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The problem of scattering losses in synchrotrons has 
been treated by several authors 1-6) with the aid of some 
approximations which consent a good estimate of the 
order of magnitude. The solution of the diffusion equation 
is very difficult because of the field of force (which 
gives the betatron oscillations) and the presence of ab 
sorbing walls : these are the main differences with the 
usual problem of multiple Coulomb scattering. A simplification 
results from the fact that only small angles are 
interested; moreover we may limit ourselves to the scattering 
in the plane of the vertical oscillations. 

We wish to give another approach to the solution of the 
diffusion equation, which might be interesting for a clearer 
understanding of the role of the various parameters deter­
mining the losses; besides, it is perhaps more satisfactory 
from a mathematical point of view. 

The damping of the betatron oscillations is not taken 
into account; we give only a short qualitative discussion 
of its role. 

We suppose the electrons injected at relativistic energies, 
that is β = 1. If t is the time from injection and c the 
velocity of light, then x = ct is the path from injection. 
z is the normal distance from the median plane; z' = dz/dx 
is the slope of the trajectory with respect to the principal 
orbit, which we may rectify and identify with the x axis. 
2Π is the wavelength of the vertical betatron oscillations. 
Then 

A = (z2 + 2 z'2)1/2 

is the amplitude of the oscillations. If A i is the injection 
value of A, the damping effect is described, for relativistic 
energies E, by 

A/A i = (Ei/E)1/2. (1) 

E is a slow monotonie function of the time (of x); we 
assume 

E = E i + (x/c) • (dE/dt) = E i + (x/c) • Ė (2) 

with Ė constant. 

The main features of the scattering are contained in two 
parameters : 

k, the inverse of the mean free path, which does not 
depend on E 

Θ, the screening angle (for projected scattering), which 
depends on E. Assuming Mollière's scattering cross-
section 7), 

{ Θ = W/E { W = 0.00454 Z1/3 Mev 

where Z is the atomic number of the scattering centers. 
Let us call b/2 the distance of the walls from the median 
plane; multiple scattering may build up large oscillation 
amplitudes if Θ does not diminish enough in a mean free 
path, even if Θ(Ei) b/2. When Θ is of the order of 
b/2 and Θ is a slow function of the time, single scattering 
losses dominate. 

We want to compare now the effect of the damping and 
that of the scattering. As to the order of magnitude, we 
have 

z ' → z ' ± Θ 

in a collision. The mean square amplitude variation is 
then 

≈ Θ2 = W2/E2 

for a collision. In a path dx there are kdx collisions, so 
that 

(dA2)coll ≈ k ( W 2 / E 2 ) dx 

Because of the damping we have (from (1)) 

(dA2)d a m p i n g = -(A2 /E) (Ė/c) dx 

Combining the two variations we obtain 

dA2 

k 
W2 

-
A2 Ė 

dx 
k 

E2 -
E c 

that is 

A2/Ai
2 = 

Ei (1 + Ε In (E/E i)) A2/Ai
2 = 

E 
(1 + Ε In (E/E i)) 
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Fig. 1. 

where 

ε = ckW 2 /ĖEiA i
2 

In fig. 1 a plot is given of the function A2/Ai
2 versus 

E/Ei, for various ε values. 
It is interesting to note that even neglecting the damping 

effect the amplitude does not increase indefinitely. It is 
easily found that, in any case, 

A2 A i
2 (1 + ε) 

This means that the scattering alone is not catastrophic; 
because of that we can say that the situation without 
damping is only a little pessimistic. 

Here we see that if 

εAi
2 « b2/4 

the losses cannot be relevant. We shall find later the 
parameter 

4εAi
2 

= 4 
c k W 2 

= σ 
b2 = 4 

ĖE i b 2 = σ (4) 

together with 

αi = 2 W / b E i (5) 

to be the "characteristic parameters" of the diffusion problem. 
In fact, the losses depend only on these two non 
dimensional products formed with the various quantities 
involved, at least for simple enough forms of the scattering 
cross section. For a good machine operation, it must be 

αi « 1 , σ « 1 (6) 

and these two rules may serve to simplify the use ot many-
entries tables accounting for pressure, chamber aperture, 
injection energy, Ė etc, variations. 

