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Abstract

Inspired by a similar analysis for the vacuum conformal Einstein field equations by
Paetz (Ann Henri Poincaré 16:2059, 2015), in this article we show how to construct
a system of quasilinear wave equations for the geometric fields associated to the
conformal Einstein field equations coupled to matter models whose energy-momentum
tensor has vanishing trace. In this case, the equation of conservation for the energy-
momentum tensor is conformally invariant. Our analysis includes the construction of
a subsidiary evolution which allows to prove the propagation of the constraints. We
discuss how the underlying structure behind these systems of equations is the set of
integrability conditions satisfied by the conformal field equations. The main result
of our analysis is that both the evolution and subsidiary equations for the geometric
part of the conformal Einstein-tracefree matter field equations close without the need
of any further assumption on the matter models other that the vanishing of the trace
of the energy-momentum tensor. Our work is supplemented by an analysis of the
evolution and subsidiary equations associated to three basic tracefree matter models:
the conformally invariant scalar field, the Maxwell field and the Yang—Mills field.
As an application we provide a global existence and stability result for de Sitter-like
spacetimes. In particular, the result for the conformally invariant scalar field is new in
the literature.
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1 Introduction

The conformal Einstein field equations are a conformal representation of the Ein-
stein field equations which permit us to study the global properties of the solutions
to equations of General Relativity by means of Penrose’s procedure of conformal
compactification—see e.g. [11,15] for an entry point to the literature on the subject.
Crucially, a solution to the conformal Einstein field equations implies a solution to the
Einstein field equations away from the conformal boundary.

A key step in the analysis involving the conformal Einstein field equations is the
so-called procedure of hyperbolic reduction, in which a subset of the field equations
is cast in the form of a hyperbolic evolution system (the evolution system) for which
known techniques of the theory of partial differential equations allow us to establish
well-posedness. An important ingredient in the hyperbolic reduction is the choice of
a gauge, which in the case of the conformal Einstein field equations involves not only
fixing coordinates (the coordinate gauge) but also the representative of the conformal
class of the spacetime metric (the so-called unphysical metric) to be considered (the
conformal gauge). Naturally, gauge choices should bring to the fore the physical and
geometric features of the setting under consideration. In order to make contact with the
Einstein field equations, the procedure of hyperbolic reduction has to be supplemented
by an argument concerning the propagation of the constraints, by means of which one
identifies the conditions under which one can guarantee that a solution to the evolution
system implies a solution to the full system of conformal equations, independently of
the gauge choice. The propagation of the constraints involves the construction of a
subsidiary evolution system describing the evolution of the conformal field equations
and of the conditions representing the gauge. The construction of the subsidiary system
requires lengthy manipulations of the equations which are underpinned by integrability
conditions inherent to the field equations.

Most of the results concerning the conformal Einstein field equations available
in the literature make use of hyperbolic reductions leading to first order symmetric
hyperbolic evolution systems. This approach works best for the frame and spinorial
versions of the conformal equations. Arguably, the simplest variant of the confor-
mal Einstein field equations is given by the so-called metric conformal Einstein field
equations in which the field equations are presented in tensorial form and the unphys-
ical metric is determined by means of an unphysical Einstein field equation relating
the Ricci tensor of the unphysical metric to the various geometric fields entering in
the conformal equations—these can be thought of as corresponding to some ficti-
tious unphysical matter. Remarkably, until recently, there was no suitable hyperbolic
reduction procedure available for this version of the conformal field equations. In [17]
Paetz has obtained a satisfactory hyperbolic procedure for the metric vacuum Einstein
field equations which is based on the construction of second order wave equations.
To round up his analysis, Paetz then proceeds to construct a system of subsidiary
wave equations for tensorial fields encoding the conformal Einstein field equations
(the so-called geometric zero-quantities) showing, in this way, the propagation of the
constraints. The motivation behind Paetz’s approach is that the use of second order
hyperbolic equations gives access to a different part of the theory of partial differential
equations which complements the results available for first order symmetric hyper-
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bolic systems—see e.g. [3,6]. Paetz’s construction of an evolution system consisting
of wave equations has been adapted to the case of the spinorial conformal Einstein
field equations in [12]. In addition to its interest in analytic considerations, the con-
struction of wave equations for the metric conformal Einstein field equations is also of
relevance in numerical studies, as the gauge fixing procedure and the particular form
of the equations is more amenable to implementation in current mainstream numerical
codes than other formulations of the conformal equations.

The purpose of the present article is twofold: first, it generalises Paetz’s construction
of a system of wave equations for the conformal Einstein field equations to the case of
matter models whose energy-momentum tensor has a vanishing trace—i.e. so-called
tracefree matter. The case of tracefree matter is of particular interest since the equation
of conservation satisfied by the energy-momentum is conformally invariant; moreover,
the associated equations of motion for the matter fields can, usually, be shown to
possess good conformal properties—see [15], Chapter 9. Second, it clarifies the inner
structure of Paetz’s original construction by identifying the integrability conditions
underlying the mechanism of the propagation of the constraints. The motivation behind
this analysis is to extend the recent analysis of the construction of vacuum anti-de
Sitter-like spacetimes in [3] to the case of tracefree matter. However, we believe that
the analysis we present has an interest on its own right as it brings to the fore the subtle
structure of the metric conformal Einstein field equations.

The main results of this article can be summarised as follows:

Theorem The geometric fields in the metric conformal Einstein field equations cou-
pled to a tracefree matter field satisfy a system of wave equations which is regular up
to and beyond the conformal boundary of a spacetime admitting a conformal exten-
sion. Moreover, the associated geometric zero-quantities satisfy a (subsidiary) system
of homogeneous wave equations independently of the matter model. The subsidiary
system is also regular on the conformal boundary.

The precise statements concerning the above main result are contents of Lemmas
1 and 3.

Remark 1 A remarkable property of our analysis is that it renders suitable evolution
equations for the conformal fields and the zero-quantities without having to make
any assumptions on the matter model except that it satisfies good evolution equations
in the conformally rescaled spacetime. Thus, our discussion can be regarded as a
once-for-all analysis of the evolution equations associated to the geometric part of the
metric conformal field equations valid for a wide class of coordinate gauges prescribed
in terms of the coordinate gauge source function appearing in the generalised wave
coordinate condition.

Remark 2 The homogeneity of the subsidiary system on the geometric zero-quantities
is the key structural property required to ensure the propagation of the constraints by
exploiting the uniqueness of solutions to a system of wave equations.

The approach followed to obtain our main result is based on the identification
of a family of integrability conditions associated to the metric conformal Einstein
field equations. To the best of our knowledge, these integrability conditions have not
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appeared elsewhere in the literature. In our opinion this approach brings better to the
fore the structural properties of the conformal Einstein field equations and, in particular,
it makes the construction of the subsidiary evolution system more transparent than the
brute force approach adopted in [17]. A similar strategy is also adopted to study the
propagation of the gauge. In particular, by setting the matter fields to zero, our analysis
provides an alternative version of the main results of [17]—the initial conditions on
the gauge required in the present analysis differ from those in [17] though. Despite
offering a more sleek approach to the construction of an evolution system for the
conformal Einstein field equations, our analysis still requires heavy computations
which are best carried out in a computer algebra system. In the present case we have
made systematic use of the suite xAct for the manipulation of tensorial expressions
in Mathematica—see [16].

We supplement our general analysis of the metric conformal Einstein field equations
with an analysis of the evolution and subsidiary evolution equations of some of the
tracefree matter models more commonly used in the literature: the Maxwell field, the
Yang-Mills field and the conformally invariant scalar field. For each of these fields we
construct suitably second order wave equations for the matter fields and the associated
matter zero-quantities. For the case of the Yang—Mills field, our analysis makes no
assumptions on the gauge group.

As an application of our analysis, in the final section of this article we present sta-
bility results for the de Sitter spacetime for perturbations which include the Maxwell,
Yang—-Mills or conformally invariant scalar field. Proofs of this result for the Maxwell
and Yang-Mills fields have been obtained in [9] using the spinorial version of the
conformal equations and a first order hyperbolic reduction. The stability result for the
conformally invariant scalar field is, to the best of our knowledge, new.

Overview of the article

In Sect. 2 we briefly summarise the key properties of the metric conformal Einstein
field equations coupled to tracefree matter and their relation to the Einstein field
equations. Section 3 provides the derivation of the geometric wave equations for
the geometric fields appearing in the conformal Einstein field equations. Section 4
introduces the key notion of geometric zero-quantity and discusses the identities and
integrability conditions associated to objects of this type. Section 5 provides the con-
struction of the subsidiary evolution system for the geometric zero-quantities used in
the argument of the propagation of the constraints. This is, in principle, the most cal-
culationally intensive part of our analysis. However, using the integrability conditions
of Sect. 4 we provide a streamlined presentation thereof. In Sect. 6 we discuss the
gauge freedom inherent in the geometric evolution systems obtained in Sects. 3 and 5
and how this freedom can be used to complete the hyperbolic reduction of the equa-
tions. Section 7 establishes the consistency of the gauge introduced in the previous
section, independently of the particular tracefree matter model. Section 8 provides a
case-by-case analysis of three prototypical tracefree matter models—the conformally
invariant scalar field (Sect. 8.1), the Maxwell field (Sect. 8.2) and the Yang—Mills field
(Sect. 8.3). The discussion for each of these matter models includes the construction of
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suitable wave evolution equations and subsidiary evolution equations. Finally, Sect. 9
provides an application of the analysis developed in this article to the global existence
and stability of de Sitter-like spacetimes.

Conventions

In what follows, (M, gap) Will denote a spacetime satisfying the Einstein equations
with matter—later we will make the further assumption that the energy-momentum
tensor is tracefree. The signature of the spacetime metric is (—, +, +, +). The low-
ercase Latin letters a, b, c, ... are used as abstract spacetime indices, while Greek
letters i, v, A, ... will be used as spacetime coordinate indices. Our conventions for
the curvature are

V. Vju® — V;V.u® = Rabcdub.

2 The metric conformal Einstein field equations with tracefree matter
The purpose of this section is to provide a brief overview of the basic properties of the
conformal Einstein field equations with tracefree matter. A more extended discussion

of the properties of these equations, as well as their derivation, can be found in Chapter
8 of [15].

