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Abstract. Linear intersection pairs of linear codes have become of interest and continuously 

studied due to their nice algebraic properties and wide applications. In this article, we focus on 

linear intersection pairs of negacyclic codes over finite fields and their applications. General 

characterization and algebraic properties of such pairs are given in terms of their generator 

polynomials. For s{0,1}, explicit constructions of linear s-intersection pairs and linear s-

complementary pairs of negacyclic codes are presented. As applications, constructions of 

entanglement-assisted quantum error-correcting codes are discussed together with illustrative 

examples.  

1. Introduction 

Families of cyclic and negacyclic codes over finite fields have been of interest since they have nice 

algebraic structures and can be applied in various fields. The algebraic structures of such codes are given 

though the ideals in Fq[x]/<xn-1> and Fq[x]/<xn+1> (see [1]). In applications, such algebraic structured 

codes can be easily implemented in shift registers [2].  Linear complementary pairs (LCPs) of linear 

codes over finite fields have been introduced in [3] and shown to have applications in cryptography. In 

[3] and [4], LCPs have been applied in in counter passive and active side-channel analysis attacks on 

embedded crypto systems. In [3] and [4], several constructions of LCPs of linear codes were given as 

well.  

 In [5], the author formulated the notion of a linear intersection pair of linear codes. Subsequently, 

their applications in constructions of entanglement-assisted quantum error-correcting codes (EAQECCs) 

have been presented as well. For an integer s0, a linear s-intersection pair of linear codes is defined to 

be linear codes C and D of the same length n over Fq whose intersection has dimension s. This can be 

viewed as a generalization of various concepts in coding theory such as complementary dual codes, self-

orthogonal codes, hulls, and LCPs.   

  Recently, linear s-intersection pairs of cyclic codes were studied in [6] and linear 1-

complementary pairs of negacyclic codes were studied in [7]. In this article, we extend some concepts 

in [6] and [7] to s-intersection pairs and s-complementary pairs of negacyclic codes over finite fields. 

Such pairs have different parameters compare to [6] and they are optimal in some cases. Moreover, such 

pairs have more algebraic structures than the pairs of linear codes in [5] and they can be contracted 

directly using ideals in polynomial rings. Precisely, we focus on linear s-intersection pairs and linear s-

complementary pairs of negacyclic codes over finite fields. General characterization of such pairs of 

negacyclic codes is given in terms of their generator polynomials. For s{0,1}, explicit constructions 
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of linear s-intersection pairs and linear s-complementary pairs of negacyclic codes are given as well as 

applications in construction of EAQECCs. Some illustrative examples of linear intersection pairs 

derived from negacyclic codes are provided. Some of them have optimal parameters. Examples of 

EAQECCs and EAQECCs with positive net-rate are presented as well. 

 After this introductory section, basic concepts and results on codes and linear intersection pairs 

are recalled in Section 2. Characterizations of linear s-intersection pairs and linear s-complementary 

pairs of negacyclic codes are presented in Section 3 together with constructions of two negacyclic codes 

whose intersecting dimension is 0 or 1. Applications in constructions of EAQECCs are provided in 

Section 4 as well as illustrative examples. Summary and discussion are provided in Section 5. 

2. Preliminaries 

Basic concepts and properties of linear codes, negacyclic codes, linear intersection pairs, linear 

complementary pairs are recalled.  For more details, the reader may refer to [1], [2], [4], [5], and [7].  

2.1. Linear intersection pairs of codes 

Let q be a prime power and let n be a positive integer. Let Fq be a finite field of q elements. A linear 

code of length n is defined to be a subspace of (Fq)n. An [n, k]q code refers to a linear code C of length 

n over Fq whose dimension dim(C) is k. An [n, k]q  code C is called an [n, k, d]q code if the minimum 

hamming weight of C is d. We denote by C⊥ the dual code of C under the Euclidean inner product. 

 Linear codes C1 and C2 of length n over Fq form a linear complementary pair (LCP) if C1C2={0} 

and C1+C2=(Fq)n (see [4]). For a non-negative integer s, C1 and C2 are said to be a linear s-intersection 

pair if dim(C1C2)=s (see, [5]). A linear s-intersection pair C1 and C2 is called a linear s-complementary 

pair if C1+C2=(Fq)n (cf. [7]). Clearly, a linear 0-complementary pair is a LCP. 

