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Abstract

The overarching topic of this thesis is double parton scattering (DPS), which describes
the situation when two individual hard scattering reactions occur in a single hadron-
hadron collision. In some regions of phase space DPS may give sizeable contributions
to the production of multi-particle final states and thus be an important background to
single parton scattering (SPS). Not only this, but DPS is also an interesting phenomena
in its own right, as it gives insight into the correlations of partons inside of hadrons.
Therefore a theoretical description of such processes from first principles is required.
Such a prescription is obtained in the form of a factorisation theorem akin to the one
known from SPS, with a central building block being the double parton distributions
(DPDs). However, these DPDs are presently basically unknown as experimental data is
still lacking.

One of the few general theoretical constraints for DPDs are the number and momentum
sum rules proposed by Gaunt and Stirling. In chapter 3 of this thesis a proof is presented
that the DPD sum rules are valid at all orders in the strong coupling for renormalised
distributions. As by-products of this proof the all order form of the inhomogeneous
evolution equation for momentum space DPDs can be derived and it can be shown
how the inhomogeneous term in this equation is related to the contribution of a short
distance 1 ! 2 splitting to the DPDs. It can furthermore be shown that the 1 ! 2
evolution kernels in the inhomogeneous term fulfil number and momentum sum rules
closely resembling the ones for DPDs.

In chapter 4 the sum rules considered in chapter 3 are used to construct improved
position space DPD models. To this end it is first shown how position space DPDs
can be matched onto the momentum space DPDs for which the sum rules have been
shown to be valid. Following this an initial DPD model consisting of an intrinsic part
and a contribution from the perturbative 1 ! 2 splitting is iteratively refined in order
to obtain the best possible agreement with the DPD sum rules. In particular, this
highlighted that a good agreement with the momentum and equal flavour number
sum rules is not possible without taking into account the 1 ! 2 splitting contribution.
Finally the dependence of the agreement with the sum rules on the renormalisation
scale and the cut-off scale introduced by the matching onto momentum space DPDs is
investigated.

As the 1 ! 2 splitting contribution has been shown to be quite important for DPS it is
extensively studied in chapter 5. In particular, the next-to-leading order (NLO) expres-
sion for this splitting is the only missing quantity required for NLO DPS calculations.
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Therefore this splitting is calculated at NLO in perturbation theory for unpolarised
colour singlet DPDs in all partonic channels using state of the art techniques. From this
momentum and position space 1 ! 2 splitting kernels as well as the 1 ! 2 evolution
kernels needed in the inhomogeneous evolution equation of momentum space DPDs
are extracted at NLO. As a cross-check for the correctness of the results the agreement
of the 1 ! 2 evolution kernels with the sum rules derived in chapter 3 is explicitly
verified. Finally various kinematic limits of the momentum space splitting kernels and
the evolution kernels are discussed.
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1. Introduction

One of the great successes of physics in the 20th century was the establishment of
the Standard Model of particle physics (SM) as the theory of the known microscopic
interactions in a combined effort of theoretical and experimental particle physicists.
Within the framework now known as the SM the interactions of elementary particles
via the fundamental forces are on one hand described by the electroweak theory which
is a unification of the theories describing the electromagnetic interaction – Quantum
ElectroDynamics (QED) – and the weak interaction – Quantum FlavourDynamics (QFD)
– responsible for radioactive decays, and on the other hand by the theory of strong
interactions – Quantum ChromoDynamics (QCD) – governing how quarks interact to
form hadrons, while gravitation is completely neglected in the SM. Incorporating a
quantum theory of gravitation that is compatible with general relativity into the SM
is one of the most important steps towards a unified description of the fundamental
interactions. Nevertheless, even without this1 the SM has proven remarkably successful
in predicting experimental results, with its latest and probably best known (at least to
the general public) success being the discovery of the Higgs boson at the Large Hadron
Collider (LHC). The existence of this elusive particle had been predicted already in
the 1960’s as a fundamental building block of the SM and its experimental observation
was celebrated as the completion of the SM. However, the failure to account for the
effects of gravitation is not the only weakness of the SM as it also fails to explain the
observed matter-antimatter asymmetry as well as the existence of dark matter and dark
energy. Phenomena associated with these – and other – things not explained by the
SM are referred to as beyond Standard Model (BSM) physics and are a very active
field of research within the particle physics community with great experimental efforts
invested in the observation of such phenomena. Despite this so far no direct evidence
of BSM physics has been detected, suggesting that deviations from the SM predictions
are – at currently accessible energies – very small. This implies that not only increased
experimental accuracy and higher collision energies are required in order to discover
BSM effects, but also the precision of theoretical predictions has to be pushed further.

Currently the largest uncertainties are associated with predictions regarding the strong
interaction, on one hand due to the fact that the coupling constant of the strong
interaction is comparably large, and on the other hand because calculations within QCD
tend to be quite a bit more involved than for example in QED such that calculations of
higher order terms in the perturbative expansion tend to become cumbersome. Besides

1The reason for this is that at the energies – and thus also distances – probed at present day colliders
gravitation can be neglected compared to the other fundamental forces.
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1. Introduction

this, most QCD calculations and event generators only take leading power contributions
into account while the full plethora of possible (power suppressed) QCD effects is not
taken into account in a systematic manner. One example are so called multiple partonic
interactions (MPIs) which can contribute to the production of multiple hard final states.
Consider to this end the simplest MPI reaction, namely double parton scattering (DPS),
which is also the largest of the MPI contributions. The typical assumption in hadron-
hadron collisions is that the final state with an associated hard scale Q is produced
in a single parton scattering (SPS) event where one parton from one of the colliding
hadrons scatters of a single parton in the second colliding hadron, while the remaining
partons do not partake in any hard scatterings and fly off as beam remnants. In the case
that the final state can be divided into two subsets A and B with associated hard scales
QA and QB the final states can furthermore be produced by so called double parton
scattering (DPS) events where two partons from each colliding hadron enter distinct
hard scatterings. Experimental evidence of DPS has already been found in the 1980’s
and 1990’s as can be seen in references [1–5] and also more recently at the LHC as
evidenced by the results in references [6–18]. In particular it is expected that especially
after the rather recent energy upgrade at the LHC and even more so at possible future
higher energy hadron colliders the rate of MPI events will further increase as will
be discussed in a bit. A generalisation of the situation with two distinct subsets in
the final state to the case of multiple distinct subsets in the final state which can be
produced by MPIs arises naturally following the rationale for DPS above. However,
when integrated cross sections are considered already DPS is is power suppressed
compared to SPS by L2/Q2 where L is a generic hadronic scale while Q is the smaller
of the two hard scales QA and QB. Despite of this suppression DPS can nevertheless
compete with SPS in some cases where the production of the final states via SPS
involves small coupling constants or higher orders in the coupling constant, with the
most well known of these probably being the production of a same sign WW pair
as described in references [19–24]. When cross sections differential in the transverse
momenta of the final states are considered it has been shown in references [25–28]
that for small transverse momenta of the final states DPS contributes at leading power,
comparable to the SPS contributions. In references [29–31] is has furthermore been
pointed out that DPS gives sizeable contributions to the overall cross sections in the
case of a large rapidity separation between the two subsets A and B in the final state.
As mentioned above, the relative importance of DPS compared to SPS is expected
increase with increasing collision energy. This can be understood if one considers that
on one hand with increasing collision energy smaller and smaller momentum fractions
of the constituent partons are probed while on the other hand the DPS cross section is
expected to scale like the fourth power of a parton distribution whereas SPS scales like
the second power of a parton distribution. Since parton distributions exhibit a strong
growth for small momentum fractions this leads to an enhancement of DPS relative to
SPS. While the inclusion of MPIs and in particular DPS in perturbative cross section
calculations is required in order to improve theoretical precision, MPIs are interesting
to study in their own right, as they give access to a detail picture of hadron structure

2



that is not accessible in SPS reactions. In particular the study of MPI processes makes
it possible to obtain information about correlations between the partons making up
hadrons as well as their distribution in transverse momentum space.

A systematic description of MPIs from first principles requires the extension of the well-
known SPS factorisation theorems to the case of multiple hard interactions, giving rise
to multi parton distributions in close analogy to the regular single parton distributions
(PDFs). First steps in this direction were already taken in the 1980’s when physicists
first gained interest in MPIs as evidenced by references [32, 33] and a more stringent
theoretical treatment was developed more recently with a particular focus on DPS as this
is naturally the leading of the MPI contributions. In recent years quite some progress
has been made towards a complete proof of factorisation for DPS in close analogy to the
proofs of SPS factorisation theorems, especially in references [26, 34–36]. Furthermore a
framework has been developed in reference [35] that allows for a clean separation of
SPS and DPS contributions in regions of phase space where they overlap. At this point
the theoretical framework for DPS calculations – even at higher orders – has reached a
level of sophistication comparable to the SPS factorisation theorems. Nevertheless it is
still not quite possible to perform DPS cross section calculations from first principles
as a crucial ingredient in the DPS factorisation formula is still missing – the double
parton distributions (DPDs) which contain the non-perturbative part of the full DPS
cross section. As these DPDs are genuine nonperturbative quantities they cannot be
calculated in perturbation theory and either have to be obtained from experimental
data or using nonperturbative methods like lattice computations. Since DPS signals
are generally small compared to the SPS case and an experimental determination
of DPDs requires huge amounts of data the former is not possible at present and
even though quite a lot of progress has been made regarding the extraction of parton
distributions from lattice data the situation for DPDs is not as favourable there either.
In order to still be able to compute DPS cross sections many physicists resort to what
is known as the DPS pocket formula in which the DPS cross section is factorised into
a product of SPS cross sections divided by a so called effective cross section. Such a
factorised form of the DPS cross section arises when DPDs are approximated by simple
products of PDFs multiplied by a spatial profile function, neglecting even the most
basic correlations of the partons inside a hadron. A possible way to do better than
this approach is to construct more sophisticated DPD models incorporating at least
the most basic correlations. To this end any type of constraint placed upon the DPD
models is valuable input and one possible constraint is the behaviour of the DPDs
at small transverse separation between the two partons. In this regime the DPDs are
dominated by what is referred to as the 1 ! 2 splitting contribution in which the two
partons arise from a short-distance splitting of a single parton. In this limit the DPDs
can be expressed in terms of a convolution of perturbative 1 ! 2 splitting kernels and
regular PDFs. This 1 ! 2 splitting contribution and its effect an DPDs and the DPS
cross section has already been studied extensively in references [25, 26, 28, 35, 37–44]. A
second kind of constraint was proposed by Gaunt and Stirling in reference [45] in the
form of sum rules corresponding to the conservation of quark flavour and momentum

3



1. Introduction

which momentum space DPDs have to fulfil, reaffirming the interpretation of DPDs as
probability densities.

The main aim of this thesis is to gain a better understanding how to model DPDs in a
way that most closely resembles the physical reality. To this end first a brief review of
the underlying theory of QCD is presented in section 2.1 followed by an overview over
the more specific DPS theory in section 2.2 where first the derivation of factorisation
theorems for DPS is discussed in section 2.2.1 before definitions and properties of DPDs
are addressed in section 2.2.2. In their original work on the DPD sum rules Gaunt
and Stirling noted that the sum rules remain valid under LO renormalisation group
evolution, given that they are fulfilled at the initial renormalisation scale. As the DPD
sum rules provide one of the only constraints placed on DPDs it is of utmost importance
to make sure that they are indeed valid in QCD at any scale. A first proof of this using
light-cone wave functions was given in appendix C of reference [46]. However, while
the framework of light-cone wave functions allows to keep track of kinematic and
combinatorial factors, basically recovering the probabilistic parton model interpretation,
the subtleties of renormalisation have not been fully taken into account in the proof
presented in reference [46]. In chapter 3 this will be rectified by a detailed analysis
of the UV singularities in DPDs and the effect of renormalisation on the validity of
the sum rules. In particular it will be shown that the sum rules are indeed valid for
renormalised DPDs to all orders in perturbation theory. Following this analysis the sum
rules – together with the LO expression for the perturbative 1 ! 2 splitting contribution
to DPDs – will be used in chapter 4 to construct a sum rule improved position space
DPD model. To this end the model suggested in reference [35] is used as a starting
point for iterative refinement of this model with help of the sum rules. Following this a
calculation of the 1 ! 2 splitting contribution at NLO will be presented in chapter 5.
The results obtained there are the last missing step towards NLO DPD models and
subsequently also NLO DPS cross section calculations within the framework introduced
in reference [35]. Finally a brief summary of the results obtained in chapters 3 to 5
will be presented in chapter 6 along with a discussion of work in progress and future
directions.
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2. Theory

2.1. Quantum ChromoDynamics

Before moving on to the actual research work of this dissertation, a short introduction
to the underlying theory – Quantum ChromoDynamics (QCD) – is presented in this
section. QCD is the microscopic theory of the so called strong interaction describing
the interactions of quarks and gluons which are bound by this interaction to form
hadrons, for example protons and neutrons which make up everyday matter, but also
more elusive particles like p mesons. Together with the electroweak interaction and the
Higgs mechanism QCD forms the standard model of particle physics (SM) which to
this day is in astonishing agreement with experimental data, despite enormous efforts
to find deviations which are known to exist because of some theoretical flaws within
the standard model. Of the theories making up the standard model QCD is the most
non-trivial one, but as a result of this also the one with the most interesting features.
This is largely due to the fact that the strong coupling constant is comparatively large
and that QCD is a non-abelian gauge theory, leading to self interactions of the force
carrying gluons. In what follows, a short history of the development of QCD – following
loosely the presentation in Collins book on perturbative QCD [47] – will be given, as
this nicely illustrates the remarkable features of the strong interaction.

2.1.1. A brief history of QCD

The first discoveries leading to the development of the theory now known as QCD date
back to the 1950’s when experimental particle physics discovered more and more new
particles in accelerator experiments. In the years following these discoveries theoreti-
cians suggested different ways to explain the observed spectrum of particles, classifying
them according to their measured properties like charge and spin. One of the most
successful of these was Gell-Mann’s eightfold-way introduced in reference [48] which
organized the discovered particles according to their spin and charge quantum numbers
in representations of the SU(3) group and even allowed to predict the existence of the
W� baryon which at this time had not been discovered yet. Building on this Gell-Mann
and, independently, Zweig formulated the quark model in references [49–51] which
assumed that the observed particles were not elemental, but rather made up from
fermionic spin 1

2 particles of (approximately) the same mass called quarks, of which
three different flavours – up (u), down (d), and strange (s) – exist, resulting in the
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2. Theory

observed (approximate) SU(3) symmetry. The particle spectrum can further be divided
into mesons, constituted of two quarks, and baryons, made up from three quarks. As
both mesons and baryons have integer charge it is natural that the quarks should have
fractional charges, namely + 2

3 for the up and �
1
3 for the down and strange quarks. Ex-

plaining the observed particle spectrum, in particular the spin 3
2 D++ baryon, consisting

of three up quarks, required the introduction of an additional quantum number called
colour, taking on three different values, as otherwise the spin-statistics theorem would
forbid the existence of the D++. One major drawback of the quark model was the fact
that, while it was capable of explaining experimental data, the postulated constituents
of the discovered particles could not be observed in experiments which lead to some
scepticism.

A different, less experimentally driven, approach to describe the strong interaction
was that of Yang and Mills who in reference [52] introduced the novel concept of
non-abelian gauge theories, in contrast to the gauge theories existing at that time, in
particular Quantum Electro Dynamics (QED), which were based on abelian gauge
groups. However, a direct application of these non-abelian gauge theories seemed
infeasible at this time – before the advent of the quark model – as it was assumed
that the fields in the Lagrangian of such a theory should correspond directly to the
observed particles which had to be massless in order to maintain gauge invariance,
in contradiction with the observed massive particles. Nevertheless further progress in
this direction was made by Faddeev and Popov who showed how non-abelian gauge
theories can be quantized using generating functionals [53], and finally ’t Hooft and
Veltman proved that these theories are renormalisable [54]. Together with the discovery
that masses could be generated by spontaneous symmetry breaking [55, 56] and the
insight from the quark model this made Yang-Mills theories viable candidates for a
quantum field theory of the strong interaction.

Results of the deep inelastic scattering (DIS) experiments at SLAC where electrons were
accelerated to high energies and fired at protons and neutrons in atomic nuclei making
up a fixed target led to the development of the so called parton model by Feynman [57].
The cross section of such a scattering event can be factorised into a leptonic tensor Lµn

and a hadronic tensor Wµn which can be further decomposed into so called structure
functions. Feynman suggested that hadrons are made up of so called partons which in
DIS can be considered to be free massless particles. The reason for this assumption is
rather intuitive as in the centre-of-mass frame of the collision the hadrons get Lorentz
contracted along the collision axis. On the timescale of the scattering the individual
partons can then indeed be thought of as non-interacting which makes it possible
to neglect the strong interactions and only consider the electromagnetic interactions
described by QED. The cross section can then be described as a product of a partonic
cross section and what is referred to as a parton distribution function (PDF) which is
basically the probability to find a given parton with a given longitudinal momentum
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2.1. Quantum ChromoDynamics

fraction inside a hadron. One remarkable prediction of the parton model is Bjorken
scaling, implying that the structure functions measured in the DIS experiments should
be independent of the momentum transfer Q between the electron and the hadron
which was indeed in pretty good agreement with experimental data. If this Bjorken
scaling were exact it would require the coupling of the strong interaction to tend to
zero in the ultra-violet (UV), and even for the observed approximate Bjorken scaling
the strong interaction should become very weak at high energies, or correspondingly at
small distances.

In 1973 Gross, Wilczek and Politzer showed that for not too many matter fields non-
abelian gauge theories exhibit exactly this behaviour, namely asymptotic freedom [58–
60]. This was the final missing piece for the non-abelian gauge theory suggested by
Fritzsch, Gell-Mann, and Leutwyler as a description of the strong interaction [61, 62] to
be consistent with all the known requirements it should fulfil. Not only did the work by
Gross, Wilczek and Politzer imply that the coupling of the strong interaction decreases
with increasing energies, but also the opposite behaviour for low energies, which could
explain why it seemed to be impossible to detect free quarks. The basic part of the
Lagrangian of the theory now known as QCD has the following form

LQCD =
n f

Â
j=1

y0,j (i /D � m0)y0,j �
1
4

⇣
Fa

0,µn

⌘2
, (2.1)

where the sum over flavours indices includes the three quarks of the quark model – up,
down, and strange – as well as the later discovered charm, bottom, and top quarks and
the gauge invariant derivative /D is given by

/D = gµ
⇣

∂µ + ig0ta Aa
0,µ

⌘
(2.2)

and the gluonic field strength tensor reads

Fa
0,µn = ∂µ Aa

0,n � ∂n Aa
0,µ � g0 fabc Ab

0,µ Ac
0,n , (2.3)

where the y0 and Aa
0,µ are the bare quark and gluon fields, respectively, g0 and m0 the

bare coupling constant and quark masses, ta are the generators of the SU(3), and fabc
are the groups’ totally anti-symmetric structure constants. In practice additional terms
have to be added to the Lagrangian in equation (2.1) according to the Fadeev-Popov
procedure in order to fix the gauge and then subsequently compensate for the gauge
freedom. However, as these terms are not relevant for the arguments in the following
discussion they have been neglected here. So far the Lagrangian has been defined in
terms of so called bare quantities as indicated by the subscript 0 and in the following
subsection the implications of this will be discussed.
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2.1.2. Renormalisation and the running coupling

Taking the theory of QCD as it has been introduced until now and calculating Feyn-
man diagrams one will encounter severe problems as for diagrams containing closed
loops the results are divergent due to the behaviour of the integrand when these loop
momenta become large, that means in the UV region, and the corresponding diver-
gences are therefore termed UV-divergences. Even though these UV-divergences are an
intrinsic feature of the theory described by the Lagrangian in equation (2.1) it is still
possible to construct a theory with physically meaningful quantities and predictions
from it using the fact that non-abelian gauge theories are renormalisable as shown in
reference [54].

As this is a crucial step in any calculation in perturbative QCD a short review of how
this works will be presented here. The basic idea behind renormalisation of quantum
field theories is to define the theory with a UV regulator and make the parameters, like
for example masses and coupling constants, of the theory functions of this regulator
with their dependence chosen such that in the limit where this regulator is removed
the UV divergences cancel. In order to do this the bare fields in the Lagrangian are
expressed in terms of renormalised fields using inverse renormalisation factors1, for
example for the quark and gluon fields

y0 �! Z�
1
2

y y ,

Aa
0,µ �! Z�

1
2

A Aa
µ . (2.4)

These renormalisation factors are – up to finite contributions – fixed by the requirement
that the quantities calculated in terms of the renormalised fields should be finite.
Implementing the consequences of this procedure in perturbation theory is most
conveniently done using a counterterm approach. For this one first has to make the
replacements introduced in equation (2.4) in the bare Lagrangian (2.1) and subsequently
rewrite the resulting renormalised Lagrangian by introducing renormalised masses
and couplings, m and g, and rearrange the terms in such a way that the structure of the
original, bare, Lagrangian is recovered with additional terms identified as counterterms.
Consider as an example the term in the first part of the bare Lagrangian giving rise to
the quark-gluon vertex, that means

Z�1
y Z�

1
2

A g0yta /Aay �! gµ#yta /Aay + yta /Aay

✓
Z�1

y Z�
1
2

A g0 � gµ#

◆
. (2.5)

Here one now has a part containing only the UV-finite renormalised coupling and
fields and the additional counterterm which can be calculated in perturbation theory.

1Some authors use a different convention where the bare fields are given by the renormalised ones
times a renormalisation factor, rather than an inverse renormalisation factor
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2.1. Quantum ChromoDynamics

In equation (2.5) there is, in addition to the dimensionless renormalised coupling, also
a factor µ# which is a characteristic – the renormalisation scale – of dimensional regular-
isation, the most used regularisation method in perturbative QCD calculations and also
the one employed in this thesis. The idea behind this regulator is that divergent loop
integrals are continued to non-integer dimension D = 4 � 2#, where the integrations
can be performed. The dimensional parameter # then takes on the role of the actual
UV regulator as UV divergences manifest themselves as poles in #. The pole structure
of the renormalisation factors is fixed by the requirement that they cancel the poles
corresponding to the UV divergences of the bare theory, whereas the finite part of these
factors is fixed by the choice of a so called renormalisation prescription. One of the
most straight-forward choices is the so called minimal subtraction scheme (MS) where
the renormalisation factors cancel only the poles and have no additional finite parts.
The most common scheme used in QCD calculations is however the modified minimal
subtraction scheme (MS) [63] in which compared to the MS scheme counterterms
contain an additional factor S# for each loop such that a perturbative expansion of the
bare coupling, the renormalisation factors, and so on have the following form

g0 = gµ#

"
1 +

•

Â
n=1

g2nSn
#

n

Â
m=1

Bnm

#m

#
, (2.6)

Z = 1 +
•

Â
n=1

g2nSn
#

M(n)

Â
m=1

Znm

#m , (2.7)

where the order M(n) of the highest pole depends on the quantity being renormalised.
The reason for introducing the factor S# is that there are terms from the angular integra-
tion in D = 4 � 2# dimensions which universally appear in renormalised quantities in
the MS scheme and can be removed by a suitable choice of the factor S#. The standard
choice is

S# =
�
4pe�gE

�# , (2.8)

where gE is the Euler-Mascheroni constant. An alternative definition was proposed by
Collins in reference [47] as

S# =
(4p)#

G(1 � #)
, (2.9)

which gives the same renormalised expressions for quantities with at most one # pole
per loop, as will be explicitly verified in section 5.3.2 up to two loop order.

A remarkable feature of renormalised non-abelian gauge theories is that their renor-
malised coupling runs end exhibits asymptotic freedom, ultimately allowing a pertur-
bative expansion of hard QCD processes. Consider to this end the definition of the bare
coupling in the MS scheme, equation (2.6), which at leading order (LO) is given by

g0 = gµ#


1 �

g2S#

16p2#

✓
11
6

CA �
2
3

TFn f

◆
+O(g4)

�
. (2.10)
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The bare coupling is naturally independent of the renormalisation scale, such that from
equation (2.6) one can deduce the following renormalisation group (RG) equation for
the renormalised coupling

dg
d ln µ2 = �

#g0

2 ∂g0
∂g

. (2.11)

Introducing the abbreviation as =
g2

16p2 = as
4p which is the standard convention2 in the

literature on the topic (see for example reference [64]) one thus finds the following

das

d ln µ2 = �
#g0g

16p2 ∂g0
∂g

, (2.12)

which, using the LO result for g0, equation (2.10), then yields the LO RG equation for
as

das

d ln µ2 = �a2
s

✓
11
3

CA �
4
3

TFn f

◆
N=3
= �a2

s

✓
11 �

2
3

n f

◆
= �a2

s b0 . (2.13)

Here b0 is the LO QCD b function first calculated by Gross, Wilczek, and Politzer in
references [58, 60], which is negative if the theory does not include too many matter
fields (n f  16) which is the case for the strong interaction with its six known quark
flavours. Solving this renormalisation group equation then yields the running strong
coupling constant as

as(µ) =
1

b0 ln µ2

LQCD2

. (2.14)

Solving the RG equation gave rise to the QCD mass scale LQCD below which QCD is
strongly coupled, with an experimentally determined value of around 200 MeV. It is
quite remarkable that even in massless QCD this physically meaningful, dimensionful
quantity emerges. The way the strong coupling runs – that means the fact that it exhibits
asymptotic freedom for large energies – can be explained by the non-abelian nature of
QCD which results in gluon self-interaction. Looking at the QCD Lagrangian (2.1) and
the gluonic field strength tensor (2.3) one immediately can conceive that the additional
fabc term with two gluon fields not present in abelian gauge theories results in 3- and
4-gluon vertices. As a result of this, a colour charge is surrounded by virtual gluon
fluctuations giving rise to an anti-screening effect in contrast to the screening effect
due to virtual fermion-antifermion pairs. If the number of fermions in the theory is not
too large the anti-screening effect due to gluons outweighs the screening effect of the
fermion-anti-fermion pairs, leading to the observed behaviour.

2Note that in the remainder of this thesis a different definition of as will be used, namely as =
as
2p
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2.1. Quantum ChromoDynamics

2.1.3. Factorisation theorems: the backbone of perturbative QCD

It is the property of asymptotic freedom which allows for a perturbative expansion
of cross sections and Greens’ functions in the strong coupling when the associated
energy scales become large enough. However, in a scattering event typically not all
momenta are large enough for this to be the case, since there are always also interactions
between the quarks and gluons inside the probed hadrons where the exchanged
momenta are generally of a hadronic scale where QCD is strongly coupled and thus
non-perturbative.

In order to see how one can nevertheless use perturbation theory to obtain predictions
from first principles in QCD it is useful to look at the parton model. One of the
assumptions in the parton model of DIS is that the constituents of the probed hadron,
the partons, can be treated as quasi-free particles which do not interact strongly on the
timescale of the parton-photon scattering. The reasoning behind this approximation
is that as the hadron is strongly Lorentz contracted in the centre-of-mass frame of the
scattering and the duration of the scattering is negligible compared to the distance
between the individual partons in the transverse direction where the hadron is not
contracted such that they can not interact during the scattering. This makes it possible
to “factorise” the cross section of this process into a product of a “partonic” QED parton-
photon scattering cross section and a parton distribution function (PDF) describing the
probability to find a parton of a given flavour inside the probed hadron with a given
fraction x of its longitudinal momentum. A similar picture applies also to the case of
hadron-hadron collisions where it is again possible to treat the constituent partons
of each hadron as quasi-free based on the arguments given above with the difference
that now the hard interaction is between individual partons from each of the colliding
hadrons scattering off each other. Following the DIS picture the cross section can then
again be factorised into two PDFs – one for each colliding hadron – and a partonic QCD
cross section for the parton-parton scattering which can be calculated in perturbation
theory. While the parton model is of course not full QCD this picture is physically
intuitive and provides the basis for what is referred to as factorisation theorems in
QCD which are a very important tool forming the foundation of most perturbative
QCD cross section calculations.

In a full QCD treatment the situation is naturally more complicated than in the naı̈ve
parton model as now there are several aspects that have to be taken into account,
most prominently the exchange of additional collinear and soft gluons exchanged
between the hard scatterings and the colliding hadrons and between the colliding
hadrons, respectively. How these complications are tackled in deriving a factorisation
theorem will now be illustrated for the example of the Drell-Yan process, that means the
production of a neutral electroweak gauge boson – a photon or a Z boson to be more
precise – from a quark-antiquark scattering as illustrated in figure 2.1, with measured
transverse momentum of the final states. The first step towards a factorisation theorem
for a given process is always to find its leading regions, that means those regions of
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A

B

Figure 2.1.: Graphical illustration of the Drell-Yan process. The two large extended blobs symbolise the
two colliding hadrons, the lower blob the right moving hadron and the upper blob the left
moving hadron respectively. Here and in all following figures of this kind the dashed line
represents the final state cut. On each side of the final state cut a quark from one colliding
hadron annihilates with an antiquark from the other hadron to produce a neutral electroweak
gauge boson indicated by the wavy line. This gauge boson subsequently decays into a dilepton
which is not shown here.

loop momenta which give the leading contribution to the cross section. To this end
the method by Libby and Sterman [65, 66] is employed which makes use of the fact
that, up to normalisation, the cross section depends only on the ratio of the energy and
the masses such that there exists a one-to-one correspondence between the limits of
high energies and vanishing masses. This implies that in order to obtain the leading
behaviour for large energies it suffices to consider the limit of vanishing masses and –
in the case of transverse momentum dependent factorisation – also vanishing transverse
momenta. The leading regions of a process are then those where the loop momenta
are such that the massless propagators become singular resulting in large integrands.
However, the existence of such a massless propagator pole is not a sufficient criterion
for a momentum region to give a leading contribution to the cross section as it may
still be possible to deform the integration contour away from this region which is
always the case unless it is pinched between two adjacent poles on opposite sides
of the real axis such that this would imply picking up the residue of an additional
pole. Finding these leading regions is possible by either using the so called Landau
criterion [67] or using a graphical method by Coleman and Norton [68] which makes use
of the fact that pinch singular points (or in the case of multidimensional loop integrals
pinch singular surfaces) correspond to regions of momentum space where on-shell
propagators correspond to classically allowed scattering processes in position space.
Even the existence of a pinch singularity does not guarantee a leading contribution
from the corresponding momentum region as so far the treatment considered only
the denominator structure of the integrand, while neglecting the numerator which
may, however, compensate the smallness of the denominator in proximity of a pinch
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singularity. Therefore, in order to find the actual leading regions of a process, it is
necessary to perform a power counting analysis for every pinch singularity. Following
this procedure one finds for the Drell-Yan process the following leading subgraphs:

• One hard subgraph producing the electroweak gauge boson on each side of the
final state cut,

• one collinear subgraph for each colliding hadron,
• and finally a soft subgraph,

where individual hard and collinear subgraphs are connected to each other by exactly
one fermion line. In addition to this additional exchange – without power suppres-
sion – of an arbitrary number of longitudinally polarised collinear gluons is possible
between the hard and collinear subgraphs. Gluon exchange between the hard and soft
subgraphs is power suppressed and thus can be neglected, in contrast to the exchange
of longitudinally polarised soft gluons between the collinear and soft subgraphs which
is leading power. Pictorially this structure can be illustrated as shown in figure 2.2. As

B

A

H HS

Figure 2.2.: Illustration of the leading subgraphs of the Drell-Yan process with measured transverse
momenta of the final states (TMD) as found following the procedure outlined above. The
structure corresponds to the list of leading subgraphs above. These subgraphs may – in
addition to the quarks and antiquarks connecting the hard (H) and collinear (A and B)
subgraphs – be connected by an arbitrary number of longitudinally polarised collinear (black)
and soft (yellow) gluons as indicated in the figure.

the name suggests a factorisation theorem makes it possible to factorise, that means
separate, perturbative and non-perturbative contributions to a given process while still
reproducing the overall cross section up to power suppressed corrections. Intuitively
it makes sense to associate the leading subgraphs of a process as the building blocks
of such a factorised form of the cross section and indeed the structure of the leading
regions for the Drell-Yan process is already rather similar to the one suggested by the
parton model picture: The hard subgraphs can be identified as the partonic cross section
while the two collinear subgraphs are naturally interpreted as the PDFs. However, this
still leaves the unanswered question of how to interpret the soft subgraph and the
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arbitrary number of soft and collinear longitudinally polarised gluons which have no
equivalent in the parton model. In the following it will be discussed how these gluons
which obstruct a direct interpretation of the leading subgraphs in vein of the parton
model can be absorbed into the collinear and soft subgraphs, finally resulting in a
factorised expression for the cross section.

In order to detach the collinear gluons from the hard scattering subgraphs the fact that
their momenta are collinear to the incoming hadrons is used. As a consequence of this,
their momentum components exhibit a strong ordering which makes the application
of the so called collinear approximation possible. The result of this approximation is
that the propagators of these gluons are replaced by so called eikonal propagators as
illustrated for the more complicated case of the double parton scattering equivalent of
the Drell-Yan process, referred to as the double Drell-Yan process, in section 3.2.1 of
reference [26]. Ultimately this makes it possible to absorb the collinear gluons into so
called Wilson lines attaching to the quarks and antiquarks entering the hard scattering
subgraphs from the collinear subgraphs as illustrated in figure 2.3. These Wilson lines
are defined as path ordered exponentials of gluon fields, equation (2.23), and serve an
important purpose in the final definition of a parton distribution as they act as gauge
links between the fields in the amplitude and the conjugate amplitude, making the
PDFs gauge invariant as will be discussed in some more detail in section 2.2.2 when a
field theoretic definition of single and double parton distributions will be provided.

Decoupling soft gluons from the collinear subgraphs requires the application of the so
called soft or Grammer-Yennie approximation [69] in combination with appropriate
Ward identities. As outlined in section 3.2.2 of [26] for the double Drell-Yan process
this procedure transforms the soft subgraph with the additional soft gluons into a
vacuum expectation value of Wilson line operators as depicted in figure 2.3. A crucial
requirement for this step is that contributions from gluons in the so called Glauber
momentum region – a subset of the soft momentum region with a momentum scaling
dominated by its transverse component – do not give a leading contribution, that means
that they cancel in the complete cross section up to power suppressed remainders. This
is necessary as in the Glauber region the Grammer-Yennie approximation needed to
decouple the soft gluons and transform them into Wilson lines is not valid.

After these steps the cross section is said to be factorised and its structure can be
illustrated as in figure 2.3 using the notation introduced in [26] for presenting the
properties of Wilson lines. Compared to the parton model picture this factorised
expression still contains an explicit soft factor void of a real physical interpretation in
terms of the parton model and not accessible in experiments. Therefore it would be
desirable to absorb the soft factor into the definitions of parton distributions making it
possible to reconcile the full QCD factorisation theorem with intuitive structure of the
parton model. As discussed in references [47, 70] this is indeed possible by splitting the
soft factor between the two collinear subgraphs in a defined manner which also yields
rapidity finite distributions, an issue neglected , but which will briefly be discussed in
section 2.2.2.
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B

A

H HS

Figure 2.3.: Factorised cross section for the TMD Drell-Yan process. The collinear and soft approximations
– in combination with appropriate Ward identities and a proof that the Glauber momentum
region can be neglected – make it possible to absorb the arbitrary number of longitudinally
polarised soft and collinear gluons into Wilson lines forming the so called soft factor and
acting as gauge links in the PDFs, respectively.

For the SPS Drell-Yan process and its cross-channel equivalents a full proof of the TMD
factorisation theorem exists, see for example the detailed discussion in reference [47].
However, the situation is less straight-forward in the presence of coloured final states
as this in some cases makes it impossible to factorise the colour structure of a given
process, as shown in reference [71]. Fortunately this issue only affects TMD factorisation
and does not arise in collinear factorisation where the cross section is integrated over
the transverse momenta of the final states.

2.2. General double parton scattering theory

Having laid out the basics of QCD in the prior section where a spotlight has been put
on the importance of factorisation theorems for perturbative QCD calculations, paved
the way to delve into the specific theory for double parton scattering. As discussed in
some detail in the introductory chapter multiple partonic interactions (MPIs) – and
in particular double parton scattering (DPS) – may give sizeable contributions to the
overall cross section in some cases such that a sound theoretical treatment of DPS is
needed. How such a theoretical framework can be established in close analogy to the
SPS case will be outlined in the following subsections.
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2.2.1. Factorisation for double parton scattering

Naturally, it makes sense to try and extend the well known factorisation theorems
introduced before to the case of DPS which in fact has been done already in some of
the earliest work on DPS [32]. However, it was only recently that many of the subtleties
in the proof of a factorisation theorem which have been glossed over in the early works
have been addressed. Following the steps outlined in the review of SPS factorisation
– but this time for the double Drell-Yan process (dDY) – one finds basically the same
structure as in the SPS case but now with two hard subgraphs on each side of the final
state cut as illustrated in figure 2.4. Factorisation of the collinear gluons follows the

A

H1 H1

S
H2H2

B

Figure 2.4.: Leading structure of the double Drell-Yan process in analogy obtained using the methods
outlined in section 2.1.3. Note that while the general structure remains similar to the SPS case
illustrated in figure 2.2 now there are two hard subgraphs on each side of the final state cut.

method outlined before and is in some detail discussed in section 3.2.1 of reference [26].
However, actually proving that the dDY cross section can be written in a factorised
form requires some work in the soft gluon sector as it has to be shown that just like
in the SPS case the soft gluons can be decoupled using appropriate Ward identities
which was shown only very recently in reference [36]. In addition to this it also has to
be established that contributions from soft gluons in the Glauber momentum region
cancel in the complete cross section for which the arguments from SPS using light-cone
perturbation theory (LCPT) have to be extended to the situation of double parton
scattering in reference [34]. The result of these steps is that the dDY cross section
can again be factorised as depicted in figure 2.5. Even in the case of colour singlet
production considered here the colour structure of DPS is quite a bit more complicated
than in the SPS case. The reason for this is that for a single parton distribution the
parton on the left-hand side and the one on the right-hand side have to be coupled to a
colour singlet state, whereas in double parton distributions corresponding partons on
the left-hand side and right-hand side are not necessarily coupled to a colour singlet.
While it remains true that overall the left-hand side and the right-hand side of the
final state cut have to combine to a colour singlet state this is no longer true for the
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Figure 2.5.: Factorised cross section for the double Drell-Yan process. The structure is again very similar
to the SPS case with the main difference being the two hard subgraphs on each side and the
fact that instead of collinear subgraphs with one parton leg on each side of the final state cut
identified with a PDF one now has collinear subgraphs with two parton legs on each side of
the case corresponding to DPDs.

individual partons which can now be in higher colour representations, leading to colour
interference distributions as will be discussed in some more detail below.

Even though so far the more general case of transverse momentum dependent fac-
torisation has been considered most of the remainder of this work will be concerned
with collinear factorisation and collinear double parton distributions. However, for
large values of the interparton distance y, transverse momentum dependent double
parton distributions can be matched onto these collinear distributions as discussed in
reference [72]. Since the main topic of this thesis are the double parton distributions –
in particular collinear (colour singlet) distributions – it is instructive to give the form of
the factorisation formula for this case. At leading order, and for colour singlet DPDs,
the factorised collinear cross section is given by

dsAB
DPS

dx1 dx2 dx̄1 dx̄2
=

1
C Â

a1a2b1b2

ŝA
a1b1

(x1 x̄1s, µ2
1) ŝB

a2b2
(x2 x̄2 s, µ2

2)

⇥

Z
d2y 1Fb1b2(x̄1, x̄2, y; µ1, µ2)

1Fa1a2(x1, x2, y; µ1, µ2) , (2.15)

with collinear colour singlet DPDs 1Fa1a2(x1, x2, y; µ1, µ2) and parton level cross sections
ŝA

ab(xx̄s, µ2) where y is the relative transverse distance between partons a1 and a2. In
the above equation C is a combinatorial factor which is equal to 1 of the two observed
final states A and B are different, and equal to 2 if they are indistinguishable. At
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higher orders the simple product of DPDs and partonic cross sections turns into
multiple convolutions in the momentum fractions as can be seen in equation (2.7) of
reference [72]. The reason why here colour singlet DPDs have been chosen is simply
that for these the soft factor reduces to unity and thus does not have to be absorbed
into the definition of the DPDs3 such that even without this additional step the final
structure of the factorised cross section is already evident.

2.2.2. Double parton distributions

As the main topic of this thesis are the double parton distributions appearing first
in equation (2.15) some details about these distributions will be given here, starting
with definitions for bare DPDs (and PDFs) in position and subsequently momentum
space, before discussing how these bare distributions can be renormalised and how the
renormalised distributions then depend on the renormalisation scale.

Definition of bare PDFs and DPDs

Bare, that means unrenormalised, collinear position space DPDs (and PDFs) are most
conveniently defined in terms of proton matrix elements with position and momentum
assignments as shown in figure 2.6:

p p

y +
z1

2
z2

2
y �

z1

2
�

z2

2

k2�
D
2

k1+
D
2

k2+
D
2

k1�
D
2

Figure 2.6.: Assignment of position and momentum arguments in DPDs, momenta are written on top of
the parton lines whereas positions are written at the bottom. Note the momentum mismatch
of D between the amplitude and conjugate amplitude, that means to the left and right of the
final state cut, indicated by the dashed line. The variables D and y are Fourier conjugates just
as are the ki’s and zi’s.

fB,a1(x) = (x1 p+)�n1

Z dz�1
2p

ei x1z�1 p+
h p | Oa1(0, z1) | pi

��
z+1 =0 ,z1=0 , (2.16)

Fus,ii0 jj0
B,a1a2

(x1, x2, y) = (x1 p+)�n1 (x2 p+)�n2 2p+
Z

dy�
dz�1
2p

dz�2
2p

ei(x1z�1 +x2z�2 ) p+

⇥ h p | Oii0
a1
(y, z1)O

jj0
a2 (0, z2) | pi

��
z+1 =z+2 =y+=0 ,z1=z2=0 , (2.17)

3How this is done for the higher colour representations is discussed in reference [72].
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where the value of the powers ni depends on the type of parton ai and one has ni = 1 for
the case that ai is a gluon while ni = 0 when ai is a quark or antiquark and ni = �1 if
the considered parton is a scalar which will be the case in section 3.3. As is appropriate
for reactions with a preferred axis like scattering events at a particle collider so called
light-cone coordinates – defined as v± = (v0 ± v3)/

p
2 and v = (v1, v2) – have been

used here. The superscript us denotes that the DPDs are unsubtracted, implying that
the soft factor has not yet been taken into account. When this is not relevant, or in the
colour singlet sector where the soft factor is just unity, this superscript will be neglected.
In the above definition i, i0 and j, j0 are the colour indices of the legs in figure 2.6. As
mentioned above there is also the possibility that corresponding partons in a DPD on
the left- and right-hand side of the final state cut are not coupled to a colour singlet.
It is therefore instructive to introduce colour projectors which make it possible to
decompose a full DPD into its different colour contributions. Following the discussion
in section 2.3 of reference [26] the individual parts are obtained by applying suitable
projection operators onto the full DPD, that means

RFa1a2 = Pii0 jj0
R Fii0 jj0

a1a2 . (2.18)

In order to distinguish between colour indices in the fundamental and those in the
adjoint representation i and j will be used to represent the fundamental representation
while for the adjoint representation a and b will be used. For the case when the
indices are in the fundamental representation, that means for quark-quark DPDs, the
corresponding projectors are

Pii0 jj0
1 = dii0djj0 ,

Pii0 jj0
8 =

2N
p

N2 � 1
ta
ii0 t

a
jj0 , (2.19)

projecting the pairs ii0 and jj0 onto colour singlet and octet, respectively. For the case
of gluon-gluon distributions where the indices are in the adjoint representation the
corresponding projectors read

Paa0bb0
1 = daa0dbb0 ,

Paa0bb0
A =

p
N2 � 1

N
f aa0c f bb0c ,

Paa0bb0
S =

N
p

N2 � 1
N2 � 4

daa0cdbb0c ,

Paa0bb0
10 =

2
p

10

✓
dabda0b0 � dab0da0b �

2
3

f aa0c f bb0c
� i
⇣

dabc f a0b0c + f abcda0b0c
⌘◆

,

Paa0bb0
27 =

4
p

27

✓
dabda0b0 + dab0da0b �

1
4

daa0dbb0 �
6
5

daa0cdbb0c
◆

, (2.20)

where A and S denote the antisymmetric and symmetric octets, respectively, while 10
and 27 denote the decuplet and 27et, specific to SU(3). Finally one needs in addition to
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this projectors for the distributions where both representations are mixed, that means
for quark-gluon distributions. In this case the projectors onto colour singlet as well as
symmetric and antisymmetric octet are given by

Pii0bb0
1 = dii0dbb0 ,

Pii0bb0
A = i

p
2 tc

ii0 f bb0c ,

Pii0bb0
S =

s
2N2

N2 � 4
tc
ii0d

bb0c . (2.21)

The normalisation used here is the one employed in section 2.3 of reference [26] as op-
posed to the one in section 4 of reference [72]. With this the double parton distributions
can be understood as vectors in colour space, while the soft factor which is missing in
equation (2.15) is a matrix in colour space, tying the two DPDs together. The reason
why the soft factor is absent in the factorisation formula above, equation (2.15), is that
for collinear colour singlet distributions the corresponding soft factor simply reduces
to unity, which is no longer the case when going to higher colour representations. In
order to still obtain a factorisation formula akin to the one presented above for the
colour singlet sector it is necessary to absorb the soft factor into the definition of the
double parton distributions as illustrated in reference [72]. How exactly this is achieved
is not important here as the following discussion is widely independent of this issue as
only colour singlet distributions are considered. From now on it will be understood
that DPDs have been projected onto a given colour structure using the appropriate
projectors such that the colour indices can be neglected. It should also be pointed
out that both superscripts present in the definition of the bare DPD are absent in the
definition for the collinear PDF as there the two parton legs are always coupled to a
colour singlet and the soft factor is just a factor of 1.