2.1 Basicrelations

In what follows let (M, Zap) denote a spacetime satisfying the Einstein field equations
with matter

Rap — %Rgab + )\g'ab = Tab, (1)
where R,; and R denote, respectively, the Ricci tensor and Ricci scalar of the metric
8ab» M 1s the Cosmological constant and 7,y is the energy-momentum tensor. As a
consequence of the contracted Bianchi identity one obtains the conservation law

V4T, = 0. 2)

Here V, denotes the Levi-Civita covariant derivative of the metric gqp. Now, let
(M, gap) denote a spacetime related to (M, g,p) via a conformal embedding

~ ¢ ~ 14 — — ~ =
M= M, 8ab > 8ab = Dz(@ 1)*gabv C‘|¢(M) >0,

where is E a smooth scalar field—the so-called conformal factor. With a slight abuse
of notation we write

&ab- 3
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Remark 3 Following the standard usage, we refer to (M, Zap) as the physical space-
time while (M, g,p) will be called the unphysical spacetime.

2.1.1 The unphysical energy-momentum tensor

Since Eq. (3) does not determine the way T, transforms, it will be convenient to
define the unphysical energy-momentum tensor as

_ =27
Tab = o Tab‘

Using the transformation rules between the Levi-Civita covariant derivatives of con-
formally related metrics, Eq. (2) takes the form

VT, = E-'TV,E,

with V, the Levi-Civita covariant derivative of g,» and T = g”b T.p. It then follows
that

VT, =0 ifandonlyif T =0.

Assumption 1 Inthe remainder of this article we restrict our attention to matter models
for which T = 0, so that the corresponding unphysical energy-momentum tensor 7
is divergence-free, that is,

VéT,, = 0. 4

2.2 Basic properties of the conformal Einstein field equations

The metric tracefree conformal Einstein field equations have been first discussed in
[9]. In terms of the notation and conventions used in this article they are given by

VaVpE = —ELap + Sgap + S & Tap, (5a)

Vus = —LapVPE + JE2VPET,, (5b)

VaLpe — VpLae = VeBd® cap + ETpe, (5¢)
Vedeabc = Tb()(lv (Sd)

6Es —3V.EV'E = A, (5¢)
R gab = Bdgap + 2(8[aLpia — ataLn®). (5f)

A detailed derivation of these equations can be found in [15]. In the above expressions
Lap, s, d%peq and Type denote, respectively, the Schouten tensor, the Friedrich scalar,
the rescaled Weyl tensor and the rescaled Cotton tensor. These objects are defined as

@ Springer



Conformal wave equations for the Einstein-tracefree... Page70f39 88

Lap = 5Rap — 158abR. (6a)
s = ;V°V.E+ % RE, (6b)
d*ped = B C%%ea. (6¢)
Tape = EViaTple + 3V ETp)e — &efaTh1e VEE, (6d)

where C%.4 is the conformally invariant Weyl tensor. Observe that T,p. has the
following symmetries:

Tave = Tiavte,  Tabe] = 0. (7

Relevant for the subsequent discussion is the well-known fact that the rescaled Weyl
tensor has two associated Hodge dual tensors, namely

_ 1 _ 1
>kdahcd = jeahefdefcda d;kbcd = jecdefdahef,

where €4 is the 4-volume form of the metric g,5. One can check that *d;pcq = d;"bc a
Similarly, we also define the Hodge dual of 7 as

— 1 d
*Tabe = 3€ab “Taec- (3)

Moreover, if Assumption 1 and Eq. (5a) are taken into account, one obtains some
additional relations, namely

VcTabC =0, (93-)
V. Ty =0, (9b)
Vel = VeT(a p)- 9¢)

Remark 4 Equations (5a)—(5d) will be regarded as a set of differential conditions for
the fields &, s, L,y and d%pqq. Equation (5e) can be shown to play the role of a
constraint which only needs to be verified at a single point—see e.g. [15], Lemma 8.1.
Eq. (5f), providing the link between the conformal fields d€ 4,5, L5 and the irreducible
decomposition of the Riemann tensor, allows us to deduce a differential condition for
the components of the unphysical metric g,,—see Sect. 6.2.

Remark 5 By a solution to the metric tracefree conformal Einstein field equations it
will be understood a collection of fields (gqp, E, 5, Lap, d%bea, Tup) satisfying Egs. (4)
and (5a)—(5f).

The relation between the metric tracefree conformal Einstein field equations and the
Einstein field equations (1) is given in the following proposition—see [ 15], Proposition
8.1.

Proposition 1 Let (gup, 2, 5, Lap, d*bed, Tup) denote a solution to the metric tracefree
conformal Einstein field equations such that & # 0 on an open set U C M. Then
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the metric Zap = B 2gap is a solution to the Einstein field equations (1) with energy
momentum tensor given by Ty, = B2T,p on U.

Proof The proof given in [15] omits Eq. (5f) and implicitly assumes that the field L
can be identified with the Schouten tensor of the metric g,5. With Eq. (5f) at hand, one
is allowed to make this identification. From here onwards one can apply the argument
in Proposition 8.1 in [15]. O

2.2.1 An alternative equation for d%¢4

For our purposes, it will be convenient to consider an alternative version of the con-
formal field equation for the rescaled Weyl tensor. This can be obtained as follows:
multiplying (5d) by efgbc and exploiting the identity *dypcq = d},.; results in

2Va*dfgc" = 2Vad;§gc“ = —Z*ngc.
From here it follows that
3V[edab]cd + Eeabf*Tcalf =0. (10)

Remark 6 This last equation is equivalent to (5d) and will be essential in Sects. 3 and
4 where a system of wave equations for the geometric fields and the zero-quantities
associated to the Eqgs. (5a)—(5f) is discussed.

2.3 An equation for the components of the metric g,

Taking the natural trace in Eq. (5f) leads to the relation
Rap = 2Lap + ¢ Rgap- (11)

Here, R, and L, are considered as independent variables. In particular, the Ricci
tensor R,p is assumed to be expressed in terms of first and second derivatives of the
components of the metric whilst L, is a field satisfying equations (5a)—(5e). This will
be further discussed in Sect. 6 where a suitable wave equation for the components of
the metric is constructed.

Remark 7 As pointed outin [10], Eq. (11) can be regarded as an Einstein field equation
for the unphysical metric g,;. From this point of view, the geometric fields &, s, Lgp
and d;pcq can be regarded as unphysical matter fields. Accordingly, in the following
we refer to Eq. (11) as the unphysical Einstein equation. This approach should allow
to adapt well-tested numerical methods for the Einstein field equations to the case of
the conformal field equations.
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3 The evolution system for the geometric fields

In this section we show how to construct an evolution system for the geometric fields
appearing in the conformal Einstein field equations, Eqs. (5a)—(5f). These evolution
equations take the form of geometric wave equations—that is, their principal part
involves the D’ Alambertian [ = V, V¢ associated to the conformal metric gqp.

In [17], Paetz has obtained a system of geometric wave equations for the set of
conformal fields (8, s, Lqp, d%peq) in the vacuum case. This can be generalised to
include a tracefree matter component. The next statement summarises this result:

Lemma 1 The metric tracefree conformal Einstein field equations (5a)—(5f) imply the
following system of geometric wave equations for the conformal fields:

08 =4s — LER, (12a)
Os = —1sR + ELyp L™ — LV,RVE + 18T, T — 8L, T
+EVYEVPET,,, (12b)
OLap = —28dacba L +4La Loe — LeaL gap + £VaVoR + 5B dcpa T
—EV. T, — 2T(ajeip) VEE, (12¢)

Odaped = —4Bda” 1 dareny — 28da” ¥ deafe
+%dabcdR — T,/ &%dy) fed — BT/ dy) fab
— B2 gucdaigbr T'® + B gpredaigar TS
+2VaTicdip) + €aber V! *Ted®. (12d)

Proof Equation (12a)is a direct consequence of (5a). Equations (12b) and (12c) result,
respectively, from applying a covariant derivative to (5b) and (5¢), and using the second
Bianchi identity. The wave equation for d“j.4, on the other hand, requires to consider
the alternative conformal field equation (10). Applying V¢ to the latter and using
Eq. (5d) along with the first Bianchi identity, a long but straightforward calculation
yields the wave equation

Odypea = — 4Bda” (cdaeny — 28dy” pdeare + 1dapea R
—2deqrialp)’ — 2dapficLay’
— 28atcdatens L + 28b1cda) fae L
+2ViaTicdib] + €aver V! * Tea®. (13)

Itis possible to eliminate terms containing L, from the wave equation (13) through the
generalisation of an identity obtained in [ 17] to the case of tracefree matter. Multiplying
Eq. (10) by E, using the definitions of d* .4 and * Ty, Eq. (5¢) and the second Bianchi
identity to simplify it, one finds that

dedlag V1B + daelag8p1c VB — deelag&p1a VEE = 0. (14)
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Applying a further covariant derivative V# to the last expression and making use of
Egs. (5a), (5d) and (10) as well as the properties of the rescaled Cotton tensor, the
following identity is obtained:

28 cdf[aLh]f +2E ahf[ch]f +2ga[c5dd]ghfog
- zagb[cdd]gufl‘fg + é: abcdR

f_ f

— B3deafiaTh) E3dahf[ch]‘

- Esga[cdd]gbfog + E3gh[cda']gafog =0. (15)

By substituting this into expression (13) we get Eq. (12d), which does not involve the
Schouten tensor. O

Remark 8 In concrete applications it may prove useful to express the Schouten tensor
in terms of the tracefree Ricci tensor and the Ricci scalar through the formula

Lab = q)ab + 21_4Rgab~ (16)

As will be discussed in Sect. 6.1, the Ricci scalar R is associated to the particular
choice of conformal gauge. Thus, the decomposition (16) allows us to split the field
L,p into a gauge part and a part which is determined through the field equations.
Keeping the simplicity of the presentation in mind, we do not pursue this approach
further as it leads to lengthier expressions.

