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Abstract

Random matrix theory (RMT) is a mathematical framework that has found profound
applications in physics, particularly in the study of many-body systems. Its success lies
in its ability to predict universal statistical properties of complex systems, independent
of the specific details. This thesis explores the application of RMT to two classes of
many-body systems: quantum and stochastic many-body systems.

Within the quantum framework, this work focuses on the Bose-Hubbard system,
which is paradigmatic for modeling ultracold atoms in optical traps. According to
RMT and the Eigenstate Thermalization Hypothesis (ETH), eigenstate-to-eigenstate
fluctuations of expectation values of local observables decay rapidly with the system
size in the thermodynamic limit at sufficiently large temperatures. Here, we study
these fluctuations in the classical limit of fixed lattice size and increasing boson number.
We find that the fluctuations follow the RMT prediction for large system sizes but
deviate substantially for small lattices. Partly motivated by these results, the Bose-
Hubbard model on three sites is studied in more detail. On few sites, the Bose-Hubbard
model is known to be a mixed system, being neither fully chaotic nor integrable. We
compare energy-resolved classical and quantum measures of chaos, which show a strong
agreement. Deviations from RMT predictions are attributed to the mixed nature of
the few-site model.

In the context of stochastic systems, generators of Markov processes are studied.
The focus is on the spectrum. We present results from two investigations of Markov
spectra. First, we investigate the effect of sparsity on the spectrum of random generators.
Dense random matrices previously used as a model for generic generators led to very
large spectral gaps and therefore to unphysically short relaxation times. In this work,
a model of random generators with adjustable sparsity — number of zero matrix
elements — is presented, extending the dense framework. It is shown that sparsity
leads to longer, more physically realistic relaxation times. Second, the generator
spectrum of the Asymmetric Simple Exclusion Process (ASEP), a quintessential model

in non-equilibrium statistical mechanics, is analyzed. We investigate the spectral



vi

boundary, which is characterized by pronounced spikes. The emergence of these spikes
is analyzed from several points of view, including RMT.

The results presented in this thesis contribute to the understanding of the ap-
plicability of RMT to many-body systems. This thesis highlights successes such as
the explanation of “ETH fluctuations” in Bose-Hubbard models, the improvement of
random matrix descriptions by introducing sparsity, and the emergence of spikes in
the spectral boundary of the ASEP. The latter is a notable case where RMT provides
insights even though the ASEP is a Bethe-integrable system. Furthermore, this thesis
shows examples of the limits of RMT, exemplified by the results presented for the

Bose-Hubbard model with a few sites.
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Chapter 1

Introduction

Many-body systems in theoretical physics represent an extensive and intricate domain,
where the focus is on understanding the collective behavior of systems composed of
many interacting components. The term “body” can refer to anything from atoms in
a solid or electrons in a conductor to stars in a galaxy. Many-body systems are not
just a simple extrapolation of single-particle physics; they exhibit unique and often
unexpected behaviors emerging from the interactions between the many constituents
of the system.

The study of many-body systems presents several challenges. Real world systems
are often so complex that the terms and values for the interactions used to represent
them are unknown. Even with precise knowledge of these parameters, the explicit
analysis of many-body systems remains challenging. In interacting many-body systems,
the state space expands rapidly with the number of particles, making exact solutions
infeasible for all but the smallest systems. In addition, strong interactions preclude
treatment as small perturbations, necessitating non-perturbative techniques.

The use of random matrix theory (RMT) in many-body systems addresses these
challenges. The first application of RMT in physics, specifically to many-body systems,
dates back to the 1950s by Eugene Wigner. He showed that statistical correlations in
the energy spectra of highly excited heavy nuclei align with eigenvalue correlations in
large random matrices. As quantum mechanical many-body systems, heavy nuclei are
modeled by Hamiltonians that are represented by large matrices. The exact calculation
of high-energy eigenvalues in such complex systems is impractical. Wigner circumvented
this by shifting the focus to the statistical properties of energy levels and replacing the
Hamiltonian with large matrices having random entries.

The physical properties of the Hamiltonian impose constraints on the ensemble

of random matrices to be considered. The microscopic time-evolution of the physical
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system is unitary, so the random matrix should be Hermitian. Additionally, the
ensemble should adhere to the symmetries of the system, such as time-reversal symmetry.
Wigner demonstrated that only these general characteristics, rather than the intricate
details of the model, affect the correlations among energy eigenvalues.

In his application of RMT to the high-energy correlations in large nuclei, Wigner
demonstrated its utility in analyzing many-body systems. The RMT method starts
by pinpointing key structural aspects like symmetries and conservation laws. It then
assumes the system is a typical representation of a random distribution that adheres
to the identified structures.

In doing so, RMT parallels the principles of statistical mechanics, where emphasis is
shifted from detailed microstates to the aggregate macroscopic and statistical behaviors.
Unlike statistical mechanics, which requires understanding of the microscopic laws
governing interactions, RMT presupposes no specific knowledge of these laws but
adopts a probability distribution of all possible interactions. As Freeman Dyson
stated in the 1960s, RMT represents “a new kind of statistical mechanics, in which we
renounce exact knowledge not of the state of a system but of the nature of the system
itself” [1]. This approach makes RMT a fundamental yet comprehensive model for
many-body systems with complex or unknown interactions, capturing their essential
features without detailed microscopic insights.

In this thesis, we explore the applications of RMT to two classes of many-body
systems: quantum many-body systems and stochastic many-body systems. Despite
their distinct nature, these two classes can be mathematically modeled similarly. Both
are characterized by dynamics driven by linear operators, to which RMT can be applied.
In quantum mechanics, the state of a system is encapsulated by a wavefunction within a
Hilbert space, with its evolution governed by the Hamiltonian. Probabilistic systems are
characterized by probability distributions over microstates. For Markovian (memory-
less) systems the temporal change of these probability distributions is determined by a
linear generator known as the Kolmogorov operator.