In the definitions in equations (2.16) and (2.17) the twist-two operators Oii0
a are the

same for PDFs as they are for DPDs and are for unpolarised partons (which this thesis
deals with) given by

O
ii0
q (y, z) =

1
2

q̄j0
⇣

y �
z
2

⌘ h
W†

⇣
y �

z
2

; v
⌘i

j0i0
g+
h
W
⇣

y +
z
2

; v
⌘i

ji
qj
⇣

y +
z
2

⌘
,

O
ii0
q̄ (y, z) = �

1
2

q̄j0
⇣

y +
z
2

⌘ h
W†

⇣
y +

z
2

; v
⌘i

j0i0
g+
h
W
⇣

y �
z
2

; v
⌘i

ji
qj
⇣

y �
z
2

⌘
,

O
aa0
g (y, z) = G+i0,b0

⇣
y �

z
2

⌘ h
W†

⇣
y �

z
2

; v
⌘i

b0a0
dii0
h
W
⇣

y +
z
2

; v
⌘i

ba
G+i,b

⇣
y +

z
2

⌘
,

Of(y, z) = f
⇣

y �
z
2

⌘
f
⇣

y +
z
2

⌘
. (2.22)

In the definition of the gluon operator Oaa0
g the superscript indices i and i0 are transverse

momentum indices and are understood to be summed over in the case of unpolarised
distributions considered here. Compared to the most naı̈ve parton model inspired
operators containing only quark and gluon field strength operators the definitions of
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the twist-two operators above contain so called Wilson lines which are path ordered
exponentials of gluon fields A, defined as

W(x; v) = P exp


ig
Z •

0
dl vAa(x � lv) ta

�
, (2.23)

where P implies path ordering and v is the direction while x is the position at which
the Wilson line originates. Without these Wilson lines the twist-two operators and
thus also the resulting single and double parton distributions would not be gauge
invariant quantities. However, the Wilson lines are not introduced by hand in order to
obtain gauge invariant distributions, but rather arise naturally from the factorisation of
collinear gluons outlined in section 2.1.3.

In the following chapters mostly momentum space DPDs will be considered which are
– at least in the case of unrenormalised distributions – obtained from a D � 2 = 2 � 2#-
dimensional Fourier transformation of the position space distributions, that means

FB,a1a2(x1, x2, D) =
Z

dD�2y eiyDFB,a1a2(x1, x2, y) . (2.24)

In the next subsection where renormalisation of the bare distributions is treated it will
become clear why such a simple relation no longer holds for renormalised distributions.
The arguments in chapters 3 and 5 rely on the property that bare DPDs as well as bare
PDFs can be expressed in terms of bare momentum space Green’s functions which
in turn can be calculated from Feynman diagrams. To this end one defines the bare
momentum space Green’s functions as

GB,a1(k1) =
Z

dDz1 eik1z1h p |Oa1(z1)| pi ,

G
ii0 jj0
B,a1a2

(k1, k2, D) =
Z

dDz1 dDz2 dDy ei(k1z1+k2z2�yD)
h p |Oii0

a1
(y, z1)O

jj0
a2 (0, z2)| pi , (2.25)

From these the bare PDFs and DPDs are then obtained in the following way:

fB,a1(x1) = (x1 p+)�n1

Z dk�1 dD�2k1

(2p)D GB,a1(k1) , (2.26)

FB,a1a2(x1, x2, D) =

"
2

’
i=1

(xi p+)�ni

Z dk�i dD�2ki

(2p)D

#
2p+

Z dD�

2p
GB,a1a2(k1, k2, D) .

(2.27)

Renormalisation and evolution of DPDs

As mentioned already in the previous section the PDFs and DPDs defined so far are
UV divergent due to short distance singularities of the twist-two operators. It is thus
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necessary to renormalise these divergences in order to obtain UV-finite distributions.
Renormalised distributions are obtained from the bare ones as convolutions with
appropriate renormalisation factors. To this end it makes sense to introduce shorthand
notations for convolutions [73] and discuss some of their properties as some arguments
in the upcoming chapters require the use of multiple convolutions which would
otherwise introduce quite a clutter of notation.

Convolution integrals. As DPDs are naturally functions of two momentum fraction
arguments whereas PDFs, DGLAP splitting kernels, and renormalisation factors are
typically functions of a single momentum fraction argument this gives rise to different
types of convolutions. Therefore a shorthand notation is introduced which makes it
possible to give these different convolutions without having to give explicit momentum
fraction arguments. To this end let A, B, and C be functions of a single momentum
fraction whereas D depends on two momentum fraction arguments. For the standard
convolution of two single argument functions A and B the usual Mellin convolution is
used, that means

A ⌦ B =

1Z

x

dz
z

A
⇣ x

z

⌘
B(z) . (2.28)

Similarly one can then define the following notation for the convolution of a function
A with a function D with respect to the first momentum fraction argument4

A ⌦
1

D =

1�x2Z

x1

dz
z

A
⇣ x1

z

⌘
D(z, x2) . (2.29)

Here the integration boundaries are determined by the support properties of the
involved functions as for the case that the function A is a PDF (or a single momentum
fraction argument splitting kernel or renormalisation factor) one has A(x) = 0 for
x < 0 and x > 1. If the two momentum fraction function D is a DPD (or a 1 ! 2
splitting kernel or renormalisation factor) then D(x1, x2) = 0 for x1 < 0, x2 < 0 and
x1 + x2 > 1. The convolution with respect to the second momentum fraction is then
defined analogously and denoted by a 2 set under the convolution sign. For subsequent
convolutions with respect to the first and second momentum fraction one thus obtains

A ⌦
1

B ⌦
2

D = A ⌦
1
[B ⌦

2
D] . (2.30)

The treatment of the perturbative splitting of one parton inside a hadron into two
which gives a contribution to DPDs requires a different type of convolution of a two

4In inline equations this type of convolution is typeset as ⌦1 rather than ⌦
1

.
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momentum fraction function D with a single momentum fraction function A, namely

D ⌦
12

A =

1Z

x1+x2

dz
z2 D

⇣ x1

z
,

x2

z

⌘
A(z) . (2.31)

For combinations of these different types of convolutions one can easily show the
following relations by interchanging the order of integrations

[A ⌦
1

D]⌦
12

B = A ⌦
1
[D ⌦

12
B] , [A ⌦

1
B ⌦

2
D]⌦

12
C = A ⌦

1
B ⌦

2
[D ⌦

12
C] , (2.32)

so that these convolutions can be written without brackets. In the same manner the
following relation for subsequent convolutions of the type introduced in equation (2.31)
can be obtained

[D ⌦
12

A]⌦
12

B = D ⌦
12
[A ⌦ B] = D ⌦

12
A ⌦ B . (2.33)

In section 5.6.6 an alternative version of equation (2.31) will be used, namely

D ⌦
12

A =
1

x1 + x2

1Z

x1+x2

dz D
✓

z
x1

x1 + x2
, z

x2

x1 + x2

◆
A
✓

x1 + x2

z

◆
. (2.34)

Inverse convolution (one variable). For some arguments in chapter 3 the notion of
an inverse PDF renormalisation factor Z�1 is introduced. For any single momentum
fraction function A such an inverse can be defined as the solution of the equation

A ⌦ A�1 = d(1 � x) . (2.35)

Such an inverse is exclusively defined for functions which permit an expansion in the
strong coupling as as then the equation can be solved order by order in as. In particular,
if at leading order (LO) one has

A(x) = 1 + as A(1)(x) +O(a2
s ) , (2.36)

then its inverse is at the same order given by

A�1(x) = 1 � as A(1)(x) +O(a2
s ) . (2.37)

Integration over momentum fractions. In order to have a concise way of writing
integrals over momentum fraction arguments one can introduce the following shorthand
notation for functions of one or two momentum fractions, respectively

Z
A =

Z
dx A(x) ,

Z

i

D =
Z

dxi D(x1, x2) , (2.38)
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with i = 1, 2. Further introducing operators Xn and Xn
i that act on a function by

multiplying with a power of the appropriate momentum fraction,

(Xn A)(x) = xn A(x) , (Xn
i D)(x1, x2) = xn

i D(x1, x2) , (2.39)

makes it possible to use Xn A and Xn
2 D in convolution integrals without explicitly giving

their momentum arguments. For functions of one argument, one has the well-known
rules

Xn(A ⌦ B) = (Xn A)⌦ (XnB) ,
Z

Xn (A ⌦ B) =
Z

Xn A
Z

XnB , (2.40)

and it is easy to show that for functions of two momentum fractions the following
holds

Z

2

X2 (A ⌦
2

D) =
Z

XA
Z

2

X2D . (2.41)

One can furthermore derive the following identity which will be used in chapter 3

Z

2

Xn
2 (D ⌦

12
A) =

Z
dx2 xn

2

Z dz
z2 D

✓
x1

z
,

x2

z

◆
A(z)

=
Z du1

u1

Z
du2 un

2 D(u1, u2)

✓
x1

u1

◆n

A
✓

x1

u1

◆

=

✓Z

2

Xn
2 D
◆
⌦
1
(Xn A) , (2.42)

where the subscript on the convolution symbol in the last line indicates that the result
depends on the momentum fraction x1.

Parton indices. In some cases it is instructive to include information about the in-
volved parton types in order to make the structure of an expression clearer for which
therefore a compact notation is introduced. For single momentum fraction argument
functions Aab(x), Bab(x) and fa(x) the parton structure is indicated as shown in the
following equations

[A ⌦ B]ac = Â
b

Aab ⌦ Bbc , [A ⌦ f ]a = Â
b

Aab ⌦ fb . (2.43)

Here it should be emphasised that summation over repeated parton indices is not
implied and that whenever a sum over a parton index is appropriate it is given
explicitly. Similar definitions can be given for functions Da1a2,a0(x1, x2) and Fa1a2(x1, x2)
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depending on two momentum fraction arguments, namely

[A ⌦
1

D]a1a2,a0 = Â
b

Aa1b ⌦
1

Dba2,a0 , [A ⌦
1

F]a1a2 = Â
b

Aa1b ⌦
1

Fba2 ,

[A ⌦
2

D]a1a2,a0 = Â
b

Aa2b ⌦
1

Da1b,a0 , [A ⌦
2

F]a1a2 = Â
b

Aa2b ⌦
1

Fa1b ,

[D ⌦
12

A]a1a2,a0 = Â
b

Da1a2,b ⌦
12

Aba0 , [D ⌦
12

f ]a1a2 = Â
b

Da1a2,b ⌦
12

fb . (2.44)

Consequently one can also give the parton structure of a combination of convolutions
with respect to the first and the second momentum fraction argument in the following
way

[A ⌦
1

B ⌦
2

F]a1a2 = Â
b1,b2

Aa1b1 ⌦1
Ba2b2 ⌦2

Fb1b2 ,

[A ⌦
1

B ⌦
2

D]a1a2,a0 = Â
b1,b2

Aa1b1 ⌦1
Ba2b2 ⌦2

Db1b2,a0 . (2.45)

Renormalisation and evolution of position space DPDs. With the above definitions
for a compact notation of convolutions it is straightforward to give renormalised
position space DPDs in terms of the bare distributions in equation (2.17). To this end
recall that the UV divergences in the twist-two operators defined in equation (2.22) are
renormalised by a convolution with a renormalisation factor Z(x; µ, #), such that for a
single PDF one obtains

fa1(µ) = [Z(µ)⌦ fB]a1 , (2.46)

where momentum fraction arguments have been omitted in accordance with the
rules introduced before. It should be noted, however, that the dependence on the
renormalisation scale µ is given explicitly, as this will make the discussion of the
renormalisation scale evolution clearer. In analogy to equation (2.46) a bare position
space DPD FB(y) is then renormalised by two of the Z(µ) factors already known from
the PDF case, one for each parton:

Fa1a2(y; µ1, µ2) = [Z(µ1)⌦
1

Z(µ2)⌦
2

FB(y)]a1a2 . (2.47)

Here it has been made explicit that the renormalisation scales for the two operators in
the definition of the position space DPD may differ from each other as is appropriate
when the scales of the two hard processes are different. In order to obtain the renormal-
isation scale dependence of these renormalised position space DPDs consider again
first the familiar case of the single PDFs where the renormalisation scale dependence is
governed by the DGLAP equations [74–76].

d fa1(µ)
d ln µ2 = [P(µ)⌦ f (µ)]a1 , (2.48)
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where the DGLAP splitting kernels are defined by the scale dependence of the renor-
malisation factors Z as

dZa1a0(µ)
d ln µ2 = [P(µ)⌦ Z(µ)]a1a0 . (2.49)

With this it is then straightforward to also obtain the renormalisation scale dependence
of the renormalised DPD Fa1a2(y; µ1, µ2)

dFa1a2(y; µ1, µ2)

d ln µ2
i

= [P(µi)⌦
i

F(y; µ1, µ2)]a1a2 . (2.50)

In the upcoming chapters mostly DPDs at equal renormalisation scales µ1 = µ2 = µ, de-
noted by Fa1a2(y; µ) will be considered. For these equal scale DPDs the renormalisation
scale dependence is thus given by

dFa1a2(y; µ)
d ln µ2 = [P(µ)⌦

1
P(µ)⌦

2
F(y; µ)]a1a2 . (2.51)

Renormalisation and evolution of momentum space DPDs. Given the discussion
in the previous paragraph one might be tempted to think that a bare momentum
space DPD FB(D) should be renormalised in exactly the same manner. However, this
is not entirely true as will be explained now. It has already been pointed out below
equation (2.24) – relating bare position and momentum space DPDs via a Fourier trans-
formation – that such a simple relation no longer holds for renormalised distributions.
The reason for this is that DPDs contain a contribution from the perturbative splitting
of a parton inside the hadron into two partons [25, 26, 28, 35, 37–44, 77]. This splitting
contribution is naturally associated with relatively small transverse separation |y| = y
of the two partons such that it can be calculated in perturbation theory [26, 35]. In the
limit of small y = |y| this even becomes the dominant contribution and the position
space DPD can thus be written in a factorized form [72]

FB,a1a2(y) =
G(1 � #)
(py2)1�#

[VB(y)⌦
12

fB]a1a2 , (2.52)

with a 1 ! 2 splitting kernel VB;a1a2,a0(x1, x2, y). The structure of this expression eluci-
dates why a simple relation like equation (2.24) no longer holds for the renormalised
distributions: DPDs exhibit what is referred to as a 1 ! 2 splitting singularity for small
y or large D = |D| in position and momentum space, respectively. Fourier transform-
ing the bare position space DPD thus leads to an additional singularity in the bare
momentum space DPD of equation (2.24) as the (y2)�1+# behaviour of the position
space DPD for small y gives a simple pole5 1/#. This additional singularity in the bare

5Notice the difference between this and the UV divergences in the twist-two operators, which lead to
higher powers of 1/# with increasing powers of as.
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momentum space DPD is renormalised additively with a 1 ! 2 renormalisation factor6

Za1a2,a0(x1, x2; µ, #), such that the complete renormalised momentum space DPD is given
by

Fa1a2(D; µ) = [Z(µ)⌦
1

Z(µ)⌦
2

FB(D) + Zs(µ)⌦ fB]a1a2 , (2.53)

where now the DPDs have been defined at equal scales for both partons from the
beginning due to the presence of the additional inhomogeneous term. Introducing
single and double Mellin moments by the integrals

A(m) =
Z

dx xm�1 A(x) , D(m1, m2) =
Z

dx1 xm1�1
1

Z
dx2 xm2�1

2 D(x1, x2) , (2.54)

one can easily show that (2.53) turns into

Fi1i2 (m1, m2, D; µ) = Â
j1,j2

Zi1,j1 (m1; µ) Zi2,j2 (m2; µ) Fi1i2
B (m1, m2, D)

+ Â
j

Zi1i2,j (m1, m2; µ) f j
B (m1 + m2 � 1) , (2.55)

in agreement with the leading-order analyses in [78, 79]. As a consequence of this
different UV renormalisation the double DGLAP equation for momentum space DPDs
also has an inhomogeneous term

dFa1a2(D; µ)
d ln µ2 = [P(µ)⌦

1
F(D; µ) + P(µ)⌦

2
F(D; µ) + Ps ⌦

12
f (µ)]a1a2 , (2.56)

where the 1 ! 2 evolution kernel6 Pa1a2,a0(x1, x2; µ) is given in equation (3.82). With
the definitions (2.54) for single and double Mellin moments, one finds the following
inhomogeneous evolution equation in Mellin space

dFi1i2(m1, m2; D)
d ln µ2 = Â

j1

Pi1,j1(m1) Fj1i2(m1, m2; D) + Â
j2

Pi2,j2(m2) Fi1 j2(m1, m2; D)

+ Â
j

Pi1i2,j(m1, m2) f j(m1 + m2 � 1) , (2.57)

in agreement with the LO formulae derived in [78, 79]. More details about the renor-
malisation and evolution of momentum space DPDs – in particular a derivation of
equation (2.56) – will be given in section 3.6.

6Note that when the parton indices are not given explicitly in convolutions this renormalisation factor
is referred to as Zs to avoid confusion with the regular renormalisation factor Z. The same applies to
Pa1a2,a0 which is referred to as Ps in order to avoid confusion with P.

27



2. Theory

2.2.3. A consistent framework for double parton scattering

Unfortunately the factorisation formula given in equation (2.15) is plagued by some
issues as will become clear in the remainder of this section. A solution for these
problems was proposed in reference [35] by Diehl, Gaunt, and Schönwald (DGS), and
will be discussed in some detail in this section. Plugging the small y expression7 given
in equation (2.52) into the expression for the factorised DPS cross section shown in
equation (2.15) one directly sees that the integrand exhibits a y�4 behaviour which
would imply that the DPS cross section diverges, which is certainly not the case. The
solution for this issue suggested in reference [35] is to insert a cut-off function F(u)
which approaches 1 for u � 1 and vanishes in the limit u ! 0 for each DPD in
equation (2.15) which then becomes

dsAB
DPS

dx1 dx2 dx̄1 dx̄2
=

1
C Â

a1a2b1b2

ŝA
a1b1

(x1 x̄1s, µ2
1) ŝB

a2b2
(x2 x̄2 s, µ2

2)

⇥

Z
d2y F2(yn) Fb1b2(x̄1, x̄2, y; µ1, µ2) Fa1a2(x1, x2, y; µ1, µ2) , (2.58)

where the superscripts for the colour channel have been neglected as this structure is
assumed to apply for all colour representations (after the soft factor has been absorbed
into the DPDs). The exact requirements the cut-off function F has to fulfil are discussed
in detail in reference [35] and for the remaining discussion a sharp cut-off will be used,
namely

F(u) = Q(u � b0) , b0 = 2e�gE , (2.59)

where gE is the Euler-Mascheroni constant8. Restricting the discussion to this choice
can be done without a loss of generality as will be shown in chapter 5.

Another issue closely related to the perturbative splitting of one parton into two inside
a hadron is the double counting between single and double parton scattering. Consider
to this end the two diagrams in figure 2.7. As illustrated by the red boxes in this figure
it is possible to associate the diagram in figure 2.7a with SPS as well as with DPS,
however, in different kinematic regions. Therefore it is necessary to perform appropriate
subtractions when adding sSPS and sDPS to obtain the full cross section, that means

s = sSPS � s1v1,pt + stw4 � s2v1,pt + s2v1,pt , (2.60)

where sDPS = s1v1 + s2v1 + s2v2. The twist-four and 2v1 contributions have not been
discussed yet as they can be thought of as a mixture of the 1v1 and 2v2 contributions
in the sense that in these only the partons in one hadron originate from a 1 ! 2

7Even though the expression is for a bare position space DPD this does not alter the argument as the
splitting singularity is not affected by renormalisation.

8Choosing b0 in this way makes it possible to simplify certain analytical results in the original
paper [35].

28



2.2. General double parton scattering theory

(a) (b)

Figure 2.7.: Illustration of different possibilities to produce two final states A and B that, depending on the
kinematics, can be interpreted as SPS or DPS. The fact that the perturbative splitting in these
graphs can be interpreted as both, a loop correction to SPS as well as a contribution to DPS, is
indicated by boxes representing a perturbative splitting DPD. Subfigure 2.7a represents a loop
correction to SPS as well as what is referred to as the 1v1 contribution in [35] to DPS, while in
in subfigure 2.7b the genuine – 2v2 – DPS contribution is shown.

splitting. The exact form of the subtraction terms s1v1,pt and s2v1,pt has been derived
in reference [35] and is basically obtained from the full 1v1 and 2v1 cross sections by
replacing the DPDs which get a contribution from the splitting by their perturbative
small y expression. A detailed study of perturbative splitting in DPDs has also been
performed in reference [37].

The framework developed in reference [35] forms the basis of most of the work in this
thesis and in particular is the reason why an emphasis has been put on the investigation
of position space rather than momentum space DPDs. With this framework at hand
it is possible to calculate DPS cross sections in a controlled manner with the issue of
double counting between SPS and DPS resolved in an elegant way. Regulating the
DPS cross section in equation (2.58) using a cut-off rather than a different regulator
like for example MS has the advantage that it retains the notion of individual DPDs
with a field-theoretic definition for each hadron. This is a definite advantage over a
treatment with MS where only the product of two DPDs would be defined, as this
makes it possible to study the DPDs using non-perturbative methods like lattice QCD.
For progress in this direction see for example reference [80].
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3. DPD sum rules in QCD

3.1. Introduction

With the preliminaries laid out in the previous chapter, in particular the DPS framework
of reference [35] introduced in section 2.2.3, one might be tempted to think that all
necessary ingredients to calculate DPS cross sections are available. However, this is
not quite the case as the position space DPDs needed in the factorisation formula
given in equation (2.58) are more or less unknown at this point. Due to their genuinely
non-perturbative nature DPDs, just like their SPS counterparts, cannot be calculated
in perturbation theory and have to be extracted from experimental data or from
non-perturbative methods like lattice QCD. While the experimental determination
of PDFs has made a lot of progress in recent years such that the accuracy to which
PDFs are known continues to improve, the situation is quite different for DPDs as
will be discussed now. The by far most important limiting factor is that on one hand
compared to SPS cross sections DPS cross sections are quite small, while on the other
hand a lot more data is needed to extract a complete set of DPDs with the same
precision as a PDF set. To this end consider that for n f = 6 there are 91 distinct
collinear DPDs1, each depending on two momentum fraction arguments x1 and x2,
the transverse distance y between the two partons, and one (or two) renormalisation
scale(s), whereas in the SPS case one has 7 PDFs depending on one momentum fraction
x and one renormalisation scale. This illustrates the problem quite nicely: on the one
hand gathering experimental data for DPS is hard as the cross sections are small while
on the other hand a experimental determination of DPDs requires way more data
than that of PDFs to achieve the same precision. A possible alternative to a purely
experimental determination of DPDs would be to resort to lattice QCD to calculate the
matrix elements in the definitions of DPDs in equation (2.17). While first steps in this
direction have already been taken in reference [80] and great advances have also been
made for the extraction of PDFs from lattice data as summarised in reference [81], a full
extraction of DPDs from lattice data will still take some time (if it is possible at all).

In order to estimate the impact of DPS contributions to the overall cross section it is
nevertheless necessary to get at least a rough idea about the shape and size of DPDs.
To this end it is useful to construct DPD models based on physical intuition. The most

1This number can be obtained by considering that for n f = 6 one has 12 distinct quark types and the
gluon. Therefore one finds one gg DPD, 12 gq DPDs, 12 qq DPDs, and finally (12 · 11)/2 = 66 qq0 DPDs
with q 6= q0.

31
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naı̈ve of these approximates DPDs by a product of impact parameter PDFs, completely
neglecting any correlations of the partons inside the hadron, which gives – when one
furthermore assumes that the impact parameter PDFs can be factorised into regular
PDFs and a Gaussian profile – rise to the well-known DPS pocket formula which
factorises the DPS cross section into a product of two SPS cross sections divided by
a so called effective cross section. A more sophisticated DPD model – the GS09 DPD
set – has been constructed by Gaunt and Stirling in reference [45] using the DPD
number and momentum sum rules they introduced. These sum rules are one of the
only theoretical constraints known that DPDs have to fulfil (apart from less restrictive
ones like positivity). However the GS09 DPD set contains collinear momentum space
DPDs at D = 0 from which it is not possible to obtain the collinear position space DPDs
required for the framework of reference [35] introduced in section 2.2.3. Therefore one
project of this dissertation aimed at constructing sum rule improved position space
DPDs which can be used in the DGS framework. However, before addressing this issue
in chapter 4 in the current chapter a proof for the validity of the DPD sum rules in QCD
will be presented. In their original work Gaunt and Stirling [45] pointed out that the
sum rules are preserved under LO evolution if they are fulfilled at a starting scale. That
the sum rules are indeed fulfilled was shown in appendix C of [46] using the light-cone
wave function framework which, however, neglects how the UV singularities associated
with the twist-two operators in the definitions of the DPDs in equation (2.17) have to
be renormalised.

The aim of this chapter is to fill this gap and prove explicitly that the DPD sum
rules are indeed fulfilled at any scale in QCD. To this end a brief review of the sum
rules will be given in section 3.2.1 before introducing the framework of light-cone
perturbation theory (LCPT) in section 3.2.2. The necessity for using LCPT will be
illustrated in section 3.3 by considering how the sum rules arise at the first non-trivial
order in covariant perturbation theory in a simple toy model. After this an all-order
proof for bare DPDs will be given in section 3.4 with the help of LCPT. In order to
complete the proof that the sum rules are valid to all orders in QCD it will be shown
in section 3.5 that the sum rules are valid for renormalised DPDs if UV divergences
are subtracted in a suitable scheme. In section 3.6 the behaviour of the sum rules
under evolution is discussed, in particular the all-order form of the inhomogeneous
dDGLAP equation (2.56) is derived, as well as sum rules for the 1 ! 2 evolution kernels
appearing in the inhomogeneous part of the evolution equation. The results presented
in this chapter have been published in the European Physics Journal C [73].

3.2. Specific Theory

Before moving on to proving that the sum rules are actually fulfilled to all orders in the
strong coupling it makes sense to discuss some of the properties of the sum rules and
their interpretation and introduce the framework of light-cone perturbation theory.
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3.2.1. The DPD sum rules

In close analogy to the well-known PDF sum rules similar sum rules can also be
introduced for unpolarised collinear colour singlet momentum space DPDs at D = 0,
abbreviated as

Fa1a2(x1, x2; µ) = Fa1a2(x1, x2, D = 0; µ) , (3.1)

which are – up to the additional renormalisation of the splitting singularity – obtained
from the position space DPDs Fa1a2(x1, x2; µ) by integrating over y. Just as for PDFs one
again finds for DPDs momentum and number sum rules. The former of these reads

Â
a2

1�x1Z

0

dx2 x2 Fa1a2(x1, x2; µ) = (1 � x1) fa1(x1; µ) , (3.2)

corresponding to the conservation of the overall hadron momentum under evolution.
The conservation of quark flavour on the other hand is described by the DPD number
sum rule, given by

1�x1Z

0

dx2 Fa1a2,v(x1, x2; µ) =
�

Na2,v + da1,a2 � da1,a2

�
fa1(x1; µ) , (3.3)

where a2 denotes either a quark or an antiquark and the subscript v on the second
parton index of the DPD indicates a valence distribution, meaning the difference of
parton and antiparton distributions

Fa1a2,v = Fa1a2 � Fa1a2 . (3.4)

The number of av valence partons inside the considered hadron is denoted by Nav , for
example in the case of the proton one would have Nuv = 2.

Both of the DPD sum rules permit a probabilistic interpretation in terms of the parton
model. For the momentum sum rule one can easily interpret equation (3.2) in the
following way: momentum conservation of the overall hadron momentum implies that
the sum over all possible partons a2 of the x2 integral of a DPD Fa1a2(x1, x2; µ) weighted
with the momentum fraction x2 should equal the a1 PDF fa1(x1; µ) times a factor of
1 minus the momentum fraction of parton a1, x1. This will become a bit clearer in
section 3.4.4. In a similar manner one can interpret the structure of the DPD number
sum rule. For the case that a1 and a2 are different (meaning not of the same flavour) it
seems to be a natural generalisation of the PDF number sum rule that the x2 integral
over the Fa1a2,v distribution should equal the number of a2 valence partons times the fa1

PDF. The additional Kronecker deltas in the prefactor of the PDF in equation (3.3) can
be understood following the discussion in section 3.4.3.

33



3. DPD sum rules in QCD

3.2.2. Light-cone perturbation theory

As mentioned before the all-order proof of the sum rules for bare DPDs will rely
on the framework of light-cone perturbation theory (LCPT, also called light-front
perturbation theory) which is quite similar to old-fashioned time ordered perturbation
theory, with the difference that the vertices of a graph are ordered in “light-cone time”
x+ = (x0 + x3)/

p
2 rather than “ordinary time” x0. In order to derive the rules of LCPT

from regular covariant perturbation theory one has to perform the integrations over
all internal minus momenta, thus setting all internal lines on-shell. How exactly this
works is for instance shown in chapter 7.2.3 of reference [47], whose normalisation
conventions is adopted in the following. For a more in depth discussion of LCPT the
reader is referred to the literature, for example references [82–89].

For brevity only the basic rules of LCPT will be given here and details and subtleties
are discussed when they are encountered. As in the rest of this chapter, light-cone
gauge n · A = A+ = 0 (where n is the light-like vector projecting on plus components2)
for the gluon will be used since this has the advantage that one does not have to take
Wilson lines into account.

1. Starting from a given Feynman graph, each vertex is assigned a light-cone time
x+j and all possible orderings of the x+j are considered, giving rise to a number of
LCPT graphs. For LCPT graphs the convention is that x+ increases from left to
right on the left-hand side of the final state cut, while on the right-hand side it
increases from right to left.

2. Coupling constants and vertex factors are identical to the ones known from
covariant perturbation theory with momentum dependent vertices being an
exception which will be discussed below.

3. Plus and transverse momentum components, k+l and kl , of a line l are conserved
at the vertices.

4. A factor of 1/(2k+l ) has to be included for each propagating line l in a graph,
together with a Heaviside step function Q(k+l ) if the routing of kl is such that it
runs from smaller to larger values of x+.

5. Each loop momentum ` has to be integrated over its plus and transverse compo-
nents with the following integration measure

Z d`+dD�2`
(2p)D�1 . (3.5)

6. For each state i between two vertices at consecutive light-cone times x+i and x+i+1
the following factor has to be included

1
P�

i � Âl2i k�l,os + ie
, (3.6)

2 In particular n = (1, 0, 0,�1)/
p

2.
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where P�

i is the sum of the minus components of all external momenta entering
the graph before x+i . The sum is over the on-shell values of the minus components

k�l,os =
k2

l + m2
l

2k+l
(3.7)

of all lines l running between x+i and x+i+1.

The dependence of the propagator numerators on the particles minus momenta leads
to a separation into propagating and instantaneous contributions. Decomposing a
covariant four-momentum k as

k = kos + (k � kos) , (3.8)

where by definition k and kos only differ in their minus components, makes it possible
to rewrite the covariant fermion propagator as

Gf (k) =
Q(k+)

2k+
i(/kos) + m

k� �
k2+m2

2k+ + ie
+

Q(�k+)
�2k+

i(/kos) + m

�k� �
k2+m2

�2k+ + ie
+

ig+

2k+
. (3.9)

In this expression the first term describes the propagation of a fermion while the
second term describes the propagation of an antifermion, both with positive plus
momentum according to point 4 above. The third term which is independent of k� is
thus associated with an instantaneous propagation. In LCPT graphs it is illustrated by
a vertical fermion line whose ends are associated with the same light-cone time x+.
Using again the decomposition of equation (3.8) one finds for the gluon propagator in
light-cone gauge the following expression

Gµn
g (k) =

i
k2 + ie

✓
�gµn +

nµkn
os + kn

osnµ

k+

◆
+

inµnn

(k+)2 . (3.10)

In analogy with (3.9), the first term in (3.10) can be further decomposed into parts
with Q(k+) or Q(�k+) while the last term in (3.10) again describes an instantaneous
propagation.

Similar decompositions using equation (3.8) have to be made for all Feynman rules
in covariant perturbation theory that have a dependence on minus momenta in the
numerator, in particular for the three-gluon vertex. Here one can however make use
of the fact that all gluon lines that will be considered in section 3.4 are either internal
or associated wit the twist-two operators3 (2.22) for the observed partons. Any gluon
vertex in a graph then has all its Lorentz indices contracted with a gluon propagator.
The difference between a covariant momentum and its on-shell value is proportional
to the light-cone vector n, this means (k � kos)µ µ nµ, such that it gives zero when
contracted with a gluon propagator numerator Gµn

g . One can thus simply replace k with
kos in the numerator factor of the three-gluon vertex.

3Note that the Wilson line operators in these definitions reduce to unity in light-cone gauge.
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3.3. Analysis of low-order graphs and its limitations

In this section a simple toy model with scalar “quarks” is considered in order to
illustrate how the DPD sum rules for bare distributions arise from Feynman diagrams
in covariant perturbation theory at the lowest order in as. However, it will also be
shown in a second example that this is not always quite straightforward, making a
generalisation to higher orders more than cumbersome. This serves as a motivation
for the use of light-cone perturbation theory in section 3.4, which makes it possible to
formulate a proof that is valid at all orders in the strong coupling. It should be pointed
out that of course neither covariant nor light-cone perturbation theory are suitable for
actually computing parton distributions, which are genuine non-perturbative quantities.
The assumption made in this chapter is that general properties of Green functions – in
this case the sum rules – remain valid beyond perturbation theory, which is similar to
the spirit of perturbative proofs of factorisation in QCD, for example in references [47,
90].

The toy model considered in this section consists of a scalar “hadron” with point-like
coupling to scalar “quarks” of two flavours, namely u and d̄, with identical masses.
The coupling between these quarks and the gluons is as required by gauge invariance.
Within this model (double) parton distributions are calculated to the lowest order in as
using equations (2.26) and (2.27) and the fact that momentum space Green’s functions
can be expressed in terms of Feynman diagrams. For brevity, the subscript B for bare
distributions will be omitted throughout this section.

3.3.1. Sum rules with a gluon PDF

Consider first the case in which parton 1 in the sum rules is a gluon. At lowest order,
the gluon PDF appearing on the right-hand side of the sum rules is given by four
graphs, two of which are depicted in figure 3.1. The remaining two graphs are obtained

p p

p � k1 � k2

k1 + k2 k1 + k2

k2

k1 k1

(a) Gg
PDF 1

p

p

p � k1 � k2

k1 + k2

k2

k1
k1

p � k2

(b) Gg
PDF 2

Figure 3.1.: Two graphs contributing to the gluon PDF at order O(as) in the model. Two more graphs are
obtained by reversing the arrows that indicate the flow of quark number.

by reversing the arrows on the quark lines (so that in graph 3.1a the gluon couples
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to the d̄ instead of the u and similarly in graph 3.1b). These additional graphs yield
identical expressions due to the symmetries of the model, namely charge conjugation
and the identical masses of the two quark flavours. The contributions of these graphs
to the gluon PDF are given by

fg,1(x1) = 4
Z

dGPDF (x1k2 � x2k1)
2

⇥

h�
(k1 + k2)

2
� m2 + ie

� �
k2

1 + ie
� �

k2
1 � ie

� �
(k1 + k2)

2
� m2

� ie
�i�1

,

(3.11)

fg,2(x1) = 4
Z

dGPDF (x1k2 � x2k1) (x2k1 � x1k2 � k1)

⇥

h�
(k1 + k2)

2
� m2 + ie

� �
k2

1 + ie
� �

k2
1 � ie

� �
(p � k2)

2
� m2

� ie
�i�1

.

(3.12)

The integration element dGPDF is given by

dGPDF =
g2µD�4 CF p+

x1

dk�1 dD�2k1
(2p)D

dDk2
(2p)D

⇥ 2p d(k2
2 � m2) 2p d

�
(p � k1 � k2)

2
� m2� , (3.13)

where g denotes the strong coupling and m the quark mass which as already mentioned
above is identical for the two flavours. For simplicity the coupling between the hadron
and the quarks has been set to 1. In the above expressions a factor of two has been
included in order to take into account the contributions from the diagrams with reversed
arrows on the quark lines not shown in figure 3.1. The graphs corresponding to the

...

(a) Graph for a PDF

...

(b) Graph for a corresponding DPD

Figure 3.2.: Transition from a given PDF graph to a corresponding DPD graph.

DPDs appearing in the sum rules can be obtained from the PDF graphs by inserting
the appropriate operator for parton 2 onto one of the lines crossing the final state cut
in the PDF, as illustrated in figure 3.2. For the case at hand – this means for the PDF
graphs illustrated in figure 3.1 – the result of this procedure is shown in figure 3.3. The
appropriate operator for scalar quarks or antiquarks (the last one in equation (2.22))
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p p

p � K

K K

K � k K � k0

k k0

(a) Ggu
DPD 1.1

p p

p � k � k2

k + k2 k0 + k2

k2

k k0

p � k0 � k2

(b) Ggd̄
DPD 1.2

p

p

p � K

K
k0

K � k K � k0

p � Kk
+k0

(c) Ggd̄
DPD 2.1

p

p

p � k � k2

k + k2

k2

k
k0

p � k2

p � k0 � k2

(d) Ggd̄
DPD 2.2

Figure 3.3.: Graphs for gluon-quark or gluon-antiquark DPDs corresponding to the gluon PDF graphs
in figure 3.1. The loop momenta are defined in (3.19) and (3.20), and each graph is for the
momentum fractions specified in (3.15) to (3.17). Four more graphs are obtained by reversing
the direction of arrows on the quark lines.

simply provides a factor 1 in the graphs, such that the expressions for the corresponding
DPDs are given by

Fgu
1.1 (x1, x2) = 4

Z
dGDPD,1 x2(x1k2 � x2k1)

2

⇥

h�
(k1 + k2)

2
� m2 + ie

��
(k2 + D/2)2

� m2 + ie
��
(k1 � D/2)2 + ie

�i�1

⇥

h�
(k1 + D/2)2

� ie
��
(k2 � D/2)2

� m2
� ie

��
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2
� m2

� ie
�i�1

, (3.14)

Fgd̄
1.2(x1, 1 � x1 � x2) = 4

Z
dGDPD,2 (1 � x1 � x2)(x1k2 � x2k1)

2

⇥

h�
(k1 + k2)

2
� m2 + ie

��
(p � k1 � k2 + D/2)2

� m2 + ie
��
(k1 � D/2)2 + ie

�i�1

⇥
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(k1 + D/2)2

� ie
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� ie

��
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2
� m2

� ie
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,

(3.15)

Fgu
2.1 (x1, x2) = 4

Z
dGDPD,1 x2(x1k2 � x2k)(x2k1 � x1k2 � k1)

⇥

h�
(k1 + k2)

2
� m2 + ie

��
(k2 + D/2)2

� m2 + ie
��
(k1 � D/2)2 + ie

�i�1
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⇥

h�
(k1 + D/2)2

� ie
��
(k2 � D/2)2

� m2
� ie

��
(p � k2)

2
� m2

� ie
�i�1
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Fgd̄
2.2(x1, 1 � x1 � x2) = 4
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� ie
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(3.17)

Here the integration elements dGDPD,i (i = 1, 2) are given by

dGDPD,i =
2g2µD�4 CF (p+)3

x1

dk�1 dD�2k1

(2p)D
dk�2 dD�2k2

(2p)D
dD�

2p
2p d

�
`2

i � m2� , (3.18)

where `1 = p � k1 � k2 and `2 = k2. In the expressions for Fgd̄ the second momentum
fraction argument has been chosen in a quite counterintuitive way which however will
prove useful for deriving the sum rules. The remaining one-loop graphs for DPDs for
which parton 1 is a gluon are obtained from the graphs in figure 3.3 by reversing the
arrows on the quark lines. Due to the symmetries of the toy model these contributions
are related to the ones in equations (3.14) to (3.17) by Fgu

1.1 (x1, x2) = Fgd̄
1.1(x1, x2) and

analogously for the other three graphs.