2.2. Negacyclic codes over finite fields 

A linear code C of length n over Fq is called a negacyclic code if (cn-1, c0, …, cn-2) C for all (c0, c1, …, 

cn-1)C (see [7]). It is well known that every negacyclic code of length n over Fq can be represented by 

a principal ideal in Fq[x]/<xn+1> whose generator is a unique monic divisor of xn+1 of minimal degree. 

Such a monic polynomial is called the generator polynomial of the negacyclic code C.    

 Properties of negacyclic codes over finite fields are given in terms of their generator polynomials 

(see, for example, [1] and [7]). 

Theorem 2.1: Let C be a negacyclic code of length n over Fq with generator polynomial g(x) and let k 

be an integer such that 0kn. Then C has dimension k if and only if deg(g(x))=n-k. 

Theorem 2.2: Let C1 and C2 be negacyclic codes of length n over Fq with generator polynomials g1(x) 

and g2(x), respectively. Then C1C2 is a negacyclic code of length n generated by lcm(g1(x), g2(x)) and 

C1+C2 is a negacyclic code of length n generated by gcd(g1(x), g2(x)). 

3. Linear intersection pairs of negacyclic codes over finite fields 

Characterizations of a linear s-intersection pair and a linear s-complementary pair of negacyclic codes 

are presented. For s{0,1}, explicit constructions of such pairs are given as well. 

3.1. Characterization of linear intersection pairs and linear complementary pairs of negacyclic codes 

General characterizations of a linear s-intersection pair and a linear s-complementary pair of negacyclic 

codes are given as follows.  

Theorem 3.1: Let Fq be a finite field and let n be a positive integer co-prime to q. Let s0 be an integer. 

Let C1 and C2 be negacyclic codes of length n over Fq with generator polynomials g1(x) and g2(x), 

respectively. Then the following statements hold. 

(1) C1 and C2 form a linear s-intersection pair if and only if deg(lcm(g1(x), g2(x)))=n-s.  

(2) C1 and C2 form a linear s-complementary pair if and only if deg(lcm(g1(x), g2(x)))=n-s and 

gcd(g1(x),g2(x))=1.  

Proof. First, we prove 1). Assume that C1 and C2 form a linear s-intersection pair. Then dim(C1C2)=s. 

By Theorem 2.2, C1C2 is generated by lcm(g1(x), g2(x)). Hence, deg(lcm(g1(x), g2(x)))=n-s by 
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Theorem 2.1. Conversely, assume that deg(lcm(g1(x), g2(x)))=n-s.  By Theorem 2.2, C1C2 is negacyclic 

whose generator polynomial is lcm(g1(x), g2(x)). Since deg(lcm(g1(x), g2(x)))=n-s, it follows that 

dim(C1C2)=s by Theorem 2.1. Hence, C1 and C2 form a linear s-intersection pair. 

 Next, we note that C1+C2=(Fq)n if and only if C1+C2 is generated by 1= gcd(g1(x), g2(x)). Hence, 

2) follows from the previous discussion and 1).                               

 Some illustrative examples of a linear s-intersection pair are given.  

Example 3.1: Let C1 and C1 be [6, 3]5 and [6, 3]5 negacyclic codes of length 6 over F5 with generator 

polynomials g1(x)=x3 + 2 and g2(x)=x3 + x2 + 3x + 2, respectively.  Since lcm(g1(x), g2(x))= x5 + 3x4 + 

4x3 + 2x2 + x + 3, we have deg(lcm(g1(x), g2(x)))=5=6-1 which implies that C1 and C1 form a linear 1-

intersection pair. Since gcd(g1(x), g2(x))= x+3 1,  C1 and C1 are not linear 1-complementary pair. 

Example 3.2: Let C1 and C1 be [6, 3]5 and [6, 4]5 negacyclic codes of length 6 over F5 with generator 

polynomials g1(x)=x2 + 2x + 4 and g2(x)=x3 + x2 + 3x + 2, respectively.  Since lcm(g1(x), g2(x))= x5 + 

3x4 + 4x3 + 2x2 + x + 3, we have deg(lcm(g1(x), g2(x)))=5=6-1 which implies that C1 and C1 form a linear 

1-intersection pair. Since gcd(g1(x), g2(x))= 1,  C1 and C1 are also a linear 1-complementary pair.  

