fµ

lim
t→0

 ∑
σ∈Sk+1

(−1)σ 1

(it)k
Φ(δc)(qt(fσ(1)), . . . , qt(fσ(k+1)))


=Fµ

lim
t→0

 ∑
σ∈Sk+1

(−1)σ 1

(it)k
(b(Φ(c)))(qt(fσ(1)), . . . , qt(fσ(k+1)))


=Fµ

lim
t→0

 ∑
σ∈Sk+1

(−1)σ 1

(it)k
[qt(fσ(1)),Φ(c)(qt(fσ(2)), ..., qt(fσ(k+1)))]



+ Fµ

lim
t→0


k∑

j=1

∑
σ∈Sk+1

σ−1(j)<σ−1(j+1)

(−1)σ(−1)j 1

(it)k
Φ(c)(qt(fσ(1)), ...

∑
σ∈Sk+1

σ−1(j)<σ−1(j+1)

..., [qt(fσ(j)), qt(fσ(j+1))], ..., qt(fσ(k)))


 .

By the relation between the commutator, the Poisson bracket and the quantization maps,
we can now use 1 power of 1

it
to turn the commutators into Poisson brackets. Also using

the fact that qt(f)→ F−1
µ (f) as t→ 0 this results in

V(δc)(f1, ..., fk+1) =
∑

σ∈Sk+1

(−1)σ
{
fσ(1),Fµ

(
lim
t→0

(
1

(it)k−1
Φ(c)(qt(fσ(2)), ..., qt(fσ(k+1)))

))}

+ Fµ

lim
t→0


k∑

j=1

∑
σ∈Sk+1

σ−1(j)<σ−1(j+1)

(−1)σ(−1)j 1

(it)k−1
Φ(c)(qt(fσ(1)), ...

∑
σ∈Sk+1

σ−1(j)<σ−1(j+1)

..., qt({fσ(j), fσ(j+1)}), ..., qt(fσ(k)))


 .

Then using the previous Theorem in reverse order we see that this leads to

V(δc)(f1, ..., fk+1) =
k+1∑
j=1

(−1)j+1
{
fj,V(c)(f1, ..., f̂j, ..., fk+1)

}
+
∑
j1<j2

(−1)j1+j2V(c)({fj1 , fj2}, f1, ..., f̂j1 , f̂j2 , ..., fk+1),

which shows that the Van Est map is a chain map.
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2.5 Higher order elements

2.5.1 Adjoint representation of to homotopy

The theory of Lie groupoids and algebroids has some distinct features that makes it more
difficult than the theory of Lie groups and algebras. For one, not every Lie algebroid
comes from a Lie groupoid ([CF03]), but more importantly for what we’ll discuss here,
in general the Lie algebroid A(G)→ M of a groupoid G ⇒ M cannot be interpreted as
a representation of the groupoid. Indeed, if that would be the case, any arrow g ∈ G
would induce a linear map As(g) → At(g). However, since As(g) = ker(dsu(s(g))), the only
natural action g has on this space is by right multiplication, which does not send As(g)

to At(g).
In specific classes of examples, there are representations which can take the place

of the adjoint representation [Me16, Ch 5], but in general, something more involved is

needed. In particular we need to consider the complex A
ρ−→ TM of vector bundles

as some kind of representation. The concept that we need is a ‘representation up to
homotopy’, a notion introduced by Abad and Crainic in [AC13].

Definition 2.5.1 A representation up to homotopy of a Lie groupoid G ⇒M is a graded
vector bundle E = ⊕k∈ZE

k →M together with a differential D : C•(G, E)→ C•+1(G, E)
on the complex

Cn(G, E) :=
⊕

p+q=n

Γ(t∗Eq → G(p))

that is a super connection, i.e. D satisfies

D(η ⋆ f) = D(η) ⋆ f + (−1)nη ⋆ δ(f)

for η ∈ Cn(G, E) and f ∈ C•
diff(G). Here t : G(k) → M is the map sending (g1, ..., gk) to

t(g1), and ⋆ takes an element η of Γ(t∗Eq → G(p)) and an element f of Cp′

Diff(G) and spits
out an element η ⋆ f of Γ(t∗Eq → G(p+p′)) given by the formula

(η ⋆ f)(g1, ..., gp+p′) = η(g1, ..., gp)f(gp+1, ..., gp+p′).

Definition 2.5.2 A morphism of two representations up to homotopy is a C•
Diff(G)-linear

chain map

φ : (C•(G, E), D)→ (C•(G, E ′), D′)

Remark 2.5.3 By [AC13, Prop 3.2] we can see a representation up to homotopy as the
following data:

� A cochain complex of vector bundles with differentials ∂ : E• → E•+1.

� For every g ∈ G maps λg : E
n
s(g) → En

t(g) that satisfy ∂ ◦ λg = λg ◦ ∂, called the
quasi-action.
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� Homotopies R2(g1, g2) : E
• → E•−1 for (g1, g2) ∈ G(2) giving homotopies between

λg1 ◦ λg2 and λg1g2 :

λg1 ◦ λg2 − λg1g2 = ∂ ◦R2(g1, g2)−R2(g1, g2) ◦ ∂.

� Higher homotopies Ri for i ≥ 3 describing homotopies between homotopies in an
A∞ kind of sense.

In this way the differential can be understood as

D = ∂ + λ+
∑
i≥2

Ri.

This clarifies the word ‘homotopy’ in the name, and shows that a representation can
be thought of as a representation up to homotopy where all the higher homotopies are
identically zero.

Example 2.5.4 Using this definition, in [AC13, Def 3.13] the adjoint representation up
to homotopy was defined. The main input for this is an Ehresmann connection σ on G,
i.e. a section σ : s∗TM → TG of the map ds that equals du along the units. With this
at hand we can describe the representation by the following data:

� The cochain complex of vector bundles A(G) dt−→ TM with A(G) in degree 0 and
TM in degree 1.

� The quasi-actions on A(G) and TM given by

– λg(X) := (dt)g(σg(X))

– λg(α) := dRg−1(σg(dtu(s(g))(α))− dLg(dιu(s(g))(α)))

for X ∈ Ts(g)M and α ∈ A(G)s(g).

� A homotopy R2 = Kbas
σ for the quasi-action λ defined using the ‘basic curvature’ of

σ. Explicitly, for (g1, g2) ∈ G(2), the map R2(g1, g2) : Ts(g1)M → A(G)t(g2) is given
by

R2(g1, g2)(v) := dR(g1g2)−1(σg1g2(v)− dm(g1,g2)(σg1(λg2(v)), σg2(v))).

In the end, the resulting complex is given by

Cn(G,Adσ) = Γ(G(n), t∗A)⊕ Γ(G(n−1), t∗TM)

with differential defined using σ. Also, it is shown in [AC13] that the isomorphism class
of Adσ does not depend on the connection σ.
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Now what does this adjoint representation have to do with deformation cohomology of
the Lie groupoid? It turns out that the deformation complex is an intrinsic model for the
adjoint representation, in the sense that it is a cochain complex that is defined without
any choices and isomorphic to the complex associated to the adjoint representation
with an explicit isomorphism obtained by the choice of a connection. This should be
thought of as a generalization of the equivalent statements for Lie groups, where the
group cohomology complex with values in the adjoint representation is isomorphic to
the deformation complex of the group and as a justification for naming this specific
representation up to homotopy the adjoint representation.

Proposition 2.5.5 [Me16, Lem 5.53] Given an Ehresmann connection, the map

Iσ : C
n(G,Adσ)→ Cn

def(G)

associating to u ∈ Γ(G(n), t∗A(G)) and v ∈ Γ(G(n−1), t∗TM) the map

Iσ(u, v)(g1, ..., gn) := dRg1(u(g1, ..., gn))− σg1(v(g2, ..., gn))

is an isomorphism of cochain complexes.

Note that we did not spell out the differential on C•(G,Adσ) precisely, but in a
roundabout way we can interpret the differential as the differential induced by this
isomorphism and the differential on the deformation complex.

Remark 2.5.6 From the adjoint representation up to homotopy we can make a canonical
representation that every Lie groupoid G ⇒ M possesses. This is the representation of
‘transverse densities’

Q := ΛtopT ∗M ⊗ ΛtopA(G).

The appropriate combinations of the quasi-action of Example 2.5.4 turn this into an
actual representation of the groupoid. If there is a G-invariant section on this represen-
tation, i.e. if this is simply the trivial representation of G, we call G unimodular.

Tensor powers of the adjoint representation

In classical Lie theory, the story about the adjoint representation of a Lie group on
its algebra is extended by consideration of the symmetric powers of the adjoint. In
particular, if a Lie group G is compact the invariant polynomials C[g]G on its Lie al-
gebra are isomorphic, via the Chern-Weil Construction [Bo73], to the cohomology of
the classifying space BG. On the other hand, the invariant polynomials C[g]G are also
isomorphic to the group cohomology with coefficients in the symmetric powers of the
adjoint representation.

For representations up to homotopy, there is a similar operation, but just as defining
representation up to homotopy is a tricky business, more so is defining tensor powers.

Indeed, as described in a paper by Abad, Crainic and Dherin [ACD10], taking the
k’th symmetric power of a representation up to homotopy involves the following:
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� The graded vector bundle E is replaced by its k’th graded symmetric power SymkE.
Writing out E = ⊕n∈ZE

n we have that

SymkE =
⊕

p+q=k

SympEev ⊗ ΛqEodd

where a term ( ⊗
m even

SymkmEm

)
⊗

(⊗
n odd

ΛknEn

)
lives in degree

∑
n∈Z nkn. The differential is then applied derivation-wise to the

tensor products.

� The maps λg : E
n
s(g) → En

t(g) are replaced by what they induce on the respective
tensor products.

� The higher homotopies are complicated, in that one needs to make a choice of com-
binatorics to define the higher homotopies out of the original higher homotopies.

In the end, there is always a coherent choice to make, and the resulting representations
up to homotopy are always isomorphic, so that taking the symmetric powers (and indeed
any tensor power) is well-defined as isomorphism classes.

In particular we obtain SymAd as an equivalence class of a representation up to ho-
motopy, and associated to that an isomorphism class of cochain complexes calculating
Lie groupoid cohomology with coefficients in the symmetric powers of the adjoint. Par-
allel to classical Lie theory, one is interested in this cohomology because of its relations
to the cohomology of the classifying space BG. In particular, it is shown in [AC13, Thm
4.3] that there is a spectral sequence converging to the cohomology of BG which on its
first page is calculated by H•(G, SymAd).

Now, we would be interested in intrinsic models of this complex, akin to the de-
formation complex for the adjoint representation. In this context, we are interested
in investigating the the relation between the chain map Φ from Definition 2.3.2, the
symmetric powers of the adjoint, and the following conjecture:

Conjecture 2.5.7 There is a natural injection

H•(G, Sym(Ad))→ H•(AG,AG).

In particular we want to see whether we can use the Gerstenhaber structure of the
Hochschild complex to induce ‘higher order’ elements out of the deformation complex.

2.5.2 From vector fields to differential operators

As a baby case for upgrading the deformation complex to something describing the sym-
metric powers of the adjoint representation, we look at what happens in cohomological
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degree 1. Indeed, if the deformation complex exhibits a structure in the same vein as a
DGLA, this degree should be kept fixed by the higher order structures.

In degree 1 we have that C1
def(G) consists of s-projectable vector fields on G, which

are a module over C∞(M) by setting

f ·X = (f ◦ s)X. (2.7)

Now if we want to go to something alike a symmetric powers operation, we would need
to go to SymC∞(M)Xs(G), but there is a procedure more aligned with the philosophy
that the symmetric powers of the adjoint should come as some kind of graded quotient:
we want to replace vector fields with differential operators, in a way as described in
Theorem 1.2.40. To be able to do this, we shoehorn our situation into the framework of
Lie-Rinehart algebras.

Lemma 2.5.8 The pair (Xs(G), C∞(M)), with the bracket given by the Lie bracket of
vector fields, module structure given by (2.7), and the anchor ρ : Xs(G) → X(M) given
by ρ(X) = σX is a Lie-Rinehart algebra.

Proof. We only need to check that

[X, f · Y ] = f · [X, Y ] + ρ(X)(f) · Y

for X, Y ∈ Xs(G) and f ∈ C∞(M). For this we use the ordinary rules we have for dealing
with Lie brackets of vector fields:

[X, f · Y ] = [X, (f ◦ s)Y ]

= (f ◦ s)[X, Y ] +X(f ◦ s)Y
= f · [X, Y ] + (σX(f) ◦ s)Y
= f · [X, Y ] + ρ(X)(f) · Y.

This finishes the proof.

Definition 2.5.9 We define the s-projectable differential operators on G to be

Diffs(G) := U(Xs(G), C∞(M)).

Lemma 2.5.10 There is a canonical injection

Diffs(G) ↪→ Diff(G)

induced by the inclusion Xs(G) ↪→ X(G) and the injection C∞(M)
s∗−→ s∗C∞(M) ↪→

C∞(G). The image of this injection is given by

Diffs(G) = {D ∈ Diff(G) : D(s∗C∞(M)) ⊂ s∗C∞(M)}.



94 Chapter 2. Lie groupoid deformations and convolution algebras

Proof. The first statement about the existence of the injection is clear. As for the
characterization of the image, notice that the whole procedure can be done for any
submersion f : M → N , and by a partition of unity argument this lemma can be reduced
to the projection π : Rn+k → Rn, where it is easy to see by some extensive bookkeeping.

In particular, choosing coordinates (x1, ..., xn, y1, ..., yk), we see the following:

π∗C∞(Rn) = {f ∈ C∞(Rn+k) : f(x1, ..., xn, y1, ..., yk) = f(x1, ..., xn)},

Xπ(Rn+k) =

{
n∑

i=1

fi
∂

∂xi
+

k∑
j=1

gj
∂

∂yj
: fi ∈ π∗C∞(Rn), gj ∈ C∞(Rn+k)

}
,

so that Diffπ(Rn+k) consists of those combinations

D =
∑
p,q≥0

∑
1≤i1≤···≤ip≤n

∑
1≤j1≤···≤jq≤k

fi1,...,ip,j1,...,jq
∂

∂xi1
· · · ∂

∂xip

∂

∂yj1
· · · ∂

∂yjq

where fi1,...,ip has to be an element of π∗C∞(Rn) whenever q = 0. It is easily seen that
those are precisely the differential operators that preserve π∗C∞(Rn).

Using this formalism, we can define an action of projectable differential operators on
the convolution algebra. Indeed, we have two maps

Φ0 : C∞(M)→ C1
Hoch(AG,AG), Φ1 : Xs(M)→ C1

Hoch(AG,AG),

where Φ0(f)(a) = (f ◦ s)a and Φ1 is our chain map Φ from before. Since Φ1 is defined
using Lie derivatives of tensors which are locally fibred top-forms, we have

[Φ1(X),Φ1(Y )] = Φ1([X, Y ]), Φ0(f)Φ0(g) = Φ0(fg),

Φ1(f ·X) = Φ0(f)Φ1(X), [Φ1(X),Φ0(f)] = Φ0(ρ(X)(f)).

Here, the product in C1
Hoch(AG,AG) is simply composition of maps. By Remark 2.1.6,

elements of the convolution algebra are locally fibred differential forms, so that this
follows from the well-known relations for the Lie derivative of differential forms:

[LX ,LY ]ω = L[X,Y ]ω, f(gω) = (fg)ω,

LfXω = df ∧ ιXω + fLXω, LX(fω)− fLXω = X(f)ω,

combined with the observation that densities are locally the same as differential forms,
and hence behave similarly under these kinds of local statements. The only equation
which not immediately reduces to our desired relation is the one involving LfXω, where
the term df ∧ ιXω seems to spoil the fun. However, we need this relation for f of the
form f̃ ◦ s, we we obtain

LfXω = s∗df̃ ∧ ιXω + fLXω.
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Furthermore, we only need this relation for an s-fibred differential form of top degree,
i.e. we apply this relation to tangent vectors that lie in the distribution ker(ds), and we

need to fill all the available slots. This means that the term s∗df̃ ∧ ιX always vanishes,
and we indeed end up with our desired relation.

In the end, by the universal property of U(Xs(G), C∞(M)) we obtain a map

Φ: Diffs(G)→ C1
Hoch(AG,AG).

This map leads to the following interesting class of differential operators.

Definition 2.5.11 A differential operatorD ∈ Diffs(G) is calledmultiplicative if b(Φ(D)) =
0.

Remark 2.5.12 Since Φ1 is an injective map, this definition of multiplicative reduces
to the usual definition Theorem 2.2.5 for s-projectable vector fields.

Next, it is natural to look at the symbols of these differential operators, and we
wonder about how multiplicity behaves with respect to taking the symbol. For this,
we turn to the work of Bursztyn and Drummond [BD19], which describes the notion
of multiplicative tensors in terms of the tangent groupoids ⊕•T ∗G. We think of it in
the following way: the symbol of a differential operator induces a fibrewise polynomial
function on T ∗G (about which we can also think as a symmetric function on ⊕kT ∗G if
the differential operator is of order k), and in the vein of Bursztyn and Drummond, we
define

Definition 2.5.13 For a groupoid G, we call a function f ∈ C∞(G) multiplicative if it
satisfies

f(m(g, h)) = f(g) + f(h)

and if D is a differential operator on G, we call a symbol σ(D) multiplicative if it is
multiplicative as a smooth function on T ∗G, on which we defined a groupoid structure
in Example 1.2.26.

We then expect the connection between multiplicative differential operators and dif-
ferential symbols to be as follows.

Conjecture 2.5.14 The symbol of a multiplicative differential operator is a multiplica-
tive symbol. Reversely, every symbol that is multiplicative is the symbol of some multi-
plicative differential operator.

We can investigate this connection in a few examples.

Example 2.5.15 (Trivial groupoids) For a trivial groupoid G = M ⇒ M , we have
Diffs(G) = Diff(M), of which the multiplicative differential operators are by definition
precisely the vector fields X(M) by definition. In turn we need to show that the multi-
plicative polynomials on T ∗G are precisely the linear functions.
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To see this, note that for the trivial groupoid G =M ⇒M , the cotangent groupoid
T ∗G is simply the vector bundle T ∗M → M seen as a groupoid. In particular, f ∈
C∞(T ∗M) is multiplicative if and only if

f(v + w) = f(v) + f(w)

for v, w ∈ T ∗
pM for some p ∈M . So, we see quite easily that the multiplicative symbols

are precisely the fibrewise linear functions on T ∗M .

Example 2.5.16 (Pair groupoid over R) For the pair groupoid G = R2 ⇒ R, a
projectable differential operator D of order k is of the form

D =
∑
i+j≤k

αi,j
∂i+j

∂xi∂yj

where α0,j ∈ C∞(R2) only depends on y. Here we give R2 the coordinates (x, y) with
the source map being the projection of (x, y) onto y.

Identifying AG with C∞(R2) by ways of the density |dx|, we see that D acts on the
convolution algebra via

Df =
∑
i+j≤k

αi,j
∂i+jf

∂xi∂yj
+
∑
i+j≤k
i>0

∂αi,j

∂x

∂i+j−1f

∂xi−1∂yj
.

Then, we look at what it means for D to act as a derivation. For that, we note that
under the identification we have

(f1 ∗ f2)(x, z) =
�
R
f1(x, z)f2(z, y)dz

so that

∂(f1 ∗ f2)
∂x

=

(
∂f1
∂x

)
∗ f2,

∂(f1 ∗ f2)
∂y

= f1 ∗
(
∂f2
∂y

)
.

Repeated partial integration then yields that D acts as a derivation if and only if the
following identities are true:

� αk,0(x, y) = (−1)k+1α0,k(x),

� αi,j ≡ 0 whenever i > 0 and j > 0,

� αi,0(x, y) =
∑k−i

n=0(−1)i+n−1

(
i+ n
n

)
∂nα0,i+n

∂xn (x)− ∂αi+1,0

∂x
(x, y) for 1 ≤ i ≤ k− 1 (in

particular αi,0 is only dependent on x for i = 1, ..., k),

� α0,0(y) = −dα1,0

dy
(y) +

∑k
n=1(−1)n−1 d

nα0,n

dyn
(y).
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Next, we look at the cotangent groupoid T ∗R2 ⇒ T ∗R. Sifting through the definitions
we see that, writing the coordinates (x, y, a, b) for T ∗R2 with a dual to x and b dual to
y, we have

s(x, y, a, b) = (y,−b), t(x, y, a, b) = (x, a),

m((x, y, a, b), (y, z,−b, c)) = (x, z, a, c).

Then, if we have a map f ∈ C∞(T ∗R2) of the form

f(x, y, a, b) =
k∑

i=0

αi(x, y)a
ibk−i,

we can write out the multiplicity equation

f(x, z, a, c) = f(x, y, a, b) + f(y, z,−b, c)

to obtain

α0(x, z)c
k +

k−1∑
i=1

αi(x, z)a
ick−1 + αk(x, z)a

k =

= α0(x, y)b
k +

k−1∑
i=1

αi(x, y)a
ibk−i + αk(x, y)a

k+

+ α0(y, z)c
k +

k−1∑
i=1

(−1)iαi(y, z)b
ick−i + (−1)kαk(y, z)b

k.

So we see that f being multiplicative is equivalent to

� αi ≡ 0 for i = 1, ..., k − 1,

� α0(x, z) = α0(y, z) =: α0(z),

� αk(x, z) = αk(x, y) =: αk(x),

� α0(y) = (−1)k+1αk(y),

so that we see that multiplicative symbols are those of the form

f(x, y, a, b) = α(x)ak + (−1)k+1α(y)bk

and we indeed see that symbols of multiplicative differential operators are multiplicative
and all multiplicative symbols are obtained in this way.
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Example 2.5.17 (General pair groupoids) For a general pair groupoid G = M ×
M ⇒M , we fix a D ∈ Diffs(G), and then we can choose opens U1, U2, U3 ⊂M which are
all coordinate domains, and look at the derivation-equation D(f1 ∗ f2) = f1 ∗ D(f2) +
D(f1) ∗ f2 where f1 is supported inside U1 × U2 and f2 is supported inside U2 × U3. A
similar argument with partial integration shows that if D is multiplicative, its symbol
σ(D) ∈ C∞(T ∗M×2) is of the form

σ(D)(x, y, ξ, ζ) = P (x)(ξ) + (−1)k+1P (y)(ζ)

for P ∈ Γ(SymkTM) a map that sends a point x ∈M to a degree k polynomial on T ∗
xM .

Similarly, we see that functions f ∈ C∞(T ∗M×2) that are fibrewise degree k homo-
geneous polynomials are multiplicative if and only if they are of the same form

f(x, y, ξ, ζ) = P (x)(ξ) + (−1)k+1P (y)(ζ)

and so we again see that multiplicative symbols and multiplicative differential operators
are linked.

Example 2.5.18 (Lie groups) For a Lie group G, seen as a Lie groupoid G ⇒ {pt},
we have that Diffs(G) consists of those differential operators on G whose degree 0-term
is constant. To see the effect on the convolution algebra, we first choose a left-invariant
volume form ω on G. For α ∈ C∞(G) and v ∈ g we have

Lα−→v ω = −→v (α)ω + αL−→v ω = −→v (α)ω. (2.8)

Here, we remark that L−→v ω = 0 since ω is left-invariant.
Now, let D ∈ Diffs(G) be defined by

D =
∑
i∈I

αi
−→vi1 · · · −→vik +O(k − 1)

for αi ∈ C∞(G) and v ∈ g. Here, by O(k − 1) we mean differential operators of orders
k − 1 and less. We then see that D acts on the convolution algebra via

Df =
∑
i∈I

(αi(
−→vi1 · · · −→vik)(f) +

−→vi1(αi)(
−→vi2 · · · −→vik)(f)) +O(k − 1).

Here, the second term comes from the Lie derivative of αω (2.8). Of course, this term is
also of order k − 1, so that

Df =
∑
i∈I

αi(
−→vi1 · · · −→vik)(f) +O(k − 1).

By a partial integration argument, we can explicitely write out this formula (up to lower
order terms) to obtain:

b(D)(f1, f2)(g) =
∑
i∈I

d

dt1

∣∣∣∣
t1=0

· · · d
dtk

∣∣∣∣
tk=0

�
G

(
αi(h)f1(gh

−1et1vi1 · · · etkvik )+

+αi(gh
−1)f1(e

t1vi1 · · · etkvikgh−1)− αi(g)f1(e
t1vi1 · · · etkvikgh−1

)
f2(h)ω(h).
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So, if D is a derivation, we see that

∑
i∈I

d

dt1

∣∣∣∣
t1=0

· · · d
dtk

∣∣∣∣
tk=0

(
αi(h)f(gh

−1et1vi1 · · · etkvik )+

αi(gh
−1)f(et1vi1 · · · etkvikgh−1)− αi(g)f(e

t1vi1 · · · etkvikgh−1
)
= 0

for any f ∈ C∞(G), and any g, h ∈ G. Rewriting this, we get∑
i∈I

(αi(h)Hes(f)gh−1(Adgh−1(v1), ...,Adgh−1(vk))+

+αi(gh
−1)Hes(f)gh−1(v1, ..., vk) + αi(g)Hes(f)gh−1(v1, ..., vk

)
= 0 (2.9)

where Hes(f)gh−1 is the Hessian of f :

Hes(f)gh−1(v1, ..., vk) =
1

k!

∑
σ∈Sk

d

dt1

∣∣∣∣
t1=0

· · · d
dtk

∣∣∣∣
tk=0

f(et1vσ(1) · · · etkvσ(k)gh−1).

Now to see that the symbol is multiplicative, notice that using right translations of
the tangent bundle TG ∼= G× g we have that the cotangent groupoid is given by

G× g∗ ⇒ g∗

with source and target given by

s(g, ξ) = Ad∗
g(ξ), t(g, ξ) = ξ,

and multiplication given by

m((g, ξ), (h, ξ′)) = (gh, ξ).

In particular a multiplicative map is a map F ∈ C∞(G× g∗) such that

F (gh, ξ) = F (g, ξ) + F (h,Ad∗
g(ξ)).

Note that we can also derive this fact for symmetric multilinear maps F ∈ C∞(G ×
Symkg∗), and the equation (2.9) is precisely the equation

σ(D)(gh−1,Hes(f)gh−1) + σ(D)(h,Ad∗
gh−1Hes(f)gh−1) = σ(D)(g,Hes(f)gh−1)

where we see σ(D) as a function on G × Symk(g∗). So since every symmetric map
ξ ∈ Symk(g∗) can be written as ξ = Hes(f)gh−1 for a suitable f ∈ C∞

c (G) (this can be
very easily seen by using the local coordinates that g gives around gh−1 by using the
exponential map), we see that if D is a derivation on the convolution algebra, then its
symbol is multiplicative.
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Remark 2.5.19 For the general case, we have, at the moment of writing, not found
a proof of this fact. It is reasonable to expect that a partial integration argument
should go a long way, when applied to the integral over the s-fibres that are present
in the convolution product in the general case. Similarly, the characterization of the
multiplicative symbols should be greatly eased by explicitly dividing the cotangent space
T ∗G in the direction parallel to the source fibres, and the normal direction. As such, it
would seem that by choosing a reasonably invariant splitting of the short exact sequence

t∗A→ TG → TM

similar types of arguments as above would yield a proof.

So what is the general philosophy behind this consideration of the cohomological
degree 1, and how does this connect to the story we sketched around Conjecture 2.5.7?
The following conjecture arises as a routemap to research the relations that are present:

Conjecture 2.5.20 On the deformation complex C•
def(G) there is the structure of a

‘L∞-algebroid over C•
diff(G)’, with the following properties:

� In cohomological degree 1, the L∞-structure is given by the Lie-bracket of s-
projectable vector fields;

� A universal enveloping procedure induces a complex which in degree n is given by
a certain class of differential operators on G(n);

� The chain map Φ: C•
def(G) → C•

Hoch(AG,AG) from 2.3.2 is compatible with this
the L∞-structure on C•

def(G) and the Gerstenhaber structure on C•
Hoch(AG,AG),

leading to a map between the universal enveloping complex and the Hochschild
complex;

� The symbol map from the universal enveloping complex to C•
diff(T

∗G) is a chain
map;

� The graded quotient of the universal enveloping complex is isomorphic to the chain
complex associated to the symmetric powers of the adjoint representation up to
homotopy.



Chapter 3

Action groupoids and equivariant
characteristic classes

In this chapter we discuss the contents of [KP22]. We specifically study action groupoids
M × G ⇒ M induced by right group actions with the main goal being to relate the
equivariant cohomology H•

G(M) of M with the periodic cyclic cohomology HP•(G ⋉
C∞

c (M)) of the convolution algebra. In this specific case the convolution algebra is
given by C∞

c (M ×G) with product

(f1 ∗ f2)(x, g) =
�
G

f1(x, h)f2(xh, h
−1g)dh (x ∈M, g ∈ G).

The non-commutative geometry of this algebra has been studied extensively, specifically
since its product can be interpreted as a twisted combination of the convolution product
of G and the commutative product on C∞

c (M). The main tool, following Brylinski
[Br87a], is to exploit this specific form of the product to split the Hochschild complex
of the convolution algebra into a double complex {C∞

c (M×(p+1) ×G×(q+1))}p,q≥0, where
the behaviour in the M -direction is a twisted version of the usual Hochschild complex of
C∞

c (M) and in the behaviour in the G-direction uses the group cohomology associated
to the G-module C∞

c (M×•).
Using these facts, calculations for the Hochschild and cyclic homology of the convolu-

tion algebras were obtained in the case where G is discrete in works of for instance Baum-
Connes [BC88], Brodzki-Dave-Nistor [BDN17], Connes [Co94], Feigin-Tsygan [FT87]
and Getzler-Jones [GJ93] and recently Ponge [Po18], either directly or by a spectral
sequence argument. In the compact case, these ideas have been generalized by Block,
Getzler and Jones [BG94, BGJ95] using an equivariant form of the Hochschild-Kostant-
Rosenberg map to obtain a model using the G-module of functions on g with values
in the differential forms on M . In this chapter, we will build upon this work by writ-
ing down a model C•,•(G,Ωg,c(M)) for the cyclic homology of the convolution algebra
G ⋉ C∞

c (M) (in the case when G is unimodular) inspired by Getzlers model for equiv-
ariant cohomology [Ge94], and which is roughly given by

Cp,q(G,Ωg,c(M)) = C∞
c (G×q, C∞(g,Ωp

c(M))).

101
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We will derive this model by combining the double complex written down by Brylinski
[Br87a], the Eilenberg-Zilber Theorem and the equivariant HKR-map as defined by Block
and Getzler [BG94]. Using this one can write down spectral sequences, which reduce
quite significantly, for instance in the case that G is compact or when the action of G on
M is proper, giving connections between the Hochschild and cyclic homology of the con-
volution algebra G⋉ C∞

c (M) and the invariant de Rham cohomology H•(Ωc(M)G, ddR)
of M .

Apart from defining this model and exhibiting its properties, we want to use this to
describe, internal to algebraic considerations of the convolution algebra, an equivariant
Chern character in the non-commutative setting for equivariant vector bundles.

The equivariant cohomology H•
G(M) is defined [Tu20] to be

H•
G(M) := H•((EG×M)/G),

the singular cohomology of the homotopy quotient (EG ×M)/G. If the action of G
on M is free and proper, this cohomology is isomorphic to the (deRham) cohomology
H•(M/G) of the quotient. In general, it is calculated using the Bott-Shulman complex
of the simplicial manifold G×• ×M of [BSS76], which is given by

Ωp,q(G×• ×M) := Ωp(G×q ×M)

with the horizontal differential being the deRham differential, and the vertical differential
being the alternating sums of the pullbacks under the maps ∂i defined by

∂i(g1, ..., gq, x) :=

{
(g1, ..., gigi+1, ..., gq, x), 0 ≤ i ≤ q − 1

(g1, ..., gq−1, gqx), i = q
.

Work by Getzler [Ge94] allows us to calculate equivariant cohomology by looking at a
much smaller complex C•,•(G,Ωg(M)), which is inspired by the Cartan model and is
roughly given by

Cp,q(G,Ωg(M)) := C∞(G×q, Sym(g∗)⊗ Ωp(M)).

For equivariant vector bundles over M , there is the notion of the equivariant Chern
character ChG : VectG(M)→ Hev

G (M) given by the concatenation

VectG(M)→ VectG(EG×M)→ Vect((EG×M)/G)→ Hev((EG×M)/G).

Here, the map VectG(M)→ VectG(EG×M) is given by pullback along the equivariant
projection EG×M →M , and VectG(EG×M)→ Vect((EG×M)/G) is defined using
the remark that if E → X is an equivariant vector bundle then E/G → X/G is a
(topological) vector bundle. Lastly, the map Vect((EG×M)/G)→ Hev((EG×M)/G)
is the ordinary (topological) Chern character.

In this chapter we shed light on the structure of this Chern character, internal to the
underlying action groupoid, in the following steps:
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� In Section 3.1, we define cyclic cohomology classes for the convolution algebra G⋉
C∞

c (M) by constructing generalized cycles following Connes [Co94] and Gorokhovsky
[Go99].

� In Section 3.2 and Section 3.3, we describe a way to obtain a map from the equivari-
ant cohomology H•

G(M) to the cyclic cohomology HP•(G⋉C∞
c (M)) by pairing our

model C•,•(G,Ωg,c(M)) for cyclic homology with Getzler’s model C•,•(G,Ωg(M))
for equivariant cohomology.

� Using these two points, we obtain a diagram

VectG(M) //

))

Hev
G (M)

��

HPdim(M)(G⋉ C∞
c (M))

which we show to be commutative when the action of G on M is proper in Sec-
tion 3.4.

This diagram has already been studied in the discrete case by Connes [Co94] and
Gorokhovsky [Go99] and we generalize their results to the unimodular case.

To be able to do our calculations, we restrict ourselves to the case where M is
orientable and the case where G is unimodular and the action of G on M is orientation-
preserving. This means that we are able to integrate top forms over M , and that left
and right Haar measures on G agree and inversion is measure preserving. In particular,
for every f ∈ C∞

c (G) and every g ∈ G, we have

�
G

f(gh)dh =

�
G

f(h)dh,
�
G

f(hg)dh =

�
G

f(h)dh,
�
G

f(h−1)dh =

�
G

f(h)dh.

3.1 Cyclic cohomology classes through generalized

cycles

We start by recalling the formalism of cycles of Connes [Co94] and its associated char-
acters, as well as the JLO-type of Gorokhovsky [Go99] extending this formalism to more
general situations. We then apply it to the case of a Lie group G acting on M by
studying the convolution algebra G⋉ C∞

c (M).
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3.1.1 Characters of generalized cycles

In this section, we outline the character of a cycle as defined by Connes, an important
(and in essence the only) way to inducing cyclic cohomology classes for an algebra A.
To motivate the definition, suppose M is a compact, oriented n-dimensional manifold.
If ω ∈ Ωn−k(M) is a differential form, we can write down a Hochschild k-cochain [ω] ∈
Ck

Hoch(C
∞(M), (C∞(M))∗) by the formula

[ω](f0, ..., fk) :=

�
M

f0df1 ∧ · · · ∧ dfk ∧ ω.