Comparing the expressions for the PDF graphs with those for the corresponding
DPD graphs one finds that they are already quite similar. In these expressions the
momentum dependent numerators agree exactly, such that the main difference are the
two additional propagator denominator factors in the DPD, which arise due to the fact
that a operator is inserted on a line that runs across the final state cut in the PDF. In
order to make the resemblance between the PDF and DPD graphs even more obvious
one can get rid of these additional propagator denominator factors by performing the
integrations over their minus momentum components using the theorem of residues.
Using the variable substitutions of equations (3.19) and (3.20) it is possible to close
the integration contours in such a way that only the propagator poles of the two lines
corresponding to parton 2 get picked up, setting these lines on-shell. Not only does this
remove the additional denominator factors but it also sets the corresponding momenta
in the remaining propagator denominators to their on-shell value, just like it is the case
in the PDF. The relevant substitutions read

k�1 � D�/2 = k� , k�1 + D�/2 = k0� , k�1 + k�2 = K� (3.19)

for Fgu
1.1 and Fgu

2.1 , and

k�1 � D�/2 = k� , k�1 + D�/2 = k0� (3.20)

for Fgd̄
1.2 and Fgd̄

2.2 , where k�2 is kept as an integration variable. The integration over k�
sets the line corresponding to parton 2 on the left-hand side of the cut to its on-shell
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3. DPD sum rules in QCD

value, while the same is achieved on the right-hand side of the cut by integrating over
k0�. After performing the integrations over all minus components, one obtains for the
expressions in (3.11) to (3.17)

fg,1(x1) =

1�x1Z

0

dx2 x2(1 � x1 � x2)
3
Z

dG
(x1k2 � x2k1)2

�
(k1 + k2)

2 + m2
�2

D2
, (3.21)

fg,2(x1) =
1
2

1�x1Z

0

dx2 x2
2(1 � x1 � x2)

2
Z

dG
(x1k2 � x2k1)2 � x2k2

1 + x1k1k2
�
k2

2 + m2
� �

(k1 + k2)
2 + m2

�
D2

, (3.22)

and

Fgu
1.1 (x1, x2) = Fgd̄

1.2(x1, 1 � x1 � x2)

=
1
2

1�x1Z

0

dx2 x2(1 � x1 � x2)
3
Z

dG
(x1k2 � x2k1)2

�
(k1 + k2)

2 + m2
�2

D2
, (3.23)

Fgu
2.1 (x1, x2) = Fgd̄

2.2(x1, 1 � x1 � x2)

=
1
4

x2
2(1 � x1 � x2)

2
Z

dG
(x1k2 � x2k1)2 � x2k2

1 + x1k1k2
�
k2

2 + m2
� �

(k1 + k2)
2 + m2

�
D2

, (3.24)

where the following abbreviation has been used

D = x1k2
2 + x2k2

1 � (x1k2 � x2k1)
2 + x1 (1 � x1)m2 , (3.25)

and the measure for the remaining integrations is

dG =
g2µD�4 CF

x1

dD�2k1

(2p)D�1
dD�2k2

(2p)D�1 . (3.26)

At this point the similarity between the PDF and corresponding DPD expressions is
already very close. In order to show how the sum rules arise from these expressions it
should be noted that at the considered order in as the only DPDs involving a gluon are
the ones given above, and in particular Fgū, Fgd and Fgg only appear at order a2

s .

Combining all contributions from graphs 1.1 and 1.2 for the u number sum rule then
yields

1�x1Z

0

dx2


Fgu

1.1 (x1, x2) + Fgu
1.2 (x1, x2)

�
=

1�x1Z

0

dx2


Fgu

1.1 (x1, x2) + Fgd̄
1.2(x1, x2)

�

=

1�x1Z

0

dx2


Fgu

1.1 (x1, x2) + Fgd̄
1.2(x1, 1 � x1 � x2)

�
= f g

1 (x1) , (3.27)
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3.3. Analysis of low-order graphs and its limitations

where in the first step the symmetry between u and d̄ implicit in the model has been
used. In the second step a change of variables in Fgd̄ has been performed which makes
it possible to easily see the last equality from the explicit expressions in (3.21) and (3.23).
For the contributions from graphs 2.1 and 2.2 – and hence for the sum over all graphs –
one readily derives the analogue of (3.27). Since Nuv = 1 in the toy model, this shows
that the number sum rule for u quarks is fulfilled. In the same manner, one can show
the number sum rule for d̄ quarks.

In a similar manner one can show that the DPDs fulfil the momentum sum rule, starting
again with the contributions from graphs 1.1 and 1.2:

1�x1Z

0

dx2 x2


Fgu

1.1 ((x1, x2) + Fgu
1.2 (x1, x2) + Fgd̄

1.1((x1, x2) + Fgd̄
1.2(x1, x2)

�

= 2
1�x1Z

0

dx2


x2 Fgu

1.1 ((x1, x2) + x2 Fgd̄
1.2(x1, x2)

�

= 2
1�x1Z

0

dx2


x2 Fgu

1.1 ((x1, x2) + (1 � x1 � x2) Fgd̄
1.2(x1, 1 � x1 � x2)

�

= 2
1�x1Z

0

dx2


x2 Fgu

1.1 ((x1, x2) + (1 � x1 � x2) Fgu
1.1 (x1, x2)

�
= (1 � x1) f g

1 (x1) .

(3.28)

Here the first two steps are just the analogues of the same steps in (3.27), while in the
last two steps again the explicit expressions of equations (3.21) and (3.23) have been
used. An analogous relation can be derived for graphs 2.1 and 2.2 and thus for the sum
over all graphs, which confirms the validity of the momentum sum rule.

An interesting observation is that the number as well as the momentum sum rule are
fulfilled individually for each PDF graph and its corresponding DPD graphs. Such a
one-to-one relation is already suggested by figure 3.2 and will remain true in the all-
order proof in section 3.4. However, a crucial step in the preceding derivation was that
for each DPD graph it was possible to perform the integrations over minus momenta
in such a way that after applying the theorem of residues, the momentum of parton
2 to the left and to the right of the final state cut was set on shell. This is not readily
possible for other graphs, as the following example will illustrate.

3.3.2. Sum rules with a quark PDF

Consider now the case in which parton 1 in the sum rules is a u quark (again the
expressions for d̄ quarks are identical due to the symmetries of the model). In this
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3. DPD sum rules in QCD

case already at leading order in as the number of graphs contributing to each PDF is
much greater than for the g PDF considered in the previous section. Here one now
finds in addition to the real emission graphs in figure 3.4 graphs with a cut quark
loop and a vertex or propagator correction to the left or to the right of the cut. For the
graph in figure 3.4a and the corresponding DPD graphs, one can again establish the
validity of the sum rules exactly as in the previous section. This situation is, however,
different for the remaining graphs of figure 3.4 as the following example will illustrate.
To this end, consider the graph in figure 3.4b and the corresponding DPD graphs in

p p

p � k1 � k2

k1 + k2 k1 + k2

k1

k2

k1

(a) Gu
PDF 1

p

p

p � k1 � k2

k1 + k2

k1

k2

k1

p � k2

(b) Gu
PDF 2

p p

p � k1 � k2

k1 + k2 k1 + k2

k1

k2

p � k1 � k2

(c) G d̄
PDF 3

p

p

k1

p � k1

k1 + k2

p � k1 � k2

k1

k2

(d) G d̄
PDF 4

Figure 3.4.: Real emission graphs contributing to quark or antiquark distributions at O(as). Four more
graphs are obtained by reversing the arrow on the quark line.

figure 3.5. In order to perform the integrations over minus momenta the same change

p

p

p � K

K K � k0

k

p � k0
K � k

k0

(a) Gu g
DPD 2.1

p

p

p � k � k2

k + k2

k0

k2
p � k0

k

p � k0 � k2

(b) Gud̄
DPD 2.2

Figure 3.5.: DPD graphs corresponding to the PDF graph in figure 3.4b.
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3.3. Analysis of low-order graphs and its limitations

of variables as before is made, namely (3.19) for Fu g
2.1 and (3.20) for Fud̄

2.1 . However, even
with these substitutions one finds that in both graphs is is not possible to close the
integration contour in such a way that one picks up only the poles corresponding to
the propagators associated with parton 2, given that on the right-hand side of the cut
their pole in k0� is on the same side of the real axis as the propagator pole of the d̄ that
directly couples to the hadron4. Performing the integrations over the minus momenta,
one then finds

f u
2 (x1) = x2

1

1�x1Z

0

dx2(1 � x1 � x2)
3
Z

dG
(x1k2 � x2k1)2 � x1k2

2 + x2 k1k2�
(k1 + k2)

2 + m2
�
D2

1 D2

, (3.29)

and

Fu g
2.1 (x1, x2) = Fud̄

2.2 (x1, 1 � x1 � x2)

= x2
1 (1 � x1 � x2)

3
Z

dG
(x1k2 � x2k1)2 � x1k2

2 + x2 k1k2�
(k1 + k2)

2 + m2
�
D2

1 D2

�
x2

1 (1 � x1 � x2)
2 (1 � x1)

x2

Z
dG

(x1k2 � x2k1)2 � x1k2
2 + x2 k1k2

�
(k1 + k2)

2 + m2
� ⇣

k2
1 + m2

⌘
D1 D2

,

(3.30)

where

D1 = x1k2
2 + x2k2

1 � (x1k2 � x2k1)
2 + x2 (1 � x2)m2 ,

D2 = (x1k2 � x2k1)
2 + (1 � 2x1) k2

2 + 2x2k1k2 + x2
2m2 , (3.31)

and dG is defined as before in (3.26). Here the first term in equation (3.30) has the same
structure as the PDF in equation (3.29) which would be required to show the validity of
the sum rules in the same way as in the previous section. However, due to the second
term in equation (3.30) originating from the “unwanted” propagator pole when the
minus momentum integrals are performed using residues the simple proof used in the
previous section no longer works. It has been explicitly checked that this extra term
disappears when one sums over all contributing graphs, and the sum rules remain
valid also in this example.

A similar situation is encountered in the proof of cancellation of Glauber gluons
in single [47, 90] or double hard scattering [34]. While for simple cases covariant
perturbation theory suffices to show that this cancellation can be established using the
theorem of residues for integrations over minus momenta in a similar way as here, this
is no longer the case for more complicated graphs, where this method turns out to be
cumbersome [34]. Whether a proof that is valid to all orders in the strong coupling

4Note that this is not a issue that could be solved by choosing a different momentum routing.
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3. DPD sum rules in QCD

could be performed at all in covariant perturbation theory is unclear, such that in the
next section light-cone perturbation theory will be used, which provides a powerful
tool for proving the sum rules at all orders, as it is for establishing Glauber gluon
cancellation [34, 47, 90] .

3.4. All order proof for bare distributions using LCPT

Following the analysis in the previous section now LCPT is used to derive the DPD
sum rules for bare distributions at all orders in the strong coupling. To this end graphs
in LCPT at arbitrary fixed order in as are considered, using perturbation theory in the
same spirit as discussed at the beginning of section 3.3. Having established the validity
of the sum rules for any fixed order in as, one immediately obtains their validity for
the sum over all perturbative orders.

3.4.1. Representation of PDFs and DPDs in LCPT

As a first step the representations of PDFs and DPDs in terms of Green’s functions
given in equations (2.26) and (2.27) have to be adapted to the LCPT formalism. To this
end one finds for the bare PDF

f a1
B (x1) =Â

g

�
x1 p+

��n1
�

p+
�N(g)�2

Z dk�1 dD�2k1

(2p)D

 
N(g)

’
i=2

dxi dD�2ki
(2p)D�1

!

⇥ G
a1
g ({x}, {k}) 2pd

 
p� � k�1 �

M(g)

Â
i=2

k�i,os

!
d

 
1 �

M(g)

Â
i=1

xi

!
, (3.32)

where

xi = k+i /p+ . (3.33)

In equation (3.32) the index g now specifies a given cut LCPT graph with a definite
x+ light-cone time ordering of its vertices. The independent momenta of a graph are
denoted by ki, where k1 always is the momentum of the observed parton. The total
number of independent momenta for a given graph is N(g)� 1, of which M(g)� 1
run across the final state cut. The complete set of light-cone momentum fractions and
transverse momentum arguments of a graph is collectively labelled as {x} and {k} in
equation (3.32) and in corresponding equations.

Just like in the simple toy model considered in section 3.3 a1a DPD graphs can be
obtained from PDF graphs for a a1 PDF by inserting the appropriate operator for the
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3.4. All order proof for bare distributions using LCPT

second parton a on one of the final state parton lines of flavour a. The result is

Fa1a
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!
, (3.34)

where the sum over l runs over all parton lines crossing the final state cut on which the
operator for parton a can be inserted, with da, f (l) selecting only those lines for which
the flavour f (l) = a and d(xl � z) setting the plus momentum fraction xl of the line l
to z. Here it should be pointed out that both the plus momentum and the transverse
momentum components of the two observed partons are equal on both sides of the
final state cut. While the former is always the case for a DPD, the latter holds only
because the sum rules are supposed to be valid only for the case that D = 0.

In order to arrive at the expression for the LCPT DPD in equation (3.34) the following
variable substitutions have been made in equation (2.27)

K� = (k1 + kl)
� , k� = (kl � D)�/2 , k0� = (kl + D)�/2 , (3.35)

before performing the integrations over k� and k0�. As a result of the integrations over
these minus components the two vertices corresponding to the operator insertions for
the observed partons a1 and a are associated with the same light-cone time x+ on each
side of the final state cut, as explained in Appendix B of reference [34]. Considering the
definition of a DPD in equation (2.17) this is not surprising, because the two operators
Oa1 and Oa2 there are taken at the same light-cone time.

A crucial step to show the equivalence of PDF and DPD expressions in the following
section is to show that only such light-cone time orderings contribute to the PDFs and
DPDs where the operator insertions are “latest”, meaning that there are no vertices with
larger x+. To this end the integration over k�1 is performed in the expression (3.32) of the
PDF, following a simplified version of the argument in chapter 14.4.3 of reference [47].
A general LCPT graph for a PDF, as illustrated in figure 3.6, can be written in the
following way

G
a1
g = I F (FA) I0 ⇥ {numerator} , (3.36)

with

I = ’
states x
x<H

1
p� � Â

l2x
k�l,os + ie

, I0 = ’
states x
x<H0

1
p� � Â

l2x
k�l,os � ie

, (3.37)
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FA

F(FA)
I I0

H H0

k k

Figure 3.6.: Schematic illustration of an LCPT graph for a PDF. H (H0) denotes the light-cone time of
the vertex for the insertion of the twist-two operator on the left (right) of the final-state cut.
Since the order of vertices matters for evaluating LCPT graphs, one cannot place that operator
insertion on the line indicating the final state cut, as was done for the Feynman graphs in
section 3.3.

and

F(FA) = ’
states x
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1
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Since the detailed numerator structure is not relevant for the present argument all
vertex factors, propagator numerators and factors of ±i have been absorbed into the
{numerator} factor in (3.36). As illustrated in figure 3.6 the PDF graph is cut across the
final state FA, and the sums in I, I0 and F are over intermediate states x either before or
after the light-cone time of the operator insertion H and H0. Consider now the sum over
all graphs g that differ only by the state FA where the cut is made but are otherwise
identical. Numbering the states in F(FA) from 1 to N, one can thus write

Â
FA

F(FA) =
N

Â
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"
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’
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1
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#
,

(3.39)

where the abbreviation Df = Âl2 f k�l,os has been used. Rewriting the d function in
equation (3.39) as

2pd(x) = i


1
x + ie

�
1

x � ie

�
, (3.40)

then yields the following expression
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. (3.41)
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In this form one can easily see that this expression vanishes for N � 2 when one
integrates over k�1 using the theorem of residues. For N = 1 on the other hand, the
initial d function in (3.32) is reproduced. One can thus conclude that for a PDF only
those x+ orderings of the vertices have to be considered for which there are no states
“later” than the operator insertion vertices H and H0 on each side of the final state
cut.

In a completely analogous manner one can repeat the discussion above for the K�

integration in the expression for a DPD given in equation (3.34), yielding again that
only time orderings with no intermediate state after the operator insertions contribute.
With this insight the expressions for PDFs and DPDs (equations (3.32) and (3.34),
respectively) can be rewritten as
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, (3.42)
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where the sum over all graphs g can be restricted to the time orderings just discussed.
The DPD has been integrated over its second momentum fraction z with weight zm, as
is required for the sum rules (where m = 0 or m = 1 for the number and momentum
sum rules, respectively).

3.4.2. All order correspondence between PDF and DPD graphs

The last missing step before being able to complete the proof is to establish the following
equality

2
�
xl p+

��nl
G

a1 f (l)
g,l

!
= G

a1
g (3.44)

for all graphs g and all partons l that contribute in equations (3.42) and (3.43). This
equality implies a unique correspondence between the LCPT graphs g that contribute
to f a1 and those that contribute to Fa1a, as indicated in figure 3.7. In the previous section
it has already been shown that in a given PDF graph no vertex can be later in light-cone
time than the vertex H of the twist-two operator insertion, including the vertex V2
where the final state line l leaves the graph. It will now be shown that there can also
be no instantaneous propagator attached to a twist-two operator insertion. The vertex
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...

V1 V2 H H̃ Ṽ2 Ṽ1

l

(a) LCPT graph for a PDF

...

V1 V2 H H̃ Ṽ2 Ṽ1

ll

(b) LCPT graph for a corresponding DPD

Figure 3.7.: LCPT graphs for a PDF or a DPD. It is understood that the subgraphs denoted by blobs are
identical in panels (a) and (b). One may interchange the time ordering between the vertices V1
and V2, and independently the time ordering between the vertices Ṽ1 and Ṽ2.

V1 where parton 1 leaves the graph must then come before H as well, and in a DPD
graph both V1 and V2 must come before H. In both PDF and DPD graphs, V1 may come
before or after V2. Corresponding statements hold for Ṽ1, Ṽ2 and H̃ to the right of the
cut.

In order to show this, consider the vertex rules (in momentum space) associated with
the unpolarised twist-two operators given in equation (2.22). For quarks one gets a
factor g+/2 tying together the Dirac indices of the parton to the left and the right of
the cut, while for antiquarks one gets a factor �g+/2. Multiplying these expressions
with the instantaneous part of the fermion propagator (3.9) yields zero since (g+)2 = 0.
For gluons one finds that the twist-two operator gives a factor (k+)2 dii0 in light-cone
gauge, where k+ denotes plus momentum component of the gluon, which is equal
on both sides of the cut. As mentioned below equation (2.22) the indices i and i0 are
transverse momentum indices denoting the gluon polarisation to the left and right of
the cut, respectively. Contracting this with the instantaneous part of the LCPT gluon
propagator in equation (3.10) gives zero.

One thus finds that LCPT graphs contributing to a PDF are related to those contributing
to a corresponding DPD by inserting the operator for the second parton on a final
state line in the PDF graph in analogy to the statement used for Feynman graphs in
section 3.3 but now including the statement about the relative time orderings between
vertices. With PDF and DPD graphs having the same time ordering of vertices, they
have identical light-cone energy denominators (3.6) due to the fact that in LCPT PDF
and DPD graphs with identical x+ ordering of vertices automatically have the same
denominator structure since all internal lines are treated as on-shell.

The final step to show the equality in equation (3.44) is to show that the numerator
structure in corresponding graphs is also identical. To this end the numerator factor
associated with the line l selected by the operator for parton 2 in the DPD is compared
to the factor associated with the corresponding final state line in the PDF. In the DPD,
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3.4. All order proof for bare distributions using LCPT

the momenta k and k0 carried by l to the left and the right of the cut have the same
plus and transverse components, as already noted after equation (3.34). Their on-shell
values are hence identical as well, this means

kos = k0os . (3.45)

As a result of the identical structure of PDF and DPD graphs established above, k is
furthermore equal to the momentum of the corresponding final state line in the PDF.
For the case that l is a quark, one thus finds

2
/kos + m

2k+
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2
/kos + m

2k+
=

/kos + m
2k+

(3.46)

for the corresponding numerator in the DPD graph. Here the factor 2 on the left-
hand side is taken from the left-hand side of equation (3.44) while the factor g+/2
corresponds to the twist-two operator for quarks as discussed above and a factor (/kos +
m)/(2k+) amounts for each propagating quark line in accordance with equation (3.9).
On the right-hand side of equation (3.46) one easily recognises the factor for the final
state line l in the PDF graph, which proves equation (3.44) for quarks. The same
argument is easily repeated for antiquarks. If l is a gluon, one finds the following
numerator
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(3.47)

in the DPD graph, where the factor 2/k+ = 2(xl p+)�1 on the left-hand side is again
taken from the left-hand side of equation (3.44). The right-hand side of equation (3.47)
is the factor for a final state gluon in the PDF graph, completing the proof of equa-
tion (3.44).

3.4.3. Number sum rule

With the prerequisites discussed above it is now rather straightforward to show the
validity of the number sum rule for bare distributions. To this end one can insert
the relation (3.44) into equation (3.43) for the integral of the DPD over its second
momentum argument and set the power m = 0. The validity of the number sum rule
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given in equation (3.3) for a bare DPD then requires that
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This equality holds if it can be shown that

da1,a2 � da1,a2 + Â
l

⇣
da2, f (l) � da2, f (l)

⌘
!
= Na2,v , (3.49)

where a2 denotes either a quark or an antiquark (such that a2 denotes either an antiquark
or a quark, respectively). Here the sum over l on the left-hand side gives the number
of partons with flavour a2 crossing the final state cut in the PDF graph, minus the
corresponding number of partons with flavour a2. If the observed parton a1 in the PDF
has flavour a2 (a2), that number is increased (decreased) by 1. The result is obviously
equal to the difference of partons with flavour a2 and those with flavour a2 in the
hadron, which is indeed Na2,v , concluding the proof for the number sum rule for bare
distributions.

3.4.4. Momentum sum rule

In quite a similar manner as the number sum rule one can proceed in proving the
momentum sum rule (3.2) for bare distributions by inserting the relation (3.44) into
equation (3.43) with m = 1. One then finds that the momentum sum rule holds if
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However, this just implies that the sum over the momentum fractions xl of all partons
crossing the final state cut in a PDF graph must be equal to 1 � x1, which is a direct
consequence of momentum conservation such that also the momentum sum rule holds
for bare distributions.

3.5. Validity of the sum rules after renormalisation

So far the considerations in this chapter have been limited to proving that the DPD
sum rules are fulfilled by bare distributions obtained from the appropriate graphs,
confirming the parton model interpretation of the DPD sum rules. However, this is
not yet a complete proof, quite the contrary is actually the case, as the important issue
of renormalisation has been neglected so far. As the twist-two operators in the PDFs
and DPDs considered in the previous section contain short distance singularities which
have to be renormalised, it is not directly clear that the sum rules are also fulfilled
by renormalised distributions since it is known that the literal interpretation of PDFs
as probability densities can be invalidated by renormalisation. This is most obvious
for the positivity of the distributions, because one has to subtract terms that become
infinite if the UV regulator is removed. In this section it will therefore be shown that
renormalisation does not invalidate the sum rules if an appropriate renormalisation
scheme – namely the MS scheme – is used.

3.5.1. Implementation of the MS scheme.

The derivations in the remainder of this chapter will be significantly simplified by
using a particular implementation of the MS renormalisation scheme. Consider to
this end first the definition of this scheme given in section 2.1.2 in close analogy
to the presentation in section 3.2.6 of reference [47]. Using for the strong coupling
as = g2/(4p) rather than g, the relation between the bare and renormalised coupling
given in equation (2.6) reads

a0 = as µ2#

"
1 +

•

Â
n=1

an
s Sn

#

n

Â
m=1

Bnm

#m

#
, (3.51)

while a generic renormalisation factor as given in equation (2.7) is given by

Z = Z(0) +
•

Â
n=1

an
s Sn

#

M(n)

Â
m=1

Znm

#m , (3.52)

where the tree-level value Z(0) of the renormalisation factor is not important for the
argument at hand. In the above equations the coefficients Bnm and Znm are naturally
independent of #. Note however, that Z and thus also Z(0) and Znm may depend
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on additional variables like momentum fractions. The following arguments are valid
regardless which of the two definitions of S# in equations (2.8) and (2.9) is chosen. In the
implementation of the MS scheme defined above the counterterms in equations (3.51)
and (3.52) contain finite parts that result from multiplying powers of 1/# with matching
powers of the expansion of S#.

As this is an undesirable feature in the discussion of the next two sections, a second
renormalisation scheme is defined by

a0 = a0
s

µ2#

S#

"
1 +

•

Â
n=1

a0 n
s

n

Â
m=1

B0
nm

#m

#
, (3.53)

and

Z = Z(0) +
•

Â
n=1

a0 n
s

M(n)

Â
m=1

Z0
nm

#m , (3.54)

where B0
nm and Z0

nm are again independent of #. The counterterms in this scheme are
pure poles in # which will prove to be essential for the arguments in the following
sections.

It will now be shown that the two schemes defined by equations (3.51), (3.52) and by
equations (3.53), (3.54) give the same renormalised quantities at # = 0. To this end a
rescaled strong coupling is introduced as

as(#) = a0
s
�

S# , (3.55)

such that equations (3.53) and (3.54) become

a0 = as(#) µ2#

"
1 +

•

Â
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s (#) Sn

#

n

Â
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#
, (3.56)

and

Z = Z(0) +
•

Â
n=1

an
s (#) Sn

#

M(n)

Â
m=1

Z0
nm

#m . (3.57)

Consider now a renormalised quantity R(as, #, Bnm, Znm) in the first scheme and its
counterpart R0(as(#), #, B0

nm, Z0
nm) in the second scheme. The fact that equations (3.51)

and (3.52) have the same functional form as equations (3.56) and (3.57) implies that the
renormalised quantities in both schemes also have the same functional form

R0(as, #, B0
nm, Z0

nm) = R(as, #, B0
nm, Z0

nm) . (3.58)

The counter term coefficients Bnm and Znm (B0
nm and Z0

nm) are uniquely fixed by the
requirement that renormalised quantities have no poles in # when expanded in as and #
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(a0
s and #). Since as(#) only differs from a0

s by terms of order O(#), one must also obtain
an expression without poles in # when expanding R0 in as – rather than a0

s – and #. One
can thus conclude that the renormalisation coefficients in the two schemes are identical,
this means Bnm = B0

nm and Znm = Z0
nm, so that equation (3.58) implies

R0(as, #, B0
nm, Z0

nm) = R(as, #, Bnm, Znm) . (3.59)

With as(# = 0) = a0
s one thus finds that in the primed scheme the value of R0 at the

physical point is

lim
#!0

R0(as, #, B0
nm, Z0

nm) = R(a0
s, 0, Bnm, Znm) , (3.60)

while in the original scheme, the value of R is

lim
#!0

R(as, #, Bnm, Znm) = R(as, 0, Bnm, Znm) (3.61)

at the physical point. In order to show the equivalence of the two schemes consider now
a case in which the renormalised quantity is an observable (for example the hadronic
vacuum polarisation). In this case it must have the same value in the two schemes,
and one can conclude that a0

s = as. From this observation follows that for any other
quantity, including quantities that are not observables (such as renormalised PDFs or
DPDs), the two schemes give the same result at the physical point # = 0.

For the standard choice S# = (4pe�gE)#, the relation (3.53) takes the form of a minimal
subtraction scheme with µ2 = µ2/(S#)1/# = µ2 egE /(4p). This way of implementing MS
subtraction is in fact well known in the literature. The argument above illustrates that
one can also use the implementation of (3.53) and (3.54) for different choices of S#. In
the remainder of this work, this implementation will be used, omitting the primes on
as, Bnm and Znm.

3.5.2. Number sum rule

With the preliminary work of the previous section it is now possible to prove that the
DPD sum rules remain valid for renormalised distributions, starting with the DPD
number sum rule. To this end one has to show that the difference

Da1a2 =
Z

2

Fa1a2,v �
�

Na2,v + da1,a2 � da1,a2

�
fa1 (3.62)

is zero. Here the shorthand notation for integrals over momentum fraction arguments
introduced in section 2.2.2 has been used. Using the expression for the renormalised
DPD given in equation (2.53) and the rules of computation from section 2.2.2, one can
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express the first term on the right-hand side of the above equation in the following
way

Z

2
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◆
⌦
1

fB,b , (3.63)

where parton indices and sums over parton indices have been kept explicit rather
than using the shorthand notation of section 2.2.2 as this would make the following
arguments unnecessarily complicated. The number sum rule for renormalised PDFs
implies a sum rule for their renormalisation factors, which reads

Z
Za1,v,a0 =

Z �
Za1,a0 � Za1,a0

�
= da1,a0 � da1,a0 , (3.64)

and for which a proof can for example be found in section 8.6 of reference [47]. Defining
a1 = a1 for the case that a1 = g makes the above relation valid for all parton labels.
Using the number sum rule for the PDF renormalisation factors introduced above and
the number sum rule for the bare DPDs, the first term in equation (3.63) can thus be
rewritten in the following manner
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1
fB,b , (3.65)

where in the term proportional to Ni2,v the relation between bare and renormalised
PDFs introduced in equation (2.46) has been used. Plugging the expressions from
equations (3.63) and (3.65) into equation (3.62), this thus becomes
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with
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b
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Z�1
b,k � Â
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�
da1,a2 � da1,a2 � db,a2 + db,a2

�
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1
Z�1

b,c . (3.67)

In the last step of (3.66) the bare PDF has been expressed in terms of the renormalised
one, using a inverse renormalisation factor as defined by equation (2.35). In the MS
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scheme as implemented in section 3.5.1, the perturbative expansions of Zs and Z
involve only pole terms in #, and subsequently the same holds also for the inverse PDF
renormalisation factor Z�1. The tree-level part of Za1,b in (3.67) is proportional to da1,b
such that it vanishes when multiplied with the combination of Kronecker symbols in
parentheses. Therefore Ri1i2

k is a sum of pure pole terms in #. On the other hand Di1i2 is
finite at # = 0 by definition as on the right-hand side of equation (3.62) all quantities
are already UV finite. From this one can conclude that all poles in Ra1a2,c have to cancel
which means that Ra1a2,c = 0 and consequently Di1i2 = 0, proving the number sum rule
for renormalised DPDs.

The discussion above also implies that

Â
c

Ra1a2,c ⌦ Zc,b = 0 , (3.68)

which together with equation (3.67) yields the following number sum rule
Z

2

Za1a2,v,a0 =
�
da1,a2 � da1,a2 � da0,a2 + da0,a2

�
Za1,a0 (3.69)

for the 1 ! 2 renormalisation factor of the splitting singularity.

3.5.3. Momentum sum rule

Using the same line of arguments as for the number sum rule one can proceed to show
that also the momentum sum rule retains its validity for renormalised distributions. In
this case one thus has to show that

Da1 = Â
a2

Z

2

X2 Fa1a2 � (1 � X1) fa1 (3.70)

is zero. Here the first term on the right-hand side of this expression can again be
rewritten using equation (2.53) and the rules for manipulating convolutions introduced
in section 2.2.2, yielding
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Just like in the case of the number sum rule discussed above one can again use that
one can derive a momentum sum rule for the PDF renormalisation factors from the
momentum sum rule for renormalised single-parton distributions, which reads

Â
a1

Z
X Za1,a0 = 1 (3.72)

for any a0, as again shown for example in section 8.6 of Collins’ book [47]. Using
this and the momentum sum rule for bare DPDs, one can rewrite the first term in
equation (3.71) in the following way
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With these manipulations equation (3.70) then is given by
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Here the X fB,b terms can be rewritten as

X fB,b = Â
c

X
�
Z�1

b,c ⌦ fc
�
= Â

c
(XZ�1

b,c )⌦ (X fc) (3.75)

using equation (2.40). Multiplying equation (2.35) with x and again using equa-
tion (2.40), one can easily see that xZ�1

a,b (x) is the inverse of xZa,b(x) with respect
to Mellin convolution and matrix multiplication. With this insight equation (3.70) can
finally be written as

Da1 = Â
c

Ra1,c ⌦
1
(X fc) (3.76)

with
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1
(XZ�1
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In this expression the the tree-level part of terms involving Za1,b(x) multiplied by
(1� X) vanishes as Z(0)

a1,b(x) is proportional to d(1� x), such that in the implementation
of the MS scheme discussed in section 3.5.1 Ra1,c is again a sum of pure pole terms in #.
Since Da1 is finite at # = 0, one must then have Ra1,c = 0 and hence Da1 = 0, implying
that also the momentum sum rule remains valid for renormalised distributions.

Here one can again derive a momentum sum rule for the 1 ! 2 renormalisation factors
using

Â
c

Ra1,c ⌦ (XZc,b) = 0 (3.78)
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and equation (3.77), which then reads

Â
a2

Z

2

X2 Za1a2,b = (1 � X1) Za1,b . (3.79)

3.6. DPD evolution and its consequences

As seen already in section 2.2.2 the renormalisation of the splitting singularity results
in an additional inhomogeneous term in the evolution equation for renormalised
momentum space DPDs – as can be seen in equation (2.56) – which at leading order in
as has been known for a long time, see for example references [78, 79]. Using the all-
order formulation of DPD renormalisation worked out in the previous section 3.5 one
can show how the all-order form of the inhomogeneous evolution equation presented
in equation (2.56) can be derived. Differentiating equation (2.53) with respect to the
renormalisation scale and making use of the fact that bare distributions are independent
of the renormalisation scale µ, one obtains

dFa1a2(D; µ)
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, (3.80)

where the shorthand notation for parton indices introduced in section 2.2.2 has been
used in order to keep the presentation as concise as possible. Using the renormalisation
scale dependence of the PDF renormalisation factors given in equation (2.49) the above
equation can be rewritten in the following form
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In order to transform the expression in the last line into the the form presented in
equation (2.56) a 1 ! 2 evolution kernels Pa1a2,a0(x1, x2; µ) associated with the splitting
singularity in DPDs is defined:

Pa1a2,a0 =

✓
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which is equivalent to

dZa1a2,a0(µ)
d ln µ2 = [P(µ)⌦

1
Zs(µ) + P(µ)⌦

2
Zs(µ) + Ps(µ)⌦

12
Z(µ)]a1a2,a0 , (3.83)

which finally yields the following all-order form of the inhomogeneous double DGLAP
equation for renormalised momentum space DPDs at arbitrary order in perturbation
theory

dFa1a2(D; µ)
d ln µ2 = [P(µ)⌦

1
F(D; µ) + P(µ)⌦

2
F(D; µ) + Ps(µ)⌦

12
f (µ)]a1a2 , (3.84)

which was already presented in section 2.2.2 as equation (2.56). The above result
confirms the form given for NLO evolution in equation (16) of reference [91]. Comparing
equation (3.83) to equation (3.84) one easily sees that the renormalisation factor for the
splitting singularity satisfies the same form of evolution equation as the renormalised
DPD, in analogy to the situation for PDFs and PDF renormalisation factors for which the
renormalisation scale dependence is given by equations (2.48) and (2.49), respectively.

Equations (3.80) to (3.84) are valid in D = 4 � 2# dimensions, and whenever the left-
hand side of an equation is finite for # ! 0 it is understood that this limit is taken.
With the implementation of the MS scheme introduced in section 3.5.1, renormalisation
factors contain only pure pole terms in #, plus an # independent tree-level term in the
case of Z (but not of Zs). As a result of this the evolution kernels P and Ps do not
depend on #. These evolution kernels must be finite for # ! 0 which implies that they
cannot contain any poles in # and any terms with a positive power of # would induce
positive powers of # on the right-hand side of equation (2.49) or equation (3.83). It
can be shown that such terms cannot appear by considering the renormalisation scale
derivative in D dimensions, given by

d
d ln µ2 =

⇥
b(as(µ))� #as(µ)

⇤ ∂

∂as(µ)
, (3.85)

which implies that there are only terms of order #n with n  0 on the left-hand side
(and thus also on the right-hand side) of equations (2.49) and (3.83).

It is thus possible to extract the kernel Ps from equation (3.82) by isolating the term
of order #0 on the right-hand side of said equation. The only term of this order in # is
contained within the renormalisation scale derivative of the Zs renormalisation factor
(convoluted with the tree-level term of Z�1) and arises from the # dependent part of
the renormalisation scale derivative given above multiplying the #�1 pole of ∂as Zs. One
thus finds that Ps is given by

Pa1a2,a0

�
x1, x2; as(µ)

�
= �as(µ)

∂

∂as(µ)

⇥
Za1a2,a0

�
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�⇤
�1 , (3.86)
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where [. . .]k denotes coefficient of the #k term of the Laurent series of the quantity
enclosed in square brackets. Using the same line of arguments one can also express P
in terms of the PDF renormalisation factor Z

Pa1a0

�
x; as(µ)

�
= �as(µ)

∂

∂as(µ)

⇥
Za1a0

�
x; as(µ), #

�⇤
�1 . (3.87)

Combining these relations with the number and momentum5 sum rules for the 1 ! 2
renormalisation factor Zs given in equations (3.69) and (3.79), one readily obtains
corresponding sum rules

1�x1Z

0

dx2 Pa1a2,v,a0(x1, x2) =
�
da1,a2 � da1,a2 � da0,a2 + da0,a2

�
Pa1a0(x1) , (3.88)

Â
a2

1�x1Z

0

dx2 x2 Pa1a2,a0(x1, x2) = (1 � x1)Pa1a0(x1) (3.89)

for the 1 ! 2 evolution kernels, where momentum fractions have been given explicitly
instead of using the compact notation of section 2.2.2, making the similarity with the
sum rules for DPDs and 1 ! 2 renormalisation factors more obvious.

Since the derivation of the sum rules for renormalised DPDs in section 3.5 did not
depend on any particular value of the renormalisation scale µ it is valid independently
of the renormalisation scale. One can thus – as a consistency check – use the all-order
form of DPD evolution given in equation (3.84) and the sum rules stated above to
verify that the DPD sum rules of equations (3.2) and (3.3) are stable under a change of
the renormalisation scale, implying that the renormalisation scale derivative of their
left-hand side is equal to the renormalisation scale derivative of their right-hand side.

Consider to this end first the DPD number sum rule. Using again the compact notation
introduced in section 2.2.2, the renormalisation scale derivative of the left-hand side of
equation (3.3) can be written as

d
d ln µ2

Z

2

Fa1a2,v(D; µ) = Â
b1

Pa1b1(µ)⌦1

Z

2

Fb1a2,v(D; µ) + Â
b2

Z
Pa2,vb2(µ)

Z

2

Fa1b2(D; µ)

+ Â
b

✓Z

2

Pa1a2,v,b(µ)

◆
⌦
1

fb(µ) . (3.90)

Note that the shorthand notation for parton indices has not been used in order to keep
the arguments as clear as possible. Here one can perform further simplifications by

5We note that the momentum sum rule given in equation (3.89) has the same form as a corresponding
sum rule derived in [92, 93] for “two-body inclusive decay probabilities”, see equation (49) in reference [93].
These quantities were introduced to describe the evolution of hadronic jets. From the results presented in
chapter 5 one can see that the two types of functions start to differ at order a2

s .
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applying the DPD sum rule at scale µ to the first term and the number sum rule of
equation (3.88) for the 1 ! 2 evolution kernel to the last term. The second term in the
above expression is zero due to the number sum rule

Z
Pa1,va0 = 0 (3.91)

for the DGLAP evolution kernels, which readily follows from equations (3.64) and (3.87).
With this equation (3.90) can be rewritten as follows

d
d ln µ2
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2

Fa1a2,v(D; µ) = Â
b1

Pa1b1 ⌦1

�
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�
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�
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1
fb

=
�

Na2,v + da1,a2 � da1,a2

�
Â

b
Pa1b ⌦

1
fb , (3.92)

where on the right-hand side one immediately recognises the sum multiplying the
parentheses as the derivative d fa1 /d ln µ2 and thus the appropriate derivative of the
right-hand side of the DPD number sum rule given in equation (3.3). This nicely
illustrates the stability of the number sum rule under a change of the renormalisation
scale µ.

In order to show the same for the momentum sum rule, one can proceed in full analogy,
starting with

d
d ln µ2 Â

a2

Z

2

X2 Fa1a2(D; µ) = Â
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2
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◆
⌦
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�
X fb(µ)

�
. (3.93)

Here the second term on the right-hand side is zero due to the momentum sum rule

Â
a1

Z
XPa1a0 = 0 (3.94)

for the DGLAP kernels, which can be derived from equations (3.64) and (3.87). Equa-
tion (3.93) can be simplified by applying the DPD momentum sum rule at scale µ to
the first term on its right-hand side and the relation from equation (3.89) to the last
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term such that one obtains the following expression

d
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X fb(µ)

�

= (1 � X1)Â
b

Pa1b(µ)⌦
1

fb(µ) , (3.95)

where in the last step the relation given in equation (2.40) has been used. Here the
last line of the above equation can again be identified as is the renormalisation scale
derivative of the right-hand side of the DPD momentum sum rule given in equation (3.2),
as required. It should be pointed out that the inhomogeneous term in the double
DGLAP equation is essential for the preceding arguments to work. For leading-order
evolution, this was already emphasised in references [40, 94].
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models

4.1. Introduction

As stated already in the introduction of chapter 3, what motivated the proof that the
DPD sum rules are valid in full QCD was the idea to use them to construct improved
position space DPD models which can be used within the DGS framework to calculate
DPS cross sections. The necessity for this arises due to the fact that the original GS09
DPDs are D = 0 momentum space distributions which cannot be transformed to
position space as this would require the complete D dependence to be known yet. The
reason why the GS09 DPDs are defined at D = 0 is simply the fact that this is where
the sum rules are valid. Using the DPD sum rules as a guidance to improve position
space DPDs is thus not a straightforward task as it requires a connection between
position space DPDs and their momentum space counterpart at D = 0. For the bare
distributions such a relation is already given in equation (2.24) which however no
longer holds for renormalised DPDs as discussed in some detail in section 2.2.2 and
in particular is divergent in D = 4 dimensions where one would naturally define a
DPD model. A possible solution to this issue is to absorb the cut-off function F(yn)
introduced in the factorised cross section in equation (2.58) into the definition of the
individual DPDs FF(y) as indicated by the subscript F. With this cut-off Fourier
transforming momentum space DPDs to position space is straightforward, especially
for D = 0 where it is tantamount to integrating the position space distributions over
y. However, these position space DPDs FF(D = 0) are not quite the distributions for
which the validity of the DPD sum rules has been shown in the previous chapter
due to different regularisation of the splitting singularity. Fortunately the differences
between distributions where the splitting singularity is treated using the MS scheme,
denoted by FMS(D = 0) and those where the cut-off F(yn) is used to this end arises
only from the region of very small y where the DPDs can be calculated perturbatively as
shown in equation (2.52). This makes it possible to derive a matching equation between
FMS(D = 0) on one hand and FF(D = 0) on the other hand.

In this chapter it will be shown how the DPD sum rules can be used to construct a
sum rule improved position space DPD model at leading order in the strong coupling.
The general procedure employed here applies also for higher order DPD models.
However, at the time this project was started the NLO kernel of the perturbative
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splitting contribution in equation (2.52) (which will be presented in chapter 5) has not
been known, restricting the analysis to LO. As a first step in this direction a discussion
of the matching relation mentioned above will be given in section 4.2.1. Before actually
using the sum rules to construct improved DPDs, some requirements a DPD model
should fulfil are discussed in section 4.2.2 where also the explicit form of the DPD
model used as a starting point in the following sections is presented and motivated.
Some technical details – in particular about the implementation of numerics – are given
in section 4.2.3 before finally moving on to the stepwise improvement of the initial
model in section 4.3. Following this the impact of renormalisation scale evolution and
of the choice of the cut-off scale n on the degree to which the sum rules are fulfilled is
examined in section 4.4. The results of the project discussed in this chapter are currently
being prepared for publication [95].

4.2. Specific theory

Some preliminary considerations are in place before moving on to the actual task of
constructing sum rule improved DPD models. In particular the matching between the
FF and FMS DPDs has to be considered as well as the general ansatz for a position space
DPD model. Furthermore details about the numerical implementation of the evolution
of DPDs as well as of the Fourier transformation to position space and the subsequent
matching will be discussed in this subsection.

