SCATTERING LOSSES IN WEAK FOCUSING ELECTRON-SYNCHROTRONS
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The problem of scattering losses in synchrotrons has
been treated by several authors % with the aid of some
approximations which consent a good estimate of the
order of magnitude. The solution of the diffusion equa-
tion is very difficult because of the field of force (which
gives the betatron oscillations) and the presence of ab-
sorbing walls : these are the main differences with the
usual problem of multiple Coulomb scattering. A sim-
plification results from the fact that only small angles are
interested; moreover we may limit ourselves to the scat-
tering in the plane of the vertical oscillations.

We wish to give another approach to the solution of the
diffusion equation, which might be interesting for a clearer
understanding of the role of the various parameters deter-
mining the losses; besides, it is perhaps more satisfactory
from a mathematical point of view.

The damping of the betatron oscillations is not taken
into account; we give only a short qualitative discussion
of its role.

* *®
*

We suppose the electrons injected at relativistic energies,
thatis p = 1. If t is the time from injection and c¢ the
velocity of light, then x = ct is the path from injection.
z is the normal distance from the median plane; z’ = dz/dx
is the slope of the trajectory with respect to the principal
orbit, which we may rectify and identify with the x axis.
2nA is the wavelength of the vertical betatron oscillations.
Then

A= (Zz + A2 Z'2)1/2
is the amplitude of the oscillations. If A; is the injection
value of A, the damping effect is described, for relativistic
energies E, by

A/A; = (Ey/E)'/~ 4))]

E is a slow monotonic function of the time (of x); we
assume

E = E; + (x/c) - (dE/dt) = E; + (x/c) - E )

with E constant.

The main features of the scattering are contained in two
parameters :

k, the inverse of the mean free path, which does not
depend on E

@, the screening angle (for projected scattering), which
depends on E. Assuming Molli€re’s scattering cross-
section ),

@ = W/E
W = 0.00454 Z'/®> Mev

where Z is the atomic number of the scattering centers.
Let us call b/2 the distance of the walls from the median
plane; multiple scattering may build up large oscillation
amplitudes if @ does not diminish enough in a mean free
path, even if AG(E;)< b/2. When A@ is of the order of
b/2 and @ is a slow function of the time, single scattering
losses dominate.

We want to compare now the effect of the damping and
that of the scattering. As to the order of magnitude, we
have

zZ—>2z2 + 6
in a collision. The mean square ampiitude variation is
then
AA? ~ A2 02 = A2W?/E?

for a collision.
that

In a path dx there are kdx collisions, so
(dA®)con ~ k (A*W2/E?) dx
Because of the damping we have (from (1))

(dADgamping = - (AY/E) (E/c) dx

Combining the two variations we obtain

dA? A2W2 A E
L e
that is
AYIA = 2 (1 + ¢ n (ETE)
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where

¢ — ckA®W?/EE;A;?
In fig. 1 a plot is given of the function A?/A;* versus
E/E;, for various & values.

It is interesting to note that even neglecting the damping
effect the amplitude does not increase indefinitely. Tt is
easily found that, in any case,

A* <A1+ 9)

This means that the scattering alone is not catastrophic;
because of that we can say that the situation without
damping is only a little pessimistic.

Here we see that if
eA 2 b2/4

the losses cannot be relevant. We shall find later the

parameter
4eA? A2We
eA, _ 4c.k W s @
b EE; b?
together with
a; = 2AW/bE; )

to be the “characteristic parameters’” of the diffusion prob-
lem. In fact, the losses depend only on these two non
dimensional products formed with the various quantities
involved, at least for simple enough forms of the scattering
cross section. For a good machine operation, it must be

ai<<1 >

ek 1 ) 6

and these two rules may serve to simplify the use of many-
entries tables accounting for pressure, chamber aperture,

injection energy, E etc, variations.

* *
*

We call n (z, z', x) dzdz’ the number of electrons which,
after a path x, have coordinates z, z’ in the element dz dz’
of the plane Z, Z'. FEach particle is a harmonic oscillator
along the z axis, with equation of motion

z" + z/A2 =0

H (%, E) d»x is the projected scattering differential cross
section at the energy E times the number of scattering
centres per unit volume. With thess notations, the diffu-
sion equation may be written down with the standard
technique :

+ oo

on ,an+ z on K H(E ,

=T T e n + (%,E) n (z,Z' —%,X) dx
- Q)

This equation is intended to be valid for |z| < b/2.
The distribution in z, z' is given at the time of injection :

n{z,z',0) = n,(z,2) (8)

n, being a known function.