4 Zero-quantities and integrability conditions

In this section we consider a convenient setting for the discussion and book-keeping
of the evolution equations implied by the conformal Einstein field equations with
tracefree matter. Our approach is based on the observation that the metric conformal
Einstein field equations constitute an overdetermined system of differential conditions
for the various conformal fields. Thus, the equations are related to each other through
integrability conditions — i.e. necessary conditions for the existence of solutions to
the equations.

4.1 Definitions and basic properties

First we proceed to introduce the set of geometric zero-quantities (also called sub-
sidiary variables) associated to the system of metric tracefree conformal Einstein
field equations (5a)—(5e). These fields are defined as:

Yap = VaVpE + ELap + 58ap — 2B Tup, (17a)

Ou = Vs + Lo VEE — LE?VCET,,, (17b)
Agpe = VaLpe — VpLae — Ve EAC cap — ETape, (17¢)
Aape = Tpeq — Vedeabc, (17d)
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Z=X—6Es+3V.EV‘E, (17e)
P€aab = Rgab — 8d qap — 2(8[aLpia — &ataLn®)- (17f)

In terms of the above, the conformal Einstein field equations (5a)—(5f) can be expressed
as the conditions

Yap =0, 0, =0, Agpe =0, Aape =0, Z=0, Pcdab =0,

from where these fields take their name.

4.1.1 Properties of the zero-quantities

By definition, the zero-quantities possess the following symmetries:

Tab = T(ab), Aabc = A[ab]cv A[abc] = Os Aabc = Aa[bc]s A[abc] = Os
Ay =0, APy =0. (18)

Moreover, one can check that A, and Ay, satisfy the identities
Aabe = 2 Dabe + 2 Dcp — LA Aape = 2A L Apae — 1A 19
abc = 38abc 3 Pach 3 Rbca> abc = 34} abc + 3 L bac 34\ cab> (19)
which are useful for simplifying certain combinations of zero-quantities. Regarding

P%cq, it inherits the symmetries of the Riemann tensor; in particular, we can define
its Hodge dual tensors

*Pabcd = %Gabef Pefcd, P;bcd = %Ecdef Pabef- (20)

In addition, it will result useful to introduce a further auxiliary zero-quantity asso-
ciated to Eq. (10)—see Remark 6:

Aabede = 3Viadperde + €aber* Tae’! = 3Matabgele — 3D elab&eld- 21

Here, the second equality has been obtained through a calculation similar to the one
yielding (10). From the above definition it follows that Aap®ed = Agpe, as well as

Aabcde = A[abc]dev Aabcde = Aabc[de]- (22)

4.1.2 Some consequences of the wave equations

Key for our subsequent analysis is the observation that assuming the validity of the
geometric wave equations for the conformal fields implies a further set of relations
satisfied by the zero-quantities. These are summarised in the following lemma:
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Lemma 2 Assume that the wave equations (11), (12a)—(12d), and Assumption 1 hold.
Then the geometric zero-quantities satisfy the identities

Y, =0, (23a)
PCucr =0, (23b)
VY, = 30,, (23¢)
Va®" = YLy, — JEXT T, (23d)
VeAds = Y eha + AapeVEE — L Pycpa, (23e)
V.Auf = 2ETC[,1T},]C — Aeap VEE, (23f)
Ve ab = e Ppieae — 2Te1a V), (239)
VeAan® = 2410 Pojdec. (23h)
VaPape’ = = Aabe — EAcap, (23i)

VcAengn = 2V[6Ag]mn + 2d[66|m‘th]Cnh — 2d[ec‘n|hpg]cmh + 2dmn6h Pecgh-
(23))

Proof The result follows directly from the definitions of the zero-quantities with the
aid of the wave equations for the conformal fields (11) and (12a)—(12d), the second
Bianchi identity and the properties of the rescaled Cotton tensor. It is worth mentioning
that (23j) is obtained by using (13) instead of (12d) as it considerably simplifies the
calculation. O

4.2 Integrability conditions

The zero-quantities are not independent of each other but they are related via a set of
identities, the so-called integrability conditions. These relations are key for the compu-
tation of a suitable (subsidiary) system of wave equations for the zero-quantities. The
procedure to obtain these relations is to compute suitable antisymmetrised covariant
derivatives of the zero-quantities which, in turn, are expressed in terms of lower order
objects. Following this general strategy we obtain the following:

Proposition 2 The geometric zero-quantities defined in (17a)—(17¢) and (17e)—(17f)
satisfy the identities

2V Yepp = 2851a®c) + EAuch + PacbaVE, (24a)
2V[aOp) = —2L1 Yoie + Aube VEE + B2 Topa Th S, (24b)
3ViaAavle = AabdceVEE + 31 dpace
+3L10° Podiee — 3 E Plabie Tare + 2EY 1 gble1 Tare
+EY 1 gleip Tale (24c)
V,Z = —6EO, + 6T,V E, (24d)
3Vie Penimn = ENeghnm — 3A(egim|&hin + 3A[eg|n|&hm - (24e)
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Proof Equations (24a)—(24d) follow from direct calculations employing the definitions
of the zero-quantities, the rescaled Cotton tensor and the first Bianchi identity. Equa-
tion (24e), on the other hand, can be obtained in a similar manner as (10): multiplying
(231) by €un d and exploiting the fact that * Pypeq = P;‘b ~¢—Which is a consequence
of (23b)—yields

2V Prunp® =2V, Pn):nba = —€mnac(BAR + A%p). (25)

By substituting back the definition of P . (24e) is found after some simplifications.

m}

nab’

Remark 9 Observe that these relations have right-hand sides consisting of lower order
expressions which are homogeneous in the zero-quantities. This property will be key
when suitable wave equations for these fields are derived in the next section. Equa-
tions (24a)—(24e) together with (23j) constitute the set of integrability conditions for
the geometric zero-quantities associated to the tracefree conformal Einstein field equa-
tions.

Remark 10 The expressions in Lemma (2) and Proposition (2) allow us to show, in
particular, that the wave equations (12d) and (13) differ from each other by a homoge-
neous combination of zero-quantities. Thus, in arguments involving the propagation
of the constraints, both forms of the evolution equation can be used interchangeably.

5 The subsidiary evolution system for the zero-quantities

An important aspect of any hyperbolic reduction procedure for the (conformal) Ein-
stein field equations is the identification of the conditions upon which a solution to
the (reduced) evolution equations implies a solution to the full set of field equations
— this type of analysis is generically known as the propagation of the constraints.
In practice, the propagation of the constraints requires the construction of a suitable
system of evolution equations for the zero-quantities associated to the field equations.

5.1 Construction of the subsidiary system

In this section it is shown how the set of integrability conditions provides a systematic
and direct way to obtain wave equations for the zero-quantities—a so-called subsidiary
evolution system. The propagation of the constraints then follows from the structural
properties of the subsidiary system as a consequence of the uniqueness of solutions to
systems of wave equations.

5.1.1 Equations for Y, ©4, Agpe, Z and Pgpeqg
Equation (24a) serves as the starting point to obtain a wave equation for Y,;. After
applying V¢ and commuting derivatives, Eq. (23¢) renders it as a suitable wave equa-

tion. Remaining first order derivatives can be rewritten and simplified via Egs. (19),
(23a), (23d), (23e) and (23i) resulting in:
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OYap = £ YabR = 2Y“Leagap + 3BV gapTea + 4V V)
—2BYYpg + 4 Lpe

— 20 Pacha + 2EL Pacha — 3 € Papca T, (26)

Regarding ®,, an analogous calculation using expression (24b) in conjunction with
the same equations as in the previous case leads directly to a wave equation for this
field. Exploiting (5¢), (6d) and (24a) to simplify it one obtains

00, = 6Lca®" =20 Acap +2ELY Acap — B> A Tap
—2820%T,y — 207" d gV E
+ 3EYL T VOE + L8 Pepa TP VA E + LEY, T, VO E
— iYW V'R — 3EY T,V B
+ 27V, Loy — E2YV, Ty, (27)

A wave equation for A 45 can be obtained by applying V¢ to integrability condition
(24c¢), commuting derivatives and using (23e) to eliminate the second order derivatives.
A direct but long calculation exploiting the same relations used in the previous two
cases, along with (5d) and (21), yields

OAabe = 2Acabs — Y Tapa — EAapdce LY + 3dapea®?
+ 3R Aape + L Aapa + 5B Aapace T
— BPapee TiV'E + £ PapeaV' R + V' EVeAup’ed
+ 279V, dypea + LYV Papea
— B2 TV, Papeq + 2010 Tojea — EY10?Vie Topa
— 2Bd1a 1° Adec + 2Ed1a? 1) Dpjae
+ 2d10% 161 Vi Yae — 21010 Vay Vi
— 2L1a" Apac + 2LV Poigce — 2Pl b1 Adec
+ 2P e Apide — 2P0 101 Vi Lae — 2Pa” 1c“Va  Lpje
+ B2 P Va Tole — B2 A 0 Thia
+ BT1a"Vie Tora — 2V EVia Apiea + 2% Tiajaeigb1e
+ EY 11 Va Toe — Yo Tp1a Ve E
— 2LY Afajaegnie + 3BT grate Toa + 2E Pia® e/ Tr1e Va B
— Eg1ale TV Tp)e
+ V1o’ 8h1c Ta* Ve B + T glaje) Tria Ve E- (28)

A wave equation for Z is readily found by simply applying V¢ to Eq. (24d):