3.2. Constructions of linear intersection pairs negacyclic codes 

A general construction for linear s-intersection pairs of negacyclic codes is given. 

Theorem 3.2: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let s0 be an 

integer and let e(x) be a monic divisor of xn+1 of degree s. If a(x) and b(x) are monic polynomials such 

that b(x)|a(x)| 
xn+1

e(x)
 over Fq, then the negacyclic codes with generator polynomials a(x) and 

c(x):=
(xn+1)b(x)

e(x)a(x)
 form a linear s-intersection pair. 

Proof. From the definition, we have lcm(a(x), c(x))= 
xn+1

e(x)
  which implies that deg(lcm(a(x), c(x)))=n-s.  

It follows that the negacyclic codes with generator polynomials a(x) and c(x) form a linear s-intersection 

pair by (1) of Theorem 3.1.                                        

 By setting e(x)=1 in Theorem 3.2, a linear 0-intersection pair of negacyclic codes can be derived 

in the following corollary.  

Corollary 3.3: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let a(x) and 

b(x) be monic polynomials such that b(x)|a(x)|(xn+1) over Fq. Then the negacyclic codes with generator 

polynomials a(x) and c(x):=
(xn+1)b(x)

a(x)
 form a linear 0-intersection pair.         

 Clearly, (x+1)|(xn+1) for all odd positive integer n. By setting e(x)=x+1 in Theorem 3.2, a 

construction of linear 1-intersection pairs of negacyclic codes is presented as follows. 

Corollary 3.4: Let Fq be a finite field and let n be an odd positive integer such that gcd(n,q)=1. Let a(x) 

and b(x) be monic polynomials such that b(x)|a(x)| 
xn+1

x+1
 over Fq. Then the negacyclic codes with 

generator polynomials a(x) and c(x):=
(xn+1)b(x)

(x+1)a(x)
 form a linear 1-intersection pair.  

  Constructions of linear s-complementary pairs of negacyclic codes are now given.  

Theorem 3.5: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let e(x) be a 

monic divisor of xn+1 of degree s. If a(x) is a monic polynomial such that a(x)| 
xn+1

e(x)
 over Fq, then the 

negacyclic codes with generator polynomials a(x) and c(x):=
(xn+1)

e(x)a(x)
 form a linear s-complementary pair. 

Proof. We note that lcm(a(x), c(x))= 
xn+1

e(x)
  which implies that deg(lcm(a(x), c(x)))=n-s.  Since gcd(a(x), 

c(x))=1, the negacyclic codes with generator polynomials a(x) and c(x) form a linear s-complementary 

pair by (2) of Theorem 3.1.                              

 By setting e(x)=1 in Theorem 3.5, the next corollary follows. 
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Corollary 3.6: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let a(x) be 

monic polynomial such that a(x)|(xn+1) over Fq. Then the negacyclic codes with generator polynomials 

a(x) and c(x):=
xn+1

a(x)
 are a linear 0-complementary pair (LCP). 

 By putting e(x)=x+1 in Theorem 3.5, a linear 1-complementary pairs of negacyclic codes is 

derived in the next corollary.  

Corollary 3.7: Let Fq be a finite field and let n be an odd positive integer such that gcd(n,q)=1. Let a(x) 

be monic polynomial such that a(x)| 
xn+1

x+1
 over Fq. Then the negacyclic codes with generator polynomials 

a(x) and c(x):=
xn+1

(x+1)a(x)
 form a linear 1-complementary pair. 

 
 In practice, linear intersection pairs of negacyclic codes can be constructed explicitly using 

Theorem 3.2 in the following steps: 1) Fix an integer s0. 2) Fix a monic divisor e(x) of xn+1 (if exist). 

3) Compute all monic divisors of 
(xn+1)

e(x)
. 4) For each monic divisor a(x) of 

(xn+1)

e(x)
, compute all monic 

divisors of a(x). 5) For each monic divisor b(x) of a(x), compute parameters of negacyclic codes with 

generator polynomials a(x) and c(x):=
(xn+1)b(x)

e(x)a(x)
 . The output codes form linear s-intersection pairs. In 

the same fashion, linear s-complementary pairs of negacyclic codes can be computed via Theorem 3.5. 