We call n (z, z', x) dzdz' the number of electrons which, 
after a path x, have coordinates z, z' in the element dz dz' 
of the plane Z, Z'. Each particle is a harmonic oscillator 
along the z axis, with equation of motion 

z" + z/ = 0 

H ( , E) d is the projected scattering differential cross 
section at the energy E times the number of scattering 
centres per unit volume. With these notations, the diffusion 
equation may be written down with the standard 
technique : 

∂n 
= - z ' 

∂n + z ∂n -kn + 

+∞ 

H ( , E ) n (z,z' - , ) d ∂n 
= - z ' 

∂n + z ∂n -kn + 
∫ 

H ( , E ) n (z,z' - , ) d 
∂x' 

= - z ' 
∂z + ∂z' -kn + 

∫ 
H ( , E ) n (z,z' - , ) d 

∂x' 
= - z ' 

∂z + ∂z' -kn + 
— ∞ (7) 

This equation is intended to be valid for | z | < b/2. 
The distribution in z, z' is given at the time of injection : 

n (z, z', 0) = n0 (z,z') (8) 

n0 being a known function. 

The losses are due to the fact that the electrons inpinging 
on the walls are absorbed by them; that is, there are no 
particles which enter through the walls into the vacuum 
chamber : 

n (b/2, z', x) = 0 if z' < 0 
(9) 

n (- b/2, z', x) = 0 if z' > 0 

We may suppose n0 (z, z') = n0 (-z, - z') without loss of 
generality; because of the symmetry of the walls with 
respect to the median plane, for every x we can write 

n (z, z', x) = n (- z, -z ' , x) (10) 

This property allows sometimes useful simplifications. 

We change for convenience the notations : 

ξ = 2z/b - 1 ≤ ξ ≤ 1 

η = 2 z ' / b -∞ ≤ η ≤ ∞ 

α = 2 / b 

s = x/ 

μ = k 

H ( , E ) = (2k /b ) • P(s, α) 

n(z, z', x) → n (ξ ,η , s ) (11) 
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The diffusion equat ion becomes 

∂n 
= - η 

∂n 
+ ξ 

∂n 
- μn + μ 

+ ∞ 

P(s,α) n (ξ, η] - ≤α, s)dα 
∂n 

= - η 
∂n 

+ ξ 
∂n 

- μn + μ 
∫ 

P(s,α) n (ξ, η] - ≤α, s)dα 
∂s = - η ∂ξ + ξ ∂η 

- μn + μ 
∫ 

P(s,α) n (ξ, η] - ≤α, s)dα 
∂s = - η ∂ξ + ξ ∂η 

- μn + μ 

- ∞ (12) 

The integral term suggests a Fourier transform in η : 

+ ∞ 

(ξ, ω, s) = 
∫ 

dη e-iωη
 n ( ξ . η, S ) 

_ ∞ 

Like n (ξ, η, s), this is defined for | ξ | ≤ 1 . The equation 
for does not contain integral terms : 

∂ 
= - i 

∂2 

+ i ω ξ - Q ( ω , s) ∂s = - i 
∂ξ ξω 

+ i ω ξ - Q ( ω , s) (13) 

where 1 -
1 

Q(ω, S) = 

+ ∞ 

P(S, α ) e - i ω α < d α 1 -
1 

Q(ω, S) = ∫ 
P(S, α ) e - i ω α < d α 1 - μ Q(ω, S) = ∫ 
P(S, α ) e - i ω α < d α 1 - μ Q(ω, S) = 

- ∞ 

P(S, α ) e - i ω α < d α 

Then, defining 
1 

J (σ, ω, s) = 
∫ 

e - iσξ (ξ, ω, s)dξ 
- l 

we obtain 

∂J 
= σ 

∂J 
- ω 

∂J 
- Q(ω, s) J - B (σ, ω, s) 