O0Z = 6Yup Y% — 12EYP Loy, + 6237 T, + 1209V, E. (29)
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In the case of P,pcq, application of vh together with Egs. (23b), (23e), (23i), as well
as the various symmetries of A,y and P%p.4 results, after a rather direct calculation
in:

OPegmn = 5 R Pegmn — 2Lin" Palheg + 2A(njeg Vi) 8 + 2EVim Aneg
+ 2V Ajegin) + 2E Ve Aglmn
+2V(e Apnlg) = 2A(elmn| Vo1 E — 2Edle” 1 Prnia
— 28d" )" Pgtna + 2Edie" 10| Pgthma
— 2L1" Poypmn = 2P g1 Prunia — 4Pie" it Peiina
+ 288(en V" Anjglh — 2ELeln V" Amigin
+ 207" g pmal 8 gin — 20 djehnal 8gim + 2 A(glnh| &elm
+ 2An1g1h18eim + 2 M mlelh| 8gln
+ 2 Atelmnl ggin — 4L" Piejumai8in + 4L Pleihnai 8gim- (30)

5.1.2 Equation for Agp,

Notice that the integrability condition for A ¢, Eq. (23j), contains derivatives of zero-
quantities on both sides of the equation. This feature seems to hinder our standard
approach for the construction of a subsidiary equation. Then, in order to construct
a suitable wave equation it will be necessary to exploit the symmetries of A, pcde-
Applying V¢ to the integrability condition (23j) and commuting derivatives leads to

OAgmn = AmnRee + Vg Ve Ay — 2P " Vidnee
— 2dun Vi Pyee — VEVE A geetmn)
— 20 Rigeinte — 2dim " Vie Peninic
— 2 1V Patech — 2P " Viedgninie
— 2P 1V dyech.

Here, the double-derivative terms put at risk the hyperbolicity of the system. For the
second derivative of A,p one can use (23g), while the one involving A pc4. can be
eliminated by recalling that this field is antisymmetric under any permutation of the
first three indices—see (22). Using this property and commuting derivatives gives

OAgmn = — EA G dinnce +4A mnLge + 2dmnce Mg
— 2P " dnce + 201  Vig Tuje
- ZEAc[medlgln]ce - 4EAC[medlgeln]c - 4Acg[an]c
+ 280 Pigeinte + 28 Plmicinle
- ZT[mce Pgefnic + 2dgc[meAn]ec - 2d[rncehVlepgh\n]c

@ Springer



88 Page 16 of 39 D.A. Carranza et al.

= 2P " Viedghintc = 2Tim° Vig Tulc
- EACEhd[m|cehgg|n] - 4Ac[meL|cegg\n] - Awh P[mlcehgg\n]- (31)

The results of this section can be summarised in the following lemma:

Lemma 3 Assume that the conformal fields satisfy equations (11) and (12a)—(12d).
Then, the geometric zero-quantities (17a)—(17f) satisfy the homogeneous system of
geometric wave equations (26)—(31).

5.2 Propagation of the constraints

As it will be discussed in detail in Sect. 6, the system of geometric wave equations
(26)—(31) implies, in turn, a system of proper (hyperbolic) wave equations for which a
theory of the existence and uniqueness of solutions is readily available—see e.g. [13].
From the latter one directly obtains the following result:

Proposition 3 Assume that the geometric zero-quantities and their first derivatives
vanish on a fiduciary spacelike hypersurface S, of an unphysical spacetime (M, gqp).
Then, the geometric zero-quantities vanish on the domain of dependence D(S,) of S.

Remark 11 Working, for example, with coordinates adapted to the hypersurface S,, it
can be readily checked that the completely spatial parts of the zero-quantities Y5, O,
Aabe, Dabe, Z and P%p.4 encode the same information as the conformal Einstein con-
straint equations — see e.g. [15], Chapter 11. Similarly, projections with a transversal
(i.e. timelike) component can be read as a first order evolution system for the geomet-
ric conformal fields—we ignore null components as these can be obtained as linear
combinations of transversal and intrinsic components. Thus, in order to ensure the
vanishing of the zero-quantities on the initial hypersurface S,, one needs, firstly, to
produce a solution to the conformal constraint equations; this ensures the vanishing of
the spatial part of the zero-quantities. Secondly, one reads the transversal components
of the zero-quantities as definitions for the normal derivatives of the conformal fields
which can be readily computed from the solution to the conformal constraints. In this
way, the transversal components of the zero-quantities vanish a fortiori.

6 Gauge considerations

This section provides a brief overview of the gauge freedom inherent to the conformal
Einstein field equations and the associated evolution equations. This gauge freedom is
of two types: conformal and coordinate. The discussion in this section follows closely

Section 2.3 in [3] and is provided for completeness and to ease the reading of the
article.

6.1 Conformal gauge source functions

Animportant feature of the conformal Einstein field equations is that the Ricci scalar R
of the metric g, can be regarded as a conformal gauge source specifying the represen-
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tative in the conformal class [g] of the (conformal) unphysical metric. Accordingly,
one can always find (locally) a conformal rescaling such that the metric g/, has a
prescribed Ricci scalar R’.

Remark 12 Based on the previous discussion, in what follows the Ricci scalar of the
metric g, is regarded as a prescribed function R (x) of the coordinates, so one writes

R =Rx).

6.2 Generalised harmonic coordinates and the reduced Ricci operator

The components of the Ricci tensor R, can be explicitly written in terms of the
components of the metric tensor g, in general coordinates x = (x*) as

1
R/,LV = _Eg)\pa)hapgp,v + ga(MVv)FG + g)hpgarrkdurptv
‘|‘2F0Apghgd(urpv)r»

with
v 1 Vo
r ur = Eg (8118,0)» + 3Agup - apg,u)»),

where we have defined the contracted Christoffel symbols as TV = gtV wi- A direct
computation then gives (x* = —I'*. Following the well-known procedure for the
hyperbolic reduction of the Einstein field equations, we introduce coordinate gauge
source functions F"(x) to prescribe the value of the contracted Christoffel symbols
via the condition I'* = F*(x). This means that the coordinates x = (x*) satisfy the
generalised wave coordinate condition

Ox* = —FH(x) (32)

—see e.g. [5,15,18]. Associated to the latter, it is convenient to define the reduced
Ricci operator %,,,[g] as

%;w[g] = Ry — ga(uvv)r‘(r + go(uvv)]:a(x)- (33)
More explicitly, one has that
1
%’M[g] = —Egkpakapguv - ga(#vv)]:a (x) + 8Ap8”rkourprv
+2F0Apg“go(urp\))ro

Thus, by choosing coordinates satisfying the generalised wave coordinates condition
(32), the unphysical Einstein equation (11) takes the form

1
%p.v[g] = 2L;w + gR(x)guv-
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Assuming that the components L, are known, the latter is a quasilinear wave equation
for the components of the metric tensor.

6.2.1 The reduced wave operator

The geometric wave operator [] acting on tensorial fields contains derivatives of the
Christoffel symbols which, in turn, contain second order derivatives of the components
of the metric tensor. The presence of these second order derivative terms is problematic
as they destroy, in principle, the hyperbolicity of the evolution Eqs. (12¢) and (12d)
since they enter in the principal part of the system. However, as discussed ine.g. [3,17],
the generalised wave coordinate condition (32) can be used to reduce the geometric
wave operator [ to a proper second order hyperbolic operator.

Definition 1 The reduced wave operator B acting on a covariant tensor field 7}..., is
defined as
7., =0T, + ((ZL” + éR(x)gm — Ry)) — 8o Vo (F2 (x) — FU))T?../] +e
et <(2L,p + éR(x)gw — Rep) — 8ot Vo (FO(x) — F")) T..%,
where [ = g#"V,, V,. The action of Bl on a scalar ¢ is simply given by

Wy ="'V, V,¢.

Remark 13 The operator B provides a proper second order hyperbolic operator for
systems which involve the metric as an unknown, in contrast to [J. Accordingly, when
working in generalised harmonic coordinates, all the second order derivatives of the
metric tensor can be removed from the principal part of geometric wave equations.
A system of evolutions equations expressed in terms of the reduced wave operator ll
(rather than in terms of the geometric wave operator [J) will be said to be proper.

6.3 Summary: gauge reduced evolution equations

The discussion of the previous sections leads us to consider the following gauge
reduced system of evolution equations for the components of the conformal fields &,
8, Lap, dgbeq and gqp with respect to coordinates x = (x*) satisfying the generalised
wave coordinate condition (32):

HE =45 — éE’R(x), (34a)
Bs = —LsR(x) + ELuL" — tV,R()VFE + § BT, TH
—83L,, TH + EVFEVET,,, (34b)
WL, = —28dupnL"" + 4L, Ly, — Ly, L g,
+1V,VyR() + $E3dp T
—EV, T,y — 2TV E, (34c)
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.d;wkp = _4Ed,ur[)»0dp]avr —2E urudd)»pro + %d;wkpR(x)
~T1” E2dviorp = BT dplopn
—E2gudpiove T + E2gundplons T
+2V[/4 Tl)»p|v] + €uvor v *Tkpga (34d)

1
%;w[g] =2L,, + ER(x)guw (34e)

Remark 14 The reduced system of evolution Egs. (34a)—(34e) is a system of quasilinear
wave equations for the fields &, s, L;,,, dyvyp and g, More explicitly, one has that

270,08 = X (g, 0g, E,5, R(v)),
87T 0,0;s = S(g,0g, B, 08,5, L, R(x), dR(x), T),
8°%0,0: Ly, = FW(g, 0g,8,L,d,R(x), ?Rx), T, 8T),
87" 850cdyvip = Dyuvip(g, 08, B, d, R(x),dT),
garaoarguv = G/,Ll)(gs g, L, R(x))s

where X, S, F, Dy and G, are polynomial expressions of their arguments.
Strictly speaking, the system is a system of wave equations only if g, is known to
be Lorentzian. The basic existence, uniqueness and stability results of systems of the
above type have been given in [13]—these results are the second order analogues of
the theory developed in [14] for symmetric hyperbolic systems. The basic theory for
initial-boundary value problems can be found in [4,7].