The losses are due to the fact that the electrons inpinging
on the walls are absorbed by them; that is, there are no
particles which enter through thg walls into the vacuum
chamber :

n/2,zZ,x)=0if 2z <0
n(=b/2,zZ,x)=0if z >0

©)

We may suppose ng (z,z') = n, (-2, - z") without loss of
generality; because of the symmetry of the walls with
respect to the median plane, for every X we can write

n (Zs ZI, X) = n (_ z, _ZI) X) (10)
This property allows sometimes useful simplifications.

* *
*

We change for convenience the notations :

£ 2b - 1<E<I
7, = 2AZ'[b —00 LN Koo
o = 24x/b

s = x/A

po= kA

H (,E) = (2k4/b) * P(s, %)
n(zz,x)—>n(m,9) (an
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The diffusion equation becomes

+
on en on
LS u-fP(s,fx)n(E,n~a,S)da
G G4 o
*°° (12)

The integral term suggests a Fourier transform in % :

+ >

Y (€, 0, 8) :fdn eion n (€ 9,s)

—

Like n (&, 7, s), this ¢ is defined for | £| << 1 . The equa-
tion for ¢ does not contain integral terms :
&y 2y
— =i + 0kl - o, s) ¥ (13)
s 0% dw

+

1- i Q(ow, s) = fP(s, «) e i0% do

—

where

Then, defining
1
J(o,0,8) = fe' 9% § (&, 0, 5) dE
—1
we obtain
a—J=cyg—w—a—'I—Q(m,s)J*B(rs,m,s) 14

as dw do

where
{0 o
B(G, @, S) = jg-io _\l}) — ieo(ﬂ)
LAY A 0w/ g =,

If B were known, the problem would be exactly solved
(as we shall see soon). This is not the case, but we can
obtain in this way a new starting point for the formal
solution of equation (14), treating B “as if” it were known.

(149

Changing to polar coordinates
6 =rsinb
w =r1cos 0
and putting
G (r,0,8) = J(rsin 0, rcos 0, s)
Gy (r,0) = J (rsin 6, rcos 0,0)

T(r,0,s) = B(rsin8,rcos0,s)

the equation (14) becomes

0 0
=4+ =) Gr,6,9=-Qrcos0,9)G(r, 0,9~ T(r,0,5)
os an

(15)

The general solution of this new equation (for known T) is

G (r,0,s) = exp | —fQ[rcos(e -5 +57),s7ds'}
0
1 Gy (r, 8-5) —/ds’ T(r, 0+s"-s,s")
0

expr {rcos (0-s+s"),s"]ds" } (16)
0

The various terms in this expression are made clear
by the following considerations : suppose the walls removed
to infinity and that initially there are no particles at infin-
ity. Then, there are never particles at infinity and, in
this conditions, T (or B), which is calculated on the bound-
aries, will vanish. The surviving term in (16) represents
the solution without walls :

G . (1,6,5) = Gy(r, 6-s) exp {—fQ [reos(6-s+5),s7ds"}
0

a7

while the term containing T is responsible for the losses.
We see that the diffusion equation without walls is exactly
solved for whatever scattering law; but the presence of the
walls restores again the difficulty of handling an integral
equation.

Till now we did not introduce any approximation for
the diffusion equation. We may simplify its new form (16)
by using the fact that kA< 1 and the energy increases very
slowly.

Consider for instance the function
Qrcos(8—-s + 57,5
and, keeping fixed the second argument, develop it in a
Fourier series ofNGI: 0-s+s:
Q(reos8,s) — Qo (r,s) + Q (r,shel ¥ (18)

If kA< 1 and E is small enough, Qu(r, s) is a slow function
of s. Thus, only Q, (r, s) contributes appreciably to

fQ [rcos(B—s + 8'),s']ds
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The same holds true for T (r, 6, s), although it is less evi-
dent. Putting

amn

T, (r,8) = 21_71/ T (r, 0,s)do (19)

L(r,s) = exp [—/QO (r,s) ds’ :I (19"
0

We have

G, 0,s)~L(r, s){Go(res) fT"(rs) ds’ }

oT, S)

20
Loy o8 @

=G,(r,0,s)— L(rs)/

The n (%, 7, s) is related to G (r, 6,s) by a double anti-
transformation of the Fourrier-Bessel type :

+ © 21T
4=?n (€, 7, s) =Z eln® frern (rA)»/‘eine G (1, 0,s)d6
—0 0 0

where

£E=Acoso

7 = Asin¢

and the J, are Bessel functions.