In the quantum context, two major contributions of RMT are particularly relevant to
this thesis. First, RMT has been instrumental in bridging classical and quantum chaos.
Quantum systems with classical chaotic limits share features with random matrices,
including correlations among eigenvalues and the delocalization of eigenstates. This
led to classifying quantum systems, which mirror the behavior of random matrices, as
quantum chaotic. Second, RMT significantly aids in the understanding of thermalization
in isolated quantum many-body systems. Especially, a generalization of an RMT-ansatz

to eigenstates of these systems lead to the Eigenstate Thermalization Hypothesis (ETH).
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The ETH predicts that in large, generic systems, eigenstate-to-eigenstate fluctuations
of expectation values of observables are sufficiently small, allowing these expectation
values to attain their equilibrium value in the long time limit.

In this thesis, these two RMT insights are investigated for a specific quantum many-
body system — the Bose-Hubbard model which captures the physics of ultracold atoms
in optical lattices. We analyze different quantum chaos metrics and contrast them
with chaos indicators of its classical counterpart, the discrete nonlinear Schrodinger or
Gross-Pitaevskii equation. Furthermore, we explore the “ETH-fluctuations” of local
observables in the classical limit of the quantum model.

In our analysis of stochastic many-body systems, we focus on the spectrum of
Markov generators. This spectrum, particularly the spectral gap, indicates relaxation
times of the systems to their steady state. By studying random Markov generators, we
identify the sparsity — many zero matrix elements — of generators as the significant
structure that leads to physically realistic relaxation times. This is in contrast to
previously studied dense random generators which yield non-physical relaxation times.
Additionally, we analyze the generator spectrum of a paradigmatic stochastic many-
body system, the Asymmetric Simple Exclusion Process (ASEP). We derive in detail
the origin of spikes in the spectral boundary and link it to random matrices with higher-
order correlations between entries and random graphs with specific cycle structures.

The remainder of the introduction to this thesis is divided into four sections. Section
1.1 provides an introduction to RMT, with focus on spectral densities and correlations
of nearby eigenvalues. Additionally, we briefly discuss random matrix eigenstates and
the connection between matrices and graphs. Section 1.2 introduces the concepts of
quantum chaos and the ETH, as well as the Bose-Hubbard model and its classical
limit, the Gross-Pitaevskii equation. In Section 1.3, we introduce generators of Markov
processes and random (dense) generators. We present the ASEP as a paradigmatic
many-body Markov process. In Section 1.4, we outline the content of this thesis and

provide a summary of the main results.

1.1 Random matrices

This section introduces random matrices, with a focus on properties that are relevant
to the application of RMT to many-body systems. An introduction to RMT specifically
for physicists is provided by Livan, Nivaes and Vivo [2]. Thorough treatments of the
fundamentals, history and applications of random matrices are given in the books of
Mehta [3], Forrester [4], and Akeman et al [5] and the review by Edelman and Rao [6].



4 Introduction

This is only a short and personally motivated list of the extensive literature on the
topic of random matrices.

This introduction to RMT is organized as follows: In Section 1.1.1, we introduce
the Hermitian Gaussian ensembles and their non-Hermitian counterparts, the Ginibre
ensembles, and comment on their spectral decomposition. Further, we present more
general ensembles, which are relevant to this thesis. Section 1.1.2 focuses on the
spectral density in the limit of large matrix size. We present Wigner’s semicircle law
for Hermitian matrices and the circular law for non-Hermitian matrices. The latter is
generalized to the elliptic and hypotrochoidic law. The non-Hermitian spectral densities
are relevant for discussing the spectrum of random Kolmogorov operators in Chapter 4
and the ASEP in Chapter 5. Section 1.1.3 addresses correlations among eigenvalues,
with focus on the nearest and next-nearest neighbor correlations. We present results for
Hermitian matrices, relevant for our analysis of the Bose-Hubbard model, and results
for non-Hermitian matrices, which are important for discussing random Kolmogorov
operators. In Section 1.1.4, we comment on eigenstates of Hermitian random matrices.
These considerations are relevant in our analysis of the “ETH-fluctuations” and chaos
in the Bose-Hubbard model in Chapters 2 and 3. We conclude with presenting the
connection between matrices and graphs in Section 1.1.5. This relation is relevant for

discussing sparse matrices in Chapters 4 and 5.

1.1.1 Ensembles of random matrices
Gaussian ensembles

When Wigner [7] compared the energy correlations of heavy nuclei to random matrix
ensembles he considered the simplest ensemble of random matrices obeying the global
properties of the considered physical systems: Gaussian random ensembles. In Gaussian
random matrices, up to global constraints, all matrix entries are independent random
variables, with a common Gaussian distribution. The constraints on the matrix entries
ensure Hermiticity and possible symmetries like time-reversal symmetry.

In the Gaussian Orthogonal Ensemble (GOE), the matrices H are characterized by

their elements H;;, which are distributed according to
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where ~ N (p, 0?) denotes equality in probability to a Gaussian distribution with mean
i and variance 0. The lower triangular matrix elements are defined via the symmetry
condition H;; = Hj;, which ensures the Hermitian nature of the matrix. Apart from
this condition of Hermiticity, the matrix elements are mutually independent.

The designation “orthogonal” in the GOE relates to the invariance of the ensemble
under orthogonal transformations. This is most evident when considering the probability
density P(H) of the GOE with respect to the Lebesgue measure dH = [[;<;<;<p dH;;
with dH;; denoting the standard Lebesgue measure in R and D the matrix size. This
density is given by

P(H)dH — ;exp (—; r H2> dH, (1.2)

where Z is a normalization constant ensuring that Eq. (1.2) integrated over RP(P+1)/2
equals 1. The additional factor of 2 relating the variances of the diagonal and off-
diagonal matrix elements in Eq. (1.1) is crucial in deriving Eq. (1.2). When transform-
ing H via H — OTHO for an orthogonal matrix O, the trace term tr(H?) remains
unchanged. Furthermore, the Lebesgue measure dH is invariant under linear trans-
formations that satisfy | det(O)| = 1, a well-established result in measure theory [8].
Therefore, the GOE is invariant under orthogonal transformations.