∂s 
= σ ∂ω 

- ω 
∂σ 

- Q(ω, s) J - B (σ, ω, s) (14) 

where 

B(σ, ω, s) = i e - i σ 

( 
∂ 

)ξ =.1 

- ieiσ 

( 
∂ 

) ξ = -I 

B(σ, ω, s) = i e - i σ 

( Sco )ξ =.1 

- ieiσ 

( ∂ω ) ξ = -I 

(14') 

If B were known, the problem would be exactly solved 
(as we shall see soon). This is not the case, but we can 
obtain in this way a new starting point for the formal 
solution of equation (14), treating B "as if" it were known. 

Changing to polar coordinates 

σ = r sin θ 

ω = r cos θ 

and putting 

G (r, θ, s) = J (r sin θ, r cos θ, s) 

G0(r, θ) = J ( r sin θ,r cos θ,0) 

T (r, θ, s) = B (r sin θ, r cos θ, s) 

the equation (14) becomes 

( 
∂ + ∂ 

) 
G (r, θ, s) = - Q (r cos θ, s) G (r, θ, s) - T (r, θ, s) 

( ∂s 
+ ∂θ ) 

G (r, θ, s) = - Q (r cos θ, s) G (r, θ, s) - T (r, θ, s) 

(15) 

The general solution of this new equation (for known T) is 

S 

G (r, 0, s) = exp { - ∫ Q [r cos (θ - s + s'), s'] ds' } 
0 

S 

• { G 0 ( r , θ - s ) -
∫ 

ds'T(r, θ + s'-s,s') 
0 

s' 

exp 
∫ 

Q[r cos (θ-s + s"),s"]ds"} 
0 

(16) 

The various terms in this expression are made clear 
by the following considerations : suppose the walls removed 
to infinity and that initially there are no particles at infinity. 
Then, there are never particles at infinity and, in 
this conditions, T (or B), which is calculated on the boundaries, 
will vanish. The surviving term in (16) represents 
the solution without walls : 

S 

G ∞ (r, θ,s) = G0(r, θ-s) exp{-
∫ 

Q[r cos (θ - s + s'),s']ds'} 

0 
(17) 

while the term containing T is responsible for the losses. 
We see that the diffusion equation without walls is exactly 
solved for whatever scattering law; but the presence of the 
walls restores again the difficulty of handling an integral 
equation. 

Till now we did not introduce any approximation for 
the diffusion equation. We may simplify its new form (16) 
by using the fact that k 1 and the energy increases very 
slowly. 

Consider for instance the function 

Q [ r cos (θ - s + s'), s'] 

and, keeping fixed the second argument, develop it in a 

Fourier series of = θ - s + s' : 

Q (r cos s') = Q0 (r, s') + Q1 (r, s') ei  (18) 

If k 1 and θ Ė is small enough, Qn(r, s) is a slow function 
of s. Thus , only Q 0 (r, s) contributes appreciably to 

S 

∫ 
Q [r cos (θ - s + s'), s'] ds ' 

o 
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The same holds true for T (r, θ, s), although it is less evident. 
Putting 

T0 (r, s) = 
1 

2π 
T (r, θ, s) dθ T0 (r, s) = 

1 

∫ 
T (r, θ, s) dθ T0 (r, s) = 

2π ∫ 
T (r, θ, s) dθ T0 (r, s) = 

2π 
0 

T (r, θ, s) dθ (19) 

S 

L (r, s) = exp [ -
∫ 

Q 0 ( r , s ' )ds ' 1 
0 

(19') 

We have 

G(r, θ, s) ≈ L(r, s) {G0 θ - S ) -

s 

T0 (r, s') ds' } G(r, θ, s) ≈ L(r, s) {G0 θ - S ) -
∫ 

T0 (r, s') ds' } G(r, θ, s) ≈ L(r, s) {G0 θ - S ) -
∫ L (r, s') 

ds' } G(r, θ, s) ≈ L(r, s) {G0 θ - S ) -

0 
L (r, s') 

ds' } 

= G ∞ (r, θ, s) - L (r, s) 

s 
T0(r, s') 

d s' = G ∞ (r, θ, s) - L (r, s) 
∫ 

T0(r, s') 
d s' = G ∞ (r, θ, s) - L (r, s) 