7 Propagation of the gauge

This section is devoted to studying the consistency of the conformal and coordinate
gauge introduced in Sect. 6 by constructing a system of homogeneous wave equations
for a set of subsidiary fields. The coming discussion extends the analysis in [3], Sect. 5,
for the vacuum case which is closely followed—accordingly, we mainly focus on the
new features arising from the presence of matter.

7.1 Basicrelations

Consider a set of coordinates x = (x*). Let g, denote the components of a metric
gab in these coordinates. Similarly, R, denotes the components of the associated
Ricci tensor R,p, while R is the corresponding Ricci scalar. We now investigate the
requirements for R and R, to coincide, respectively, with R (x) and Z,,,,. In addition,
we also need to investigate the conditions under which L, corresponds to the compo-
nents of the Schouten tensor. This can be expressed as the vanishing of the following
fields:
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0 =R—R>), (352)
ot =TH — Fi(x), (35b)
Q;w = R/w - %/,LU- (35¢)

We make the following assumption:

Assumption 2 Let 7),, and T}, be, respectively, the components of a tracefree energy
momentum tensor with vanishing divergence and its associated rescaled Cotton tensor.
Let g, and L, be solutions to the equations:

Ry = 2Ly + tR(X)guv. (36a)
WL, = —2Bd,,L"" + 4L, Ly, — Ly, L g,
+ iV VVRG) + 2 E3d s, TV
— BVi T,y = 2T V' E. (36b)

As a direct consequence of Eq. (36a), one can find that the gauge zero-quantities
(35a)—(35c) are not independent of each other. Simple calculations yield

Q;w = V(p, Ql})v (37a)
0=0,/"=V,0" (37b)

Furthermore, Eq. (33) and Definition 1 lead to

e%;w[g] = Ruv - V(p. QU)v (383)
.L;w = DL;w - (Q;ur - V}LQG)LUV - (Qva - VVQG)LO;L' (38b)

Remark 15 Equations (37a)—(37b) show thatif Q* = Othen Q and Q,,, automatically
vanish. In this sense, we will consider Q* as the basic gauge zero-quantity of the
system.

7.2 The gauge subsidiary evolution system

In this subsection we obtain a system of homogeneous wave equations for the gauge
subsidiary variables. This will be achieved by exploiting the properties of the so-called
Bach tensor which will play the role of an integrability condition for the system.

7.2.1 The Bach tensor
Let g4p» be a 4-dimensional metric. The Bach tensor is defined as:

Bap = VVaLpe = VVeLap = Cacan L. (39)
From this definition it is easy to verify that B, is symmetric and tracefree. Addition-

ally, it satisfies the following identity, independently of the validity of the Einstein
field equations:
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VB, = 0. (40)

Remark 16 A straightforward calculation shows that the Bach tensor can be expressed
in terms of the geometric zero-quantities as

Bap = —L Pycpa — B3 ducpa T + EV. T, b + 2T(q|cip) VE E.

Consequently, if g, is a solution to the tracefree metric conformal Einstein field
equations then the Bach tensor vanishes if 7T, = 0.

Remark 17 In view of the fact that trivial initial conditions for the zero-quantities

imply the vanishing of P“,.;—see Proposition 3—throughout the remainder of the
article, and for the sake of simplicity, our calculations will assume that P%,.; = 0.

7.2.2 Wave equations for the gauge subsidiary variables
The Bach tensor can be conveniently expressed in terms of the gauge zero-quantities.
Terms containing R,,, and R can be rewritten according to definitions (35a) and (35c¢)

along with (37a) and (38a). A procedure similar to that of Section 5.2 in [3] allows us
to show that the Bach tensor can be expressed in the form

B, = B;w + Ny, 41)
where Bl’w is an expression homogeneous on Q, Q, O, and its derivatives up to

fourth order and which is identical to the one found in [3]. Here, the contributions
from T}, have been grouped in the symmetric tensor

Ny = =3 E3dpnnp T + 2T(uap VFE + EVL T .
Next, we introduce the auxiliary field
M, =00,. (42)

Taking the divergence of equation (41), and after some direct manipulations,
Eqgs. (37a)—(37b) and (40) imply that

OM, = H,(VM,VQ,VQ, @, Q) +4V'N,,,

where @ stands for Q,, and, for simplicity, H, represents a homogeneous function
of its arguments. On the other hand, we can rewrite the term V"N, in a suitable
way by using the symmetries of T, along with the help of Egs. (35¢), (38a) and the
geometric zero-quantities. A direct calculation shows that

VYN = =T Y —

1 =3 VoA
zd Tv)\A nos
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so the wave equation for M, takes the schematic form
DM/L = H/L(VM’VQaVQ’ Qa Q’ TvA) (43)

Lastly, a wave equation for Q is required to close the system. This can be obtained
by direct application of the [J operator on the definition of Q along with the aid of
Egs. (35a), (37b) and (38a), resulting in

0Q = —2L,,V* Q" — V* 0"V, 0y) — 30"V, 0
—JO0"V,R(x) — tR(X)Q + VF M,,. (44)

Remark 18 The gauge subsidiary evolution system, Eqgs. (42)—(44), is homogeneous
in My, Qu, Q, Yyuv, Ay, and their first derivatives.

The previous discussion leads to the following result:

Lemma 4 Assume that the hypotheses of Lemma 3 hold. Moreover, let the quantities
My, Ou O, Yy and Ay, along with their first covariant derivatives vanish on
a fiduciary hypersurface S| . Then the unique solution to the system (42)—(44) on a
small enough slab of S, corresponds to Q =0, Q, = 0and M,, = 0, which in turn
implies that Q, = 0.

Remark 19 As discussed in Section 5.2.3 of [3] the initial gauge conditions in Lemma
4 can be rephrased in terms of conditions on the lapse and shift (and their derivatives)
associated to the coordinate gauge source function F*(x). It must be pointed out
that these initial gauge conditions are not equivalent, in the vacuum case, to those
considered in [17] which only require the vanishing of the gauge zero-quantities and
their first derivatives on the initial hypersurface. In the present case, the conditions
require the vanishing of third order derivatives via the definition of M,,.

8 Evolution equations for the matter fields
Having settled the analysis of the geometric part of the metric tracefree conformal
Einstein equations, we now proceed to investigate the evolution of the subsidiary

equations associated to anumber of matter models of interest: the conformally invariant
scalar field, the Maxwell field and the Yang—Mills field.

8.1 The conformally invariant scalar field
It is well-known that the equation
6“ 60& = 05

where ¢ is a scalar field, is not conformally invariant. This deficiency can be healed
by the addition of a term involving the coupling with the Ricci scalar, namely

ViV,p — LRp = 0. (45)

=
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Defining the unphysical scalar field

2

i
o]

¢

a direct computation shows that Eq. (45) implies
O¢ — LRe = 0. (46)

In what follows, for convenience, Eq. (45) will known as the conformally invariant
wave equation—or the conformally coupled wave equation. The energy-momentum
tensor associated to this field takes the form

Tab = Vad Vo — 18apVedVd — 1V, Vip + S¢* La, (47)

so that VT,; = 0 holds if Eq. (46) is satisfied. It can be readily verified that T, as
given by the expression above, is also tracefree.

Remark 20 The second derivatives of ¢ in Eq. (47) will lead to the appearance of
second and third order derivatives of the matter field in the expression of the rescaled
Cotton tensor—see Eq. (6d)—which may affect the hyperbolicity of the system (34a)—
(34e). Moreover, T, is also coupled to the geometric sector via the Schouten tensor.
These difficulties will be addressed in the sequel.

Remark 21 The conformally invariant scalar field is related to the standard scalar field
satisfying the wave equation through a transformation originally due to Bekenstein
[1]. Thus, in principle, the theory for the conformally invariant scalar field developed
in this section can be rephrased in terms of the standard scalar field.

8.1.1 Auxiliary fields and the evolution equations

We start the analysis by observing that the third order derivative terms in the expression
of the rescaled Cotton tensor for the conformally invariant scalar field are of the
form V[, V; V6. Using the commutator of covariant derivatives, these terms can be
transformed into first order derivative terms according to the formula

ViaVe Vet = —3 Rape? Vas.
Thus, one is left with an expression for the Cotton tensor containing, at most, second
order derivatives. In order to eliminate these derivatives which, potentially, could
destroy the hyperbolic nature of the wave equations (34a)—(34d), one needs to promote

the first and second derivatives of ¢ as further (independent) unknowns. Accordingly,
we define

ba = Vao, bap = Va V. (48)
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Following the previous discussion, and exploiting equation (5c), one can write the
rescaled Cotton tensor for the conformally invariant scalar field as

—1
Tube = (1 - ﬁazq?) (%Eqmc{m] + 3 Edpdale

1= 2 dr— 1 =2 d
720 dapcaV® E — 7 E°Pdabcadp

+
=
0]

¢8ctvLawd + % B8cla®p1a®” + getpTara VY E + 3Tepp Vay E) (49)

We now proceed to construct suitable evolution equations for ¢, and ¢, by means
of a set of integrability conditions for these fields. Firstly, the identity V, ¢, = V¢,
represents an integrability condition for ¢,. A wave equation then readily follows after
applying V” and using Eq. (46):

O¢a = 26" Lap + LRpa + LoV4R. (50)

On the other hand, an integrability condition for ¢, can be obtained directly from its
definition:

2V[c¢a]b = ¢dRcabd = - E¢ddacbd - 2¢[L'La]b + 2¢dgb[cLa]d'

Applying V€ to this relation and using Egs. (5¢), (5d), (46) and (50), a straightforward
calculation leads to:

O¢ab =3¢asR — SROLap — 26 Leagas — 10 8abVeR
+ £V Vi R — 2E¢“Yd(gicipya
+ 80 Liye + 280 Talelp) + 30 Vi) R
+2¢ViaLpye — 20 dack) Va E. (51)

Remark 22 In Eq. (51)itis understood that the rescaled Cotton tensor T}, is expressed
in terms of the auxiliary fields ¢, and ¢, according to (49) so does not contain second
or higher derivatives of the fields.