One then simply checks that

b[ω] = 0 and B[ω] = [(k + 1)(−1)kdω].

Indeed,

b[ω](f0, ..., fk+1) =
k∑

i=0

(−1)i[ω](f0, ..., fifi+1, ..., fk+1)

+ (−1)k+1[ω](fk+1f0, f1, ..., fk)

=

�
M

f0f1df2 ∧ · · · ∧ dfk+1 ∧ ω

+
k∑

i=1

(−1)i
�
M

f0 ∧ df1 ∧ · · · ∧ d(fifi+1) ∧ · · · ∧ dfk+1 ∧ ω

+ (−1)k+1

�
M

fk+1f0df1 ∧ · · · ∧ dfk ∧ ω

=

�
M

f0f1df2 ∧ · · · ∧ dfk+1 ∧ ω

+
k∑

i=1

(−1)ifif0 ∧ df1 ∧ · · · ∧ d̂fi ∧ · · · ∧ dfk+1 ∧ ω

+
k∑

i=1

(−1)ifi+1f0 ∧ df1 ∧ · · · ∧ d̂fi+1 ∧ · · · ∧ dfk+1 ∧ ω

+ (−1)k+1

�
M

fk+1f0df1 ∧ · · · ∧ dfk ∧ ω.
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By a telescoping argument on the two sums, we see that this vanishes. For the other
relation we see

B[ω](f0, ..., fk−1) =
k∑

i=0

(−1)ik
�
M

dfk−i+1 ∧ · · · ∧ dfk ∧ df0 ∧ · · · ∧ dfk−i ∧ ω

=
k∑

i=0

�
M

df0 ∧ · · · ∧ dfk−1 ∧ ω

=(k + 1)

�
M

d(f0df1 ∧ · · · ∧ dfk−1 ∧ ω)

+ (k + 1)(−1)k
�
M

f0df1 ∧ · · · ∧ dfk−1 ∧ dω

=0 + [(k + 1)(−1)kdω](f0, ..., fk−1).

So we see that -up to a factor- this procedure gives a chain map (Ωn−•(M), d) →
(CC•

Hoch,cont(C
∞(M)), b+B).

There is a more general picture behind this, extending this example to arbitrary
algebras. So, let us start again with ω ∈ Ωn−k(M) closed, and set Ω = Ω≤k(M) the
differential graded algebra that is obtained by truncating at degree k. Clearly this DGA
comes with an algebra map ρ : C∞(M)→ Ω0. Furthermore, we have a ‘trace’

�
: Ωk → R

given by  
α :=

�
M

α ∧ ω (α ∈ Ωk),

which satisfies  
α ∧ β = (−1)|α||β|

 
β ∧ α (α, β ∈ Ω≤k, |α|+ |β| = k)

and, since ω is closed, also
 
dα = 0.

The cyclic cocycle [ω] from before can then also be written as

(f0, ..., fk) 7→
 
ρ(f0) ∧ d(ρ(f1)) ∧ · · · ∧ d(ρ(fk)).

This leads to the following definition.

Definition 3.1.1 Let A be an associative algebra. A cycle of dimension n over A is the
data

� A differential graded algebra (Ω, ∗, D) with Ω =
⊕n

i=0 Ω
i.

� A linear map
�
: Ωn → K satisfying
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–
�
α ∗ β = (−1)|α||β|

�
β ∗ α for every α, β ∈ Ω≤n with |α|+ |β| = n.

–
�
Dα = 0 for every α ∈ Ωn−1.

� An algebra map ρ : A→ Ω0.

These cycles are important because of the following:

Proposition 3.1.2 [Co94, Prop 3.4] If (Ω,
�
, ρ) is a cycle of dimension n over A, then

the map ChΩ : A
⊗(n+1) → K given by

ChΩ(a0, ..., ak) =

 
ρ(a0) ∗D(ρ(a1)) ∗ · · · ∗D(ρ(ak))

satisfies bChΩ = 0 and BChΩ = 0.

The proof of the proposition above is essentially the same calculation as we did before,
with the calculations with differential forms replaced with formal manipulations allowed
by the properties that a cycle has by definition.

However, we can do better. For this we need a few more definitions.

Definition 3.1.3 [Bu68, Def 2.1] If (Ω, ∗) is a graded algebra, then a multiplier of degree
k on Ω is a pair of linear maps Θl,Θr : : Ω

• → Ω•+k satisfying

� Θl(α ∗ β) = Θl(α) ∗ β,

� Θr(α ∗ β) = α ∗Θr(β),

� Θr(α) ∗ β = α ∗Θl(β).

If Θl,Θr form such a pair, we may also write Θ ∗ α and α ∗ Θ for Θl(α) and Θr(α)
respectively, and by extension [Θ,−] for Θl −Θr.

Remark 3.1.4 Any element α ∈ Ωk defines a multiplier of degree k by setting Θl(β) =
α ∗ β and Θr(β) = β ∗ α. If Ω is unital, any multiplier is of this form, induced by
α = Θl(1) = Θr(1).

Example 3.1.5 If Ω ⊂ Ω̃ is an inclusion of Ω into a larger graded algebra, any element
Θ ∈ Ω̃ with the property that

Θ ∗ Ω ⊂ Ω and Ω ∗Θ ⊂ Ω

induces a multiplier of Ω using multiplication inside Ω̃. The three properties of a multi-
plier are then satisfied because of associativity of the product of Ω̃.

Definition 3.1.6 An externally curved DGA is the datum (Ω, ∗, D,Θ) of:

� A graded algebra (Ω, ∗),
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� A graded derivation D : Ω∗ → Ω∗+1,

� A multiplier Θ of degree 2 on Ω such that

– D2 = [Θ,−],
– D(α ∗Θ) = (Dα) ∗Θ.

If Θ is a multiplier induced by an element of Ω2, we call Ω a curved DGA.

Remark 3.1.7 The last property in the previous definition is called the (right) Bianchi
identity. In the unital case where Θ simply is an element of Ω2, this equation is equivalent
to DΘ = 0. There is also a left Bianchi identity D(Θ ∗ α) = Θ ∗ (Dα), but under the
assumption that D2α = [Θ, α], the left and right Bianchi identities are equivalent since

D(Θ ∗ α− α ∗Θ) = D(D2α) = D2(Dα) = Θ ∗ (Dα)− (Dα) ∗Θ.

Now we can make the definition of a cycle over A, but using externally curved DGAs
instead of DGAs.

Definition 3.1.8 [Go99, §2] A generalized cycle of dimension n over A is the data
(Ω,

�
, ρ), where

� (Ω, ∗, D,Θ) is an externally curved DGA

�
�
: Ωn → K a linear map satisfying

–
�
α ∗ β = (−1)|α||β|

�
β ∗ α for α, β ∈ Ω≤n s.t. |α|+ |β| = n, (trace property)

–
�
Dα = 0 for every α ∈ Ωn−1 (closedness)

–
�
Θ ∗ α =

�
α ∗Θ for every α ∈ Ωn−2,

� An algebra map ρ : A→ Ω0.

With this definition at hand we can also amend our definition of the character of a
cycle. In what follows we use this definition for the standard simplex ∆k:

∆k = {t0, ..., tk ≥ 0 : t0 + · · ·+ tk = 1}

which has measure dt1 · · · dtk.

Theorem 3.1.9 [Go99, Thm 2.1] Let A be a unital, associative algebra and let (Ω,
�
, ρ)

be a generalized cycle of dimension n over A. The maps Chk
Ω : A

⊗(k+1) → K, defined for
0 ≤ k ≤ n such that k ≡ n mod 2, by the formula

Chk
Ω(a0, ..., ak) =

�
∆k

 
ρ(a0) ∗ e−t0Θ ∗Dρ(a1) ∗ e−t1Θ ∗ · · · ∗D(ρ(ak)) ∗ e−tkΘdt1 · · · dtk

satisfy bChk
Ω = BChk−2Ω and hence define a cocycle ChΩ in the (b, B)-bicomplex CC•(A).
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Remark 3.1.10 By the terms e−tΘ we mean the power series
∑

i≥0
(−t)i

i!
Θ∗i. If we put

this under
�
this is well-defined, since

�
only picks up terms of total degree n. As such,

in Chk
Ω we need a total of n−k

2
applications of Θ. In particular we can rewrite the integral

as

Chk
Ω(a0, ..., ak) =

(−1)n−k
2(

n+k
2

)
!

∑
i0+···+ik=

n−k
2

 
ρ(a0) ∗Θ∗i0Dρ(a1) ∗Θ∗i1 ∗ · · · ∗Dρ(ak) ∗Θ∗ik ,

where we have also used the integral formula

�
∆k

k∏
j=0

t
ij
j dt1 · · · dtk =

i0! · · · ik!
(i0 + · · ·+ ik + k)!

.

Example 3.1.11 LetM be a compact, oriented manifold of dimension n, and let E →M
be a complex vector bundle with a connection∇. Then we can look at the graded algebra

Ω• = Ω•(M,End(E))

with the product given by the braiding of the wedge product in Ω(M) and the compo-
sition in End(E). The connection ∇ induces a graded derivation d∇ : Ω• → Ω•+1 which
satisfies

� d2∇ω = F (∇) ∧ ω − ω ∧ F (∇),

� d∇(F (∇)) = 0.

In particular we see that it is a curved DGA with curvature F (∇) ∈ Ω2.
If we set

�
: Ωn → C by the formula

 
ω =

�
M

trE(ω),

we obtain a cyclic cocycle ChΩ,E ∈ HCn(C∞(M)). Under the isomorphism HPn(C∞(M)) ∼=⊕
iH

2i
dR(M) this cocycle corresponds to the Chern character of E.

Remark 3.1.12 By work of Connes [Co94] any cyclic cohomology class can be induced
by a generalized cycle.

Remark 3.1.13 If A is not unital and we have a generalized cycle Ω over A, we still
want to make sense of the character of this cycle as a cyclic cohomology class of A. By
definition, we need to induce a cyclic cohomology class for A+ out of this. The first
ansatz to curing this would be to adjoin a unit to Ω and go from there. However this
means that the curvature Θ will also have to become an element of the bigger algebra
and we end up with a lot more elements on which to define the trace

�
. In general,

this does not work and we have to do something more involved. Note that we have the
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formula for ChΩ when we only plug in elements of A, and we only need to see what
happens when we plug in the adjoined unit into the formula. While Ω has no unit in
general, there is always the unit as a multiplier, in a phantom way satisfying D(1) = 0,
and this is what helps us out. Indeed, we can extend the definition of ChΩ to (A+)⊗(k+1)

by requiring

Chk
Ω(1, a1, ..., ak) =

�
∆k

 
e−t0Θ ∗Dρ(a1) ∗ e−t1Θ ∗ · · · ∗D(ρ(ak)) ∗ e−tkΘdt1 · · · dtk

and Chk
Ω(a0, a1, ..., 1...., ak) = 0.

This is well-defined and, by the same arguments as before, yields an n-cocycle in the
(b, B)-bicomplex CC(A+), which in turn induces a cyclic cohomology class of A.

3.1.2 The fundamental cycle over the convolution algebra

We can now write down generalized cycles for the convolution algebra of a manifold
M with a right G-action. We start with the fundamental cycle. The constructions are
inspired by the Cartan model for equivariant cohomology. For this we start by writing
down our algebra

Ω := C∞
c (G, Sym(g∗)⊗ Ωc(M)),

elements α ∈ Ω of which we regard as functions

g×G → Ωc(M)
(X, g) 7→ α(X, g)

which are polynomial in X, and smooth and compactly supported in g.
To define the multiplier that will be the curvature, we can embed Ω into a larger

algebra Ω−∞ given by those distributions

T : C∞
c (G, Sym(g∗)⊗ Ωc(M))→ Sym(g∗)× Ωc(M)

that are C∞(M)-linear and continuous with respect to the Fréchet topologies.
We embed Ω into Ω−∞ by sending α ∈ Ω to Tα ∈ Ω−∞ given by

⟨Tα, φ⟩(X) =

�
G

α(g,X) ∧ φ(g,X)dg.

On this space of distributions Ω−∞ we have an associative convolution product that is
defined by Lescure-Manchon-Vassout [LMV17, Thm 20] as follows:

⟨T1 ∗ T2, φ⟩ = ⟨T1(g1), g1 · ⟨T2(g2), g−1
1 (φ(g1g2))⟩⟩. (3.1)

Here, g1 and g2 are dummy variables, and the formula has to be read as follows. First,
with g1 fixed, we have a map

g2 7→ g−1
1 (φ(g1g2))
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that is an element of C∞
c (G, Sym(g∗)⊗ Ωc(M)), so we can pair it with T2 to obtain the

element we write as

⟨T2(g2), g−1
1 (φ(g1g2))⟩ ∈ Sym(g∗)⊗ Ωc(M).

Now letting g1 run as a variable we obtain a function

g1 7→ g1 · ⟨T2(g2), g−1
1 (φ(g1g2))⟩

which is again an element of C∞
c (G, Sym(g∗)⊗Ωc(M)), and so we can pair it with T1 to

obtain the element

⟨T1 ∗ T2, φ⟩ = ⟨T1(g1), g1 · ⟨T2(g2), g−1
1 (φ(g1g2))⟩⟩.

With this tool in hand we define four structures on Ω: a grading, a multiplication ∗, a
differential D and a curvature Θ.

� The grading on Ω is given by usual one in the Cartan model: the sum of the degree
of the differential form factor and twice the degree of the polynomial on g;

� The multiplication ∗ is given by

(α ∗ β)(g,X) :=

�
G

α(h,X) ∧ h∗β(h−1g,Adh−1(X))dh; (3.2)

� The differential D is given by ddR + ι with ddR and ι given by

(ddRα)(g,X) := ddR(α(g,X)), (ια)(g,X) := ιXM
(α(g,X));

� The curvature Θ is given as an element of Ω−∞ by

⟨Θ, φ⟩(X) :=
d

dt

∣∣∣∣
t=0

φ(etX , X). (3.3)

First we investigate how elements of Ω, the convolution product in Ω and the element
Θ ∈ Ω−∞ interact in Ω−∞.

Lemma 3.1.14 The following identities hold true.

i) Tα ∗ Tβ = Tα∗β for all α, β ∈ Ω;

ii) Tα ∗Θ = TΘr(α) for all α ∈ Ω where

Θr(α)(g,X) =
d

dt

∣∣∣∣
t=0

α(e−tXg,X);
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iii) Θ ∗ Tα = TΘl(α) for all α ∈ Ω where

Θl(α)(g,X) =
d

dt

∣∣∣∣
t=0

(etX)∗α(e−tXg,X).

Proof. Let us fix a test function φ ∈ C∞
c (G, Sym(g∗),Ωc(M)) and let g1 be fixed. Then

the map g2 7→ g−1
1 (φ(g1g2)) is given by

(g2, X) 7→ (g−1
1 )∗φ(g1g2,Adg1(X)).

Then for the first point we have

⟨Tβ(g2), g−1
1 (φ(g1g2))⟩(X) =

�
G

β(g2, X) ∧ (g−1
1 )∗φ(g1g2,Adg1(X))dg2,

and in particular

(g1 · ⟨Tβ(g2), g−1
1 (φ(g1g2)))⟩)(X) =

�
G

(g∗1β(g2,Adg−1
1
X))) ∧ φ(g1g2, X)dg2.

Therefore,

⟨Tα ∗ Tβ, φ⟩(X) =

�
G

�
G

α(g1, X) ∧ (g∗1β(g2,Adg−1
1
(X))) ∧ φ(g1g2, X)dg2dg1,

and by setting h = g1, g = g1g2, this becomes

⟨Tα ∗ Tβ, φ⟩(X) =

�
G

(�
G

α(h,X) ∧ h∗β(h−1g,Adh−1(X))dh

)
∧ φ(g,X)dg.

This does indeed equal ⟨Tα∗β, φ⟩(X).
For the second point, we have

⟨Θ(g2), g
−1
1 (φ(g1g2))⟩(X) =

d

dt

∣∣∣∣
t=0

(g−1
1 )∗φ(g1e

tX ,Adg1(X))

and so

g1 · ⟨Θ(g2), g
−1
1 (φ(g1g2))⟩(X) =

d

dt

∣∣∣∣
t=0

φ(g1e
tAd

g−1
1

(X)
, X) =

d

dt

∣∣∣∣
t=0

φ(etXg1, X).

Pairing this with Tα we obtain

⟨Tα(g1), g1 · ⟨Θ(g2), g
−1
1 (φ(g1g2))⟩⟩(X) =

�
G

d

dt

∣∣∣∣
t=0

α(g1, X) ∧ φ(etXg1, X)dg1,

which by a change of variables g = etXg1 yields

⟨Tα ∗Θ, φ⟩(X) =

�
G

(
d

dt

∣∣∣∣
t=0

α(e−tXg,X)

)
∧ φ(g,X)dg.

The third point is proven analogously.
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This Lemma allows us to interpret Θ as a multiplier on Ω (cf. Example 3.1.5), and
it is of degree 2 since it raises the polynomial degree by 1. Similarly, D is of degree 1
since the ddR-part increases the differential form degree by 1 and leaves the polynomial
degree constant, while the ι-part lowers the differential form degree by 1 and increases
the polynomial degree by 1. All together, we reach the following conclusion:

Proposition 3.1.15 The data (Ω, ∗, D,Θ) defines an externally curved DGA in the
sense of Definition 3.1.6.

Proof. It is easy to see that ∗ is associative, since it is the convolution product induced
by the G-module Sym(g∗)⊗Ωc(M). Then to see that D is a graded derivation, we first
investigate the ddR-part:

(ddR(α ∗ β))(g,X) =

�
G

ddR(α(h,X) ∧ h∗β(h−1g,Adh−1(X)))dh

=

�
G

(ddR(α(h,X))) ∧ h∗β(h−1g,Adh−1(X))dh

+ (−1)|α|
�
G

α(h,X) ∧ h∗(ddR(β(h−1g,Adh−1(X)))dh

=((ddRα) ∗ β)(g,X) + (−1)|α|(α ∗ (ddRβ))(g,X).

For the ι-part we have

(ι(α ∗ β))(g,X) =

�
G

ιXM
(α(h,X) ∧ h∗β(h−1g,Adh−1(X)))dh

=

�
G

(ιXM
(α(h,X)) ∧ h∗β(h−1g,Adh−1(X))dh

+ (−1)|α|
�
G

α(h,X) ∧ ιXM
(h∗β(h−1g,Adh−1(X)))dh

=

�
G

(ιXM
(α(h,X)) ∧ h∗β(h−1g,Adh−1(X))dh

+ (−1)|α|
�
G

α(h,X) ∧ h∗(ι(Adh−1X)Mβ(h
−1g,Adh−1(X)))dh

=((ια) ∗ β)(g,X) + (−1)|α|(α ∗ (ιβ))(g,X).

Next we show that
D2 = [Θ,−].

To see that this is true, note that we have

D2 = d2dR + {ddR, ι}+ ι2.

Clearly d2dR = ι2 = 0 while, by Cartan’s Magic formula, we have that the anti-commutator
equals

{ddR, ι} = L,
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where L : Ω• → Ω•+2 is given by

(Lα)(g,X) = LXM
(α(g,X)).

Then so see that this equals [Θ, α], we simply calculate

[Θ, α](g,X) =
d

dt

∣∣∣∣
t=0

(etX)∗α(e−tXg,X)− d

dt

∣∣∣∣
t=0

α(e−tXg,X)

=
d

dt

∣∣∣∣
t=0

(etX)∗α(g,X)

=LXM
(α(g,X)).

Lastly, we show that
D(α ∗Θ) = (Dα) ∗Θ.

This simply follows from the fact that D plays with the output of α, while Θ plays with
the input, explicitely:

D(α ∗Θ)(g,X) = (ddR + ιXM
)((α ∗Θ)(g,X))

= (ddR + ιXM
)

(
d

dt

∣∣∣∣
t=0

α(e−tXg,X)

)
=

d

dt

∣∣∣∣
t=0

(ddR + ιXM
)α(e−tXg,X)

= (Θ ∗ (Dα))(g,X).

This finishes the proof.

With an externally curved DGA at hand, we set to decorate it more, so that it
becomes a generalized cycle over G⋉ C∞

c (M).

Proposition 3.1.16 Define
�
: Ωn → K and ρ : G⋉ C∞

c (M)→ Ω0 by 
α =

�
M

α(e, 0), (3.4)

ρ(f)(g,X) = f(g) ∈ C∞
c (M) = Ω0

c(M).

Then (Ω,
�
, ρ) is a generalized cycle over G⋉ C∞

c (M).

Proof. We start by showing  
α ∗ β = (−1)|α||β

 
β ∗ α.

To do this, we begin on the left: 
α ∗ β =

�
M

(α ∗ β)(e, 0)

=

�
M

�
G

α(h, 0) ∧ h∗β(h−1, 0)dh.
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Then, using that the action of h−1 defines an orientation-preserving automorphism of
M , we can do a change of variables in M : 

α ∗ β =

�
M

�
G

(h−1)∗α(h, 0) ∧ β(h−1, 0)dh

= (−1)|α||β|
�
M

�
G

β(h−1, 0) ∧ (h−1)∗α(h, 0)dh.

Doing a change of variables in G by h↔ h−1 we obtain1

 
α ∗ β = (−1)|α||β|

�
M

�
G

β(h, 0) ∧ h∗α(h−1, 0)dh

= (−1)|α||β|
 
β ∗ α.

Next, we show that  
Dα = 0.

This follows from the fact that

(Dα)(e, 0) = ddR(α(e, 0))

so the result follows from Stokes’ Theorem.
Next, to show that  

Θ ∗ α =

 
α ∗Θ,

we simply remark that

(Θ ∗ α)(e, 0) = 0 and (α ∗Θ)(e, 0) = 0.

So we see that
�

is indeed a closed graded trace on Ω, and we only need to show
that ρ is an algebra map. This is clear since it is induced by the map of G-algebras
C∞

c (M)→ Sym(g∗)⊗ Ωc(M) sending f to 1⊗ f .

By Theorem 3.1.9, the triple (A,Ω,
�
) gives rise to a cyclic cocycle ChΩ of degree

n = dimM which is given in the (b, B)-complex by the components

Chk
Ω(a0, . . . , ak) :=

�
∆k

 
a0 ∗ e−t0Θ ∗Da1 ∗ e−t1Θ ∗ · · · ∗Dak ∗ e−tkΘdt1 . . . dtk,

where k ≡ n mod 2.
Using the fact that (α ∗Θ)(g, 0) = 0 we see that this cocycle only has contributions

for k = n, where it can be written explicitly as

Chn
Ω(a0, . . . , an) =

1

n!

�
M

�
G×n

a0(h1)h
∗
1da1(h2) ∧ · · ·

· · · ∧ (h1 · · ·hk−1)
∗dak−1(hk) ∧ (h1 · · ·hk)∗dak((h1 · · ·hk)−1)dh1 · · · dhk.

1This is an example where we really need G to be unimodular.
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Using that G is unimodular, then we can also write this as

Chn
Ω(a0, . . . , an) =

1

n!

�
M

�
G×n

a0((h1 · · ·hk)−1)((h1 · · ·hk)−1)∗da1(h1) ∧ · · ·

· · · ∧ ((hk−1hk)
−1)∗dak−1(hk−1) ∧ (h−1

k )∗dak(hk)dh1 · · · dhk.

Remark 3.1.17 Inspired by equivariant cohomology one might be tempted to define a
Sym(g∗)G-valued functional by

α 7→
�
M

α(e,−),

but this fails to be a trace for the convolution product (3.2). The problem is the adjoint
action of G on X ∈ g in formula (3.2) for the product, and this explains why we
put X = 0 in the definition (3.4) of the trace above. To capture the higher degree
polynomial terms of α ∈ Ω, one can twist the trace by an element γ ∈ Sym(g)G, viewed
as an invariant differential operator Dγ on the Lie algebra g.

It will follow that if one sets  
γ

α :=

�
M

Dγ(α)(e, 0),

this also defines a closed graded trace on Ω (see below). Remark that in combination
with evaluation at 0 ∈ g, the invariants Sym(g)G can be identified as the algebra of
distributions supported at 0 in the form of derivatives of the δ-distribution via γ 7→
Dγ(δ0).

Proposition 3.1.18 For γ ∈ (Symqg)G, the functional
�
γ
defines a closed graded trace

on Ω of degree dim(M) + 2q.

Proof. The degree of
�
γ
follows from the fact that to obtain a top-form on M after

applying Dγ and applying 0 ∈ g to Dγ(α) we need α to be of degree dim(M) in the
differential form part and of polynomial degree q, i.e. we need α to be of degree dim(M)+
2q.

To see that
�
γ
vanishes on graded commutators, we compare

�
γ
α∗β and (−1)|α||β|

�
γ
β∗

α for the case γ = v1 ⊙ · · · ⊙ vq ∈ (Symg)G by an explicit calculation. The expression�
γ
α ∗ β will now look like

 
γ

α ∗ β =
d

dt1

∣∣∣∣
t1=0

· · · d
dtq

∣∣∣∣
tq=0

�
M

�
G

α(g,

q∑
i=1

tivi) ∧ β(g−1, g∗Adg−1(

q∑
i=1

tivi))dg.

After applying the same manipulations as in the proof of Proposition 3.1.16, this will
equal

 
γ

α ∗ β = (−1)|α||β| d

dt1

∣∣∣∣
t1=0

· · · d
dtq

∣∣∣∣
tq=0

�
M

�
G

β(g,

q∑
i=1

tiAdg(vi)) ∧ g∗α(g−1,

q∑
i=1

tivi)dg.



116 Chapter 3. Action groupoids and equivariant characteristic classes

Now since v1 ⊙ · · · ⊙ vq is G-invariant we may replace {vi}i=1,...,q by {Adg−1(vi)}i=1,...,q

at no cost, to see that

 
γ

α∗β = (−1)|α||β| d

dt1

∣∣∣∣
t1=0

· · · d
dtq

∣∣∣∣
tq=0

�
M

�
G

β(g,

q∑
i=1

tivi)∧g∗α(g−1,

q∑
i=1

tiAdg−1(vi))dg

and this precisely equals (−1)|α||β|
�
γ
β ∗ α.

The argument that
�
γ
is closed is the same as the argument for

�
in the proof of the

previous Proposition, since the d-part of D does not contribute to
�
γ
◦D by deRham’s

Theorem, while the ι-part of D does not contribute since the only top-form of the type
ιω is the 0-form.

Remark 3.1.19 When writing out the JLO-cocycle of Theorem 3.1.9 for this closed
graded trace, one recognizes, just like in the case that γ = 0, that it only has contribu-
tions in degree equal to dim(M). Indeed, looking at the contribution for a given k, we
need to consider (f0, ..., fk) ∈ C∞

c (G×M)×(k+1) and argue with

f0 ∗ e−t0Θ ∗Df1 ∗ e−t1Θ ∗ · · · ∗Dfk ∗ e−tkΘ.

However, one notices that this function will eat g ∈ G and X ∈ g and spit out a k-form
on M , since (Dfi)(g,X) = d(fi(g)) and applying Θ does not change the degree of the
differential form.

So, no matter the application of Dγ or evaluating at g = e and X = 0, we see that
integrating over M only gives a non-trivial contribution when k = dim(M).

Therefore, the resulting cocycle lives in the image of the shift map

Sq : HCdim(M)(G⋉ C∞
c (M))→ HCdim(M)+2q(G⋉ C∞

c (M)).

3.1.3 Twisting by an equivariant vector bundle

For an equivariant vector bundle E →M with a (not necessarily G-invariant) connection
∇, there is a variant of the construction of the previous section. In the case that the group
is discrete, this construction is due to Gorokhovsky [Go99, §3] and here we generalize it to
the case of a unimodular Lie group. In this case ΩE := C∞

c (G, Sym(g∗)⊗Ωc(M,End(E)))
and we change the differential to

(D∇α)(g,X) := d∇End(α(g,X)) + (−1)|α|α(g,X) ∧ δ(g) + ιXM
α(g,X),

where ∇End is the induced connection on End(E) and

δ(g) := ∇− g∗∇ ∈ Ω1(M,End(E)).

The curvature is now given by

Θ∇ := Θ + (F (∇) + µ)δe,
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where F (∇) ∈ Ω2(M,End(E)) is the ordinary curvature of the connection ∇ and µ ∈
g∗ ⊗ End(E) is the moment of ∇ (cf. [BG94, p.518], [BGV92, Def 7.5]) given by

µ(X) := ∇XM
− LX

for X ∈ g.
The multiplication in ΩE has the same formula from equation (3.2), induced by the

G-action on Sym(g∗)⊗ Ωc(M,End(E)) given by

(g∗α)(X)(v1, ..., vk)(s) = g · (α(Adg−1(X))(g−1 · v1, ..., g−1 · vk)(g−1 · s))

for X ∈ g, v1, ..., vk ∈ X(M) and s ∈ Γ(E).
To make sense of the curvature we again embed ΩE into a bigger algebra Ω−∞

E

consisting of distributions, in this case distributions

T : C∞
c (G, Sym(g∗)⊗ Ωc(M,End(E)))→ Sym(g∗)⊗ Ωc(M,End(E))

that, similar to the case of the fundamental cycle, are continuous with respect to the
Fréchet topologies. The product in Ω−∞

E is given by the same procedure as in the
untwisted case (3.1). Note that by using the same formula as in (3.3) we can also give
meaning to the element Θ in Ω−∞

E , and the term (F (∇) + µ)δe is the distribution given
by

((F (∇) + µ)δe)(φ)(X) = (F (∇) + µ(X)) ∧ φ(e,X).

The results of Lemma 3.1.14 translate verbatim to this situation, together with the
following calculations regarding the (F (∇) + µ(X))δe-term.

Lemma 3.1.20 The element (F (∇) + µ(X))δe ∈ Ω−∞
E defines a multiplier of ΩE given

by the formulae

((F (∇) + µ)δe ∗ α)(g,X) = (F (∇) + µ(X)) ∧ α(g,X),

(α ∗ (F (∇) + µ)δe)(g,X) = α(g,X) ∧ (g∗F (∇) + g∗(µ(Adg−1(X)))).

Proof. We use the description of the convolution product as in (3.1). So we pick a test
function φ ∈ C∞

c (G, Sym(g∗) ⊗ Ωc(M,End(E))). Fixing the placeholder variable g1 we
need to test the function g2 7→ g−1

1 · φ(g1g2) on Tα. Adding the g-component explicitly,
this is the function sending (g2, X) to (g−1

1 )∗φ(g1g2,Adg1(X)), so pairing with Tα we
obtain

⟨Tα(g2), g−1
1 · φ(g1g2)⟩(X) =

�
G

α(g2, X) ∧ (g−1
1 )∗(φ(g1g2,Adg1(X)))dg2

and so the function to pair with (F (∇) + µ)δe sends (g1, X) to

(g1 · ⟨Tα(g2), g−1
1 · φ(g1g2)⟩)(X) = g∗1(⟨Tα(g2), g−1

1 · φ(g1g2)⟩(Adg−1
1
(X)))

=

�
G

(g∗1(α(g2,Adg−1
1
(X))) ∧ φ(g1g2, X)dg2
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Pairing this with (F (∇) + µ)δe we plug in g1 = e and take the wedge product to obtain

⟨(F (∇) + µ)δe ∗ Tα, φ⟩(X) =

�
G

(F (∇) + µ(X)) ∧ α(g2, X) ∧ φ(g2, X)dg2

and we see that this distribution is precisely of the form Tβ for

β(g,X) = (F (∇) + µ(X)) ∧ α(g,X),

which proves the first equation.
For the second equation, we again let φ be a test function and fix the placeholder

variable g1. Now we pair the function (g2, X) 7→ (g−1
1 )∗φ(g1g2,Adg1(X)) with (F (∇) +

µ)δe to obtain:

⟨(F (∇) + µ)δe(g2), g1 · φ(g1g2)⟩(X) = (F (∇) + µ(X)) ∧ (g−1
1 )∗φ(g1,Adg1(X)).

From this we get

(g1 · ⟨(F (∇) + µ)δe(g2), g1 · φ(g1g2)⟩)(X) = (g∗1F (∇) + g∗1(µ(Adg−1
1
(X)))) ∧ φ(g1, X).

Pairing this with Tα(g1) results in

⟨Tα ∗ (F (∇) + µ)δe, φ⟩(X) =

�
G

α(g1, X) ∧ (g∗1F (∇) + g∗1(µ(Adg−1
1
(X)))) ∧ φ(g1, X)dg1

and this is precisely of the form Tβ for

β(g,X) = α(g,X) ∧ (g∗F (∇) + g∗(µ(Adg−1(X)))),

which proves the Lemma.

From this one can infer the following:

Proposition 3.1.21 The quadruple ΩE,∇ = (ΩE, ∗, D∇,Θ∇) is an externally curved
DGA.

Proof. This is an explicit calculation in the same vein as Proposition 3.1.15. We skip
the details.

Next, we can introduce a closed graded trace on ΩE,∇, combining the ideas of Propo-
sition 3.1.16 and Example 3.1.11. The result is the functional

 
α :=

�
M

trEα(e, 0)

where trE : Ω•(M,End(E))→ Ω•(M) is the application of the matrix trace.

Proposition 3.1.22 The functional
�
is a closed graded trace on ΩE,∇.
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Proof. This is similar to the treatment of the untwisted case in Proposition 3.1.16.
Performing the same steps as in the untwisted case, we obtain:

 
(α ∗ β) = (−1)|α||β|

 
(β ∗ α) +

�
M

�
G

trE([α(g, 0), g
∗β(g−1, 0)])dg

and then remark that trE([α(g, 0), g
∗β(g−1, 0)]) = 0. To see that it is closed we have

 
D∇α =

�
M

trE(d∇End(α(e, 0))) =

�
M

d(trE(α(e, 0))) = 0.

To check that
�
Θ∇ ∗ α =

�
α ∗Θ∇ we first note that

(Θ∇ ∗ α)(e, 0) = F (∇) ∧ α(e, 0)
(α ∗Θ∇)(e, 0) = α(e, 0) ∧ F (∇),

and then using the fact that taking the trace over End(E) is cyclically invariant we
obtain 

(Θ∇ ∗ α) =
�
M

trE(F (∇) ∧ α(e, 0)) =
�
M

trE(α(e, 0) ∧ F (∇)) =
 
(α ∗Θ∇)

and hence
�
is a closed graded trace.