∫ L(r,s ' ) 
d s' = G ∞ (r, θ, s) - L (r, s) 

0 
L(r,s ' ) 

d s' (20) 

The n (Ξ , Η, s) is related to G (r, θ, s) by a double anti-
transformation of the Fourrier-Bessel type : 

+ θ ∞ 2Π 

4Π2n(Ξ, Η, s) = 
∑ 

e i n φ 

∫ 
rdrJn (rA) 

∫ 
e inθ G (r, θ, s) dθ 

—∞ 0 0 

where 
ξ = A cos φ 

η = A sin φ 

and the Jn are Bessel functions. 

If the initial distribution n0 is only amplitude-dependent, 
G is a function of r only and then n does not depend on 
φ for every s. The assumption 

n 0 (ξ , η) = n0(A) (21) 

is rather simplifying and certainly realistic, so we adopt it. 
It follows that 

∞ ) 

2πn(A, s) = 
∫ 

rdrJ0 (rA) G (r, s) 
0 

(22) 

where the arguments φ and θ are withdrawn. Coming 
back to (14'), and taking the average with respect to θ as 
in (19) we obtain easily : 

+ ∞ ) 

T0(r,s) = 
∫ 

η J0 (√1 + η2) [n (1 , η, S) ( - 1 , η], S)] dη 

-∞ 

But, for the boundary conditions (9) (or better with one 
of them and the symmetry property (10)) this becomes 

∞ 

T0(r, s) = 2 
∫ 

η J0 ( r √ l + η 2 ) n (l, η, s)dη 
0 

We saw that n is practically only amplitude dependent; 
thus, since at the boundary 

1 + η2 = A2 

the function n (1, η, s) becomes n (A, s) 
and 

∞ 
T0 (r, s) = 2 

∫ 
A J0(rA) n (A, s) dA 

1 

(23) 

Substituting into (20) and then into (22) we have 

S ∞ 

n (A, s) = n ∞ (A, s) -
1 

∫ 
ds' 

∫ 
rdr J0 (rA) 

L (r, s') 
n (A, s) = n ∞ (A, s) - π ∫ 

ds' 
∫ 

rdr J0 (rA) 
L (r, s) 

0 0 

∞ 
× 

∫ 
A' J0 (r A') n (A', s') dA' 

1 

(24) 

where 

∞ 

n ∞ (A, s) = 1/2π 
∫ 

rdr J0 (rA) G ∞ (r, s). 

0 

(25) 

This is a new equation for the amplitude distribution function 
which takes automatically into account the presence 
of the absorbing walls. We may obtain a very simple 
"continuity equation" from (24) in this way : 

put 
S ∞ 

L(r,s) v (r,s) = 
∫ 

ds'L(L(r,s') 
∫ 

AJ0 (rA) n (A,s') dA 
0 1 

From the fact that L (o, s) = 1 (see appendix), we obtain 

S ∞ S 

v(o,s) = 
∫ 

ds' 
∫ 

An (A,s') dA = 
∫ 

ds' 
N e (s ' ) 

(26) v(o,s) = 
∫ 

ds' 
∫ 

An (A,s') dA = 
∫ 

ds' 
2π 

(26) 
0 1 0 

where Ne(s) is the total number of particles having A > 1 
at s. 
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But for (24) 

∞ 

n(A, s') = n∞ (A, s) -
1 

∫ 
rJ0 (rA) v (r, s) dr n(A, s') = n∞ (A, s) -

π ∫ 
rJ0 (rA) v (r, s) dr 

0 

and, by Fourier-Bessel antitransformation 

∞ 

v (r, s) = π 
∫ 

AJ0 (rA) [n∞ (A, s) - n (A, s)] dA (27) 

1 

Now, in absence of walls the total number of electrons is 
conserved, so that 

∞ ∞ 

∫ 
An∞ (A, s) dA = 

∫ 
An0 (A) dA = No 

∫ 
An∞ (A, s) dA = 

∫ 
An0 (A) dA = 

2π 
0 0 

while 
∞ 

2π 
∫ 

An (A, s) dA = N (s) 
0 

is the number of particles surviving after a path s when 
the walls are present. 