Remark 23 When coupling the wave equations (46), (50) and (51) to the system (34a)—
(34e) satisfied by the geometric conformal fields, it is understood that the geometric
wave operator [ is replaced by its reduced counterpart Bl as discussed in Sect. 6.2.1.

8.1.2 Subsidiary equations
To verify the consistency of our approach in dealing with the higher order deriva-

tive terms in the rescaled Cotton tensor for the conformally invariant scalar field we
introduce the following subsidiary fields:

Q4 = Pg — Va9, (52a)
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Oab = Pap — VaVpd. (52b)

A wave equation for Q, can be obtained in a straightforward way: applying [J to
definition (52a) and with the help of relations (46) and (50), a short calculation yields

004 = O¢a — Vap — Ry VP = SR Q4 + 2L" Qs (53)

Similarly, applying U to Eq. (52b), commuting covariant derivatives and using the
definitions of the geometric zero-quantities one obtains

DQub = 3QabR =20 Leagab — §0°8abVeR +20VeLap
—280“%ycpa + 80  Liye
=20 Aatep) +4EQ Tialepy + 40 Aalelb)
+306 ViR — 4Q e ! VaE. (54)

Remark 24 The system of wave equations (53) and (54) is homogeneous in Q 4, Qap
and Agpe Thus, it follows from general uniqueness results for solutions to wave equa-
tions that if these quantities and their derivatives vanish on an initial hypersurface S,,
then necessarily O, = 0 and Q,; = 0 at least on a small enough slab around S,.

8.1.3 Summary

The analysis of the conformally invariant scalar field can be summarised in the fol-
lowing manner:

Proposition 4 The system of equations (34a)—(34e) with rescaled Cotton tensor given
by (49), together with the conformally invariant wave equation (46) and the auxiliary
system (50)—(51) written in terms of the reduced wave operator B, constitute a proper
system of quasilinear wave equations—see Remark 13.

8.2 The Maxwell field
The next example under consideration is the electromagnetic field. The physical
Maxwell equations expressed in terms of the antisymmetric Faraday tensor F,, are

given by

6alﬁ:ab =0,
ViaFpe) = 0.

It is well-known that the Maxwell equations are conformally invariant by defining the
unphysical Faraday tensor Fgp as
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From here it follows that the physical Maxwell equations imply

V4F,, =0, (55a)
ViaFpe) =0, (55b)

with the associated unphysical Maxwell energy-momentum tensor given by

.1 )
Tap = FachL - ZgachdFLd- (56)

Alternatively, defining the Hodge dual F;, of the Faraday tensor as

1
E = —Eeab“’ch, (57)

a
the second unphysical Maxwell equation (55b) can be written as:

VOFS = 0. (58)
8.2.1 Auxiliary field and the evolution equations

A geometric wave equation for the Faraday tensor can be obtained from differentiation
of the Maxwell equation (55b), which represents a natural integrability condition for
this field. Commuting covariant derivatives and applying Eq. (55a), a calculation yields

OFpe = Y FpeR — 2EF“dpgeq. (59)

From Eq. (6d) it follows that the rescaled Cotton tensor contains first derivatives
of F,p. This puts at risk the hyperbolicity of the system (34a)—(34d). In order to deal
with this problem we introduce the auxiliary variable

Fape = Vo Fpe, (60)

satisfying Fype = Fgape)- By virtue of Eq. (55b) it also follows that Figzpe) = 0. In
terms of this quantity, it can be readily checked that the rescaled Cotton tensor for the
Maxwell field takes the form
Tabe = EFp? Fated — 3 EFe! Faab + 5 88cta F ¥ Filae
— 3Fca Fia" V1 E + Fae F* g01a Vi E
— gelaFin‘ Fae VIE. (61)
From definition (60) it follows that F,;. possesses two independent divergences:

V@ F,pe 1s simply the right-hand side of wave equation (59) whilst the other is given
by

. . 1 .
VeFap = EF“dyepa — ¢ RFab + 2Fla L, (62)
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as a direct calculation confirms. In order to obtain an integrability condition for F,,
consider the expression 3V|4 Fi45c]. Commuting covariant derivatives and using the
first Bianchi identity for the Weyl tensor, a straightforward calculation results in:

3Vid Flapel = —38F1a°djaelbe] + 6F1abLela + 68afa Fp® Leje- (63)

A geometric wave equation can be obtained by applying V¢ to the last expression and
commuting derivatives. Using Egs. (5¢), (5d), (8), (10), (62) as well as the symmetries
of dypeq and T,p. to simplify it, a long but direct calculation yields

OFape = — 2EF" Thea + 4EFp" Taaie) — 2EFa““dpace

— 4BF " dereaq + % FapeR + 4F % peLag

—4F4 Lo — 4F 1, 8caLae + 3 FpcVaR

— 2Fduqep Ve E — 4EFVipdeaa

— AFapVe R — 2Fp°deteaa V' E — Fy°daepc V' E

— 4Fp°dc1dae V' E — Fu®dpcac V' E

+2F% gappderear V' E + S gap Fela VI R. (64)
This equation can be further simplified via a pair of observations. Firstly, by multiply-
ing Eq. (14) by F98 the following auxiliary identity is found:
2Fia%dpleca Ve E = 2Fic*daeap VI E + 2F%dpodia Vi E — 2F8 gefadpleag VI E = 0.

(65)

Secondly, from Eq. (10) we have the following relations:

4EFdeV[bdc]ead = _Zaebcedee *Taa’f + ZEFdevedadva
EFdeVedadhc = _%:ﬂzdedee *Tbcf - %:Fdevadhcde-

Combining them we readily obtain the identity
4EFVpdead = 4EFp Tiajera — 28 Fa Toea + EFVadpede. (66)
Making use of (65) and (66), the wave equation for Fj. takes a simpler form:

OFupe = 4EFp Trga — 28 F,%dpace — AF 5 deteaa
+ 3 FapcR + 4F %y Laq — 4F%qpLeya
—4F 0, 8caLae + 3 FpeVaR — Y Fap Vel R
+ 18 Fera VIR — 4F*dageip Vel E
— 4Fp6daae VI E — 2F,°dpeae VI E — EFV ydpege. (67)
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Asremarked in the case of the conformally invariant scalar field, the geometric operator
[Jisto bereplaced by M when Egs. (59) and (67) are coupled to the system (34a)—(34e).

8.2.2 Subsidiary equations

In order to complete the discussion of the Maxwell field it is necessary to construct
suitable evolution equations for the zero-quantities

My = V@ Fyp, (68a)
Mape = V[a Fbc]» (68b)
Qabe = Fabe — VaFpe. (68¢)

Here, M5, possesses the symmetries
Mabc = Ma[bc] = M[ab]c = M[abc]- (693)
Also, one can verify the following identities:

ViM, =0, (70a)
V Mape = —3ViaMp). (70b)

Remark 25 Following the spirit of the discussion in the previous section, the zero-
quantities M, and M,;. encode Maxwell equations (55a) and (55b), respectively,
while Q. does so for the auxiliary field Fyp..

Equation for M,. Observe that Eq. (70b) works as an integrability condition for M.
Applying V?, using (70a) and exploiting the various symmetries of My, one obtains

OM, = 1 M,R +2M"L,,. (71)

Equation for M. In order to avoid lengthy expressions it is simpler to consider the
Hodge dual of M, defined as

1
Mf=VPF} = Eeabfd Mped. (72)
Here, the second equality is a consequence of Egs. (60) and (68b). From this defi-
nition it can be easily checked that M is divergencefree which, in turn, implies an
integrability condition. More explicitly:

VGM;k =0 < VM =0. (73)

Applying V¢ to (73) and commuting derivatives, a straightforward calculation leads
to

OMape = 3 RMupe — 68diav* Meyae — 6L1a" Mpcya, (74)
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where it has been used that V|, V|d|MbC]‘1 vanishes by virtue of Eq. (70b).

Equation for Q,,.. A wave equation for the field Q,5. can be obtained by direct
application of the [J operator. Employing definitions (68a) and (68c), along with
Egs. (17¢), (17d), (59) and (67), one obtains the expression

OQuabe = 4EFp Ajajea — 2800 dpace — 2B Q0 1°dc1ead
+ %QabcR —4MpLeyg +40%cLag
—40%wLeya + 6L Mpca — 409 5% geraLae
+2F%dpaceVa B — 4F " dugep Ve B
— 6F4°dpeja. VO E. (75)

In order to show that the terms not containing zero-quantities vanish, observe that the
first Bianchi identity implies that

2Fdedbdcevu8 - 4FdedadelbvclE = 3Fdedde[abvc]E~

On the other hand, multiplying definition (21) by F¢¢, a short calculation yields the
auxiliary identity

3F%dyap Ve E — 6Fudpeiae VI E = 0.
From the last two expressions it follows then that

DQubc = 4EF[bdA|a|c]d - 2EQadedbdce - 2Elebedc]ead
+ %QabcR - 4M[ch]a + 4decLad
—40%pLag + 6La"Mpca — 40 v ge1aLae. (76)

Remark 26 Geometric wave equations (71), (74) and (76) are crucially homogeneous
in My, Mype, Qape and Agpe. Thus, if these quantities and their first covariant deriva-
tives vanish on an initial hypersurface S,, it can be guaranteed that there exists a unique
solution on a small enough slab of S,, and it corresponds to M, = 0, M. = 0 and

Qabc =0.

