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V. Conclusion 
You can add more details to each section and include additional case studies or examples 

as appropriate. You may also want to include visuals such as images or animations to help 

illustrate key points. Good luck with your lecture! 
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AI methods are inspired by neurons in our brains.



Models can have millions of trainable parameters. 
Trained with thousands of example images.
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iPhone camera



 Our Camera!!!

iPhone camera

Victor M. Blanco 4-meter Telescope at the Cerro Tololo 
Inter-American Observatory (CTIO) in the Chilean Andes







Each DECam image is a gigabyte in size. 
DES takes a few hundred of these extremely 
large images per night, producing as much as 

2.5 terabytes of data per night. 







El Peñón peak of Cerro Pachón in northern 
Chile, alongside the existing Gemini South and 
Southern Astrophysical Research Telescope.
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But that is not all ….. Not even close!
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How is AI helping astrophysics?

Image/data processing and analysis

Speed up simulations

Scheduling and operations

Alert systems and real-time analysis

Hubble: supernova in the 
spiral galaxy NGC 2525
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Example 1



NASA’s James Webb Space Telescope – galaxy cluster SMACS 0723



NASA’s James Webb Space Telescope – galaxy cluster SMACS 0723



NASA’s James Webb Space Telescope – galaxy cluster SMACS 0723



NASA’s James Webb Space Telescope – galaxy cluster SMACS 0723

Galaxy images are 
distorted!





Gravitational Lensing
A massive celestial body (galaxy cluster) causes 
curvature of spacetime so that the path of light is 
visibly bent, as if by a lens.
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lensed galaxies are quite rare!

We can learn a lot about the 
evolution of our Universe and 
it’s content!

We can also easily simulate 
gravitational lenses!



Master Lens Database augmented by the results from DECam Local Volume Exploration Survey 
(DELVE)

 

Zaborowski et al. 2022.

DELVE

DES

DECaLS
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Zaborowski et al. 2022.
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Model is trained with examples of lensed and non-lensed 
galaxies to learn to distinguish between them.
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CNN finds 50,000 
candidates

Two rounds of 
visual inspection

617 final 
candidates

Zaborowski et al. 2022.
Hubble ~100 lenses, but LSST, Roman, Euclid will find ~10,000 !
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Why is this important?

Cosmology and how the universe 
evolves 

Probe galaxy structure

Probe distribution of matter

Enable observations of the distant 
universe

How?
By inferring properties of the lens system.
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Detector properties, light propagation, 
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Galaxy source and lens masses, shapes, 
positions, gravity, observational effects…

Detector properties, light propagation, 
galaxy properties, cosmology….

Simulation is easy….inference is hard!

[ ___ ] 
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It’s not necessary to explicitly calculate the integral!
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parameters

Poh et al. 2022.
Poh et al. 2024. in prep. 
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If we want to 
study the 

process we 
need a lot of 

galaxy pairs in 
different merger 

stages!

Unfortunately 
we cannot easily 

use 
observations for 

that…

Are galaxies 
really merging 
or just visually 
overlapping?



We need simulations!



We need even bigger simulations 
with many galaxies!



Simulations let us study how 
structures form and evolve 
over cosmic time!
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Train the model 
on source 
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boundary.
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Source Domain                  Target Domain                 Domain Alignment     

Train the model 
on source 

dataset and find 
the decision 
boundary.

New domain is 
shifted, 

learned decision 
boundary doesn’t 

work.

We need to align 
the data during 

training!

Combining Datasets

Why does this happen?
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Solving the dataset shift problem!
Train together and learn to use domain-invariant features.

Source - day      Target - night, rain

Source Domain Tarcet Domain 
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CLASSIFYFIND AND REFINE 
FEATURES

(NON)MERGER

Combining Datasets

TESTING

Testing the model

 Simulated   Observed

CLASSIFY

Domain Adaptation

SIMULATED 
IMAGES

+
LABELS

OBSERVED 
IMAGES

Enable merger searches in both clean and real noisy images!



Source - Illustris          Target - SDSS observations

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 

This is how the network sees the data.
2D representation of network’s latent space.
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Combining Datasets

s. accuracy
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Ćiprijanović et al. 2020.
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Source - Illustris          Target - SDSS observations

M

NM

Combining Datasets

t. accuracy 
~50%

s. accuracy
>80%Ćiprijanović et al. 2020.

Ćiprijanović et al. 2021. 
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Source - Illustris          Target - SDSS observations

M

NM

M

NM

t. accuracy 
~80%

s. accuracy
~90%

Up to 30% increase!

Combining Datasets

Ćiprijanović et al. 2020.
Ćiprijanović et al. 2021. 
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Complex models 
based on data

OPPORTUNITIES

● Enabling work with huge datasets.
● Speed of analysis like never 

before.
● Avoid compound biases in 

analysis.
● Potential for new discoveries.
● Models include details, no need 

for approximations.

CHALLENGES

● Model is as good as the data.
● Watch out for biased data!
● Often do not work for 

out-of-distribution data.
● We have to carefully think about the 

data and how to apply AI methods.
● It will learn even the biases we are not 

aware of.
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● AI has great potential for astrophysics 
research, as it can be used to analyze large 
amounts of data and identify patterns that 
may not be apparent to human researchers.

● Data analysis, image processing, speeding 
up simulations,  new discoveries…

● We still have long way to go

…but stay tuned!
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