The GOE, along with the Gaussian Unitary Ensemble (GUE) and the Gaussian
Symplectic Ensemble (GSE), form the triad of classical Hermitian Gaussian ensembles.
Each ensemble is defined by a unique symmetry: the GOE exhibits invariance under
orthogonal, the GUE under unitary, and the GSE under symplectic transformations. In
contrast to the real matrix elements of the GOE, the GUE and GSE are characterized by
matrix elements following complex and quaternionic Gaussian distributions, respectively.
A common feature across these ensembles is Hermiticity and, beyond this constraint,
the mutual independence of all matrix elements. The Gaussian measure, as specified
in Eq. (1.2), is the same for all three ensembles, except for the Lebesgue measure. It
operates over the complex numbers in the GUE case and over the quaternions in the

GSE case, with the constraint that diagonal elements are real.

Symmetries imply nature of matrix elements

The three Gaussian ensembles emerged from symmetry considerations of quantum
Hamiltonians, known as Dyson’s three-fold way [9, 10]. This approach aims to classify
the fundamental properties of a Hamiltonian H, which either exhibits or lacks time-
reversal symmetry 7. The Hamiltonians H not invariant under 7 are most generally

expressed through Hermitian matrices with complex entries. If H is invariant under 7T,
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two cases emerge: 72 = +1or 72 = —1. When 7?2 = +1, H is equal to its elementwise
complex conjugate, H = H*, making H real symmetric. When 72 = —1, the matrix
elements of H are quaternionic. These are Dyson’s three symmetry classes. They
are commonly enumerated by the Dyson index [, which denotes the number of real
components of the matrix entries: § = 1 for real, § = 2 for complex, and § = 4 for
quaternionic matrix entries. The Gaussian measure given by Eq. (1.2) on these three
symmetry classes then leads to the GOE, GUE and GSE. In this thesis, we will consider
other measures on these symmetry classes as well.

We remark that Dyson’s three-fold way has been generalized into a broader frame-
work, the ten-fold way, which classifies, among other things [11], topological insulators

and superconductors [12-18, 10].

Spectral decomposition of Gaussian ensembles

With the application to physical systems in mind, understanding the eigenvalues and
eigenstates of random matrices is crucial. In quantum systems, eigenvalues represent
observable outcomes, with corresponding eigenstates indicating post-measurement
system states. In stochastic Markovian systems, eigenvalues are related to relaxation
timescales, while the stationary eigenstate encodes long-term microstate occupancies.
Therefore, rather than dealing with the distribution P(H) of matrix elements, we will
discuss the joint distribution P(\1,...,Ap,U) of the unordered eigenvalues Ay, ..., Ap
and a matrix U encapsulating the eigenstates as its columns.

The transition from P(H) to P(Aq,...,Ap, U) represents a change of variables. The
trace term exp(—3 tr H?) is independent of the cigenstates and equals exp(—3 3724 A?).
Consequently, the Gaussian measure in terms of the eigenvalues A; and the eigenstates

in U is expressed as
15D 2 D
P(H)dH x ¢~ 2= | det Jac(H — (Ar,..., Ap, U))| [ [T dN; | dU,  (1.3)
j=1

where o omits any normalizing constant Z and Jac(H — (Ay,...,Ap,U)) is the
Jacobian of the transformation. The measure dU is the uniform (Haar) measure of
the orthogonal, unitary, or symplectic group, corresponding to the GOE, GUE, or
GSE, respectively. Here dU is a probability measure, which samples each matrix in
the corresponding invariant group equally likely. For the orthogonal or unitary groups,
such samples can be constructed by the Gram-Schmidt process applied to Ginibre

matrices, which will be introduced later.
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The Jacobian in Eq. (1.3) can be calculated as

|det Jac(H — (A1,-.., Ap, U))| = JI 1A — Ml (1.4)

1<j<k<D

where [ is the Dyson index; 8 = 1 for GOE, g = 2 for GUE, and § = 4 for GSE.
Notably, the Jacobian term does not depend on U. The joint probability density

function (JPDF) of eigenvalues and eigenvectors of the Gaussian ensembles is thus

1 D 2 D
P(H)AH e 2 2= T A — MAef? (H dAj) du. (1.5)

1<j<k<D j=1

The dependence of the Gaussian ensemble on eigenstates solely arises from the Haar
measure dU, which greatly simplifies the study of the eigenstates in Section 1.1.4. By

integrating out dU the JPDF of eigenvalues of Gaussian matrices is obtained,

1 D
PO, dp) e 22= N T |y — Al (1.6)

1<j<k<D

The eigenvalue distribution of Gaussian matrices has an interesting physical in-
terpretation [1, 19, 20, 2]. By rescaling A — A\/+/B = X the eigenvalue JPDF can be

recast into a Boltzmann weight

~ ~ BND 52,8 N — X\ X it
P()\la o )\D) ox e 2 Luj=1 )‘32'+§ Zj#k log [Aj —Ak| — e_BH()‘lvm’)\D)’ (17)

where the Hamiltonian # (X, ..., \p) = D 5\5 — 5k log I\; — A& characterizes
a 2D Coulomb gas, due to the logarithmic interaction, restricted to a 1D line in a
harmonic potential. In this model, the harmonic potential confines the particles, while
the logarithmic interaction induces repulsion among them. Such models are commonly
referred to as “log-gas” models [4]. Eq. (1.7) elucidates the interpretation of the Dyson
index [ as analogous to an inverse temperature. A diagrammatic representation of

this log-gas model is depicted in Figure 1.1(b).