 Some illustrative examples of linear s-intersection pairs and linear s-complementary pairs of 

negacyclic codes over F3 are given in Table 1. The negacyclic codes in Table 1 are optimal according 

to the database used in [8]. While the pairs in Table 1 are linear s-intersection pairs, the ones with * are 

also linear s-complementary pairs. For convenience, denote by a0a1a2…ar the polynomial 

a0+aax+a2x2++arxr over F3. Using the notation as in Theorem 3.2, the negacyclic codes C1 and C2 are 

generated by a(x) and c(x), respectively. 

Table 1. Linear s-intersection pairs and linear s-complementary pairs of negacyclic codes over F3 

e(x) a(x) b(x) c(x) C1 C2 s 

1 1121 1 12221201011 [13, 10, 3]3    [13, 3, 9]3    0* 

1 1021201 1 10122101 [13, 7, 5]3    [13, 6, 6]3    0* 

1 1021201 1121 11010212221 [13, 7, 5]3    [13, 3, 9]3    0 

1 1012010221 1 10211 [13, 4, 7]3   [13, 9, 3]3    0* 

1 1012010221 1121 11110201 [13, 4, 7]3    [13, 6, 6]3    0 

1 1012010221 1111211 11010212221 [13, 4, 7]3    [13, 3, 9]3    0 

11 1121 1 1111021001 [13, 10, 3]3    [13, 4, 7]3    1* 

11 1021201 1 1220221 [13, 7, 5]3    [13, 7, 5]3    1* 

11 1021201 1121 1001201111 [13, 7, 5]3    [13, 4, 7]3    1 

11 1012010221 1111211 1001201111 [13, 4, 7]3    [13, 4, 7]3    1 

1201 1121 1 10201111 [13, 10, 3]3    [13, 6, 6]3    3* 

1201 1121 1121 11102112101 [13, 10, 3]3    [13, 3, 9]3    3 

1201 1021201 1 11201 [13, 7, 5]3    [13, 9, 3]3    3* 

1201 12220021 1 1211 [13, 6, 6]3    [13, 10, 3]3    3* 

1201 1012010221 1 11 [13, 4, 7]3    [13, 12, 2]3    3* 

1201 1012010221 1121 12001 [13, 4, 7]3    [13, 9, 3]3    3 

1201 1012010221 1111211 12220021 [13, 4, 7]3    [13, 6, 6]3   3 
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4. EAQECCs from linear s-intersection pairs of negacyclic codes over finite fields 

Entanglement-assisted quantum error correcting codes (EAQECCs) were introduced in [9] and it has 

been shown that EAQECCs can be constructed from classical codes. Further, the performance of the 

resulting quantum codes can be determined by the performance of the underlying classical codes. 

Precisely, an [[n,k,d;c]]q EAQECC encodes k logical qudits into n physical qudits using c copies of 

maximally entangled states and its  performance is measured by its rate 
k

n
 and net rate 

k−c

n
. When the net 

rate of an EAQECC is positive it is possible to obtain catalytic codes as shown in [8]. In [9], good 

entanglement-assisted quantum codes were constructed. A link between the number of maximally 

shared qubits required to construct an EAQECC from a classical code and the hull of the classical code 

were given. For more details on EAQECCs, please refer to [11], [12] and the references therein. 

  In [11], EAQECCs are constructed from linear intersection pair of classical linear codes. 

Theorem 4.1 ([11, Proposition 4.2]): Let s0 be an integer and let C1 and C2 be a linear s-intersection 

pair of linear codes over Fq with parameters [n, k1, d1]q and [n, k2, d2]q, respectively. Then there exists 

an [[n, k2-s, min{d1
⊥,d2}; k1-s]]q EAQECC with d1

⊥ is the minimum Hamming weight of C1
⊥. 

 Based on Theorem 4.1, Theorem 3.2, Corollary 3.3, and Corollary 3.4, constructions of 

EAQECCs are given in terms of linear intersection pair of negacyclic codes as follows. 