Plugging this into the machinery of Theorem 3.1.9 we obtain, for every pair (E,∇)
of an equivariant vector bundle with connection, a cyclic cohomology class ChΩ,∇ ∈
HCdim(M)(G⋉ C∞

c (M)).
Mirroring results of Gorokhovsky [Go99] we see that the resulting cohomology class

is intrinsic to E.

Proposition 3.1.23 If ∇ and ∇′ are two connections on E, then the cyclic cohomology
classes ChE,∇ and ChE,∇′ are equal.

Proof. Write η = ∇′ −∇ ∈ Ω1(M,End(E)). Then for t ∈ [0, 1], ∇t = ∇+ tη is a family
of connections on E connecting ∇ and ∇′. In turn ΩE,∇t is a family of externally curved
DGA’s and in turn (ΩE,∇t ,

�
, ρ) gives a family of generalized cycles. In this way, we see

that the cycles (ΩE,∇,
�
, ρ) and (ΩE,∇′ ,

�
, ρ) are cobordant, and so by [Go99, Cor 2.3],

the resulting cyclic cohomology classes are equal.

The conclusion of all this is the definition of a characteristic class of an equivariant
vector bundle in the form of a cyclic cohomology class over the convolution algebra.

Theorem 3.1.24 The association (E,∇) 7→ ChΩE,∇ defines a map

ChΩ : VectG(M)→ HCdim(M)(G⋉ C∞
c (M))

that is independent of the connection ∇. Here VectG(M) is the set of isomorphism
classes of G-vector bundles over M .
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3.2 Understanding the convolution algebra via a dou-

ble complex

In this section we use strategies created by Brylinski [Br87a] to replace the Hochschild
complex of the convolution algebra G ⋉ C∞

c (M) with a double complex which in some
sense splits the behaviour in the G-direction and the behaviour in the C∞

c (M)-direction.
To this end we look at the case where A is a smooth algebra that has a smooth left

G-action of a Lie group G. Following Brylinski [Br87a], we mean this to be an algebra
map ρ : G→ Aut(A), ρ(g)(a) = g · a that has the following smoothness properties:

� For K ⊂ G a compact subset, the family ρ(K) is equicontinuous;

� For every a ∈ A the map g 7→ g · a is differentiable

� The map A→ C∞(G,A) sending a to the map g 7→ g · a is continuous.

The convolution algebra G⋉ A, given by C∞
c (G,A) with product given by

(f1 ∗ f2)(g) =
�
G

f1(h)(h · f2(h−1g))dh,

is then canonically a topological algebra, and we are interested in the Hochschild ho-
mology calculated using the topological tensor porduct. Notice that this means that
we have an identification between the degree k-part of the Hochschild complex and
C∞

c (G×k, A⊗k). In particular, for our main example A = C∞
c (M) we have that the

degree k-part of the Hochschild complex is given by C∞
c (G×k ×M×k).

Let us first investigate the case where A is unital and G is discrete, following a classic
story as told by for instance Ponge [Po18]. The associative algebra G⋉A induces a cyclic
vector space (G⋉A)⊗•+1, which in this case is just G×(n+1)×A⊗(n+1) as vector spaces. We
want to understand more of the underlying structure present in the cyclic structure here.
Writing (g0, ..., gn|a0, ..., an) for the element corresponding to (g0, ..., gn)× (a0⊗· · ·⊗an),
we can write down the simplicial maps as

di(g0, ..., gn|a0, ..., an) = (g0, ..., gigi+1, ..., gn|a0, ..., ai(giai+1), ..., an), (i < n)

dn(g0, ..., gn|a0, ..., an) = (gng0, g1, ..., gn−1|an(gna0), a1, ..., an−1),

si(g0, ..., gn|a0, ..., an) = (g0, ..., gi, 1, gi+1, ..., gn|a0, ..., ai, 1, ai+1, ..., an),

t(g0, ..., gn|a0, ..., an) = (gn, g0, ..., gn−1|an, a0, ..., an−1).

This suggests that the simplicial structure is in a certain sense composed of the obvious
simplicial structure on the group algebra of G and a kind of twisted version of the simpli-
cial structure on A⊗(•+1). To run this point home further, we look at the automorphism
φ on G×(•+1) × A⊗(•+1) given by

φ(g0, ..., gn|a0, ..., an) = (g0, ..., gn|(g0 · · · gn)−1a0, ..., g
−1
n an).
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Conjugating with this map φ we obtain an isomorphic simplicial structure on G×(•+1)×
A⊗(•+1) given by

di(g0, ..., gn|a0, ..., an) = (g0, ..., gigi+1, ..., gn|a0, ..., aiai+1, ..., an), (i < n)

dn(g0, ..., gn|a0, ..., an) = (gng0, g1, ..., gn−1|gn((g0 · · · gn)−1an)a0), gna1, ..., gnan−1),

si(g0, ..., gn|a0, .., an) = (g0, ..., gi, 1, gi+1, ..., gn|a0, ..., ai, 1, ai+1, ..., an),

t(g0, ..., gn|a0, ..., an) = (gn, g0, ..., gn−1|gn(g0 · · · gn)−1an, gna0, ..., gnan−1).

These formulae really allow us to separate the simplicial structure into a simplicial
structure on the group algebra and a simplicial structure on A×(•+1). Indeed, if we write
Cp,q = G×(q+1) × A⊗(p+1), we can write maps

dhi : Cp,q → Cp−1,q (0 ≤ i ≤ p) dvi : sCp,q → Cp,q−1 (0 ≤ i ≤ q)

shi : Cp,q → Cp+1,q (0 ≤ i ≤ p) svi : Cp,q → Cp,q+1 (0 ≤ i ≤ q)

th : Cp,q → Cp,q tv : Cp,q → Cp,q

defined by

dhi (g0, ..., gq|a0, ..., ap) = (g0, ..., gq|a0, ..., aiai+1, ..., ap), (i < p)

dhp(g0, ..., gq|a0, ..., ap) = (g0, ..., gq|((g0 · · · gq)−1ap)a0, a1, ..., ap−1),

shi (g0, ..., gq|a0, ..., ap) = (g0, ..., gq|a0, ..., ai, 1, ai+1, ..., ap),

th(g0, ..., gq|a0, ..., ap) = (g0, ..., gq|(g0 · · · gq)−1ap, a0, ..., ap−1),

dvi (g0, ..., gq|a0, ..., ap) = (g0, ..., gigi+1, ..., gq|a0, ..., ap), (i < q)

dvq(g0, , ..., gq|a0, ..., ap) = (gqg0, g1, ..., gq−1|gqa0, ..., gqap),
svi (g0, ..., gq|a0, ..., ap) = (g0, ..., gi, 1, gi+1, ..., gq|a0, ..., ap),
tv(g0, ..., gq|a0, ..., ap) = (gq, g0, ..., gq−1|gqa0, ..., gqap),

which, as shown in Getzler-Jones [GJ93], together give G×(•+1) × A⊗(•+1) the structure
of a cylindrical vector space.

3.2.1 The cylindrical space associated to the convolution alge-
bra

Let us now investigate the case where G is a unimodular Lie group and A is a smooth G-
algebra (not necessarily unital) by describing the cylindrical space introduced by Block-
Getzler-Jones [BGJ95] for this situation. We first remark that adjoining a unit to G⋉A
is the same as adjoining δe⊗ 1 where δe is the Dirac delta-distribution at the identity of
G and 1 is the adjoined unit of A. So we may understand (G⋉A)+ as those distributions
on G with values in A+ whose singular behaviour is limited to δe(g).

We can then write ((G⋉A)+)⊗(k+1) as (C∞
c (G)+)⊗(k+1)⊗ (A+)⊗(k+1), where C∞

c (G)+

denotes C∞
c (G) with the Dirac delta δe adjoined. Since we use the inductive tensor
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product with the property that C∞
c (G) ⊗ C∞

c (G) ∼= C∞
c (G × G), we may think of

(C∞
c (G)+)⊗(k+1) as distributions on G×(k+1) whose singular behaviour is limited to prod-

ucts of δe(g0),...,δe(gk). We can now write down the cyclic strucutre on ((G⋉A)+)⊗(•+1)

by investigating it for elements of the form F (g0, ..., gk) = f(g0, ..., gk) ⊗ a0 ⊗ · · · ⊗ ak.
The cyclic structure maps are then given by

di(F )(g0, ..., gk−1) =

�
G

(f(g0, ..., γ, γ
−1gi, ..., gk−1)⊗ a0 ⊗ · · · ⊗ ai(γai+1)⊗ · · · ⊗ akdγ,

(0 ≤ i ≤ k − 1)

dk(F )(g0, ..., gk−1) =

�
G

(f(γ−1g0, ..., gk−1, γ)⊗ ak(γa0)⊗ a1 ⊗ · · · ⊗ ak−1dγ,

si(F )(g0, ..., gk+1) = δ(gi+1)f(g0, ..., gi, gi+2, ..., gk+1)⊗a0⊗· · ·⊗ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ ak,
t(F )(g0, ..., gk) = f(g1, ..., gk, g0)⊗ ak ⊗ a0 ⊗ · · · ⊗ ak−1.

Mimicking the procedure we described before when G is discrete, we can now write
down the cylindrical space introduced in [BGJ95], which splits the cyclic structure on
((G ⋉ A)+)⊗(•+1) into the cyclic structure on (C∞

c (G)+)⊗(•+1) and that of A⊗(•+1). To
this end, we define L+(G,A)p,q to be compactly supported distributions from G×(q+1) to
(A+)⊗(p+1) whose singular behaviour is restricted to δe(gi) for i = 0, ..., q. For elements
F ∈ L+(G,A)p,q of the form F (g0, ..., gq) = f(g0, ..., gq)⊗a0⊗· · ·⊗ap we can write down
structure maps by the formulae

dhi (F )(g0, ..., gq) = f(g0, ..., gq)⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap, (0 ≤ i ≤ p− 1)

dhp(F )(g0, ..., gq) = f(g0, ..., gq)⊗ ((g0 · · · gq)−1ap)a0 ⊗ a1 ⊗ · · · ⊗ ap−1,

shi (F )(g0, ..., gq) = f(g0, ..., gq)⊗ a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ ap,
th(F )(g0, ..., gq) = f(g0, ..., gq)⊗ (g0 · · · gq)−1ap ⊗ a0 ⊗ · · · ⊗ ap−1,

dvi (F )(g0, ..., gq−1) =

�
G

F (g0, ..., γ, γ
−1gi, ..., gq−1)dγ, (0 ≤ i ≤ q − 1)

dvq(F )(g0, ..., gq−1) =

�
G

γ · F (γ−1g0, ..., gq−1, γ)dγ,

svi (F )(g0, ..., gq+1) = δ(gi+1)F (g0, ..., gi, gi+2, ..., gq+1),

tv(F )(g0, ..., gq) = g0 · F (g1, ..., gq, g0).

Using these maps, we have the following result.

Proposition 3.2.1 With the structure maps as above, (L+(G,A)•,•, d
h, sh, th, dv, sv, tv)

is a cylindrical space.

Proof. We argue why this is true, and skip the explicit calculations. We need to check
four things

� For every q, (L+(G,A)•,q, d
h, sh, th) is an Λ∞-space;



3.2. Understanding the convolution algebra via a double complex 123

� For every p, (L+(G,A)p,•, d
v, sv, tv) is an Λ∞-space;

� The horizontal and vertical structures commute;

� As maps from L+(G,A)p,q → L+(G,A)p,q we have (th)p+1(tv)q+1 is the identity.

The first two points follow from the fact that we recognize known Λ∞-spaces in the
horizontal and vertical structures: in the horizontal case the structure on the Hochschild
complex of A (with a G-twist), and in the vertical case the Λ∞-space underlying the
group homology complex for the G-module (A+)⊗(p+1).

The fact that they commute follows largely from the fact that the horizontal structure
has effect on the output of functions, while the vertical structure has effect on the input
of functions. The only complication is the action of (g0 · · · gq)−1 in dhp and th. However,
this is counteracted by how the vertical structure changes the input. In particular we
see:

� For dvi when 0 ≤ i ≤ q − 1 we have

(g0 · · · gi−1γγ
−1gi · · · gq−1)

−1 = (g0 · · · gq−1)
−1;

� For dvq we have

γ · (γ−1g0 · · · gq−1γ)
−1 = (g0 · · · gq−1)

−1γ;

� For svi we have
(g0 · · · gigi2 · · · gq+1)

−1 = (g0 · · · gq+1)
−1

whenever gi+1 = e;

� For tv we have
g0(g1 · · · gqg−1

0 )−1 = (g0 · · · gq)−1g0.

Lastly, to see that the maps th and tv satisfy the cyclindricity equation we simply note
that

(th)p+1(F )(g0, ..., gq) = (g0 · · · gq)−1 · F (g0, ..., gq)

and
(tv)q+1(F )(g0, ..., gq) = (g0 · · · gq) · F (g0, ..., gq).

Together this shows that L+(G,A) is a cylindrical space.

On top of this we can write down a map Ψ1 : (G⋉A)⊗(k+1) → L+(G,A)k,k following
[Br87a] by the formula

Ψ1(F )(g0, ..., gk) = ((g0 · · · gk)−1 ⊗ · · · ⊗ g−1
k )F (g0, ..., gk).

This map yields the connection between the simplicial space induced by the convolution
algebra and this cylindrical space, via the following Lemma whose proof is again an
explicit calculation.
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Lemma 3.2.2 [Br87a, p.14] The map Ψ1 is an isomorphism of cyclic spaces

((G⋉ A)+)⊗(•+1) → diag(L+(G,A))•.

This means that we can use the Eilenberg-Zilber Theorem to understand the cyclic
homology of the convolution algebra in terms of this cylindrical space.

To start, let use the cylindrical structure to induce the four differentials. First we
can write down the contractions ch, cv, which in this case are given by

ch(F )(g0, ..., gq) = 1⊗ F (g0, ..., gq),
cv(F )(g0, ..., gq+1) = δ(g0)F (g1, ..., gq).

From this we can write down the differentials

bh : L+(G,A)p,q → L+(G,A)p−1,q, bv : L+(G,A)p,q → L+(G,A)p,q−1,

Bh : L+(G,A)p,q → L+(G,A)p+1,q, Bv : L+(G,A)p,q → L+(G,A)p,q+1,

which by the general machinery of Lemma A.3.2 and Proposition A.3.6 are given by the
formulae

bh =

p∑
i=0

(−1)idhi ,

bv =

q∑
i=0

(−1)i+p,

Bh = (1 + (−1)pth)ch
(

p∑
j=0

dhj

)
ch

(
p∑

i=0

(−1)ip(th)i
)
,

Bv = (−1)p(th)p+1(1 + (−1)qtv)cv
(

q∑
j=0

dvj

)
cv

(
q∑

i=0

(−1)iq(tv)i
)
.

Remark 3.2.3 Following Brylinski [Br87a], we can also avoid using delta-distributions
on G by defining a contraction of (b′)v that stays inside the world of smooth functions.
For this we use an approximate unit, i.e. a smooth function u ∈ C∞

c (G) such that

�
G

u(g)dg = 1.

Using this approximate unit we can write down a map cv : C∞
c (Gn, A⊗•)→ C∞

c (Gn+1, A⊗•)
with the formula

(cvF )(g0, ..., gn) = u(g0g1)F (g1, ..., gn)

and one checks that this indeed contracts (b′)v. We do not pursue this path, since, while
this contraction is compatible with the semi-simplicial structure given by the maps dvi ,
there are no simplicial degeneracy maps svi complementing this to a simplicial structure
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of which cv is the induced contraction of (b′)v. In particular, we can not use the full
machinery acquired by the cyclic Eilenberg-Zilber map, since this explicitly needs the
degeneracies to define the homotopy inverse of the Eilenberg-Zilber map.

To see that the contraction with the approximate unit is not induced by a full sim-
plicial structure, we note that such a simplicial structure would have to look like

(sviF )(g0, ..., gn) = u(gigi+1)F (g0, ..., gi−1, gi+1, ..., gn),

but these maps do not satisfy all the simplicial identities. We do remark that using this
contraction, the convolution algebra G⋉ C∞

c (M) is H-unital.

We will write down explicit forms of the four differentials bh, bv, Bh and Bv in the
normalized complex L(G,A)•,•. Since taking normalized chains kills δe(gi) for i = 1, ..., q
and the adjoined unit of A+ in all but the first entries, we may write the normalized
chains L(G,A)p,q as distributions on G×(q+1) with values in A+ ⊗ A⊗(p+1) such that the
singular behaviour is restricted to δe(g0).

For a normalized chain F (g0, ..., gq) = f(g0, ..., fq)⊗ a0⊗ · · · ⊗ ap, the differentials in
the normalized complex are now given by

bh(F )(g0, ..., gq) =

p−1∑
i=0

(−1)if(g0, ..., gq)⊗ a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap

+ (−1)pf(g0, ..., gq)⊗ ((g0 · · · gq)−1ap)a0 ⊗ a1 ⊗ · · · ⊗ ap−1,

bv(F )(g0, ..., gq−1) =

q−1∑
i=0

(−1)i+p

�
G

F (g0, ..., γ, γ
−1gi, ..., gq−1)dγ

+ (−1)p+q

�
G

γ · F (γ−1g0, ..., gq−1, γ)dγ,

Bh(F )(g0, ..., gq) =

p∑
i=0

(−1)ipf(g0, ..., gq)⊗ 1⊗ (g0 · · · gq)−1(ap−i+1 ⊗ · · · ⊗ ap)⊗

⊗ a0 ⊗ · · · ⊗ ap−i,

Bv(F )(g0, ..., gq+1) =

q∑
i=0

(−1)iq+pδe(g0)(gi+1 · · · gq+1)
−1 · F (gi+1, ..., gq+1, g1, ..., gi),

where in this notation a0 is the application of the map · : A+ → A that kills the adjoined
unit, and F is the application of the map L(G,A)p,q → C∞

c (G×(q+1), A⊗(p+1)) that kills
any factors of δe(g0).

The Eilenberg-Zilber Theorem discussed in Appendix A.5 now gives us the following
chain of quasi-isomorphisms

(CP•,norm((G⋉ A)+), b+B)
Ψ1

∼=
// (CPdiag•,norm(L

+(G,A)), bdiag +Bdiag)
EZpert

≃
// .

.
EZpert

≃
// (CPTot•(L(G,A)), b

h + bv +Bh +Bv)
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Remark 3.2.4 By the ordinary Eilenberg-Zilber Theorem, the Hochschild homology
HH•(G⋉A,G⋉A) is calculated by the double complex (Tot(L(G,A)), bh+ bv). We can
write down the spectral sequence associated to this double complex, where we obtain on
the first page

E1
p,q = Hq(G,A

⊗(p+1)).

When G is compact, we know that this homology is concentrated in degree 0, where it
is given by the coinvariants

H0(G,A
⊗(p+1)) ∼= (A⊗(p+1))G := A⊗(p+1)/⟨x− gx : g ∈ G, x ∈ A⊗(p+1)⟩.

In particular, in case only the first row of the first page is filled, and we see that the
spectral sequence collapses on the second page where it is given by

E2
p,q =

{
Hp((A

⊗(•+1))G, bHoch)) if q = 0
0 else

.

3.3 Pairing with equivariant cohomology

When M is a manifold with a right G-action and A = C∞
c (M), we want to use the

double complex constructed above to pair the equivariant cohomology H•
G(M) with the

cyclic homology HP•(G⋉C∞
c (M)). To achieve this we need to do two things. First, we

introduce differential forms in the picture we started to sketch in the previous section.
Secondly, we discuss Getzler’s model of equivariant cohomology. Together, these will
induce a pairing between equivariant cohomology and periodic cyclic homology.

Getzler’s model of equivariant cohomology makes use of differential forms on M ,
instead of compactly supported differential forms. To mimic this situation algebraically,
in this section we will be in the situation where A ⊂ A are two smooth G-algebras with
A an ideal in A such that ΩA is an ideal in ΩA. There are two extremes of this situation:
on the one hand we can take A = A; on the other hand (and more importantly) we have
the example (A,A) = (C∞

c (M), C∞(M)) for a manifold M .

3.3.1 Equivariant differential forms and equivariant HKR

Starting with the double complex L(G,A)•,•, we want to impose some kind of HKR-like
procedure to replace A+ ⊗ A⊗• with Ω•A. Since there is still a G-action around, and
since this action also twists the simplicial structure on A+⊗A⊗• we need to do this in an
equivariant fashion. This leads to the a definition of an equivariant Hochschild–Kostant–
Rosenberg map, following Block and Getzler [BG94], which we recall here. Following
their conventions, we now use a different definition for the standard simplex than we did
before Section 3.1. From this point on we use the definition

∆k = {(t1, ..., tk) ∈ Rk : 0 ≤ t1 ≤ · · · ≤ tk ≤ 1}.

Since in the result of Theorem 3.1.9 we integrated out the standard simplex, this should
not lead to confusion.
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Definition 3.3.1 [BG94, §3] Let A be a smooth G-algebra. For X ∈ g, the equivariant
HKR-map HKRX : A+ ⊗ A⊗k → ΩkA is given by

HKRX(a0 ⊗ · · · ⊗ ak) =
�
∆k

a0d(e
−t1Xa1) ∧ · · · ∧ d(e−tkXak)dt1 · · · dtk.

Note that the action of G on A extends to an action of G on ΩpA given by

g · (a0da1 ∧ · · · ∧ dap) = (g · a0)d(g · a1) ∧ · · · d(g · ap).

Similarly, mimicking what we know for A = C∞
c (M), we can contract a form in ΩpA

with an element X ∈ g by the formula

ιX(a0da1 ∧ · · · ∧ dap) =
p∑

i=1

(−1)i+1 d

dt

∣∣∣∣
t=0

a0(e
tX · ai)da1 ∧ · · · ∧ d̂ai ∧ · · · ∧ dap.

Next, we want to understand how this equivariant HKR-map behaves with respect to
the G- and g-actions on Ω•A, and the (G-twisted) Hochschild differential on A+ ⊗A⊗•.
For g ∈ G, we write bg : A

+ ⊗ A⊗k → A+ ⊗ A⊗(k−1) for the map

bg(a0 ⊗ · · · ⊗ ak) =
k−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ak

+ (−1)k(gak)a0 ⊗ · · · ⊗ ak−1.

Note that with this notation, the differential bh in L(G,A) simply becomes

bh(F )(g0, ..., gq) = b(g0···gq)−1(F (g0, ..., gq)).

We then have the following Lemma.

Lemma 3.3.2 [BG94, 2.3] The map HKRX satisfies the following three equations

HKRAdg(X)(g · (a0 ⊗ · · · ⊗ ap)) = g · HKRX(a0 ⊗ · · · ⊗ ap),
ιX(HKRX(a0 ⊗ · · · ⊗ ap)) = HKRX (beX (a0 ⊗ · · · ⊗ ap)) ,�

∆1

e−tX · d(HKRX(a0 ⊗ · · · ⊗ ap))dt = HKRX

(
p∑

i=0

(−1)ip1⊗ e−Xap−i+1 ⊗ · · ·

· · · ⊗ e−Xap ⊗ a0 ⊗ · · · ⊗ ap−i

)
.

With these properties in mind we can write down a new complex, comparable with
L(G,A), but then with differential forms.

Definition 3.3.3 We define the mixed complex C•,•(G,ΩgA) by setting Cp,q(G,ΩgA) ⊂
C−∞(g×G×q,ΩpA) to be those distributions which are compactly supported in G×q and
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whose singular behaviour is restricted to δ(eX(g1 · · · gq)−1). On this we introduce four
differentials

b̃h : C•,•(G,ΩgA)→ C•−1,•(G,ΩgA), B̃h : C•,•(G,ΩgA)→ C•+1,•(G,ΩgA),

b̃v : C•,•(G,ΩgA)→ C•,•−1(G,ΩgA), B̃v : C•,•(G,ΩgA)→ C•,•+1(G,ΩgA),

given by

b̃h(F )(X, g1, ..., gq) = ιX(F (X, g1, ..., gq))

b̃v(F )(X, g1, ..., gq−1) =

�
G

(−1)pF (X, γ−1, g1, ..., gq)dγ

+

q−1∑
i=1

(−1)i+p

�
G

F (X, g1, ..., γ, γ
−1gj, ..., gq)dγ

+ (−1)p+q

�
G

γ · F (Adγ−1(X), g1, ..., gq−1, γ)dγ

B̃h(F )(X, g1, ..., gq) =

�
∆1

e−tX · d(F (X, g1, ..., gq))dt

B̃v(F )(X, g1, ..., gq+1) =

q∑
i=0

(−1)iq+pδe(e
X(g1 · · · gq+1)

−1)(gi+1 · · · gq+1)
−1·

· F (Adgi+1···gq+1(X), gi+2, ..., gq+1, g1, ..., gi)

We define a map Ψ2 : Lp,q(G,A)→ Cp,q(G,ΩgA) by

Ψ2(F )(X, g1, ..., gq) = HKRX(F (e
X(g1 · · · gq)−1, g1, ..., gq)).

This map is inspired by the map α from Block-Getzler [BG94], for the case when G is
compact.

Using the properties of HKRX , we can investigate Ψ2◦bh, Ψ2◦bv, Ψ2◦Bh and Ψ2◦Bv

to obtain differentials b̃h, b̃v, B̃h and B̃v on C•,•(G,ΩgA) and obtain the following result:

Proposition 3.3.4 With the four differentials, (C•,•(G,ΩgA), b̃h+b̃v, B̃h+B̃v) is a mixed
double complex and Ψ2 is a map of mixed double complexes.

In particular we have

Corollary 3.3.5 The following composition is a chain map of cyclic complexes:

CP((G⋉A)+) Ψ1−→ CP(diagnormL(G,A))
EZpert

−−−→ CPTot(L(G,A))
Ψ2−→ CPTot(C•,•(G,ΩgA))

We will denote the composition of these maps by

Ψ: CP•((G⋉ A)+)→ CPTot(C•,•(G,ΩgA)).
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3.3.2 Getzler’s model for equivariant cohomology

We now recall the model for equivariant cohomology obtained by [Ge94], inspired by a
Cartan-like construction, and in turn our inspritation for our model for cyclic homology
of Definition 3.3.3.

The cochain complex of Getzler is given by

Cp,q(G,ΩgA) =

{
F ∈ C∞(g×G×q,ΩpA) :

F is polynomial in g
F (X, g1, ..., gq) = 0 if e ∈ {g1, ..., gq}

}
endowed with 4 differentials

ι : Cp,q(G,ΩgA)→ Cp−1,q(G,ΩgA),

ι : Cp,q(G,ΩgA)→ Cp,q−1(G,ΩgA),

d : Cp,q(G,ΩgA)→ Cp+1,q(G,ΩgA),

d : Cp,q(G,ΩgA)→ Cp,q+1(G,ΩgA),

given by

(ιF )(X, g1, ..., gq) = (−1)qιX(F (X, g1, ..., gk)),

(ιF )(X, g1, ..., gq−1) =

q−1∑
i=0

(−1)i d
dt

∣∣∣∣
t=0

F (X, g1, ..., gi, e
tAdgi+1···gq−1 (X), gi+1, ..., gq−1),

(dF )(X, g1, ..., gq) = (−1)qd(F (X, g1, ..., gq)),
(dF )(X, g1, ..., gq+1) = F (X, g2, ..., gq+1)

+

q∑
i=1

(−1)iF (X, g1, ..., gigi+1, ..., gq+1)

+ (−1)q+1g−1
q+1 · F (Adgq+1(X), g1, ..., gq).

As shown in [Ge94, 1.2.3], if M is a manifold with a right G-action, this complex calcu-
lates the equivariant cohomology H•

G(M) of M if we plug in A = C∞(M) into it.
In Getzler’s work the grading of this complex is the sum of whose degree as a group

cochain (q), its degree as an element of ΩA (p) and twice the polynomial degree (not
denoted above). With this grading ι + ι + d + d is a differential of degree 1. For
our deliberations it will be more natural to disregard the polynomial degree and see
C•,•(G,ΩgA) as a mixed double cochain complex with differentials (d+ d, ι+ ι).

Within C•,•(G,ΩgA) we emphasize two specific kinds of cochains:

Definition 3.3.6 An element αp,q ∈ Cp,q(G,ΩgA) is called cyclically normalized if
αp,q(0, g1, ..., gq) = 0 whenever g1 · · · gq = e and cyclic if it satisfies

αp,q(X, g1, ..., gq) = (−1)qg−1
q · αp,q(Adgq(X), (g1 · · · gq)−1, g1, ..., gq−1)

for any X ∈ g and g1, ..., gq ∈ G.
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Lemma 3.3.7 Any cyclic cochain is cyclically normalized.

Proof. Let α be a cyclic cochain, and let g1, ..., gq be such that g1 · · · gq = e, then

α(0, g1, ..., gq) = (−1)qg−1
q · α(0, e, g1, ..., gq−1) = 0 (3.5)

by the definition of C•,•(G,ΩgA).

Lemma 3.3.8 The space of cyclic cochains in C•,•(G,ΩgA) is preserved by all four
differentials ι, ι, d and d.

In particular we have that the cyclic cochains form a subcomplex C•,•
λ (G,ΩgA) of

(C•,•(G,ΩgA), d+ d, ι+ ι).

Proposition 3.3.9 The inclusion of the subcomplex C•,•
λ (G,ΩgA) ⊂ C•,•(G,ΩgA) is a

quasi-isomorphic.

Proof. We describe the reasoning for A = C∞(M), following the work by Getzler [Ge94]
where this complex is defined for this case. The complex C•,•(G,ΩgA) arises by con-
structing the reduced cobar resolution Ω•

red(C,Ω•(G),ΩA) and then applying a quasi-
isomorphism J : Ω•

red(C,Ω•(G),ΩA)→ C•,•(G,ΩgA).

The reduced cobar resolution is defined by Ω•
red(C,Ω•(G),ΩA) = Ω•(G)⊗ΩA where

Ω•(G) denotes the kernel of the counit Ω•(G) → C which is evaluation at the identity.
The quasi-isomorphism J is then given by the formula

J (ω1⊗. . .⊗ωk⊗γ)(g1, . . . , gℓ, X) = (−1)l
∑

σ∈Shℓ,k−ℓ

(
ℓ∏

i=1

ωσ(i)(gi)

)(
k∏

j=ℓ+1

ωσ(j)(e)(Xj)

)
γ,

where Xj = Adgi···glX with i ≤ l minimal such that σ(j) < σ(i) (and Xj = X if such an
i does not exist). In this formula the terms ω(g) only contribute when ω is a zero-form
on G, and the terms ω(e)(X) only contribute when ω is a one-form on G.

For A = C∞(M) we can identify elements Ω•
red(C,Ω•(G),ΩA) with differential forms

on G×•×M , and the differential on the cobar resolution is then given by the sum of the
deRham-differential and the differential coming from the underlying simplicial structure
on G×•×M given as usual by the face operator ∂i : G

×k×M → G×(k−1)×M defined as

∂i(g1, . . . , gk, x) =

{
(g1, . . . , gigi+1, . . . , gk, x), 0 ≤ i ≤ k − 1,

(g1, . . . , gk−1, gkx), i = k.

This simplicial space also has a cyclic structure given by

t(g1, . . . , gk, x) = ((g1 · · · gk)−1, g1, . . . , gk−1, gkx)

and so by general machinery of cyclic vector spaces we discuss in the appendix, the
subspace

Ω•
red(C,ΩG,ΩM)λ :=

⊕
q∈N

{α ∈ Ωred(G
×q ×M), t∗α = (−1)qα}

is a quasi-isomorphic subcomplex, and C•,•
λ (G,ΩgA) can be checked to be precisely the

image of Ω•
red(C,ΩG,ΩM)λ under J .
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3.3.3 Pairing equivariant differential forms

We are now in the position to define a pairing between the cyclic homology of G ⋉ A
and the equivariant cohomology of A. To this end, assume we have an n ∈ N and a
functional

�
: ΩnA→ C such that

� Ω>nA = 0,

�
�
g · ω =

�
ω,

�
�
dω = 0.

For the case A = C∞
c (M), we can get this situation for n = dim(M) and

�
=
�
M
.

Using this we write down a map ⟨−,−⟩ : Cn−p,q(G,ΩgA)× Cp,q(G,ΩgA) by

⟨α, β⟩ = (−1)p(n+q)+ 1
2
p(p+1)

�
G×q

 
α(0, g1, ..., gq) ∧ β(0, g1, ..., gq)dg1 · · · dgq.

This pairing is cohomological in the following sense:

Lemma 3.3.10 The following identities hold for all αi,j ∈ Ci,j(G,ΩgA) and βi,j ∈
Ci,j(G,ΩgA):

⟨ιαn−p+1,q, βp,q⟩ = ⟨αn−p+1,q, b̃hβp,q⟩ = 0,

⟨dαn−p−1,q, βp,q⟩ = ⟨αn−p−1,q, B̃hβp,q⟩,
⟨dαn−p,q−1, βp,q⟩ = ⟨αn−p,q−1, b̃vβp,q⟩,

If furthermore αn−p,q+1 is cyclically normalized, the following also holds for all βp,q:

⟨ιαn−p,q+1, βp,q⟩ = ⟨αn−p,q+1, B̃vβp,q⟩ = 0.

Proof. For the first equation we note that (ιαn−p+1,q)(0, g1, ..., gq) = 0 since ι0ω = 0 for

any ω ∈ ΩA. Similarly, (b̃hβp,q)(0, g1, ..., gq) = 0.
For the second line note that for ω1 ∈ Ωn−p−1A and ω2 ∈ ΩpA we have

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)n−p−1ω1 ∧ dω2.

Since
�
vanishes on exact forms, we obtain 

dω1 ∧ ω2 = (−1)n−p

 
ω1 ∧ dω2.

Furthermore we have

(B̃hβp,q)(0, g1, ..., gq) =

�
∆1

e−t·0 · d(βp,q(0, g1, ..., gq))dt

=

�
∆1

d(βp,q(0, g1, ..., gq))dt

= d(βp,q(0, g1, ..., gq)).
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This results in

⟨dαn−p−1,q, βp,q⟩ = (−1)p(n+q)+ 1
2
p(p+1)+q

�
Gq

 
d(αn−p−1,q(0, g1, ..., gq))∧

∧ βp,q(0, g1, ..., gq)dg1 · · · dgq

= (−1)(p−1)(n+q)+ 1
2
p(p−1)

�
Gq

 
αn−p−1,q(0, g1, ..., gq)∧

∧ d(βp,q(0, g1, ..., gq))dg1 · · · dgq

= (−1)(p−1)(n+q)+ 1
2
p(p−1)

�
Gq

 
αn−p−1,q(0, g1, ..., gq)∧

∧ (B̃hβp,q)(0, g1, ..., gq)dg1 · · · dgq
= ⟨αn−p−1,q, B̃hβp,q⟩.