Non-Hermitian Ginibre ensembles

The random Gaussian matrices introduced so far are all Hermitian. However, applying
RMT to generators of stochastic many-body systems necessitates understanding of
non-Hermitian matrices. This leads us to the introduction of the Ginibre ensembles,
which are derived from the Gaussian ensembles by dropping the Hermiticity constraint

and letting all matrix elements be independent random variables. This implies the
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absence of any additional factor between the diagonal and off-diagonl matrix entries,
in contrast to Eq. (1.1). The so formed random matrix ensembles are the GinOE,
GinUE, and GinSE, with real, complex and quaternion matrix entries, respectively.

The Gaussian densities of the Ginibre ensembles can be expressed as

P(H)dH = ;exp (—; tr HHT> dH, (1.8)
where Z is a normalization constant ensuring that P(H) is a probability density. The
notation H' varies across ensembles, indicating the Hermitian adjoint for the GinUE,
the transpose for the GinOE, and a specific symplectic form for the GinSE. The Ginibre
ensembles retain invariance under orthogonal, unitary, and symplectic transformations,
respectively, analogous to their Hermitian counterparts.

Similar reasoning as for the Hermitian Gaussian ensembles applies to the spectral
decomposition of the Ginibre ensembles. But there are some differences. A key
distinction is that the eigenvalues of the Ginibre ensembles are generally complex, and
their (left and right) eigenstates are typically not orthogonal.

The GinUE JPDF can be expressed as [21]

P, ap) e 2o Ty — A2 (1.9)

1<j<k<D

This formulation bears a direct correspondence to the eigenvalue density of the GUE,
as denoted in Eq. (1.6) with 5 = 2. For the GinOE and GinSE, the situation diverges
from this correspondence. A notable feature of their eigenvalues is the presence of
an additional symmetry: eigenvalues are real or come in complex conjugate pairs.
For GinOE, a further complication arises due to the non-negligible probability of
encountering real eigenvalues [22]. This typically necessitates the exclusion of these

real eigenvalues in finite matrix size analyses.

More general ensembles

The Gaussian and Ginibre ensembles have been extended in various ways. Generaliza-
tions relevant to this thesis are presented in the following.

First, the Gaussian distribution of matrix elements has been generalized to arbitrary
distributions, maintaining the overall nature of independent and identically distributed
(iid) matrix elements. In the Hermitian case, these matrices are referred to as Wigner
matrices [23]. In the non-Hermitian case, they are referred to as non-Gaussian Ginibre

or simply Ginibre matrices. Both, Hermitian and non-Hermitian generalizations,
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typically inherit desirable properties of Gaussian matrices like a deterministic spectral
density and universal eigenvalue correlations in the limit of large matrix size D as
well as delocalized eigenstates. These aspects will be elaborated on in the following
Sections 1.1.2, 1.1.3 and 1.1.4.

Second, the quadratic term tr(H?) in the probability density of Gaussian matrices
given by Eq. (1.2) has been extended to more general functions V' (H). The probability

densities for these ensembles are generally expressed as

P(D)dH = ;exp(— e V(H))dH, (1.10)
where V' represents an even degree polynomial and dH denotes an appropriate Lebesgue
measure. The even degree polynomial ensures that, with a finite normalization Z,
P(D)dH constitutes a valid probability measure. The Gaussian scenario is the specific
case with harmonic potential V' (z) = %xQ. These ensembles are called invariant ensem-
bles, as they are like their Gaussian counterparts, invariant under the transformations
of the classical groups. For these invariant ensembles, the joint probability density of

eigenvalues is straightforwardly given by

Py Ap) oce” Zam VO Ty = Al (1.11)

1<j<k<D

and admits a similar log-gas interpretation as the Gaussian case where the harmonic
potential is replaced by V.

Third, the parameter 3, previously limited to the integers 1, 2, and 4, has been
extended to any positive value, § > 0. These (-ensembles are realized through
specific tridiagonal matrix models [24]. They facilitate the exploration of eigenvalue
correlations, varying from strong correlation for large § to complete independence
as ( approaches zero. As discussed in Section 1.2, the transition from correlated to
uncorrelated eigenvalues is in the same spirit as the crossover from integrability to chaos
in quantum systems. The -ensembles have been directly applied in investigations of
such transitions [25, 26].

1.1.2 Spectral densities

So far we have examined the JPDF P(\q,...,Ap) for eigenvalues Aq,..., A\p, which,
outside of specific cases, generally lacks explicit formulations. However, with the
application of RMT to physical many-body systems in mind, the joint probability of

all eigenvalues for some finite matrix size D is of less importance than its marginal
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distributions in the limit of large D, such as the (average) spectral density or two point
correlations of nearby eigenvalues. This section focuses on the limiting behavior of the
spectral density, while Section 1.1.3 addresses correlations in form of spacings between
neighboring eigenvalues.
For a random matrix H, the spectral density pp(A) is the normalized eigenvalue
counting function
1D
pp(A) = D 2 IA—=N), (1.12)
where \; are the eigenvalues of H, and ¢ is the Dirac delta function. The dependence
of pp on H is implicit through the eigenvalues )\;. The average eigenvalue counting

function equals the one-parameter marginal of the eigenvalue JPDF

(op(N)) :/ PO\ Aoy Ap)dAs . b, (1.13)

RD-1

where (...) denotes the average over the random matrix ensemble. As the eigenvalues
A;j of H are unordered, the position of A in P of Eq. (1.13) is arbitrary.

If pp admits, in an appropriate mathematical sense, a well defined limit of large
matrix size D we denote this limit as the limiting spectral density,

p(A) = lim pp(N). (1.14)

D—oo

This limiting density, in principle, might still be random, but as we will see shortly,
it typically takes a deterministic form. Consequently, in the limit of large D, the
spectral density pp concentrates around its average (pp), meaning a single large random
matrix represents the spectral density of its entire ensemble, pp =~ (pp) ~ p. This

concentration result goes under the name of “self-averaging”.