4.2.1. From position space DPD models to D = 0 momentum space DPDs

As mentioned already in the introduction of this chapter it is necessary to perform
a matching between the momentum space DPDs obtained from the DPD model by
integrating over the whole y range with a cut-off function F(yn) and the ones where the
splitting singularity is regularised using dimensional regularisation and renormalised
using the MS scheme. To this end one makes use of the fact that the two schemes
differ only in the treatment of the splitting singularity such that differences between
FF(D = 0) and FMS(D = 0) arise only from the region of very small transverse distances
y. In this regime the position space DPDs are dominated by the perturbative splitting
contribution introduced in equation (2.52) and can be calculated in perturbation theory.
At leading order – to which the analysis in this chapter is restricted – this has been
calculated in section 3.2 of reference [35] and is given by

Fa1a2,spl,pt(x1, x2, y; µ)

=
µ2#

y2�4#

G2(1 � #)
p1�2#

fa0(x1 + x2; µ)
x1 + x2

as(µ)
2p

Pa1a2,a0

✓
x1

x1 + x2
, #

◆
, (4.1)
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where the Pa1a2,a0 are the D = 4� 2# dimensional generalisation of the kernels computed
in section 5.2.2 of reference [26] which agree with the expressions for Pn 6=4 in section 3
of reference [96] and read:

Pgg,g(x, #) = 2CA


x

1 � x
+

1 � x
x

+ x(1 � x)
�

,

Pqq̄,g(x, #) = TF
x2 + (1 � x)2 � #

1 � #
,

Pqg,q(x, #) = CF


1 + x2

1 � x
� #(1 � x)

�
. (4.2)

Note that at LO the splitting contribution is a simple product of a PDF and a 1 ! 2
splitting kernel rather than a convolution as indicated in equation (2.52). This is due to
the fact that at LO the 1 ! 2 splitting kernels contain a delta function which renders
the convolution integral trivial. Since in the small y regime the perturbative splitting is
the dominant contribution to the position space DPDs the matching between FF(D = 0)
and FMS(D = 0) can be calculated using equation (4.1) and yields

FMS,a1a2
(x1, x2, D; µ)� FF,a1a2(x1, x2, D; µ, n)

=


ln

µ2

n2 +
P0

a1a2,a0
(v, 0)

Pa1a2,a0(v, 0)

�
f a0(x; µ)

x
as(µ)

2p
Pa1a2,a0(v, 0) +O

✓
D2

n2

◆
+O(a2

s ) , (4.3)

where P0
a1a2,a0

(v, 0) denotes the partial derivative of Pa1a2,a0(v, #) with respect to #, eval-
uated at # = 0 and furthermore the variables x = x1 + x2 and v = x1/(x1 + x2) have
been used to keep the presentation concise. In section 5.4 this matching equation will
be generalised to higher orders and the NLO matching kernels can be derived from the
results in section 5.6.

As the MS momentum space DPDs do not depend on the cut-off scale n the matching
term should exactly cancel the n dependence of the cut-off momentum space DPDs
which is however not the case for the LO matching as this still leaves higher order
terms that are uncancelled. In section 4.4 this remnant n dependence will be discussed
in some detail as this contains valuable information on the size of the higher order
contributions neglected in equation (4.3).

4.2.2. Initial DPD model

With these preliminaries sorted out it is time to consider which requirements a first
ansatz for a position space DPD model should fulfil and how this can be used to
motivate what will finally be used as a starting point from which a sum rule improved
DPD model can be constructed.

The analysis in reference [35] suggests that it is reasonable to divide a DPD into
an “intrinsic” non-perturbative part and a perturbative “splitting” part, the latter of
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which can be calculated in perturbation theory for small y as mentioned already in
the discussion around equation (2.52). While for the splitting contribution this gives
a pretty precise idea already how this part could be modelled, the situation is much
less clear for the intrinsic part where such perturbative input is missing. It therefore
makes sense to retreat for this intrinsic part to a model that in similar form has been
used in many prior works on DPDs and in particular in the original work on the DPD
sum rules by Gaunt and Stirling [45]:

Fa1a2,int(x1, x2, y; µ0, µ0) =
1

4pha1a2

exp

�

y2

4ha1a2

�
fa1(x1; µ0) fa2(x2; µ0)

⇥ (1 � x1 � x2)
2 (1 � x1)

�2 (1 � x2)
�2 . (4.4)

The basic idea that a collinear DPD can be approximated by a product of two collinear
PDFs and a spatial profile function is commonly used, and in fact also leads to the
well known – but also controversial – pocket formula for the DPS cross section of
references [97, 98]. In order to arrive at such a factorised form one assumes that the
partons inside a hadron are completely uncorrelated which would allow to express a
DPD as a convolution of two impact parameter PDFs (GPDs) as discussed in section 2.1.5
of reference [26]:

Fa1a2(x1, x2, y; µ1, µ2) =
Z

d2b fa1(x1, b + y; µ1) fa2(x2, b; µ2) . (4.5)

Furthermore assuming that these impact parameter PDFs also factorise and can be
expressed in terms of collinear single parton distributions and a Gaussian impact
parameter profile in the following way

fa(x, b; µ) =
1

4pha
fa(x; µ) exp


�

b2

4ha

�
, (4.6)

the convolution integral in equation (4.5) can be calculated analytically and results in a
Gaussian with a width that is the sum of the single particle widths, ha1a2 = ha1 + ha2

with the appropriate normalisation of equation (4.4). For the single particle widths the
expression from section 4.1 of reference [99] evaluated at a fixed x value of 10�3 is used
which gives the following values

hg = 2.33 GeV�2 , hq = hq̄ = 3.53 GeV�2 . (4.7)

In addition to this simple product of PDFs and a y profile function furthermore a so
called phase-space factor is introduced in accordance with reference [45]. Here the
factor (1 � x1 � x2)2 guarantees that the DPD smoothly vanishes as x1 + x2 ! 1 as
is required for physical DPDs. Furthermore this also mirrors the fact that finding a
parton with momentum fraction x1 reduces the probability to find a second one with
momentum fraction x2 ⇠ 1 � x1. However, as this suppresses the DPD rather too
strongly along the lines where one of the momentum fractions approaches zero this
factor is again divided by (1 � x1)2(1 � x2)2 in order to achieve that in the vicinity of
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these lines the the phase-space factor reduces to 1. Such a behaviour is desirable as in
the case where only one momentum fraction is large, while the other one is small one
expects a smaller suppression than in the case where both momentum fractions become
large. As already mentioned above the perturbative result for the splitting contribution
given in equation (4.1) and to which the DPD should reduce for small values of y can
be used as guidance for modelling the splitting contribution and one can thus make
the following ansatz

Fa1a2,spl(x1, x2, y; µy, µy)

=
1

py2 exp

�
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4ha1a2

�
fa0(x1 + x2; µy)
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as(µy)

2p
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✓
x1

x1 + x2

◆
, (4.8)

which is basically just the perturbative result multiplied by a damping term to sup-
press the large y region where the splitting can be expected to be negligible. Out of
convenience and for a lack of a more intuitive choice the same Gaussian y profile used
already in the ansatz for the intrinsic part in equation (4.4) has been used here. A
particularly important detail here is that the PDF has to be evaluated at a y-dependent
scale µy ⇠ 1/y to ensure that the scale is appropriate for the splitting considered. In
particular the specific y dependence of µ which is used in the following is given by

µy =
b0

y⇤
, y⇤ =

yp
1 + y2/y2

max
. (4.9)

where the y⇤ prescription ensures that the PDF in the splitting part is never evaluated
at too low scales, even for very large values of y where a perturbative description is no
longer reliable. The transition between the regime where µy ⇠ 1/y and the one where
it tends towards a value µmin is governed by the value of the parameter ymax for which
a value of 0.5 GeV�1 has been chosen according to a study of TMDs in reference [100]
where the similar b⇤ prescription is used.

As this is only an initial ansatz which shall be improved using the DPD sum rules in
section 4.3 one has to ask in which ways the initial model can be modified in order
to achieve a better agreement with the sum rules. As mentioned before the initial
choice for the intrinsic part is motivated by the assumption of completely uncorrelated
partons, which is of course a rather strong assumption that may be valid at very low
momentum fractions x1 and x2 but certainly should be doubted for larger values. These
assumptions have already been relaxed a bit by introducing the phase-space factor
and in theory nothing forbids to completely disregard the factorized ansatz for the
intrinsic part for something else. In practice, however, it is rather difficult to find other,
more appropriate, models as unfortunately the genuine non-perturbative nature of the
intrinsic part means that unlike for the splitting part one cannot gain any knowledge
about it from perturbation theory. In the future one might hope to be able to use results
from lattice QCD as a guidance to model the intrinsic part but at present this is not yet
possible such that it is most reasonable to stick with the factorized ansatz presented
in equation (4.4). Of course this does not mean that there are no modifications of the
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current model for the intrinsic part possible – quite the contrary is the case, one is
free to modify it at will, the non-trivial part is only finding the correct, or suitable,
modifications. As the PDFs used as building blocks are basically the only experimental
input in the model introduced above it makes sense to refrain from modifying these
and rather focus on the phase-space factor and the y profile.

For the splitting contribution, the situation is, as indicated earlier, quite different, as
there one can actually calculate the small y form in perturbation theory, which imposes
the constraint that any ansatz for the splitting part should for small y, meaning for
y ⌧ 1/L, where L is a generic hadronic scale, recover the perturbative result. For large
values of y deviations from this perturbative result are of course allowed as perturbation
theory, which comes with uncertainties of order O(yL) fails to converge for large y.
Within these uncertainties the ansatz for the splitting contribution can be modified at
will which was already used in the initial ansatz where the Gaussian damping factor
has been introduced and it will be used again to show how one can in a systematic
manner achieve a better agreement with the sum rules.

Having laid out what can actually be modified about the model introduced above
leads to the important question which requirements a sensible DPD model should
fulfil. Of course the main aim is to construct DPDs fulfilling the sum rules to the
best degree possible, however, this should not be forced at any price as it would also
be preferable that the modifications should be physically motivated. Besides this an
analytical expression for the final model is desirable.

4.2.3. Technical details and numerics

Before actually studying the proposed DPD model with the help of the sum rules
and modifying it in order to achieve a better agreement with said sum rules, a brief
discussion of some of the more technical details is in place. In order to check how
well the sum rules are fulfilled for a given DPD model one first has to produce a grid
containing the values of the DPDs for discrete values of the momentum fractions x1
and x2, the interparton distance y, as well as the renormalisation scale µ. The next step
is then to Fourier transform to D = 0 momentum space DPDs which is tantamount to
integrating over y. As the splitting singularity in such a numerical integration is most
straightforwardly regularized using a cut-off one then has to, as discussed in section
4.2.1, match onto MS momentum space DPDs according to equation (4.3). For these MS
momentum space DPDs one can then finally perform the sum rule integrals to check
how well the sum rules are fulfilled for the model under consideration.

For the PDFs in equations (4.4) and (4.8) a slightly modified version of the LO MSTW08
PDF set introduced in reference [101] is used. In particular the initial sv distribution is
set to zero and a modification term given in equation (3.11) of reference [45] is added to
the d̄ distribution. The reason for this is that for some values of the momentum fraction
x the s̄ and d̄ distributions in the MSTW08 PDF set become very slightly negative, which
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is in principle not allowed for LO PDFs which can be interpreted as probability densities.
In the case of SPS calculations, however, this may be neglected, as the absolute size of the
distributions is only very small when they become negative – namely s̄, d̄ � �0.00005.
For LO DPDs, which also admit an interpretation as probability densities, on the
other hand this is not acceptable. This can be understood when one considers the case
that one parton in equation (4.4) is s̄ or d̄ with a momentum fraction such that the
corresponding PDF is slightly negative. If now the PDF corresponding to the second
parton becomes large, for example for small momentum fractions, the resulting DPD
may also become of non-negligible size and negative. Since this has to be avoided the
above modifications were suggested in reference [45].

As the sum rules have to be evaluated at a fixed scale µ one thus also has to to evolve
the splitting DPDs at each value of y in the grid to this fixed scale which requires
a numerical implementation of the homogeneous double DGLAP equation which is
furthermore also needed to check how well the sum rules are fulfilled at higher scales,
away from the starting scale. The production of the DPD grids is performed using a
version of the code first used in the original work on the DPD sum rules [45] which
has been modified in reference [35] to incorporate the y dependence which is missing
in the original GS09 DPD set and where the the appropriate homogeneous dDGLAP
evolution has been implemented. With this code DPD grids in the momentum fractions
x1 and x2, the interparton distance y, and the renormalisation scale µ are produced.
Note again that equal scale DPDs are used as is appropriate for the evaluation of
the sum rules. This also has the pleasant side effect that one has to deal with lower
dimensional and thus substantially smaller grid files. For this study the number of
flavours has been restricted to n f = 3 as this leads to substantially smaller DPD grids
compared to n f = 5, while still being able to study the general features of the DPDs.

Rather than producing grids that are equally spaced in the momentum fractions x1
and x2 following the example of references [35, 45] grids equidistant in the variables
ui = ln(xi/(1 � xi)) are produced resulting in a grid that is evenly spaced in ln xi for
small values of xi where the DPDs grow rapidly and approximately equally spaced in xi
for larger values of the momentum fractions where the DPDs are generally smaller and
vary slower with changes in the momentum fractions xi. The produced grids consist
of 89 grid points in each xi direction with the smallest and largest xi values being
xmin = 5 ⇥ 10�5 and xmax = 1 � xmin. As the evolution equation (2.51) is a differential
equation in t = ln µ2 it is a natural choice to make the grid equidistant in t rather than
µ such that one can avoid dealing with varying step sizes during the evolution. In
the µ direction the grids contain 51 points. Note that the smallest µ value in the grids
is furthermore fixed by the value of the parameter ymax used in the y⇤ prescription
of equation (4.9) as µmin has to be slightly larger than µy!• = b0

ymax
. This is due to

technical limitations since it is not possible to evolve from lower scales with the DPD
evolution code. The largest value for the renormalisation scale in the grid has been
chosen as µmax = 172 GeV, which is large but not too large. The points in y space are
chosen such that they correspond to grid points in µ as this makes the evaluation of
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the splitting part simpler and faster by avoiding the need for additional evolution. In
addition to the grid points corresponding to the µ grid points the grid furthermore
contains additional points for small y values, and in the case of the splitting part also
for large values, resulting in 60 points in the y direction for the intrinsic part and 90
points for the splitting part. The actual evolution to different scales is performed using
a fourth-order Runge-Kutta algorithm and the evolution basis, described for example
in section 4.3 of reference [102]. For more detail about the numerical evolution see also
section 4.1 and Appendix A of the original sum rule paper [45].

In order to arrive at the D = 0 momentum space DPDs one has to integrate the DPDs
numerically over y with the splitting singularity regulated using the cut-off function
F(ny) introduced in reference [35] and discussed in some detail in section 2.2.3. For
convenience and in order to avoid large logarithms in the matching equation (4.3) the
cut-off scale n is set equal to the renormalisation scale µ with the exception of section 4.4
where the dependence of the MS momentum space DPDs on the cut-off scale is analysed.
At this point it is instructive to consider briefly how the actual y integration for the
intrinsic and splitting contributions is performed as the situation is quite different in
these two cases. In the intrinsic model the y dependence is strictly multiplicative in the
sense that the only dependence on y is due to the Gaussian profile function, and while
under evolution DPDs mix with other DPDs due to successive parton splittings, the final
profile is still reasonably well approximated by a superposition of Gaussians of different
widths. Thus the y integration can for the intrinsic part be performed in a way that may
be described as “semi-analytically” by fitting the y grid points to a superposition of three
Gaussians with widths hqq, hqg, and hgg. For these Gaussians it is then straightforward
to perform the integration from n�1 to • analytically. Unfortunately the situation is
not as favourable for the splitting part as there the initialisation scale µy depends on y.
In order to arrive at a given fixed renormalisation scale µ at which the y integration
and subsequently also the sum rule integrals shall be performed the splitting DPD has
to be evolved from µy to µ for each y grid point. As this means that for every point in
y one has to evolve for a different amount to arrive at µ the y dependence is thus no
longer strictly multiplicative and the y integration has to be performed numerically
as the approach used for the intrinsic part is bound to fail here. However, this is not
totally straightforward either, as the grid is rather coarsely spaced for large y which
leads to a decrease in accuracy. Therefore the production code has been modified as
mentioned before to increase the number of grid points for large values of y making it
possible to perform the y integration also in this case with sufficient precision.

After this the next step is the matching onto MS D = 0 momentum space DPDs
according to equation (4.3) which is however straightforward to implement. It should
be noted here that even at this point the intrinsic and splitting part, as well as the
matching part, are kept separate in order to be able to keep track of how much
each individual part contributes to the overall DPD. The actual sum rule integrals of
equations (3.3) and (3.2) are then also straightforward to perform numerically and
at this point it makes sense to briefly comment on how the results are visualised.
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Following the example of reference [45] the results are presented as what is there
referred to as sum rule ratios, meaning the sum rule integral divided by the PDF
quantity it should equal, namely

r(x1) =

R
dx2 Fa1a2,v(x1, x2; µ)�

Na2,v + da1,a2 � da1,a2

�
fa1(x1; µ)

, r(x1) =
Âa2

R
dx2 x2 Fa1a2(x1, x2; µ)

(1 � x1) fa1(x1; µ)
, (4.10)

for the number sum rule and momentum sum rules, respectively. Note that the integra-
tion boundaries omitted here are understood to be as in equations (3.2) and (3.3). The
reason for plotting this ratio rather than the difference between the two is that it has
the major advantage that it makes it possible to easily read of the relative deviations
which are more interesting than absolute deviations. This is due to the fact that for
small momentum fraction x1 even huge absolute deviations may amount for only minor
relative deviations as in this regime DPDs tend to be very large. On the other hand,
however, this also means that very small absolute deviations may lead to huge relative
deviations for large x1 which is why large relative deviations for x1 & 0.8 are of no
great concern. In the following section these sum rule ratios will be plotted for the
lowest scale in the grid as there one can naturally expect the sum rules to be most
sensitive to changes in the model. To be able to read of how much each part – intrinsic,
splitting, and matching – contributes to a given sum rule these parts will be plotted
separately, along with their sum, in a single plot, as seen for example in figure 4.1. This
makes it possible to extract valuable information about which part one needs to modify
in which way in order to achieve a better agreement with the sum rules. In section 4.4.1
the sum rule ratios will also be plotted for different scales in order to study how the
agreement with the sum rules changes under evolution. Finally in section 4.4.2 it will
be studied how well the n dependence of the DPDs cancels at the considered order in
perturbation theory.

4.3. Refining the DPD model

Having discussed the theoretical background and technical details in the previous
section one now has everything at hand to actually study how well the sum rules are
fulfilled for different modifications of the initial DPD model and how exactly these
changes impact the agreement with the sum rules.

4.3.1. Initial DPD model

Consider first the initial DPD model suggested in equations (4.4) and (4.8). As this
ansatz is only a first – although physically motivated – guess it is not expected to fulfil
the sum rules all too well and it will now be discussed which features of this initial
model are already as desired and where there are still deficiencies. The most striking
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result is certainly that the momentum sum rules are already surprisingly well fulfilled
as can be seen from the plots in figure 4.1. Here it should be noted that not the full
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Figure 4.1.: g and u momentum sum rule ratios for the initial, unmodified, model at the scale µmin =
2.25 GeV. In these plots the individual contributions from the intrinsic and splitting parts, as
well as their sum have been plotted. For convenience the ±10% deviations are indicated by
a light grey band. When not shown explicitly the contribution from the matching term is
negligible such that it is not shown in order to avoid cluttering the plots. The remaining plots
in this section will follow this example unless explicitly stated otherwise.

set of plots is shown but rather only a few representative ones which nicely illustrate
general features, and if this is not possible the plots with the best and worst agreements
with the sum rules will be presented. An interesting feature of the momentum sum
rules is the large contribution they get from the splitting part as illustrated in figure 4.1.
The different size of the splitting contribution is rather easily explained if one considers
which DPDs can be produced by LO splittings, namely qq̄, qg, q̄g (and of course gq
and gq), and gg. There are thus 2n f + 1 different DPDs in the g momentum sum rule
which get a sizeable splitting contribution while for the u momentum sum rule there
are just 2 DPDs with a large splitting contribution, uū and ug. This explains why the
splitting contribution to the g sum rule is rather large compared to the one for the u
sum rule. However, there are furthermore also differences between the impact of the
splitting contributions for different quark momentum sum rules, for example the ū and
d̄ momentum sum rules have larger contributions from splitting than the ones for u and
d for which splitting contributions are comparable in size. This is can be explained by
the fact that u and d PDFs are large compared to ū and d̄ PDFs, such that for the former
the intrinsic part is larger, also in comparison to the splitting contribution. Another
rather interesting feature of figure 4.1 is the relatively small size of the matching
contribution which can be explained by the choice n = µ which will be discussed more
thoroughly in section 4.4.2.

At this point a comment on the power that has been chosen for the phase space factor
introduced in equation (4.4) is appropriate as this may up to now seem rather ad hoc.
In some of the earlier works on DPDs, for example in references [103–106], a simple
(1 � x1 � x2) factor has been suggested, motivated using the Kutti-Weiskopf model of
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reference [107] and the recombination model discussed in reference [108], and more
recent works, in particular reference [109], suggested that a (1 � x1 � x2)2 factor is
appropriate while even higher powers of this suppression factor should be appropriate
according to a generalisation of the Brodsky-Farrar quark counting rules, discussed
in references [110, 111], to DPDs. The powers of (1 � x1) and (1 � x2) of course have
to be chosen to match that of (1 � x1 � x2) for the phase space factor to exhibit the
desire behaviour as discussed below equation (4.7). In order to figure out which choice
actually leads to the best agreement with the sum rules it has been studied how well
the sum rules are fulfilled for different powers n which leads to the conclusion that the
best agreement is achieved for n = 2 as can be seen in figures 4.1b and 4.2.
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Figure 4.2.: Sum rule ratio plots of the g momentum sum rule ratio for different powers of the phase space
factor in the intrinsic part of the initial model in equation (4.4). The sum rule ratio for n = 2 is
shown in figure 4.1b.

The reason why the number sum rules have not been taken into consideration for this
evaluation is that they are badly violated regardless which power of the phase space
factor is used, the reasons for which as well as possible solutions will now be elaborated
on. As can be seen in figure 4.3 the sum rule ratio drops significantly below 1 with
increasing x1 for uv and dv number sum rules hinting at a rather too strong suppression
due to the phase space factor for large momentum fractions. This deficiency of the
phase space factor was already noted in reference [45] where also a possible solution
to this issue was suggested which will be discussed – and implemented – in the next
iteration of the DPD model in the following subsection. Even though the number sum
rules are badly violated it is still a positive sign that already without this modification
the sum rule ratios are close to one for small values of x1 where the DPDs tend to be
largest. However, there is unfortunately also an exception to this rule in the case of the
uuv number sum rule for which the sum rule ratio is close to two for small x1 which
can be explained by the fact that so far what has been referred to as number effects in
the original sum rule paper [45] have not been taken into account. It is only natural
to expect that finding a valence quark of a given flavour reduces the probability to
find a second valence quark of the same flavour. For example in the proton finding a u
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Figure 4.3.: Mixed flavour number sum rules ratios for the initial model exhibiting a strong decrease with
increasing momentum fraction x1. A possible solution to this is to modify the phase space
factor in the intrinsic part of the model.

valence quark reduces the probability to find a second one by 50% while finding a d
valence quark means that the probability to find a second one vanishes.

An exception to the aforementioned strong decrease for larger momentum fractions x1
pose the equal flavour number sum rules, meaning uuv, ūuv, d̄dv, ssv, which get a large
contribution from the splitting part as can be seen in figure 4.4 and will be discussed
now.
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Figure 4.4.: Equal flavour number sum rules ratios for the initial model for which the decrease with
increasing momentum fraction x1 is less pronounced as in the mixed flavour case as these
DPDs get a non-negligible splitting contribution.

The reason why these sum rules do get a comparatively large contribution becomes
clear when one looks at how splitting valence DPDs are defined

Fqqv,spl = Fqq,spl � Fqq̄,spl ⇡ �Fqq̄,spl . (4.11)

The approximation in the last step is justified as qq̄ DPDs are directly produced at LO
via g ! qq̄ splitting whereas qq DPDs are not directly produced by LO splitting but
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rather emerge in the splitting sector only due to mixing under evolution. Due to this
sizeable contribution from the splitting part the sum rule ratios for the equal flavour
number sum rules exhibit a noticeably weaker decrease with increasing momentum
fraction x1 as the splitting part is not affected by the phase space factor. This effect is
most pronounced for the ssv number sum rule where the intrinsic contribution vanishes
completely as in the modified LO MSTW08 PDF set used for the PDFs in equations (4.4)
and (4.8) the s and s̄ PDFs are identical. Another rather distinct feature of these equal
flavour number sum rule is that the corresponding sum rule ratios exhibit a rather
“curvy” behaviour compared to the ones that get no large contribution from the splitting
part which is something that will be revisited in subsection 4.3.4.

4.3.2. Modified phase space factor and number e↵ect subtractions

In the first iteration of the DPD model introduced in section 4.2.2 and studied in
the previous section the main concern is the bad agreement with the number sum
rules discussed above. In this section it will be shown how these deficiencies can be
improved by implementing the modifications hinted at in the prior subsection. First
of all appropriate subtractions are performed to take into account the aforementioned
number affects which is rather straightforward. The stark decrease of the number sum
rule rations for larger x1 values was already encountered in reference [45] where a
– unfortunately not physically motivated – solution to this issue has been proposed
by making the global phase space factor r(x1, x2) parton species dependent in the
following way

ra1a2(x1, x2) = (1 � x1 � x2)
2(1 � x1)

�2�a(a2)(1 � x2)
�2�a(a1) , (4.12)

with

a(a) =

(
0 if a is a sea parton,
0.5 if a is a valence parton.

(4.13)

After these modifications have been implemented in equation (4.4) one finds that the
agreement of the DPD model with the momentum sum rules – which was already
pretty good to begin with – has further improved such that for most of the x1 range
the relative deviations are less then 10% as illustrated in figure 4.5 The by far more
interesting question, however, is how much these modifications of the phase space
factor and the number effect subtractions effect the agreement with the number sum
rules. Looking at the uuv number sum rule in figure 4.6a one immediately sees that both
the number effect subtractions and the modified phase space factor had the desired
effect even though the suppression is still rather too strong for increasing x1. This
behaviour can also be observed for all other uv number sum rules whereas the situation
is significantly better for the dv number sum rules, suggesting that maybe a further
modification of the phase space factor with different powers a(uv) and a(dv) might lead
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Figure 4.5.: Momentum sum rule ratios for the first iteration of the model with a modified phase space
factor. With this modification the suppression for large x1 has successfully been decreased.
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Figure 4.6.: Equal and mixed flavour number sum rule ratio plots for the first iteration of the initial model.
Comparing these to figures 4.3 and 4.4 it is obvious that the modifications of the phase space
factor as well as the number effect subtractions had the desired effect.

to an even better agreement with the number sum rules. With the modified phase space
factor the shortcomings associated with the equal flavour number sum rules become
even more apparent and it will shortly be discussed how these may be addressed. While
the number effect subtractions are indeed physically motivated the only motivation for
the modified phase space factor was that it achieves the intended goal, namely improve
the agreement with the number sum rules. One is thus free to choose these modified
powers at will and this has been done in the next iteration of the model in the following
section.

4.3.3. Fine tuning the modified phase space factor

As a next step a parameter scan over a(uv) and a(dv) around their initial value of 0.5
has been performed in order to determine the ideal combination of modified powers
for which the best possible agreement with the sum rules is achieved. Since this leads
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to a rather large number of different DPD sets one has to compare in order to find the
one with the best agreement with the sum rules this raises the interesting question
whether one can define a measure that makes it possible to objectively compare how
well different DPD models fulfil the sum rules. While this may sound like a rather
simple question with a seemingly obvious answer this issue is unfortunately not as
straightforward as as it seems. For example, one has to make a decision whether one
wants to reduce absolute or relative deviations which would probably lead to quite
different results as absolute deviations are generically largest for small x1 values while
they become comparably small for larger x1 values. As the aim is that the final DPD
models fulfil the sum rules reasonably well for all but the largest x1 values it makes
most sense to minimize relative deviations rather than absolute ones.

In order to define a measure for the relative deviations one can then take the follow-
ing:

d =

0.8Z

xmin

dx1 |r(x1)� 1| , (4.14)

where r is the sum rule ratio under consideration, defined in equation (4.10). This
measures the average deviation of the sum rule ratio from its ideal value of 1 between
xmin and 0.8. Here 0.8 has been chosen as the upper boundary instead of xmax since –
as mentioned earlier – large relative deviations for large x1 values are no major concern.
With this measure one can then in an automated way pick out the combination of
powers a(uv) and a(dv) which minimizes the total relative deviation of all sum rules.
Another possible approach to define such a measure would be to take again the absolute
value of the difference between the actual value of the sum rule ratio and its ideal
value of one but instead of integrating it over x1 sum the value of it at each x1 grid
point again up to x1 = 0.8. As the DPD grid introduced in section 4.2.3 is rather dense
for small x1 values this results in a measure that puts more emphasis on the small x1
region where DPDs are naturally expected to be large, making this method somewhat
intermediate between the previous one and a measure which reduces the absolute
deviations. Both of the measures defined above have been used to analyse the data from
the parameter scan and both approaches returned the same values for the modified
powers a(uv) and a(dv). While this may seem surprising at first this could actually be
anticipated as for small x1 the differences between the models with different powers
are not very pronounced such that even for the measure putting emphasis on the small
x1 region the actual difference between different models arises from the medium to
large x1 regime. The results of this parameter scan are illustrated in figure 4.7 which
yields the following modified powers:

a(a) =

8
><

>:

0 if a is a sea parton,
0.63 if a is a uv parton,
0.49 if a is a dv parton.

(4.15)
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Figure 4.7.: Illustration of the average deviations per sum rule in per cent, depending on the combination
of modified powers a(uv) and a(dv). The values in this plot correspond to the first measure
defined above. In subfigure 4.7a the complete range over which the powers were modified is
shown, whereas in subfigure 4.7b a small subset of this where the deviations are smallest is
presented.

In what follows it will be discussed how this effects the sum rule ratios and as in the
previous sections again the momentum sum rules are considered first, which remain
largely unchanged as can be seen by comparing figures 4.5 and 4.8 which are very
similar with only a slightly worse agreement in figure 4.8. For the number sum rules,
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Figure 4.8.: Sum rule ratio plots for the g and u momentum sum rules after the second iteration of the
phase space factor.

however, the situation is of course different and one finds a definite improvement for
the uv sum rules, as can be seen in figure 4.9a, while the dv sum rules remain basically
unchanged which comes as no surprise as the ideal value of a(dv) = 0.49 is very close
to the initial value of 0.5 used before. Here it should be pointed out that the agreement
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Figure 4.9.: Illustration of the difference between the number sum rule ratios for the first and second
iteration of the phase space factor. Here the individual contributions have not been plotted
since this is not needed, as the only part that changes compared to figure 4.6 is the intrinsic
contribution, and this would just clutter the plots.

actually gets significantly worse for the uv number sum rules for x1 & 0.9, but as
mentioned earlier already this is not too great of a concern and can be accepted in
return for a better agreement at smaller x1 values.

The experience with the parameter scan over the powers of the modified phase space
factor raised the question as to whether it is possible to find other parameters in the
DPD model which could be tuned in much the same way. Possible candidates for such
an endeavour are the parameter ymax regulating the transition from the 1/y behaviour
of µy to a constant value as well as the widths of the Gaussian damping factor, ha1a2 .
While the initial values for these parameters may be physically motivated they are
nevertheless not set in stone as they are used in a context which is not exactly the same
as the one for which these values have been originally derived. Therefore parameter
scans have been performed also for these parameters, varying them about their initial
values, with the result that the sum rules are not very sensitive to changes of these
parameters unless one goes far away from their initial, physically motivated, values
and even then the agreement with the sum rules worsens rather than improves. The
values that give the best agreement with the sum rules according to these parameter
scans are in close vicinity of the ones used initially such that it makes most sense to
stick with these as they are at least vaguely physically motivated. It is actually not too
surprising that the agreement with the sum rules is not too strongly dependent on
the widths of the Gaussian damping term. For the intrinsic part the y integration is
actually normalised to 1 if one integrates over all of y and does not impose a lower
cut-off, such that there – even when using a cut-off – one should not expect a very
strong dependence on the choice of the widths ha1a2 . For the splitting contribution the
situation is a bit less straightforward as there the y integration is not normalised to
1, but there one can argue that the damping affects mostly the large y contribution
whereas due to the splitting singularity the major contribution to the integral comes
from the region of small y such that one again can expect that the dependence on the
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exact choice of ha1a2 is not too pronounced. In the next step the large y behaviour of the
splitting part will be modified which will put more emphasis on this region, such that
this statement is no longer strictly valid. Nevertheless these initial values for the parton
widths will be used also there, as they provides a reasonable starting point.

4.3.4. Modifying the splitting contribution

At this point the only sum rules still not fulfilled to a decent degree are the equal flavour
number sum rules which – as already mentioned before – receive a large contribution
from the g ! qq̄ splitting. So far the modifications only affected the intrinsic part,
leaving the splitting part untouched. However, at this point one has to start thinking
about modifying the ansatz for the splitting part, as any modification to the intrinsic
part that would improve the situation with the equal flavour number sum rules would
most likely lead to a decreased agreement with all other sum rules. To this end one
first has to consider what exactly can be modified about the splitting ansatz and what
features are fixed by the result from perturbation theory. As mentioned in earlier in
section 4.2.2 the small y behaviour of the splitting can be calculated in perturbation
theory, with the LO result given in equation (4.1) and the NLO results presented in
chapter 5, reliably for y ⌧

1
L with deviations of order O(yL) where L is a generic

hadronic scale. Therefore in the small y region the ansatz for the splitting part has to
approach the perturbative result and consequently the only thing that can be modified
about the splitting ansatz is its large y behaviour – within the accuracy of perturbation
theory, of course. While it is thus obviously possible to modify the splitting part, this
actually raises more questions than it answers as now one has to figure out which
modifications lead to the desired result. The most straightforward option is probably to
add a modification term to the initial ansatz that only contributes for large values of y
which is for example achieved by the following approach

F̃a1a2,spl(x1, x2, y; µy, µy) = Fa1a2,spl,pt(x1, x2, y; µy, µy) exp


y2

4ha1a2

�

⇥


1 +

✓
exp


y2

4h⇤a1a2

�
� 1
◆

ga1a2(x1, x2)

�
, (4.16)

where h⇤a1a2
> ha1a2 which results in a weakened damping in the modification term and

ga1a2(x1, x2) is an a priori unknown function for which the only constraint is that it
should be symmetric under exchange of partons 1 and 2 in order to guarantee that

Fa1a2(x1, x2, y; µ) = Fa2a1(x2, x1, y; µ) . (4.17)

The widths h⇤a1a2
are chosen such that the deviations from the perturbative result stay

within the perturbative uncertainties and also such that the double particle widths
can again be written as the sum of single particle widths. To ensure positivity of the
resulting modified DPD model one has to require g > 0. Whenever the approach
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outlined below returned non-positive functions g it has been checked explicitly that this
does not violate positivity. As the main goal at this point is to improve the agreement
with the equal flavour number sum rules which requires modifications of the g ! qq̄
splitting, all other modification terms are set to zero for now. Note also that in the
following different modifications are allowed for the splitting to different quark flavours
in order to be able to fulfil the different equal flavour number sum rules to the best
degree possible.

The reason why such a factorized form of the x1, x2, and y dependence has been chosen
for the modification term is that this is the only way in which one can determine at
least the function ga1a2(x1, x2) in a systematic manner as will discussed now. As the
final goal is to fulfil the sum rules to the best degree possible one can require that
the sum rules should be fulfilled by the modified model and subsequently solve the
sum rules for ga1a2(x1, x2). What makes this rather non-trivial is again the fact that
the splitting part is initialised at a y dependent scale which means that in order to
actually use the DPDs with the sum rules one first has to evolve for each y grid point
for a different amount to arrive at a given fixed scale µ at which the sum rules are
evaluated. However, this unfortunately destroys the factorized form of the modification
term in equation (4.16) as evolution mixes ga1a2(x1, x2) with the splitting kernel Pa1a2,a0

and the PDF fa0 in equation (4.8) (which also depend on the momentum fractions) as
the evolution necessarily involves integration over momentum fractions x1 and x2. One
therefore needs to avoid the necessity of evolution at all costs if the sum rules are to be
solved for ga1a2(x1, x2). Consider therefore – for now – the equal flavour number sum
rules at the scale µmin = µy!•

1�x1Z

0

dx2

Z
d2y F̃qqv(x1, x2, y, µmin)

�
= (Nqv � 1) fq(x1, µmin) . (4.18)

In order to solve this for ga1a2(x1, x2) one first has to decompose F̃qqv on the left-hand
side of the above equation into its individual contributions

1�x1Z

0

dx2

Z
d2y

⇣
Fqqv,int(x1, x2, y, µmin) + Fqqv,match(x1, x2, y, µmin)

⌘

+ F̃qqv,spl(x1, x2, y, µmin)
⌘�

, (4.19)

where it has already been taken into account that the only part affected by the modifi-
cations is the splitting part. As evolution is needed to obtain the modified splitting part
at the scale µmin one cannot write the splitting part in a way that explicitly contains
the function ga1a2(x1, x2). Since this is, however, exactly what would be needed to
extract this function from the sum rules the following two approximations have to be
introduced:
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Firstly one can make use of the fact that for small y the initial and modified splitting
model do not differ significantly such that the following holds approximately

F̃qqv,spl(x1, x2, y, µmin) ⇡ Fqqv,spl(x1, x2, y, µmin) . (4.20)

In a moment it will be discussed what is meant here by small y, but first a second
approximation that will be made use of in the following is introduced, namely that
by construction µy approaches µmin for large values of y such that in this case one
approximately finds

F̃qqv,spl(x1, x2, y, µmin) ⇡ F̃qqv,spl(x1, x2, y, µy) . (4.21)

Combining these approximations then yields
Z

d2y F̃qqv,spl(x1, x2, y, µmin) ⇡
Z

d2y Fqqv,spl(x1, x2, y, µmin)Q(ysep � y)

+
Z

d2y F̃qqv,spl(x1, x2, y, µy)Q(y � ysep) , (4.22)

where it has been assumed that the approximation in equation (4.20) is valid be-
low a value ysep while the one in equation (4.21) is valid above this threshold. For
ysep = 1 GeV�1 equation (4.21) is reasonably well fulfilled as µmin and µy differ only
by approximately 12% such that for the remainder of this work this value for ysep
will be used. After having obtained the modification function g the validity of the
approximation introduced in equation (4.20) which is used for small values of y will
be discussed. Rewriting equation (4.22) using equation (4.16) to express the modified
splitting part in terms of the unmodified one equation (4.19) can be written as
1�x1Z

0

dx2

Z
d2y

�
Fqqv(x1, x2, y, µmin)� Fqq̄,spl(x1, x2, y, µy)h(y)gqq̄(x1, x2)Q(y � ysep)

��
,

(4.23)

where

h(y) = exp

"
y2

4h⇤qq

#
� 1 , (4.24)

and it has furthermore been used that at µ = µy the following holds

Fqqv,spl(x1, x2, y, µy) = �Fqq̄,spl(x1, x2, y, µy) . (4.25)

such that one can finally rewrite equation (4.18) as
1�x1Z

0

dx2

Z
d2y

�
Fqq̄,spl(x1, x2, y, µy)g(y)Q(y � ysep)

��
gqq̄(x1, x2)

⇡

1�x1Z

0

dx2

Z
d2y Fqqv(x1, x2, y, µmin)

�
� (Nqv � 1) fq(x1, µmin)

| {z }
�kq(x1)

. (4.26)
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4.3. Refining the DPD model

After these steps one can rewrite this as a so called Volterra equation of the first kind
introduced in reference [112] and which can be solved for gqq̄(x1, x2) numerically. The
general form of a Volterra equation of the first kind is the following

x1Z

a

dx2K(x1, x2)g(x2) = k(x1) . (4.27)

In order to bring equation (4.26) to this form one needs to make the assumption that

gqq̄(x1, x2) = gqq̄(x1 + x2) . (4.28)

Then, shifting x1 + x2 ! x2, the left-hand side of equation (4.26) takes the following
form

1�xminZ

x1

dx2

Z
d2y

�
Fqq,spl(x1, x2 � x1, y, µy)g(y)Q(y � ysep)

��

| {z }
Kqq̄(x1,x2)

gqq̄(x2) (4.29)

where the upper boundary which would normally be equal to 1 has been replaced by
1 � xmin as this is the largest x value in the grid and one can expect only negligible
contributions to the integration from the interval between 1 and 1 � xmin. Thus one
finally ends up with the following equation

x1Z

1�xmin

dx2 Kqq̄(x1, x2)gqq̄(x2) = kq(x1) , (4.30)

which is easily solved numerically for gqq̄(x2). The most straightforward way to do this
is to work in u = ln(x/(1 � x)) space using the grid points which are equidistant there
such that one can use a simple trapezoidal rule for the u2 integration – of course in
combination with the appropriate Jacobian – which then turns equation (4.30) into a
linear system of equations

Kqq̄,ijgqq̄,j = kq,i , (4.31)

where Kij is an upper diagonal matrix such that the solution of this system of equations
is trivially obtained using Gauss-Jordan elimination.

Actually implementing the modifications requires some more work as the functions
gqq̄(x1, x2) have been obtained numerically while the desired end result is a simple ana-
lytical form for the DPD model. Therefore the functions obtained from equation (4.31)
have to be fitted to the following general form

A + Bxb + Cxc1(1 � x)c2 , (4.32)
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Figure 4.10.: Modification functions gqq̄ for the individual g ! qq̄ splittings. The plots show both, the
actual data points obtained from the solution of the Volterra equation (4.31) as well as the fits
to equation (4.32).

which manages to reproduce the general shape of the numerical results but fails to
reproduce every detail. As a result the agreement with the sum rules is not as good as
it could be which is, however, a price that is acceptable in order to obtain an analytical
model. The parameters for the modifying functions are given in table 4.1 and plots are
presented in figure 4.10.

Here is now a good point to discuss the validity of the approximation made for small
values of y introduced in equation (4.20) and used in equation (4.22). As the deviations
are naturally largest for the largest values of y, that means for y = ysep it is useful to
study how large the deviations are at this point given the size of the modifying function
gqq(x1, x2). This can be done by considering the following ratio
�����
F̃qqv,spl(x1, x2, ysep, µmin)� Fqqv,spl(x1, x2, ysep, µmin)

Fqqv,spl(x1, x2, ysep, µmin)

����� =
 

exp

"
y2

sep

h⇤qq

#
� 1

!
��gqq(x1, x2)

�� .

(4.33)

It is straightforward to see that for fixed y the deviations grow linearly for increasing
values of

��gqq(x1, x2)
�� reaching up to 25% for

��gqq(x1, x2)
�� = 10. Therefore the approxi-
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4.3. Refining the DPD model

mation in eq. (4.20) is not perfect but nevertheless quite reasonable to make as can be
seen in a moment.

With these modified g ! qq̄ splittings the agreement with the equal flavour number
sum rules improves drastically as can be seen in figure 4.11. However, as mentioned
before the agreement is not quite perfect, on the one hand due to the approximations
which had to be used as well as due to the fact that the analytical model cannot quite
reproduce the numerical function returned as the solution of the Volterra equation.
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(b) ūuv number sum rule
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(c) d̄dv number sum rule
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(d) ssv number sum rule

Figure 4.11.: Comparison of the equal flavour number sum rules before and after modification of the
splitting part. Here again only the complete sum rule ratio of the two models has been plotted
in order to avoid cluttered plots. This can again be done without hiding any information as
now only the splitting part changed.

However, these modifications also effect the quark momentum sum rules as illustrated
in figure 4.12. The reason for this is obviously that the q momentum sum rule gets
non-negligible contributions from the qq̄ splitting DPD which has been modified in
the last step. Since this change is not too severe and the sum rules are still fulfilled
to an approximate accuracy of 10% which – keeping in mind the uncertainties from
the matching – is still pretty good, it is not absolutely necessary to modify the q ! qg
splitting. Nevertheless the approach described in this subsection has been adapted
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(a) u momentum sum rule
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(b) ū momentum sum rule

Figure 4.12.: Illustration of the differences between the q sum rule ratios before and after modification of
the g ! qq̄ splittings. The most pronounced difference is observed for the ū and d̄ momentum
sum rules, the former of which is shown in figure 4.12b.

to the momentum sum rules (which is rather straightforward) and used to obtain
modification functions for the individual q ! qg splittings. This made it possible to
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(b) ū momentum sum rule

Figure 4.13.: Comparison of the q momentum sum rule ratios before and after modification of the q ! gq
splittings.

achieve an even better agreement with the momentum sum rules, as illustrated in
figure 4.13 where the momentum sum rules before and after modification of the q ! qg
splittings have been compared. As in the case of the g ! qq̄ splitting, the parameters of
the gqg modification functions are given in table 4.1.