8.2.3 Summary

The previous discussion about the coupling of the Maxwell field to the metric tracefree
conformal Einstein field equations can be summarised as follows:

Proposition 5 The system of wave equations (34a)—(34e) with rescaled Cotton tensor
given by (61) together with the wave equations (59) and (67) written in terms of the
wave operator B is a proper quasilinear system of wave equations for the Einstein-
Maxwell system.
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8.3 The Yang-Mills field

The Yang-Mills field is the last example of a tracefree matter model we study in
this paper. Due to its similarities with the Faraday field, some of the calculations will
result analogous to the ones performed in the previous subsection. However, one of
the distinctive features of the Yang—Mills field is the fact that, in order to obtain a
hyperbolic reduction of the equations, one needs to introduce a set of gauge source
functions fixing the divergence of the gauge potential. The consistency of this gauge
choice will be analysed towards the end of the section.

8.3.1 Basic equations

The Yang—Mills field consists of a set of gauge potentials A® « and gauge fields F® v
where the indices a, b, ... take values in a Lie algebra g of a Lie group &. The
equations satisfied by the fields A, and F*,, are:

6aiiab - 6aiiab + CahcANbaANCb - Fuab = Os
%aﬁaab + CabcAbaﬁcab = 0»
Via F®pe) + C%c A% (o F ey = 0.

Here C%. = C%p] denote the structure constants of the Lie algebra g which satisfy
the Jacobi identity

C%eCl%c + CecC’p + C%CPae = 0. (77)
Also, the energy-momentum tensor associated to the Yang—Mills field is given by
Tab = %Sabﬁacdﬁbmgc{b - (Sabﬁaacﬁbbc~

Conformal invariance. The Yang—Mills equations are well-known to be conformally
invariant. More precisely, defining the unphysical fields:

Faab = Fuabv Aua = Aum

a direct computation under the conformal rescaling (3) renders the unphysical Yang—
Mills equations

VaA%) — VpA® 4 COhc A% Ay — FOu =0, (78a)
VAF®gp + C¥c AP F = 0, (78b)
ViaF%pe) + C%c A% (o Fpe) = 0. (78c)

In addition, the unphysical energy-momentum tensor is
1 a bed a b ¢
Tap = ZaabF edF7gab — 8ab F ac F7p°. (79)
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Finally, it will result useful to introduce the dual of F'%,;, defined as
F*p = —€ap" Foea. (80)

Remark 27 Due to the form of the energy-momentum tensor given in (79), first deriva-
tives of F°,;, will appear in the rescaled Cotton tensor, putting at risk the hyperbolicity
of the system (34a)—(34d). As in the case of the Maxwell field, this will make necessary
the introduction of an auxiliary quantity.

8.3.2 Evolution equations for the Yang-Mills fields

Suitable wave equations for the Yang—Mills fields can be obtained by a procedure anal-
ogous to the one used for the Maxwell field. Accordingly, we introduce the auxiliary
field

Faabc = VaFabc + CabcAbchbc~ (81)

Moreover, the construction of a geometric wave equation for the Yang-Mills gauge
potentials requires the introduction of gauge source functions f%(x) depending in a
smooth way on the coordinates and fixing the value of the divergence of the potential.
More precisely, in the following we set

VIAS, = f%x). (82)

Equation for the field strength. The Yang—Mills Bianchi identity, Eq. (78c), repre-
sents an integrability condition for the field strength tensors F¢,,. Differentiating it
and making use of Egs. (77) and (78a)—(78c), a straightforward calculation results in

OFap = = 2EF “Udycpa + 3F ap R +2C % F0  Fpe
- zcachccabAbC - CabececDFaabAhCAtc
+ C%c fP () F b (83)

Equation for the gauge potential. Equation (78a) provides a natural integrability
condition for the gauge potential field. After applying V?, commuting derivatives and
using Eq. (78b), one arrives to:

A% = LA R +2A% Ly, + C% F ap A + C%%c fC () A",
—C% APV A, + V, fO (). (84)

Equation for the auxiliary field. A suitable integrability condition for the field F ¢,
can be obtained from its definition. Using this and Eq. (78c), some manipulations yield

3V[a'Fa\a\bc] = _3EFa[bedcd]ae + 6Fa[bch]a +6ga[bFaceLd]e
—3C%%FappeA®a) — 3C% 5 Va A [ S qy.
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Proceeding as in the case of the wave equation for F'® ., as well as using the Jacobi
identity and definitions (86a)—(86d), a lengthy calculation results in

OF e = 3F%peR +4F " Lag + 2F e F 0qC%c — F ape f° (x)C %

— FPupe AP A 4C%Ct a

+ LF% VR — 24P C% YV FC e

— F®daepeVIE — F®Cdpeqe VI E + 2EF Y, dyape

— 48F"  djdicre — 2EF* o “dipiajcre

— 4F% iy Ly + 4B F 3 Ty + 4B F° 1 Thaaye

— LF% Ve R +4F 4, FC g C %

— 4F 1, Ligegaje) — 2EF “* Tiplae galer

— 4F 1y djad) 1 Ve € = 2Fp?dja)* 1a V. B

+ 2F "l Ve B — 3 F 57 8ajc1 Va R

—2F% g, 0, Vg Lele. (85)
In a similar manner to the two previous matter models, when Eqgs. (83), (84) and (85)

are coupled to the system of wave equations for the conformal fields, the [J operator
is to be replaced by its counterpart H.

8.3.3 Subsidiary equations

The next step in the analysis of the Yang—Mills field is the introduction of the corre-
sponding subsidiary quantities and the consequent construction of suitable geometric
wave equations for them. For this purpose define the following set of zero-quantities:

M® = VPF% + COc AP FCyy, (86a)
M®ap = VA%, — VA%, + Cc A% A%y — F%u, (86b)
MO upe = ViaF®pe) + C%e AP0 F ey, (86¢)
0%ube = FPape — VaF%he — C A%y Fpe. (86d)

Notice that, unlike the Maxwell field analysis, an additional field M ¢, must be con-
sidered due to the introduction of the gauge potential A®,. Combining (86¢) and (86d)
an auxiliary relation is directly obtained, namely

3Maabc + 3Qa[abc] - 3Fu[abc] =0. (87)
From these definitions, it follows that M %, and M ®,; possess the symmetries
MO pe = M®appe) = M apie = M ape), Map = —M p,. (88)

@ Springer



Conformal wave equations for the Einstein-tracefree... Page330f39 88

Furthermore, direct calculations show that the Yang—Mills zero-quantities satisfy the
relations

VaM® = —C% AP M, + CO FP*P M* (89a)

VPMe = MO, (89b)
VoM p" = =3V M%) — 3C%6c AP M ) — COpe AP MC g

_%CubcAbanabc - %Cachb[baMcc]a- (89¢)

Equation for M*°,;,. Consider the expression 3V[.M*",;;. Commuting covariant
derivatives, substituting expressions (86c), (86d) and exploiting the Jacobi identity
for the structure constants, the integrability condition is obtained:

3VieM ) = —M%ape — 3C% 5 A% M . (90)
Applying V¢ to the last equation, a short calculation using Eqgs. (8§9a) and (89c¢) yields

OM®ap =3C%pc A" M ape +2C%pc A% Qi + SRM 4
— 2dacpaM ™ — C%4c fO M ap
— 20 Fla“M pje + 2VeM® " — Cc APV M o
—2C% % M* o VEAY. (91)

Equation for M?,. Equation (89¢) constitutes an integrability condition for the field
M*?,. A suitable wave equation can be obtained by first applying V¢, commuting
derivatives and observing that V.V, M %, = V[.V,;M *,*¢. Then, using definitions
(86a)—(86d) along with (89a), (89b), (90), the Jacobi identity, and an appropriate
substitution of (87), a long but straightforward computation results in:

OM®, =2LpgM® + s RM®) + 2F 5 C% M — fO(x)C% M)
— APIATC e Ct oM
_ %FbaccabcMcbac + 3AbaAcCCabDCaceMebac
+2APACCTC% e O cha
- %CabcMchachac + 2FbahccabcMcac - 2Cubc QbabcMCac
+ FOEARC o C¥he M g — 2A%C O Va M + 2% C% Ve Q% 0
—3C% M e VEAP +2C% O ape VEALY. (92)

Equation for M?® ;.. In a similar fashion to the approach adopted for the electromag-
netic zero-quantity M., and in order to simplify the calculations, we introduce the
Hodge dual of M®,p,:

M*aa = Cuch*cbaAbb + VbF*aba — %GadeMabcd- (93)
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Here, the second equality has been obtained with help of (80) and (86c¢). With this
expression we compute the divergence of M*¢,. Making use of (86b) and the Jacobi
identity, a calculation yields
VaM*ua — _CabececaF*babAbaAcb _ CabeAbaM*ca + CubeF*cabeAba
— _CabeAbaM*ca _ };CabeéadeFbachcd-

In terms of non-dual objects this takes the form of an integrability condition:

eadeVdMaabc — CabceabchbaMcbcd + %CabceadeFbachcd
= AVaM peq) = 4C%6c Al M *ped) +2C 6 F  Lap M ca. (94)
Then, a suitable wave equation can be obtained applying V¢ and commuting deriva-
tives. After a long calculation in which definitions (86a)—(86d), Eqgs. (87)—(90) and
the Jacobi identity are employed, one finds that
OM®ape = §RM® pe — AP A°GC% 50 COce M e
— C%c [P ()M ape —2A%COcVaM  ape
— 68diq"p* M ge — 6L 10" M bera
+ 2de[abCa|bc|M‘c]d - 6Fb[adca\bc|Mcbc]d
— 24%C% Vi Q% ajper +2C%6c 0% 1ap Ve A
—2C%c Q™ b M pa
+ FPlapA“C 60 CP e M ga — 240 A Co160 C® e Q% ajper. (95)
Equation for Q%,;.. Similar to the case for the Maxwell field, a wave equation for
Q% pe can be obtained by directly applying the [J operator to its definition. Since

the identity used in the deduction of Eq. (76) has the same form for the Yang—Mills
strength field, an analogous procedure can be followed. A long computation gives:

00%pe = 6Ly M peq + ARO%ape + 4L Q%ape — fO(x)C%pc Q% ape
—2F%9C%c 0% ape
— AM A GO CP e Q% ape + 2450 A C 5o C e Q% e
+ Fpe AP CO 0 C¥% e M aa
—2F AP C%0 C0 e M g +2C%6c O  abe Va A
+4A% C% Vg Q% dppe
+2C% MV F e + 4BF b Aciaa
+4EF 7 Ajtega — 2Bdp? o 0% ade
+4Ed, 15° 0% dicte + 4LappM® ) + 4L 0% ldaje] + EF % Ajplaealc]
+4F 1 C% 6 O atcra + 4L 8ap O ldlcle- (96)

@ Springer



Conformal wave equations for the Einstein-tracefree... Page350f39 88

8.3.4 Propagation of the gauge

In this subsection we show the consistency of the introduction of the gauge source
functions f®(x) into the analysis of the propagation of the constraints for the Yang—
Mills potential. For this purpose we introduce the zero-quantity P® defined as:

P% = VA%, — f*(x). 97

The computation of a wave equation for this field is straightforward: first, a short
calculation employing Egs. (84), (86a), (86b) and (89b) gives

V P% = —A%,C% PC — M%), + V,M%°.
From here, application of a further covariant derivative results directly in

DPCI — _fbcubcPC + AbucabcMCa _ %FhabcabcMCab _ Abbcabcvbpt.
(98)

Remark 28 Geometric wave equations (91), (92), (95), (96) and (98) are homogeneous
inM%, M%;p, M®.e, Q%pe, P®, Agpe and their first covariant derivatives. Thus,
if these fields vanish on an initial hypersurface S,, it can be guaranteed that there exists
a unique solution on a small enough slab of S, and this solution is the trivial one.

8.3.5 Summary

The previous discussion about the Yang—Mills field coupled to the conformal Einstein
field equations leads to the following statement:

Proposition 6 The system of wave equations (34a)—(34e) with energy-momentum ten-
sor given by (79) coupled to wave equations (83), (84) and (85) written in terms of the
operator B is a proper quasilinear system of wave equations for the Einstein—Yang—
Mills system.

9 Applications

The purpose of this section is to provide a direct application of the analysis of the
evolution systems and subsidiary equations associated to the conformal Einstein field
equations coupled to tracefree matter. Arguably, the simplest applications of our anal-
ysis to a problem of global nature is that of the existence and stability of de-Sitter like
spacetimes. The original stability result of this type, for vacuum perturbations, was
carried in [8]. For the sake of conciseness of the presentation and given that the key
technical details have been discussed in the literature—see e.g. [15], Chapter 15—here
we pursue a high-level presentation in the spirit of [11].

In order to present the result, it is recalled that one of the key features of the con-
formal Einstein field equations is that they are regular up to the conformal boundary.
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This property is also satisfied by the conformally invariant scalar field equation, the
Maxwell equations and the Yang—Mills equations. Thus, they admit initial data pre-
scribed on spacelike hypersurfaces describing the conformal boundary of spacetime.
In an analogous way to the Einstein field equations, the metric conformal Einstein
field equations admit a 3+1 decomposition with respect to a foliation of spacelike
hypersurfaces. The equations in this decomposition which are intrinsic to the space-
like hypersurfaces are known as the conformal Einstein constraint equations—see e.g.
[15], Chapter 11. When evaluated on a spacelike hypersurface representing the con-
formal boundary of a de Sitter-like spacetime, these equations simplify considerably
and a procedure to construct the solutions to these equations is available—see [15],
Proposition 11.1 for the vacuum case; this result can be generalised to include tracefree
matter models. From the geometric side, the freely specifiable data in this construction
are given by the intrinsic metric of the conformal boundary and a TT-tensor prescrib-
ing the electric part of the rescaled Weyl tensor. The initial data obtained by this type
of construction will be known as asymptotic de Sitter-like initial data. The component
of the conformal boundary where the asymptotic de Sitter-like data are prescribed can
be either the future or the past one. In the following, for convenience, we restrict the
discussion to the case of the past component of the conformal boundary.

For asymptotic initial data sets of the type described in the previous paragraph one
has the following result:

Theorem 1 Consider (past) asymptotic de-Sitter initial data for the Einstein field equa-
tions with positive Cosmological constant coupled to any of the following matter
models:

(i) the conformally invariant scalar field,
(ii) the Maxwell field,
(iii) the Yang—Mills field.

Then one has that:

(a) The initial data determine a unique, maximal, globally hyperbolic solution to the
Einstein field equations which admits a smooth de Sitter-like conformal future
extension.

(b) The set of initial data sets leading to developments which admit smooth conformal
extensions to both the future and past is an open set (in the appropriate Sobolev
norm) of the set of asymptotic initial data.

Proof We only provide a sketch of the proof as the strategy is similar to the one
followed in the proof of the stability of the Milne spacetime in [12]. A version of
the proof which uses first order symmetric hyperbolic systems can be found in [15],
Chapter 15.

The first main observation is that the conformal representation of the (vacuum) de
Sitter spacetime in terms of the embedding into the Einstein cylinder gives rise to a
solution to the conformal Einstein field equations. Coordinates (x) = (¢, x) can be
chosen so that the two components of the conformal boundary are located att = £ %n.
For this representation the Ricci scalar takes the value —6 and the conformal factor is

o
=~

given by E = cost. In the following we denote by 1 this solution to the conformal
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equations and by W, its restriction to the hypersurface r = —%n which corresponds
to the past conformal boundary .#~. We will look for solutions to the conformal
evolution equations of the form u = @ + u with initial data given by u, = u, + ,.
The fields @ and u, describe the (non-linear) perturbations. Substituting this form of
the solution into the evolution equations one obtains a system of quasilinear equations
for the components of @ which can be schematically written as

(8" () + " (s )9, 0y = F(x; @, 91d). (99)

In the above expression g¢*V denote the components of the contravariant metric on the
Einstein cylinder. The above equation is in the form for which the local existence and
Cauchy stability theory of quasilinear wave equations as given in, say, [13] applies.
Initial data for the system (99) are of the form (i, d,1,). The size of the initial data
is encoded in the expression

I, 9i) llgs =1 0a 3 + I 00 I3 4

where || ||s3 ,, denotes the standard Sobolev norm of order m > 4 on a manifold
which is topologically S3. If the initial data (i, d;1i,) are sufficiently small then
the contravariant metric on . ~ given by g"V(x,) + g""(x4; U,) is Lorentzian—this
property is preserved in the evolution. Now, the background solution 1 is well-defined
and smooth on the whole of the Einstein cylinder; in particular, up to t = m for which
one has that 2 l;=x = —1. It follows from the Cauchy stability statements in [13] that
if || (W, 0,W,) |ls3 ,, is sufficiently small then the solution will exists up to t = 7. By
restricting, if necessary, the size of the data one has that

Eli=gx = =1+ Ei=r < 0.
From the above observation it can be argued that the function & = E + E over
the Einstein cylinder becomes zero on a spacelike hypersurface which lies between
the times ¢+ = 0 and # = 7. This hypersurface corresponds to the future conformal
boundary (.#) arising from the data (i, d;1,) on .% .

Once the existence of a global solution to the evolution system has been established,
one makes use of the uniqueness of solutions to systems of quasilinear wave equations
to prove the propagation of the constraints. To this end one observes that if the initial
data satisfies the conformal constraints at the past conformal boundary .# ~, then a
calculation shows that the zero-quantities and their normal derivatives also vanish on
#~. As the subsidiary evolution system is homogeneous in the zero-quantities, it
follows that its unique solution must be the trivial (i.e. vanishing) one. Thus, one has
obtained a global solution to the conformal Einstein field equations. From the general
theory of the conformal Einstein field equations—see e.g. Proposition 8.1 in Chapter
8 of [15]—this solution implies, in turn, a solution to the Einstein field equations with
positive Cosmological constant having de Sitter-like asymptotics. O

Remark 29 The above theorem is a global stability result for the de Sitter spacetime
under perturbations involving a conformally invariant scalar field, a Maxwell field
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or a Yang—Mills field as (trivially) the de Sitter spacetime can be constructed from
asymptotic initial data. Thus, for a suitably small neighbourhood of asymptotic de
Sitter data, all data in the neighbourhood give rise to global solutions.

Remark 30 The cases (ii) and (iii)—the Maxwell and Yang—Mills fields, have been
studied using first order symmetric hyperbolic systems in [9]. However, the case
(i)—the conformally invariant scalar field—has, hitherto, not been considered in the
literature.

Remark 31 The theory in [13] is the analogue for systems wave equations of the theory
for symmetric hyperbolic systems developed in [14]. A version of the key existence
and Cauchy stability result in [13] given in the form used in Theorem 1 can be found
in the Appendix of [12].

10 Concluding remarks

The global existence and stability result presented in Theorem 1 is the simplest appli-
cation of the analysis of the second order conformal evolution equations developed in
this article. A further application is to the construction of anti-de Sitter-like spacetimes
with tracefree matter models following the strategy implemented in [3]—this construc-
tion will be presented elsewhere [2]. The theory developed in this article should also
allow to obtain matter generalisation of the existence results for characteristic initial
value problems considered in [6].

More crucially, the analysis in this article should also pave the road for numerical
simulations of spacetimes with tracefree matter in the conformal setting. The use of the
metric conformal Einstein equations in conjunction with a coordinate gauge prescribed
in terms of generalised wave condition provides a formulation of the evolution equa-
tions for the conformal fields which can be regarded as a (unphysical) reduced Einstein
equation with (unphysical) matter described by the conformal factor, Friedrich scalar,
Schouten tensor and the rescaled Weyl tensor. Viewed in this way, one can readily
adapt the plethora of numerical know-how that has been developed in the numerical
simulations of the Einstein field equations. A further discussion of this idea can be
found in [10].
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