Hermitian matrices - Wigner’s semicircle law

Wigner matrices (Hermitian matrices with iid entries), which have a non-exotic distri-
bution of matrix elements, have, properly rescaled, a common, deterministic limiting
spectral density - the Wigner semicircle distribution [23, 27]. Specifically, for matrix
distributions with zero mean and finite variance the limiting spectral density is given
by

/pyy] (1.15)

o

PSC(/\) =

where ps.(A) = 0 for A outside of the interval [—2,2]. The rescaling ensures that the

limiting distribution is supported on the interval [—2,2] and, in the case of Gaussian
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Fig. 1.1 (a) The estimated eigenvalue density of a single 1000 x 1000 GUE matrix.
The red solid line denotes the Wigner semicircle density. (b) Log-gas picture. The

orange solid line denotes a harmonic potential and the blue markers are eigenvalues of
a single 30 x 30 GOE matrix.

matrices, is given by A — v/2\/y/BD. The alignment between the spectral density of
a single D x D GUE matrix with D = 1000 and the semicircle distribution is depicted
in Figure 1.1(a), with the semicircle distribution (red solid line) serving as an accurate
approximation for the spectral density. This exemplifies the self-averaging nature of
the spectral density in sufficiently large Wigner matrices.

In the Gaussian case, the limiting spectral distribution can be obtained by a
technique common in statistical mechanics. By considering the log-gas picture of the
eigenvalue JPDF in Eq. (1.7), Wigner’s semicircle distribution emerges in the limit
of D — oo by minimizing the free energy corresponding to the partition function
Z = [ dAe PH®) with H given as in Eq. (1.7) [4, 2, 28].

The property of a common distribution of matrix entries can be relaxed in terms of
more general conditions [27]. Exceptions of the Wigner law occur for random matrices
with additional structure like Markov matrices [27, 29|, sparse matrices with few
non-zero entries or sharply peaked matrix element distributions [30, 31], and banded
matrices with small bandwidth [32-42].

Non-Hermitian matrices - circular, elliptic and hypotrochoidic law

We turn to limiting spectral densities of non-Hermitian random matrices, which are
important in our analysis of random Kolmogorov and ASEP generator spectra in
Chapters 4 and 5. A distinction from the Hermitian case is that eigenvalues are

complex, hence, limiting spectral densities are defined within the complex plane.
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Fig. 1.2 The estimated eigenvalue density of the (a) GinUE, (b) elliptic ensemble with
7 = 0.3 and (c) random graphs with cycle length > 5. Darker color indicates higher
density. Matrices are of size 1000 x 1000 and averages are over 200 samples. The red
solid curves denote the boundary of the Girko disc (a), an ellipse with axes 1 £ 7 (b),
and a hypotrochoidc curve (c), respectively.

The spectral densities of Ginibre matrices (iid entries) with non-exotic matrix
element distributions conform to a common, deterministic limiting spectral density.
This distribution is uniform on a disk centered at the origin of the complex plane
[43, 44]. Due to the simple shape of the support, the limiting law is called the circular
law. In honor to Girko, who first derived it in a general setting [43], it is also known
as Girko law. In this thesis, we will alternate between the two notions.

Figure 1.2(a) illustrates the computed spectral density of D x D random GinUE
matrices with D = 1000. It shows a concentration predominantly within the Girko disc,
where it appears uniform. The GinUE matrices are rescaled by A — \/v/D resulting
in the Girko disc having unit radius. The minor variances noted in Figure 1.2(a) are
attributable to finite sample effects, derived from a dataset of 100 samples. We note
that due to the self-averaging of the spectral density, similar results to Figure 1.2(a)
would be obtained for a single realization of the GinUE with D ~ 105.

The Girko disc is the limiting spectral density of random matrices with independent
entries. To investigate the spectral boundary of the ASEP in Chapter 5 from the RMT
perspective, it is advantageous to consider random matrices with correlated entries.

Let us first focus on random matrices with two-point correlations between opposite
off-diagonal matrix entries

(HijH;;) =1/D, (1.16)

where (...) denotes the averaging over the random matrix ensemble. Random matrices

of such ensembles have a uniform limiting spectral density, which is supported on the
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ellipse centered at 0 with semi-major and -minor axis 1 + 7 and 1 — 7, respectively
[45, 46]. This density transitions from the Girko disk at 7 — 0 to Wigner’s semicircle
at 7 — 1. An ensemble of matrices H,; following this elliptic law is constructed by

mixing matrices H; and Hs, which adhere to the semicircle law, as
1

V2

Figure 1.2(b) displays the elliptic law, illustrating the limiting spectral distribution

of Eq. (1.17) with 7 = 0.3, where H; 5 are distributed according to the GUE. The

boundary of the support, marked by a red curve, corresponds to an ellipse with axes

1£7.
We note that the two-point correlations given by Eq. (1.16) imply & (tr(H?)) = 7.

Hoay = —= (VI+7H, + VI = 1iH,). (1.17)

In this form, matrices adhering to the elliptical law are naturally generalized to matrices

with higher-order correlations by considering powers k > 2,

11)<tr<Hk)> S (1.18)
In the large matrix size limit, the spectral boundary of ensembles with such correlations
of matrix entries takes the form of a hypotrochoid, a curve generated by a point on
a smaller disk rolling inside a larger circle. The limiting density is thus called the
hypotrochoidic law [47]. For k = 2 the elliptic law and for k = 1 the Girko law are
recovered. We note that the limiting spectral density is not flat for & > 2, as evident
in Figure 1.2(c) for k = 5.

The hypotrochoid characterizing the spectral boundary can be parametrized as
e (yy + yae™) (1.19)

with ¢ running from 0 to 27. The real constants ; o depend on the matrix ensemble [47]
and their ratio adjusts the “spikiness” of the boundary. In the limit of v — 0, the
circular law is recovered, resulting in a non-spiky boundary. For 0 < 9 ~ 71 /k the
spectral boundary appears spiky, as shown in Figure 1.2(c). This adjustability of the
spikiness in the parametrization of the hypotrochoid is relevant to our analysis of the
spectral boundary of the ASEP in Chapter 5.