Then for the third part of the Lemma we do an explicit calculation:

⟨dαn−p,q−1, βp,q⟩ = (−1)p(n+q)+ 1
2
p(p+1)

�
G×q

 
αn−p,q−1(0, g2, ..., gq)∧

∧ βp,q(0, g1, ..., gq)dg1 · · · dgq

+ (−1)p(n+q)+ 1
2
p(p+1)

q−1∑
i=1

(−1)i
�
G×q

 
αn−p,q−1(0, g1, ..., gigi+1, ..., gq)∧

∧ βp,q(0, g1, ..., gq)dg1 · · · dgq

+ (−1)p(n+q)+ 1
2
p(p+1)(−1)q

�
G×q

 
(g−1

q · αn−p,q−1(0, g1, ..., gq−1))∧

∧ βp,q(0, g1, ..., gq)dg1 · · · dgq.
Now using a few changes of variables for the integrals of G×q (and using the fact that G
is unimodular for the first line) and using that

�
is G-invariant, we obtain:

⟨dαn−p,q−1, βp,q⟩ =(−1)p(n+q−1)+ 1
2
p(p+1)(−1)p

�
G×(q−1)

�
G

 
αn−p,q−1(0, g1, ..., gq−1)∧

∧ βp,q(0, γ−1, g1, ..., gq−1)dγdg1 · · · dgq

+ (−1)p(n+q−1)+ 1
2
p(p+1)

q−1∑
i=1

(−1)p+i

�
G×(q−1)

�
G

 
αn−p,q−1(0, g1, ..., gq−1)∧

∧ βp,q(0, g1, ..., γ, γ−1gi, ..., gq−1)dg1 · · · dgq−1

+ (−1)p(n+q−1)+ 1
2
p(p+1)(−1)p+q

�
G×(q−1)

�
G

 
αn−p,q−1(0, g1, ..., gq−1)∧

∧ (γ · βp,q(0, g1, ..., gq−1, γ))dγdg1 · · · dgq−1

=(−1)p(n+q−1)+ 1
2
p(p+1)

�
G×(q−1)

 
αn−p,q−1(0, g1, ..., gq−1)∧

∧ (b̃vβp,q)(0, g1, ..., gq−1)dg1 · · · dgq−1

=⟨αn−p,q−1, b̃vβp,q⟩.
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For the last part we note that the δ(g1 · · · gq+1) in the definition of B̃v cancels against
the cyclic normalization of αn−p,q+1, as we only need to integrate over {(g1, ..., gq+1) :
g1 · · · gq+1 = e} and we know that αn−p,q+1 vanishes there. In particular, we have

⟨αn−p,q+1, B̃vβp,q⟩ = 0.

On the other hand, it is easy to see that ιαn−p,q+1(0, g1, ..., gq) = 0 for every (g1, ..., gq) ∈
G×q.

With this pairing, we can write down a map from equivariant cohomology to periodic
cyclic cohomology.

Definition 3.3.11 We define cochain complexes CP•(G,ΩgA),CP•
λ(G,ΩgA) by

CPk(G,ΩgA) =
⊕

p+q≡n+k mod 2

Cp,q(G,ΩgA),

CPk
λ(G,ΩgA) =

⊕
p+q≡n+k mod 2

Cp,q
λ (G,ΩgA),

with the differential given by ι+ d+ ι+ d.

Lemma 3.3.12 The complex CP•(G,ΩgA) calculates the following cohomology

Hk(CP•(G,ΩgA)) =
⊕

p≡n+k mod 2

Hp(Tot(C•,•(G,ΩgA))).

The previous discussion can then be summarized by

Proposition 3.3.13 The map Φ: CP•(G,ΩgA)→ (CP(G,ΩgA)
∗)• given by

Φ(
∑
p′,q′

αp′,q′)(βp,q) = ⟨αn−p,q, βp,q⟩

becomes a cochain map when restricted to CP•
λ(G,ΩgA).

Combining the map Φ with the map Ψ of Section 3.2 we arrive at the second main
result of this chapter, which is a corollary of the previous proposition and the fact that
Ψ is a chain map.

Corollary 3.3.14 The map c : CP•(G,ΩgA)→ CP•((G⋉ A)+) given by

c

(∑
p,q

αp,q

)
(a0, ..., ak) = Φ

(∑
p,q

αp,q

)
(Ψ(a0 ⊗ · · · ⊗ ak))

becomes a cochain map when restricted to CP•
λ(G,ΩgA), and in turn induces a map⊕

p≡n+k mod 2

Hp(Tot(C•,•(G,ΩgA)))→ HPk(G⋉ A) (3.6)
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Remark 3.3.15 Applying this to (A,A) = (C∞
c (M), C∞(M)) for M an oriented man-

ifold with an oriented right G-action, this construction yields maps

Hev
G (M)→ HPdim(M)(G⋉ C∞

c (M)), Hodd
G (M)→ HPdim(M)+1(G⋉ C∞

c (M)),

since the complex CP•(G,ΩgC
∞(M)) calculates the even- and odd-degree terms of the

equivariant cohomology H•
G(M).

3.3.4 The equivariant Chern character in equivariant cohomol-
ogy

The main point of this chapter is understanding the equivariant Chern character through
the convolution algebra. In particular, we want to show that our Chern character from
Theorem 3.1.24 agrees with the known equivariant Chern character living in Hev

G (M),
under the map Hev

G (M) → HPdim(M)(G ⋉ C∞
c (M)). So we describe the work of Get-

zler [Ge94] explaining how this Chern character resides in his model for equivariant
cohomology.

So let E → M be an G-equivariant vector bundle, together with a connection ∇
on E. From these data, we can write down a connection ∇t on the vector bundle
pr∗ME → ∆q ×Gq ×M by the formula

∇t = t1(∇1 −∇2) + · · · tq(∇q −∇) +∇,

where ∇i := (gi · · · gq)∗∇ and (t1, ..., tq) ∈ ∆q.

From this we obtain an differential form on Gq×M by taking the fibred integral over
∆q of the Chern character of ∇t:

�
∆q

tr exp(F (∇t))dt1 · · · dtq ∈ Ω•(G×q ×M).

Note that this differential form lives in even degree if q is even, and in odd degree if q
is odd. Indeed, it is always of even degree over ∆q × Gq ×M and the fibred integral
reduces the degree by q . From this, Getzler [Ge94, Thm 3.2.1] defines the equivariant
Chern character ChG(E,∇) in C•,•(G,Ωg(M)) by

ChG(E,∇) =
∑
q≥0

(−1)qJ
�
∆q

tr exp(F (∇t)),

where J is the quasi-isomorphism we saw in the proof of Proposition 3.3.9. Getzler
shows [Ge94, Thm 3.2.1] that this class represents the equivariant Chern character of E
in equivariant cohomology as defined at the start of this chapter. Notice that our remark
about the specific degrees where the Chern character lives in Ω•(G×• ×M) implies the
resulting chain is an element of CPev(G,Ωg(M)).
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Now, in the end we want to look at c(ChG(E,∇)) ∈ HPdim(M)(G ⋉ C∞
c (M)) and

hence we are interested in the functions ChG(E,∇)q0 : Gp → Ω•(M) given by

ChG(E,∇)q0(g1, ..., gq) = ChG(E,∇)(0, g1, ..., gq). (3.7)

For this, we quickly delve into the classical Chern-Simons forms. Let ∇0, ...,∇q be
connections on E. Then

∇t = t1(∇0 −∇1) + · · ·+ tq(∇q−1 −∇q) +∇q

= −t1(∇q −∇0) +

q−1∑
i=1

(ti − ti+1)(∇q −∇i) +∇q

is a connection on pr∗ME → ∆q ×M . Fiberwise-integration of the Chern character of
this connection over ∆q produces the Chern-Simons form cs(∇0, ...,∇q) ∈ Ωeven−q(M)
given by

cs(∇0, ...,∇q) =

�
∆q

tr exp(F (∇t)).

We can write this out explicitly

cs(∇0, ...,∇q) =

�
∆q

tr

(
exp

(
−dt1 ∧ (∇q −∇0) +

q−1∑
i=1

+

q−1∑
i=1

(dti − dti+1) ∧ (∇q −∇i) + F (t)

))
,

=

�
∆q

tr

(
exp

(
q∑

i=1

dti ∧ (∇i−1 −∇i) + F (t)

))
,

where F (t) ∈ Ω2(M,End(E)) is the curvature of the connection ∇(t).
From this discussion we obtain a relation to and an explicit formula for ChG(E,∇)q0:

ChG(E,∇)q0(g1, ..., gq) = (−1)p+qcs(γ∗1∇, ..., γ∗q∇,∇) (3.8)

where γi = gi · · · gq. Investigating the specific form of the Chern-Simons forms then gives
the following Lemma:

Lemma 3.3.16 The functions ChG(E,∇)0q, defined by (3.7), satisfy the following:

i) ChG(E,∇)q0(g1, ..., gq) ∈
⊕n

i=q Ω
i(M),

ii) ChG(E,∇)q0(g1, ..., gq) = 0 if either one of the gi’s or their product g1 · · · gq is the
identity element of the group.
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Proof. For i) note that the only terms under the exponent in the Chern-Simons form
that persist in Ω(M) after taking the integral over ∆q are the terms where all the parts
dti ∧ (∇i−1 − ∇i) appear exactly once. This means in particular that the term that
results from

�
∆q is a form on M of degree at least q.

For ii) note that gi = 1 for i = 1, ..., q − 1 corresponds to γ∗i∇ = γ∗i+1∇, gq = 1
corresponds to γ∗q∇ = ∇ and g1 · · · gq = 1 corresponds to γ∗1∇ = ∇. To obtain the
statement of the Lemma, we now argue that cs(∇0, ...,∇q) = 0 if either ∇i−1 = ∇i for
some i = 1, ..., q or ∇0 = ∇q. Indeed, if one of these holds we look at the form on
∆q ×M of which we take the exponent and look at the forms on ∆q which come out
of taking the exponential. If we have one the equalities of the ∇i’s we see that only
q − 1 different one forms on ∆q remain: for the case ∇i−1 = ∇i we look at the second
way of writing cs(∇0, ...,∇q) and only the terms {dtj ∧ (∇j−1 − ∇j)}j ̸=i remain, while
for the case ∇q = ∇0 we use the first way of writing cs(∇0, ...,∇q) to see that only
{(dti−dti+1)∧ (∇q−∇i)}i=1,...,q−1 remain. In that case, the only way to obtain a q-form
on ∆q is to take a q-fold wedge product with at least one repeating one-form, and hence
all the terms vanish.

Remark 3.3.17 i) The first part of the Lemma says that the periodic cyclic cochain
in CPdim(M)((G ⋉ C∞

c (M))+) is actually given by an explicit cyclic cochain in
CCdim(M)((G⋉ C∞

c (M))+).

ii) The second part of the Lemma says that ChG(E,∇) is a cyclically normalized
cochain. Moreover, it is in fact cyclic by looking at the effect of cyclically permuting
the (g1, ..., gq) in ∆q ×Gq ×M .

In particular, for every equivariant vector bundle E → M we now obtain a periodic
cohomology class

c(ChG(E,∇)) ∈ HPdim(M)(G⋉ C∞
c (M)),

which is independent of the connection ∇.

3.4 Compatibility with the Chern character

From the previous sections we have obtained a diagram

VectG(M)
ChG(−)

//

ChΩ

))

Hev
G (M)

c
��

HPdim(M)(G⋉ C∞
c (M))

(3.9)

The main result of this section and indeed this chapter is the following.

Theorem 3.4.1 The diagram (3.9) is commutative for any unimodular Lie group G and
any oriented manifold M with a right, oriented proper G-action.



3.4. Compatibility with the Chern character 137

We will split this section in two parts, starting with the proof of the Theorem above
in the proper case, and then sketching ideas how to reduce to the proper case, which
would lead to a proof in the general case.

3.4.1 The proper case

The proof for the proper case is supported by the following Lemma, which makes sure
that we can choose a specific connection∇ on an equivariant vector bundle E to calculate
ΩE,∇ and ChG(E,∇).

Lemma 3.4.2 [Pf01, Thm 4.2.4] If the action of G on M is proper, then any G-
equivariant vector bundle E →M possesses a G-invariant connection ∇.

Proof of Theorem 3.4.1. Let E → M be a G-equivariant vector bundle, and let ∇ be a
G-invariant connection, the existence of which is assured by the previous Lemma. As ∇
is G-invariant, we see by (3.8) that

ChG(E,∇)q0(g1, ..., gq) = ±cs(∇, ...,∇)

Since we already remarked in the proof of Lemma 3.3.16 that plugging in repeating
arguments into a Chern-Simons form makes it vanish, we see that ChG(E,∇)q0 = 0 for
q > 0, while at q = 0 we have

ChG(E,∇)p,q0 =
(−1)p/2

(p/2)!
tr(F (∇)∧p/2)

if p is even and
ChG(E,∇)p,q0 = 0

if p is odd. So we see that ChG(E,∇)0 is concentrated in degrees (2k, 0). In turn we
need only to look at the contributions of

Ψ: CPdim(M)((G⋉ C∞(M))+)→ CPdim(M)(Tot(C•,•(G,Ωg(M))

that land in Cdim(M)−2k,0(G,Ωg(M)).
Recalling the formula for Ψ,

Ψ =
∑
i≥0

Ψ2EZ(Bh)
iΨ1, (3.10)

we first look at the contributions of the term i = 0 and argue that the contributions of
the terms i > 0 vanish. The only contribution of i = 0 that lands in the degree (n−2k, 0)
is

Ψ2EZn−2k,0Ψ1 : Cn−2k((G⋉ C∞
c (M))+)→ Cn−2k,0(G,Ωg(M)).

To see what this map does, let us pick a0, ..., an−2k ∈ G⋉C∞
c (M). First applying Ψ1 to

this, we end up with the following element C∞
c (G×(n−2k+1), C∞

c (M×(n−2k+1))):

Ψ1(a0 ⊗ · · · ⊗ an−2k)(g0, ..., gn−2k) = (g0 · · · gn−2k)
−1(a0(g0))⊗ · · · ⊗ g−1

n−2k(an−2k(gn−2k)).
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Then, looking at the Eilenberg-Zilber-term, we have

EZn−2k,0 = (dv0)
n−2k

and, starting with a map F ∈ Ln−2k,n−2k(G,C
∞
c (M)), we see that

(dv0)
n−2k(F )(g) =

�
Gn−2k

F (γ1, ..., γn−2k, (γ1 · · · γn−2k)
−1g)dγ1 · · · dγn−2k. (∗)

Going a few steps ahead, we are only interested in

Ψ2(EZn−2k,0(Ψ1(a0 ⊗ · · · ⊗ an−2k)))(0) = HKR0(EZn−2k,0(Ψ1(a0 ⊗ · · · ⊗ an−2k))(e))

so in what follows we only need the formula (∗) for g = e. In particular, we have

EZn−2k,0(Ψ1(a0 ⊗ · · · ⊗ an−2k))(e) =

�
Gn−2k

a0(γ1)⊗ γ1(a1(γ2))⊗ · · ·

· · · ⊗ (γ1 · · · γn−2k)an−2k((γ1 · · · γn−2k)
−1)dγ1 · · · dγn−2k,

or, if we rewrite the integral a bit,

EZn−2k,0(Ψ1(a0 ⊗ · · · ⊗ an−2k))(e) =

�
Gn−2k

a0((γ1 · · · γn−2k)
−1)⊗

⊗ (γ1 · · · γn−2k)
−1(a1(γ1))⊗ · · · ⊗ γ−1

n−2kan−2k(γn−2k)dγ1 · · · dγn−2k.

So, in the end, we obtain

Ψ2(EZn−2k,0(Ψ1(a0 ⊗ · · · ⊗ an−2k)))(0) =
1

(n− 2k)!

�
Gn−2k

a0((γ1 · · · γn−2k)
−1)⊗

⊗ (γ1 · · · γn−2k)
−1d(a1(γ1))⊗ · · · ⊗ γ−1

n−2kd(an−2k(γn−2k))dγ1 · · · dγn−2k.

Here, the 1
(n−2k)!

comes from the fact that if we plug in X = 0 we get an integral over

∆n−2k that is independent of t1, ..., tn−2k and hence we pick up a factor vol(∆n−2k) =
1

(n−2k)!
. Pairing with ChG(E,∇), this yields the following formula for the i = 0-term in

(3.10):

(−1)k

k!(n− 2k)!

�
M

tr(F (∇)∧k)
�
Gn−2k

a0((γ1 · · · γn−2k)
−1)⊗

⊗ (γ1 · · · γn−2k)
−1d(a1(γ1))⊗ · · · ⊗ γ−1

n−2kd(an−2k(γn−2k))dγ1 · · · dγn−2k.

Now, for the terms where i > 0, we plug B-exact elements into this formula, which
means that we need to look at what the formula above reduces to when a0 = δe ⊗ 1,
where 1 is the adjoined unit in C∞

c (M), i.e. the constant function 1 on M . Then this
formula becomes

(−1)k

k!(n− 2k)!

�
M

tr(F (∇)∧k
�
Gn−2k−1

d(a1((γ1 · · · γn−2k−1)
−1))⊗

⊗ (γ1 · · · γn−2k−1)
−1d(a2(γ1))⊗ · · · ⊗ γ−1

n−2k−1d(an−2k−1(γn−2k))dγ1 · · · dγn−2k−1.
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Since tr(F (∇)∧k) is a closed 2k-form (this is a consequence of the classical Bianchi
identity) the above becomes

(−1)k

k!(n− 2k)!

�
M

d

(
tr(F (∇)∧k)

�
Gn−2k−1

a1((γ1 · · · γn−2k−1)
−1)⊗

�
⊗ (γ1 · · · γn−2k−1)

−1d(a2(γ1))⊗ · · · ⊗ γ−1
n−2k−1d(an−2k−1(γn−2k))dγ1 · · · dγn−2k−1

)
,

which is an integral over an exact form, and hence 0. We see that the contributions for
i > 0 in (3.10) vanish, and hence we conclude that

c(ChG(E,∇))(a0, ..., an−2k) =
(−1)k

k!(n− 2k)!

�
M

tr(F (∇)∧k)
�
Gn−2k

a0((γ1 · · · γn−2k)
−1)⊗

⊗ (γ1 · · · γn−2k)
−1d(a1(γ1))⊗ · · · ⊗ γ−1

n−2kd(an−2k(γn−2k))dγ1 · · · dγn−2k.

Next we investigate the externally curved DGA ΩE,∇ from Section 3.1.3. Here, using
that fact that ∇, and hence F (∇), are G-invariant, and the facts that µ(0) = 0 and
(Θ ∗ α)(g, 0) = (α ∗Θ)(g, 0) = 0 we have

(Θ∇ ∗ α)(g, 0) = F (∇) ∧ α(g, 0) and (α ∗Θ∇)(g, 0) = α(g, 0) ∧ F (∇).

Furthermore, since δ ≡ 0 (again since ∇ is G-invariant) we have

(D∇α)(g, 0) = d∇End(α(g, 0)),

and if α ∈ C∞
c (G, Sym(g∗)⊗ Ωc(M,End(E))) is of the form

α(g,X) = a(g)idE

for a ∈ C∞
c (G×M), this simply means

(D∇α)(g, 0) = d(a(g, 0)).

From this we see that the repeated convolution in the formula for ChΩE,∇ equals

(a0 ∗Θ∗i0
∇ ∗D∇a1 ∗ · · · ∗D∇an−2k ∗Θ∗in−2k

∇ )(e, 0) =

�
G×(n−2k)

a0(h1)∧

∧ F (∇)∧i0 ∧ h∗1d(a1(h−1
1 h2)) ∧ · · · ∧ h∗n−2kd(an−2k(h

−1
n−2k) ∧ F (∇)

∧in−2kdh1 · · · dhn−2k

which, after rearranging integrals and noticing that a0(h1) and d(ai(h
−1
i hi+1)) commute

with F (∇) -since they are scalar differential forms- equals

F (∇)∧(i0+···+in−2k)

�
G×(n−2k)

a0((γ1 · · · γn−2k)
−1)∧

∧ ((γ1 · · · γn−2k)
−1)∗d(a1(γ1)) ∧ · · · ∧ (γ−1

n−2k)
∗d(an−2k(γn−2k))dγ1 · · · dγn−2k,
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so that in the end we have

Chn−2k
ΩE,∇

(a0, ..., an−2k) =
(−1)k

(n− k)!
∑

i0+···+in−2k=k

�
M

tr
(
F (∇)∧(i0+···+in−2k)

)
�
G×(n−2k)

a0((γ1 · · · γn−2k)
−1) ∧ ((γ1 · · · γn−2k)

−1)∗d(a1(γ1)) ∧ · · ·

· · · ∧ (γ−1
n−2k)

∗d(an−2k(γn−2k))dγ1 · · · dγn−2k.

Then, since the summand does not depend on i0, ..., in−2k, we can just replace the sum

by the size of the index set, which is

(
n− k
n− 2k

)
, to obtain

Chn−2k
ΩE,∇

(a0, ..., an−2k) =
(−1)k

k!(n− k)!
∑

i0+···+in−2k=k

�
M

tr
(
F (∇)∧(i0+···+in−2k)

)
�
G×(n−2k)

a0((γ1 · · · γn−2k)
−1) ∧ ((γ1 · · · γn−2k)

−1)∗d(a1(γ1)) ∧ · · ·

· · · ∧ (γ−1
n−2k)

∗d(an−2k(γn−2k))dγ1 · · · dγn−2k.

We conclude that the cyclic chains ChΩE,∇ , c(ChG(E,∇)) ∈ CPn(G⋉C∞
c (M)) agree on

the nose , so certainly their classes in HPn(G⋉ C∞
c (M)) do.

3.4.2 Outlook: the non-proper case

The last part of this section is devoted to the equivalent of 3.4.1 in the case that the
action of G on M is not proper. We expect this to be true, but at the time of writing
we are not sure about all of the details. However, it would be remiss not to include this
discussion.

Reduction to maximal compact subgroups

To show Theorem 3.4.1 for also the non-proper case, we need more structure. We start
by recalling the following ring from [Ni93].

Definition 3.4.3 We define C∞
inv(G) to be the ring of smooth functions on G that are

invariant under conjugation, i.e. if f is a smooth function then f ∈ C∞
inv(G) if and only

if

f(hgh−1) = f(g)

Lemma 3.4.4 [Ni93, Lem 4.1]The maximal ideals of C∞
inv(G) are in a one-to-one cor-

respondence with the conjugation classes of G, by associating to a point g ∈ G the
ideal

mg = {f ∈ C∞
inv(G) : f(g) = 0}
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The cyclic space C•((G ⋉ A)+), the cylindrical space L+(G,A)•,• and the double
complex C•,•(G,ΩgA) are modules over C∞

inv(G), by the following formulas respectively

(f · F1)(g0, ..., gk) = f(g0 · · · gk)F1(g0, ..., gk)

(f · F2)(g0, ..., gq) = f(g0 · · · gq)F2(g0, ..., gq)

(f · F3)(X, g1, ..., gq) = f(eX)F3(X, g1, ..., gq)

where in the first line F1 ∈ Ck((G ⋉ A)+) = L+(G,A)k,k, in the second line F2 ∈
L+(G,A)p,q and in the last line F3 ∈ Cp,q(G,ΩgA). For C•((G⋉A)+) and L+(G,A)•,• all
the simplicial and cyclic structure maps are C∞

inv(G)-module maps, as are the differentials
in C•,•(G,ΩgA), in particular their homologies are also C∞

inv(G)-modules. Furthermore
the map Ψ is then a map of chain complexes of C∞

inv(G)-modules.
This means that we can look at the localizations of the homologies at the maximal

ideals of C∞
inv(G). In particular we are interested in the localization at the identity, which

we will write as HP•(G⋉ C∞
c (M))e.

To do this, we refer to work of Nistor, who used localizations to reduce the cyclic
cohomologies of convolution algebras to the maximal compact subgroup.

Theorem 3.4.5 [Ni93, Cor 4.10] LetG be a Lie group with a maximal compact subgroup
K, with q = dim(G/K). Let M be a manifold with a G-action, then there is an
isomorphism

HPk(G⋉ C∞
c (M))e ∼= HPk+q(K ⋉ C∞

c (M))e

In particular, this allows us to do the following. If we look atM as a K-manifold, we
may take the product with the space G/K which carries a trivial K-action. In particular
we have

K ⋉ C∞
c (M ×G/K) ∼= (K ⋉ C∞

c (M))⊗̂C∞
c (G/K)

The action of C∞
inv(G) is then fully on the left factor, so that we conclude by a Künneth-

like theorem that

HP•(K ⋉ C∞
c (M ×G/K))e ∼= HP•(K ⋉ C∞

c (M))e⊗̂H•
dR,c(G/K)

Next, since G/K is diffeomorphic to Rq, we have that H•
dR,c(G/K) is concentrated in

degree q where it is spanned by the orientation form τ .
In particular we have an isomorphism with we will call ∪τ

HP•(G⋉ C∞
c (M))e

∪τ−→ HP•+q(G⋉ C∞
c (M ×G/K))e

which is defined as the composition of the following maps

HP•(G⋉ C∞
c (M))e

∼= //

∪τ

��

HP•+q(K ⋉ C∞
c (M))e

⊗τ

��

HP•+q(K ⋉ C∞
c (M))e ⊗ Hq

dR,c(G/K)

∼=
��

HP•+q(G⋉ C∞
c (M ×G/K))e HP•+2q(K ⋉ C∞

c (M ×G/K))e∼=
oo
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Reduction to the proper case

We now sketch a way to prove Theorem 3.4.1 in the general case. For this, given an
equivariant vector bundle E →M with connection ∇, we will localize both ChΩE,∇ and

c(ChG(E,∇)) ∈ HPdim(M)(G⋉ C∞
c (M)) at the different maximal ideals of C∞

inv(G).
We start with the following Lemma regarding localizations at maximal ideals that

are not determined by the identity:

Lemma 3.4.6 Let g ∈ G\{e} and let m = {f ∈ C∞
inv(G) : f(g) = 0}. Then

(ChΩE,∇)m = c(ChG(E,∇))m = 0 ∈ HPdim(M)(G⋉ C∞
c (M))m

Proof. For ChΩE,∇ this is because it is defined using the functional
�
: C∞

c (G, Sym(g∗)⊗
Ωc(M,End(E))) given by  

α =

�
M

tr(α(e, 0))

which is distinctly seen to be localized at the identity, in particular taking chains which
are ever closely supported around g, we see that they will vanish under

�
.

Similarly for c(ChG(E,∇)), we see that it involves pairing ChG(E,∇) against evalu-
ations of chains at X = 0 ∈ g, also an operation localized at the identity e.

Remark 3.4.7 This Lemma states that our Chern classes are really localized at the
identity. Comparing this to the ‘bouquet of Chern characters’ of Duflo and Vergne
[DV93] we again arrive at the conclusion that for non-discrete groups there should a
more involved way of defining these Chern characters taking into account the behaviour
in the g-direction compatible with the ideas of the bouquet of Chern characters.

After this, we can try to understand the localizations at the identity, for which we
have the following conjecture.

Conjecture 3.4.8 Writing e for the maximal ideal {f ∈ C∞
inv(G) : f(e) = 0} we have

that

� (ChΩpr∗E,pr∗∇)e = (ChΩE,∇)e ∪ τ

� (c(ChG(pr
∗E, pr∗∇)))e = (c(ChG(E,∇))e ∪ τ

Ideas for a proof. The ideas to prove this follow from the observation that (pr∗E, pr∗∇) =
(E⊠C,∇⊠d), and the remark that when we look at everything from the K-equivariant
perspective, C → G/K is the trivial line bundle with no action present. In particu-
lar, one checks that the equivariant Chern character is just 1 ∈ Hev

K (G/K), which, ones
plugged into c : Hev

K (G/K)→ HPq(C∞
c (G/K)) simply yields the orientation form

c(1)(f0, ..., fq) =

�
G/K

f0df1 ∧ · · · dfq



3.5. Comparison with known cases 143

Indeed, this is essentially the Poincaré-duality statement, exhibiting the orientation class
as a Poincaré-dual to the constant function 1.

Simiarly, one checks that Ch(ΩC,d) also equals the orientation form.
In particular, we see that in the K-equivariant setting taking the pullback picks up

precisely the cupproduct with τ , and one hopes that by translating through Nistor’s
isomorphisms and by definition of our map ∪τ the result follows.

These Lemmas would then give a proof of Theorem 3.4.1 in the non-proper.

Ideas for a proof of Theorem 3.4.1 in the non-proper case. Fix E → M an equivariant
vector bundle and ∇ a connection on E. By Lemma 3.4.6 we know that

(ChΩE,∇)m = (c(ChG(E,∇))m ∈ HPdim(M)(G⋉ C∞
c (M))m

For every maximal ideal m that is not the maximal ideal determined by e ∈ G.
Looking at the localization at e ∈ G, if Conjecture 3.4.8 is true, we’d have

((ChΩE,∇)e − (c(ChG(E,∇))e) ∪ τ = ((ChΩpr∗E,pr∗∇)e − (c(ChG(pr
∗E, pr∗∇))e

as elements of HPdim(M)+q(G ⋉ C∞
c (M × G/K))e. Since G acts properly on M × G/K

we know that the right hand side vanishes by Theorem 3.4.1, so we conclude that

((ChΩE,∇)e − (c(ChG(E,∇))e) ∪ τ = 0

Since ∪τ is an isomorphism, we conclude

(ChΩE,∇)e = (c(ChG(E,∇))e ∈ HPdim(M)(G⋉ C∞
c (M))e

Seeing that their localizations at every maximal ideal of C∞
inv(G) would agree, we’d

conclude that
ChΩE,∇ = c(ChG(E,∇)) ∈ HPdim(M)(G⋉ C∞

c (M))

3.5 Comparison with known cases

3.5.1 Trivial group actions

If the group G is the trivial group, the convolution algebra G⋉A is simply the commu-
tative algebra A. Our double complex in this case becomes

L(G,A)p,q = (A+)⊗(p+1).

However, the vertical differential dv : L(G,A)•,q → L(G,A)•,q−1 satisfies

dv =

{
id q is even,
0 q is odd.
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In particular, we may replace the total complex Tot•(L(G,A)) by the first row L(G,A)•,0
and we see that our complex is simply the Hochschild complex of A+.

Similarly, the complex C•,•(G,ΩgA) can be replaced by the complex C•,0(G,ΩgA),
which in this case is the ‘deRham complex of A’, i.e. the mixed complex (Ω•A, 0, d).
The map Ψ2 : L(G,A) → C(G,ΩgA) now simply becomes the ordinary HKR map
(A+)⊗(•+1) → Ω•A, and since the map EZ ◦ Ψ1 : C

Hoch
• (G ⋉ A,G ⋉ A) → L•,0(G,A)

is just the identity, we see that our chain of maps Ψ is simply the HKR-morphism

(C•
Hoch(A,A), b, B)→ (Ω•A, 0, d).

Looking at the case A = C∞
c (M) forM a manifold, we note that the equivariant coho-

mology HG(M) is the deRham cohomology and that Getzler’s model C•,•(G,ΩgC
∞(M))

is concentrated in degree q = 0, where it is given by the deRham-complex of M . All in
all, the maps

c : Hev
G (M)→ HPdim(M)(G⋉ C∞

c (M)), Hodd
G (M)→ HPdim(M)+1(G⋉ C∞

c (M))

are in this case induced (up to some signs) by the map

[−] : Ω•(M)→ Hom(C∞
c (M)dim(m)+1−•,R)

that takes a differential form ω ∈ Ωn(M) and sends it so

[ω](f0, ..., fdim(M)−n) =

�
M

ω ∧ f0df1 ∧ · · · ∧ dfdim(M)−n.

In particular it is the concatenation of the isomorphisms

H•
dR(M)

∼=−→ HdR,c
dim(M)−•(M)

∼=←− HPdim(M)−•(C∞
c (M)).

Here the first map is an instance of Poincaré duality which associates to a k-form ω ∈
Ωk(M), the density ω̃ ∈ Ωn−k

c (M)× given by

ω̃(α) =

�
M

ω ∧ α,

and the second map is a consequence of the Hochschild-Kostant-Rosenberg Theorem in
the continuous setting.

That the Chern characters are compatible in this case is clear from an immediate
determination of the generalized cycle associated to a vector bundle E → M with a
connection ∇. As there is no group action, we see that the underlying curved DGA is
the curved DGA

Ω = Ω(M,End(E))

of Example 3.1.11 (in the non-compact case), with differential d∇End and curvature F (∇).
The resulting generalized cycle is then seen to be equal (up to a sign) to the current
induced by the differential ∑

i≥0

1

i!
tr(F (∇)∧i),

which is exactly the differential form inducing the ordinary Chern character Ch(E) ∈
Hev

dR(M).
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3.5.2 Compact groups

If we plug in M = {pt}, we recover the convolution algebra of the group G itself. If G is
compact, the periodic cyclic cohomology of C∞(G) has been computed by Natsume and
Nest [NN90, 1.II]. In this case, it is concentrated in even degrees, where it is represented

by traces τφ for functions φ on the spectrum Ĝ of G which are slowly increasing in a
certain sense. Here, for f ∈ C∞(G) this trace τφ is given by

τφ(f) =
∑
π∈Ĝ

φ(π)

dim(Vπ)

�
G

f(g)χπ(g)dg

Looking at the equivariant cohomology H•
G(pt), we obtain from Getzler’s model that it

is contained in even degrees, where it is given by

H2q
G (pt) ∼= (Symq(g∗))G,

the invariant degree q polynomials on g.
Dissecting the map c : Hev

G (M) → HPev(C∞(G)) in this case we notice that the
invariant polynomials live in C0,0(G,Ωg({pt})), so that the only interesting pairing
is with C0,0(G,Ωg({pt})). Next, notice that pairing between C0,0(G,Ωg({pt})) and
C0,0(G,Ωg({pt})) kills off polynomials of strictly positive degree as the pairing takes
a polynomial P ∈ Sym(g∗) and a function f ∈ C∞(g) and pairs them by

⟨P, f⟩ = P (0)f(0).

We conclude the following:

Proposition 3.5.1 The map c : Hev
G (pt)→ HPev(C∞(G)) takes an invariant polynomial

P ∈ Sym(g∗) ∼= Hev
G (pt) and sends it to the trace c(P ) ∈ HP0(C∞(G)) given by

c(P )(f) = f(e)P (0).

Remark 3.5.2 The fact that τ(f) = f(e) is even a trace on the convolution algebra
C∞(G) is a consequence of the fact that any compact group is unimodular. Indeed, one
checks that

τ([f1, f2]) =

�
G

f1(g)f2(g
−1)dg −

�
G

f2(g)f1(g
−1)dg,

and these two integrals are equal because of unimodularity.

Remark 3.5.3 Under the isomorphism of Natsume and Nest, the trace c(P ) corresponds
to τφ for

φ(π) = P (0) dim(Vπ)
2.