From (27) we have 

v (o, s) = 
1 {N0-N(s)} v (o, s) = 
2 

{N0-N(s)} 

and combining this with (26) eventually we obtain : 

dN/ds = - Ne/π N (0) = N0 (28) 

This equation confirms that the number of electrons lost 
at a given time in a half period of betatron oscillations is 
equal to the number of particles which, at that time, have 
amplitude greater than the aperture of the vacuum chamber. 

We may now proceed to try some approximations for 
solving equation (24). Let us write : 

n (A, s) = n ∞ (A, s) - δni (A, s) for A < 1 

n (A, s) = δne (A, s) for A > 1 

If the losses are not catastrophic one should find : 

(a) δni small as compared with n∞ nearly for every 
A < 1 amplitude, except a small range, below A = 1, 
where δni becomes comparable with n∞ 

(b) δne small as compared with n∞ for every A > 1 
amplitude and for every time except a short interval at the 
very beginning of the acceleration. 

With the just introduced notations eq. (24) splits into 

S ∞ ) 

δni (A,s) = 
1 

∫ 
ds' 

∫ 
rdr J0 (rA) 

L(r,s') 
δni (A,s) = 

π ∫ 
ds' 

∫ 
rdr J0 (rA) 

L(r,s) 
0 0 

∞ 

× 
∫ 

A' J0 (r A') δne(A', s') dA' 
1 

for A < 1 

s ∞ 

δn e(A, s) -= n∞ (A, s) 
1 

∫ 
ds' 

∫ 
rdr J0(rA) 

L(r,s') δn e(A, s) -= n∞ (A, s) 
π ∫ 

ds' 
∫ 

rdr J0(rA) 
L(r,s) 

0 0 

∞ 3 

× 
∫ 

A'J0 (rA') δne (A'.s') dA' 
l 

for A > 1 

(24') 

We can start with the approximation 

(a) δni = 0; this implies not only smallness of the 
losses but also exaggerated sharpness of the distribution 
derivative approaching the walls. Note that Sni = 0 does 
not imply δne = 0. 

(b') δne = 0 in the left hand side of the second equation 
(24'). 

As consequence we clearly get 

N(s) N0 - Ne ∞ (s) (29) 

where 
∞ 

N e ∞ (s) = 2π 
∫ 

An ∞ (Al s) dA 

Next, using (28) we have 

N e (s) π dN e ∞/ds 

That is : the particles would accumulate (in absence of 
walls) outside the limit A = 1 at a rate π • dNe ∞/ds in 
a half period of betatron oscillations; but the walls swallow 
them at approximatily the same rate, the approximation 
depending on the accuracy of eq. (29). 

To justify (a'), (b') we may attach eq. (24') with a development 
in power series of μ, that is of the ratio between 
the betatron wavelength and the mean free path. When 
scattering is missing we have : 

n(A, s) = n ∞ (A, s) = n0 (A) ; 
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for μ. > 0 we can develop n in a series 

n (A, s) = n0 (A) + μu1 (A, s) + . . . 

and similarly 

n ∞ (A, s) = n0 (A) + μ ∞ (A, s) + . . . 

S 
L (r, s) = 1 + μl1 (r, s) + . . . = 1 -

∫ 
Q0 (r, s') ds' + . . 