While these modifications indeed lead to a better agreement with the quark momentum
sum rules they unfortunately – but not unexpectedly – lead to a rather strong change
of the gluon momentum sum rule ratio as the modifications of the q ! qg splitting
of course also affect the q ! gq splitting in the same way. In order to fulfil also this
sum rule to a decent degree the g ! gg splitting has been modified analogously to the
g ! qq̄ and q ! gq splittings which makes it possible to achieve a good agreement
also with this last sum rule as can be seen in figure 4.14, with the parameters of ggg
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4.3. Refining the DPD model

also given in table 4.1.

After all these different modifications one can finally again use the measure defined
in equation (4.14) to evaluate how well the sum rules are fulfilled for the final DPD
model. Doing this one finds that for the momentum sum rules the average deviation
is around 1.6%, whereas for the number sum rules the situation is still slightly worse
with average deviations of approximately 2.7%. In total this means that the average
deviation per sum rule is approximately 2.4%. In order to see how good or bad this is –
especially compared to the initial model – the same analysis can be performed in that
case, yielding an average deviation of 6.9% for the momentum sum rules and 24.3%
for the number sum rules. This nicely illustrates the greatly improved agreement with
the DPD sum rules achieved by the modifications of the initial DPD model which have
been presented here. The largest part of the improvements in the sum rule sector can
be traced back to the first modifications of the phase space factor in section 4.3.2.
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Figure 4.14.: Improvement of the g momentum sum rule ratio after modification of the g ! gg splitting.

a0 ! a1a2 A B b C c1 c2 h⇤a1a2

g ! uū �0.4193 1.0627 7.7448 60.8558 0.9881 2.2641 10.75 GeV�2

g ! dd̄ �0.8020 1.7291 0.0988 932.0289 1.8515 6.8244 10.75 GeV�2

g ! ss̄ �1.5409 3.0985 2.3609 49.8862 1.0964 7.2093 10.75 GeV�2

u ! ug �1.0184 0.7163 0.1720 6.9015 0.2841 3.3067 8.39 GeV�2

d ! dg �2.1122 1.5734 0.1889 22.1328 0.3991 4.5915 8.39 GeV�2

s ! sg �10.2384 10.7879 0.3489 184.0777 1.3930 6.6420 8.39 GeV�2

ū ! ūg �10.1906 10.1898 0.3742 25.6616 0.3928 2.2418 8.39 GeV�2

d̄ ! d̄g �10.1582 10.9392 1.8228 29.0261 0.2952 1.4520 8.39 GeV�2

s̄ ! s̄g �10.2384 10.7879 0.3489 184.0777 1.3930 6.6420 8.39 GeV�2

g ! gg �25.5496 26.8106 0.2967 16.3186 0.0612 1.6386 6.03 GeV�2

Table 4.1.: Parameters of the modification functions ga1a2 according to eq. (4.32) and the “widths” h⇤a1a2
.
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4. Sum rule improved position space DPD models

4.4. Scale dependence of the sum rules

In this section it will be investigated how the DPDs – and in particular their agreement
with the sum rules – change once one goes from µmin to higher scales and also in the
case that the cut-off scale n is varied.

4.4.1. Renormalisation scale dependence

So far the sum rules have been considered only for the scale µmin such that at this
point one should consider how the agreement changes with increasing scale. A general
observation one can make is that there is a tendency towards a better agreement with
the sum rules for higher scales and that the curves of the sum rule plots tend to become
smoother with increasing scale.

The more interesting question, however, is how the individual contributions are affected
by evolution to higher scales. In order to discuss this consider again first the quark
momentum sum rules, taking the u momentum sum rule as an representative example,
illustrated in figure 4.15. Here one clearly sees that the relative size of the splitting
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(a) u momentum sum rule at µ = 2.25 GeV
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(b) u momentum sum rule at µ = 144.60 GeV

Figure 4.15.: Side-by-side comparison of the quark momentum sum rule ratios for the final iteration of the
models at different scales. The somewhat odd values of the scales are due to the fact that the
values used are already in the grid which makes it possible to avoid interpolation.

contribution compared to that of the intrinsic part grows with increasing scale while
their sum nicely adds up in such a way that the sum rule ratios are remarkably
similar in both cases. In reference [45] it was noted that the sum rules remain exact
under evolution if they are fulfilled exactly at the starting scale. As in the case at
hand the sum rules are fulfilled only approximately at the starting scale one can
thus also expect that this remains true under evolution to higher scales which is just
what has been found here. In section 3.6 it has been shown that – in position space
– this requires a cancellation between the homogeneous and inhomogeneous parts
of the momentum space evolution equation (2.56) with similar observations already
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4.4. Scale dependence of the sum rules

made by Ceccopieri and Blok et al. in references [40, 94]. In position space where the
evolution equation (2.51) is homogeneous this should amount to cancellations between
the splitting and matching parts associated with the inhomogeneous term on the one
hand and the intrinsic part associated with the homogeneous term on the other hand.

For the number sum rules one can distinguish three cases, one of which has been
discussed in some detail already, namely the equal flavour number sum rules. These
equal flavour number sum rules receive – as already mentioned in section 4.3 – a
large contribution from the g ! qq̄ splitting as can easily be seen in figure 4.16. Here
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(a) ūuv number sum rule at µ = 2.25 GeV
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(b) ūuv number sum rule at µ = 144.60 GeV

Figure 4.16.: Comparison between the equal flavour number sum rule ratios for the final model at low
and high scales. It is evident that for this model the equal flavour number sum rules are not
strongly effected by evolution with only a slight smoothing effect noticeable for the splitting
part.

it can, however, be noted that the importance of the splitting contribution does not
change with increasing scale but rather stays more or less the same with the main
difference being that for higher scales the initially rather curvy sum rule ratio plots get
smoothed out which is a pretty general feature that can be observed when going to
higher scales.

The second kind of number sum rules which get a non-negligible contribution are the
guv and gdv ones, for which the splitting part of the DPDs is primarily produced via
q ! gq splitting. As the initial u and ū PDFs, as well as the initial d and d̄ PDFs differ
this subsequently leads to non-vanishing splitting contributions to the guv and gdv
DPDS. In this case evolution has a more pronounced effect on the relative sizes of the
splitting and intrinsic contributions as can be seen in figure 4.17. Just like in the case
of the momentum sum rules discussed above one now finds that the relative size of
the intrinsic part decreases by more or less the same amount as that of the splitting
contribution increases such that overall the agreement with the sum rule becomes
slightly better at higher scales even though in total it remains pretty much the same.

Finally there is a last kind of number sum rules to be considered here, namely mixed
flavour number sum rules, for example duv or udv, for which the valence DPDs in-
volved get no direct contribution from the LO splitting but are only produced due
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(a) guv number sum rule at µ = 2.25 GeV
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(b) guv number sum rule at µ = 144.60 GeV

Figure 4.17.: Comparison of the gqv number sum rule ratios for the final iteration of the model. In this
case again a increased contribution of the splitting part at higher scales can be observed.

to consecutive splittings under evolution. The duv DPD for example arises from the
difference of u ! gu and ū ! gū splitting DPDs in which the gluon successively splits
into a dd̄ pair of which the d quark is observed. It thus comes as no surprise that at low
scales the splitting contribution is basically negligible in this case and only becomes
remotely important at higher scales as can be seen in figure 4.18.
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(a) duv number sum rule at µ = 2.25 GeV
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(b) duv number sum rule at µ = 144.60 GeV

Figure 4.18.: Illustration of the differences between the mixed flavour number sum rule ratios at different
scales. A very slight difference of the splitting contribution at higher scales is readily explained
by evolution effects.

4.4.2. Cut-o↵ scale dependence

Having discussed the renormalisation scale dependence of the degree to which the
sum rules are fulfilled and thus also of the DPDs one can now move on to consider the
effect a variation of the cut-off scale n has on the agreement with the sum rules. If the
cancellation of the n dependence between the cut-off momentum space DPD and the
matching term were exact the sum rule ratios should not depend on n at all. However,
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4.4. Scale dependence of the sum rules

as mentioned already in section 4.2.1 when the matching between the cut-off and MS
momentum space DPDs has been discussed the n dependence cancels between the
cut-off momentum space DPD and the matching term only up to higher order terms
as the perturbative expansion of the matching has been truncated at LO. Varying the
cut-off scale n thus gives valuable information about the precision of the perturbative
matching at the considered order as this is a handle on the size of the neglected higher
order terms. In order to get an idea how well the LO matching can be trusted the
cut-off scale n has been varied around its initial value of µmin by a factor of two for
the initial model1. Even though the initial model could not really be expected to fulfil
the sum rules too well this nevertheless makes it possible to gain some insight about
the accuracy to which the sum rules can be fulfilled. If already at this point it would
have been found that the sum rule ratios vary by a substantial amount when n is varied
by a factor of two this would have suggested that there is little use in trying to fulfil
the sum rules to a better degree than this uncertainty. However, this is not the case
as varying the cut-off scale by a factor of two resulted in changes of at most 10% of
the sum rule ratios as illustrated in figure 4.19 for the g and u momentum sum rules
and in 4.20 for the ūuv and ssv number sum rules. The only case for which one finds
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(a) g momentum sum rule
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(b) u momentum sum rule

Figure 4.19.: Cut-off scale dependence of the momentum sum rules in the initial model. The plots show
the sum rule ratios for µ = µmin with a variation of the cut-off scale n by a factor of two
around the value n = µmin as indicated by the bands.

larger uncertainties, up to 20%, is the ssv equal flavour number sum rule which is not
too surprising as in this case there is no intrinsic contribution such that the a relative
uncertainty of the splitting part also implies the same uncertainty for the complete
DPD whereas in cases with an intrinsic contribution the same level of uncertainty of
the splitting part would result in a lower uncertainty of the complete DPD as can be
seen in figure 4.20.

As theoretical uncertainties associated with the matching are under control one can

1The reason why this scale dependence is investigated at the lowest scale rather than at some higher
scale is simply that due to the running of the strong coupling as this is where higher order terms can be
expected to have the largest influence.
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(a) ūuv number sum rule
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(b) ssv number sum rule

Figure 4.20.: Cut-off scale dependence of the equal flavour number sum rule ratios in the initial unmodified
model. The renormalisation scale and cut-off scale are as in figure 4.19 and the latter has
again been varied n by a factor of two.

indeed use the sum rules for the MS DPDs to investigate and refine the position space
DPD model suggested in section 4.2.2. Following this insight the intrinsic part has
been modified in subsections 4.3.2 and 4.3.3. Since in these two subsections only the
intrinsic part has been modified the uncertainties associated with the matching were
not expected to change significantly which is in line with what has been found. The
situation remains basically the same even after the modifications of the splitting part
in subsection 4.3.4 where one again finds that the uncertainties are well within the
10% range with the exception of the ssv equal flavour number sum rule where again
uncertainties up to 20% are encountered, as evidenced by the plots in figures 4.21
and 4.22. This should come as no surprise considering that the modifications of the
splitting part were aimed at the large y behaviour while the small y behaviour affected
by the cut-off remains basically unchanged.
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(a) g momentum sum rule

ρ(
x 1
)

ν=2.25GeV

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

x1

(b) u momentum sum rule

Figure 4.21.: Cut-off scale dependence of the momentum sum rules in the final iteration of the DPD model.
Here the cut-off scale is again varied by a factor of two around n = µmin and the amount by
which this alters the agreement with the sum rules is again very similar as in the case of the
unmodified model.
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(a) ūuv number sum rule
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Figure 4.22.: Cut-off scale dependence of the equal flavour number sum rule ratios in the final modified
DPD model. The variation of the cut-off scale n is again as in figure 4.19 and its effects are
also comparable in size to the case shown there. In particular the variation of the ssv number
sum rule is again largest.
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distributions

5.1. Introduction

With the sum rule improved position space DPD model derived in the previous chapter
an important component for the calculation of LO DPS cross sections within the
framework briefly introduced in section 2.2.3 has been established. At this point one
may already wonder what the situation would look like if one wanted to go ahead
and calculate DPS cross sections at higher orders. To this end the DGS framework
has been designed in a way that can be formulated at arbitrary order in the strong
coupling making maximum re-use of known SPS quantities. In order to calculate DPS
cross sections at NLO the only missing component is thus the NLO expression for
the small y splitting contribution introduced in equation (2.52) which on one hand
is needed to obtain the subtraction terms for the double counting between DPS and
SPS. Another reason why this 1 ! 2 splitting contribution is needed for NLO DPS
calculations is that this requires also NLO DPDs, or to be more precise, NLO DPD
models1, as an experimental determination of NLO DPDs is at this point basically
impossible. This may bring up the question why – with such a lack of information
about the non-perturbative input – one should still consider DPS at NLO and it turns
out that there are in fact quite a few reasons why this can nevertheless prove instructive.
The main motivation for studying DPS beyond leading order is that this provides
valuable information about the convergence of the perturbative expansion. As already
mentioned in the introduction, DPS is generally expected to give comparatively large
contributions when the momentum fractions of the probed partons become small.
When the momentum fractions x are very small this may give rise to large logarithms
ln x which may significantly impact the perturbative convergence. As the possible effect
of these small x logarithms is hard to estimate a priori it is necessary to study the effect
of NLO corrections on the small y DPDs of equation (2.52) and thus also on DPS cross
sections. Another reason why a determination of the small y splitting DPD at NLO is
quite interesting is that in reference [35] it has been pointed out that at LO evolution
effects quite drastically alter the initial 1/y2 behaviour of equation (4.1) towards a
much less steep decrease with increasing y with these changes also attributed to small
x logarithms. As this shifts emphasis away from the small y region where SPS and

1In analogy to the LO case discussed in chapter 4 this requires the NLO expression for the perturbative
1 ! 2 splitting.
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DPS overlap the dependence of theoretical predictions on the precise way in which
SPS and DPS are separated is hence reduced. Considering how important a consistent
separation of SPS and DPS is when calculating the overall cross section including DPS
contributions it is important to understand how this situation changes when higher
order corrections are included. Furthermore, it is interesting how the agreement with
the sum rules changes when the NLO correction to the splitting contribution is included.
Considering how the major deficiencies with the LO DPD model introduced in the
previous chapter were associated with the splitting contribution one might hope that
the situation becomes better – maybe even to the point that modifications in the vein
of section 4.3.4 are no longer necessary – when the NLO corrections are taken into
account.

The missing NLO splitting contribution for small y – and also large D in momentum
space – will be presented in detail in this chapter. To this end a brief review of state of the
art techniques used in the calculation of multi-loop Feynman integrals will be presented
in section 5.2 before discussing how the renormalised position and momentum space
splitting kernels can be extracted from the bare Feynman diagrams in section 5.3. As a
generalisation of the procedure introduced in the previous chapter to higher orders
requires also the higher order form of the matching equation (4.3) this will be derived in
section 5.4. The actual calculation of the Feynman diagrams needed to obtain the 1 ! 2
splitting, evolution, and matching kernels will in detail be discussed in section 5.5
with the results of this calculation presented in section 5.6 where a in depth discussion
will be presented. The contents of this chapter are under review for publication in
SciPost [113].

5.2. Specific Theory

In recent years a lot of progress has been made in developing sophisticated methods for
the calculation of multi-loop Feynman diagrams and some of these methods were used
in the calculation of the NLO 1 ! 2 splitting DPDs as this involved Feynman integrals
that proved to be intractable with standard textbook techniques. The fundamentals of
these techniques will be reviewed in this section and references to the original literature
will be provided for further reading while mostly following the excellent book on the
topic by Smirnov [114] where possible.

5.2.1. Reduction to master integrals: integration by parts reduction

A quite general feature of higher order calculations is that they tend to involve a
great number of individual Feynman diagrams, each associated with a corresponding
Feynman integral. Even for the calculation at hand which considered only diagrams up
to NLO this already meant dealing with up to 100 distinct diagrams. In order not to
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have to calculate this huge amount of Feynman integrals the method of integration by
parts (IBP) reduction introduced in references [115, 116] has been employed. This made
it possible to drastically reduce the computational effort as this way only a small set of
so called master integrals had to be calculated, in terms of which all other occurring
Feynman integrals could be expressed as will be discussed now. Consider to this end a
“family” of scalar Feynman integrals, given by

I(p1, . . . , pn; a1, . . . aN) =
Z

dDk1 . . . dDkh

N

’
i=1

1
(q2

i + m2
i )

ai
, (5.1)

with N = n + h integer indices ai, n external momenta pi, and h loop momenta ki. Here
the qi are linear combinations of the external and loop momenta pi and ki, respectively.
It should be noted that the integrals encountered in a calculation are not necessarily
in this form in the beginning but can be reduced to such an expression using tensor
reduction and expressing scalar products of momenta in the numerators in terms of
denominators2. Such a family of Feynman integrals – containing in theory an infinite
number of different integrals – can then be reduced to a finite number of master
integrals using relations between integrals with different powers ai of denominators. In
order to derive these IBP relations one makes use of the following relation

Z
dDk1 . . . dDkh

∂

∂kµ
j

 
rµ

l

N

’
i=1

1
(q2

i + m2
i )

ai

!
!
= 0 , (5.2)

where rl = kl for 1  l  h and rh+l = pl for 1  l  n. This relation arises from the
properties of dimensionally regularised integrals in D = 4 � 2# dimensions for which
surface terms can be shown to be negligible when integration by parts is used (the
left-hand side of equation (5.2) has just the form of a surface term). Scalar products
in the numerator of the left-hand side of the form kj · ki and kj · pi arising from the
differentiation with respect to kj are subsequently again expressed in terms of the
denominators q2

i + m2
i such that one finally obtains the IBP relations as a sum of

integrals of a family

Â
i

ai I(p1, . . . , pn; a1 + bi,1, . . . aN + bi,N) = 0 . (5.3)

From this an infinite number of relations between the integrals in equation (5.1) can be
obtained by plugging in all possible values for the indices a1, . . . , aN .

In order to illustrate how this works in practice consider the following very simple
example of a family of Feynman integrals

I(a) =
Z

dDk
1

(k2 + m2)a , (5.4)

2Note that in some cases the denominators arising in diagrams do not form a complete basis with
respect to the external and loop momenta which makes it necessary to introduce additional denominators
in order to make such a reduction to scalar integrals of the form in equation (5.1) possible.
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with no external momenta and only one loop momentum. Therefore one finds in this
case also only one IBP relation, given by

Z
dDk

∂

∂kµ

kµ

(k2 + m2)a =
Z

dDk
✓

D
(k2 + m2)a �

2ak2

(k2 + m2)a+1

◆

=
Z

dDk
✓

D � 2a
(k2 + m2)a +

2am2

(k2 + m2)a+1

◆
!
= 0 . (5.5)

From this condition one easily derives a relation between the integrals of the family
with different indices a, namely

I(a) =
2(a � 1)� D
2(a � 1)m2 I(a � 1) , (5.6)

which makes it possible to express all integrals of the family in equation (5.4) with
a > 1 recursively in terms of just one master integral, namely I(1).

Naturally the situation is more complicated in cases with more external and loop
momenta such that IBP relations become increasingly tedious to solve by hand. Nev-
ertheless some of the most famous implementations of this technique use exactly this
kind of approach, for example MINCER introduced in references [117, 118]. A more
modern approach was suggested by Laporta in references [119, 120] which does not
aim to solve the of IBP relations of equation (5.3) in full generality but rather only for
the limited subset of indices a1, . . . , aN needed for a given calculation. This procedure
then yields a (potentially very large) linear system of integrals which can be solved
using straightforward Gauss elimination, yielding as results the integrals in terms of the
master integrals. Since this algorithm has first been proposed it has been implemented
in a number of publicly available codes, most notably AIR [121], Reduze [122, 123],
and FIRE [124–127]. However, Laporta’s algorithm has the downside that it produces
rather large databases of identities that have to be stored, or calculated on the fly
every time they are needed for reduction, both of which can become problematic for
complicated systems. Therefore a different approach has been followed in the develop-
ment of LiteRed [128] which uses a heuristic algorithm in order to find symbolic IBP
reduction rules. Compared to the Laporta algorithm this has the advantage of being
fast and needing very little storage, which, however, comes at the price that due to the
heuristic nature of the algorithm it is not guaranteed that this approach works for every
imaginable case. Nevertheless LiteRED has been used successfully in the calculations
presented in this chapter.

5.2.2. Calculating master integrals: method of di↵erential equations and
the canonical basis

The reduction to master integrals is of course only the first step in the calculation of
a large number of Feynman integrals while the second step is to actually calculate

98



5.2. Specific Theory

these master integrals. To this end standard textbook techniques like Feynman or
alpha parametrisation can be sufficient for simpler master integrals but one finds that
already for four denominators the resulting parameter integrals become intractable.
Therefore more sophisticated methods for the evaluation of Feynman integrals have
been developed, for example the use of the Mellin-Barnes representation or differential
equations, the latter of which has been used to calculate the master integrals in this
chapter. The approach to use differential equations in order to solve master integrals
was introduced in references [129–132]. In order to solve the master integrals one takes
the derivative of the master integrals with respect to kinematic invariants like external
momenta or masses and uses IBP reduction to express the resulting expressions again
in terms of master integrals. This way one then obtains a system of ordinary first order
differential equations for the set of master integrals which has to be solved using appro-
priate boundary conditions – or more precisely the values of the master integrals for
these boundary conditions. One advantage of this approach is that for suitably chosen
boundary conditions – for example a particular combination of external momenta –
the master integrals may be simplified to the point where they can be calculated using
standard methods like Feynman and alpha parameters. The resulting system is then
iteratively solved using elementary methods and forward substitution with the values
of the master integrals for the aforementioned suitably chosen kinematics as boundary
conditions. However, even then one may encounter cases where a solution of these
differential equations is quite challenging as they may be coupled such that standard
techniques fail to obtain a solution.

Here a method suggested by Henn in reference [133] provides a valuable aid. In this
reference it was suggested that a system of differential equations for master integrals
could be brought into what is referred to as the canonical form where the solution –
order by order in the dimensional parameter # – is straightforward. Consider to this
end the situation of a set of N master integrals denoted by Ii and kinematic variables
denoted by xi such that the differential equation with respect to xm can be written as

∂I(#, xi)
∂xm

= Am(#, xi)I(#, xi) , (5.7)

where I is a N dimensional vector with the Ii’s as entries and Am is a N ⇥ N matrix.
Performing a change of basis functions as prescribed by

I(#, xi) = T(#, xi)Ĩ(#, xi) , (5.8)

leads to an equivalent system of differential equations for the new functions Ĩ(#, xi),
namely

∂Ĩ(#, xi)
∂xm

= Ãm(#, xi)Ĩ(#, xi) , (5.9)

where the new matrix Ãm is obtained from Am through the following relation

Ãm(#, xi) = T
�1(#, xi)Am(#, xi)T(#, xi)�T

�1(#, xi)
∂

∂xm
T(#, xi) . (5.10)
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It has then been suggested in reference [133] that by a suitable choice of such a basis
transformation equation (5.7) can be transformed to the canonical form where the
differential equation takes on the the following form

∂Ĩ(#, xi)
∂xm

= #Bm(#, xi)Ĩ(#, xi) , (5.11)

such that the solution of the differential equation is – order by order in # – given by
iterated integrals and thus basically trivial. In the original paper on this approach criteria
for the choice a suitable basis have been given based on the concept of transcendentality
which could be used to determine a new set of basis functions. A more systematic
approach to this problem has been suggested by Lee in reference [134] who proposed an
algorithm to find the matrix T which performs the appropriate change of basis. There
it has also been pointed out that the matrix B should be of Fuchsian form, meaning

Bm(#, xi) = Â
i

Bm,k(#, xi)
xm � xi

, (5.12)

which makes it possible to express the results in terms of generalised harmonic polylog-
arithms. Lee’s algorithm has been implemented in the publicly available code Fuchsia

by Gituliar [135] which has been used in the calculations presented in this chapter.

5.3. Renormalisation Group analysis: Splitting kernels at higher
orders

Before moving on to the actual calculation of the bare 1 ! 2 splitting diagrams in
figures 5.1, 5.2, and 5.3 in section 5.5 a detailed analysis of how the renormalised
splitting, matching, and evolution kernels can be extracted from the bare results
will be presented in the present section. Recall to this end that as mentioned earlier
the perturbative splitting becomes the prevalent contribution for small y in position
space and correspondingly for large D in momentum space. In position space the
factorised form of the bare splitting DPD has already been given in equation (2.52) and
a corresponding factorised expression can also be given in momentum space, namely

FB,a1a2(D) = [WB(D)⌦
12

fB]a1a2 , (5.13)

with a bare momentum space 1 ! 2 splitting kernel WB;a1a2,a0(x1, x2, D). Following the
discussion in section 2.2.2 one can naturally derive the renormalised splitting DPDs in
position and momentum space using equations (2.46), (2.47) and (2.53), which are then
given by

Fa1a2(y; µ) =
G(1 � #)
(py2)1�#

[V(y; µ)⌦
12

f (µ)]a1a2 , Fa1a2(D; µ) = [W(D; µ)⌦
12

f (µ)]a1a2 ,

(5.14)
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where the renormalised 1 ! 2 splitting kernels read

Va1a2,a0(y; µ) = [Z(µ)⌦
1

Z(µ)⌦
2

VB(y)⌦
12

Z�1(µ)]a1a2,a0 ,

Wa1a2,a0(D; µ) = [Z(µ)⌦
1

Z(µ)⌦
2

WB(D)⌦
12

Z�1(µ) + Zs(µ)⌦
12

Z�1(µ)]a1a2,a0 . (5.15)

5.3.1. Preliminaries

Since the bare results are most conveniently obtained in momentum space from the
calculation of Feynman diagrams the following discussion will be concerned with the
renormalisation of the momentum space kernels in terms of which finally the renor-
malised position space kernels will be derived. Note that in the following discussion of
this section parton indices will be omitted as they can be inferred from the structure of
the equations.

MS implementation and coupling renormalisation

The first step towards the renormalised momentum space kernels W(D; µ) is to im-
plement the MS scheme consistently and perform the appropriate renormalisation
of the strong coupling. Consider to this end the perturbative expansion of the bare
momentum space kernel with bare strong coupling a0

WB(D) = Â
n

✓
a0

2p

◆n

W(n)
0 (D) . (5.16)

Renormalisation of the bare strong coupling requires the introduction of the coupling
renormalisation factor Za and the MS scheme is implemented as discussed in sec-
tion 3.5.1 such that each power of the strong coupling is divided by the corresponding
power of the factor S#. The bare momentum space kernel is then given by

WB(D) = Â
n

✓
µ2#

S#

as(µ)
2p

Za(µ)

◆n

W(n)
0 (D)

= Â
n

an
s (µ)

✓
µ

D

◆2#n

Zn
a (µ) W(n)

B , (5.17)

where in the last step the abbreviation as from footnote 2 has been used and D indepen-
dent coefficients W(n)

B have been introduced as

W(n)
B (x1, x2; #) = D2#n S�n

# W(n)
0 (x1, x2, D; #) . (5.18)

This could be achieved using the fact that W(n)
0 (D) µ D�2#n for dimensional reasons.

Up to order as one finds for the coupling renormalisation factor

Za(µ) = 1 �
as(µ)

#

b0

2
+O(a2

s (µ)) , (5.19)
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with b0 as implicitly defined in equation (2.13). Using equations (5.17) and (5.19) one
finds the following expression for the bare momentum space 1 ! 2 splitting kernel up
to order a2

s

WB(D) = as

✓
µ

D

◆2#

W(1)
B + a2

s

✓
µ

D

◆4#

W(2)
B � a2

s

✓
µ

D

◆2#
b0

2#
W(1)

B +O(a3
s ) . (5.20)

Renormalisation factors and splitting functions

Just like the momentum space 1 ! 2 splitting kernels also the renormalisation factors
Z and Zs can be expanded as a perturbative series in as which then reads

Z(x, #; µ) = d(1 � x) +
•

Â
n=1

an
s (µ) Z(n)(x, #) ,

Zs(x1, x2, #; µ) =
•

Â
n=1

an
s (µ) Z(n)

s (x1, x2, #) . (5.21)

Note that the 1 ! 2 renormalisation factor Zs has no tree level term, corresponding to
the fact that the 1 ! 2 splitting starts only at order O(as). With the implementation of
the MS scheme introduced in section 3.5.1 all counterterms are then pure poles in #. An
analogous perturbative expansion can furthermore also be performed for the evolution
kernels P and Ps, namely

P(x; µ) =
•

Â
n=0

an+1
s (µ) P(n)(x) , Ps(x1, x2; µ) =

•

Â
n=0

an+1
s (µ) P(n)

s (x1, x2) . (5.22)

In combination with equations (3.86) and (3.87) these expansions give rise to the
following relations between the renormalisation factors and the corresponding splitting
kernels

⇥
Z(1)⇤

�1 = �P(0) ,
⇥
Z(1)

s
⇤
�1 = �P(0)

s ,
⇥
Z(2)

s
⇤
�1 = �P(1)

s
�

2 , (5.23)

which will be of crucial importance in the remainder of this section. Going back to
equation (3.82) one can then use the above relations to express also the #�2 pole of
the splitting renormalisation factor in terms of known quantities. To this end one
uses that the #�1 pole on the right-hand side of equation (3.82) has to vanish as Ps
is independent of #. In combination with the D-dimensional renormalisation group
derivative in equation (3.85) this makes it possible to derive the following identity

⇥
Z(2)

s
⇤
�2 =

1
2

✓
b0

2
P(0)

s + P(0)
⌦
1

P(0)
s + P(0)

⌦
2

P(0)
s + P(0)

s ⌦
12

P(0)
◆

. (5.24)

This can be further simplified by taking into account that at LO the 1 ! 2 evolution
kernel has the form

P(0)
s (x1, x2) = d(1 � x1 � x2) P(0)

s (x1) , (5.25)
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with a kinematic constraint due to the fact that at this order the splitting process gives
exactly two final state partons carrying together the momentum of the initial splitting
parton. The one-variable kernel Ps(x) is equal to P(0)(x), except that it has no d(1 � x)
terms and no plus prescription on 1/(1 � x) factors which arise from virtual diagrams
in P(0)(x). Therefore the convolutions in (5.24) turn into ordinary products:

P(0)
⌦
1

P(0)
s = P(0)

✓
x1

1 � x2

◆
P(0)

s (1 � x2)
1 � x2

,

P(0)
⌦
2

P(0)
s = P(0)

✓
x2

1 � x1

◆
P(0)

s (x1)
1 � x1

,

P(0)
s ⌦

12
P(0) = P(0)

s

✓
x1

x1 + x2

◆
P(0)(x1 + x2)

x1 + x2
. (5.26)

Note that for flavour diagonal transitions these expressions still contain d- and plus-
distributions, which will be made explicit in equations (5.125) and (5.126).

5.3.2. Momentum space kernels

Following these preliminaries it is now possible to derive how the renormalised mo-
mentum space 1 ! 2 splitting kernel in equation (5.15) is related to its bare counterpart.
Consider therefore the expansion of the renormalised kernel in D = 4 � 2# dimen-
sions

W(D, #; µ) =
•

Â
n=1

an
s (µ)W(n)(D, #; µ) , W(n)(D, #; µ) =

n

Â
m=0

✓
µ

D

◆2#m

W(n,m)(#) . (5.27)

Here the coefficient W(n,n) equals the nth order term W(n)
B of the bare kernel WB in

equation (5.17), the coefficients W(n,m) with 0 < m < n are products of lower order
terms W(m)

B with renormalisation counterterms for the twist-two operators or the strong
coupling, while W(n,0) originates from the counterterm for the splitting singularity. The
kernel in 4 dimensions is finally obtained by expanding (µ/D)2#m in #, which yields

W(n)(D; µ) =
def

W(n)(D, # = 0; µ) =
n

Â
k=0

✓
ln

µ2

D2

◆k

W [n,k] , (5.28)

where the coefficients W [n,k] are given by

W [n,0] =
n

Â
m=0

⇥
W(n,m)⇤

0 , W [n,k] =
n

Â
m=1

mk

k!
⇥
W(n,m)⇤

�k for k � 1 . (5.29)

From the requirement that poles in # cancel in the coefficients W(n) one can furthermore
derive the following finiteness conditions

0 =
n

Â
m=0

⇥
W(n,m)⇤

�j , 0 =
n

Â
m=1

mk ⇥W(n,m)⇤
�k�j for k � 1 , (5.30)
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where j � 1 in all cases.

Following the discussion below equation (5.27) one thus finds that at LO the coefficients
W(n,m) in equation (5.27) are given by

W(1,1) = W(1)
B , W(1,0) = Z(1)

s = �#�1 P(0)
s , (5.31)

where in the last step equation (5.23) has been used. As W(1) has at most single poles
the first condition in equation (5.30) implies

⇥
W(1)

B
⇤
�1 = P(0)

s . (5.32)

The LO coefficients of the renormalised kernel in 4 dimensions defined in equation (5.28)
can thus be extracted as

W [1,0] =
⇥
W(1,1)⇤

0 =
⇥
W(1)

B
⇤

0 , W [1,1] =
⇥
W(1,1)⇤

�1 = P(0)
s . (5.33)

At NLO the situation is naturally more complicated and the coefficients W(n,m) of
the renormalised 1 ! 2 momentum space kernel in D = 4 � 2# dimensions given in
equation (5.27) are found to be given by the following expressions

W(2,2) = W(2)
B ,

W(2,1) = �
b0

2#
W(1)

B + Z(1)
⌦
1

W(1)
B + Z(1)

⌦
2

W(1)
B � W(1)

B ⌦
12

Z(1)

= �
1
#

✓
b0

2
W(1)

B + P(0)
⌦
1

W(1)
B + P(0)

⌦
2

W(1)
B � W(1)

B ⌦
12

P(0)
◆

,

W(2,0) = Z(2)
s � Z(1)

s ⌦
12

Z(1)

= �
1
2#

P(1)
s +

1
#2

⇥
Z(2)

s
⇤
�2 �

1
#2 P(0)

s ⌦
12

P(0) , (5.34)

where in the second steps use was made of equation (5.23). In this case the finiteness
conditions of equation (5.30) now read

0 =
⇥
W(2,2)⇤

�1 +
⇥
W(2,1)⇤

�1 +
⇥
W(2,0)⇤

�1 ,

0 =
⇥
W(2,2)⇤

�2 +
⇥
W(2,1)⇤

�2 +
⇥
W(2,0)⇤

�2 ,

0 = 2
⇥
W(2,2)⇤

�2 +
⇥
W(2,1)⇤

�2 . (5.35)

Using the relation for the double pole of Z(2)
s derived in equation (5.24) and the fact the

double poles in W(2,1) in equation (5.34) are obtained by replacing W(1)
B with #�1 P(0)

s ,
one can derive the following relation

⇥
W(2)

B
⇤
�2 =

1
2

✓
b0

2
P(0)

s + P(0)
⌦
1

P(0)
s + P(0)

⌦
2

P(0)
s � P(0)

s ⌦
12

P(0)
◆

, (5.36)
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fixing the double pole of W(2)
B in terms of the LO kernels and thus serving as a valuable

cross check of the two-loop calculation in the following sections. For the single poles
on the other hand, one obtains from equation (5.34)

⇥
W(2)

B
⇤
�1 =

1
2

P(1)
s +

✓
b0

2
⇥
W(1)

B
⇤

0 + P(0)
⌦
1

⇥
W(1)

B
⇤

0 + P(0)
⌦
2

⇥
W(1)

B
⇤

0 �
⇥
W(1)

B
⇤

0 ⌦12
P(0)

◆
,

(5.37)

from which the NLO 1 ! 2 evolution kernel P(1)
s can be extracted given the bare NLO

splitting kernel W(2)
B . Finally, the coefficients of the renormalised kernel in 4 dimensions

are obtained by collecting the finite contributions, which yields

W [2,0] =
⇥
W(2)

B
⇤

0 �

✓
b0

2
⇥
W(1)

B
⇤

1 + P(0)
⌦
1

⇥
W(1)

B
⇤

1 + P(0)
⌦
2

⇥
W(1)

B
⇤

1 �
⇥
W(1)

B
⇤

1 ⌦12
P(0)

◆
,

W [2,1] = P(1)
s +

b0

2
W [1,0] + P(0)

⌦
1

W [1,0] + P(0)
⌦
2

W [1,0]
� W [1,0]

⌦
12

P(0) ,

W [2,2] =
1
2

✓
b0

2
P(0)

s + P(0)
⌦
1

P(0)
s + P(0)

⌦
2

P(0)
s � P(0)

s ⌦
12

P(0)
◆

, (5.38)

where equation (5.33) has been used to replace
⇥
W(1)

B
⇤

0 by W [1,0]. Inserting equa-
tions (5.33) and (5.38) into the factorisation formula for F(D; µ) in equation (5.14) and
taking the renormalisation group derivative, one obtains the inhomogeneous double
DGLAP equation (2.56) up to order a2

s as a cross check.

In order to evaluate equation (5.38) and extract the renormalised NLO 1 ! 2 mo-
mentum space kernel one needs W(1)

B up to O(#). The full expressions for W(1)
B in

D = 4 � 2# dimensions are easily computed along the lines of section 5 in [26] and
read

W(1)
B (x1, x2) = d(1 � x1 � x2)W(1)

B (x1) , (5.39)

with

# R# W(1)
B (x) = P(x, #) , (5.40)

where the P(x, #) are as given in equation (4.2) and the factor

R# =
S#

(4p)#

G(1 � 2#)
G(1 + #) G2(1 � #)

= 1 +O(#2) (5.41)

has been introduced with S# specified in equations (2.8) or (2.9), respectively. Since
W(1)

B (x1, x2) has the same kinematic constraint on x1 and x2 as P(0)
s in equation (5.25),

the convolutions in equation (5.38) again reduce to ordinary products as already in
equation (5.26), with P(0)

s replaced as appropriate.
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5. Two-loop splitting in double parton distributions

The square of the tree-level graphs for the splitting a0 ! a1a2 that give rise to the
expressions in equation (5.39) appears in many higher-order calculations and has
been computed in many papers before. Here it should be noted, however, that WB is
computed for transverse momenta of a1 and a2 that differ by ±D between the amplitude
and its conjugate as indicated already in figure 2.6. This is typically not the case in
other contexts. Nevertheless, the expressions on the right-hand side of equation (5.39)
agree with the expressions for Pn 6=4 given in section 3 of reference [96].

Equivalence of MS scheme implementations

In section 3.5.1 two different choices for the MS factor S# have been introduced along
with the statement that for quantities with at most one pole in # per order in as the two
yield the same renormalised quantities. Here it will be shown that this is indeed the
case and the two different definitions of S# yield the same renormalised kernels W [n,k]

in 4 dimensions at LO and NLO. Consider to this end the expansion of the standard S#

and the one suggested by Collins in reference [47], which coincide in the constant and
the first-order term [S#]1 of the Taylor expansion of S# around # = 0, but differ in the
second-order term [S#]2. Because W(1)

B has only a single pole in #, it is straightforward
to see that the renormalised LO kernels are identical for the two choices, as are the
associated renormalisation factors Z(1) and Z(1)

s . Since W(2)
B contains at most double

poles in #, the NLO renormalisation factor Z(2)
s is the same for the two choices as well.

The only remaining dependence on [S#]2 in the renormalised two loop kernel W(2)(D; µ)
at # = 0 can thus come from the terms
⇥
W(2,2)⇤

�2

⇥
S�2

#

⇤
2 +

⇥
W(2,1)⇤

�2

⇥
S�1

#

⇤
2

=
⇣

3
⇥
W(2,2)⇤

�2 +
⇥
W(2,1)⇤

�2

⌘ ⇣⇥
S#
⇤

1

⌘2
�

⇣
2
⇥
W(2,2)⇤

�2 +
⇥
W(2,1)⇤

�2

⌘ ⇥
S#
⇤

2 . (5.42)

The expression in the first line of the above equation arises from considering equa-
tion (5.34) where the only dependence on S# is due to the terms W(2)

B and W(1)
B which

contain negative powers of S# according to equation equation (5.18) while the renor-
malisation factors Z and Zs are independent of S# in the implementation of the MS
scheme introduced in section 3.5.1. From this the second line is obtained by expressing
[S�2

# ]2 and [S�1
# ]2 in terms of [S#]1 and [S#]2. Finally, using the last of the NLO finiteness

relations in equation (5.35) it can be shown that the remaining dependence on [S#]2
cancels in this expression, which completes the argument.

5.3.3. Position space kernels

In order to obtain the renormalised position space 1 ! 2 splitting kernel V(y; µ)
consider how the bare kernels VB(y) and WB(D) are related. As the bare momentum
space DPDs are related to the bare position space DPDs by a Fourier transform as
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5.3. Renormalisation Group analysis: Splitting kernels at higher orders

shown in equation (2.24) the bare position space kernel VB(y) is naturally obtained
from WB(D) by the inverse Fourier transform. Using equation (E.1) in reference [72],
one gets for the an

s term in (5.17)

Z dD�2D

(2p)D�2 e�iDy
✓

µ

D

◆2#n

W(n)
B =

G(1 � #)
(py2)1�#

✓
yµ

b0

◆2#n

n# T#,n W(n)
B , (5.43)

with b0 given in equation (2.59) and

T#,n =
G(1 � # � #n)

G(1 + #n) G(1 � #)
e�2ng# = 1 + z2 n#2 +

z3

3
(2n3 + 3n2 + 3n) #3 +O(#4) , (5.44)

where zn denotes the Riemann z function evaluated at integer argument n. One can
then define3

V(y, #; µ) =
•

Â
n=1

an
s (µ)V(n)(y, #; µ) , V(n)(y, #; µ) =

n

Â
m=1

✓
yµ

b0

◆2#m

V(n,m)(#) . (5.45)

In contrast to equation (5.27) there is no m = 0 term here, since in momentum space
this term is associated with the splitting which is absent in y space. The counterterms
for the twist-two operators and the QCD coupling, on the other hand, are identical
in momentum and position space such that one can derive the following relation
between the coefficients of the renormalised position and momentum space kernels in
D = 4 � 2# dimensions

V(n,m)(#) = m# T#,m W(n,m)(#) . (5.46)

The kernel in physical dimensions can again be obtained in much the same way as the
momentum space kernel in the previous section by expanding equation (5.45) around
# = 0

V(n)(y, µ) =
def

V(n)(y, # = 0; µ) =
n�1

Â
k=0

✓
ln

y2µ2

b2
0

◆k

V [n,k] . (5.47)

Here the coefficients V [n,k] and V(n,m) obey exactly the same relations as W [n,k] and
W(n,m) in equations (5.29) and (5.30), with the difference that as mentioned already
above the sum over m always starts at m = 1 in this case.