This follows from the fact that the character of the regular representation L2(G) ∼=⊕̂
π∈ĜV (π)⊕ dim(Vπ) acts as the Dirac delta distribution at e ∈ G on the space C∞(G).
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Recall that by Proposition 3.1.18 we have a map ChΩ,− : Sym(g)G → HPev(AG) which
sends an invariant polynomial γ to the character of the cycle with closed graded trace�
γ
. A simple calculation with Fourier inversion shows that under the isomorphism of

Natsume and Nest, ChΩ,γ is the trace associated to the map

φ(π) = dim(Vπ)
2Dγ(tr(π))(0).

3.5.3 Compact group actions

In Block-Getzer [BG94], a model for equivariant cyclic homology was presented for when
the group G is compact using sheaves over G (with the topology defined by conjugacy-
invariant opens) where stalks at g ∈ G sketch the picture ofMg = {p ∈M : pg = p} and
the Lie algebra gg of the centralizer of g using germs of Gg-invariant forms on Mg with
polynomial coefficients in gg. Using the C∞

inv(G)-module structure on our complexes, we
see that localizing at the identity in our models correspond to the stalk at the identity
in the models of Block-Getzler, since we can go from G-cohomology to G-invariants at
no cost by compactness of the group.

As such, we precisely recover the map αe of [BG94, 3.3], from which we infer that

Corollary 3.5.4 [BG94, Thm 3.3] When the group G is compact, the map Ψ: CC(G⋉
A)→ Tot(CC(G,ΩgA)) is a quasi-isomorphism when localized at the identity.

As such, understanding the effect of the map c : H•
G(M)→ HP•(G⋉C∞

c (M)) is tanta-
mount to understanding the pairing between C•,•(G,ΩgC

∞(M)) and C•,•(G,ΩgC
∞
c (M)).

Since the group G is compact we can use the procedure outlined in Remark 3.2.4 to re-
place the double complexes with the concentration of G-cohomology and G-homology
respectively in their first rows. In particular:

Tot(C•,•(G,ΩgC
∞(M)) ≃ (Sym(g∗)⊗ Ω•(M))G

and

Tot(C•,•(G,ΩgC
∞
c (M)) ≃ (C∞(g)⊗ Ω•

c(M))G.

The pairing between these two starts with evaluating at X = 0 in g, and the rest is
an equivariant instance of the Poincaré pairing between differential forms:

Ωdim(M)−p(M)G ⊗ Ωp
c(M)G → R

⟨ω, η⟩ 7→
�
M
ω ∧ η,

which is a (homologically) perfect pairing by Poincaré duality. Again we see the story
that we almost have a homologically perfect pairing, apart from the fact that we first
kill all the behaviour in the g-direction.
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3.5.4 Actions of discrete groups

When the group G is discrete, our constructions and results directly generalize parts
of the work done in [Go99]. In particular, the curved DGA defined in Section 3.1.3 is
precisely the curved DGA defined in [Go99, Sect 3] when the group is discrete (of course
in this case the moment µ vanishes).

We also note that when the group is discrete, we obviously overcome the problem
where we lose information in the g-direction when pairing between equivariant cohomol-
ogy and cyclic homology: indeed, as the group is discrete the Lie algebra g is trivial.
Combining this with the remarks about compact groups before, we arrive at the following
conclusion in the case of finite group actions (cf. [BC88]).

Theorem 3.5.5 If a finite group Γ acts orientation-preservingly on an oriented manifold
M , then the maps

c : Hev
Γ (M)→ HPdim(M)(Γ⋉ C∞

c (M)), Hodd
Γ (M)→ HPdim(M)+1(Γ⋉ C∞

c (M))

are isomorphisms.

In the general discrete case we notice that the convolution algebra Γ⋉ C∞
c (M) is a

twisted tensor product of the group algebra of Γ and the Γ-algebra C∞
c (M). In particular,

elements are normally written as sums of elements Ugf for g ∈ Γ and f ∈ C∞
c (M). The

product is then given by
(Ugf)(Uhf

′) = Ughf(g · f ′).

In his book, Connes [Co94, III.2.δ] describes a model for the equivariant cohomology
HΓ(M). In this model, he makes use of maps

γ : Γ×• → Ω•(M)

between products of the group and deRham-currents on M . He also gives a map pairing
the chains of the (b, B)-bicomplex of the convolution algebra Γ⋉C∞

c (M), which -up to
signs and combinatorial factors- pairs a map γ as above with chains of the convolution
algebra by the formula

⟨γ, (Ug0f0, ..., Ugnfn)⟩ ∼ γ(g0, ..., gn)(f0df1 ∧ · · · ∧ dfn).

Furthermore, he shows [Co94, Thm III.2.14] that this procedure gives an isomorphism
between equivariant cohomology H•

γ(M) and the periodic cyclic cohomology HP•(Γ ⋉
C∞

c (M)).
Using a Poincaré duality argument, we can replace currents with differential forms,

and we recover Getzler’s model for equivariant cohomology. Translating the pairing to
this situation and working through the calculations with the Eilenberg-Zilber map, one
concludes that our map c between equivariant cohomology H•

Γ(M) and periodic cyclic
cohomology HP•(Γ⋉ C∞

c (M)) is precisely the map written down by Connes.
Using this, [Go99, Thm 3.1] directly translates to a proof for Theorem 3.4.1 in the

general case.
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Corollary 3.5.6 [Go99, Thm 3.1] When a discrete group Γ acts on an oriented manifold
M , then for any equivariant vector bundle E, the two Chern classes c(ChΓ(E)),ChΩΓ(E) ∈
HPeven(Γ⋉ C∞

c (M)) agree.

It is noteworthy how the argument simplifies for discrete groups, as opposed to the
ideas for a proof we describe in the general case. So let us quickly discuss Gorokhovsky’s
argument to reduce to the proper case. Again, the main point in reducing to the proper
case is replacing M by M × X such that Γ acts properly on X. Next, in [Go99, Prop
3.3], the standard cup product in cyclic cohomology is used to obtain a map

HPdim(M)(Γ⋉C∞
c (M))⊗HPdim(X)(Γ⋉C∞

c (X))
∪−→ HPdim(M×X)((Γ×Γ)⋉C∞

c (M ×X))

and it is shown that ChΩ(E) ∪ τ = ChΩ(pr∗E). Here τ is the equivariant orientation class
that is associated to the trivial equivariant line bundle over X and pr∗E is seen as a
Γ× Γ-equivariant vector bundle. Then, using a map

∆: Γ⋉ C∞
c (M ×X)→ (Γ× Γ)⋉ C∞

C (M ×X)

defined by ∆(Ugf) = Ug,gf , one obtains a map

HPdim(M×X)((Γ× Γ)⋉ C∞
c (M ×X))→ HPdim(M×X)(Γ⋉ C∞

c (M ×X))

and it is shown that this total reduction sends ChΩ(E)⊗ τ to ChΩ(pr∗E). From that point
on, the argument proceeds along roughly the same lines.

Of course, the big difference with the case where G is a non-discrete Lie group is that
a map like ∆ does not exist, and there is no obvious way to reduce the cyclic cohomology
of (G×G)⋉ A (for A an G×G-algebra) to the cyclic cohomology of G⋉ A where we
see A as an G-algebra by the diagonal action.



Chapter 4

Hochschild cohomology of Lie-Rinehart
algebras

In this last chapter we turn the local theory of Lie algebroids. The main result of this
chapter is a generalization to the Lie-Rinehart setting of a result of Blom [Bl17], relating
the Hochschild cohomology of the universal enveloping algebra U(L,R) of a Lie-Rinehart
algebra (L,R) with the symmetric powers of the adjoint representation of (L,R).

Theorem: Let (L,R) be a Lie-Rinehart algebra. If R is smooth and L is projective as
an R-module, then there is a natural isomorphism

HH•(U(L,R),U(L,R)) ∼= H•(L, Sym(ad)). (4.1)

These results should be thought of as the local analogues of the conjectural connections
we alluded to in Section 2.5. We improve Blom’s results by writing down a zig-zag of
quasi-isomorphism defined purely in algebraic terms, inspired by the recent calculations
of Kordon and Lambre [KL21].

The chapter is divided into two parts:

� In Section 4.1 we exploit the structure of U(L,R) as generated by a Lie algebra
and a commutative algebra, to write down a ‘non-linear’ complex that combines
Lie algebra cohomology of L and Hochschild cohomology of R and show that it is
quasi-isomorphic to the Hochschild cohomology complex associated to U(L,R).

� In Section 4.2 we use this non-linear complex to write down a chain map from
the complex associated to the symmetric powers of the adjoint representation of
(L,R) to the non-linear complex. We show that the resulting map between the
cohomology of the symmetric powers of the adjoint and the Hochschild cohomology
of U(L,R) is an isomorphism.

This chapter has an appendix in Section 4.3, where we give the proof of certain results
whose proofs would break up the rhythm of the text too much to give immediately.

149



150 Chapter 4. Hochschild cohomology of Lie-Rinehart algebras

4.1 The Hochschild cohomology of the universal en-

veloping algebra

In this section we calculate the Hochschild cohomology of the universal enveloping al-
gebra U(L,R) of a Lie-Rinehart algebra (L,R). In the end we will show that it is
isomorphic to the Lie-Rinehart cohomology with values in the symmetric powers of the
adjoint representation. For the case where (L,R) arises from a Lie algebroid A→M this
was already known by work of Blom [Bl17], who used Kontsevitch Formality to relate the
Hochschild cohomology of the universal enveloping algebra with the polynomial Poisson
cohomology of the Poisson manifold A∗. Since the polynomial Poisson complex is the
same complex as the Lie algebroid cohomology complex with values in the symmetric
powers of the adjoint representation on the nose, this does the trick.

Parallel to this, for a Lie algebra g, one can write down a direct chain map between
the Hochschild complex of the universal enveloping algebra U(g) and the Lie algebra
cohomology complex with values in the symmetric powers of the adjoint, using the
Poincaré–Birkhoff–Witt map.

This Lie algebra cohomology complex is defined as follows:

Definition 4.1.1 Given a Lie algebra g and a g-representation M , the Lie algebra
cohomology (or Chevalley-Eilenberg) complex C•

CE(g,M) is given by

Ck
CE(g,M) := Hom(Λkg,M)

with differential ∂CE : C
k
CE(g,M)→ Ck+1

CE (g,M) given by

(∂CEF )(X1, ..., Xk+1) :=
k+1∑
i=1

(−1)i+1Xi · F (X1, ...X̂i..., Xk+1)

+
∑
i<j

(−1)i+jF ([Xi, Xj], X1, ...X̂iX̂j..., Xk+1).

It is now quite direct to write down an isomorphism between Hochschild cohomology
of U(g) and the Lie algebra cohomology of g. The resulting calculation is dual to the
calculations on Hochschild homology by Kassel [Ka88] and Loday [Lo98, Thm 3.3.2]:

Example 4.1.2 (Lie algebras) If g is a Lie algebra, the adjoint action induces a
representation of g on Sym(g) by

[X, Y1 ⊙ · · · ⊙ Yn] :=
n∑

i=1

Y1 ⊙ · · · ⊙ [X, Yi]⊙ · · · ⊙ Yn.

Similarly, using the canonical inclusion of g into U(g), the universal enveloping algebra
also becomes a representation of g via the commutator action. Importantly, one checks
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that the Poincaré-Birkhoff-Witt map pbw: Sym(g) → U(g) is an isomorphism of g-
representations. Using this fact, one checks that the map

Φ: C•
Hoch(U(g),U(g))→ C•

CE(g, Sym(g))

from the Hochschild cohomology complex of U(g) to the Chevalley-Eilenberg cohomology
of g with coefficients in Sym(g) given by

Φ(c)(X1, ..., Xn) :=
∑
σ∈Sn

(−1)σpbw−1(c(Xσ(1), ..., Xσ(n)))

is a chain map.
Next, we recall that U(g) is a filtered algebra where g is put in filtration degree 1,

and that pbw: Sym(g)→ U(g) induces an isomorphism between Sym(g) and the graded
quotient of U(g). Using this filtration we put a filtration on the Hochschild complex by

F pCn(U(g),U(g)) = {c : U(g)⊗n → U(g) : c((U(g)⊗n)≤k) ⊂ U(g)≤p+k for all k ≥ 0}

Similarly we have a filtration of C•
CE(g, Sym(g)) given by

F pCn
CE(g, Sym(g)) = Hom(Λng, Sym≤p+n(g)).

The map Φ is then a map of filtered chain complexes. Again using the fact that pbw
induces an isomorphism of graded algebras from Sym(g) to the graded quotient of U(g)
we see that the graded quotient complex of the Hochschild complex equals

GC•
Hoch(U(g),U(g)) ∼= C•

Hoch(Sym(g), Sym(g)).

Similarly, we can calculate the graded quotient of C•
CE(g, Sym(g)), where due to the fact

that the differential lowers the filtration degree by 1 we have

GC•
CE(g, Sym(g)) ∼= (Hom(Λ•g, Sym(g)), 0)

The map GΦ induced by Φ between the graded quotients is simply given by

GΦ(c)(X1, ..., Xn) =
∑
σ∈Sn

(−1)σc(Xσ(1), ..., Xσ(n)).

Now, as Sym(g) is generated by g we have inverse isomorphisms

Der(Sym(g))→ Hom(g, Sym(g))

D 7→ (X 7→ D(X)),

and

Hom(g, Sym(g))→ Der(Sym(g))

c 7→ (X1 ⊙ · · · ⊙Xk 7→
k∑

i=1

X1 ⊙ · · · ⊙ c(Xi)⊙ · · · ⊙Xk).
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Similarly we have an isomorphism

Λ•
Sym(g)Der(Sym(g)) ∼= Hom(Λ•g, SymRg)

where the map from left to right is given by restriction. As Sym(g) is a commutative
algebra, we can use Hochschild–Kostant–Rosenberg Theorem to see that the inclusion

Λ•
Sym(g)Der(Sym(g)) ↪→ C•

Hoch(Sym(g), Sym(g))

induces an isomorphism

Λ•
Sym(g)Der(Sym(g)) ∼= HH•(Sym(g), Sym(g)).

Combining these two facts, we see that GΦ is a quasi-isomorphism, and by the Spectral
Sequence Comparison Theorem [Ze57], we see that Φ is also a quasi-isomorphism.

We remark that this proof does not explicitely use a formality argument involving
the linear Poisson manifold g∗. As such, we use this example in this section as a starting
point for obtaining a fully algebraic proof of the connection (4.1) between Hochschild
cohomology of U(L,R) and the cohomology of the symmetric powers of the adjoint,
focused on using the Poincare-Birkhoff-Witt map. For this, we restrict to the case that
L is projective as an R-module, so that it admits an L-connection ∇, and we can write
down a Poincare-Birkhoff-Witt map pbw∇.

4.1.1 Understanding U(L,R)-modules

As we have seen in Example 4.1.2, we can use the fact that U(g) is generated by g
to relate the Hochschild homology of U(g) with the Lie algebra cohomology of g. In
this section, we try to generlize this to the case of a Lie-Rinehart algebra, and try to
relate HH•(U(L,R),M) to certain Lie algebra cohomology-like complexes associated to
L. To mimick the filtration-argument from before, we restrict ourselves to the class of
U(L,R)-bimodules that behave the same as U(L,R) behaves as a bimodule over itself.

Definition 4.1.3 A filtered U(L,R)-bimodule is a U(L,R)-bimoduleM with a filtration
{M≤k}k≥0 such that

� For every f ∈ R and m ∈ M≤k it holds that fm,mf ∈ M≤k and fm − mf ∈
M≤k−1;

� For every X ∈ L and m ∈M≤k it holds that Xm,mX ∈M≤k+1 and Xm−mX ∈
M≤k.

Remark 4.1.4 We make three remarks on the definition above.

� Clearly U(L,R) is a filtered U(L,R)-bimodule.
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� The definition is equivalent to requiring that for every D ∈ U(L,R)≤n and m ∈
M≤k it holds that Dm,mD ∈M≤k+m and Dm−mD ∈M≤k+m−1.

� From the definition it follows immediately that ifM is a filtered U(L,R)-bimodule,
then its graded quotient GM is canonically a (graded) SymRL-bimodule.

We first note that for any unital algebra A, the Hochschild cohomology functor
HH•(A,−) is the right derived functor of the functor which takes an A-bimodule M
and spits out the invariants

MA = {m ∈M : am = ma∀a ∈ A}

This follows from Remark 1.1.12 and the natural isomorphism

MA ∼= HomAe(A,M)

Now, when M is a U(L,R)-bimodule, the whole structure is of course defined by how
R ⊂ U(L,R) acts upon M and how L ⊂ U(L,R) does. Indeed, dissecting the universal
properties of U(L,R) we obtain the following characterizations of U(L,R)-modules:

Lemma 4.1.5 A left U(L,R)-module structure on M is the same as

� A left R-module structure on M ,

� A left action of the Lie algebra L on M

that are compatible in the following sense

� (fX) ·m = f · (X ·m)

� X · (f ·m) = f · (X ·m) + ρ(X)(f) ·m
Similarly a right U(L,R)-module structure on M is the same as

� A right R-module strucutrce on M .

� A right action of the Lie algebra L on M

that are compatible in the following sense

� m · (fX) = (m · f) ·X

� (m ·X) · f = (m · f) ·X +m · ρ(X)(f)

Now if M is a U(L,R)-bimodule, we see that the invariants can also be described
using L and R:

MU(L,R) = {m ∈M : fm = mf, ∀f ∈ R , Xm = mX, ∀X ∈ L} (4.2)

This means that the U(L,R)-invariants are elements which are both R-invariants, and
invariant under the diagonal L-action

[X,m] = Xm−mX

We will now show that, using this observation, we can write the functor (−)U(L,R) as a
composition of two functors. The resulting discussion can be summarized as follows:
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Notation 4.1.6 For M a U(L,R)-bimodule, write

MR := {m ∈M : fm = mf, ∀f ∈ R},

and for M̃ a L-representation, write

M̃L := {m ∈ M̃ : Xm = 0, ∀X ∈ L}.

Lemma 4.1.7 LetM be a U(L,R)-bimodule. The space of R-invariantsMR is invariant
under the diagonal L-action on M .

Proof. Fixing m ∈ MR and X ∈ L, we need to show that Xm − mX ∈ MR. For
this, take f ∈ R and calculate, using the fact that m ∈ MR and in U(L,R) we have
Xf − fX = ρ(X)(f):

f(Xm−mX) = fXm− fmX
= Xfm− ρ(X)(f)m− fmX
= Xmf −mρ(X)(f)−mfX
= Xmf −mXf
= (Xm−mX)f.

This finishes the proof.

Theorem 4.1.8 Consider the following two functors:

� The functor (−)R : U(L,R)-bmod→ L-rep that takes a bimodule M and sends it
to its R-invariants MR endowed with the diagonal L-action;

� The functor (−)L : L-rep→ VectK that takes an L-representation M̃ and sends it

to its L-invariants M̃L.

These functors are well-defined and there is the following equality of functors:

(−)L ◦ (−)R = (−)U(L,R) : U(L,R)-bimod→ VectK.

Proof. By the previous Lemma, we can indeed lift the functor (−)R to make objects
land in L-rep. One needs to check that a map of U(L,R)-bimodules then also restricts
to a map of L-representations, but this is an easy check. The equality of functors1 then
follows from the discussion leading to equation (4.2).

This result will give us a starting point to understanding the Hochschild cohomology
of U(L,R) in terms of R- and L-modules.

1Remark that using the explicit definitions of invariants as specific subsets of the original spaces,
this is indeed an equality, not just an equivalence, of functors.
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4.1.2 Combining Lie algebra and Hochschild cohomology

From Theorem 4.1.8 we want to take inspiration to write down a complex calculat-
ing the Hochschild cohomology of U(L,R) using the hyper-derived functors of both
(−)R : U(L,R)-bimod→ L-rep and (−)L : L-rep→ VectK.

One approach is the one used by Kordon and Lambre [KL21], who use the fact that
(−)U(L,R) is a composition of functors to write down a spectral sequence converging to
HH•(U(L,R),M) whose second page is given by

Ep,q
2 = Hp

CE(HH
q(R,M))⇒ HHp+q(U(L,R),M),

and then argue about the higher differentials in this spectral sequence. We take a
different path, using the chain complexes calculating the derived functors.

Recall that (models for) the hyper-derived functors are given as follows: for (−)R we
have that the left derived functors are calculated by chain complex C•

Hoch(R,−), while
for (−)L the left derived functors are calculated by the Lie algebra cohomology complex
C•

CE(L,−).
From this observation, the following plan arises:

� For a U(L,R)-bimoduleM , write down spaces Cp,q
LR(L,R;M) := Cp

CE(L,C
q
Hoch(R,M)).

� Define a differential dv : C
p,q
LR(L,R;M) → Cp,q+1

LR (L,R;M) using the Hochschild
differential on C•

Hoch(R,M).

� Define a differential dh : C
p,q
LR(L,R;M) → Cp+1,q

LR (L,R;M) using the Chevalley-
Eilenberg differential associated to some L-representation on Cq

Hoch(R,M).

� Check that this describes the structure of a double complex C•,•
LR(L,R;M).

� See how the cohomology that this complex calculates compares with HH•(U(L,R),M).

The only questions arises, what is the L-module structure on Cq
Hoch(R,M)? After all, the

abstract nonsense of derived functors stipulates that since the derived functors of (−)R
(as a functor from U(L,R)-bimodules to L-modules) are HH•(R,−), these Hochschild
cohomology groups need to have some L-module structure. Following the works of
Kordon and Lambre [KL21] we see that this L-module structure is already given on the
level of Hochschild chains by, for X ∈ L, the map LX : Cq

Hoch(R,M) → Cq
Hoch(R,M)

with the formula

(LXF )(f1, ..., fq) = [X,F (f1, ..., fq)]−
q∑

i=1

F (f1, ..., ρ(X)fi, ..., fq), (4.3)

where the notation [X,m] again denotes the diagonal action [X,m] = Xm−mX induced
on M by the U(L,R)-module structure.

From this we arrive at the following definition.
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Definition 4.1.9 ForM a U(L,R)-bimodule, we define the Lie-Rinehart double complex
(C•,•

LR(L,R;M), dh, dv) by

� The spaces Cp,q
LR(L,R;M) are given by

Cp,q
LR(L,R;M) = Hom(ΛpL,Hom(R⊗q,M))

� The horizontal differential dh : C
p,q
LR(L,R;M)→ Cp+1,q

LR (L,R;M) is given by

(dhF )(X1, ..., Xp+1) =

p+1∑
i=1

(−1)i+1LXi
(F (X1, ...X̂i..., Xp+1)

+
∑
i<j

(−1)i+jF ([Xi, Xj], X1, ...X̂iX̂j..., Xp+1)

� The vertical differential dv : C
p,q
LR(L,R;M)→ Cp,q+1

LR (L,R;M) is given by

(dvF )(X1, ..., Xp) = (−1)pb(F (X1, ..., Xp))

where b : Hom(R⊗q,M)→ Hom(R⊗(q+1),M) is the usual Hochschild differential.

Remark 4.1.10 Using the ⊗-Hom-adjunction we can also rewrite this as

Cp,q
LR(L,R;M) = Hom(ΛpL⊗R⊗q,M)

with differentials

(dhF )(X1, ..., Xp+1, f1, ..., fq) =

p+1∑
i=1

(−1)i+1[Xi, F (X1, ...X̂i..., Xp+1, f1, ....fq)]

+

p+1∑
i=1

q∑
j=1

(−1)iF (X1, ...X̂i..., Xp+1, f1, ..., ρ(Xi)fj, ..., fq)

+
∑
i<j

(−1)i+jF ([Xi, Xj], X1, ...X̂iX̂j..., Xp+1, f1, ..., fq)

and

(dvF )(X1, ..., Xp, f1, ..., fq+1) =(−1)pf1F (X1, ..., Xp, f2, ..., fq+1)

+

q∑
i=1

(−1)i+pF (X1, ..., Xp, f1, ..., fifi+1, ..., fq+1)

+ (−1)p+qF (X1, ..., Xp, f1, ..., fq)fq+1

To see that dh and dv indeed describe the structure of a double complex we have the
following properties of the action of L on C•

Hoch(R,M):
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Lemma 4.1.11 For every X, Y ∈ L we have

[LX , LY ] = L[X,Y ], b ◦ LX = LX ◦ b.

Proof. This is an explicit calculation that we skip.

Using this, we have the following result:

Proposition 4.1.12 The maps

dh : C
•,•
LR(L,R;M)→ C•+1,•

LR (L,R;M)

and

dv : C
•,•
LR(L,R;M)→ C•,•+1

LR (L,R;M)

satisfy

d2h = 0, d2v = 0, dvdh + dhdv = 0.

Proof. The fact that d2v = 0 follows from the fact that b2 = 0 on C•
Hoch(R,M), the fact

that d2h = 0 follows from the first part of the previous Lemma, since dh is simply the
Chevalley-Eilenberg differential associated to LX . The relation dvdh + dhdv follows from
the fact that the action LX commutes with b.

So what does Tot(C•,•
LR(L,R;M), dh + dv) calculate, and how does it compare to

HH•(U(L,R),M)? As we see in the following two examples, the result is close, but not
quite what we are looking for.

Example 4.1.13 (Degree 0) In degree 0 we have HH0(U(L,R),M) =MU(L,R) and by
the discussion before we see that this consists precisely of those elements ofM which are
both R- and L-invariant. Now in our complex C•,•

LR(L,R;M) we have the differentials

dh : C0,0
LR(L,R;M)→ C1,0

LR(L,R;M) dv : C0,0
LR(L,R;M)→ C0,1

LR(L,R;M)

given by

(dhm)(X) = Xm−mX (dvm)(f) = fm−mf

So we see that H0(Tot(C•,•
LR(L,R;M)) is precisely those element of M that are L- and

R-invariant. In particular we see that in degree 0 we obtain precisely the Hochschild
cohomology.

Example 4.1.14 (Degree 1) In degree 1 we are searching for

HH1(U(L,R),M) = Der(U(L,R),M)/Inn(U(L,R),M).

In this case we start by dissecting what it means for a map D : U(L,R) → M to be a
derivation. Since U(L,R) is generated by L and R we can take D apart by restriction
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into maps D0 : L → M and D1 : R → M . With this, we can check how D0 and D1

interact, by looking at products in U(L,R) of the form X · Y , X · f , f ·X and f · g for
X, Y ∈ L and f, g ∈ R.

In particular, we get

D(X · Y ) = X ·D0(Y ) +D0(X) · Y,
D(X · f) = X ·D1(f) +D0(X) · f,
D(f ·X) = f ·D0(X) +D1(f) ·X,
D(f · g) = f ·D1(g) +D1(f) · g.

Now, we have the following relations in U(L,R):

X · Y − Y ·X = [X, Y ],

X · f =fX + ρ(X)(f),

f ·X = fX,

f · g = fg.

So that we obtain the following relations between D0 and D1:

D0([X, Y ]) = [X,D0(Y )]− [Y,D0(X)], (D1)

D1(ρ(X)(f)) = [X,D1(f)]− f ·D0(X) +D0(X) · f, (D2)

D0(fX) = f ·D0(X) +D1(f) ·X, (D3)

D1(fg) = f ·D1(g) +D1(f) · g. (D4)

Conversely, given D0 : L→M and D1 : R→M subject to these relations, we can define
a derivation D : U(L,R) → M which restricts to D0 and D1: the important remark is
that due to the relations imposed on D0 and D1 the defining equation

D(fX1 · · ·Xk) = D1(f)X1 · · ·Xk +
k∑

i=1

fX1 · · ·Xk−1D0(Xi)Xi+1 · · ·Xk

is well-defined. We conclude that

Der(U(L,R),M) = {D0 : L→M, D1 : R→M subject to D1-D4}.

Within this framework, the inner-derivation associated to an element m ∈ M is simply
given by

D0(X) = Xm−mX, D1(f) = fm−mf.

Now, we look at what happens in degree 1 in C•,•
LR(L,R;M). From the definition 4.1.9

of the differentials it is easy to see that

Z1(Tot(C•,•
LR(L,R;M))) = {D0 : L→M,D1 : R→M subject to D1, D2 and D4}
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since D1 is equivalent to dh(D0) = 0, D2 is equivalent to dv(D0) + dh(D1) = 0 and D4 is
equivalent to dv(D1) = 0. On the side of the boundaries, we see that the exact element
in B1(Tot(C•,•

LR(L,R;M))) associated to an element m ∈ C0,0
LR(L,R;M) =M is given by

D0(X) = [X,m], D1(f) = fm−mf.

So we see that that in Tot(C•,•
LR(L,R;M)) we obtain exactly the correct 1-boundaries,

but not the correct 1-cocycles, since we miss the relation D3.

As we see, the complex C•,•
LR(L,R;M) does not incorporate the R-module structure

that L has. Indeed, this is already present in the fact that the action LX on Cq
Hoch(R,M)

is not R-linear inX. However, it turns out it is ‘R-linear up to homotopy’ in the following
sense:

Definition 4.1.15 For f ∈ R and X ∈ L, define the operator hf,X : Cq
Hoch(R,M) →

Cq−1
Hoch(R,M) by

(hf,XF )(f1, ..., fq−1) =

q∑
i=1

(−1)i+1F (f1, ..., fi−1, f, fi, ..., fq−1)X

+
∑

1≤i≤j≤q−1

(−1)i+1F (f1, ..., fi−1, f, fi, ..., ρ(X)(fj), ..., fq−1)

Proposition 4.1.16 The following equation holds true for every f ∈ R and X ∈ L:

LfX − fLX = b ◦ hf,X + hf,X ◦ b.

The proof of this Proposition is by an explicit calculation which nevertheless gives
some insight in the underlying structure. We defer the proof to Proposition 4.3.1.

With this homotopy at hand, it makes sense to impose a kind of symbol equation in
our double complex to encode the failure of R-linearity and define the following ‘non-
linear’ complex:

Definition 4.1.17 We define C•
nl(L,R;M) ⊂ Tot(C•,•

LR(L,R;M)) by

Cn
nl(L,R;M) = {(φ0, ..., φn), φi ∈ Cn−i,i

LR (L,R;M) :

φi(X1, ..., fXn−i) = fφi(X1, ..., Xn−i) + hf,Xn−i
(φi+1(X1, ..., Xn−i−1))}.

Remark 4.1.18 We will refer to the equation

φi(X1, ..., fXn−i) = fφi(X1, ..., Xn−i) + hf,Xn−i
(φi+1(X1, ..., Xn−i−1)) (4.4)

as the symbol equation.

Lemma 4.1.19 The following equations hold true for all X, Y ∈ L, f ∈ R and φ ∈
C•

Hoch(R,M).
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� LX(fφ) = fLX(φ) + ρ(X)(f)φ

� LY ◦ hf,X = hf,X ◦ LY + hρ(Y )f,X + hf,[Y,X]

Proof. This is an explicit calculation that we skip.

From this Lemma one infers by an explicit calculation:

Proposition 4.1.20 The spaces C•
nl(L,R;M) define a subcomplex of the total complex

Tot(C•,•
LR(L,R;M), dh + dv).

We postpone this proof to Proposition 4.3.2.
We see that this non-linear complex solves the problem we encountered in Example

4.1.14.

Example 4.1.21 In degree 0 we have C0
nl(L,R;M) = C0,0

LR(L,R;M), as there is no
symbol equation. In degree 1 we have

C1
nl(L,R;M) = {φ0 : R→M,φ1 : L→M : φ1(fX) = fφ1(X) + φ0(f)X}

because for φ0 : R → M we have hf,Xφ0 = φ0(f)X. In particular we see that the non-
linear subcomplex recoveres the missing relation D3 from Example 4.1.14, in particular
we see that H1(C•

nl(L,R;M)) is on the nose isomorphic to HH1(U(L,R),M).

In the next subsection, we will prove the general statement that

H•(C•
nl(L,R;M)) ∼= HH•(U(L,R),M)

We do this by ways of a chain map C•(U(L,R),M)→ Tot(C•,•
LR(L,R;M)).

4.1.3 The shuffle map

We want to write down a map between the Hochschild complex of U(L,R) with values
in the filtered U(L,R)-bimodule M and our Lie-Rinehart complex of Definition 4.1.9,
using the philosophy that we are combining the structure of R as an algebra and L as a
Lie algebra that together generate U(L,R). As such we want a ‘shuffle map’, a map that
shuffles L- and R-inputs amongst each other, while also anti-symmetrizing the L-inputs.

Definition 4.1.22 We define the set of semi-symmetrized (p, q)-shuffles Sp,qSp ⊂ Sp+q

is defined by

Sp,qSp = {σ ∈ Sp+q;σ(p+ 1) < σ(p+ 2) < · · · < σ(p+ q)}

Using these shuffles, we define the shuffle map

s : C•
Hoch(U(L,R),M)→ Tot(C•,•

LR(L,R;M)).
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Definition 4.1.23 We define the map sp,q : Cp+q
Hoch(U(L,R),M)→ Cp,q

LR(L,R;M) by

sp,q(φ)(D1, ..., Dp+q) =
∑

σ∈Sp,qSp

(−1)σφ(Dσ−1(1), ..., Dσ−1(p+q))

here D1, ..., Dp ∈ L and Dp+1, ..., Dp+q ∈ R.

Lemma 4.1.24 The map s satisfies

sp,q ◦ b = dh ◦ sp−1,q + dv ◦ sp,q−1

The proof of this statement is postponed to Lemma 4.3.3.
In particular we see that s induces a chain map between the Hochschild complex

C•
Hoch(U(L,R),M) and the total complex Tot(C•,•

LR(L,R;M)).

Theorem 4.1.25 IfM is a filtered U(L,R)-bimodule, R is smooth and L is a projective
R-module, the chain map s induces a zig-zag of quasi-isomorphisms

C•
Hoch(U(L,R),M)

ι←− s−1(C•
nl(L,R;M))

s−→ C•
nl(L,R;M)

We will prove this theorem by setting up spectral sequences using filtrations and
showing that the induced maps between the graded quotients are quasi-isomorphisms.
Principally, we will use the filtration on U(L,R) which is defined by putting L in filtration
degree 1 and R in filtration degree 0 and extending in such a way that U(L,R) is a filtered
algebra.

Definition 4.1.26 We put filtrations on U(L,R)⊗n, Cn
Hoch(U(L,R),M), Cp,q

LR(L,R;M)
and Cn

nl(L,R;M) by:

(U(L,R)⊗n)≤k :=
∑

i1+···+in≤k

U(L,R)≤i1 ⊗ · · · ⊗ U(L,R)≤in ,

F k(Cn
Hoch(U(L,R),M)) = {φ ∈ Hom(U(L,R)⊗n,M) : φ((U(L,R)⊗n)≤m) ⊂M≤m+k ∀m},

F k(Cp,q
LR(L,R;M)) = {φ ∈ Hom(ΛpL⊗R⊗q,M) : im(φ) ⊂M≤p+k},

and

F k(Cn
nl(L,R;M)) = {(φ0, ..., φn) ∈ Cn

LR(L,R;M) : φi ∈ F k(Ci,n−i
LR (L,R;M))}.