If the initial distribution n, is only amplitude-dependent,
G is a function of r only and then n does not depend on
¢ for every s. The assumption

n, (§,m) = n,y (A) 21

is rather simplifying and certainly realistic, so we adopt it.
It follows that

@

27n(A, s) = f rdrJ, (rA) G (z, s) (22)

0

where the arguments ¢ and 0 are withdrawn. Coming
back to (14), and taking the average with respect to 0 as
in (19) we obtain easily :

+ 0

Ty(r,s) = f 1Yot/ 1412 [n(1,7,8) (-1, 9,8)]dn

—0

But, for the boundary conditions (9) (or better with one
of them and the symmetry property (10)) this becomes

©

To(r,S)=anJo(r\/1+n2)n(l,n,S)dn

]

We saw that n is practically only amplitude dependent;
thus, since at the boundary

17t = A?

the function n (1, n, s) becomes n (A, s)
and

)

To(r,s) =2 fA Jo(rA) n (A, s) dA (23)

1

Substituting into (20) and then into (22) we have

’ - L id '
n(A,S)znw(A,s)_ifds ‘/I'dI'Jo(I'A)L((rrSS;.

x f A’ T, (rA) n (A, s") dA’ (24)

where

n.(A,S) — 1/2n f rdrJo(rA) G o (r,s).  (25)

[}

This is a new equation for the amplitude distribution func-
tion which takes automatically into account the presence
of the absorbing walls. We may obtain a very simple
“continuity equation” from (24) in this way :

put
L(,8) v(r,s) = / ds'L (L(r,s") / AJ,(rA)n(As") dA

From the fact that L (o0, s) = 1 (see appendix), we obtain

S o B

v(0,s) = / ds’ / An(As)dA = f ds’ Nez(S') 26)

0 1 0

where N¢(s) is the total number of particles having A > 1
at s.
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But for (24)

fe o)

n(A, s’) = n,(A,s) —T—lc frJo (rA) v (r,s)dr

0

and, by Fourier-Bessel antitransformation

(=]

vie,s)=m f AJ, (rA) [0, (A, s) -1 (A, )] dA (27

Now, in absence of walls the total number of electrons is
conserved, so that

fAnm (A,5) dA =fAn0 (A) dA = 1;;0

while

oo

anAn (A,s)dA = N(s)

0

is the number of particles surviving after a path s when
the walls are present.

From (27) we have

1
v(o,s) = ?—_{NO-N(S)}

and combining this with (26) eventually we obtain :

dN/ds = - N, /= N () = N, (28)

This equation confirms that the number of electrons lost
at a given time in a half period of betatron oscillations is
equal to the number of particles which, at that time, have
amplitude greater than the aperture of the vacuum chamber.

We may now proceed to try some approximations for
solving equation (24). Let us write :

n(A,s)=n.(A,s)-3n;{(A,s) for A <1
n(A,s)=8n.(A,s) for A>1

If the losses are not catastrophic one should find :

(@) 3®n; small as compared with n,, nearly for every
A <1 amplitude, except a small range, below A = 1,
where 8n; becomes comparable with n.,

(b) 8n, small as compared with n,, for every A > 1
amplitude and for every time except a short interval at the
very beginning of the acceleration.

With the just introduced notations eq. (24) splits into

Sn; (As) = f ds f rdr T, (rA) Ii((r s))

o)

X fA' Jo(r A”) 8ny(A’, s') dA’
1

for A <1

s

dne (A, s) == n, (A, s)—-/dsfrdr] (rA)L(rs)

L(r,s)

X f A'J, (rA") 8n, (A’,s") dA’
1
for A>1
(24)
We can start with the approximation

(a’) 3n; = 0; this implies not only smallness of the
losses but also exaggerated sharpness of the distribution
derivative approaching the walls. Note that 8n; = 0 does
not imply 3n, = 0.

(b') 3n, = 0 in the left hand side of the second equa-
tion (24°).

As consequence we clearly get

N(s) ~ N~ N, o (8) (29)

where

New(s)=2annm(A1s)dA

Next, using (28) we have
Ne(s) ~n dN,/ds

That is : the particles would accumulate (in absence of
walls) outside the limit A =1 at a rate = * dN.,/ds in
a half period of betatron oscillations; but the walls swallow
them at approximatily the same rate, the approximation
depending on the accuracy of eq. (29).

To justify (a'), (') we may attach eq. (24’) with a devel-
opment in power series of p, that is of the ratio between
the betatron wavelength and the mean free path. When
scattering is missing we have :

n(A,s) =n,(A,s) = n,(A) ;
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for 1 > 0 we can develop n in a series

n(A,s) = ny(A) + pn, (A,s) +...
and similarly

N, (A, s)=n,(A) + un; (A,s) ...
Las)=1+uh(,s)+...— l—fQ(,(r,s')ds'—F..
0

Substituting into eq. (24) we get the results
n(A,8) =n;.(A,s) for A <1

s
i
n, (A, s) =n, ,(A,s)- - fds’ n, (A, s")

0

for A >1

The first order term is thus discontinuous at A = 1, so
confirming that assumption (a’) is correct at least to the
order u. The A > 1 equation serves only to pass to the
12 approximation; it gives

Going further on we obtain

m®@=nmﬁﬁ—if®/ﬁmﬁMQdm3
[\ 0

©

x f A'TTA)D, . (A's") dA’

1

for A <1

We need not the A > 1 second order solution if we stop
the accuracy at the second order for the losses.