From equation (5.46) one can then – at LO and NLO – derive the following relation
between the coefficients V(n,m) and W(n,m)

⇥
V(n,m)⇤

�k =
⇥
m# W(n,m)⇤

�k = m
⇥
W(n,m)⇤

�k�1 for k � 0 and n = 1, 2 . (5.48)

3Note that here and in equation (5.47) a convention that differs from equations (3.15) and (3.16) in
reference [35] is used.
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5. Two-loop splitting in double parton distributions

From this it follows that the kernel V(1) is finite for # = 0 while V(2) has at most single
poles, resulting in only a single finiteness condition, given by

0 =
⇥
V(2,2)⇤

�1 +
⇥
V(2,1)⇤

�1 , (5.49)

which is fulfilled due to equation (5.48) for k = 1 and n = 2 and the third relation in
equation (5.35). For the coefficients V [n,k�1] of the finite part of the kernel, the relations
in equation (5.48) thus imply

V [n,k�1] =
n

Â
m=1

mk

(k � 1)!
⇥
W(n,m)⇤

�k = k
n

Â
m=0

mk

k!
⇥
W(n,m)⇤

�k

= k W [n,k] for 1  k  n and n = 1, 2 , (5.50)

where the relation in equation (5.29) and its counterpart for the position space coeffi-
cients V [n,k] have been used. At LO and NLO one can thus derive the following simple
relation between the kernels in 4 dimensions:

V(n)(y; µ) =
∂

∂ ln µ2 W(n)(D = b0/y; µ) for n = 1, 2 . (5.51)

Explicitly, the coefficients of the renormalised position space 1 ! 2 kernel in 4 dimen-
sions are, up to NLO, given by

V [1,0] = W [1,1] = P(0)
s ,

V [2,0] = W [2,1] = P(1)
s +

b0

2
⇥
W(1)

B
⇤

0 + P(0)
⌦
1

⇥
W(1)

B
⇤

0 + P(0)
⌦
2

⇥
W(1)

B
⇤

0 �
⇥
W(1)

B
⇤

0 ⌦12
P(0) ,

V [2,1] = 2W [2,2] =
b0

2
P(0)

s + P(0)
⌦
1

P(0)
s + P(0)

⌦
2

P(0)
s � P(0)

s ⌦
12

P(0) . (5.52)

As a cross check these expressions can again be inserted into the factorisation formula
of equation (5.14) for F(y; µ) from which one then correctly obtains the homogeneous
double DGLAP equation (2.51) up to order a2

s by taking the renormalisation scale
derivative.

Higher orders

Keeping in mind the simple relations between the position and momentum space 1 ! 2
splitting kernels – equations (5.50) and (5.51) – one may wonder whether these remain
valid at all orders n. Consider to this end the situation at NNLO, meaning n = 3, where
the O(#2) term of T#,n contributes for the first time, namely to the finite part of V(3) but
not to its poles. Using equations (5.44) and (5.48) one then finds

V [3,0] =
3

Â
m=1

⇥
V(3,m)⇤

0 =
3

Â
m=1

m
⇥
W(3,m)⇤

�1 + z2

3

Â
m=1

m2 ⇥W(3,m)⇤
�3 . (5.53)
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5.4. Matching between momentum and position space DPDs at higher orders

Here the sum multiplying z2 vanishes due to the finiteness conditions in equation (5.30)
for k = 2, j = 1, such that equation (5.50) remains valid for n = 3. At N3LO, however,
the situation is different, as can be seen by considering V [4,0]

V [4,0] =
4

Â
m=1

⇥
V(4,m)⇤

0 =
4

Â
m=1

m
⇥
W(4,m)⇤

�1 + z2

4

Â
m=1

m2 ⇥W(4,m)⇤
�3

+
z3

3

4

Â
m=1

(2m4 + 3m2 + 3m)
⇥
W(4,m)⇤

�4 . (5.54)

Here the sum over mk ⇥W(4,m)
⇤
�4 vanishes for k = 1, 2, 3 but not for k = 4 according to

the finiteness condition of equation (5.30). Using equation (5.29) one thus obtains

V [4,0] = W [4,1] + 16z3 W [4,4] , (5.55)

which illustrates that at this order equation (5.50) and thus also equation (5.51) are no
longer valid.

5.4. Matching between momentum and position space DPDs
at higher orders

With the results from the preceding section it is now possible to generalise the matching
between cut-off and MS momentum space DPDs. Consider to this end again a cut-off
regularised momentum space DPD as defined in reference [35]:

FF, a1a2(x1, x2, D; µ, n) =
Z

d2y eiyD F(yn) Fa1a2(x1, x2, y; µ) , (5.56)

where F is – without a loss of generality, as will be shown in a moment – the hard
cut-off defined already in equation (2.59). The difference between the MS renormalised
momentum space DPD defined in equation (2.53) and the cut-off momentum space
DPD defined in equation (5.56) is then given by4

FMS(D; µ)� FF(D; µ, n) = lim
#!0

 Z
dD�2y eiDyF(y, #; µ) + Zs(#; µ)⌦

12
Z�1(#; µ)⌦ f (#; µ)

�

= lim
#!0

 Z
dD�2y F(y, #; µ) + Zs(#; µ)⌦

12
Z�1(#; µ)⌦ f (µ)

�

+
Z

d2y
⇥
eiDy

� 1
⇤

F(y; µ) . (5.57)

In this equation the splitting counterterm needed to regularise the splitting singularity
in equation (2.53) has been written out explicitly. Furthermore all # dependences have

4Note that here the integrals are understood to be restricted to values of y < b0/n.
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5. Two-loop splitting in double parton distributions

been indicated, using the shorthand notation F(y; µ) = F(y, # = 0; µ) in the last term.
Using the above relation the matching may be split up into a part at D = 0 involving
DPDs in D = 4 � 2# dimensions and a D dependent part that involves only DPDs at
the physical point # = 0.

A crucial point for the following arguments is that the the cut-off scale n is understood to
be large enough to justify replacing F(y; µ) with the perturbative splitting contribution
given in equation (5.14), up to corrections in powers of L/n, where L is understood to
be a generic hadronic scale. Here it should be noted that as discussed in section 3.3 of
reference [35], the corrections of order L/n arise from twist-three distributions, which
are expected to be small at low x1 and x2, where DPDs are naturally large. Therefore
the dominant power corrections are expected to be of order L2/n2.

At this point it makes sense to show that the choice of the hard cut-off as a regulator
function in equation (5.56) really comes without a loss of generality. Consider to this
end the difference between two momentum space DPDs defined with different regulator
functions F1 and F2, given by

FF1(D; µ, n)� FF2(D; µ, n) =
Z

d2y eiDy ⇥F1(yn)� F2(yn)
⇤

F(y; µ) . (5.58)

In this expression F(y; µ) can be evaluated at the physical point, as the regulator
functions Fi guarantee that the integrals over y is finite in the ultraviolet. As the
expression in square brackets vanishes for distances y of hadronic size due to the
fact that both regulator functions Fi approach 1 in this limit, F(y; µ) can be replaced
by its small y perturbative splitting form given in equation (5.14). With the help
of equation (5.47) the difference between the momentum space DPDs defined with
different regulator functions in equation (5.58) can thus be expressed in terms of
V [n,k] ⌦

12
f (µ) and the integrals

Z d(y2)
y2 J0(yD)

✓
ln

y2µ2

b2
0

◆k ⇥
F1(yn)� F2(yn)

⇤
, (5.59)

where the Bessel function J0 arises from performing the angular part of the y integration.
Therefore it is straightforward to match between momentum space DPDs FFi defined
with different regulator functions Fi, justifying limiting the discussion to the hard
cut-off of equation (2.59).

5.4.1. Matching at zero D

As a first step towards the complete matching formula consider first the matching at
D = 0, which again can be written as a convolution of a 1 ! 2 matching kernel U
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5.4. Matching between momentum and position space DPDs at higher orders

with a PDF, in close analogy to the factorised expressions for the perturbative splitting
contribution in equation (5.14)

FMS(D = 0; µ)� FF(D = 0; µ, n) = U(µ, n)⌦
12

f (µ) +O(L/n) . (5.60)

In order to derive the form of the matching kernel U(x1, x2; µ, n), in the first term on
the right-hand side of equation (5.57) F(y, #; µ) is replaced by its perturbative splitting
form given in equation (5.14), which gives rise to integrals of the following form

Z

y<b0/n
dD�2y

G(1 � #)
(py2)1�#

✓
yµ

b0

◆2#m

=
1

m#

✓
µ

n

◆2#m

, (5.61)

where the y dependence from equation (5.45) has been used. The matching kernel in
D = 4 � 2# dimensions, U(x1, x2, #; µ, n), can again be expanded in as in close analogy
to equations (5.27) and (5.45) as

U(#; µ, n) =
•

Â
n=1

an
s (µ)U(n)(#; µ, n) , U(n)(#; µ, n) =

n

Â
m=0

✓
µ

n

◆2#m

U(n,m)(#) . (5.62)

One thus finds that the coefficients U(n,m), V(n,m), and W(n,m) are related as

U(n,m) =
1

m#
V(n,m) = T#,m W(n,m) for m � 1 , (5.63)

with T#,m as defined in equation (5.44), where in the last step the relation between
V(n,m) and W(n,m) given in equation (5.46) has been used. The m = 0 coefficients U(n,0)

originate from the splitting counterterm in equation (5.57) and thus read

U(n,0) = W(n,0) . (5.64)

Making the step to physical dimensions, one finds that the matching kernel can again
be written – in analogy to equations (5.28) and (5.47) – as

U(n)(µ, n) =
def

U(n)(# = 0; µ, n) =
n

Â
m=0

✓
ln

µ2

n2

◆m

U[n,m] . (5.65)

The coefficients U[n,k] and U(n,m) again follow the same relations as W [n,k] and W(n,m)

in equation (5.29) and in particular he coefficients U(n,m) fulfil finiteness relations
analogous to those for W(n,m) in equation (5.30).

Considering that T#,m = 1+O(#2), it is evident from equation (5.63) that the pole terms
of U(n) and W(n) coincide at LO and NLO, ensuring the validity of the finiteness condi-
tions for U and consequently fixing all coefficients of the logarithms in equation (5.65).
For the non-logarithmic term on the other hand one obtains the following relation

U[n,0] =
n

Â
m=0

⇥
U(n,m)⇤

0 =
n

Â
m=0

⇥
W(n,m)⇤

0 + z2

n

Â
m=1

m
⇥
W(n,m)⇤

�2 for n = 1, 2 , (5.66)
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5. Two-loop splitting in double parton distributions

which has been obtained using equations (5.63), (5.64) and (5.44). The sum multiplying
z2 vanishes due to the finiteness conditions in equation (5.30) for k = 1, j = 1. In total
on thus finds that at LO and NLO the coefficients for the 1 ! 2 matching kernel in
physical dimensions are identical to those of the renormalised momentum space 1 ! 2
splitting kernel, namely

U[n,k] = W [n,k] for 0  k  n and n = 1, 2 . (5.67)

Higher orders

Just like in the case of the position space kernel one may again wonder if the simple
relation between the U[n,k] and W [n,k] kernels obtained in equation (5.67) remains valid
at higher orders. To this end, consider the non-logarithmic NNLO coefficient U[3,0],
given by

U[3,0] =
3

Â
m=0

⇥
U(3,m)⇤

0

=
3

Â
m=0

⇥
W(3,m)⇤

0 + z2

3

Â
m=1

m
⇥
W(3,m)⇤

�2 +
z3

3

3

Â
m=1

(2m3 + 3m + 3)
⇥
W(3,m)⇤

�3

= W [3,0] + 4z3 W [3,3] . (5.68)

In the first non-trivial step in the above equation relation (5.63) has been used to express
the U(n,m) coefficients in terms of the W(n,m) coefficients while in the last step again the
finiteness condition given in equation (5.30) has been used. Therefore one finds that
already at NNLO the equivalence in equation (5.67) no longer holds. It is, however,
possible to derive a relation between the matching kernels and the position space
kernels from equation (5.63), that is valid to all orders.

⇥
U(n,m)⇤

�k�1 =
1
m
⇥
V(n,m)⇤

�k for k � 0, m � 1, and all n. (5.69)

From this one can finally derive – in analogy to equation (5.50) – the following relation

U[n,k] =
1
k

V [n,k�1] for 1  k  n and all n , (5.70)

which for n = 1, 2 is of course consistent with equations (5.50) and (5.67).

5.4.2. Matching at non-zero D

In order to derive the matching for non-zero D now both terms on the right-hand
side of equation (5.57) have to be taken into account. To this end one can use the
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5.4. Matching between momentum and position space DPDs at higher orders

perturbative splitting form of the position space DPD F(y; µ) given in equation (5.14)
and the expansion of the kernel position space 1 ! 2 splitting kernel V defined in
equation (5.47), to obtain

FMS(D; µ)� FF(D; µ, n) = U(µ, n)⌦
12

f (µ) +
•

Â
n=1

an
s (µ)

n�1

Â
k=0

Ik(D; µ, n)V [n,k]
⌦ f (µ) ,

(5.71)

where corrections are again of order O(L/n) and the coefficients Ik are given by the
following integrals

Ik(D; µ, n) =
Z b2

0/n2
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d(y2)
y2
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J0(yD)� 1

⇤ ✓
ln

y2µ2

b2
0

◆k

, (5.72)

which are obtained after the angular part of the y integration has been performed in
analogy to the situation in equation (5.59). Here the renormalisation scale dependence
can be made explicit by rewriting the above equation as

Ik(D; µ, n) =
k

Â
j=0

✓
k
j

◆
Ij(D; n, n)

✓
ln

µ2

n2

◆j

, (5.73)

where the coefficients Ij(D; n, n) are given by

Ij(D; n, n) = 2
Z a

0

dz
z
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a2

◆j+1

, (5.74)

with a = b0 D/n. The relations given in the equations above can be further simplified
when the limits D ⌧ n and n ⌧ D are considered. For the first case the behaviour of
equation (5.73) is straightforwardly obtained by Taylor expanding the Bessel function
around D = 0, yielding

Ik(D; µ, n) =
D⌧n

�
b2

0 D2

4µ2

Z µ2/n2
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dz lnk z = �
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#

, (5.75)

with numerical coefficients cj. In the case that n ⌧ D on the other hand the limit-
ing behaviour of equation (5.73) is obtained by writing out the polynomial series of
lnk+1(z2/a2) =

⇥
ln(n2/D2) + ln(z2/b2

0)
⇤k+1 and extending the z integration to infinity

in equation (5.74) such that one obtains

Ij(D; n, n) =
n⌧D

1
j + 1

"✓
ln

n2

D2

◆j+1

+
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, (5.76)
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where the di are again numerical coefficients. In order to finally obtain the large D
behaviour of Ik(D; µ, n) in equation (5.73) the above expression for Ij(D; n, n) is used
and the binomial sum rearranged, yielding

Ik(D; µ, n) =
n⌧D

1
k + 1

"✓
ln

µ2

D2

◆k+1

�

✓
ln

µ2

n2

◆k+1
#
+ . . . , (5.77)

where the ellipsis denotes terms with fewer powers of logarithms.

In order to be able to use the matching equation (5.71) truncated in as reliably, large
logarithms at higher orders must be avoided. This requires to take n ⇠ µ for the
D independent term with U(µ, n). However, this leads to the occurrence of large
logarithms in equation (5.77), such that the limit n ⌧ D has to be avoided as otherwise
the matching relation breaks down when the perturbative series is truncated. On the
other hand, no large logarithms appear for D ⌧ n according to equation (5.75), such
that fixed order matching is thus possible both for D ⇠ n and for D ⌧ n.

For j = 0, 1, 2 a closed form of coefficients Ij(D; n, n) can be obtained in terms of the
generalised hypergeometric functions pFq, namely

I0(D; n, n) = �
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4 2F3

✓
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◆
,
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,
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2 4F5
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a2

4

◆
. (5.78)

5.4.3. Scale independence of matching

Here the dependence of the matching equation (5.71) on the cut-off scale n and its
behaviour under renormalisation group evolution will be discussed in detail. To this
end consider first the n dependence of the left- and right-hand sides of equation (5.71)
which will now be shown to be identical. The logarithmic n derivative of the left-hand
side is given by

�
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f (µ) , (5.79)
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where in the last step once again the perturbative splitting form of F(y; µ) given in
equation (5.14) and equation (5.47) have been, as is appropriate for y = b0/n. For the n
dependence of the right-hand side of equation (5.71) on the other hand one gets
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where the integral representation of Ik given in equation (5.72) has been used. Using
the relation between the position space 1 ! 2 splitting kernel V and the matching
kernel U derived in equation (5.70), one easily sees that both sides of the matching
equation (5.71) have the same cut-off scale dependence at each fixed order in as, as
it should be. This statement holds up to power corrections in L/n, which arise from
replacing F(y; µ) with its perturbative splitting form given in equation (5.14).

Consider next the renormalisation scale dependence of the matching equation (5.71).
Using the appropriate – homogeneous or inhomogeneous – double DGLAP equations,
one obtains for the renormalisation scale derivative of the left-hand side

d
d ln µ2

h
FMS(D; µ)� FF(D; µ, n)

i
= Ps ⌦

12
f (µ) + P ⌦
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h
FMS(D; µ)� FF(D; µ, n)

i

+ P ⌦
2

h
FMS(D; µ)� FF(D; µ, n)

i
, (5.81)

where the term with Ps arises from the MS momentum space DPD where the splitting
singularity is renormalised according to equation (2.56). Here one can on the right-
hand side replace the difference of DPDs with the matching expression given in
equation (5.71). Comparing this to the renormalisation group derivative of the right-
hand side of equation (5.71), one finds that the matching equation holds at arbitrary
renormalisation scale µ if

• the renormalisation scale dependence of U(µ, n)⌦12 f (µ) is given by the inho-
mogeneous double DGLAP equation. That this is indeed the case can, at LO
and NLO, be explicitly verified using the inhomogeneous evolution equation for
W(µ, n)⌦12 f (µ) and the equality of the momentum space 1 ! 2 splitting kernel
W and the matching kernel U stated in equation (5.67),

• the D dependent term

•

Â
n=1
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s (µ)
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Â
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⌦
12

f (µ) (5.82)

on the other hand satisfies the homogeneous double DGLAP equation. That
this is indeed the case can be shown considering that the renormalisation scale
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5. Two-loop splitting in double parton distributions

dependence of the splitting form of F(y; µ)
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is governed by the homogeneous equation and that Ik(D; µ, n) and lnk(y2µ2/b2
0)

satisfy the same differential equation in the renormalisation scale µ.

As these requirements are fulfilled for the perturbative splitting forms of F(D; µ) and
F(y; µ), the double DGLAP equations are fulfilled only up to order an

s if the perturbative
series for the splitting or matching kernel is truncated at order an

s .

5.5. Two-loop calculation

In this section the actual calculation of the 1 ! 2 splitting, evolution, and matching
kernels V, W, Ps, and U introduced in sections 5.3 and 5.4 will be presented at NLO
accuracy. Due to the relations derived in the preceding sections it suffices to this end
to calculate only the momentum space 1 ! 2 splitting kernel W as all other kernels
can be expressed in terms of this quantity. In order to illustrate how the momentum
space splitting kernel W(2)

a1a2,a0(D) can be obtained consider the factorisation formula for
the bare position space DPD FB,a1a2/a0(D) of partons a1 and a2 in a parton a0 given in
equation (5.13). The NLO term is obtained by expanding this in as and reads

F(2)
B,a1a2/a0

(D) = Â
b

h
W(2)

B,a1a2,b(D)⌦12
f (0)B,b/a0

+ W(1)
B,a1a2,b(D)⌦12

f (1)B,b/a0

i

= W(2)
B,a1a2,a0

(D) , (5.84)

where fB,b/a0 denotes the bare PDF of parton b in parton a0. In order to arrive at the
second equality it has been used that the tree-level expression f (0)B,b/a0

(x) = dba0 d(1 � x)
whereas the order O(as) term f (1)B,b/a0

= 0 because the corresponding loop integrals do
not depend on any dimensionful scale such that they vanish in dimensional regular-
isation. One can therefore conclude that the bare two loop momentum space kernel
W(2)

B,a1a2,a0
is obtained directly from the two-loop graphs for the bare DPD of partons a1

and a2 in an on-shell parton a0. The computation of these graphs is performed with
massless quarks and gluons, such that the relevant graphs exhibit both infrared and
ultraviolet divergences, both of which are being treated using dimensional regularisa-
tion.

5.5.1. Channels and graphs

Consider now at which order in as a kernel Wa1a2,a0 is first non-zero. Due to the
conservation of quark and antiquark flavour one finds that the splitting a0 ! a1a2 starts
at
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5.5. Two-loop calculation

1. LO for g ! gg, g ! qq̄ and q ! qg,
2. NLO for g ! qg, q ! gg and qj ! qjqk, qj ! qjq̄k, qj ! qkq̄k,

where the indices j and k label quark flavours and may be equal or different. In the
following these two different cases will be referred to as “LO channels” and “NLO
channels”, respectively. The remaining channels at the same orders can be obtained by
interchanging partons a1 and a2 or by charge conjugation, where the kernels for charge
conjugated channels are identical. All other splitting processes start either at NNLO or
N3LO.

Real emission graphs (or “real graphs” for short) are shown in figures 5.1 and 5.2
for LO and NLO channels, respectively. In addition to the graphs shown in these
figures further graphs for the same channels are related to the ones shown by complex
conjugation and by interchanging the lines for partons a1 and a2 if a1 = a2 and are
understood to be taken into account. Note that the unobserved parton radiated into
the final state is uniquely determined for given a0, a1, and a2: it is a gluon for the LO
channels and a quark or antiquark for the NLO channels.

In addition to the real emission graphs discussed above one has for the LO channels also
virtual loop graphs (or “virtual graphs” for short). These virtual graphs are obtained
from LO splitting graphs by adding a vertex correction to the splitting vertex or a
propagator correction for one of the lines of parton a1 or a2 (propagator corrections for
the massless on-shell parton a0 are zero in dimensional regularisation), as illustrated in
figure 5.3.

In order to avoid confusion a brief comment about the flavour structure for channels
where a0, a1 and a2 are only quarks or antiquarks is in order at this point. Consider to
this end the graphs 5.2k, 5.2l and 5.2n in which there are separate fermion lines for
quarks q and q0, which may or may not be of the same flavour. The kernels Wa1a2,a0

corresponding to these graphs are denoted as specified in figure 5.2. The situation is,
however, different for graphs 5.2m and 5.2o which involve only a single quark flavour
and are thus considered to be of a valence type denoted by a superscript v on the
corresponding kernels. From these kernels the complete kernels for a specific flavour
transition are thus obtained as

Wqjq̄k ,qi = djk Wq0q̄0,q + dij Wqq̄0,q + dij djk Wv
qq̄,q ,

Wqjqk ,qj = djk Wq0q,q + Wqq0,q + djk Wv
qq,q , (5.85)

where Wq0q,q(x1, x2) = Wqq0,q(x2, x1).

Feynman versus light-cone gauge. In order to ensure that mistakes during the lengthy
calculations could be ruled out all graphs making up the bare partonic DPDs have
been calculated independently twice – once in covariant Feynman gauge, and once
in A+ = 0 light-cone gauge. The Feynman rules used in these calculations are for
convenience reviewed in Appendix A.
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5. Two-loop splitting in double parton distributions

(a) LD (b) UD (c) UND (d) T2B

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

(p) (q)

Figure 5.1.: Real graphs for LO channels. The parton lines at the bottom of the graph correspond to a0,
and those on top to a1, a2, a2 and a1 from left to right. The topologies “LD”, “UD” etcetera are
explained in section 5.5.2.
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5.5. Two-loop calculation

(a) (b) (c) (d)

(e) (f)

(g) (h) (i) (j)

(k) Wq0q̄0,q (l) Wqq̄0,q (m) Wv
qq̄,q

(n) Wqq0,q (o) Wv
qq,q

Figure 5.2.: Real graphs for NLO channels. The association of parton lines is as in figure 5.1.
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5. Two-loop splitting in double parton distributions

(a) (b) (c) (d) (e)

(f) (g) (h)

(i) (j) (k) (l) (m)

Figure 5.3.: Virtual graphs for the amplitude in LO channels. The tree graphs in the complex conjugate
amplitude are not shown.

One of the main differences between Feynman and light-cone gauge is that in addition5

to the graphs shown in figures 5.1, 5.2, and 5.3 (which have to be calculated in both
gauges), one gets in Feynman gauge also graphs with Wilson lines attaching to the active
partons, as already discussed in section 2.2.2. Following the prescription illustrated in
figure 5.4 the corresponding Wilson line graphs are readily obtained from the graphs in
figures 5.1, 5.2, and 5.3. One can observe that Wilson line graphs arise in two cases, the
first of which is when an active parton, a1 or a2, is a gluon emerging from a three-gluon
vertex on one of the upper legs, as is for instance the case in figures 5.1a, 5.1b, and 5.3a.
As shown in figure 5.4a and 5.4b graphs of this kind give rise to two kinds of Wilson
line graphs. In the case that the active parton is a quark or antiquark originating from a
quark-gluon vertex on one of the upper legs on the other hand, as is for example the
case in figures 5.1h, 5.1l, 5.3f, and 5.3g, this leads to only one corresponding Wilson

5This is due to the fact that the Wilson lines reduce to unity in A+ = 0 light-cone gauge as is readily
seen from equation (2.23).
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5.5. Two-loop calculation

(a) (b)

(c) (d)

Figure 5.4.: Rules for obtaining the Wilson line graphs needed in Feynman gauge from graphs without
Wilson lines. In each of the four panels, the top left parton is an active one (a1 or a2). These
rules apply to both real and virtual graphs, and corresponding rules hold on the right of the
final state cut. Note that the three-gluon vertex in the upper panels gives rise to two different
graphs.

line graph with a gluon attaching to a quark Wilson line, visualised in figures 5.4c
and 5.4d.

Another type of graphs that have to be calculated in Feynman gauge while they are
absent in light-cone gauge are the Fadeev-Popov ghost versions of all graphs containing
closed gluon loops, such as for example in figures 5.3a and 5.3d.

Kinematics. The general kinematic structure for real graphs – both in LO and NLO
channels – is depicted in figure 5.5. All calculations are performed in a frame where the
incoming parton a0 has plus momentum p+ while its transverse and minus momentum
components vanish. For the active partons a1 and a2 the plus momenta x1 p+ and
x2 p+ are equal in the amplitude and its conjugate, whereas their transverse momenta
differ by ±D as shown in figure 5.5 which differs from the momentum assignment in
figure 2.66. An analogous shift is also performed for the minus momentum components.
For the parton a3 which goes across the final state cut with plus momentum x3 p+ the
momentum components are uniquely fixed by the momenta of the active partons a1
and a2 due to momentum conservation, namely

x3 = 1 � x1 � x2 , k�3 = �k�1 � k�2 , k3 = �k1 � k2 . (5.86)

In order to obtain DPDs from the real graphs in figures 5.1 and 5.2 the expressions
corresponding to these graphs have to be integrated over k�1 , k�2 , and D�, which
corresponds to having z+1 = 0, z+2 = 0, and y+ = 0, respectively, in the matrix element
in equation (2.17). As the splitting kernels are derived from collinear DPDs furthermore

6This is achieved by shifting k1 ! k1 +
D
2 and k2 ! k2 �

D
2 and is done as this leads to a simpler

denominator structure in the corresponding Feynman integrals.
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5. Two-loop splitting in double parton distributions

k1 k2 k2 � D k1 + D

k3

a0 a0

a1 a1a2 a2

a3 a3

Figure 5.5.: Assignment of transverse momenta in a real graph. Note that compared with the symmetric
assignment in [35] the integration variables k1 and k2 have been shifted such that D appears
only on the right-hand side of the cut.

k1 k2`

k2 � `k1 + `

(a) vertex correction

k1 k2

k1 + `

`

(b) propagator correction

Figure 5.6.: Assignment of momenta in generic virtual graphs to the left of the cut. An analogous as-
signment holds for loops to the right of the cut, with k1 and k2 shifted by +D and �D,
respectively.

integrations over the transverse momenta k1 and k2 have to be performed, which is
tantamount to setting z1 = 0 and z2 = 0, respectively, in equation (2.17).

For the virtual graphs encountered in the LO channels the generic kinematic structure
is exemplified in figure 5.6. Here one now finds that due to momentum conservation
one has k�2 = �k�1 and k2 = �k1, as a result of which the integrations over k�2 and k2
become redundant. Instead one now finds an additional loop momentum `, over which
one has to integrate.

5.5.2. Performing the calculation

At this point all preliminaries which are required for the actual calculation of the
bare momentum space 1 ! 2 splitting kernel W(2)

a1a2,a0(D) have been worked out. The
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5.5. Two-loop calculation

initial expressions corresponding to each graph are obtained using the Feynman rules
given in appendix A and subsequently performing the Dirac and colour algebra using
FORM [136] or FeynCalc [137]7. After this has been taken care of the phase space and
loop integrals have to be performed, which is where the calculations for real graphs
with a parton emitted into the final state and virtual graphs containing closed loops
start to differ. As a result of this the the methodology for performing the integrations
in these two cases will be discussed separately.

Real emission diagrams

In the case of the real emission graphs one can distinguish four different so called
topologies which are exemplified by figures 5.1a, 5.1b, 5.1c, and 5.1d, and referred to as
LD (lower diagonal), UD (upper diagonal), UND (upper non-diagonal) and T2B (top
to bottom), respectively. The four-gluon graphs in figures 5.1e, 5.1f, and 5.1g can be
considered to fit into the T2B topology, as all the denominator factors in these diagrams
are covered by those in the T2B topology.

After the Dirac indices in the numerator have been contracted the next step in the
calculation is to perform the integrations over the minus components of momenta k1,
k2, and D. To this end a change of variables is performed which makes this task as
simple as possible. In particular this is achieved using again the variable transformation
introduced in equation (3.19). Following this change of variables the K� integration
can be performed using the on-shell delta function, whereas the integrals over k� and
k0� can be performed using the theorem of residues. The above change of variables
made this “simple” in the sense that now for all topologies, one is able to close the
integration contour on only one pole, both in the k� and in the k0� integration.

The remaining step in the calculation of the individual graphs is then – as all plus
components are fixed by the operators in equation (2.17) – to integrate over k1 and k2
at fixed D. To this end it is used that every graph may be written in a form where its
denominator factors are contained within the following finite set8:

D1 =
(k1 + D)2

x1
+

(k2 � D)2

x2
+

(k1 + k2)2

x3
, D2 =

k2
1

x1
+

k2
2

x2
+

(k1 + k2)2

x3
,

D3 = (k1 + D)2 , D4 = k2
2 ,

D̃4 = k2
1 , D̃5 = (k1 + k2)

2 . (5.87)

One can observe that graphs of all topologies have denominators D1 and D2 in common.
In addition to these common denominator factors LD graphs furthermore have D̃5,

7In practice, FORM was used in the light-cone gauge calculation, whilst FeynCalc was used for the
Feynman gauge calculation. Of course, either code could have been used for both computations.

8This may require shifting of integration momenta, and use of the fact that the integrals are invariant
under the substitution D ! �D
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5. Two-loop splitting in double parton distributions

whereas UD graphs have D3 and D̃4, T2B graphs have D3 and D̃5, and UND graphs
have D3 and D4.

As discussed already in section 5.2.1 the large set of Feynman integrals corresponding
to all graphs can be reduced to a small set of master integrals. To this end first all
numerator factors in the graphs are expressed in terms of the denominator factors
Di and D̃i, before integration by parts identities, as implemented in LiteRed [128],
are used to reduce the results for all graphs to master integrals. For graphs with the
topology UND the master integrals have the general form

I1(a1, a2, a3, a4) =
Z dD�2k1 dD�2k2

’i=1..4 Dai
i

. (5.88)

And in particular the actual master integrals are given by the following set

I1(1, 1, 0, 0) , I1(0, 1, 1, 0) , I1(1, 1, 1, 0) ,
I1(1, 0, 1, 1) , I1(1, 1, 1, 1) , I1(2, 1, 1, 1) , (5.89)

as well as integrals related to these by the simple transformation x1 $ x2.

In the case of graphs belonging to the remaining topologies – LD, UD, and T2B – the
master integrals are parametrised by

I2(a1, a2, a3, a4, a5) =
Z dD�2k1 dD�2k2

’i=1...3 Dai
i ’i=4...5 D̃ai

i
, (5.90)

and specifically the finite set of master integrals to which all of the graphs fitting into
these topologies may be reduced are given by

I2(1, 1, 0, 0, 0) , I2(0, 1, 1, 0, 0) , I2(1, 1, 1, 0, 0) ,
I2(0, 1, 1, 0, 1) , I2(1, 1, 1, 1, 0) , (5.91)

and integrals related to these by the substitution x1 $ x2. Note that the here master
integrals in the first line coincide with the ones in the first line of equation (5.89) such
that these only have to be calculated once.

In order to calculate the master integrals the method of differential equations introduced
in section 5.2.2 is used. In the case at hand the only external variables on which the
master integrals depend are x1, x2 and D2. However, differential equations in D2 only
provide trivial information and are thus not suitable to obtain the master integrals.
This is due to the fact that D2 is the only dimensionful external quantity, such that each
master integral only depends on D2 via an overall prefactor of a power of D2 that is
easily determined by dimensional analysis. Therefore differential equations in x1 are
used to calculate the master integrals. As outlined in section 5.2.2 appropriate boundary
conditions have to be imposed in order to fix the “constants” of integration arising
when the differential equations are solved, which in this case are actually functions
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5.5. Two-loop calculation

of x2. These constants can be obtained from the calculation the leading behaviour of
the master integrals in the limit that x3 ! 0 where the master integrals simplify to a
point where they can be calculated analytically using standard textbook techniques. A
valuable cross check is provided by the differential equations in x2 which have to be
satisfied by the final solutions of the x1 differential equations.

How the actual solution of the differential equations for the master integrals is most
instructively illustrated for the UND case. There the system of differential equations
has an almost entirely triangular matrix structure and is schematically given by:

∂

∂x1

2

6666664

I1(1, 1, 0, 0)
I1(0, 1, 1, 0)
I1(1, 1, 1, 0)
I1(1, 0, 1, 1)
I1(1, 1, 1, 1)
I1(2, 1, 1, 1)

3

7777775
=

2

6666664

⌅ 0 0 0 0 0
0 ⌅ 0 0 0 0
⌥ ⌥ ⌅ 0 0 0
0 ⌥ 0 ⌅ 0 0
⌥ ⌥ ⌥ ⌥ ⌅ ⌅
⌥ ⌥ ⌥ ⌥ ⌅ ⌅

3

7777775

2

6666664

I1(1, 1, 0, 0)
I1(0, 1, 1, 0)
I1(1, 1, 1, 0)
I1(1, 0, 1, 1)
I1(1, 1, 1, 1)
I1(2, 1, 1, 1)

3

7777775
, (5.92)

where black squares ⌅ denote entries of the form c(x1, x2) while black diamonds ⌥
denote entries of the form c1(x1, x2) + c2(x1, x2) Px1$x2 . Here Px1$x2 is the operator
transforming a given master integral I1(a1, a2, a3, a4) to the corresponding master in-
tegral with x1 $ x2. Due to this rather simple structure most master integrals can be
computed using elementary methods for first-order differential equations and forward
substitution, starting from I1(1, 1, 0, 0) and I1(0, 1, 1, 0) and working downwards. In
the case of the two-denominator master integrals I1(1, 1, 0, 0) and I1(0, 1, 1, 0) an exact
analytical solution in D = 4 � 2# dimensions is possible, whereas for the more compli-
cated master integrals the results are obtained as a series in # up to the required order.
For the two four-denominator master integrals I1(1, 1, 1, 1) and I1(2, 1, 1, 1) elementary
methods are, however, not sufficient as for these two master integrals one finds a
coupled system of equations. As already discussed in section 5.2.2 the solution of
these differential equations is greatly simplified by a change of basis to the so called
canonical basis. To this end the coupled 2 ⇥ 2 system is transformed to the canonical
basis with a transformation matrix obtained using Fuchsia. In this form it is then
straightforward to obtain a solution for these two integrals as a series in #. For the
second family of master integrals the situation is less complicated as there the system
of differential equations for the I2 integrals is fully triangular, such that in this case
elementary methods for differential equations plus forward substitution are sufficient
to obtain the master integrals.

Consider now how the leading behaviour of the integrals for x3 ! 0 – which serves
as a boundary condition in the solution of the differential equations – is computed.
To this end the method of regions introduced in reference [138] is used. In order to
determine the leading momentum regions of the integrations a scaling parameter l ⌧ 1
is introduced, with x3 ⇠ l. One then finds that for all master integrals the following
region gives a leading contribution in l:

R1 : x3 ⇠ l , x1, x2 ⇠ 1 , k2
1, k2

2, (k1 + D)2
⇠ D2 , (k1 + k2)

2
⇠ lD2 . (5.93)
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5. Two-loop splitting in double parton distributions

In the case of the four-denominator master integral I1(1, 0, 1, 1) of the UND topology
one can in addition to this identify a further leading region, namely

R2 : x3 ⇠ l , x1, x2 ⇠ 1 , k2
1, k2

2, (k1 + D)2, (k1 + k2)
2
⇠ D2 . (5.94)

In order to derive the form of the approximated integrands in these regions the
appropriate scaling of momenta is used and subleading terms in l are neglected in the
denominators, resulting in expressions that are homogeneous in l. At this point every
master integral has a sufficiently simple form to be solved to all orders in # using the
standard method of Feynman parameters. In order to obtain the full leading behaviour
in the limit x3 ! 0 the contributions from the two leading regions have to be added
together. As mentioned above, every master integral gets a leading contribution from
the region R1 specified in equation (5.93) which is multiplied by an overall non-integer
power of x3 for # 6= 0, namely x1�#

3 . The occurrence of this global x3 dependence can be
explained by the fact that all denominators behave like l0, whereas the phase space
contributes l1�#. In the region R2 detailed in equation (5.94) from which only the
master integral I1(1, 0, 1, 1) gets a leading contribution the situation is different as there
one finds that the overall result is multiplied by an integer power of x3, namely x1

3,
because D1 behaves like l�1, whilst all other denominators and the phase space behave
like l0.

In order to check that the results obtained for the master integrals are indeed correct
the analytic results have been checked against a numerical computation of the integrals
performed using the program FIESTA 2 [139] at 10 randomly chosen (x1, x2) points,
which were found to agree within the precision of the numerical computation.

However, the calculation of the bare graphs is not finished at this point as careful
consideration of the limit x3 ! 0 is needed. This is due to the fact that some graphs
exhibit singular behaviour in this limit. To this end it comes in handy that the full
(all-order in #) behaviour of the graphs for x3 ! 0 is known from the boundary
condition computation for the master integrals. For graphs associated with the non-
UND topologies, this singularity is always regulated by the dimensional regularisation
parameter #, since the non-UND master integrals only have the leading region R1 for
x3 ! 0, coming with an overall factor of x�1�n#

3 . This factor can be expanded in the
following way:

q(x3) x�1�n#
3 = �

1
n#

d(x3) + L0(x3)� n#L1(x3) +
n2#2

2
L2(x3) +O(#3) , (5.95)

with plus distributions denoted as

Ln(x) =


q(x) lnn(x)
x

�

+
. (5.96)

Useful relations for these distributions are given in reference [140]. Here it can be noted
that the final results turn out to involve only L0 while all terms containing Ln with
n > 0 cancel after a sum over graphs.
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5.5. Two-loop calculation

A different situation is encountered for graphs of the UND topologies, in particular
those which get a contribution from the master integral I1(1, 0, 1, 1), as there one can
have terms which just go as 1/x3 and are not regulated by #. While the singularities
discussed above are soft singularities this corresponds to a rapidity divergence which
is (in covariant gauges) associated with light-like Wilson lines and has to be regulated
somehow. To this end a regulator is typically inserted via some modification of the
Wilson line propagator in covariant gauges, whereas in light-cone gauge the gluon
propagator has to be modified appropriately. One possible choice of regulator is the so
called d regulator which – in covariant Feynman gauge – introduces a small additional
term in the denominator of a Wilson line propagator. Consider to this end the Wilson
line propagator as given in figure A.4, and in particular only its denominator `v ± i#
which for light-like Wilson lines reduces to 1/(`+ ± i#). Here one can furthermore
drop the ±i# term as this is not needed here since only the integrations over the minus
momentum components are performed using complex contour integration techniques.
In order to regulate the singularity `+ ! 0 one then introduces the d regulator in the
following way

1
`+

!
1

`+ + id
. (5.97)

For the calculation at hand it suffices to take only the real part of this modified Wilson
line propagator as the imaginary part cancels when complex conjugated graphs are
added such that one can furthermore make the following replacement

1
`+ + id

!
`+

(`+)2 + d2 . (5.98)

In this form one can then again perform a distributional expansion in the vein of
equation (5.95), namely

`+

(`+)2 + d2 = �d(`+) ln d + L0(`
+) , (5.99)

where the rapidity divergences are now manifest as ln d terms. Since colour singlet
DPDs do not suffer from rapidity divergences9 – as noted for example in section 3.5
of reference [26] or in reference [142] – the divergences associated with I1(1, 0, 1, 1)
must cancel after a sum over graphs, including the virtual loop graphs. As discussed
in section 2.2.2 the situation is different in the colour interference case where these
rapidity divergences cancel only when the appropriate soft factor has been taken into
account.

How exactly these rapidity divergences are regulated depends on the used regulator
for which there are various possible choices, such as the analytic regulator of refer-
ence [143], the exponential regulator of reference [144], the “pure rapidity regulator” of

9This is analogous to what happens in the single scattering sector, where for the collinear PDFs no
rapidity divergences occur, see for example reference [141].
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5. Two-loop splitting in double parton distributions

reference [145], the d regulator of reference [146] used above, the CMU h regulator of
references [147, 148], or the use of Wilson lines slightly tilted away from the light cone as
described in reference [47]. In the calculations presented in this chapter each of the latter
three options have been tried, and one finds that when consistently implementing the
regulator in all real emission and virtual loop graphs (and the appropriate contribution
from the soft factor in the colour interference case), the sum over graphs yields the
same rapidity-divergence-free result for all regulators. Here it is important to point out
that the rapidity regulator always has to be removed before ultraviolet renormalisation
is performed and # is set to zero, as is prescribed when using such regulators.

Virtual diagrams

Consider now the virtual loop graphs where the calculation differs in some points from
the one of the real emission graphs just discussed. In this case the integrations over
minus momenta (including `�) can again be performed using contour integration tech-
niques which now places restrictions on the plus component `+ of the loop momentum
as will be seen in a moment. The integrations over the transverse momenta k1 and `
were also again performed using integration by parts reduction which yielded, after
some relabelling of integration momenta, two master integrals encountered already
in the real emission sector, namely I1(0, 1, 1, 0) and I1(0, 1, 1, 1), where the latter is
obtained from I1(1, 0, 1, 1) by interchanging x1 $ x2.

The main difference between the calculations of real emission and virtual loop graphs
is certainly that in the latter case one has an additional integration over the plus
component of the loop momentum. This integration is restricted to a finite range as a
result of the earlier integrations over minus components: when `+ is outside a certain
range, all poles move into one half-plane for one of these integrations, and the result
is zero. In most cases the `+ integration can be performed straightforwardly using
standard integration techniques. However, in some cases, in particular in Wilson line
graphs in Feynman gauge, one again encounters endpoint singularities for `+ ! 0
which have to be treated consistently. To this end one again performs distributional
expansions analogous to the ones in equation (5.95) in cases where these singularities are
regulated by #, and when this is not the case again an appropriate rapidity regulators has
to be introduced. While in the real emission sector rapidity divergences are associated
with the UND topology in the virtual loop sector the graphs containing such a rapidity
divergence are vertex correction graphs in which the line with momentum ` is a gluon,
such as figure 5.3f.

5.6. Results

Now that the calculation of the bare momentum space 1 ! 2 splitting kernels has been
discussed in the previous section 5.5 and the extraction of the renormalised kernels
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from these bare results has been described in section 5.3 the next step is to present
these renormalised kernels up to NLO and discuss some of their properties. Here it is
sufficient to limit the discussion to the 1 ! 2 evolution kernel Ps and the momentum
space 1 ! 2 splitting kernel W as results for the kernels V and U can readily be
obtained from W using the relations given in equations (5.52) and (5.67), respectively.