An ensemble conforming to the hypotrochoidic law are adjacency matrices of random
directed graphs [47]. For these matrices to satisfy Eq. (1.18), the associated graphs
must predominantly contain cycles of length k. The relationship between the cycle

length of graphs and the trace powers, given by Eq. (1.18), will be detailed at the end
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of this introduction to RMT in Section 1.1.5. A modification of this graph ensemble
will be compared to the ASEP in Chapter 5.

Figure 1.2(c) displays the spectral density of adjacency matrices of random sparse
directed graphs, specifically designed without cycles shorter than length 5. These
graphs are formed by adding 400 cycles of length 5 to an initially empty graph with
D = 1000 vertices, ensuring no cycles of length < 5 exist. The resulting adjacency
matrices exhibit average trace correlations 7, as defined by Eq. (1.18), with 7 = 0 for
k <5 and 7 = 2.2 for £k = 5. While cycles longer than length 5 are present in this
ensemble, their correlations are less dominant. In this graph ensemble, the edge count
(2000) is comparable to the vertex count, resulting in significant spectral weight at

zero, which is not depicted in Figure 1.2(c).

1.1.3 Eigenvalue correlations

This section discusses correlations between adjacent eigenvalues, quantified by level
spacings and level spacing ratios. First, we will address the Hermitian case, where
eigenvalues are real. The eigenvalue correlations of Hermitian random matrices are an
important signature of quantum chaos. Level spacing ratios will be calculated for the
Bose-Hubbard model and compared to the RMT prediction in Chapter 3. Second, we
will focus on the non-Hermitian case, where eigenvalues are complex. We introduce
complex spacing ratios, which will be used in analyzing spectral correlations of random
Kolmogorov operators in Chapter 4. Third, we present level spacings and level spacing
ratios of uncorrelated random values. These are important for demarcating chaotic

from non-chaotic quantum systems in Chapter 3.

Real level spacings

Correlations of nearby real eigenvalues can be measured in terms of the spacing between
them. Let us consider ordered eigenvalues \; < A;;;. Given two adjacent energy levels
Aj and Ajyq the level spacing is defined as s; = A\ji1 — Aj.

For random matrix ensembles, where the JPDF of eigenvalues is known, the
distribution of the level spacings s can in principle be obtained by integrating out all
but two neighboring eigenvalues. This turns out to be a difficult task and closed form
expressions are up-to-date not known, even for the Gaussian ensembles. Nevertheless,
from the eigenvalue JPDF of the Gaussian ensembles given by Eq. (1.6), we should infer
some information on the level spacing distribution. For example, the power [ of the

Euclidean distance between two eigenvalues suggests that the density for small spacing
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Fig. 1.3 (a) Wigner’s surmise of the level spacing distribution for GOE, GUE and the
GSE (bottom to top at peak). (b,c) Unfolded spacing distribution of a single random
matrix with dimension D = 10,000 from the (b) GOE and (c) Wigner ensemble
with uniform entries between 1. Both distributions are well approximated by the
corresponding Wigner surmise.

s should vanish proportional to s?, while the density should vanish exponentially for
large s due to the confining harmonic potential.

These heuristic guesses from the form of the eigenvalue JPDF are confirmed in the
case of matrix dimension D = 2, where the density of the only spacing s = Ay — Ay is
given by

P(s) = —sPe —**, (1.20)
Zs
with Z3 a normalization constant and cg another constant. The functional form of
Eq. (1.20) confirms the expected power-law vanishing of s for small s and exponential
vanishing for large s. This is displayed in Figure 1.3(a).

Surprisingly, the spacing distribution of 2 x 2 Gaussian matrices is a good approx-
imation of the spacing distribution of large D Gaussian matrices. This is known as
Wigner’s surmise [7]. In Figure 1.3(b), the level spacing density of a single GOE matrix
with dimension D = 10,000 is displayed and agrees well with the Wigner surmise for
f =1 given by Eq. (1.20).

Similar to the Wigner law governing the limiting spectral density, the Gaussian
level spacing distribution applies to a broader class of matrices beyond the Gaussian
ensembles. Specifically, random matrices that share the same moments of matrix
elements with the Gaussian ensembles exhibit identical level spacing distributions
[44, 48]. Typically, matching the first two moments — the mean and variance —
is sufficient [49]. This phenomenon is known as the universality of level spacing

distributions. The symmetry class (8 = 1 real, § = 2 complex or 8 = 4 quaternionic
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Fig. 1.4 Distribution of level ratios (a) r and (b) 7 of a single GOE matrix with
dimension D = 10,000; in both cases well approximated by the GOE Wigner-like
surmise Eq. (1.23).

matrix entries) of a Hermitian random matrix, irrespective of whether the measure is
Gaussian or not, determines the level spacing distribution.

This universality is highlighted in Figure 1.3(c) where the spacing distribution of
a Wigner matrix with uniformly distributed matrix elements between —1 and +1 is
displayed. As the matrix entries are real, the spacing distribution is well approximated

by the Wigner surmise with g = 1.

Real level spacing ratios

When considering differences between eigenvalues in terms of level spacings, we ignored
the overall scale of the differences. The level spacings depend on the local eigenvalue
density. A comparison of the level spacing distribution originating from different sources
(different parts of the spectrum or different random ensembles) is only meaningful with
a common local eigenvalue density. Unifying the local eigenvalue density is known as
unfolding of the spectrum.

In Eq. (1.20) as well as in Figure 1.3, the eigenvalue density in the form of Wigner’s
semicircle distribution was taken into account already, resulting in an average level
spacing of 1. This is evident in Figure 1.3, where the peak of the densities given by
Wigner’s surmise is located close to 1.