Theorem 4.2: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let e(x) be a 

monic divisor of xn+1 of degree s. If a(x) and b(x) are monic polynomials such that b(x)|a(x)| 
xn+1

e(x)
, then 

there exists an [[n, deg(a(x))-deg(b(x)), min{d1, d2}; n-deg(a(x))-s]]q EAQECC, where d1 and d2 are the 

minimum Hamming weights of negacyclic codes generated by 
xn+1

a(x)
 and c(x):=

(xn+1)b(x)

e(x)a(x)
, respectively.  

Proof. Based on Theorems 3.2 and 4.1, the desired EAQECC can be constructed directly.       

 By setting e(x)=1 and e(x)=x+1 in Theorem 4.2, the next corollaries follow immediately.  

Corollary 4.3: Let Fq be a finite field and let n be a positive integer such that gcd(n,q)=1. Let a(x) and 

b(x) be monic polynomials such that b(x)|a(x)|(xn+1). Then there exists an [[n, deg(a(x))-deg(b(x)), 

min{d1, d2}; n-deg(a(x))]]q EAQECC, where d is  the minimum Hamming weight of the negacyclic code 

generated by 
xn+1

a(x)
. 

Corollary 4.4: Let Fq be a finite field and let n be an odd positive integer such that gcd(n,q)=1. Let a(x) 

and b(x) be monic polynomials such that b(x)|a(x)| 
xn+1

x+1
. Then there exists an [[n, deg(a(x))-deg(b(x)), 

min{d1, d2}; n-deg(a(x))-1]]q EAQECC, where d1 and d2 are the minimum Hamming weights of 

negacyclic codes generated by 
xn+1

a(x)
 and c(x):=

(xn+1)b(x)

(x+1)a(x)
, respectively.  

4.1.  Examples 

In general, EAQECCs can be derived from linear s-intersection pairs of negacyclic codes using Theorem 

4.2, Corollary 4.3, and Corollary 4.4. Some illustrative examples of EAQECCs over F3 are presented in 

Table 2. The input negacyclic codes C1 and C2 with generator polynomials a(x) and c(x) are chosen from 

Table 1 

Table 2. EAQECCs from linear intersection pairs of negacyclic codes over F3 

C1 C2 a(x) c(x)  s Q 

[13, 10, 3]3    [13, 3, 9]3       1121 12221201011 0 [[13, 3, 9; 10]]3 

[13, 7, 5]3    [13, 6, 6]3       1021201 10122101 0 [[13, 6, 6; 7]]3 

[13, 7, 5]3    [13, 3, 9]3       1021201 11010212221 0 [[13, 3, 6; 7]]3 

[13, 4, 7]3    [13, 9, 3]3       1012010221 10211 0 [[13, 9, 3; 4]]3 

[13, 4, 7]3    [13, 6, 6]3       1012010221 11110201 0 [[13, 6, 3; 4]]3 

[13, 10, 3]3    [13, 4, 7]3       1121 1111021001 1 [[13, 3, 7; 9]]3  

[13, 7, 5]3    [13, 7, 5]3       1021201 1220221 1 [[13, 6, 5; 6]]3  
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[13, 7, 5]3    [13, 4, 7]3       1021201 1001201111 1 [[13, 3, 6; 6]]3  

[13, 6, 6]3    [13, 10, 3]3        12220021 1211 3 [[13, 7, 3; 3]]3 

[13, 4, 7]3    [13, 12, 2]3     1012010221 11 3 [[13, 9, 2; 1]]3  

[13, 4, 7]3    [13, 9, 3]3       1012010221 12001 3 [[13, 6, 3; 1]]3  

 

We note that the EAQECCs with boldface parameters in Table 2 have positive net rate which is possible 

to obtain catalytic codes as shown in [8]. 

5. Conclusion 

Characterization and constructions of linear intersection pairs of negacyclic codes have been presented 

as well as their applications in constructions of EAQECCs. General characterization and properties of 

such pairs have been given in terms of their generator polynomials. Explicit constructions of linear s-

complementary pairs and linear s-intersection pairs of negacyclic codes have been established for 

s{0,1}. As applications, constructions of EAQECCs have been given based on these pairs. Some 

illustrative examples have been presented. It is interesting to study the existence and parameters of linear 

s-intersection pairs and linear s-complementary pairs of negacyclic codes with arbitrary intersecting 

dimension as well as the optimality of EAQECCs (see [13]). 
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