5.6.1. Support and singularity structure

Before the actual results are presented consider first briefly the singularity structure
of the kernels at NLO. This differs between the LO and NLO channels defined at the
beginning of section 5.5.1. In the LO channels the kernels have the following general
form

K(x1, x2) = Kreg(x1, x2) +
Kp(x1, x2)

[1 � x1 � x2 ]+
+ Kd(x1) d(1 � x1 � x2) , (5.100)

where K is either W(2) or P(1)
s . In contrast to this structure the kernels for NLO channels

contain only a term Kreg. In the region defined by the conditions 0 < x1, 0 < x2
and x1 + x2  1 the functions Kreg and Kp are regular, while Kd is regular in the
region 0 < x1 < 1. Here it should be noted that these regions exclude the points
x1 = 1 and x2 = 1, where some kernels have power-law divergences of the form
(1 � x1)�n1(1 � x2)�n2 with integers n1 and n2. The reason why these points may be
excluded is that these points are not reached in any physical double parton scattering
process, where both x1 and x2 must be strictly positive. Note also that the decomposition
in equation (5.100) is invariant under the simultaneous replacement

Kreg(x1, x2) ! Kreg(x1, x2) + j(x1, x2) ,
Kp(x1, x2) ! Kp(x1, x2)� (1 � x1 � x2) j(x1, x2) , (5.101)

where j(x1, x2) is a regular function, leaving a freedom of choice in the form of Kreg
and Kp for a given kernel.

Inserting the general form of the NLO 1 ! 2 kernels given in equation (5.100) into the
convolution with a PDF and using the representation (2.34), one obtains one-variable
distributions 1/[1 � z]+ and d(1 � z), so that

h
K ⌦

12
f
i
(x1, x2) =

1
x1 + x2

1Z

x1+x2

dz

(
Kreg(zu, zū) +

Kp
�
zu, zū

�

[1 � z ]+

)
f
✓

x1 + x2

z

◆

+ Kd(u)
f (x1 + x2)

x1 + x2
, (5.102)

with

u =
x1

x1 + x2
, ū = 1 � u . (5.103)

129



5. Two-loop splitting in double parton distributions

This particular form of this convolution comes in very handy when the kinematic limits
are discussed in section 5.6.6. Note that the term with Kd in the above equation (5.102)
has the same structure as the convolution of the LO kernels W(1) or P(0)

s with a PDF
f .

Before presenting the kernels in detail, consider the following symmetries

Wqq̄,g(x1, x2) = Wq̄q,g(x1, x2) , Wgq,g(x1, x2) = Wgq̄,g(x1, x2) ,
Wq0q̄0,q(x1, x2) = Wq̄0q0,q(x1, x2) , Wqq0,q(x1, x2) = Wqq̄0,q(x1, x2) , (5.104)

with analogous relations valid also for the kernels Pa1a2,a0 . The relations in the first
line follow from charge conjugation, whereas those in the second line are obtained by
reversing the quark line associated with q0 (but not the one associated with q). Due to
these relations the channels on the right-hand side of equation (5.104) do not need to be
discussed further in the following. Recall furthermore that kernels for specific flavour
transitions are obtained from (5.85) and its analogue for Pa1a2,a0 , and that kernels for
channels with an initial q̄ are equal to the kernels for the charge conjugate channels
with an initial q.

Useful building blocks for presenting the explicit kernels P(1)
s are the following func-

tions

pgg(x) =
x

1 � x
+

1 � x
x

+ x(1 � x) , pqq(x) =
1 + x2

1 � x
,

pqg(x) = x2 + (1 � x)2 , pgq(x) =
1 + (1 � x)2

x
, (5.105)

which are proportional to the LO DGLAP evolution kernels away from the endpoint
x = 1. Using these functions the LO kernels P(0)

s and W [1,0] read

P(0)
gg,g(x) = 2CA pgg(x) W [1,0]

gg,g (x) = 0 ,

P(0)
qq̄,g(x) = TF pqg(x) , W [1,0]

qq̄,g (x) = �2TF x(1 � x)

P(0)
qg,q(x) = CF pqq(x) , W [1,0]

qg,q (x) = �CF (1 � x) . (5.106)

In the following the NLO kernels will be expressed in terms of a overcomplete set
of momentum fractions x1, x2 and x3 = 1 � x1 � x2. This makes symmetry properties
more transparent and often allows for more compact expressions. Furthermore the
notation x̄i = 1 � xi will be used.

5.6.2. 1 ! 2 evolution kernels

Consider now the explicit results for the NLO 1 ! 2 evolution kernels P(1)
s , starting

with the pure gluon channel g ! gg.
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g ! gg channel. To this end the following auxiliary functions are introduced

Rgg,g(x1, x2, x3) = C2
A

(
ln(1 + x1/x3) + ln(1 + x1/x2)

x1

x2 pgg(x2)

x̄3

+ 2


x2
2 (3 + 4x2)

x̄4
1

�
x2 (4 + 9x2 + x2

2)

x̄3
1

+
1 + 6x2 + 2x2

2
x̄2

1
�

1 + x2

x̄1
+

1
2

�

+ ln x1


4x2

1
x̄4

3
�

4x1(1 + x1)

x̄3
3

+
4(2 + x1 + 2x2

1)

x̄2
3

�
3 � 3x1 + x2

1 + x3
1

x̄4
1

x2
2

+
10 � 25x1 + 12x2

1 � 3x3
1

2x̄2
1

�
2 + 7x1 � 3x2

1
x̄2

�
2

x̄1 x̄2 x̄3

�

�
ln x̄1

x1


2 + 3x1 � 9x2

1 + 9x3
1 � x4

1
x̄4

1
x2

2 +
6 + 4x1 � 5x2

1 + 10x3
1 � 3x4

1
2x̄2

1

�
4 � 6x1 + 9x2

1 � 6x3
1 + 3x4

1
x̄1 x̄2

�)
,

Dgg,g(x1) = � C2
A

(
3
4
+ 2 pgg(x1)


ln x1 ln x̄1 +

p2

6
�

2
3

�)

+ b0 CA
40 � 27x1 � 20x3

1
12x1

, (5.107)

in terms of which the 1 ! 2 evolution kernel P(1)
gg,g can be written as

P(1)
gg,g(x1, x2, x3) = R(x1, x2, x3) + R(x2, x1, x3) + R(x3, x2, x1)

+ R(x1, x3, x2) + R(x3, x1, x2) + R(x2, x3, x1) +
⇥
D(x1) + D(x2)

⇤
d(x3) , (5.108)

where the subscripts on R and D have been omitted for brevity. Replacing x3 =
1 � x1 � x2 and subsequently expressing R as a function of only x1 and x2, this can be
rewritten as

P(1)
gg,g(x1, x2) = R(x1, x2) + R(x2, x1) + R(1 � x1 � x2, x2) + R(x1, 1 � x1 � x2)

+ R(1 � x1 � x2, x1) + R(x2, 1 � x1 � x2) +
⇥
D(x1) + D(x2)

⇤
d(1 � x1 � x2) .

(5.109)

In equation (5.108) one can easily see that, apart from the distribution term involving
d(x3), the kernel is fully symmetric in the momentum fractions of the three final-state
gluons. While the symmetry under the interchange x1 $ x2 had to be expected, the
symmetry between an observed gluon (a1 or a2) and the unobserved one (a3) may come
as a bit of a surprise. This “active-spectator symmetry” (where a1, a2 are referred to as
active partons and a3 as the spectator) will be discussed in some detail in section 5.6.5.
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5. Two-loop splitting in double parton distributions

g ! qq̄ and related channels. For the g ! qq̄ channel, one can define the following
auxiliary functions

Rqq̄,g(x1, x2, x3) = CA TF

(
ln(1 + x3/x2)

x3

pqg(x1) + pqg(x2)

2

� x1x2
3 � 10x3 + 3x2

3
x̄4

3
+

1 � 6x3 + 5x2
3 � 2x3

3
2x̄2

3

� 2 ln x1


2x2

1
x̄4

3
�

2x1(1 + x1)

x̄3
3

+
1 + 2x1 + 4x2

1
x̄2

3
�

1 + 6x1 � 2x2
1

2x̄3
+ 1 � x1 �

x3

2

�

+ 2 ln x̄1


1 � 2x1 + 2x2

1
2x̄3

+ 1 � x1 �
x3

2

�

� 2 ln x3


x1x2

2 � 3x3 + 2x2
3

x̄4
3

�
1 � x3 + x2

3
2x̄2

3

�

�
2 ln x̄3

x3


x1x2

1 + x3 � 3x2
3 + 3x3

3
x̄4

3
�

1 + x3 � 2x2
3 + 2x3

3
2x̄2

3

�)

+ CF TF

(
�


3x3

x̄2
1
�

1 + 5x3

x̄1
+ 3 + 2x3

�
+ 2 ln x1


x3

2x̄2
1
�

1 + x3

x̄1
�

x3

2x̄2
2
+

1 + x3

x̄2

�

+ 2(2 ln x̄1 � ln x3)


x3

2x̄2
1
�

1 + x3

x̄1
+ 1
�)

,

Sqq̄,g(x1) = �2(CA � 2CF)TF x1 x̄1 ,

Dqq̄,g(x1) = CA TF

n
x2

1 � ln2x1 pqq(x1)
o
+ CF TF

(
3
2
� 2x1 x̄1

�
ln x1 + ln x̄1

�

+


ln2x1 � ln x1 ln x̄1 �

p2

6
+

3
2

�
pqg(x1)

)
, (5.110)

in terms of which the 1 ! 2 evolution kernel P(1)
qq̄,g can be written as

P(1)
qq̄,g(x1, x2, x3) = Rqq̄,g(x1, x2, x3) + Rqq̄,g(x2, x1, x3) +

Sqq̄,g(x1) + Sqq̄,g(x2)

[x3 ]+
+
⇥
Dqq̄,g(x1) + Dqq̄,g(x2)

⇤
d(x3) . (5.111)

Here one now finds that the 1 ! 2 evolution kernel P(1)
qg,g for the channel g ! qg can be

expressed using the same functions as

P(1)
qg,g(x1, x2, x3) = Rqq̄,g(x1, x3, x2) + Rqq̄,g(x3, x1, x2) +

Sqq̄,g(x1) + Sqq̄,g(x3)

x2
. (5.112)

Just like in the case of the pure gluon channel, one can here again observe active-
spectator symmetry for the splitting process g ! qq̄g. The kernel P(1)

qg,g(x1, x2, x3) is
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obtained from P(1)
qq̄,g(x1, x2, x3) by omitting d(x3) and replacing 1/[x3]+ with 1/x3, and

then interchanging x2 $ x3.

q ! qg and related channels. Consider next the channel q ! qg, where one can again
define auxiliary functions

Rqg,q(x1, x2, x3) = CA CF

(
�

ln(1 + x3/x1) + ln(1 � x3/x̄1)
x3

x2 pgq(x2)

x̄1

+ 2


3x1

x̄4
1

x2
3 �

x1

x̄2
1
�

3
4

�
�
�
ln x1 + 2 ln x̄1

� 
x1

2x2
2

x̄4
1
+

3 + x2
2

x̄2
1

�
1
x̄1

�

+ 2 ln x2


2x2

2
x̄4

1
�

2x2(1 + x2)

x̄3
1

+
4 + 2x2 + x2

2
x̄2

1
�

2 + x2

x̄1
+

1
2

�)

+ C2
F

(
2 ln(1 + x3/x1)

x3
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x̄1
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2
+
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2x̄2
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�

� ln x1
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x̄2
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�

2 � x2

x̄3
�

4
x̄1

+ 1
�
� ln x2


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x̄2
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�

2 � x2

x̄3
�

2 � x2

x̄2
2

x3 +
2
x̄2

�

+
2 ln x̄2

x2
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x̄2
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�

2
x̄2

+
x2 pgq(x2)

x̄1

�)
,

Sqg,q(x1) = 2CA CF x̄1 ,

Dqg,q(x1) = CA CF

(
1 � 2x̄1 ln x̄1 +


ln2x1 � 2 ln x1 ln x̄1 � 2 Li2(x1) +

4
3

�
pqq(x1)

)

� C2
F

(
1 + 2x̄1 ln x1 +


ln2x1 + 3 ln x1 � 2 Li2(x1) +

p2

3

�
pqq(x1)

)

+ b0 CF

(
x̄1 +


ln x1 +

5
3

�
pqq(x1)

)
, (5.113)

which make it possible to express the 1 ! 2 evolution kernel P(1)
qg,q as

P(1)
qg,q(x1, x2, x3) = Rqg,q(x1, x2, x3) + Rqg,q(x1, x3, x2) +

Sqg,q(x1)

[x3 ]+
+

Sqg,q(x1)

x2

+ Dqg,q(x1) d(x3) . (5.114)

In terms of the same auxiliary functions, the evolution kernel for q ! gg can be
expressed as

P(1)
gg,q(x1, x2, x3) = Rqg,q(x3, x2, x1) + Rqg,q(x3, x1, x2) +

Sqg,q(x3)

x1
+

Sqg,q(x3)

x2
, (5.115)
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which is symmetric in the arguments x1 and x2, as it must be. Here one may again
observe active-spectator symmetry, this time under the exchange x1 $ x3.

q ! qq and related channels. Finally one finds that the 1 ! 2 evolution kernels for
quark-antiquark transitions can be written as

P(1)
q0q̄0,q(x1, x2, x3) = Rq0q̄0,q(x1, x2, x3) + Rq0q̄0,q(x2, x1, x3) (5.116)

with an auxiliary function Rq0q̄0,q given by

Rq0q̄0,q = � CF TF

⇢
x1x2

1 � 6x3 + x2
3

x̄4
3

+
x3

x̄2
3

+
�
2 ln x1 � ln x3 � 2 ln x̄3

� x2
1 + x2

2
2x̄3

3
pqq(x3)

�
. (5.117)

The quark valence kernels on the other hand are given by

Pv (1)
qq,q (x1, x2, x3) = Rv

qq,q(x1, x2, x3) + Rv
qq,q(x2, x1, x3) , (5.118)

where the function Rv
qq,q reads

Rv
qq,q(x1, x2, x3) = �CF (CA � 2CF)

⇢
2x3

x̄2
1
�

1 + x3

x̄1
+
�
2 ln x̄1 � ln x3

� 1 + x2
3

2x̄1 x̄2

�
.

(5.119)

The 1 ! 2 evolution kernels for the remaining channels again obey active-spectator
symmetry and are therefore given by

P(1)
qq0,q(x1, x2, x3) = P(1)

q0q,q(x2, x1, x3) = P(1)
q0q̄0,q(x2, x3, x1) (5.120)

and

Pv (1)
qq̄,q (x1, x2, x3) = Pv (1)

qq,q (x1, x3, x2) . (5.121)

5.6.3. 1 ! 2 momentum space splitting kernels

Consider now the renormalised 1 ! 2 momentum space kernels W(2)
a1a2,a0 as defined

in equation (5.28). Here one can make a distinction between the logarithmic coeffi-
cients W [2,1] and W [2,2] and the non-logarithmic coefficients W [2,0] as will be seen in a
moment.
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Terms originating from LO kernels

As specified in equation (5.38), the kernels W [2,1] and W [2,2] can be constructed from
P(1)

s – which has been given above already – and from additional terms that originate
from convolutions of LO kernels. In the case of the LO channels, one easily finds that
these additional terms have the form

Wa1a2,a0 :
b0

2
Ka1a2,a0

+ P(0)
a1a1 ⌦1

Ka1a2,a0
+ P(0)

a2a2 ⌦2
Ka1a2,a0

� Ka1a2,a0
⌦
12

P(0)
a0a0 , (5.122)

where K = W [1,0] or P(0)
s

10. As mentioned already below equation (5.26) the flavour
diagonal DGLAP kernels P(0)

aiai in equation (5.122) still contain distribution terms, which
can be made explicit. To this end, the kernels are written in the following form

P(0)
gg (x) = P(0)

gg,reg(x) +
2CA

[1 � x ]+
+

b0

2
d(1 � x) ,

P(0)
qq (x) = P(0)

qq,reg(x) +
2CF

[1 � x ]+
+

3
2

CF d(1 � x) , (5.123)

in close analogy to equation (5.100), where the regular terms read

P(0)
gg,reg(x) = 2CA


1 � x

x
+ x(1 � x)� 1

�
, P(0)

qq,reg(x) = �CF (1 + x) . (5.124)

With this the convolutions in equation (5.122) can be written as

P(0)
gg ⌦

1
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✓
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◆
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[x3 ]+
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K
✓

x1
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◆
+

b0

2
K(x1) d(x3) , (5.125)

and

P(0)
qq ⌦

1
K = P(0)

qq,reg

✓
x1

x̄2

◆
K(x̄2)

x̄2
+

2CF

[x3 ]+
K(x̄2) +

1
2

CF
�
3 � 4 ln x1

�
K(x1) d(x3) ,
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qq ⌦

2
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K(x1)

x̄1
+

2CF

[x3 ]+
K(x1) +

1
2

CF
�
3 � 4 ln x̄1

�
K(x1) d(x3) ,

K ⌦
12

P(0)
qq = K

✓
x1

x̄3

◆ P(0)
qq,reg(x̄3)

x̄3
+

2CF

[x3 ]+

1
x̄3

K
✓

x1

x̄3

◆
+

3
2

CF K(x1) d(x3) , (5.126)

10Note that repeated parton indices on the right-hand side are not summed over.
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respectively. Here the parton labels on K have been omitted for brevity. In order to
obtain these relations, equation (B13) from reference [140] has been used to bring all
plus distribution terms into the form 1/[x3]+.

In the NLO channels on the other hand one finds that the convolution terms in
equation (5.38) are given by

Wqg,g : P(0)
qg ⌦

1
Kgg,g + P(0)

gq ⌦
2

Kqq̄,g � Kqg,q ⌦
12

P(0)
qg ,

Wgg,q : P(0)
gq ⌦

1
Kqg,q + P(0)

gq ⌦
2

Kgq,q � Kgg,g ⌦
12

P(0)
gq , (5.127)

and

Wqjq̄k ,qi : dij P(0)
qg ⌦

2
Kqg,q � djk Kqq̄,g ⌦

12
P(0)

gq ,

Wqjqk ,qj : djk P(0)
qg ⌦

1
Kgq,q + P(0)

qg ⌦
2

Kqg,q . (5.128)

After charge conjugation symmetry has been used to replace P(0)
q̄g and P(0)

gq̄ one finds
that in the above expressions only the flavour non-diagonal DGLAP kernels

P(0)
qg (x) = P(0)

qq̄,g(x) , P(0)
gq (x) = P(0)

gq,q(x) , (5.129)

appear.

Note that at the considered order in as there is exactly one parton combination in each
type of convolution term for all LO and NLO channels a0 ! a1a2. At order a3

s this will
no longer hold, as there is more than one possibility for the spectator partons for given
a0, a1, and a2.

The active-spectator symmetry observed for the kernels P(1)
s , does no longer hold for

the LO induced terms just discussed, and therefore this symmetry does not hold for
W [2,1] and W [2,2] either. An example illustrating this feature quite nicely is the W [2,2]

gg,g
coefficient. Apart from distribution terms, all functions in the convolutions (5.26) are
equal to 2CA pgg in that case. Consider then the exchange x1 $ x3 which leaves the first
term in equation (5.26) invariant, whilst interchanging the second and third terms. Due
to the fact the latter enter W [2,2]

gg,g with opposite signs in equation (5.38), active-spectator
symmetry is broken.

Non-logarithmic terms

Consider next the coefficients W [2,0] of the renormalised momentum space 1 ! 2
splitting kernels W(2)

a1a2,a0 , which are not multiplied by logarithms. As these are rather
lengthy, the presentation here will be limited to a discussion of their structure and
general features. Their full expressions are given in the ancillary files associated with
the paper based on the work in this chapter [113]. Note that while the functions W [2,0]
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are not needed for the NLO position space 1 ! 2 splitting kernels V(2), they do appear
in the matching kernels U(2) between cut-off and MS momentum space DPDs.

The general structure of the W [2,0] coefficients may be written as

W [2,0]
gg,g : C2

A


RA

gg,g + d(x3) DA
gg,g

�
+ b0 CA d(x3) Db

gg,g ,

W [2,0]
qq̄,g : CA TF

(
RA

qq̄,g + d(x3) DA
qq̄,g +

SA
qq̄,g

[x3]+

)
+ CF TF

(
RF

qq̄,g + d(x3) DF
qq̄,g +

SF
qq̄,g

[x3]+

)
,

W [2,0]
qg,q : CA CF


RA

qg,q + d(x3) DA
qg,q

�
+ C2

F


RF

qg,q + d(x3) DF
qg,q

�
+ b0 CF d(x3) Db

qg,q ,

W [2,0]
qg,g : CA TF RA

qg,g + CF TF RF
qg,g ,

W [2,0]
gg,q : CA CF RA

gg,q + C2
F RF

gg,q , (5.130)

and

W [2,0]
qq0,q : CF TF RF

qq0,q , W [2,0]
q0q̄0,q : CF TF RF

q0q̄0,q ,

Wv [2,0]
qq,q : CF (CA � 2CF) RF

qq,q , Wv [2,0]
qq̄,q : CF (CA � 2CF) RF

qq̄,q . (5.131)

Here the functions Rc
a1a2,a0

with c = A, F, b are regular as specified below equa-
tion (5.100) and independent of colour factors and of the number nF of active quark
flavours. One can easily see that the colour structure of W [2,0]

a1a2,a0 is the same as for the
corresponding kernel P(1)

a1a2,a0 .

In the above expressions in equations (5.130) and (5.131) the regular parts Rc are by far
the most lengthy ones, containing rational functions as well as the product of rational
functions with logarithms, with products of two logarithms, and with dilogarithms. The
logarithms appearing in these functions have arguments x1, x̄1, x2, x̄2, x3, or x̄3, while
the arguments of the dilogarithms can be reduced to the set x1, x2, x̄3, x1/x̄2, x2/x̄1,
and �x2/x1, using the relations given in section II.B of reference [149]. A particularly
nice feature of this choice of arguments is that with these arguments, all logarithms
and dilogarithms are real valued. In the denominators of rational functions, the highest
powers of xi and x̄i (with i = 1, 2, 3) are the same as in the evolution kernels P(1)

s given
earlier.

On the other hand the plus distribution parts Sc of the W [2,0] coefficients are either zero
or simple polynomials in x1 and x̄1. As they determine the leading behaviour in the
limit x1 + x2 ! 1 they will be given explicitly in equation (5.139) below.

Finally the delta distribution parts Dc are in general less lengthy than the regular
parts, but they involve rational functions and the product of rational functions with
trilogarithms, with products of logarithms and dilogarithms, with dilogarithms, and
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with products of up to three logarithms. The arguments of all logarithms and polyloga-
rithms are only x1 or x̄1. The rational functions often coincide with the corresponding
functions in equation (5.105), or at least they have the same denominators as these
functions.

5.6.4. Number and momentum sum rules

Proving that the DPD sum rules proposed in reference [45] are valid in QCD in chapter 3
yielded as a by-product corresponding number and momentum sum rules for the 1 ! 2
evolution kernels Ps, given in equations (3.91) and (3.94), respectively. Note that in these
sum rules the distribution terms in the DGLAP evolution kernels on the right-hand side
cancel as can be easily seen: Consider the number sum rule given in equation (3.91),
where such terms appear only if a0 = a1, in which case the sum of Kronecker deltas
yields zero. In the case of the momentum sum rule given in equation (3.94) on the other
hand, distribution terms are removed by the prefactor 1 � x1.

While for the LO kernels, the sum rules in equations (3.91) and (3.94) are readily verified
using the relation (5.25) and the list of possible transitions a0 ! a1a2, the situation is
quite different at NLO, where the sum rules provide non-trivial relations between the
evolution kernels P(1)

s and the DGLAP splitting functions, which are well known at
that order, see for example references [150–158]. These relations serve as a valuable
cross check of the results for the 1 ! 2 evolution kernels P(1)

s given in section 5.6.2.

Number sum rule

Consider to this end first the number sum rule of equation (3.91) for the different
parton combinations, starting with the ones that involve 1 ! 2 evolution kernels in LO
channels, namely

Z
dx2 P(1)

qq̄,g = P(1)
qg ,

Z
dx2 P(1)

gq,q = P(1)
gq , (5.132)

where the arguments of the kernels and integration boundaries are implicitly under-
stood to be as in equation (3.91) and have been omitted for brevity here and in the
following. Furthermore NLO kernels that vanish identically, such as P(1)

qq,g and P(1)
gq̄,q

are omitted. In the case of the NLO channels, the following notation introduced for
example in reference [102] is used for the DGLAP kernels.

Pqiqk = dikPV
qq + PS

qq ,

Pq̄iqk = dikPV
q̄q + PS

q̄q . (5.133)
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Note that at NLO the relation

PS
qq = PS

q̄q (5.134)

holds for the flavour singlet parts of the DGLAP kernels. Taking linear combinations of
the number sum rules for the different transitions qj ! qjqk and qi ! qjq̄k and using
the symmetry relations given in equation (5.104), one obtain the following number sum
rules for the 1 ! 2 evolution kernels in the NLO channels

Z
dx2 P(1) v

qq,q =
Z

dx2 P(1) v
qq̄,q ,

Z
dx2 P(1) v

q̄q,q = 2 PV (1)
q̄q ,

Z
dx2 P(1)

q0q,q =
Z

dx2 P(1)
q0q̄0,q = PS (1)

qq . (5.135)

It has been checked explicitly that the results for the 1 ! 2 evolution kernels given in
section 5.6.2 fulfil all of the number sum rules in equations (5.132) and (5.135).

Momentum sum rule

In the case of the momentum sum rules the situation is straightforward and one finds
the following sum rules for the NLO 1 ! 2 evolution kernels

Z
dx2 x2

⇥
P(1)

gg,g + 2n f P(1)
gq,g
⇤
= (1 � x1)P(1)

gg ,
Z

dx2 x2
⇥
P(1)

gq,q + P(1)
gg,q
⇤
= (1 � x1)P(1)

gq ,
Z

dx2 x2
⇥
P(1)

qq̄,g + P(1)
qg,g
⇤
= (1 � x1)P(1)

qg ,
Z

dx2 x2
⇥
P(1)

qg,q + P(1) v
qq,q + P(1) v

qq̄,q + 2n f P(1)
qq0,q
⇤
= (1 � x1)PV (1)

qq ,
Z

dx2 x2 P(1) v
q̄q,q = (1 � x1)PV (1)

q̄q ,
Z

dx2 x2
⇥
P(1)

q0q,q + P(1)
q0q̄0,q
⇤
= (1 � x1)PS (1)

qq , (5.136)

all of which are fulfilled for the 1 ! 2 evolution kernels presented in section 5.6.2.

5.6.5. Active-spectator symmetry

In this subsection the “active-spectator” symmetry observed in section 5.6.2 will be
discussed in some detail. To this end it makes sense to consider the kernels away
from the point x3 = 0, such that only real emission graphs contribute and distribution
terms can be neglected. As already mentioned in sections 5.6.2 and 5.6.3 one observes
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5. Two-loop splitting in double parton distributions

active-spectator symmetry to hold for the evolution kernels P(1)
s in all parton channels,

while it is not obeyed by any of the coefficients W [2,k] that make up the NLO momentum
space 1 ! 2 splitting kernel W(2).

When one considers how the momentum space 1 ! 2 splitting kernel is renormalised
in equation (5.15), the lack of this symmetry for W(2) is not surprising. This is due to the
fact that the renormalisation of W clearly treats observed and spectator partons in an
asymmetric way. Besides this, the situation with respect to active and spectator partons
is quite different already in the bare graphs as for the active partons their transverse
momenta differ by ±D in the amplitude and its conjugate. For unpolarised DPDs this
is in fact the only difference between active partons and spectators. To see this, consider
the bare DPDs FB in light-cone perturbation theory, as has been done in chapter 3,
where both active and spectator partons are on their mass shell by construction. As
shown in section 3.4, for D = 0 the numerator factors in light-cone perturbation theory
are also identical for active and spectator partons in bare DPDs, provided of course
that one considers unpolarised partons.

While the above argument is able to explain why the active-spectator symmetry cannot
be observed for W(2) it does little to illustrate why it nevertheless holds for P(1)

a1a2,a0 .
To this end it is important to note that for x3 > 0 the 1 ! 2 evolution kernels are
associated with the ultraviolet divergences of two-loop graphs for the splitting process
a0 ! a1a2a3, where a3 is the spectator parton. More precisely, these kernels arise from
kinematic configurations in which all three final state partons – a1, a2, and a3 – have
large transverse momenta. In particular the finite value of D can be neglected in this
region of phase space, such that one should have active-spectator symmetry according
to the arguments in the previous paragraph. Here it should be noted that divergences
from configurations in which only two of the three final state partons have transverse
momenta in the ultraviolet are not associated with P(1)

s , but rather with the lower-order
splitting kernels P(0)

s or P(0).

Another argument that illustrates why active-spectator symmetry holds for the NLO
1 ! 2 evolution kernels is the following: In the calculation of the bare graphs that were
used to extract P(1)

s D played the role of a hard scale and could thus not be set to zero.
However, P(1)

s naturally appears in the inhomogeneous double DGLAP equation (2.56)
for F(D; µ), which is valid also at D = 0. One could hence compute P(1)

s from graphs
with D = 0, provided that one has a dimensionful infrared regulator for separating
infrared and ultraviolet poles in dimensional regularisation. With D being set to zero
one again can expect active-spectator symmetry to hold.

5.6.6. Kinematic limits

In this subsection various kinematic limits of the NLO 1 ! 2 evolution and momen-
tum space splitting kernels P(1)

s and W(2) are examined and their behaviour in these
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limits discussed. In particular their leading behaviour in these limiting cases will be
presented.

Threshold limit: large x1 + x2

Consider to this end first the kinematic limit x1 + x2 ! 1 which is analogous to x3 ! 0.
In this limit the convolution in equation (5.102) can readily be simplified by explicitly
writing out the plus distribution, such that one obtains the following expression

K ⌦
12

f =
x3!0

�
⇥

Kp(x1, x2) ln x3 � Kd(x1)
⇤ f (x1 + x2)

x1 + x2
. (5.137)

As one can see from this expression a logarithm in x3 is generated by the plus distribu-
tion term of the kernel K, dominating the convolution integral in the threshold limit
x3 ! 0. No higher powers of ln x3 are generated in the convolution in equation (5.102),
since the kernels do not contain distributions Lk(x3) with k > 0. A similar situation is
known in the case of the convolution of ordinary DGLAP splitting functions with PDFs,
where no such distributions appear even at NNLO as can be seen in references [159,
160].

As the plus distribution coefficients of the kernels are relatively short they can be given
explicitly at this point. Note that plus distributions are generically only associated with
the LO channels. For the 1 ! 2 evolution kernels the coefficients multiplying the plus
distributions are given by

P(1)
qq̄,g; p = �2(CA � 2CF) TF (x1 x̄1 + x2 x̄2) ,

P(1)
qg,q; p = 2CA CF x̄1 , (5.138)

while for the momentum space 1 ! 2 splitting kernels they read

W [2,2]
gg,g; p = C2

A
⇥
pgg(x1) + pgg(x2)

⇤
,

W [2,2]
qq̄,g; p = �

(CA � 2CF) TF

2
⇥
pqg(x1) + pqg(x2)

⇤
, W [2,0]

qq̄,g; p =
1
2

P(1)
qq̄,g; p ,

W [2,2]
qg,q; p = CA CF pqq(x1) , (5.139)

where coefficients P(1)
a1a2,a0; p and W [2,k]

a1a2,a0; p that vanish exactly have been omitted.

As mentioned above the kernels P(1)
s and W(2) for NLO channels have no plus dis-

tribution terms, such that their leading threshold behaviour is lnn x3 with n = 0, 1, 2,
which gives a convolution K ⌦

12
f of order x3 lnn x3. In particular, one finds the following

leading behaviour of the remaining kernels in the limit x3 ! 0

P(1)
gg,g ⇠ O(ln x3) , P(1)

qg,g ⇠ O(ln x3) , P(1)
gg,q ⇠ O(ln x3) ,

P(1)
qq0,q ⇠ O(ln x3) , P(1)

q0q̄0,q ⇠ O(ln x3) , Pv (1)
qq,q ⇠ O(ln x3) ,

Pv (1)
qq̄,q ⇠ O(1) , (5.140)
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and

W [2,0]
qg,g ⇠ O(ln2 x3) , W [2,1]

qg,g ⇠ O(ln x3) , W [2,2]
qg,g ⇠ O(1) ,

W [2,0]
gg,q ⇠ O(ln2 x3) , W [2,1]

gg,q ⇠ O(ln x3) , W [2,2]
gg,q ⇠ O(1) ,

W [2,0]
qq0,q ⇠ O(ln2 x3) , W [2,1]

qq0,q ⇠ O(ln x3) , W [2,2]
qq0,q ⇠ O(1) ,

W [2,0]
q0q̄0,q ⇠ O(ln2 x3) , W [2,1]

q0q̄0,q ⇠ O(ln x3) , W [2,2]
q0q̄0,q = 0 ,

Wv [2,0]
qq,q ⇠ O(ln2 x3) , Wv [2,1]

qq,q ⇠ O(ln x3) , Wv [2,2]
qq,q = 0 ,

Wv [2,0]
qq̄,q ⇠ O(ln x3) , Wv [2,1]

qq̄,q ⇠ O(1) , Wv [2,2]
qq̄,q = 0 . (5.141)

Small x1 + x2

The next case of interest is the one in which both momentum fractions x1 and x2 are
small. When two systems of moderately large invariant mass are produced at high
collision energy this is in fact a typical situation. As in the limit x1 + x2 ! 0 also
the lower boundary of the convolution integral in equation (5.102) goes to zero the
convolution includes the region z ! 0 in the kernel K(zu, zū), where u is defined in
terms of the external momentum fractions x1 and x2 by equation (5.103).

Recall to this end the analogous situation for the one-dimensional Mellin convolution
of a LO DGLAP kernel and a PDF, given by

P(0)
⌦ f =

Z 1

x

dz
z

P(0)(z) f
✓

x
z

◆
. (5.142)

In the case that P(x) µ x�1 and f (x) µ x�1 lnkx�1 for x ⌧ 1, the region x ⌧ z ⌧ 1 in
the above equation (5.142) gives a behaviour proportional to

1
x

Z dz
z

lnk z
x
⇠

1
k + 1

1
x

lnk+1 1
x

, (5.143)

where the leading logarithmic behaviour in x on the right-hand side has been obtained
by extending the integration to the full range x  z  1. One can easily see that this
corresponds to the generation of small-x logarithms in a PDF: starting with k powers
of ln x�1 in a PDF, the convolution with a kernel proportional to 1/x results in an
additional power of that logarithm.

In full analogy one obtains a small-x logarithm in the two-variable convolution of
equation (5.102) if f (x) has the same small-x behaviour as above and the kernel K
exhibits the following behaviour

K(zu, zū) ⇠
w(u)

z2 for z ⌧ 1. (5.144)
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In this case the region x1 + x2 ⌧ z ⌧ 1 then contributes to the convolution K ⌦12 f
as

w(u)
(x1 + x2)2

Z dz
z

lnk z
x1 + x2

⇠
w(u)
k + 1

1
(x1 + x2)2 lnk+1 1

x1 + x2
, (5.145)

where on the right-hand side the leading logarithmic behaviour has again been ex-
tracted by extending the integration to the full range x1 + x2  z  1. On the other
hand, if K(zu, zū) grows less fast than z�2 at small z, then the region z ⌧ 1 is no
longer dominant in the convolution integral, and no small-x logarithm arises from
integrating over z. Here it should also be pointed out that the u dependence of the
kernel in equation (5.144) directly determines the u dependence of the convolution in
equation (5.145).

For the 1 ! 2 evolution kernels P(1)
s (zu, zū), one finds the following leading behaviour

at small z

P(1)
gg,g ⇠

2C2
A

z2


1 � 6uū +

2u3 � 2u2 + 4u � 1
u

ln ū +
2ū3 � 2ū2 + 4ū � 1

ū
ln u

�
,

P(1)
qq̄,g ⇠ �

2CA TF

z2

⇥
pqg(u) ln(uū) + (1 � 2u)2 ⇤ ,

P(1)
gg,q ⇠

CF

CA
P(1)

gg,g ,

P(1)
q0q̄0,q ⇠

CF

CA
P(1)

qq̄,g , (5.146)

while for the P(1)
s kernels without a z�2 singularity on the other hand, one finds that in

the limit z ! 0 they behave as

P(1)
qg,q ⇠ O(z�1) , P(1)

qg,g ⇠ O(z�1) ,

P(1)
qq0,q ⇠ O(1) , Pv (1)

qq,q ⇠ O(z2) , Pv (1)
qq̄,q ⇠ O(z�1) . (5.147)

In the case of the momentum space 1 ! 2 splitting kernels one finds the following
expressions for the W [2,k] coefficients which exhibit a z�2 behaviour at small z

W [2,0]
gg,g ⇠

C2
A

z2


3 � 20uū �

2u3 � 2u2 + 4u � 3
6u

p2 + (1 � 6uū) ln(uū)

+
2u3 � 2u2 + 4u � 1

2u
ln2 ū �

2u4 � 4u3 + 6u2 + 3u � 3
2uū

ln2 u

�
2u4 � 4u3 + 6u2 � 7u + 2

uū
ln u ln ū +

3(1 � 2u)
uū

Li2
u � 1

u

�
,

W [2,1]
gg,g ⇠

2C2
A

z2


1 � 6uū +

2u3 � 2u2 + 4u � 1
u

ln ū +
2ū3 � 2ū2 + 4ū � 1

ū
ln u

�
,
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W [2,2]
gg,g ⇠ �

2C2
A

z2
u4 � 2u3 + 3u2 � 2u � 1

uū
,

W [2,0]
qq̄,g ⇠

CA TF

6z2

h
pqg(u)

⇣
p2

� 72 � 3 ln2(uū)� 24 ln(uū)
⌘
+ 48 + 18 ln(uū)

i
,

W [2,1]
qq̄,g ⇠

2CA TF

z2

⇥
2 � pqg(u)

�
ln(uū) + 3

�⇤
,

W [2,2]
qq̄,g ⇠ �

CA TF

z2 pqg(u) , (5.148)

and

W [2,0]
gg,q ⇠

CF

CA
W [2,0]

gg,g , W [2,1]
gg,q ⇠

CF

CA
W [2,1]

gg,g , W [2,2]
gg,q ⇠

2
z2


2C2

F
uū

� CA CF pgg(u)
�

,

W [2,0]
q0q̄0,q ⇠

CF

CA
W [2,0]

qq̄,g , W [2,1]
q0q̄0,q ⇠

CF

CA
W [2,1]

qq̄,g , W [2,2]
q0q̄0,q = 0 , (5.149)

while for the coefficients which are less singular one finds that their leading behaviour
in the limit z ! 0 is given by

W [2,0]
qg,q ⇠ O(z�1) , W [2,1]

qg,q ⇠ O(z�1) , W [2,2]
qg,q ⇠ O(z�1) ,

W [2,0]
qg,g ⇠ O(z�1) , W [2,1]

qg,g ⇠ O(z�1) , W [2,2]
qg,g ⇠ O(z�1) ,

W [2,0]
q0q,q ⇠ O(1) , W [2,1]

q0q,q ⇠ O(1) , W [2,2]
q0q,q ⇠ O(1) ,

Wv [2,0]
qq,q ⇠ O(1) , Wv [2,1]

qq,q ⇠ O(z2) , Wv [2,2]
qq,q = 0 ,

Wv [2,0]
qq̄,q ⇠ O(z�1) , Wv [2,1]

qq̄,q ⇠ O(z�1) , Wv [2,2]
qq̄,q = 0 . (5.150)

Looking at the expressions in equations (5.146), (5.148) and (5.149) one finds that for
both types of kernels, the channels with a z�2 behaviour are g ! gg, g ! qq̄, q ! gg,
and q ! q0q̄0. Going back to the expressions for the bare graphs one finds that the
graphs giving rise to such a behaviour are those in which — on both sides of the
final-state cut — the spectator parton is emitted from a three-particle vertex from which
also a slow gluon is emitted, where “slow” is understood relative to the incoming
parton at that vertex. Examples for such graphs are figures 5.1a to 5.1d and figures 5.2g
to 5.2j.

Another interesting feature of the small z expressions of P(1)
s , W [2,0], and W [2,1] (but not

of W [2,2]) worth pointing out here is the Casimir scaling between q ! gg and g ! gg,
and between q ! q0q̄0 and g ! qq̄. For these kernels the small z limits in these pairs
of channels are simply related by a proportionality factor CF/CA as can be seen in
equations (5.146) and (5.149).

Triple Regge limit

With the results for the small x1 + x2 limit just presented at hand it is now possible to
analyse the “triple Regge limit” x1 ⌧ x1 + x2 ⌧ 1 (or analogously x2 ⌧ x1 + x2 ⌧ 1).
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The limiting behaviour of the P(1)
s and W(2) kernels in this case is obtained by simply

taking the limit u ! 0 in equation (5.145). At this point only the kernels which exhibit
a z�2 behaviour have to be considered and one finds the following expressions for the
1 ! 2 evolutions kernels in this limit

P(1)
gg,g ⇠

2C2
A

z2 (2 + 3 ln u) , P(1)
gg,q ⇠

CF

CA
P(1)

gg,g ,

P(1)
qq̄,g ⇠ �

2CA TF

z2 (1 + ln u) , P(1)
q0q̄0,q ⇠

CF

CA
P(1)

qq̄,g , (5.151)

while for the coefficients W [2,k] of the NLO momentum space 1 ! 2 splitting kernels
one finds in the LO channels

W [2,0]
gg,g ⇠

C2
A

6z2

⇣
36 � p2 + 9 ln2 u

⌘
,

W [2,1]
gg,g ⇠

2C2
A

z2 (2 + 3 ln u) , W [2,2]
gg,g ⇠

2C2
A

z2
1
u

,

W [2,0]
qq̄,g ⇠

CA TF

6z2

⇣
p2

� 24 � 6 ln u � 3 ln2 u
⌘

,

W [2,1]
qq̄,g ⇠ �

2CA TF

z2 (1 + ln u) , W [2,2]
qq̄,g ⇠ �

CA TF

z2 , (5.152)

and in the NLO channels

W [2,0]
gg,q ⇠

CF

CA
W [2,0]

gg,g , W [2,1]
gg,q ⇠

CF

CA
W [2,1]

gg,g , W [2,2]
gg,q ⇠ �

2CF (CA � 2CF)
z2

1
u

,

W [2,0]
q0q̄0,q ⇠

CF

CA
W [2,0]

qq̄,g , W [2,1]
q0q̄0,q ⇠

CF

CA
W [2,1]

qq̄,g , W [2,2]
q0q̄0,q = 0 . (5.153)

Here one can easily see that in the considered limit x1 ⌧ x1 + x2 ⌧ 1 the leading
singular behaviour of all these kernels involves at most two powers of ln u which
is ⇡ ln(x1/x2). The only exception to this rule are the case of kernels W [2,2]

gg,a0 for the
emission of two gluons, in which a power-law behaviour like u�1 ⇡ x2/x1 of the kernels
is observed. This results in a power-law behaviour like u�1 (x1 + x2)�2 ⇡ (x1 x2)�1 of
the convolution in equation (5.145). One finds that this behaviour comes from the terms
P(0)

ga0 ⌦1 P(0)
a0 g,g and P(0)

ga0 ⌦2 P(0)
ga0,g and corresponds to graphs with UD topology as shown

in figures 5.1b and 5.2h. In these graphs there are two consecutive three-point vertices at
which an observed slow gluon is radiated from a parton carrying the full or almost the
full initial plus-momentum. The appearance of a 1/u power behaviour only in W [2,2]

but not in W [2,1] or P(1)
s means that this behaviour goes along with a double logarithm

ln2(µ2/D2). This corresponds to strong ordering in the transverse momenta at the
two consecutive splitting vertices, which gives two logarithmic transverse-momentum
integrals.