Unfolding the spectrum can be cumbersome, especially, when the (limiting) spectral
density is not known. This might not so much be an issue for random matrix ensembles,
which typically obey Wigner’s semicircular law, but can be problematic for physical

many-body systems. It has therefore become common to investigate instead of s; the
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distribution of spacing ratios [50, 51]

ri = L;ﬂ. (1.21)
J

Studying the ratio distribution bypasses the need to unfold the spectrum as the
dependence of s; on the spectral density cancels in the numerator and denominator.
Using the quantity

Tj = min (Tj, 1) = ol LY (1.22)

Tj max (s;, $+1)

has the additional benefit of 7; having bounded support, 7; € [0,1]. This is an
advantage in numerical simulations, where only finitely many samples are available
and densities are approximated by histograms. The two ratio distributions are related
by P(7) = 2P(r)©(1 — r), where © denotes the Heaviside function [51].

The level ratio distributions of  and 7; are not known in closed form, just like the
level spacing distribution. Similar to Wigner’s surmise, an approximation to the level
spacing ratio distribution is known [51] and given by

1 (r+1r2)#

PO) = 5y oy (1.23)

where Zj is the normalization constant. For 7 instead of 7, Eq. (1.23) has an additional
factor of 2 and is confined to the interval [0, 1]. The spacing ratio distributions of
Gaussian random matrices with large matrix dimension D is well approximated by the
Wigner-like surmise in Eq. (1.23) [51].

In Figure 1.4, the spacing ratio distribution of  in (a) and 7 in (b) are shown for
a single GOE matrix with D = 10,000. The Wigner-like surmise with § = 1 given
by Eq. (1.23) is well approximating in both cases. The surmise for the spacing ratio
distribution has similar features to the Wigner surmise of the level spacings given by
Eq. (1.20). Both densities vanish for decreasing argument as power-law with power .

This enables either to distinguish between the universality classes.

Complex level spacing ratios

Let us now turn to eigenvalue correlations of non-Hermitian matrices. Eigenvalues of

such matrices are in general complex and do not follow a natural ordering. Nonetheless,

every eigenvalue A\; has a nearest neighbor eigenvalue A;V N and a next-nearest eigen-

value /\év NN which are closest and second closest in Euclidean distance, respectively.
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Fig. 1.5 Distribution of complex spacing ratios r of the (a) GinUE , (b) random
ensemble with complex entries uniformly distributed in [—1,1]? and (c) uncorrelated
complex normal variables. (a,b) Densities are estimated by 200 D x D matrices with
D = 1000 and (c) 10° independent random variables.

Following the work by Ref. [52] we denote the complex spacing ratio (CSR) as

AN

T, (1.24)
The CSR is in general complex valued with absolute value bounded by 1. We note
that this definition of a CSR does not reduce to the definition of the real spacing ratio
for real eigenvalues A, as it stills carries a sign. Taking the absolute value |r| results in
the real spacing ratio 7 for real eigenvalues.

We first consider the CSR distribution of the GinUE. In Figure 1.5(a) we present
the CSR distribution of D x D GinUE matrices with D = 1,000 obtained from 200
samples. The CSR displays vanishing density at 0 and 1. Both are a consequence of
eigenvalue repulsion, evident from the eigenvalue JPDF of the GinUE presented in
Eq. (1.9) of Section 1.1.1. Vanishing density at 0 results from repulsion of \; and A;V N
while repulsion of )\év N and )\§V NN implies vanishing density at 1.

Similar to the Hermitian case, the correlations of non-Hermitian Ginibre ensembles
do not depend on the details of the matrix element distribution. Ginibre matrices, with
matching first four moments of matrix element distributions, have common eigenvalue
correlations [53]. As an example we show the CSR density of Ginibre matrices with
uniformly distributed entries in [—1,1]*> C C in Figure 1.5(b). The estimated densities
in panels (a) and (b) of Figure 1.5 only differ by finite size and sample fluctuations.
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Fig. 1.6 (a) Estimated densities of level spacings and (b,c) level ratios for 10° uncor-
related Gaussian random variables. The solid blue lines correspond to the analytical
expressions in Eq. (1.26) and Eq. (1.27).

Uncorrelated random variables

This section so far has been concerned with correlated random variables typical for
eigenvalues of random matrices. Following, we present the level spacings and ratios
of uncorrelated random variables. This discussion is motivated by quantum chaos
distinctions: chaotic systems have correlated eigenvalues like random matrices, whereas
non-chaotic systems have eigenvalues resembling uncorrelated variables.

Let us consider D uncorrelated, ordered values A\; < A;;1, which are distributed
according to some common distribution. After unfolding one can assume without loss
of generality that the \’s are distributed uniformly in [0, D]. This choice of an interval
ensures an average spacing of 1. The independence of the values )\ is not altered by the
unfolding procedure. It is well known that ordered samples of the uniform distribution
follow the Beta-distribution and so do their increments [54]. Especially, the cumulative

distribution function F of the spacing s is given by

Fls)=1— (1 - ;)D. (1.25)

The corresponding density P(s) = %F (s) in the limit of large D becomes the density

of the exponential distribution with mean 1,

Proi(s) =", (1.26)
Uncorrelated values are referred to as Poisson distributed, since the order statistics
of the unfolded values correspond to arrival times of a Poisson process [54]. The

distribution of spacings in Eq. (1.26) is therefore referred to as “Poisson level spacings”.
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Unlike the correlated eigenvalues of random matrices, the spacing distribution for
uncorrelated values, Pp,;, approaches 1 at vanishing spacing s — 0. This is illustrated
in Figure 1.6(a), which shows the level spacings for uncorrelated random variables.
This distinctive feature is often employed when distinguishing between correlated and
uncorrelated nearest-neighbor levels.