Remark 4.1.27 These filtrations are not exhaustive necessarily (not every map is of
finite filtration degree), this turns out to be not a problem cohomologically, as finite
degree maps contain all the cohomological information.

Proof of Theorem 4.1.25. Clearly, the shuffle map is a filtered map, so it induces a mor-
phism between the spectral sequences on all sides induced by the filtration. On the
Hochschild complex we use that SymRL is the graded quotient algebra of U(L,R) via
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the map pbw∇ under the choice of a connection ∇. In turn, the graded quotient complex
of C•

Hoch(U(L,R),M) is C•
Hoch(SymRL,GM) where GM is the graded quotient of M .

On the side of C•
nl(L,R;M) we can play the same trick and obtain that the filtered

quotient of this complex is C•
nl(L,R; GM) where (L,R) is the Lie-Rinehart algebra with

the same underlying algebra R and R-module L, but with vanishing bracket and anchor.
This is due to the fact that the Chevalley-Eilenberg differential decreases the filtered
degree by 1 and hence vanishes in the filtered quotient. Notice that U(L,R) = SymRL.
Furthermore, the map induced by the shuffle map on the filtered quotient is the shuffle
map for the Lie-Rinehart algebra (L,R).

So we see that by the Spectral Sequence Comparison Theorem [Ze57], we only need to
prove this theorem for the case where the bracket and anchor vanish, and the diagonal L-
represention on GM is trivial. In this case we see that in the non-linear complex only the
horizontal differential, induced by the Hochschild differential on C•

Hoch(R,GM), survives.
Investigating the definition of the non-linear complex, the homotopy h in the case where
the anchor vanishes, and noting that we know the cohomology of (C•

Hoch(R,GM), b) we
obtain that the spectral sequence of C•

nl(L,R;M) on the first page looks like

E1C
•
nl(L,R;M) ∼=

{
(φ0, ..., φn), φi : Λ

iL→ Λ•−iDer(R)⊗GM :
φi(X1, ..., fXi) = fφi(X1, ..., Xi) + (ιf (φi−1(X1, ..., Xi−1))Xi

}
On the Hochschild side we remark that we also know what the cohomology of the filtered
quotient is, because SymRL is a commutative algebra, so due to the Hochschild-Kostant-
Rosenberg Theorem we see that

E1C
•
Hoch(L,R;M) ∼= Λ•Der(SymRL)⊗GM

We remark that on the first page the differential is the Koszul differential of the Lie
algebra cohomology associated to the Lie algebra Der(SymRL). In this formalism, on
the first page, the shuffle map takes a multiderivation φ : Λn(SymRL)→ GM and sends
it to the sequence (φ0, ..., φn) defined by

φi(X1, ..., Xi)(f1, ..., fn−i) := φ(X1, ..., Xi, f1, ..., fn−i).

In particular, noting the structure of SymRL as being freely, commutatively and R-
linearly generated by the vector space L, we see that the shuffle map induces an isomor-
phism between the E2-pages of both spectral sequences, which proves the theorem.

4.2 Relationship with the adjoint representation

We now turn to the case where M = U(L,R). As we described at the start of this
chapter, we know that for the case where (L,R) arises from a Lie algebroid A→M , the
Hochschild cohomology HH•(U(L,R),U(L,R)) is calculated by the symmetric powers
of the adjoint representation of A → M . We now give an algebraic proof for this fact,
making use of the non-linear complex C•

nl(L,R;U(L,R)) we defined before.
In this section, we will make extensive use of different kinds of connections.
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Definition 4.2.1 An L-connection on L is a map

∇ : L× L→ L

satisfying for all X, Y ∈ L and f ∈ R:

∇fXY = f∇XY,

∇X(fY ) = f∇XY + ρ(X)(f)Y.

A Der(R)-connection on L is a map

.R∇ : Der(R)× L→ L

satisfying that for all X ∈ L, D ∈ Der(R) and f ∈ R:

.R∇fDX = f.R∇DX,

.R∇D(fX) = f.R∇DX +D(f)X.

A L-connection on Der(R) is a map

.L∇ : L×Der(R)→ Der(R)

satisfying that for all X ∈ L, D ∈ Der(R) and f ∈ R:

.L∇fXD = f.L∇XD,

.L∇X(fD) = f.L∇XD + ρ(X)(f)D.

Remark 4.2.2 If (L,R) is induced by a Lie algebroid A → M , then an Der(R)-
connection on L is simply a vector bundle connection on the underlying vector bundle
A→M .

Lemma 4.2.3 [AC12] If .R∇ is an Der(R)-connection on L, then the map ∇ : L×L→ L
defined by

∇XY = ∇ρ(Y )X + [X, Y ]

is an L-connection on L. Similarly the map .L∇ : L×Der(R)→ Der(R) defined by

.L∇XD = ρ(.R∇DX) + [ρ(X), D]

is an L-connection on Der(R). Both of these will we call the basic connection.

Remark 4.2.4 In what follows, we choose an Der(R)-connection .R∇ on L and let ∇
and .L∇ be the induced basic connections. Furthermore, we do recall again at this point
that if L is projective as an R-module, then there is a Der(R)-connection on L.
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4.2.1 The symmetric powers of the adjoint representation of
(L,R)

If (L,R) is a Lie-Rinehart algebra induced by a Lie algebroid A→M , Abad and Crainic
[AC12] introduced the adjoint representation up to homotopy of (L,R). This is a local
analogue to the adjoint representation up to homotopy for Lie groupoids we discussed
in Section 2.5.1. In this case, we interpret

A
ρ−→ TM

as the adjoint complex. A differential is then induced by a choice of a connection on A.
A similar construction can be done for a general Lie-Rinehart algebra (L,R), when

L is projective over R. In this case the adjoint complex is

L
ρ−→ Der(R).

Under the choice of a connection .R∇, the induced complex is then as follows:

Definition 4.2.5 For (L,R) a Lie-Rinehart algebra with Der(R)-connection .R∇ on L
with induced basic connection ∇, the adjoint complex C•(L, ad∇) is defined by

Cn(L, ad∇) = HomR(Λ
nL,L)⊕ HomR(Λ

n−1L,Der(R))

with differential for c0 ∈ HomR(Λ
nL,L) given by

d(c0)0(X1, ..., Xn+1) =
n+1∑
i=1

(−1)i+1∇Xi
(c0(X1, ...X̂i..., Xn+1))

+
∑
i<j

(−1)i+jc0([Xi, Xj], X1, ...X̂iX̂j..., Xn+1)

d(c0)1(X1, ..., Xn) =ρ(c0(X1, ..., Xn))

and for c1 ∈ HomR(Λ
n−1L,Der(R)) by

d(c1)0(X1, ..., Xn+1) =
∑
i<j

Kbas
.R∇(Xi, Xj)(c1(X1, ...X̂iX̂j..., Xn+1)

d(c1)1(X1, ..., Xn) =
n∑

i=1

(−1)i+1.L∇Xi
(c1(X1, ...X̂i..., Xn))

+
∑
i<j

(−1)i+jc1([Xi, Xj], X1, ...X̂iX̂j..., Xn)

Here Kbas
.R∇ ∈ HomR(Λ

2
RL,HomR(Der(R), L)) is the basic curvature of .R∇ defined by

Kbas
.R∇(X, Y )(D) := .R∇D([X, Y ])− [.R∇DX, Y ]− [X,.R∇DY ]−.R∇.L∇Y DX +.R∇.L∇XDY.
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Remark 4.2.6 Similarly to the discussion in the groupoid case, different choices of
connections yield isomorphic complexes, see [AC12, Thm 3.11].

Similarly, we can look at

Symk
RL

P−→ Symk−1
R L⊗Der(R)

P−→ Symk−2
R L⊗ Λ2

RDer(R)
P−→ · · · P−→ Λk

RDer(R)

as the complex associated to the k’th symmetric power of the adjoint. Here

P : Symp
RL⊗ Λq

RDer(R)→ Symp−1
R L⊗ Λq+1

R Der(R)

is the map

P (X1 ⊙ · · · ⊙Xp ⊗D1 ∧ · · · ∧Dq) =

p∑
i=1

X1 ⊙ · · · X̂i · · · ⊙Xp ⊗D1 ∧ · · · ∧Dq ∧ ρ(Xi)

Again, under the choice of a connection, we can make a complex C•(L, Symk(ad∇)) out
of this given by

Cn(L, Symk(ad∇)) =
k⊕

i=0

HomR(Λ
n−i
R L, Symk−i

R L⊗ ΛiDer(R))

with differential induced by ∇.
Similar to the story we saw for the adjoint representation up to homotopy for Lie

groupoids in Proposition 2.5.5, there is also a connection independent interpretation of
C•(L, ad∇).

Definition 4.2.7 We write C•
def(L, ad) for the complex

Cn
def(L, adL) = {c0 : ΛnL→ L, c1 : Λ

n−1L→ Der(R) :

c0(X1, ..., fXn) = fc0(X1, ..., Xn) + c1(X1, ..., Xn−1)(f)Xn}

where the differential d : Cn
def(L, ad)→ Cn+1

def (L, ad) is determined by

d(c0, c1)0(X1, ..., Xn+1) =
n+1∑
i=1

(−1)i+1[Xi, c0(X1, ...X̂i..., Xn+1]

+
∑

1≤i<j≤n+1

(−1)i+jc0([Xi, Xj], X1, ...X̂iX̂j..., Xn+1)

Proposition 4.2.8 Given a connection .R∇ there is an isomorphism

Cn
def(L, ad)→ HomR(Λ

n
RL,L)⊕ HomR(Λ

n−1
R L,Der(R))

sending (c0, c1) to (cL,−c1) where cL ∈ HomR(Λ
n
RL,L) is given by

cL(X1, ..., Xn) = c0(X1, ..., Xn) + (−1)n−1

n∑
i=1

(−1)i.R∇c1(X1,...X̂i...,Xn)
Xi

which intertwines the differential on C•
def(L, ad) and C•(L, ad∇).
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Remark 4.2.9 In the case where the Lie-Rinehart algebra (L,R) is determined by a
Lie algebroid A → M , the complex C•

def(L, ad) is exactly the same as the deformation
complex C•

def(A) of Section 2.4.1.

Similar to the case k = 1, there is also a connection invariant definition of the complex
C•(L, Symk(ad∇)) for the symmetric powers of the adjoint:

Definition 4.2.10 [AC12, Ex 4.5] We define the complex C•
def(L, Sym

k(ad)) by

Cn
def(L, Sym

k(ad)) =

{
c = (c0, c1, ..., cn); ci ∈ Hom(Λn−iL, Symk−i

R L⊗ Λi
RDer(R))

ci(Y1, ..., fYn−i)− fci(Y1, ..., Yn−i) = ιf (ci+1(Y1, ..., Yn−i−1)⊙ Yn−i)

}
with differential determined by

d(c0, ..., cn)0(X1, ..., Xn+1) =
n+1∑
i=1

(−1)i+1[Xi, c0(X1, ...X̂i..., Xn+1)]

+
∑

1≤i<j≤n

c0([Xi, Xj], X1, ...X̂iX̂j..., Xn+1)

Remark 4.2.11 In this context, we will refer to the equation

ci(Y1, ..., fYn−i)− fci(Y1, ..., Yn−i) = ιf (ci+1(Y1, ..., Yn−i−1)⊙ Yn−i) (4.5)

as the symbol equation. Notice that, under the isomorphism pbw∇ : SymRL → U(L,R)
and the associated inclusion SymRL⊗ Λ•

RDer(R) ↪→ C•
Hoch(R,U(L,R)), it can be inter-

preted as the ‘top order term’ of the symbol equation (4.4).

Lemma 4.2.12 [Ab08, Thm 2.3.9] Under the choice of a connection ∇ there is an
isomorphism between C•

def(L, Sym
k(ad)) and C•(L, Symk(ad∇)).

Remark 4.2.13 To give a full description of the differential in this last complex, we
remark that there is a L-module structure on Symp

RL⊗ Λq
RDer(R) by the formula

[Y,X1 ⊙ · · · ⊙Xp ⊗D1 ∧ · · · ∧Dq] =

=

p∑
i=1

X1 ⊙ · · · ⊙ [Y,Xi]⊙ · · · ⊙Xp ⊗D1 ∧ · · · ∧Dq

+

q∑
i=1

X1 ⊙ · · · ⊙Xp ⊗D1 ∧ · · · ∧ [ρ(Y ), Di] ∧ · · · ∧Dq (4.6)

With this module structure in hand we obtain a Chevalley Eilenberg differential

∂CE : Hom(Λ•L, Symp
RL⊗ Λq

RDer(R))→ Hom(Λ•+1L, Symp
RL⊗ Λq

RDer(R))

A simple, but tedious, calculation with the symbol equation (4.5) then gives the follow-
ing:

Lemma 4.2.14 The differential in the complex C•
def(L, Sym

k(ad)) is given by

(d(c0, ..., cn))i = ∂CE(ci) + (−1)n+1P ◦ ci−1.

We postpone the proof to Lemma 4.3.4.
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4.2.2 From the adjoint representation to the non-linear com-
plex

Next, we want to write down a chain map

Φk : C
•
def(L, Sym

k(ad))→ Tot(C•,•
LR(L,R;U(L,R))).

We want to think of this map as implementing pbw∇, in that it should be determined
by

Φn,0
k (c0, ..., cn)(X1, ..., Xn) = pbw∇(c0(X1, ..., Xn)) mod U(L,R)<k.

To write an actual map from this idea, we need to investigate how the Poincaré–Birkhoff–
Witt map communicates with L- and R-modules on both SymRL and U(L,R). Central
to this discussion will be the following.

Definition 4.2.15 If .R∇ is a Der(R)-connection on L, then the friction

Fri(.R∇) : Der(R)⊗R L→ Hom(L,L)

is the R-linear map defined by

Fri(.R∇)(D, Y )(X) = [X,.R∇DY ]−.R∇[ρ(X),D]Y −.R∇D[X, Y ].

Similarly, if ∇ is an L-connection on L, the friction

Fri(∇) : L⊗R L→ Hom(L,L)

is the R-linear map defined by

Fri(∇)(Y, Z)(X) = [X,∇YZ]−∇[X,Y ]Z −∇Y [X,Z].

In both cases, the R-module structure of Hom(L,L) is given by

(fφ)(X) := f(φ(X)).

Lemma 4.2.16 Let .R∇ be a Der(R)-connection on L with induced basic connection ∇.
If Fri(.R∇) = 0, then Fri(∇) = 0.

Proof. This is an explicit calculation:

Fri(∇)(Y, Z)(X) =[X,∇YZ]−∇[X,Y ]Z −∇Y [X,Z]

=[X,.R∇ρ(Z)Y ] + [X, [Y, Z]]−.R∇ρ(Z)[X, Y ]

− [[X, Y ], Z]−.R∇[ρ(X),ρ(Z)]Y − [Y, [X,Z]]

=Fri(.R∇)(ρ(Z), Y )(X)
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Remark 4.2.17 As we shall see below, the friction of the connection ∇ is an obstruction
to pbw∇ being an intertwiner of L-representations2. In a previous version, we mistakenly
recognized the torsion of the connection in the defining formula. Requiring that the
connection would be torsion-free would not be too much of a stretch, as they always
exist. Whether friction-free connections exists is something we have not yet had the
time to consider.

Now, in Example 4.1.2 we used the fact that the PBW-map in the context of Lie
algebras was an isomorphism of Lie algebra representations to write down an explicit
quasi-isomorphism. We discuss how this generalizes to the Lie-Rinehart setting. First,
we remark that both SymRL and U(L,R) carry the structure on an L-representation.
On Symk

RL it is given by

[X, Y1 ⊙ · · · ⊙ Yk] :=
k∑

i=1

Y1 ⊙ · · · ⊙ [X, Yi]⊙ · · · ⊙ Yk,

for k > 0 and

[X, f ] = ρ(X)(f)

for k = 0, while on U(L,R) it is given by

[X,D] = XD −DX.

The role of torsion is then enlightened by the following proposition:

Proposition 4.2.18 If the connection ∇ is friction-free, the map pbw∇ : SymRL →
U(L,R) is an isomorphism of L-representations.

Proof. If ∇ is friction-free, we show that pbw∇ is an isomorphism of L-representations
by induction on the degree k in Symk

RL. For k = 0, 1 this is immediate (irrespec-
tive of the connection) by the definition of pbw∇. Then, for k ≥ 2 we assume that
pbw∇ : Sym<k

R L → U(L,R) is a map of L-representations. Then to see that pbw∇ is a
map of L-representations when restricted to Sym≤k

R L is a map of L-representation, we
check it for a homogeneous element Y1⊙ · · · ⊙ Yk of Symk

RL. Starting with the recursive

2Hence the name friction, which is an obstruction to the physical process of intertwining (or knotting)
pieces of rope.
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definition of pbw∇ and the induction hypothesis we obtain:

[X, pbw∇(Y1 ⊙ · · · ⊙ Yk)] =
1

k

k∑
i=1

[X, Yipbw
∇(Y1 ⊙ · · · Ŷi · · · ⊙ Yk)]

− 1

k

∑
1≤i ̸=j≤k

[X, pbw∇(∇Yi
Yj ⊙ Y1 ⊙ · · · ŶiŶj · · · ⊙ Yk)]

=
1

k

k∑
i=1

[X, Yi]pbw
∇(Y1 ⊙ · · · Ŷi · · · ⊙ Yk)

+
1

k

∑
1≤i ̸=j≤k

Yjpbw
∇([X, Yi]⊙ Y1 ⊙ · · · ŶiŶj · · · ⊙ Yk)

− 1

k

∑
1≤i ̸=j≤k

pbw∇([X,∇Yi
Yj]⊙ Y1 ⊙ · · · ŶiŶj · · · ⊙ Yk)

− 1

k

∑
1≤i ̸=j ̸=n≤k

pbw∇(∇Yj
Yn ⊙ [X, Yi]⊙ Y1 ⊙ · · · ŶiŶjŶn · · · ⊙ Yk)

Then reversing the recursive definition of pbw∇ we obtain

[X, pbw∇(Y1 ⊙ · · · ⊙ Yk)] =pbw∇([X, Y1 ⊙ · · · ⊙ Yk])

− 1

k

∑
1≤i ̸=j≤k

pbw∇(Fri(∇)(Yi, Yj)(X)⊙ Y1 ⊙ · · · ŶiŶj · · · ⊙ Yk).

In the case where .R∇ is not torsion-free and ∇ is its basic connection, it does hold
that for pbw∇ is a map of L-representations up to lower order terms, and there is
recursive definition of the correction terms.

Using this fact, we can give a proof of the following Theorem in the torsion-free case.
This Theorem is true in any case, but the proof simplifies significantly in the torsion-free
case.

Theorem 4.2.19 Let .R∇ be a Der(R)-connection on L with basic connection ∇. There
is a collection of maps

Φp,q
k : Cp+q

def (L, Sym
k(ad))→ Cp,q

LR(L,R;U(L,R))

with the following properties

� Φp,q
k ◦ d = dh ◦ Φp−1,q

k + dv ◦ Φp,q−1

� Φ0,0 : Symk
RL→ U(L,R) equals pbw∇

� Φp,q
k (c0, ..., cp+q) only depends on (cq, ..., cp+q)
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� (Φp,q
k c)(X1, ..., Xp, f1, ..., fq)− 1

q!
pbw∇(ι(f1,...,fq)cq(X1, ..., Xp)) ∈ U(L,R)<k−q

Proof in the friction-free case. In the friction-free case, this boils down to the fact that
there exist maps

ηik : Sym
k−i
R L⊗R Λi

RDer(R)→ Hom(R⊗i,U(L,R)≤k−i)

satisfying

1. η0k = pbw∇;

2. ηik is an intertwiner of the L-representations on Symk−i
R L⊗Λi

RDer(R) (as given by
(4.6)) and Hom(R⊗i,U(L,R)) (as given in (4.3));

3. b ◦ ηik = (−1)i+1ηi+1
k ◦ P ;

4. For every X ∈ Symk−i
R L and D ∈ Λi

RDer(R) it holds that

ηik(X ⊗D)(f1, .., .fi)−
1

i!
pbw∇((ι(f1,...,fi)D)X ) ∈ U(L,R)<k−i.

Note that in particular, we have that η1k describes the deficiency of pbw∇ to preserve the
right R-module structure:

[pbw∇(X ), f ] = η1k(P (X ))(f).

The existence of such η’s can be shown recursively by the following relations:

ηkk(D1 ∧ · · · ∧Dk)(f1, ..., fk) =
1

k!

∑
σ∈Sk

(−1)σD1(fσ(1)) · · ·Dk(fσ(k));

and for i > k:

ηik(Y1 ⊙ · · · ⊙ Yk−i ⊗D1 ∧ · · · ∧Di)(f1, ..., fi) =

=
1

k

i∑
m=1

(−1)m+1Dm(f1)η
i−1
k−1(Y1 ⊙ · · · ⊙ Yk−i ⊗D1 ∧ · · · D̂m · · · ∧Di)(f2, ..., fi)

+
1

k

k−i∑
m=1

Ymη
i
k−1(Y1 ⊙ · · · Ŷm · · · ⊙ Yk−i ⊗D1 ∧ · · · ∧Di)(f1, ..., fi)

− 1

k

k−1∑
m=1

i∑
n=1

ηik−1(Y1 ⊙ · · · Ŷm · · · ⊙ Yk−1 ⊗D1 ∧ · · · ∧ ρ(.R∇Dn(Ym)) ∧ · · · ∧Di)(f1, ..., fi)

− 1

k

∑
m ̸=n

ηik−1(∇YmYn ⊙ Y1 ⊙ · · · ŶmŶn · · · ⊙ Yk−i ⊗D1 ∧ · · · ∧Di)(f1, ..., fi).
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Using the η’s, we write down our chain map Φ•,•
k by

Φp,q
k (c0, ..., cp+q) = ηqk(cq(X1, ..., Xp)).

The fact that this is a chain map is a simple corollary of the properties of the η’s. Indeed,
the second property of the η’s means that the dh ◦ Φ-terms correspond to the Φ ◦ ∂CE-
terms and the third property of the η’s make sure that the dv ◦ Φ-terms corresponds to
the Φ ◦ P -terms (including the correct signs).

Remark 4.2.20 If .R∇ is not friction-free, the second property of the η’s only works
up to lower order terms, and we need to correct for that. The correction terms lead to
mixing of terms, so that Φp,q(c0, ..., cp+q) not only depends on cq but also on cq+1, ..., cp+q.

Using the Φk’s we constructed in the proof of the previous theorem, we can also
obtain one chain map Φ: C•

def(L, Sym(ad))→ C•
nl(L,R;U(L,R)), simply by setting Φ =∑

k≥0Φk

Theorem 4.2.21 If R is smooth and L is a projective R-module, the map

Φ: C•
def(L, Sym(ad))→ C•

LR(L,R;U(L,R))

defines a chain of quasi-isomorphisms

C•
nl(L,R;U(L,R))

Φ←− Φ−1(C•
nl(L,R;U(L,R)))

ι−→ C•
def(L, Sym(ad)).

Proof. Similar to Theorem 4.1.25, we prove this with a filtration argument. In this case
we put the following, slightly unintuitive, filtration on C•

def(L, Sym(ad)):

F k(Cn
def(L, Sym(ad))) = {(c0, ..., cn) : ci(Λn−iL) ⊂ Symn−i+k

R L⊗ Λi
RDer(R)}.

We note that this is essentially the filtration induced by the grading C•
def(L, Sym(ad)) =⊕

k≥0C
•
def(L, Sym

k(ad)), but we shift it with a filtration degree n in cohomological degree
n. This has the effect that in the graded quotient, the differential vanishes (indeed, it
only shows up when going to the second page, and the spectral sequence collapses on
the third), and we have the following first page:

E1C
•
def(L, Sym(ad)) = C•

def(L, Sym(ad))

We also recall the first page of C•
nl(L,R;U(L,R)) as we saw in the proof of Theo-

rem 4.1.25.

E1C
•
nl(L,R;U(L,R)) =

{
c = (φ0, φ1, ..., φn);φi ∈ Hom(ΛiL, SymRL⊗ Λ•−i

R Der(R))
φi(X1, ..., fXi)− fφi(X1, ..., Xi) = ιf (φi−1(X1, ..., Xi−1)⊙Xn−i)

}
Also we note that since the map Φ is up to top order given by applying pbw∇ and the
inclusion of Λi

RDer(R) into Hom(R⊗•, R), we see that under these isomorphisms, Φ in-
duces the identity between the two second pages. By the Spectral Sequence Comparison
Theorem, this shows our theorem.
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Combining Theorem 4.1.25 and Theorem 4.2.21, we infer the main result of this
section.

Theorem 4.2.22 If (L,R) be a Lie-Rinehart algebra, where L is projective as an R-
module andR is smooth, then the complexes C•

Hoch(U(L,R),U(L,R)) and C•
def(L, Sym(ad))

are quasi-isomorphic. In particular there is a natural isomorphism

HH•(U(L,R),U(L,R)) ∼= H•(L, Sym(ad)).

Remark 4.2.23 When (L,R) arises from a Lie algebroid A → M , there is another
intrinsic way to think about C•

def(L, Sym(ad)). Indeed, for k = 1, we have seen in Sec-
tion 2.4.1 that the complex C•

def(L, ad) is isomorphic to the linear Poisson complex of
the linear Poisson manifold A∗. In similar vein the complex C•

def(L, Sym(ad)) calculates
the polynomial Poisson complex of the A∗, i.e. the Poisson complex of those multivector
fields which preserve fibrewise polynomial functions on A∗. The grading k here corre-
sponds to those multivector fields that eat fibrewise linear functions on A∗ and spit out
fibrewise homogeneous polynomials of degree k.

Remark 4.2.24 Due to Lambre and Le Meur [LLM18], the universal enveloping algebra
U(L,R) exhibits Van den Bergh-duality in the sense of [VdB98], with dualising module

C = Λtop
R L⊗R Λtop

R Der(R).

In particular, there is a Van den Bergh-isomorphism

HH•(U(L,R),M) ∼= HHn−•(U(L,R), C ⊗U(L,R) M).

This means that we can alternatively understand Hochschild cohomology via understand-
ing Hochschild homology. In the unimodular case, where C is the trivial representation,
this means that we can directly calculate Hochschild cohomology from Hochschild ho-
mology and vice versa.

Using Van den Bergh-duality we can resolve the problem with the exhaustiveness of
the filtration we remarked upon in 4.1.27, since the dual filtrations on tensor powers of
U(L,R) are exhaustive.

4.2.3 Examples

We discuss some examples to see how our calculations relate to known cases.

Example 4.2.25 (Lie algebras) If R = K is a field, then L is simply a Lie algebra
over K. In this case, the double complex C•,•

LR(L,K;U(L)) is given by

Cp,q
LR(L,K,U(L)) = Hom(ΛpL,U(L))

with the differential in the vertical direction being alternatively zero and the identity.
In particular we may replace the total complex simply by its first row C•,0

LR(L,K,U(L)).



4.2. Relationship with the adjoint representation 173

Also note that as everything is automatically R-linear, the non-linear complex is the
whole total complex.

Similarly, the complex C•
def(L, Sym(ad)) is simply the Lie algebra cohomology com-

plex for the symmetric powers of the adjoint representation of the Lie algebra. In turn,
the map Φ: C•

def(L, Sym(ad)) → C•,0
LR(L,K,U(L)) is easily seen to be invertible (it is

simply given by composition with pbw).
We find that the whole picture fits nicely into the picture of Example 4.1.2 in that

the following diagram commutes

C•,0
LR(L,K,U(L))

C•
Hoch(U(L),U(L))

s
55

Φ(4.1.2)
// C•

def(L, Sym(ad))

Φ(4.2.19)

∼=
ii

In particular, our construction is an honest generalization of the construction in Example
4.1.2.

Example 4.2.26 (Abelian Lie-Rinehart algebras) If L is an R-module with van-
ishing bracket and vanishing anchor, we already saw the calculation of our procedure in
the proofs of Theorem 4.1.25 and Theorem 4.2.21. In this case the universal enveloping
algebra U(L,R) is isomorphic as an algebra to SymRL, so that by the Hochschild-
Kostant-Rosenberg Theorem we know that the canonical map

Λ•
SymRLDer(SymRL)→ HH•(SymRL, SymRL)

is an isomorphism. Furthermore, it is clear that by restriction one obtains an isomor-
phism

Λ•
SymRLDer(SymRL)

∼=−→ C•
def(L, Sym(ad)).

Since in this case the differential on the complex C•
def(L, Sym(ad)) vanishes, we obtain

a chain of isomorphisms

HH•(SymRL, SymRL)
∼=←− Λ•

SymRLDer(SymRL)
∼=−→ H•(L, Sym(ad)).

It is easy to see that by the explicit forms of the maps involved, the isomorphisms we
obtain via the non-linear complex fit into a commutative diagram

H•
nl(L,R; SymRL)

HH•(SymRL, SymRL)

∼=
44

H•(L, Sym(ad))

∼=

ii

Λ•
SymRLDer(SymRL)

∼=
jj

∼=

55

so that we see that the isomorphism we obtain is exactly the isomorphism induced by
the Hochschild-Kostant-Rosenberg Theorem.
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Example 4.2.27 (Differential operators) In the case where we look at the Lie-
Rinehart algebra induced by the Lie algebroid TM → M , we have already remarked a
few times that the universal enveloping algebra U(X(M), C∞(M)) is isomorphic to the al-
gebra Diff(M) of differential operators onM . In this case, we complex C•

def(L, SymAdL)
calculates the polynomial Poisson cohomology of T ∗M , in particular it calculates the
Poisson cohomology of the space of symbols on M .

In turn, our procedure induces an isomorphism

HH•(Diff(M),Diff(M)) ∼= H•
Pois(Poly(T

∗M)).

Using the fact that the graded quotient of Diff(M) is Poly(T ∗M) via the principle
symbol map, we see that the isomorphism associates to a Hochschild cocycle c ∈
Cn

Hoch(Diff(M),Diff(M)) a Poisson cocycle c̃ : ΛnPoly(T ∗M) → Poly(T ∗M) in such a
way that up to lower terms we have

c̃(σ(D1), ..., σ(Dn)) =
∑
τ∈Sn

(−1)τσ(c(Dτ(1), ..., Dτ(n)))

where σ : Diff(M)→ Poly(T ∗M) is the principal symbol map.

Remark 4.2.28 Continuing on the previous example, there is a way in which one can
think of this result (and in particular they way it is proven) as a starting point to calculate
the Hochschild cohomology of the full symbol algebra of a Lie algebroid. In the case
where (L,R) is induced by a Lie groupoid G ⇒ M via its Lie algebroid A(G)→ M , we
can, following Nistor, Weinstein and Xu [NWX99], see U(L,R) as the algebra of invariant
differential operators on G. Symbols of such differential operators can, by invariance,
seen as polynomial functions on A(G)∗, i.e. elements of SymRL and the PBW-map can
be thought of as the inverse of the symbol map.

Nistor, Weinstein and Xu also define a class of invariant pseudodifferential operators
on G, leading to an algebra Ψ∞(G)/Ψ−∞(G) called the full symbol algebra. Here Ψ∞(G)
stands for (invariant) pseudodifferential operators on G of any order, and Ψ−∞(G) for
the invariant smoothing operators. Via their symbol, this algebra can be thought of as a
deformation quantization of the Poisson algebra S(A(G)∗) ⊂ C∞(A(G)\M) of symbols.
We remark that the Poisson bracket on this algebra of symbols S(A(G)∗) is induced by
the Poisson structure on A(G)∗.

An extension of our work here to this case would be the result, alluded to in work of
Benameur and Nistor [BN03]:

Conjecture 4.2.29 There is a natural isomorphism

HH•(Ψ∞(G)/Ψ−∞(G),Ψ∞(G)/Ψ−∞(G)) ∼= HPois(S(A(G)∗)).