0 
Substituting into eq. (24) we get the results 

n1 (A, s) = n1 ∞ (A, s) for A < 1 

S 
n1 (A, s) = n1 ∞ (A, s) -

1 

∫ 
ds' n1 (A, s') for A > 1 n1 (A, s) = n1 ∞ (A, s) - π ∫ 
ds' n1 (A, s') for A > 1 

0 

The first order term is thus discontinuous at A = 1, so 
confirming that assumption (a') is correct at least to the 
order μ. The A > 1 equation serves only to pass to the 
Μ2 approximation; it gives 

s 

n1(A,s) = 
∫ 

∂n1 ∞ exp (- s - s ' ) ds' π ∂n1 ∞ n1(A,s) = 
∫ ∂s' 

exp (-
π 

) ds' π 
∂s 

0 

Going further on we obtain 

s r 

n2(A,s) = n2 ∞ (A,s) -
1 

∫ 
ds' 

∫ 
rdrJ0 (rA) Q0 (r,s') n2(A,s) = n2 ∞ (A,s) -

μ ∫ 
ds' 

∫ 
rdrJ0 (rA) Q0 (r,s') 

0 0 

∞ 
× 

∫ 
A'J0(rA)n1 ∞ (A',s') dA' for A < 1 

1 

We need not the A > 1 second order solution if we stop 
the accuracy at the second order for the losses. 

Thus, to the order Μ2 

N(s) [N0 - Ne∞=(s)]II appr. 

s ∞ ∞ 

-2πμ 
∫ 

ds' ∫< dr J1 (r) Qo(r,s') 
∫ 

A'J0(rA')n1 ∞ (A',s')dA 

0 0 l 
This formula is valid only for s small enough and cannot 
give informations about the losses on the whole acceleration 
cycle. The point is now that the series development 
in powers of y gives a justification for keeping (29) as a 
good estimate only when the energy variation in a mean 

free path is large enough. 

On the other hand we may estimate what is the probability 
that a particle, once scattered to a A > 1 amplitude, 
comes back to an allowed A < 1 amplitude by a second 
scattering when there are no walls : clearly the A < 1 
open-space distribution differs from the wall-bounded one 
because of such reentering particles. We can largely 
overestimate indeed this probability supposing that 

1. the energy is constant; 

2. s is large so that two collisions certainly occur 

3. the eventuality of a third collision bringing again 
the particle to A > 1 is not accounted for. 

Detailed calculations are very tedious and we need only 
a rough information; it can be easily shown that in the 
screened Rutherford scattering approximation the ratio 
between reentered and lost particles is 20 % and cannot 
affect (29) in a serious manner. 

We consider the case of an initial uniform amplitude 
distribution function (for A < 1). If N 0 is the total 
number of injected electrons we have 

G0 (r) = 2 N0 J1 (r)/r (31) 

It follows that 

∞ 

n ∞(A, s) = N0 

∫ 
J0(rA) J1 (r) L (r,s) dr n ∞(A, s) = 

π ∫ 
J0(rA) J1 (r) L (r,s) dr 

0 
and 

∞ 
N0 - N e ∞(s) = 2 N0 

∫ 
J1

2(r) L (r,s) dr N0 - N e ∞(s) = 2 N0 
∫ r 

L (r,s) dr 

0 

We take for the differential cross section the simple form * 

H ( , E ) d = ½k 
d ( /Θ) 

,Θ = w H ( , E ) d = ½k 

[ 1 + ( 
)2]3/2 ,Θ = 

E (32) 
H ( , E ) d = ½k 

[ 1 + ( Θ )2]3/2 

from which it follows that 

Q(ω,s) = Μ [1 -ω K1 (ω)] (see appendix) 

where 
= 2 Θ / b (33) 

and K1 is a Bessel function of the second kind. If the 
residual gas is air, W 0.00876 Mev and, at ordinary 
temperature, for air 

k = 1.22 × lO-2 p cm - 1 

* See however for more accurate cross sections 2,8). 
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where p is the pressure in mm. Hg. 