Analogous expressions for limit x2 ⌧ x1 + x2 are easy to obtain, as all the channels
with a z�2 behaviour have kernels K(u1, u2) that are symmetric in u1 and u2.

145



5. Two-loop splitting in double parton distributions

Small x1 or x2

Consider finally the limit in which x1 ⌧ 1 whilst x2 is not. This limit is of importance
in cases where two hard systems of vastly different mass are produced via DPS, with
one system being very heavy, whereas the other one is light compared with the total
collision energy. In this case the lower boundary of the integration in the convolution in
equation (5.102) cannot reach the region z ⌧ 1. Due to this limitation the z integration
does not give rise to small-x logarithms such that the limit x1 ⌧ 1 of the convolution is
simply obtained from the limit u ⌧ 1 in the kernel K(zu, zū). Here it should be noted
that, unlike in the case x1 + x2 ⌧ 1, the distribution parts Kp and Kd of the kernel can
also contribute to the small x1 behaviour.

In the following the leading behaviour of all kernels for the case in which x1 ⌧ 1 whilst
x2 remains unconstrained is given. Not only does this cover the limit just discussed,
but it will also make it possible to consider the nested limit x1 ⌧ x2 ⌧ 1 later on. An
analogous discussion holds of course for the limit x2 ⌧ 1 at generic values of x1. For
small u and generic z, one finds for the 1 ! 2 evolution kernels

P(1)
gg,g ⇠

2d(1 � z)
3u

h
C2

A (4 � p2) + 5b0 CA

i
,

P(1)
gq,q ⇠

2CA CF

3u


1 � z

z
+ d(1 � z) (4 � p2)

�
+

10b0 CF d(1 � z)
3u

,

P(1)
gq,g ⇠ �

4(CA � 2CF) TF (1 � z)
u

,

P(1)
gg,q ⇠

2CA CF

u
, (5.154)

while the kernels which are less singular than u�1 go like

P(1)
qq̄,g ⇠ O(ln2 u) , P(1)

qg,q ⇠ O(ln2 u) , P(1)
qg,g ⇠ O(ln u) ,

P(1)
qq0,q ⇠ O(ln u) , P(1)

q0q,q ⇠ O(ln u) , P(1)
q0q̄0,q ⇠ O(ln u) ,

Pv (1)
qq,q ⇠ O(1) , Pv (1)

qq̄,q ⇠ O(ln u) , Pv (1)
q̄q,q ⇠ O(ln u) . (5.155)

In the LO channels the W [2,k] coefficients with a u�1 singularity are in this limit given
by

W [2,0]
gg,g ⇠

2d(1 � z)
9u

h
C2

A
�
16 � 45z(3)

�
+ 14b0 CA

i
,

W [2,1]
gg,g ⇠

2d(1 � z)
3u

h
C2

A (4 � p2) + 5b0 CA

i
,

W [2,2]
gg,g ⇠

2C2
A

u

⇢
1

[1 � z]+
+

(1 � z)(1 + z2)
z2 � d(1 � z) ln u

�
+

b0 CA d(1 � z)
u

,
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W [2,0]
gq,q ⇠

CF

CA
W [2,0]

gg,g ,

W [2,1]
gq,q ⇠

CF

CA
W [2,1]

gg,g ,

W [2,2]
gq,q ⇠

2CA CF

u

⇢
1

[1 � z]+
+

1 � z
2z

� d(1 � z) ln u
�
+

b0 CF d(1 � z)
u

, (5.156)

while the ones in the NLO channels read in this limit

W [2,0]
gq,g ⇠ �

2(CA � 2CF) TF

u
(1 � z) ,

W [2,1]
gq,g ⇠ �

4(CA � CF) TF

u
(1 � z) , W [2,2]

gq,g ⇠
CA TF

u
pqg(z)

z
,

W [2,0]
gg,q ⇠ O(ln2 u) ,

W [2,1]
gg,q ⇠

2CF (CA � CF)
u

, W [2,2]
gg,q ⇠ �

CF (CA � 2CF)
u

pgq(z)
z

. (5.157)

Finally, the limiting behaviour of the subleading kernels is given by

W [2,0]
qq̄,g ⇠ O(ln3 u) , W [2,1]

qq̄,g ⇠ O(ln2 u) , W [2,2]
qq̄,g ⇠ O(ln u) ,

W [2,0]
qg,q ⇠ O(ln3 u) , W [2,1]

qg,q ⇠ O(ln2 u) , W [2,2]
qg,q ⇠ O(ln u) ,

W [2,0]
qg,g ⇠ O(ln2 u) , W [2,1]

qg,g ⇠ O(ln u) , W [2,2]
qg,g ⇠ O(1) .

W [2,0]
qq0,q ⇠ O(ln2 u) , W [2,1]

qq0,q ⇠ O(ln u) , W [2,2]
qq0,q ⇠ O(1) ,

W [2,0]
q0q,q ⇠ O(ln2 u) , W [2,1]

q0q,q ⇠ O(ln u) , W [2,2]
q0q,q ⇠ O(1) ,

W [2,0]
q0q̄0,q ⇠ O(ln2 u) , W [2,1]

q0q̄0,q ⇠ O(ln u) , W [2,2]
q0q̄0,q = 0 ,

Wv [2,0]
qq,q ⇠ O(ln u) , Wv [2,1]

qq,q ⇠ O(1) , Wv [2,2]
qq,q = 0 ,

Wv [2,0]
qq̄,q ⇠ O(ln u) , Wv [2,1]

qq̄,q ⇠ O(1) , Wv [2,2]
qq̄,q = 0 ,

Wv [2,0]
q̄q,q ⇠ O(ln u) , Wv [2,1]

q̄q,q ⇠ O(1) , Wv [2,2]
q̄q,q = 0 . (5.158)

Here one can easily see that the channels with a u�1 singularity are those in which the
parton with momentum fraction x1 is a gluon. This corresponds to graphs in which a
slow gluon is radiated from a parton with momentum fraction much larger than x1.
This is the case when one has a vertex with the emission of a “slow” gluon in the same
sense as specified after equation (5.150).

As discussed above the preceding expressions are obtained by approximating the
kernels K(zu, zū) for u ⌧ 1. In the expressions obtained this way one may subsequently
take the limit z ⌧ 1, which becomes relevant in the convolution if x1 + x2 ⌧ 1.
Comparing the results of this procedure with those in equations (5.151) to (5.153), one
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5. Two-loop splitting in double parton distributions

finds that in general the limits u ⌧ 1 and z ⌧ 1 do not commute. The only case
when they do commute is if a kernel has the maximally singular behaviour – z�2 u�1

– in both limits. This holds for the kernels W [2,2]
gg,g and W [2,2]

gg,q already discussed after
equation (5.153). In all other cases, the behaviour of the convolution K ⌦12 f in the
triple Regge limit x1 ⌧ x1 + x2 ⌧ 1 depends on the direction in which this limit is
approached.
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6. Summary and Outlook

In this chapter a brief review of the main results of the previous three chapters will
be presented along with a discussion of work in progress and an outlook onto future
projects.

Chapter 3 was concerned with a proof of the DPD sum rules proposed by Gaunt and
Stirling in reference [45] which are one of the only currently known constraints for
DPDs. To this end it was first shown in section 3.3 that in a simple toy model with
scalar “quarks” a calculation of LO Feynman graphs indeed yields the sum rules at the
considered order. However, this LO analysis highlighted the caveats one encounters
in covariant perturbation theory which make a generalisation to higher orders very
cumbersome, if not not feasible at all. Therefore in section 3.4 a different approach was
used to establish that the DPD sum rules are valid at all orders in the strong coupling
for unrenormalised DPDs. This could be shown using light-cone perturbation theory
which had already been used to show the cancellation of Glauber gluons in SPS and
DPS, as described in references [47, 90] and [34], respectively. Following this a detailed
study of the UV singularities and their renormalisation in momentum space DPDs was
performed in section 3.5. With the help of a particular implementation of the MS scheme
it could be shown that the sum rules remain valid even for renormalised momentum
space DPDs. In section 3.6 the renormalisation scale dependence of the sum rules was
subsequently investigated which made it possible to derive the all-order form of the
inhomogeneous double DGLAP equation for momentum space DPDs. As a by-product
of this number and momentum sum rules for the 1 ! 2 evolution kernels Ps in the
inhomogeneous part of the evolution equation could be derived. On the one hand these
sum rules can be used to verify that the sum rules remain valid under renormalisation
scale evolution at all orders in the strong coupling, and on the other hand they provide
a valuable cross-check for the calculation of higher order contributions to the 1 ! 2
evolution kernels as they relate the Ps kernels to the regular DGLAP evolution which
already have been calculated up to three loops (NNLO) in references [159, 160].

Following this it was shown in chapter 4 how the DPD sum rules can be used to
construct improved LO position space models for the framework introduced in ref-
erence [35]. As the DPD sum rules are valid for momentum space DPDs at D = 0 it
first had to be shown in section 4.2.1 how at LO a position space DPD model can be
matched onto MS renormalised momentum space DPDs. In the following section 4.2.2
the initial ansatz for the DPD model borrowed from reference [35] was discussed in
some detail, before technical details concerning the numerical implementation were
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discussed in section 4.2.3. After these preliminaries had been sorted out, the agreement
of the initial DPD model with the DPD sum rules was investigated in section 4.3.1
where the deficiencies of this initial model and possible ways to resolve these also
were discussed. As a first step the initial phase space factor of the intrinsic part of the
model was modified in accordance with the procedure described in the original sum
rule paper [45] and so called number effect subtractions were implemented to take
into account that finding a valence parton of a given flavour inside a hadron reduces
the probability to find a second valence parton of the same flavour accordingly. With
these modifications it was found that the agreement with the number sum rules greatly
improved in most cases – with an exception being the equal flavour number sum rules
– while the agreement with the momentum sum rules remained widely unchanged.
In the next section the phase space factor was modified once more using a parameter
scan over the modified powers which resulted in an even better agreement with the
number sum rules, again leaving the momentum sum rules mostly unchanged. As a
last step the remaining issue with the equal flavour number sum rules was tackled
by adding a small modification term to the splitting part which gives a large contri-
bution in the case of these sum rules. The required form of this modification term
was obtained by rewriting the appropriate sum rules as a so called Volterra integral
equation which could be numerically solved for the modification function. This lead to
a greatly improved agreement of the equal flavour number sum rules. However, this
came at the cost that as a result of the modified g ! qq̄ splitting the agreement with
the momentum sum rules became noticeably worse. To counteract this the q ! qg and
g ! gg splittings were modified in much the same manner in two consecutive steps,
leading to an agreement with basically all sum rules at a level better than ±10%. Finally
the dependence of the sum rules on the renormalisation scale µ and cut-off scale n was
discussed in section 4.4.

In chapter 5 the NLO expression of the perturbative 1 ! 2 splitting contribution
was the main focus. The reason why this was considered is the fact that this is the
last missing ingredient for NLO DPD models and thus also NLO DPS cross section
calculations in the colour singlet sector within the framework of reference [35]. The
required state of the art methods for the rather complicated calculations presented
in this chapter were introduced in section 5.2, followed by a renormalisation group
analysis of the 1 ! 2 splitting at NLO in section 5.3. There it was shown how the
renormalised NLO momentum and position space 1 ! 2 splitting kernels W(2)

a1a2,a0

and V(2)
a1a2,a0 , as well as the NLO 1 ! 2 evolution kernel P(2)

a1a2,a0 can be extracted from
the bare NLO results for the NLO 1 ! 2 momentum space splitting kernel W(2)

B,a1a2,a0
.

In section 5.4 the generalisation of the matching between position space DPDs in 4
dimensions onto MS momentum space DPDs to higher orders was discussed in detail,
laying the foundations to the construction of sum rule improved NLO DPD models
in close analogy to the procedure illustrated in chapter 4. The actual calculation of
the bare NLO 1 ! 2 momentum space kernel W(2)

B,a1a2,a0
was presented in section 5.5

where it was noted that this kernel can be obtained directly from the sum over two-loop
graphs for the bare DPD of partons a1 and a2 in an on-shell parton a0. The calculation of
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these bare graphs was performed using integration by parts reduction and the resulting
master integrals were computed with the help of the method of differential equations
with boundary conditions obtained using the method of regions. The correctness
of the results for the master integrals was checked at ten randomly chosen (x1, x2)
values using the program FIESTA 2. In section 5.6.4 it was shown that the NLO 1 ! 2
evolution kernels fulfil the number and momentum sum rules derived in section 3.6,
reaffirming the correctness of the results. Finally the leading behaviour of the W(2)

a1a2,a0

and P(1)
a1a2,a0 kernels was given in section 5.6.6 in the limits x1 + x2 ! 1, x1 + x2 ⌧ 1,

x1 ⌧ 1, and x1 ⌧ x1 + x2 ⌧ 1. A detailed comparison of the 1 ! 2 splitting results
presented in this thesis with existing results from the literature has been performed
by Jonathan Gaunt in section 5.4 of the corresponding paper [113]. The discussion
presented in this chapter was limited to the 1 ! 2 splitting in the colour singlet sector
while the colour interference sector was not treated here as this is still work in progress.
What sets apart the colour interference sector from the colour singlet sector is not only
the different colour structure, but most importantly the fact that rapidity divergences
due to light-like Wilson lines cancel only when the soft factor is taken into account. This
requires extra care when handling the rapidity divergences, and it has to be checked
that the final results are indeed independent of the choice of rapidity regulator. Note
also, that only the case of unpolarised partons was treated in the present work, as the
inclusion of polarised splittings requires some more work and is an issue that will be
tackled in the near future. The non-trivial part in the polarised case is that this requires
not only a tensor reduction of all open indices, but also a consistent implementation of
the BMHV scheme of references [54, 161] for g5 in D = 4 � 2# dimensions which leads
to quite non-trivial calculations.
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Appendix A.

Feynman rules

In this appendix the Feynman rules used in the calculations of chapters 3 and 5 are
presented. As the computations there are performed using cut graphs this requires also
the Feynman rules for propagators and vertices in the complex conjugate amplitude on
the right-hand side of the cut. For clarity the rules for parts of a graph in the amplitude
and for those in the complex conjugate amplitude are given individually as well as
rules for propagators running across the final state cut. Note also that all Feynman
rules are given for massless quarks.

A.1. Scalar Feynman rules in light-cone gauge

The calculations in section 3.3 were performed in a toy model with scalar u and d̄
“quarks” in light-cone gauge. In this toy model the pointlike coupling of the scalar
quarks to the hadron in which they are contained has been set to one, just like the
operator which is inserted for observed partons, as can be seen in equation (2.22).
The scalar Feynman rules required for the computations in section 3.3 are given in
figure A.1.

A.2. QCD Feynman rules

In contrast to the toy model calculations of section 3.3 the calculations of the NLO
1 ! 2 splitting contribution to DPDs at short distances or correspondingly at large
momenta in chapter 5 were performed in full QCD. In order to rule out possible errors
due to a wrong use of Feynman rules these calculations were performed independently
in Feynman and light-cone gauge. These two gauges differ only in the numerator
structure of the gluon propagator and the fact that the eikonal lines corresponding
to Wilson line operators which are present in Feynman gauge are absent in A+ = 0
light-cone gauge due to the fact that there light-like Wilson lines reduce to unity.
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A.2.1. Feynman gauge

The Feynman rules used for the Feynman gauge calculations in chapter 5 follow the
conventions in chapters 3 and 7 of reference [47]. In order to be able to give these in
a concise way in figure A.2 the following short hand notation for the three and four
gluon vertices is used in accordance with reference [72]:

Vµnr(p, q, r) = (p � q)rgµn + (q � r)µgnr + (r � p)ngrµ (A.1)

for the three-gluon vertex, and

Wµnrs
abcd = feab fecd(gµrgns

� gµsgnr) + feac febd(gµngrs
� gµsgnr)

+ fead febc(gµngrs
� gµrgns) (A.2)

for the four gluon vertex. The Feynman rules involving only quarks and gluons are
presented in figure A.2. As stated in section 5.5.1 in Feynman gauge one needs to
calculate Faddeev-Popov ghost versions of all graphs with closed gluon loops with
only three-gluon vertices. The appropriate Feynman rules are given in figure A.3.

As in Feynman gauge eikonal lines arising from the expansion of Wilson line op-
erators defined in equation (2.23) have to be taken into account the corresponding
Feynman rules for eikonal propagators and gluons attaching to eikonal lines are given
in figure A.4. In order to illustrate the Feynman rules for the eikonal propagators the
notation introduced in reference [26] was used. To this end full and empty circles are
drawn at the ends of each eikonal line, where the full circle denotes the relative past
whereas the empty circle indicates the relative future when the path of the Wilson line
through space-time is considered. This direction determines the sign of the ie term
in the propagator denominators. Furthermore an arrow drawn over the eikonal line
indicates the direction of the momentum flow while the arrow on the eikonal line gives
the direction of the colour flow and fixes the overall sign and determines the order in
which colour indices are contracted. For the Feynman rules governing the coupling of
gluons to eikonal lines in the fundamental or adjoint representation given in the third
and fourth lines of figure A.4 it should be noted that in the case of a gluon coupling
to eikonal line in the adjoint representation the relative sign between the amplitude
and the conjugate amplitude can – just like in the case of the three-gluon vertex – be
understood by looking at the relation fcab = �i(ta)cb from which one immediately sees
that a minus sign is obtained by complex conjugation.

Finally, in figure A.5 the rules for gluons entering the operator in a gluon distribution
are presented. This particular rule was derived in section 7.6 of reference [47] by
expanding the operator nµFµj(z)W(z, n) in g. However, this Feynman rule is valid only
in the case that the Wilson line to which the eikonal line corresponds is light-like,
meaning that v = n where n is the light-like vector projecting on the plus components,
defined in footnote 2.
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A.2.2. Light-cone gauge

The QCD Feynman rules in light-cone gauge correspond largely to the ones used
in Feynman gauge with the major difference being that the numerator of the gluon
propagator differs from the one used in Feynman gauge. In particular the gluon
propagators coincide with those from figure A.1. Furthermore Wilson lines reduce to
unity in A+ = 0 light-cone gauge such that they do not have to be considered there.
The same is also the case for the rule concerning the gluon operator in figure A.5.

p

p

p

p

p
n, bµ, a

n, bµ, a

jk

kj

µ, a

idkj

p2 + ie

�igµ#(ta)kj(p + p0)µ

�i
�

gµn�
nµ pn+nn pµ

n·p
�

p2 + ie
dba

2pd(p2)q(p+)dkj

2pd(p2)q(p+)dkj

�2pd(p2)q(p+)
�
gµn�

nµ pn+nn pµ

n·p
�
dba

p
�idkj

p2 � ie

p
µ, a n, b

i
�

gµn�
nµ pn+nn pµ

n·p
�

p2 � ie
dba

igµ#(ta)kj(p + p0)µ

µ, a

p0pp0p

kj

kj

kj

kj

Figure A.1.: Illustration of the scalar Feynman rules in light-cone gauge used in chapter 3. Not shown
here are the rules for three- and four-gluon vertices which are not needed in the calculations
of section 3.3 and are identical to the ones in full QCD given in figure A.2. In scalar QCD
one furthermore encounters a two-gluon-two-scalar vertex which is also not shown here
for brevity. Here and in the following j and k are understood to be colour indices in the
fundamental representation whereas a and b are in the adjoint representation.
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p

p

p

p

p

b, ka, j

n, bµ, a
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b, ka, j

n, bµ, a
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b, ka, j

µ, a
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i/pba
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2pd(p2)q(p+)/pbadkj
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s, d r, c

ig2µ2#Wµnrs
abcd

Figure A.2.: Illustration of the QCD Feynman rules in Feynman gauge used in chapter 5. Here Vµnr(p, q, r)
and Wµnrs

abcd are as defined in equations (A.1) and (A.2), respectively. With the sign convention
for the cut antiquark propagator used here no minus sign is needed for closed quark loops
running across the final state cut.
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a c
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p
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i

p2 + ie
dba

p

a b
�i

p2 � ie
dba

q q

Figure A.3.: Illustration of the ghost Feynman rules in Feynman gauge used in chapter 5.
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Figure A.4.: Illustration of the QCD Feynman rules in Feynman gauge involving eikonal lines. Here v is
the direction of the eikonal lines in spacetime. Note that r and s are understood to be colour
indices in either the fundamental or adjoint representation.
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Appendix A. Feynman rules

b

µ, a

�i(q · n gjµ � pjnµ)dba i(q · n gjµ � pjnµ)dba

b

µ, a

j j

p p

qq

Figure A.5.: Feynman rules for gluons entering the operator in a gluon distribution. Here the index j
is understood to be transverse with respect to the light-like vector n and the rule for cases
without eikonal attachments is obtained by setting q = p.
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Hermann, 1912 (cit. on p. 83).

169

http://dx.doi.org/10.1103/PhysRevD.91.074020
http://arxiv.org/abs/1412.3820
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://arxiv.org/abs/0901.0002
http://arxiv.org/abs/0901.0002
http://dx.doi.org/10.1017/CBO9780511628788
http://dx.doi.org/10.1103/PhysRevD.22.2789
http://dx.doi.org/10.1016/0370-2693(83)90540-3
http://dx.doi.org/10.1016/0370-2693(85)90587-8
http://dx.doi.org/10.1016/0370-2693(85)90587-8
http://dx.doi.org/10.1016/0370-2693(87)91400-6
http://dx.doi.org/10.1103/PhysRevD.4.3418
http://dx.doi.org/10.1016/0370-2693(77)90469-5
http://dx.doi.org/10.1016/j.physletb.2004.05.012
http://dx.doi.org/10.1016/j.physletb.2004.05.012
http://arxiv.org/abs/hep-ph/0404155
http://dx.doi.org/10.1103/PhysRevLett.31.1153
http://dx.doi.org/10.1103/PhysRevD.11.1309


Bibliography

[113] M. Diehl et al. “Two-loop splitting in double parton distributions”. In: (2019).
arXiv: 1902.08019 [hep-ph] (cit. on pp. 96, 136, 151).

[114] V. A. Smirnov. “Analytic tools for Feynman integrals”. In: Springer Tracts Mod.
Phys. 250 (2012), pp. 1–296. doi: 10.1007/978-3-642-34886-0 (cit. on p. 96).

[115] K. G. Chetyrkin and F. V. Tkachov. “Integration by Parts: The Algorithm to
Calculate beta Functions in 4 Loops”. In: Nucl. Phys. B192 (1981), pp. 159–204.
doi: 10.1016/0550-3213(81)90199-1 (cit. on p. 97).

[116] F. V. Tkachov. “A Theorem on Analytical Calculability of Four Loop Renormaliza-
tion Group Functions”. In: Phys. Lett. 100B (1981), pp. 65–68. doi: 10.1016/0370-
2693(81)90288-4 (cit. on p. 97).

[117] S. G. Gorishnii et al. “Mincer: Program for Multiloop Calculations in Quantum
Field Theory for the Schoonschip System”. In: Comput. Phys. Commun. 55 (1989),
pp. 381–408. doi: 10.1016/0010-4655(89)90134-3 (cit. on p. 98).

[118] S. A. Larin, F. V. Tkachov, and J. A. M. Vermaseren. “The FORM version of
MINCER”. In: (1991) (cit. on p. 98).

[119] S. Laporta and E. Remiddi. “The Analytical value of the electron (g-2) at order
alpha**3 in QED”. In: Phys. Lett. B379 (1996), pp. 283–291. doi: 10.1016/0370-
2693(96)00439-X. arXiv: hep-ph/9602417 [hep-ph] (cit. on p. 98).

[120] S. Laporta. “High precision calculation of multiloop Feynman integrals by
difference equations”. In: Int. J. Mod. Phys. A15 (2000), pp. 5087–5159. doi:
10.1016/S0217-751X(00)00215-7,10.1142/S0217751X00002157. arXiv: hep-
ph/0102033 [hep-ph] (cit. on p. 98).

[121] C. Anastasiou and A. Lazopoulos. “Automatic integral reduction for higher
order perturbative calculations”. In: JHEP 07 (2004), p. 046. doi: 10.1088/1126-
6708/2004/07/046. arXiv: hep-ph/0404258 [hep-ph] (cit. on p. 98).

[122] C. Studerus. “Reduze-Feynman Integral Reduction in C++”. In: Comput. Phys.
Commun. 181 (2010), pp. 1293–1300. doi: 10.1016/j.cpc.2010.03.012. arXiv:
0912.2546 [physics.comp-ph] (cit. on p. 98).

[123] A. von Manteuffel and C. Studerus. “Reduze 2 - Distributed Feynman Integral
Reduction”. In: (2012). arXiv: 1201.4330 [hep-ph] (cit. on p. 98).

[124] A. V. Smirnov. “Algorithm FIRE – Feynman Integral REduction”. In: JHEP
10 (2008), p. 107. doi: 10.1088/1126-6708/2008/10/107. arXiv: 0807.3243
[hep-ph] (cit. on p. 98).

[125] A. V. Smirnov and V. A. Smirnov. “FIRE4, LiteRed and accompanying tools
to solve integration by parts relations”. In: Comput. Phys. Commun. 184 (2013),
pp. 2820–2827. doi: 10.1016/j.cpc.2013.06.016. arXiv: 1302.5885 [hep-ph]

(cit. on p. 98).
[126] A. V. Smirnov. “FIRE5: a C++ implementation of Feynman Integral REduction”.

In: Comput. Phys. Commun. 189 (2015), pp. 182–191. doi: 10.1016/j.cpc.2014.
11.024. arXiv: 1408.2372 [hep-ph] (cit. on p. 98).

170

http://arxiv.org/abs/1902.08019
http://dx.doi.org/10.1007/978-3-642-34886-0
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0010-4655(89)90134-3
http://dx.doi.org/10.1016/0370-2693(96)00439-X
http://dx.doi.org/10.1016/0370-2693(96)00439-X
http://arxiv.org/abs/hep-ph/9602417
http://arxiv.org/abs/hep-ph/0102033
http://arxiv.org/abs/hep-ph/0102033
http://dx.doi.org/10.1088/1126-6708/2004/07/046
http://dx.doi.org/10.1088/1126-6708/2004/07/046
http://arxiv.org/abs/hep-ph/0404258
http://dx.doi.org/10.1016/j.cpc.2010.03.012
http://arxiv.org/abs/0912.2546
http://arxiv.org/abs/1201.4330
http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://arxiv.org/abs/0807.3243
http://arxiv.org/abs/0807.3243
http://dx.doi.org/10.1016/j.cpc.2013.06.016
http://arxiv.org/abs/1302.5885
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://arxiv.org/abs/1408.2372


Bibliography

[127] A. V. Smirnov and F. S. Chuharev. “FIRE6: Feynman Integral REduction with
Modular Arithmetic”. In: (2019). arXiv: 1901.07808 [hep-ph] (cit. on p. 98).

[128] R. N. Lee. “LiteRed 1.4: a powerful tool for reduction of multiloop integrals”. In:
J. Phys. Conf. Ser. 523 (2014), p. 012059. doi: 10.1088/1742-6596/523/1/012059.
arXiv: 1310.1145 [hep-ph] (cit. on pp. 98, 124).

[129] A. V. Kotikov. “Differential equations method: New technique for massive
Feynman diagrams calculation”. In: Phys. Lett. B254 (1991), pp. 158–164. doi:
10.1016/0370-2693(91)90413-K (cit. on p. 99).

[130] Z. Bern, L. J. Dixon, and D. A. Kosower. “Dimensionally regulated pentagon
integrals”. In: Nucl. Phys. B412 (1994), pp. 751–816. doi: 10.1016/0550-3213(94)
90398-0. arXiv: hep-ph/9306240 [hep-ph] (cit. on p. 99).

[131] E. Remiddi. “Differential equations for Feynman graph amplitudes”. In: Nuovo
Cim. A110 (1997), pp. 1435–1452. arXiv: hep-th/9711188 [hep-th] (cit. on p. 99).

[132] T. Gehrmann and E. Remiddi. “Differential equations for two loop four point
functions”. In: Nucl. Phys. B580 (2000), pp. 485–518. doi: 10.1016/S0550-
3213(00)00223-6. arXiv: hep-ph/9912329 [hep-ph] (cit. on p. 99).

[133] J. M. Henn. “Multiloop integrals in dimensional regularization made simple”. In:
Phys. Rev. Lett. 110 (2013), p. 251601. doi: 10.1103/PhysRevLett.110.251601.
arXiv: 1304.1806 [hep-th] (cit. on pp. 99, 100).

[134] R. N. Lee. “Reducing differential equations for multiloop master integrals”.
In: JHEP 04 (2015), p. 108. doi: 10.1007/JHEP04(2015)108. arXiv: 1411.0911
[hep-ph] (cit. on p. 100).

[135] O. Gituliar and V. Magerya. “Fuchsia: a tool for reducing differential equations
for Feynman master integrals to epsilon form”. In: Comput. Phys. Commun. 219
(2017), pp. 329–338. doi: 10.1016/j.cpc.2017.05.004. arXiv: 1701.04269
[hep-ph] (cit. on p. 100).

[136] J. Kuipers et al. “FORM version 4.0”. In: Comput. Phys. Commun. 184 (2013),
pp. 1453–1467. doi: 10.1016/j.cpc.2012.12.028. arXiv: 1203.6543 [cs.SC]

(cit. on p. 123).

[137] V. Shtabovenko, R. Mertig, and F. Orellana. “New Developments in FeynCalc
9.0”. In: Comput. Phys. Commun. 207 (2016), pp. 432–444. doi: 10.1016/j.cpc.
2016.06.008. arXiv: 1601.01167 [hep-ph] (cit. on p. 123).

[138] M. Beneke and V. A. Smirnov. “Asymptotic expansion of Feynman integrals
near threshold”. In: Nucl. Phys. B522 (1998), pp. 321–344. doi: 10.1016/S0550-
3213(98)00138-2. arXiv: hep-ph/9711391 [hep-ph] (cit. on p. 125).

[139] A. V. Smirnov, V. A. Smirnov, and M. Tentyukov. “FIESTA 2: Parallelizeable mul-
tiloop numerical calculations”. In: Comput. Phys. Commun. 182 (2011), pp. 790–
803. doi: 10.1016/j.cpc.2010.11.025. arXiv: 0912.0158 [hep-ph] (cit. on
p. 126).

171

http://arxiv.org/abs/1901.07808
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://arxiv.org/abs/1310.1145
http://dx.doi.org/10.1016/0370-2693(91)90413-K
http://dx.doi.org/10.1016/0550-3213(94)90398-0
http://dx.doi.org/10.1016/0550-3213(94)90398-0
http://arxiv.org/abs/hep-ph/9306240
http://arxiv.org/abs/hep-th/9711188
http://dx.doi.org/10.1016/S0550-3213(00)00223-6
http://dx.doi.org/10.1016/S0550-3213(00)00223-6
http://arxiv.org/abs/hep-ph/9912329
http://dx.doi.org/10.1103/PhysRevLett.110.251601
http://arxiv.org/abs/1304.1806
http://dx.doi.org/10.1007/JHEP04(2015)108
http://arxiv.org/abs/1411.0911
http://arxiv.org/abs/1411.0911
http://dx.doi.org/10.1016/j.cpc.2017.05.004
http://arxiv.org/abs/1701.04269
http://arxiv.org/abs/1701.04269
http://dx.doi.org/10.1016/j.cpc.2012.12.028
http://arxiv.org/abs/1203.6543
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://arxiv.org/abs/1601.01167
http://dx.doi.org/10.1016/S0550-3213(98)00138-2
http://dx.doi.org/10.1016/S0550-3213(98)00138-2
http://arxiv.org/abs/hep-ph/9711391
http://dx.doi.org/10.1016/j.cpc.2010.11.025
http://arxiv.org/abs/0912.0158


Bibliography

[140] Z. Ligeti, I. W. Stewart, and F. J. Tackmann. “Treating the b quark distribution
function with reliable uncertainties”. In: Phys. Rev. D78 (2008), p. 114014. doi:
10.1103/PhysRevD.78.114014. arXiv: 0807.1926 [hep-ph] (cit. on pp. 126,
136).

[141] J. C. Collins. “What exactly is a parton density?” In: Acta Phys. Polon. B34 (2003),
p. 3103. arXiv: hep-ph/0304122 [hep-ph] (cit. on p. 127).

[142] A. V. Manohar and W. J. Waalewijn. “A QCD Analysis of Double Parton Scat-
tering: Color Correlations, Interference Effects and Evolution”. In: Phys. Rev.
D85 (2012), p. 114009. doi: 10.1103/PhysRevD.85.114009. arXiv: 1202.3794
[hep-ph] (cit. on p. 127).

[143] T. Becher and G. Bell. “Analytic Regularization in Soft-Collinear Effective The-
ory”. In: Phys. Lett. B713 (2012), pp. 41–46. doi: 10.1016/j.physletb.2012.05.
016. arXiv: 1112.3907 [hep-ph] (cit. on p. 127).

[144] Y. Li, D. Neill, and H. X. Zhu. “An Exponential Regulator for Rapidity Diver-
gences”. In: (2016). arXiv: 1604.00392 [hep-ph] (cit. on p. 127).

[145] M. A. Ebert et al. “Subleading Power Rapidity Divergences and Power Correc-
tions for qT”. In: (2018). arXiv: 1812.08189 [hep-ph] (cit. on p. 128).

[146] M. G. Echevarria, I. Scimemi, and A. Vladimirov. “Unpolarized Transverse Mo-
mentum Dependent Parton Distribution and Fragmentation Functions at next-to-
next-to-leading order”. In: JHEP 09 (2016), p. 004. doi: 10.1007/JHEP09(2016)
004. arXiv: 1604.07869 [hep-ph] (cit. on p. 128).

[147] J.-Y. Chiu et al. “The Rapidity Renormalization Group”. In: Phys. Rev. Lett. 108
(2012), p. 151601. doi: 10.1103/PhysRevLett.108.151601. arXiv: 1104.0881
[hep-ph] (cit. on p. 128).

[148] J.-Y. Chiu et al. “A Formalism for the Systematic Treatment of Rapidity Log-
arithms in Quantum Field Theory”. In: JHEP 05 (2012), p. 084. doi: 10.1007/
JHEP05(2012)084. arXiv: 1202.0814 [hep-ph] (cit. on p. 128).

[149] A. Devoto and D. W. Duke. “Table of Integrals and Formulae for Feynman
Diagram Calculations”. In: Riv. Nuovo Cim. 7N6 (1984), pp. 1–39. doi: 10.1007/
BF02724330 (cit. on p. 137).

[150] E. G. Floratos, D. A. Ross, and C. T. Sachrajda. “Higher Order Effects in Asymp-
totically Free Gauge Theories: The Anomalous Dimensions of Wilson Operators”.
In: Nucl. Phys. B129 (1977). [Erratum: Nucl. Phys.B139,545(1978)], pp. 66–88. doi:
10.1016/0550-3213(77)90020-7 (cit. on p. 138).

[151] E. G. Floratos, D. A. Ross, and C. T. Sachrajda. “Higher Order Effects in Asymp-
totically Free Gauge Theories. 2. Flavor Singlet Wilson Operators and Coeffi-
cient Functions”. In: Nucl. Phys. B152 (1979), pp. 493–520. doi: 10.1016/0550-
3213(79)90094-4 (cit. on p. 138).

172

http://dx.doi.org/10.1103/PhysRevD.78.114014
http://arxiv.org/abs/0807.1926
http://arxiv.org/abs/hep-ph/0304122
http://dx.doi.org/10.1103/PhysRevD.85.114009
http://arxiv.org/abs/1202.3794
http://arxiv.org/abs/1202.3794
http://dx.doi.org/10.1016/j.physletb.2012.05.016
http://dx.doi.org/10.1016/j.physletb.2012.05.016
http://arxiv.org/abs/1112.3907
http://arxiv.org/abs/1604.00392
http://arxiv.org/abs/1812.08189
http://dx.doi.org/10.1007/JHEP09(2016)004
http://dx.doi.org/10.1007/JHEP09(2016)004
http://arxiv.org/abs/1604.07869
http://dx.doi.org/10.1103/PhysRevLett.108.151601
http://arxiv.org/abs/1104.0881
http://arxiv.org/abs/1104.0881
http://dx.doi.org/10.1007/JHEP05(2012)084
http://dx.doi.org/10.1007/JHEP05(2012)084
http://arxiv.org/abs/1202.0814
http://dx.doi.org/10.1007/BF02724330
http://dx.doi.org/10.1007/BF02724330
http://dx.doi.org/10.1016/0550-3213(77)90020-7
http://dx.doi.org/10.1016/0550-3213(79)90094-4
http://dx.doi.org/10.1016/0550-3213(79)90094-4


Bibliography

[152] A. Gonzalez-Arroyo, C. Lopez, and F. J. Yndurain. “Second Order Contribu-
tions to the Structure Functions in Deep Inelastic Scattering. 1. Theoretical
Calculations”. In: Nucl. Phys. B153 (1979), pp. 161–186. doi: 10.1016/0550-
3213(79)90466-8 (cit. on p. 138).

[153] A. Gonzalez-Arroyo and C. Lopez. “Second Order Contributions to the Structure
Functions in Deep Inelastic Scattering. 3. The Singlet Case”. In: Nucl. Phys. B166
(1980), pp. 429–459. doi: 10.1016/0550-3213(80)90207-2 (cit. on p. 138).

[154] G. Curci, W. Furmanski, and R. Petronzio. “Evolution of Parton Densities Beyond
Leading Order: The Nonsinglet Case”. In: Nucl. Phys. B175 (1980), pp. 27–92.
doi: 10.1016/0550-3213(80)90003-6 (cit. on p. 138).

[155] W. Furmanski and R. Petronzio. “Singlet Parton Densities Beyond Leading
Order”. In: Phys. Lett. 97B (1980), pp. 437–442. doi: 10.1016/0370-2693(80)
90636-X (cit. on p. 138).

[156] E. G. Floratos, C. Kounnas, and R. Lacaze. “Higher Order QCD Effects in
Inclusive Annihilation and Deep Inelastic Scattering”. In: Nucl. Phys. B192 (1981),
pp. 417–462. doi: 10.1016/0550-3213(81)90434-X (cit. on p. 138).

[157] R. Hamberg and W. L. van Neerven. “The Correct renormalization of the gluon
operator in a covariant gauge”. In: Nucl. Phys. B379 (1992), pp. 143–171. doi:
10.1016/0550-3213(92)90593-Z (cit. on p. 138).

[158] R. K. Ellis and W. Vogelsang. “The Evolution of parton distributions beyond
leading order: The Singlet case”. In: (1996). arXiv: hep-ph/9602356 [hep-ph]

(cit. on p. 138).

[159] S. Moch, J. A. M. Vermaseren, and A. Vogt. “The Three loop splitting functions
in QCD: The Nonsinglet case”. In: Nucl. Phys. B688 (2004), pp. 101–134. doi:
10.1016/j.nuclphysb.2004.03.030. arXiv: hep-ph/0403192 [hep-ph] (cit. on
pp. 141, 149).

[160] A. Vogt, S. Moch, and J. A. M. Vermaseren. “The Three-loop splitting functions
in QCD: The Singlet case”. In: Nucl. Phys. B691 (2004), pp. 129–181. doi: 10.
1016/j.nuclphysb.2004.04.024. arXiv: hep-ph/0404111 [hep-ph] (cit. on
pp. 141, 149).

[161] P. Breitenlohner and D. Maison. “Dimensional Renormalization and the Ac-
tion Principle”. In: Commun. Math. Phys. 52 (1977), pp. 11–38. doi: 10.1007/
BF01609069 (cit. on p. 151).

173

http://dx.doi.org/10.1016/0550-3213(79)90466-8
http://dx.doi.org/10.1016/0550-3213(79)90466-8
http://dx.doi.org/10.1016/0550-3213(80)90207-2
http://dx.doi.org/10.1016/0550-3213(80)90003-6
http://dx.doi.org/10.1016/0370-2693(80)90636-X
http://dx.doi.org/10.1016/0370-2693(80)90636-X
http://dx.doi.org/10.1016/0550-3213(81)90434-X
http://dx.doi.org/10.1016/0550-3213(92)90593-Z
http://arxiv.org/abs/hep-ph/9602356
http://dx.doi.org/10.1016/j.nuclphysb.2004.03.030
http://arxiv.org/abs/hep-ph/0403192
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.024
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.024
http://arxiv.org/abs/hep-ph/0404111
http://dx.doi.org/10.1007/BF01609069
http://dx.doi.org/10.1007/BF01609069

	Abstract
	Introduction
	Theory
	Quantum ChromoDynamics
	A brief history of QCD
	Renormalisation and the running coupling
	Factorisation theorems: the backbone of perturbative QCD

	General double parton scattering theory
	Factorisation for double parton scattering
	Double parton distributions
	Definition of bare PDFs and DPDs
	Renormalisation and evolution of DPDs

	A consistent framework for double parton scattering


	DPD sum rules in QCD
	Introduction
	Specific Theory
	The DPD sum rules
	Light-cone perturbation theory

	Analysis of low-order graphs and its limitations
	Sum rules with a gluon PDF
	Sum rules with a quark PDF

	All order proof for bare distributions using LCPT
	Representation of PDFs and DPDs in LCPT
	All order correspondence between PDF and DPD graphs
	Number sum rule
	Momentum sum rule

	Validity of the sum rules after renormalisation
	Implementation of the MSbar scheme.
	Number sum rule
	Momentum sum rule

	DPD evolution and its consequences

	Sum rule improved position space DPD models
	Introduction
	Specific theory
	From position space DPD models to Delta=0 momentum space DPDs
	Initial DPD model
	Technical details and numerics

	Refining the DPD model
	Initial DPD model
	Modified phase space factor and number effect subtractions
	Fine tuning the modified phase space factor
	Modifying the splitting contribution

	Scale dependence of the sum rules
	Renormalisation scale dependence
	Cut-off scale dependence


	Two-loop splitting in double parton distributions
	Introduction
	Specific Theory
	Reduction to master integrals: integration by parts reduction
	Calculating master integrals: method of differential equations and the canonical basis

	Renormalisation Group analysis: Splitting kernels at higher orders
	Preliminaries
	msbar implementation and coupling renormalisation
	Renormalisation factors and splitting functions

	Momentum space kernels
	Equivalence of msbar scheme implementations

	Position space kernels
	Higher orders


	Matching between momentum and position space DPDs at higher orders
	Matching at zero Delta
	Higher orders

	Matching at non-zero Delta
	Scale independence of matching

	Two-loop calculation
	Channels and graphs
	Performing the calculation
	Real emission diagrams
	Virtual diagrams


	Results
	Support and singularity structure
	1->2 evolution kernels
	1->2 momentum space splitting kernels
	Terms originating from LO kernels
	Non-logarithmic terms

	Number and momentum sum rules
	Number sum rule
	Momentum sum rule

	Active-spectator symmetry
	Kinematic limits
	Threshold limit: large x1+x2
	Small x1+x2
	Triple Regge limit
	 Small x1 or x2



	Summary and Outlook
	Feynman rules
	Scalar Feynman rules in light-cone gauge
	QCD Feynman rules
	Feynman gauge
	Light-cone gauge


	Bibliography