4.3 Remaining proofs

Proposition 4.3.1 (4.1.16) The following equation holds true for every f ∈ R and
X ∈ L:

LfX − fLX = b ◦ hf,X + hf,X ◦ b
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Proof. For the sake of clarity, let us define h1f,X,i : C
q
Hoch(R,M) → Cq−1

Hoch(R,M) for 1 ≤
i ≤ q by

(h1f,X,iφ)(f1, ..., fq−1) = φ(f1, ..., fi−1, f, fi, ..., fq)X

and h2f,X,i,j : C
q
Hoch(R,M)→ Cq−1

Hoch(R,M) for 1 ≤ i ≤ j ≤ q − 1 by

(h2f,X,i,jφ)(f1, ..., fq−1) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fq−1)

so that

hf,X =

q∑
i=1

(−1)i+1h1f,X,i +
∑

1≤i≤j≤q−1

(−1)i+1h2f,X,i,j

We also remind ourselves of the simplicial maps di : C
q
Hoch(R,M) → Cq+1

Hoch(R,M) for
0 ≤ i ≤ q + 1 defined by

(d0φ)(f1, ..., fq+1) = f1φ(f2, ..., fq+1)

(diφ)(f1, ..., fq+1) = φ(f1, ..., fifi+1, ..., fq+1)

(dq+1φ)(f1, ..., fq+1) = φ(f1, ..., fq)fq+1

so that

b =

q∑
i=0

(−1)idi

In the end we are interested in

bhf,X =

q∑
k=0

q∑
i=1

(−1)k+i+1dkh
1
f,X,i +

q∑
k=0

∑
1≤i≤j≤q−1

(−1)k+i+1dkh
2
f,X,i,j

and

hf,Xb =

q+1∑
i=1

q+1∑
k=0

(−1)k+i+1h1f,X,idk +
∑

1≤i≤j≤q

q+1∑
k=0

(−1)k+i+1h2f,X,i,jdk

Writing out all the terms we have, for bhf,X

� For 1 ≤ i ≤ q

(d0h
1
f,X,iφ)(f1, ..., fq) = f1φ(f2, ..., fi, f, fi+1, ..., fq)X (1)

� For 2 ≤ i ≤ q and 1 ≤ k ≤ i− 1

(dkh
1
f,X,iφ)(f1, ..., fq) = φ(f1, ..., fkfk+1, ..., fi, f, fi+1, ..., fq)X (2)

� For 1 ≤ i ≤ q − 1 and i ≤ k ≤ q − 1

(dkh
1
f,X,iφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fkfk+1, ..., fq)X (3)
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� For 1 ≤ i ≤ q

(dqh
1
f,X,iφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fq−1)Xfq (4)

� For 1 ≤ i ≤ q − 1 and i ≤ j ≤ q − 1

(d0h
2
f,X,i,jφ)(f1, ..., fq) = f1φ(f2, ..., fi, f, fi+1, ..., ρ(X)fj+1, ..., fq) (5)

� For 2 ≤ i ≤ q − 1, i ≤ j ≤ q − 1 and 1 ≤ k ≤ i− 1

(dkh
2
f,X,i,jφ)(f1, ..., fq) = φ(f1, ..., fkfk+1, ..., fi, f, fi+1, ..., ρ(X)(fj+1), ..., fq) (6)

� For 1 ≤ i ≤ q − 2, i+ 1 ≤ j ≤ q − 1, i ≤ k ≤ j − 1

(dkh
2
f,X,i,jφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fkfk+1, ..., ρ(X)(fj+1), ..., fq) (7)

� For 1 ≤ i ≤ q − 1, i ≤ k ≤ q − 1

(dkh
2
f,X,i,kφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)(fkfk+1), ..., fq) (8)

� For 1 ≤ i ≤ q − 2, i ≤ j ≤ q − 2, j + 1 ≤ k ≤ q − 1

(dkh
2
f,X,i,jφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fkfk+1, ..., fq) (9)

� For 1 ≤ i ≤ q − 1, i ≤ j ≤ q − 1

(dqh
2
f,X,i,jφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fq−1)fq (10)

and for hf,Xb

�
(h1f,X,0d0φ)(f1, ..., fq) = fφ(f1, ..., fq)X (11)

� For 2 ≤ i ≤ q + 1

(h1f,X,id0φ)(f1, ..., fq) = f1φ(f2, ..., fi−1, f, fi, ..., fq)X (12)

� For 3 ≤ i ≤ q + 1 and 1 ≤ k ≤ i− 2

(h1f,X,idkφ)(f1, ..., fq) = φ(f1, ..., fkfk+1, ..., fi−1, f, fi, ..., fq)X (13)

� For 2 ≤ i ≤ q + 1

(h1f,X,idi−1φ)(f1, ..., fq) = φ(f1, ..., fi−1f, ..., fq)X (14)
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� For 1 ≤ i ≤ q
(h1f,X,idiφ)(f1, ..., fq) = φ(f1, ..., ffi, ..., fq)X (15)

� For 1 ≤ i ≤ q − 1 and i+ 1 ≤ k ≤ q

(h1f,X,idkφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fk−1fk, ..., fq)X (16)

� For 1 ≤ i ≤ q

(h1f,X,idq+1φ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fq−1)fqX (17)

�
(h1f,X,q+1dq+1φ)(f1, ..., fq) = φ(f1, ..., fq)fX (18)

� For 1 ≤ j ≤ q

(h2f,X,1,jd0φ)(f1, ..., fq) = fφ(f1, ..., ρ(X)fj, ..., fq) (19)

� For 2 ≤ i ≤ q and i ≤ j ≤ q

(h2f,X,i,jd0φ)(f1, ..., fq) = f1φ(f2, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fq) (20)

� For 3 ≤ i ≤ q, i ≤ j ≤ q and 1 ≤ k ≤ i− 2

(h2f,X,i,jdkφ)(f1, ..., fq) = φ(f1, ..., fkfk−1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fq) (21)

� For 2 ≤ i ≤ q and i ≤ j ≤ q

(h2f,X,i,jdi−1φ)(f1, ..., fq) = φ(f1, ..., fi−1f, fi, ..., ρ(X)fj, ..., fq) (22)

� For 1 ≤ i ≤ q

(h2f,X,i,idiφ)(f1, ..., fq) = φ(f1, ..., fi−1, fρ(X)(fi), ..., fq) (23)

� For 1 ≤ i ≤ q − 1 and i+ 1 ≤ j ≤ q

(h2f,X,i,jdiφ)(f1, ..., fq) = φ(f1, ..., fi−1, ffi, ρ(X)fj, ..., fq) (24)

� For 1 ≤ i ≤ q − 2, i+ 2 ≤ j ≤ q and i+ 1 ≤ k ≤ j − 1

(h2f,X,i,jdkφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fk−1fk, ..., ρ(X)fj, ..., fq) (25)

� For 1 ≤ i ≤ q − 1 and i+ 1 ≤ j ≤ q

(h2f,X,i,jdjφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fj−1ρ(X)fj, ..., fq) (26)
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� For 1 ≤ i ≤ q − 1 and i ≤ j ≤ q − 1

(h2f,X,i,jdj+1φ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., (ρ(X)fj)fj+1, ..., fq) (27)

� For 1 ≤ i ≤ q − 2, i ≤ j ≤ q − 2 and j + 2 ≤ k ≤ q

(h2f,X,i,jdkφ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fk−1fk, ..., fq) (28)

� For 1 ≤ i ≤ q − 1, i ≤ j ≤ q − 1

(h2f,X,i,jdq+1φ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., ρ(X)fj, ..., fq−1)fq (29)

� For 1 ≤ i ≤ q

(h2f,X,i,qdq+1φ)(f1, ..., fq) = φ(f1, ..., fi−1, f, fi, ..., fq−1)ρ(X)fq (30)

Now playing a game of match, we see the following:

� Matching (1) and (12), for 1 ≤ i ≤ q:

d0h
1
f,X,i = h1f,X,i+1d0;

� Matching (2) and (13), for 2 ≤ i ≤ q and 1 ≤ k ≤ i− 1:

dkh
1
f,X,i = h1f,X,i+1dk;

� Matching (3) and (16), for 1 ≤ i ≤ q − 1 and i ≤ k ≤ q − 1:

dkh
1
f,X,i = h1f,X,idk−1;

� Matching (4) with (17) and (30), using that in U(L,R) we have [X, fq] = ρ(X)fq,
for 1 ≤ i ≤ q:

dqh
1
f,X,i = h1f,X,idq+1 + h2f,X,i,qdq+1;

� Matching (5) and (20), for 1 ≤ i ≤ q − 1 and i ≤ j ≤ q − 1:

d0h
2
f,X,i,j = h2f,X,i−1,j−1d0;

� Matching (6) and (21), for 2 ≤ i ≤ q − 1, i ≤ j ≤ q − 1 and 1 ≤ k ≤ i− 1:

dkh
2
f,X,i,j = h2f,X,i+1,j+1dk;

� Matching (7) and (25), for 1 ≤ i ≤ q − 2, i+ 1 ≤ j ≤ q − 1 and i ≤ k ≤ j − 1:

dkh
2
f,X,i,j = h2f,X,i,j+1dk+1;
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� Matching (8) with (26) and (27), using that ρ(X) is a derivation, for 1 ≤ i ≤ q− 1
and i ≤ k ≤ q − 1:

dkh
2
f,X,i,k = h2f,X,i,k+1dk+1 + h2f,X,i,kdk+1;

� Matching (9) and (28), for 1 ≤ i ≤ q − 2, i ≤ j ≤ q − 2 and j + 1 ≤ k ≤ q − 1:

dkh
2
f,X,i,j = h2f,X,i,jdk+1;

� Matching (10) and (29), for 1 ≤ i ≤ q − 1 and i ≤ j ≤ q − 1:

dqh
2
f,X,i,j = h2f,X,i,jdq+1;

� Matching (14) and (15), for 1 ≤ i ≤ q:

h1f,X,idi = h1f,X,i+1di;

� Matching (22) and (24), for 1 ≤ i ≤ q − 1 and i+ 1 ≤ j ≤ q:

h2f,X,i,jdi = h2f,X,i+1,jdi.

Combining all this, we are left with (11), (18), (19), (23), so that we infer

(b ◦ hf,X + hf,X ◦ b)(φ)(f1, ..., fq) =− φ(f1, ..., fq)fX (18)

−
q∑

i=1

φ(f1, ..., fρ(X)(fi), ...fq) (23)

− fφ(f1, ..., fq)X (11)

+

q∑
i=1

fφ(f1, ..., ρ(X)fi, ..., fq) (19)

Using that fρ(X) = ρ(fX) and referring back to the definition of LX , we see that we
obtain:

(b ◦ hf,X + hf,X ◦ b)(φ)(f1, ..., fq) =(LfXφ)(f1, ..., fq)− (fLXφ)(f1, ..., fq)

+ fXφ(f1, ..., fq)

− fXφ(f1, ..., fq)

and so we conclude that

b ◦ hf,X + hf,X ◦ b = LfX − fLX

which finishes the proof.
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Proposition 4.3.2 (4.1.20) The spaces C•
nl(L,R;M) define a subcomplex of the total

complex Tot(C•,•
LR(L,R;M), dh + dv).

Proof. Let c = (c0, ..., cn) ∈ Ck
nl(L,R;M). We show that ((dc)0, ..., (dc)k+1) ∈ Ck+1

nl (L,R;M)
by checking explicitely for 1 ≤ i ≤ k − 1 that the symbol equation

(dvci−1)(X1, ..., fXk+1−i) + (dhci)(X1, .., fXk+1−i) =

= f(dvci−1)(X1, ..., Xk+1−i) + f(dhci)(X1, ..., Xk+1−i)

+ hf,Xk+1−i
((dvci)(X1, ..., Xk−i)) + hf,Xk+1−i

((dhci+1)(X1, ..., Xk−i))

The edge-cases i = 0, k, k+1 follow from similar arguments by systematically not writing
down the terms that are not present.

Starting on the LHS we use the fact that (c0, ..., ck) satisfies the symbol equation to
obtain

(dvci−1)(X1, ..., fXk+1−i) =(−1)k−i+1b(ci−1(X1, ..., fXk+1−i))

=(−1)k−i+1b(fci−1(X1, ..., Xk+1−i)) (a.1)

+ (−1)k−i+1b(hf,Xk+1−i
(ci(X1, ..., Xk−i))), (a.2)

and

(dhci)(X1, ..., fXk+1−i) =
k−i∑
m=1

(−1)m+1LXi
(ci(X1, ...X̂i..., fXk+1−i)

+ (−1)k−iLfXk+1−i
(ci(X1, ..., Xk−i))

+
∑

1≤m<n≤k−i

(−1)m+nci([Xm, Xn], X1, ...X̂mX̂n..., fXk−i+1)

+
k−i∑
m=1

(−1)m+k−i+1ci([Xm, fXk−i+1], X1, ...X̂m..., Xk−i).
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Applying the symbol equation to the first, third and fourth line this results in

(dhci)(X1, ..., fXk+1−i) =
k−i∑
m=1

(−1)m+1LXm(fci(X1, ...X̂m..., Xk+1−i)) (b.1)

+
k−i∑
m=1

(−1)m+1LXm(hf,Xk+1−i
(ci+1(X1, ...X̂m..., Xk−i))) (b.2)

+ (−1)k−iLfXk+1−i
(ci(X1, ..., Xk−i)) (b.3)

+
∑

1≤m<n≤k+1−i

(−1)m+nfci([Xm, Xn]X1, ...X̂mX̂n..., Xk+1−i)

(b.4)

+
∑

1≤m<n≤k−i

(−1)m+nhf,Xk−i+1
(ci+1([Xm, Xn], X1, ...X̂mX̂n..., Xk−i))

(b.5)

+
k−i∑
m=1

(−1)mhf,[Xm,Xk−i+1](ci+1(X1, ...X̂m..., Xk−i)) (b.6)

+
k−i∑
m=1

(−1)mρ(Xm)(f)ci(X1, ...X̂m..., Xk−i+1) (b.7)

+
k−i∑
m=1

(−1)mhρ(Xm)(f),Xk−i+1
(ci+1(X1, ...X̂m..., Xk−i) (b.8)

Now using the homotopy equation from Proposition 4.1.16 we can see that (b.3) equals:

(b.3) =(−1)k−ifLXk+1−i
(ci(X1, ..., Xk−i))

+ (−1)k−ib(hf,Xk+1−i
(ci(X1, ..., Xk−i)))

+ (−1)k−ihf,Xk+1−i
(b(ci(X1, ..., Xk−i))),

so that combining terms we have

(a.1) + (a.2) + (b.3) =f(dvci−1)(X1, ..., Xk+1−i)

+ hf,Xk+1−i
((dvci)(X1, ..., Xk−i))

+ (−1)k−ifLXk+1−i
(ci(X1, ..., Xk−i)) (b.3∗)

Next, we use the first point of Lemma 4.1.19 to dissect (b.1) into

(b.1) =
k−i∑
m=1

(−1)m+1fLXm(ci(X1, ...X̂m..., Xk+1−i)

+
k−i∑
m=1

(−1)m+1ρ(Xm)(f)ci(X1, ...X̂m..., Xk+1−i).
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Combining this with other terms we have

(b.1) + (b.3∗) + (b.4) + (b.7) = f(dhci)(X1, ..., Xk+1−i)

Lastly we use the second point of Lemma 4.1.19 to dissect (b.2) into

(b.2) =
k−i∑
m=1

(−1)m+1hf,Xk+1−i
(LXm(ci+1(X1, ...X̂m..., Xk−i)))

+
k−i∑
m=1

(−1)m+1hρ(Xm)f,Xk+1−i
(ci+1(X1, ...X̂m..., Xk−i))

+
k−i∑
m=1

(−1)m+1hf,[Xm,Xk+1−i](ci+1(X1, ...X̂m..., Xk−i)),

so that combining terms we have

(b.2) + (b.5) + (b.6) + (b.8) = hf,Xk+1−i
((dhci+1)(X1, ..., Xk−i)).

This finishes the proof.

Lemma 4.3.3 (4.1.24) The map s satisfies

sp,q ◦ b = dh ◦ sp−1,q + dv ◦ sp,q−1

Proof. We start by writing out (∗) = (sp,q ◦ b)(φ)(X1, ..., Xp, f1, ..., fq):

(∗) =
∑

σ∈Sp,qSp

(−1)σDσ−1(1)φ(Dσ−1(2), ..., Dσ−1(p+q)) (a)

+

p+q−1∑
i=1

∑
σ∈Sp,qSp

(−1)i(−1)σφ(Dσ−1(1), ..., Dσ−1(i)Dσ−1(i+1), ..., Dσ−1(p+q)) (b)

+
∑

σ∈Sp,qSp

(−1)p+q(−1)σφ(Dσ−1(1), ..., Dσ−1(p+q−1))Dσ−1(p+q) (c)

Now we can split (a) by distinguishing the cases where σ−1(1) ∈ {1, ..., p} and the cases
where σ−1(1) ∈ {p + 1, ..., p + q}. Note that the second case means that σ(p + 1) = 1,
since we do not permute that last q indices. We obtain:

(a) =
∑

σ∈Sp,qSp

σ−1(1)∈{1,...,p}

(−1)σXσ−1(1)φ(Dσ−1(2), ..., Dσ−1(p+q))

+
∑

σ∈Sp,qSp

σ(p+1)=1

(−1)σf1φ(Dσ−1(2), ..., Dσ−1(p+q))
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Similarly we can split (c) by distinguishing the cases where σ−1(p + q) ∈ {1, ..., p} and
σ(p+ q) = p+ q to get

(c) =
∑

σ∈Sp,qSp

σ−1(p+q)∈{1,...,p}

(−1)p+q(−1)σφ(Dσ−1(1), ..., Dσ−1(p+q−1))Xσ−1(p+q)

+
∑

σ∈Sp,qSp

σ(p+q)=p+q

(−1)p+q(−1)σφ(Dσ−1(1), ..., Dσ−1(p+q−1))fq

Next we notice that in the first term in (c) we can rearrange the σ’s such that σ−1(p+ q)
becomes σ−1(1). This comes at a cost of a sign (−1)p+q−1 and we see:

(a) + (c) =

p∑
i=1

∑
σ∈Sp,qSp

σ−1(1)=i

(−1)σ[Xi, φ(Dσ−1(2), ..., Dσ−1(p+q))] (a.1)

+
∑

σ∈Sp,qSp

σ(p+1)=1

(−1)σf1φ(Dσ−1(2), ..., Dσ−1(p+q)) (a.2)

+
∑

σ∈Sp,qSp

σ(p+q)=p+q

(−1)p+q(−1)σφ(Dσ−1(1), ..., Dσ−1(p+q−1))fq (a.3)

Now when we look at (a.1) we see that {σ ∈ Sp,qSp; σ
−1(1) = i} is in bijective correspon-

dence with Sp−1,qSp−1 by taking out σ(i) = 1. If we plug in this bijection we recognize
a term of sp−1,q. This all comes at a cost of a sign (−1)i+1 so we obtain:

(a.1) =

p∑
i=1

(−1)i+1[Xi, (s
p−1,qφ)(X1, ...X̂i..., Xp, f1, ..., fq)]

In similar fashion we get

(a.2) = (−1)pf1(sp,q−1φ)(X1, ..., Xp, f2, ..., fq)

(a.3) = (−1)p+q(sp,q−1φ)(X1, ..., Xp, f1, ..., fq−1)fq

Now to tackle (b) we want to switch products Dσ−1(i)Dσ−1(i+1) for commutators of the
form [Dσ−1(i), Dσ−1(i+1)]. Indeed inside our double complex we can only plug in elements
of L and R, but elements of L · L ⊂ U(L,R) or L ·R ⊂ U(L,R) do not fit this. Instead
we use that [L,L] ⊂ L and [L,R] ⊂ R. Note that R · R ⊂ R so this does not pose a
problem.

So at a cost of a sign −1 we switchDσ−1(i) andDσ−1(i+1) whenever σ
−1(i) > σ−1(i+1).

Note that this is only possible if at least one of σ−1(i) and σ−1(i + 1) lie in {1, ..., p}.
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We obtain:

(b) =

p+q−1∑
i=1

∑
σ∈Sp,qSp

σ−1(i)∈{p+1,...,p+q}
σ−1(i+1)∈{p+1,...,p+q}

(−1)i(−1)σφ(Dσ−1(1), ..., fσ−1(i)−pfσ−1(i+1)−p, ..., Dσ−1(p+q)) (b.1)

+

p∑
m<n

p+q−1∑
i=1

∑
σ∈Sp,qSp

σ−1(i)=m
σ−1(i+1)=n

(−1)i(−1)σφ(Dσ−1(1), ..., [Xm, Xn], ..., Dσ−1(p+q)) (b.2)

+

p∑
m=1

q∑
n=1

p+q−1∑
i=1

∑
σ∈Sp,qSp

σ−1(i)=m
σ−1(i+1)=n

(−1)i(−1)σφ(Dσ−1(1), ..., ρ(Xm)fn, ..., Dσ−1(p+q)) (b.3)

First looking at (b.1), we note that since the f ’s should stay ordered we have fσ−1(i+1)−p =
fσ−1(i)−p+1 so we have

(b.1) =

p+q−1∑
i=1

q∑
m=1

∑
σ∈Sp,qSp

σ−1(i)=m+p
σ−1(i+1)=m+p+1

(−1)t(−1)σφ(Dσ−1(1), ..., fmfm+1, ..., Dσ−1(p+q))

Now we again play the trick where we see the subsets of Sp,qSp as either Sp−1,qSp−1 or
Sp,q−1Sp up to a sign shift. In the case of (b.1) we have to merge i and i + 1, so in
practice we delete σ(m + 1) = i + p + 1 from the permutation, which comes at a sign
m+ p+ i. We then recognize a term of sp,q−1 and we see:

(b.1) =

q∑
i=1

(−1)i+p(sp,q−1φ)(X1, ..., Xp, f1, ..., fifi+1, ..., fq)

Then in (b.2) we first delete σ(i + 1) = n at a cost of a sign (−1)m+i+1 and then make
sure that [Xm, Xn] is actually the first term in the input, which comes at another sign
(−1)m+1. Then we obtain:

(b.2) =

p∑
m<n

(−1)m+n(sp−1,qφ)([Xm, Xn], X1, ...X̂mX̂n..., Xp, f1, ..., fq)

For (b.3) we delete σ(m) = i at a a cost of a sign (−1)m+i and we obtain:

(b.3) =

p∑
m=1

q∑
n=1

(−1)m(sp−1,qφ)(X1, ...X̂m..., Xp, f1, ..., ρ(Xm)fn, ..., fq)

This proves the Lemma.
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Lemma 4.3.4 (4.2.14) The differential in the complex C•
def(L, Sym

kAdL) is given by

(d(c0, ..., cn))i = ∂CE(ci) + (−1)n+1P ◦ ci−1.

Proof. The top order term
(d(c0, ..., cn))0 = ∂CE(c0)

is clearly the correct term, so we need to show that with this formula d(c0, ..., cn) indeed
satisfies the symbol equation, i.e.

(d(c0, ..., cn))i(X1, ..., fXn+1−i) =f(d(c0, ..., cn))i(X1, ..., Xn+1−i)

+ ιf ((d(c0, ..., cn))i+1(X1, ..., Xn−i)⊙Xn−i+1).

We again show this for 1 ≤ i ≤ n− 1 with the edge cases i = 0, n, n+1 being similar by
keeping track of which terms are not present. Starting on the LHS we have

(d(c0, ..., cn))i(X1, ..., fXn+1−i) =
n−i∑
s=1

(−1)s+1[Xs, ci(X1, ...X̂s..., fXn+1−i)] (a)

+ (−1)n−i[fXn+1−i, ci(X1, ..., Xn−i)] (b)

+
∑

1≤s<t≤n−i

(−1)s+tci([Xs, Xt], X1, ...X̂sX̂t..., fXn+1−i)

(c)

+
n−i∑
s=1

(−1)s+n−i+1ci([Xs, fXn+1−i], X1, ...X̂s..., Xn−i)

(d)

+ (−1)n+1P (ci−1(X1, ..., fXn+1−i)) (e)

Using the symbol equation on (a), (c), (d) and (e) we obtain

(a) =
n−i∑
s=1

(−1)s+1[Xs, fci(X1, ...X̂s..., Xn+1−i)]

+
n−i∑
s=1

(−1)s+1[Xs, ιf (ci+1(X1, ...X̂s..., Xn−i)⊙Xn+1−i)]

=
n−i∑
s=1

(−1)s+1ρ(Xs)(f)ci(X1, ...X̂s..., Xn+1−i) (a.1)

+
n−i∑
s=1

(−1)s+1f [Xs, ci(X1, ...X̂s..., Xn+1−i)] (a.2)

+
n−i∑
s=1

(−1)s+1[Xs, ιf (ci+1(X1, ...X̂s..., Xn−i))]⊙Xn+1−i (a.3)

+
n−i∑
s=1

(−1)s+1ιf (ci+1(X1, ...X̂s..., Xn−i)⊙ [Xs, Xn+1−i]) (a.4)
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(c) =
∑

1≤s<t≤n−i

(−1)s+tfci([Xs, Xt], X1, ...X̂sX̂t..., Xn+1−i) (c.1)

+
∑

1≤s<t≤n−i

(−1)s+tιf (ci+1([Xs, Xt], X1, ...X̂sX̂t..., Xn−i)⊙Xn−i+1) (c.2)

(d) =
n−i∑
s=1

(−1)s+n+1−ifci([Xs, Xn−i+1], X1, ...X̂s..., Xn−i) (d.1)

+
n−i∑
s=1

(−1)sρ(Xs)(f)ci(X1, ...X̂i..., Xn−i+1) (d.2)

+
n−i∑
s=1

(−1)sιf (ci+1(X1, ...X̂s..., Xn−i)⊙ [Xs, Xn−i+1]) (d.3)

+
n−i∑
s=1

(−1)sιρ(Xs)(f)(ci+1(X1, ...X̂s..., Xn−i)⊙Xn−i+1) (d.4)

(e) =(−1)n+1fP (ci−1(X1, ..., Xn+1−i)) (e.1)

+ (−1)n+1P (ιf (ci(X1, ..., Xn−i)⊙Xn+1−i)) (e.2)

Immediately, we spot that (a.1) and (d.2) and (a.4) and (d.3) cancel against each other.
Next we see that

(a.2) + (c.1) + (d.1) + (e.1) =fd(c0, ..., cn)i(X1, ..., Xn+1−i)

+ (−1)n−i+1f [Xn+1−i, ci(X1, ..., Xn−i)] (b̃)

and similarly

(c.2) =ιf (d(c0, ..., cn)i+1(X1, ..., Xn−i)⊙Xn−i+1)

+
n−i∑
s=1

(−1)sιf ([Xs, ci+1(X1, ...X̂s..., Xn−i)]⊙Xn+1−i) (ã.3)

+ (−1)nιf (P (ci(X1, ..., Xn−i))⊙Xn+1−i) (ẽ.2)

So we need to cancel the trio (a.3), (ã.3) and (d.4) against each other and the total of
(b), (b̃), (e.2) and (ẽ.2). This can be summarized in two claims:

Claim 1: For every X ∈ L, f ∈ R and
−→
Y ⊗

−→
D ∈ Symk−i−1

R L ⊗R Λi+1
R Der(R) it holds

that
[X, ιf (

−→
Y ⊗

−→
D)] = ιf ([X,

−→
Y ⊗

−→
D ]) + ιρ(X)f (

−→
Y ⊗

−→
D).

Claim 2: For every X ∈ L, f ∈ R and
−→
Y ⊗

−→
D ∈ Symk−i

R L⊗R Λi
RDer(R) it holds that

(−1)i[fX,
−→
Y ⊗
−→
D ] + (−1)i+1f [X,

−→
Y ⊗
−→
D ]−Pιf (

−→
Y ⊗
−→
D ⊙X)+ ιf (P (

−→
Y ⊗
−→
D)⊙X) = 0.
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The first claim follows from the fact that

[X,D(f)] = [ρ(X), D](f) +D(ρ(X)(f))

since both sides are equal to ρ(X)(D(f)).

The second claim follows from an explicit calculation. Manipulating the first terms,
we have:

(−1)i[fX,
−→
Y ⊗

−→
D ] =(−1)i

k−i∑
s=1

Y1 ⊙ · · · ⊙ [fX, Ys]⊙ · · · ⊙ Yk−i ⊗
−→
D

+ (−1)i
i∑

s=1

−→
Y ⊗D1 ∧ · · · ∧ [ρ(fX), Ds] ∧ · · · ∧Di

=(−1)i
k−i∑
s=1

fY1 ⊙ · · · ⊙ [X, Ys]⊙ · · · ⊙ Yk−i ⊗
−→
D

+ (−1)i+1

k−i∑
s=1

ρ(Ys)(f)X ⊙ Y1 ⊙ · · · Ŷs · · · ⊙ Yk−i ⊗
−→
D

+ (−1)i
i∑

s=1

f
−→
Y ⊗D1 ∧ · · · ∧ [ρ(X), Ds] ∧ · · · ∧Di

+
i∑

s=1

(−1)s+1Ds(f)
−→
Y ⊗D1 ∧ · · · D̂s · · · ∧Di ∧ ρ(X)

=(−1)if [X,
−→
Y ⊗

−→
D ]

+ (−1)i+1

k−i∑
s=1

ρ(Ys)(f)X ⊙ Y1 ⊙ · · · Ŷs · · · ⊙ Yk−i ⊗
−→
D

+ ιf (
−→
Y ⊗

−→
D) ∧ ρ(X)

Manipulating the third term we have:

−P (ιf (
−→
Y ⊗

−→
D)⊙X) =− ιf (

−→
Y ⊗

−→
D) ∧ ρ(X)

−X ⊙ P (ιf (
−→
Y ⊗

−→
D))

Recognizing all the terms, we are reduced to showing that

(−1)i+1

k−i∑
s=1

ρ(Ys)(f)Y1 ⊙ · · · Ŷs · · · ⊙ Yk−i ⊗
−→
D =P (ιf (

−→
Y ⊗

−→
D))

− ιf (P (
−→
Y ⊗

−→
D))
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which is clear by looking at the case where there is only one Y and one D and we have

P (ιf (Y ⊗D))− ιf (P (Y ⊗D)) =P (D(f)Y )− ιf (D ∧ ρ(Y ))

=D(f)ρ(Y )−D(f)ρ(Y ) + ρ(Y )(f)D

=ρ(Y )(f)D.

This finishes the proof.



Appendix A

Constructions in homological algebra

In this appendix we outline results in homological algebra that allow us to effectively
deal with the Hochschild complexes of various algebras. The main points of business
are:

� Defining chain complexes out of simplicial vector spaces, used in Section 1.1.1 to
define the Hochschild homology complex;

� Defining mixed complexes out of cyclic vector spaces, used in Section 1.1.2 to define
cyclic and periodic cyclic homology;

� The notion of cylindrical spaces and the Eilenberg-Zilber Theorem to deal with
the Hochschild complex of the convolution algebra G⋉ A in Section 3.2.

The main resources for this section are Loday [Lo98] and Nest-Tsygan [NT], with
Crainic [Cr04] being a specific reference for the subsection about the Homological Per-
tubation Lemma, Getzler-Jones [GJ93] a specific reference for the part about cylindrical
spaces and Khalkali-Rangipour [KR04] a specific reference for the part about the cyclic
Eilenberg-Zilber Theorem.

A.1 Mixed complexes

Let K be a field.

Definition A.1.1 A mixed chain complex is a collection of K-vector spaces {Ck}k≥0

together with collections of linear maps b : Ck → Ck−1 for k ≥ 1 and B : Ck → Ck+1 for
k ≥ 0 such that

b2 = 0,

B2 = 0,

bB +Bb = 0.

189
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A morphism f : (C•, b, B)→ (C′
•, b

′, B′) is a degree 0 linear map that intertwines b with
b′ and B with B′.

Definition A.1.2 A mixed cochain complex is a collection of K-vector spaces {Ck}k≥0

together with collections of linear maps b : Ck → Ck+1 for k ≥ 0 and B : Ck → Ck−1 for
k ≥ 0 such that

b2 = 0,

B2 = 0,

bB +Bb = 0.

A morphism f : (C•, b, B)→ (C′•, b′, B′) is a degree 0 linear map that intertwines b with
b′ and B with B′.

Remark A.1.3 Clearly mixed chain complexes and mixed cochain complexes are the
same thing, by replacing Ck and Ck and switching the roles of b and B. In practice mixed
complexes come in the form of a chain complex (C•, b) or a cochain complex (C•, b) with
an extra differential B going ‘in the wrong direction’. In what follows the ‘leading role’
of b has some notational importance, so we make two separate definitions.

Now, from a mixed (co)chain complex one wants to make an ordinary (co)chain
complex, using the information of both b and B. Of course, b and B go in different
directions, but as they change the grading of the complex by increments of 1 in either
direction it is clear that the mod 2 grading is increased by 1 by both differentials.
This leads to the following two constructions for both mixed chain complexes and mixed
cochain complexes.

Definition A.1.4 For (C•, b, B) a mixed chain complex, we define a chain complex CC•
by

CCn =

⌊n
2
⌋⊕

i=0

Cn−2i

where d : CCn → CCn−1 is determined by setting the value for xk ∈ Ck ⊂ CCn by

dxk =


bxk if k = n

bxk +Bxk if 0 < k < n
Bxk if k = 0

Note that the last case can only happen if n is even. A map of mixed complexes
f : (C•, b, B) → (C′

•, b, B) induces a chain map Cf : (CC•, d) → (C′C•, d
′) by sending

xk ∈ Ck ⊂ CCn to f(xk) ∈ C′
k ⊂ C′Cn.

Definition A.1.5 For (C•, b, B) a mixed chain complex, we define a chain complex CP•
by

CPn =
⊕
k≥0

n≡k mod 2

Ck
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where d : CPn → CPn−1 is determined by setting the value for xk ∈ Ck ⊂ CCn by

dxk =

{
bxk +Bxk if k ̸= 0

Bxk if k = 0

Amap of mixed complexes f : (C•, b, B)→ (C′
•, b, B) induces a chain map Pf : (CP•, d)→

(C′P•, d
′) by sending {xk ∈ Ck}k ∈ CPn to {f(xk) ∈ C′

k} ∈ C′Pn.

Remark A.1.6 One can think of CC• and CP• and their differentials in the form of
pictures. For CC• the picture looks like (for n even):

CCn = C0

B

��

⊕ C2

b
��

B

��

⊕ C4

b
��

B

��

· · · · · · Cn−4

b
��

B

��

⊕ Cn−2

b
��

B

��

⊕ Cn

b
��

CCn−1 = C1

b
��

B

��

⊕ C3

b
��

B

��

⊕ · · ·

b
��

· · ·
B

��

⊕ Cn−3

b
��

B

��

⊕ Cn−1

b
��

CCn−2 = C0 ⊕ C2 ⊕ C4 · · · · · · Cn−4 ⊕ Cn−2

while for CP• the picture looks like (again for n even):

CPn = C0

B

��

⊕ C2

b
��

B

��

⊕ C4

b
��

B

��

· · · · · · Cn−2

b
��

B

��

⊕ Cn

b
��

B

��

⊕ Cn+2

b
��

B

��

· · ·

CPn−1 = C1

b
��

B

��

⊕ C3

b
��

B

��

⊕ · · ·

b
��

· · ·
B

��

⊕ Cn−1

b
��

B

��

⊕ Cn+1

b
��

B

��

⊕ · · ·

b
��

CPn−2 = C0 ⊕ C2 ⊕ C4 · · · · · · Cn−2 ⊕ Cn ⊕ Cn+2 · · ·

From these pictures it is also clear that CC• and CP• are indeed chain complexes, i.e.
d2 = 0, since all the terms in d2 either involve b2, B2 or bB +Bb.

Remark A.1.7 There is a shift map S : CC• → CC•+2 that sends (xn, xn−2, ...) to
(0, xn, xn−2, ...). This map induces a chain map (CC•, b + B) → (CC•[2], b + B). Using
this map, we can also see CP• and its homology as inverse limits of CC• by constructing
a formal inverse to S.

We can do the dual picture for mixed cochain complexes

Definition A.1.8 For (C•, b, B) a mixed cochain complex, we define a chain complex
CC• by

CCn =

⌊n
2
⌋∏

i=0

Cn−2i

where d : CCn → CCn+1 is determined by setting the value for xk ∈ Ck ⊂ CCn by

dxk =

{
bxk +Bxk if k ̸= 0

bxk if k = 0



192 Appendix A. Constructions in homological algebra

Note again that the last case can only happen if n is even. A map of mixed complexes
f : (C•, b, B) → (C′•, b, B) induces a chain map Cf : (CC•, d) → (C′C•, d′) by sending
xk ∈ Ck ⊂ CCn to f(xk) ∈ C′k ⊂ C′Cn.

Definition A.1.9 For (C•, b, B) a mixed cochain complex, we define a cochain complex
CP• by

CPn =
∏
k≥0

n≡k mod 2

Ck

where d : CPn → CPn−1 is determined by sending {xk ∈ Ck} ∈ CPn to
∑

k dxk ∈ CPn+1

where dxk has contributions in Ck+1 and Ck−1 given by

dxk =

{
bxk +Bxk if k ̸= 0

bxk if k = 0

Amap of mixed complexes f : (C•, b, B)→ (C′•, b, B) induces a chain map Pf : (CP•, d)→
(C′P•, d′) by sending {xk ∈ Ck} ∈ CPn to {f(xk) ∈ C′

k} ∈ C′Pn.