Then 

Q0 (r,s) - Q0 ( r ) = μrI1 ( r / 2 ) K0 ( r / 2 ) (34) 

where I1 is a modified Bessel function of the first kind. 
From (33) and remembering that E is linear in s we have 

ds = - γ d / 2 

where 
γ = 2Wc/bĖ 

Putting (Ei) = αi and (E) = εαi, we have 

ds = - γ/αi dε/ε2 0 ≤ ε ≤ 1 

Defining 
y 

(y) = ∫ 
I1(x)K0(x) 

dx (y) = ∫ X 
dx 

0 
we obtain 

S 

∫ 
Q0(r1s') ds' = γμr { ( 

rαi ) - ( rεai 

)} ∫ 
Q0(r1s') ds' = γμr { ( 

2 ) - ( 2 )} 
0 

(35) 

With a good approximation, the function y ( y ) is 

Y (y) ≈ 2y2/(l + 2y) (see appendix) 

Then we have 

L(r,s) ≈ exp {- σ r2 ( l - ε ) 
} L(r,s) ≈ exp {- σ 

(1 + r α i ) (l + rεαi) } 

L (r, ∞) ≈ exp ( - σ 
r2 

) 
L (r, ∞) ≈ exp ( - σ 

1 + rαi ) 

Fig. 2. 

Fig. 3. 

where 

σ = γμαi = 
kc Fi 

αi
2 σ = γμαi = 

Ė 
αi

2 

is the quantity (6) already seen at the beginning. The 
first approximation to the surviving fraction of electrons 
was given by 

N ( ∞ ) 
≈ 1 -

N e ∞ (∞) 
N0 

≈ 1 - N0 

and this is plotted in fig. (2) as a function of Ė for b = 
= 7 cm., p = 10 -5 mm. Hg, Ei = 2.5 Mev, = 500 cm. 

I am indebted to Prof. E. Persico, Prof. G. Salvini, 
Prof. G. Morpurgo and Dr. P. G. Sona for many helpful 
discussions. My thanks are also due to Dr. Franca 
Magistrelli for doing practically the whole numerical 
part of this work. 

Apendix 

Remembering the definition (11) of P(s,α) and (18) of 
Q0 we have 
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+ ∞ 

1 -
1 

Q0 (r,s) = 
∫ 

P (s,α) J 0 ( α ) dα 1 -
μ 

Q0 (r,s) = 
∫ 

P (s,α) J 0 ( α ) dα 

- ∞ 

For the special form of P adopted 

P(s,α) = 
1 2 

P(s,α) = 
2 (α2 + 2) 3/2 

We obtain 

Q0(r,s) = μ [ l - M ( r ) ] 

where 
∞ 

M(u) = 
∫ 

J0(uα) 
dα M(u) = 

∫ (1 + α2)3/2 dα 

0 

It is easy to show that 

M(u) = u {I0(u/2) K1 (u/2) - I1 (u/2) K0 (u/2)} M(u) = 
2 

{I0(u/2) K1 (u/2) - I1 (u/2) K0 (u/2)} 

and, because 

I0(x)K1(x) + I 1 (x )K 0 (x )= l /x 

finally we obtain (34). 
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Then 
S αi 

∫ 
Q 0 ( r , )d"= γ 

∫ 

Q0(rα) 
dα 

∫ 
Q 0 ( r , )d"= γ 

∫ a2 dα 

0 0 

-γ ∫ Q0(rα) dα = γμr { ( 
rαi ) - ( r )} (35) -γ ∫ α2 dα = γμr { ( 
2 ) - ( 2 )} (35) 

0 

It is easily shown that 

for y → ∞ 

(y)→ 1 -
1 

- 1 
+ ... = ∞ ( y ) + ... (y)→ 1 -

2y 
-

8y3 + ... = ∞ ( y ) + ... 

for y → 0 

(y)→ y/2 ( l + y 2 / 8 ) ( l - ln Cy )+ . . . = 0 (y) + ... 

with ln C = -0.1159 

The region y ≈ 1 has been covered by numerical integration. 
The function 

2y2/(l + 2y) = g (y) 

is a good approximation (within 5 %) over the whole range 
of y values, for y (y) (see fig. 3),. 