Thus, to the order u2

N(S) o~ [No - Necxa (S)]H appr.

8 o o
—2mu / ds’ f dr J,(r) Qor,s") f A'J(rAYn, »(A's)dA
0 ° 1

This formula is valid only for s small enough and cannot
give informations about the losses on the whole acceler-
ation cycle. The point is now that the series development
in powers of ¢ gives a justification for keeping (29) as a
good estimate only when the energy variation in a mean

* See however for more accurate cross sections 29,

free path is large enough.

On the other hand we may estimate what is the proba-
bility that a particle, once scattered to a A > 1 amplitude,
comes back to an allowed A < 1 amplitude by a second
scattering when there are no walls: clearly the A < 1
open-space distribution differs from the wall-bounded one
because of such reentering particles. We can largely
overestimate indeed this probability supposing that

1. the energy is constant;
2. s

3. the eventuality of a third collision bringing again
the particle to A > 1 is not accounted for.

is large so that two collisions certainly occur

Detailed calculations are very tedious and we need only
a rough information; it can be easily shown that in the
screened Rutherford scattering approximation the ratio
between reentered and lost particles is < 20% and cannot
affect (29) in a serious manner.

* *
*

We consider the case of an initial uniform amplitude
distribution function (for A <1). If N; is the total
number of injected electrons we have

Go (1) = 2N, J, (0)/r €3]

It follows that

n A, s) = 1—\175-0'/‘J0(rA) JL(L(r,s)dr
0

and

©

NFNM@=2mf”m

r
0

L (r,s) dr

We take for the differential cross section the simple form *

HeE)de =1k — /O __ o _ W

T e

from which it follows that

Qo,s) = p[l o % K, (m&)] (see appendix)
where ”
a = 2A6[b 33)

and K, is a Bessel function of the second kind. If the
residual gas is air, W ~0.00876 Mev and, at ordinary
temperature, for air

k= 122 X 102pem
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where p is the pressure in mm. Hg.
Then

Qo (1,9 = Qq (ro) = uraly (/) K, (12/2)  (34)
where 1, is a modified Bessel function of the first kind.
From (33) and remembering that E is linear in s we have

ds = -y du/a?
where
Y = 2Wc/bE
Putting ;(Ei) = a; and ;(E) = gxj, We have
ds = —vy/fo; ~defe? 0L e<1

Defining
y

o) — fh(x)fom N

1]

we obtain

f Qu(r;8) ds’ = yur {cﬁ (52—) -2 (5—2"3)} 39
0

With a good approximation, the function vy (y) is
y & (y) ~ 2y*/(1 + 2y) (see appendix)
Then we have

o r2(l-e) ]
(1 < ro) (1 + rex))

L(r,s) = exp {—

r2

N ()l

;
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where
ke I;i

6 = Ypoy = 2

oy

is the quantity (6) already seen at the beginning. The
first approximation to the surviving fraction of electrons
was given by

N (o0) ~ 1 Ne o (0)
No N,

and this is plotted in fig. (2) as a function of E for b =
= T7em., p = 10-* mm. Hg, E; = 2.5 Mev, A = 500 cm.

I am indebted to Prof. E. Persico, Prof. G. Salvini,
Prof. G. Morpurgo and Dr. P. G. Sona for many helpful
discussions. My thanks are also due to Dr. Franca
Magistrelli for doing practically the whole numerical
part of this work.

Apendix

Remembering the definition (11) of P(s,x) and (18) of
Q, we have
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+ oo

- }LQO () = f P (s,0) Jo (2) de

g

For the special form of P adopted

~

2

1 o
P(s,0) = - ———
2 (a2 -+ a?) 3/
We obtain
Qo (1,8) = w1 - M(r2)]
where
Jo(uo)

M@= J Ty
0

It is easy to show that
M@ = 3 (@2 K, (/) - L @/2) Ko (4/2))

and, because
T () Ky(x) + Li(x) Ky(x) = 1/x
finally we obtain (34).

Then

f QUL = v f A o
0 0

o [ U0 vl2(2) -2 (5))
0
It is easily shown that
for y—o0
1 1
5(y)*1-g-8—y—3+ =L+ ...
fory—0
W= y2 0 +y s YA-InCy) + ... =L (N + ...

with /n C = - 0.1159

The region y ~ 1 has been covered by numerical inte-
gration. The function

2y3(1 +2y)=g(y)

is a good approximation (within 59%;) over the whole range
of y values, for y &(y) (see fig. 3),.
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