Remark A.1.10 We can also draw pictures for CC• and CP•, and these are essentially
the same pictures as before, but then with all arrows reversed (and ⊕ replaced by ×).

Remark A.1.11 For notational purposes, in all cases we may also write ‘b+B’ for d.

In the cochain case we use direct products in stead of direct sums, since the direct
product is the dual of the direct sum. In particular the following holds:

Lemma A.1.12 If (C•, b, B) is a mixed chain complex, then the dual (C∗)k = (Ck)
∗

together with b∗ andB∗ makes ((C∗)•, b∗, B∗) into a mixed cochain complex. Furthermore
(C∗)C• is the dual complex to CC• and (C∗)P• is the dual complex to CP•.

Remark A.1.13 Since in a mixed chain complex (C•, b, B), the two differentials b and
B commute, there is a map induced by B on the b-homology of C•

1. One can make good
use of this by inducing the following filtration on CC•:

FpCCn =

p⊕
i=0

Cn−2i.

With this filtration we have

FpCC•/Fp−1CC• ∼= Cn−2p

with the induced differential

Cn−2p
∼= FpCCn/Fp−1CCn → FpCCn−1/Fp−1CCn−1

∼= Cn−1−2p

1Also in reverse, but we are respectful of the leading role b has in the dance
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given by b. In particular, setting up the spectral sequence associated to this filtration
we have

E1
p,q
∼= Hq−p(C•, b)

Then on this page the differential is given by the map induced by B on H•(C•, b), so
that on the second page of the spectral sequence we have

E2
p,q
∼= Hq−p(H•(C•, b), B).

From this remark, the following is an easy consequence of the Spectral Sequence
Comparison Theorem [Ze57]:

Proposition A.1.14 If f : (C•, b, B) → (C′
•, b

′, B′) is a map of mixed complexes such
that the underlying map f : (C•, b)→ (C′

•, b
′) is a quasi-isomorphism, so is Cf : (CC•, d)→

(C′C•, d
′).

A.2 Homological perturbation theory

The main aim of this subsection is discussing the Homological Perturbation Lemma,
which turns out to be an effective tool to understand for a mixed complex (C•, b, B) the
differences between H(C•, b), H(CC•, b+B) and H(CP•, b+B).

We start with two filtered chain complexes (C•, b) and (C′
•, b

′) that are bounded below
by 0. This means that for every p ∈ Z we have subcomplexes F pC• and F

pC′
• such that

F pC ⊂ F p+1C, F−1C = {0}, ∪p≥0F
pC = C and similarly for C′. Together with this data

we have two chain maps f : C→ C′ and g : C′ → C and a chain homotopy h between gf
and the identity on C′ (i.e. gf = 1 + bh+ hb) satisfying the following requirements

� f and g are quasi isomorphisms

� f , g and h respect the filtrations

Define a perturbation δ of the differential b to be a map δ : C• → C•−1 such that

� (b+ δ)2 = 0

� δ(F pC•) ⊂ F p−1C•

Note that since δh decreases the filtration degree by 1, the power series
∑

i≥0(δh)
i is

well-defined, as (δh)i(x) = 0 for i big enough for every x ∈ C•.

The point of the Homological Perturbation Lemma to perturb the differential b on C•,
and the maps f and g to obtain quasi-isomorphisms between (C•, b+ δ) and (C′

•, b
′+ δ′),

and in particular do this with very explicit formulas.
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Theorem A.2.1 (Homological Perturbation Lemma) [Cr04, 2.4] Given a pertu-
bation δ of (C•, b), the operators

δ′ = f

(∑
i≥0

(δh)i

)
δg f̃ = f + f

(∑
i≥0

(δh)i

)
δh

g̃ = g + h

(∑
i≥0

(δh)i

)
δg h̃ = h+ h

(∑
i≥0

(δh)i

)
δh

satisfy

� (b′ + δ′)2 = 0 (i.e. b′ + δ′ is a differential on C ′
•)

� f̃(b+ δ) = (b′ + δ′)f̃ (i.e. f̃ is a chain map (C•, b+ δ)→ (C ′
•, b

′ + δ′))

� g̃(b′ + δ′) = (b+ δ)g̃ (i.e. g̃ is a chain map (C ′
•, b

′ + δ′)→ (C•, b+ δ))

� g̃f̃ = 1+ (b+ δ)h̃+ h̃(b+ δ) (i.e. h̃ is a chain homotopy from g̃f̃ to the identity on
(C•, b+ δ)

� f̃ and g̃ are quasi-isomorphisms

We discuss one important application of Homological Perturbation, namely the case
where if (C•, b, B) is a mixed complex and (C′

•, b
′) is a chain complex which is suit-

ably quasi-isomorphic to (C•, b) we can use Homological Pertubation to obtain a second
differential B′ on C′ to make (C′

•, b
′, B′) in a mixed complex so that CC• and C′C•

are quasi-isomorphic. Tracing back the assumptions of the Homological Pertubation
Lemma, the following example arises.

Example A.2.2 Let (C•, b, B) be a mixed complex, let (C′
•, b

′) be a chain complex, let
f : (C•, b) → (C′

•, b
′) and g : (C′

•, b
′) → (C•, b) be inverse quasi-isomorphisms and let

h : C• → C•+1 be a homotopy from gf to the identity. We can extend f , g and h to
maps between the induced spaces CC• and C′C• in the obvious way. I.e. f : CC• → C′C•
becomes

f(xn, xn−2, ...) = (f(xn), f(xn−2), ...)

and similarly for g and h. In this way f becomes a chain map (CC•, b) → (C′C•, b
′),

g a chain map (C′C•, b
′) → (CC•, b) and h becomes a homotopy between gf and the

identity of CC•. The complexes (CC•, b) and (C′C•, b
′) have filtrations, by setting

F pCCn =

p⊕
i=0

Cn−2i

The maps f , g and h respect this filtration, and this filtration is especially useful, as we
can see B as a perturbation of the differential b on CC•. We now assume that

f(Bh)iBg = 0
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for any i ≥ 1. If we now run the Homological Perturbation Lemma, we obtain pertur-
bation δ′ to the differential b′ of C′C• given by

δ′(xn, xn−2, ...) = (fBg(xn−2), fBg(xn−4), ...)

In particular we see that B′ = fBg becomes a second differential on C′
• such that

(C′
•, b

′, B′) is a mixed complex.

Furthermore the maps f̃ : CC• → C′C• and g̃ : C′C• → CC• given by

f̃ = f + f

(∑
i≥1

(Bh)i

)
h g̃ = g + h

(∑
i≥1

(Bh)i

)
g

become inverse quasi-isomorphisms (CC•, b+B) ⇆ (C′C•, b
′ +B′).

A.3 Chain complexes associated to simplicial vector

spaces

In this section we outline a very general way to construct chain complexes, namely via
simplicial vector spaces. This is of particular importance, since our main examples of
complexes will be made out of this framework, and their properties are closely related
to ‘general abstract non-sense’ associated to their simplicial origin. If not otherwise
mentioned the definitions and results of this section can be found in [We94, Ch. 8].

Definition A.3.1 A semi-simplicial vector space is a sequence {Vn}n≥0 of vector spaces,
together with maps di : Vn → Vn−1 (0 ≤ i ≤ n), called face maps, that satisfy

didj = dj−1di (i < j).

A simplicial vector space is a semi-simplicial vector space (V•, d) with maps sj : Vn →
Vn+1 (0 ≤ j ≤ n), called degeneracy maps, satisfying the following relations

disj = sj−1di (i < j),

disj = id (i = j, or i = j + 1),

disj = sjdi−1 (i > j + 1),

sisj = sj+1si.

The reason we care about these objects is the following construction we can do on
them:

Lemma A.3.2 If (V•, d) is a semi-simplicial vector space we can define chain complexes
(C•(V ), b′) and (C•(V ), b), where Ck(V ) = Vk and the maps b′ : Vn → Vn−1, b : Vn → Vn−1

are given by

b′ =
n−1∑
i=0

(−1)idi,

b = b′ + (−1)ndn.
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While in the case of a simplicial vector space it is clear that the degeneracy maps
do not contribute to the chain complex C•(V ), they can be used to make the complex
‘smaller’. Indeed, we can define the space of degeneracies to be Dn = s0Vn−1 + · · · +
sn−1Vn−1. It turns out that D• is an acyclic subcomplex of (C•(V ), b), so that the
quotient

C•(V )norm = C•(V )/D•

is canonically a chain complex and the quotient map becomes a quasi-isomorphism. We
call this resulting complex the normalized complex. Remark that while the individual
face maps di do not descend to normalized complex, the differential b does.

Now we can slowly add more structure on V• and look what kind of structure this
induces on C•(V ). The most important thing we add is a cyclic operator.

Definition A.3.3 A Λ∞-vector space is a simplicial vector space (V•, d, s) together with
maps t : Vn → Vn such that

dit = tdi−1 i > 0

d0t = dn

sit = tsi−1 i > 0

s0t = t2sn

If furthermore we have t : Vn → Vn satisfies tn+1 = 1 we call the resulting structure a
cyclic vector space.

It is immediate that for any Λ∞-vector space (V•, d, s) we have that

(1− (−1)n−1t)b′ = b(1− (−1)nt),

so that b descends to the quotient V λ
• defined by

V λ
n := Vn/(1− (−1)nt).

This leads to the following definition of a new chain complex:

Definition A.3.4 If (V•, d, t) is part of the structure of an Λ∞-vector space, then we
define the cyclic complex Cλ

• (V ) to be the given by Cλ
n(V ) = Vn/(1− (−1)nt), with the

differential the map induced by b : Vn → Vn−1.

Now we want to understand the homology of (Cλ
•(V ), b) in terms of the homology

of (C•(V ), b). The idea here is that we can enrich C•(V ) with the structure of a mixed
complex so that the induced complex CC•(V ) is quasi isomorphic to Cλ

•(V ).
We start with the following Lemma, where finally the degeneracies enter the stage.

We include the proof of this and the next statement, since generally this is only treated
for cyclic vector spaces, and we were not able to find a precise proof of this statement
for Λ∞-vector spaces.
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Lemma A.3.5 Let (V•, d, s, t) be a Λ∞-vector space, then the map c = tsn : Vn → Vn+1

defines a contraction for the differential b′ and satisfies tn+2c = ctn+1

Proof. This is again an exercise in bookkeeping and all the relevant commutation rela-
tions, but we do spell this one out. We want to show that

cb′ + b′c = id

Starting with cb′ we have

cb′ =
n−1∑
i=0

(−1)itsn−1di

=
n−1∑
i=0

(−1)itdisn

=
n−1∑
i=0

(−1)idi+1tsn

= −
n∑

i=1

(−1)iditsn

= −b′c+ d0tsn

= −b′c+ dnsn

= −b′c+ id

For the second statement we have

tn+2c = tn+3sn

= tn+1s0t

= tsnt
n+1

Now from this contraction, or really any contraction of b′, we can define an extra
differential on C•(V ):

Proposition A.3.6 If (V•, d, t) is part of the structure of a Λ∞-vector space and c : Vn →
Vn+1 is a contraction of b′ such that tn+2c = ctn+1, then the map B : Vn → Vn+1 given by

B = (1− (−1)n+1t)cb′c

(
n∑

i=0

(−1)inti
)

satisfies

B2 = 0

bB +Bb = 1− tn+1
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Proof. To show that B2 = 0 we have first note that

(
n+1∑
i=0

(−1)i(n+1)ti

)
b = b′

(
n∑

i=0

(−1)inti
)

so that

b′(1− tn+1) = (1− tn+2)b′

Then calculating B2 we obtain

B2 = (1− (−1)n+2t)cb′c(1− tn+2)cb′c

(
n∑

i=0

(−1)inti
)

using that both b′ and c commute with the cyclic powers of t, we get

B2 = (1− (−1)n+2t)cb′ccb′c(1− tn+1)

(
n∑

i=0

(−1)inti
)

Now zeroing in on the term b′ccb′ in the middle, using that c is a contraction of b′ and
that b′ is a differential, we have

b′ccb′ = cb′ − cb′cb′

= cb′ − cb′ + ccb′b′

= 0

and we conclude that B2 = 0. Before we start with bB +Bb, we can so a similar trick

b′cb′c = −b′b′cc+ b′c

= b′c

= id− cb′

= id− cb′cb′ − cb′b′c
= id− cb′cb′
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Then we start with bB, where we have

bB =b(1− (−1)n+1t)cb′c

(
n∑

i=0

(−1)inti
)

=(1− (−1)nt)b′cb′c

(
n∑

i=0

(−1)inti
)

=(1− (−1)nt)

(
n∑

i=0

(−1)inti
)

− (1− (−1)nt)cb′cb′
(

n∑
i=0

(−1)inti
)

=1− tn+1 − (1− (−1)nt)cb′c

(
n−1∑
i=0

(−1)i(n−1)ti

)
b

=1− tn+1 −Bb

which concludes the proof.

The important result is then the following

Theorem A.3.7 If (V•, d, s, t) is a cyclic vector space, then the map CC•(V )→ Cλ
•(V )

which is given in degree n by
(xn, xn2 , ...) 7→ [xn]

is a quasi isomorphism (CC•(V ), b+B)→ (Cλ
•(V ), b).

Remark A.3.8 If (V, d, s, t) is a cyclic vector space, and we take the contraction c = tsn
of b′, then B descends to the normalized complex where it is given by

Bnorm =
n∑

i=0

(−1)intsnti

Remark A.3.9 If (V, d, s, t) is a cyclical vector space, we may also define B : Vn → Vn+1

to be

B = (1− (−1)n+1t)c

(
n∑

i=0

(−1)inti
)

This operator satisfies B2 = 0 because if one writes down B ◦ B one gets a term(∑n+1
i=0 (−1)i(n+1)ti

)
(1 − (−1)n+1t) = (1 − (−1)n(n+1)tn+2) = 0 in the middle. Further-

more, it satisfies bB +Bb = 0 similarly to the calculation above, and so we end up with
an a priori different structure of a mixed complex on C•(V ). However, it is easy to see
that on the normalized complex this B is equal to the original Bnorm and hence the two
definitions of B induce quasi-isomorphic structures.
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A.4 Cylindrical spaces

In this section we discuss cylindrical spaces. These are a type of bisimplicial vector
spaces that allow us to put the double complex of Section 3.2 in an efficient framework.

Definition A.4.1 A bisimplicial vector space is a collection of vector spaces Vp,q for
p, q ∈ N and maps

dhi : Vp,q → Vp−1,q (0 ≤ i ≤ p) dvi : Vp,q → Vp,q−1 (0 ≤ i ≤ q)

shi : Vp,q → Vp+1,q (0 ≤ i ≤ p) shi : Vp,q → Vp,q+1 (0 ≤ i ≤ q)

satisfying the following properties

� For every q, (V•,q, d
h, sh) is a simplicial vector space

� For every p, (Vp,•, d
v, sv) is a simplicial vector space

� For every suitable choice of i and j we have

dhi d
v
j = dvjd

h
i dhi s

v
j = svjd

h
i shi d

v
j = dvjs

h
i shi s

v
j = svjs

h
i

Definition A.4.2 A Λ∞×Λ∞-vector space is a collection of vector spaces Vp,q for p, q ∈ N
and maps

dhi : Vp,q → Vp−1,q (0 ≤ i ≤ p) dvi : Vp,q → Vp,q−1 (0 ≤ i ≤ q)

shi : Vp,q → Vp+1,q (0 ≤ i ≤ p) shi : Vp,q → Vp,q+1 (0 ≤ i ≤ q)

th : Vp,q → Vp,q tv : Vp,q → Vp,q

satisfying the following

� For every q, (V•,q, d
h, sh) is a Λ∞-vector space

� For every p, (Vp,•, d
v, sv) is a Λ∞-vector space

� For every suitable choice of i and j we have

dhi d
v
j = dvjd

h
i dhi s

v
j = svjd

h
i dhi t

v = tvdhi

shi d
v
j = dvjs

h
i shi s

v
j = svjs

h
i shi t

v = tvshi

thdvj = dvj t
h thsvj = svj t

h thtv = tvth

We call a Λ∞ × Λ∞-vector space cylindrical if (th)p+1(tv)q+1 equals the identity on Vp,q
for every p and q, and we call a Λ∞×Λ∞-vector space bicyclic if (th)p+1 and (tv)q+1 both
equal the identity on Vp,q for every p and q.

Now, from these bisimplicial vector spaces we can construct simplicial vector spaces.
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Lemma A.4.3 If (V•,•, d
h, sh, dv, sv) is a bisimplicial vector space, then (diag(V )•, d, s)

is a simplicial vector space, where

diag(V )n = Vn,n

di = dhi d
v
i

si = shi s
v
i

We can also crank this up to the Λ∞ × Λ∞-environment, where we recognize the
rationale about the definition of a cylindrical space.

Lemma A.4.4 If (V•,•, d
h, sh, th, dv, sv, tv) is a Λ∞×Λ∞-vector space, then (diag(V )•, d, s, t)

is a Λ∞-vector space, where

diag(V )n = Vn,n

di = dhi d
v
i

si = shi s
v
i

t = thtv

Furthermore, diag(V ) is a cyclic vector space if and only if V is a cylindrical vector
space.

The raison d’être of bisimplicial vector spaces is that just as one can go from simplicial
vector spaces to chain complexes, we can go from bisimplicial vector spaces to double
complexes.

Proposition A.4.5 Let (V•,•, d
h, dv) be part of a bisimplicial vector space structure.

We define the operators bh : Vp,q → Vp−1,q, b
v : Vp,q → Vp,q−1 by

bh =

p∑
i=0

(−1)idhi bv =

q∑
i=0

(−1)i+pdvi

These operators satisfy

(bh)2 = 0 (bv)2 = 0 bhbv + bvbh = 0

i.e. they induce a double complex C•,•(V ) = (V•,•, b
h, bv).

Again we may jazz this up to the Λ∞-setting, where again we recover the importance
of cylindrical spaces.

Proposition A.4.6 Let (V•,•, d
h, th, dv, tv) be part of a Λ∞×Λ∞-structure. Let ch : Vp,q →

Vp+1,q and c
v : Vp,q → Vp,q+1 be maps satisfying

� The family of maps ch commutes with the families of maps dv, tv, the map cv and
the collection of maps (th)p+1 : Vp,q → Vp,q.
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� The family ch contracts the differential (b′)h =
∑p−1

i=0 d
h
i on V•,q.

� The family of maps cv commutes with the families of maps dh, th and the collection
of maps (tv)q+1 : Vp,q → Vp,q.

� The family cv contracts the differential (b′)v =
∑q−1

i=0 d
v
i on Vp,•.

We define operators bh : Vp,q → Vp−1,q, b
v : Vp,q → Vp,q−1, B

h : Vp,q → Vp−1,q, B
v : Vp,q →

Vp,q+1 by the formulae

bh =

p∑
i=0

(−1)idhi Bh = (1− (−1)p+1th)ch(b′)hch

(
p∑

i=0

(−1)ip(th)i
)

bv =

q∑
i=0

(−1)i+pdvi Bv = (−1)p(th)p+1(1− (−1)q+1tv)cv(b′)vcv

(
q∑

i=0

(−1)iq(tv)i
)

Satisfy

(bh)2 = 0 (bv)2 = 0 (Bh)2 = 0 (Bv)2 = 0

Bvbh + bhBv = 0 BvBh +BhBv = 0 bvBh +Bhbv = 0 bhbv + bvbh = 0

bhBh +Bhbh +Bvbv + bvBv = 1− (th)p+1(tv)q+1

Remark A.4.7 We see that the relations described above can also be represented by
the following diagram

Vp,q+2

Vp−1,q+1 Vp,q+1
bh
oo

Bv

OO

Bh
//

bv

		

Vp+1,q+1

Vp−2,q Vp−1,q
bh

oo

Bv

OO

Bh

++

bv

��

Vp,q
bh

ll

Bv

JJ

Bh
,,

bv

		

Vp+1,q

bh
kk

Bv

OO

Bh
//

bv

��

Vp+2,q

Vp−1,q−1 Vp,q−1bv
oo

Bv

JJ

Bh
//

bv

��

Vp+1,q−1

Vp,q−2

in that the sum of all the ways to end up in Vp,q equal 1− (th)p+1(tv)q+1, while the sum
of the ways to end up in Vp,q+2, Vp+1,q+1, Vp+2,q, Vp+1,q−1, Vp,q−2, Vp−1,q−1, Vp−2,q and
Vp−1,q−1 are zero. In particular, if (V•,•, d

h, th, dv, tv) is cylindrical, this is essentially the
same thing as saying that (bh+bv+Bh+Bv)2 = 0. This leads to the following important
result.
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Corollary A.4.8 If, in the situation of the previous proposition, V•,• is cylindrical, then
(TotC•,•(V ), bh + bv, Bh +Bv) is a mixed complex.

Remark A.4.9 We can also normalize these double complexes. Indeed, setting

Dh
p,q = sh0Cp−1,q + · · ·+ shp−1Cp−1,q

and
Dp,q = Dh

p,q + sv0Cp,q−1 + · · ·+ svq−1Cp,q−1

we can show that D•,• is an acyclic double subcomplex of (V•,•, b
h, bv). To see this

first note that it is obviously true for Dh
•,•, since it consists of the degeneracies of the

horizontal simplicial spaces V•,q. In particular (Dh
•,•, b

h) is acyclic, and by a spectral
sequence argument so is (Dh

•,•, b
h + bv).

Then if we consider the short exact sequence

0→ Dh
•,• → D•,• → D•,•/D

h
•,• → 0

we note thatD•,•/D
h
•,• is isomorphic to the degeneracies of the verticular simplicial spaces

V•,•/D
h
•,• and hence similar to the above it is acyclic. In particular we can conclude that

D•,• is acyclic with respect to bh + bv, and hence the quotient map V•,• → V•,•/D•,• is a
quasi-isomorphism.

What rests is seeing how (C•(diag(V )), b, B) and (Tot(C•,•(V )), bh + bv, Bh + Bv)
compare. In the next section we will see that they are quasi-isomorphic.

A.5 The Eilenberg-Zilber Theorem

To compare (C•(diag(V )), b) and (Tot(C•,•(V )), bh + bv) we discuss the Eilenberg-Zilber
Theorem, which shows that they are homotopy equivalent.

So let us fix a bisimplicial vector space (V•,•, d
h, sh, dv, sv). Following [We94, 8.5.4],

we write down collections of maps EZp,q : Vp+q,p+q → Vp,q and∇p,q : Vp,q → Vp+q,p+q which
will become inverse quasi-isomorphisms.

EZp,q = dhp+1 · · · dhp+q · (dv0)p

∇p,q =
∑

σ∈Sh(p,q)

(−1)σshσ(p+q)−1 · · · shσ(p+1)−1s
v
σ(p)−1 · · · svσ(1)−1

here Sh(p, q) is the set of those permutation σ of the set {1, ..., p+ q} such that σ(1) <
· · · < σ(p) and σ(p+ 1) < · · · < σ(p+ q).

Following [Re00, Thm 3.1], we also write down a map h : Vn,n → Vn+1,n+1 that will
induce the homotopy between ∇EZ and the identity. We set h : V0,0 → V1,1 to be zero,
and for n > 0 define h : Vn,n → Vn+1,n+1 by

h =
n−1∑
q=0

n−q−1∑
p=0

∑
σ∈Sh(p+1,q)

(−1)n(−1)σsvσ(p+q+1)+n · · · svσ(p+2)+nd
v
n−q+1 · · · dvn·

· shσ(p+1)+n · · · shσ(1)+nd
h
n−p−q · · · dhn−q−1
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where n = n− p− q − 1.

The Eilenberg-Zilber Theorem now says that these 3 maps encode enough information
to make diagV• and TotV•,• quasi-isomorphic.

Theorem A.5.1 (Eilenberg-Zilber) [EZ53] The maps EZ, ∇ and h satisfy the fol-
lowing properties:

� EZ: (diagV•, b)→ (TotV•,•, b
h + bv) is a chain map

� ∇ : (TotV•,•, b
h + bv)→ (diagV•, b) is a chain map

� EZ, ∇ and h descend to maps between the normalized complexes induced by diagV•
by V•,• respectively

� As maps between the normalized complexes, EZ, ∇ and h satisfy

– EZ∇ = 1

– ∇EZ = 1 + bh+ hb

In particular EZ and ∇ are quasi-inverse quasi-isomorphisms in both the unnormalized
and normalized settings.

Proof. The bullet-points can all be proven using explicit computations with the bisim-
plicial identities. As for the last sentence: by the fact that in the normalized setting
EZ and ∇ are inverse homotopy equivalences, we now that they are quasi-inverse quasi-
isomorphisms in the normalized setting, and by looking at the diagram

diagV•
EZ //

≃
��

TotV•,•

≃
��

∇ // diagV•

≃
��

(diagV•)norm
EZ
≃
// Tot(V•,•)norm

∇
≃
// (diagV•)norm

we see that the same holds in the unnormalized setting.

Next, we want to jazz this up to the cyclic situation, and for this we refer to work by
Khalkali and Rangipour [KR04] which does this for us. They show that the requirements
of Example A.2.2 are satisfied, meaning that

EZBSh = Bh +Bv

and

EZ(Bh)iBSh = 0

for i ≥ 1. The result that we will use is then as follows.
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Theorem A.5.2 (Generalized cyclic Eilenberg-Zilber Theorem) [KR04, Thm
3.1]
For (V•,•, d

h, sh, th, dv, sv, tv) a cylindrical vector space, the map

EZpert = EZ + EZ

(∑
i≥1

(Bh)i

)

defines a quasi-isomorphism

EZpert : (CC•(diag(V )), b+B)
≃−→ ((CTotC)•(V ), bh + bv +Bh +Bv)
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Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 4, pp. 493–527,
DOI: 10.24033/asens.1699

[BGJ95] J. Block, E. Getlzer & J. Jones,
The cyclic homology of crossed product algebras. II. Topological algebras,
J. Reine Angew. Math. 466 (1995), pp. 19–25,
DOI: 10.1515/crll.1995.466.19

[BGV92] N. Berline, E. Getzler & M. Vergne, Heat kernels and Dirac operators,
Grundlehren der mathematischen Wissenschaften, 298. Springer-Verlag, Berlin, 1992,
ISBN: 3-540-53340-0

[Bl17] A. Blom,
Cyclic Theory of Lie Algebroids,
PhD Thesis, University of Amsterdam, 2017,
ISBN: 978-94-028-0527-7

[Bl85] P. Blanc,
Homologie, groupes Extn, représentations de longueur finie des groupes de Lie,
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Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds,
Adv. Math. 387 (2021), Paper No. 107792,
DOI: 10.1016/j.aim.2021.107792

[Mack05] K. Mackenzie,
General theory of Lie groupoids and Lie algebroids,
London Mathematical Society Lecture Note Series, 213. Cambridge University Press,
Cambridge, 2005,
DOI: 10.1017/CBO9781107325883

[Mack87] K. Mackenzie,
Lie groupoids and Lie algebroids in differential geometry,
London Mathematical Society Lecture Note Series, 124. Cambridge University Press,
Cambridge, 1987,
DOI: 10.1017/CBO9780511661839

[Me16] J. Mestre,
Differentiable stacks: stratifications, measures and deformations,
PhD Thesis, Utrecht University, 2016,
ISBN: 978-90-363-6491-8

[MM03] I. Moerdijk & J. Mrčun,
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Samenvatting

Equivariante theorie van Lie groepöıden vanuit het perspectief
van niet-commutatieve meetkunde

In dit proefschrift beschrijven we verbanden tussen de equivariante theorie van Lie
groepöıden en de niet-commutatieve meetkunde van de convolutie algebra.

Lie groepöıden zijn objecten die symmetrieën van een ruimte beschrijven. Ze zijn een
generalisatie van Lie groepen in de volgende zin: Lie groepen beschrijven symmetrieën die
globaal op de ruimte toe te passen zijn, terwijl Lie groepöıden symmetrieën beschrijven
die plaatsafhankelijk zijn.

Deze objecten zijn interessant vanwege hun toepassingen in de natuurkunde. Het
bestaan van oplossingen van een natuurkundig systeem kan worden aangetoond of on-
tkracht via de meetkundige eigenschappen van de ruimte waarop het systeem leeft. In
het geval van een symmetrie waaronder het systeem hetzelfde blijft kan de ruimte waarin
het systeem opgelost dient te worden verkleind worden. Als voorbeeld kunnen we kijken
naar de zwaartekracht die een vast punt uitoefent op een deeltje dat rond het vaste punt
draait. Dit systeem is invariant onder rotaties, en in praktijk is de relevante vergelijking
die opgelost dient te worden de vergelijking voor de afstand tussen het deeltje en het
vaste punt.

In deze gedachtelijn zijn we gëınteresseerd in de ‘meetkunde van de ruimte’ die ’in-
variant is onder de symmetrie’. In het geval van een werking van een Lie groep op een
ruimte is dit iets wat we redelijk goed snappen, en in dit proefschrift proberen we de
ideeën hierover te generaliseren naar Lie groepöıden.

Niet-commutatieve meetkunde is een wiskundige theorie die probeert meetkundige ideeën
over ruimtes te herformuleren in termen van algebräısche eigenschappen van de ‘gladde
functies’ (of ‘observabelen’) op de ruimte. Voorbeelden van meetkundige informatie die
zo verkregen kan worden is het ‘aantal gaten’, waarbij de lijn geen gaten heeft, de cirkel
een ‘1-dimensionaal gat’ en de holle bol een ‘2-dimensionaal gat’. Het is verbazing-
wekkend dat dit soort informatie te verkrijgen is uit puur algebräısche procedures, en
als we dit feit omdraaien kunnen we praten over ‘meetkundige eigenschappen van een
algebra’ door dezelfde procedures uit te voeren.

Als we deze ideeën willen toepassen op natuurkundige systemen met symmetrieën
zien we dat het oplossen van een symmetrie ook een algebräısch equivalent heeft. De
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stap die we maken naar een makkelijkere ruimte via de symmetrie (in het voorbeeld
van het draaiende deeltje is dit de stap die we maken van ‘plaats’ naar ‘afstand’) is ook
te beschrijven via de ‘convolutie algebra’ van de symmetrie: dit is een algebra die een
combinatie is van de gladde functies en de werking die de symmetrie op deze gladde
functies heeft. Dit betekent dat we de reductie ook kunnen doen in gevallen waar de
symmetrie zo ingewikkeld is, dat de ‘makkelijkere ruimte’ ingewikkeld is. Belangrijker is
dat dergelijke convolutie algebras ook bestaan voor symmetrieën die beschreven worden
door Lie groepöıden, niet alleen voor symmetrieën beschreven door groepen.

De conclusie is dat we de niet-commutatieve meetkunde van dergelijke convolutie al-
gebras willen begrijpen, en dat is de wiskundige inhoud van dit proefschrift. We beschri-
jven verbanden tussen verschillende wiskundige eigenschappen van een Lie groepöıde en
de niet-commutatieve meetkunde van de convolutie algebra, met als doel een volledig
beeld te scheppen van deze niet-commutatieve meetkunde.

In het eerste deel van dit proefschrift beschrijven we een verband tussen deformaties
van de groepöıde -dat zijn ‘kleine veranderingen’ die je kan doen aan de groepöıde- en
de niet-commutatieve meetkunde van de convolutie algebra. In het tweede deel bekijken
we het geval van symmetrieën beschreven door een groep, en zien we hoe het verband
tussen de convolutie algebra en de ‘meetkunde van de ruimte die invariant is onder de
symmetrieën’ precies werkt. In het laatste stuk behandelen we de theorie van infinites-
imale symmetrieën, omdat resultaten voor symmetrieën en infinitesimale symmetrieën
veel wisselwerking hebben.



Abstract

Equivariant theory of Lie groupoids from the perspective of non-
commutative geometry

In this dissertation we describe connections between the equivariant theory of Lie groupoids
and the non-commutative geometry of the convolution algebra.

Lie groupoids are objects that encode symmetries of a space. They are a gener-
alization of Lie groups in the following sense: Lie groups describe symmetries that are
globally defined on the space, while Lie groupoids describe symmetries whose application
is place-dependent.

These objects are interesting because of their applications in physics. The existence
of solutions to a physical system can be proven or disproven by exhibiting geometric
properties of the space on which the system is applied. When there is a symmetry under
which the system is invariant, you can shrink the space on which one needs to solve the
system by factoring out the symmetry. As an example, we can look at a fixed source that
exercises a gravitational force on a particle flying around it. This system is invariant
under rotation, and in practice the only relevant equation that on needs to solve is that
for the distance between the particle and the point source.

In this philosophy we are interested in the ‘geometry of the space that is invariant
under the symmetry’. In case where there is an action of a Lie group on the space, this is
something we understand reasonably well, and in this dissertation we try the generalize
these ideas to Lie groupoids.

Non-commutative geometry is a mathematical theory that tries to reformulate geometric
ideas of spaces in terms of algebraic properties of the ‘smooth functions’ (or ‘observables’)
of the space. Examples of geometric information that can be obtained in this way is the
‘number of holes’, where a line has no holes, a circle has a ‘1-dimensional hole’ and the
sphere has a ‘2-dimensional hole’. It is an astounding fact that this kind of information
is obtainable purely using algebraic procedures, and reversing this fact we can talk about
‘geometric properties of an algebra’ by preforming these procedures.

If we want to apply these ideas to physical systems with symmetries we see that
factoring out the symmetry has an algebraic counterpart. The step that we make to an
easier space by factoring out (in the example of the orbiting particle this is the step from
‘place’ to ‘distance’) can also be described by the ‘convolution algebra’ of the symmetry:
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this is an algebra that combines the smooth function of the space and the action the
symmetry has on these smooth functions. This means that we can do the reduction,
even when the symmetry is so complicated that the ‘easier space’ is complicated. More
importantly, such convolution algebras also exist for symmetries that are described using
Lie groupoids, not just for symmetries defined by groups.

The conclusion is that we want to understand the non-commutative geometry of such
convolution algebras, and that is the mathematical content of this dissertation. We
described connections between various mathematical properties of a Lie groupoid and
the non-commutative geometry of the convolution algebra, with the goal to sketch a
complete picture of this non-commutative geometry.

In the first part of this dissertation we describe a connection between deformations
of the groupoid -those are ‘small changes’ one can make to the groupoid- and the non-
commutative geometry of the convolution algebra. In the second part we look the case of
symmetries described by groups, and look at how the connection between the convolution
algebra and the ‘invariant geometry of the space’ really works. In the last part we
treat the theory of infinitesimal symmetries, in part because results for symmetries and
infinitesimal symmetries have a lot of interplay.
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