Similarly to the level spacing distribution, the distribution of spacing ratios can

also be derived analytically,
1

(r+1)%

with an additional factor of 2 for 7 instead of r. For uncorrelated random variables

Ppoi(r) = (1.27)

both spacing ratios r and 7 are shown in Figure 1.6(b) and (c), respectively. Like the
level spacing, the level spacing ratio densities do not vanish for » — 0 (# — 0). Hence,
both level spacing and level spacing ratios are able to demarcate between correlated
and uncorrelated random variables.

A similar line of reasoning can be applied to the case of complex uncorrelated
values. The corresponding CSR distribution r is flat in the unit circle [52]. This is in
contrast to the CSRs of random matrix eigenvalues, which show vanishing density at 0
and 1. The CSR distribution of uncorrelated complex normal variables is depicted in
Figure 1.5(c). Up to finite size and sample fluctuations the CSR density appears flat

inside the unit circle with value 7~ 1.

1.1.4 Eigenstates

In this section, we present the distribution of eigenstates of random matrices. We focus
on eigenstates of Hermitian random matrices with real coefficients. Understanding
of such states is important for motivating the Eigenstate Thermalization Hypothesis
(ETH) in Section 1.2.2 and deriving random matrix eigenstate-to-eigenstate fluctuations
of bosonic operators in Chapter 2. Additionally, in Chapter 3, the (de-)localization of
eigenstates is used to demarcate chaos from integrability in the Bose-Hubbard model.
The random matrix eigenstate is the typical chaotic state.

For this thesis, it is sufficient to consider eigenstates of the GOE. As depicted in
Eq. (1.5), the density of the GOE depends on the eigenstates solely through the Haar
measure dU defined on the orthogonal group. The invariance of the Haar measure
under actions of this group implies that eigenstates are also invariant. Consequently,
normalized eigenstates of the GOE are uniformly distributed on the (D —1)-dimensional
unit sphere SP~! in RP. In fact, all ensembles invariant under the orthogonal group

have such distributed eigenstates.
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The invariant distribution on high-dimensional spheres is somewhat elusive. Its
approximation for large D is more convenient to deal with. Specifically, eigenstates of
invariant ensembles are closely approximated by a D-dimensional Gaussian distribution
with independent entries, zero mean, and variance D~! [55, 56]. The variance D™
ensures approximate normalization of such states.

The D-dimensional Gaussian states are likely to be delocalized, with their eigenvec-
tor coefficients evenly spread across the entire basis. This is in contrast to localized
eigenvectors where only a few coefficients are significantly non-zero.

Effective measures for assessing this (de-)localization are the inverse participation

ratio (IPR) and the kurtosis x. Both concepts are important for our analysis of

eigenstates in Chapters 2 and 3. For a normalized eigenstate v = (vq,...,vp), where
[v]l3 = X2, v? =1, the IPR is defined as
D
IPR = vj. (1.28)
j=1

Given the normalization of the eigenstate v, the IPR ranges from D~! to 1. An IPR of
D! indicates a fully delocalized state (where v; = D=2 for all j), while an IPR of 1
signifies a completely localized state (where v; = 0 for some 1 < k < D).

A measure closely related to the IPR is the kurtosis of an eigenstate. It estimates
the standardized fourth moment of a distribution with samples v;. The kurtosis of a

state v is defined as b —

D —2\%
( j=1(vj — 0)2)
where v = % ZjD:1 v; denotes the average coefficient. For vanishing average, v = 0, the

kurtosis x and the IPR are related by x = D x IPR.

For large D, the kurtosis k of a Gaussian state is kK = 3 with probability approaching

k=D (1.29)

1. Consequently, Gaussian states have an IPR of 3D~!, which is close to a completely
delocalized state. However, the inherent randomness in the Gaussian states inhibits
such states from reaching an IPR of D~!, which is characteristic of the deterministic,
completely delocalized state. Nevertheless, states with kurtosis close to 3 (or IPR close
to 3D~1) are considered delocalized.

Eigenstates of more general random matrix ensembles than the GOE, for example
Wigner matrices with non-exotic matrix element distributions, are typically delocalized
[57, 58]. Deviations appear in random banded matrices with small band width and in

adjacency matrices of sparse graphs with low connectivity [34, 30, 31, 59].
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1.1.5 The graph framework

In this section, we present the connection between matrices and graphs. Specifically,
we discuss adjacency and Laplacian matrices of graphs and how their spectra relate to
graph properties. Additionally, random graph ensembles and their sampling methods
will be briefly touched upon. The correspondence between matrices and graphs is
important for discussing Markov generators in Chapters 4 and 5. The relation between
graphs and matrices has already been used for presenting an ensemble of random
matrices, obeying the hypotrochoidic law in Section 1.1.2.

Graphs are composed of vertices, labeled 1,..., D, and edges (i, j) linking these
vertices. The degree of a vertex ¢ denotes the number of edges connecting to . In this
thesis, we deal exclusively with graphs without multiple edges connecting the same
pair of vertices. Consequently, graphs are one-to-one with the adjacency matrices A.
Their matrix entries, A;;, equal 1 if there is an edge (7, j) between vertices ¢ and j, and
0 if not. This constitutes the standard definition of adjacency matrices. In this thesis,
the definition is expanded to include arbitrary real or complex values A;;. These are
referred to as the weights of the edges (7, 7). A weight of A;; = 0 always signifies the
absence of an edge from vertex j to ¢. In Chapters 4 and 5, graphs with general edge
weights will be discussed.

The graph Laplacian matrix L = D — A offers an alternative matrix representation
to the adjacency matrix. Here, D is the degree matrix with each diagonal element
D;; representing the degree of vertex ¢. This Laplacian is related to the discrete
approximation of the continuous Laplace operator A = V2 by finite differences. The
negative Laplacian — L serves as a generator for continuous-time Markov processes on
finite state spaces, as detailed in Section 1.3.1.

Graphs can be undirected or directed. In undirected graphs, edges lack orientation,
allowing traversal between vertices ¢ and j in both directions. Conversely, directed
graphs have unidirectional edges, where an edge from vertex ¢ to j does not necessarily
imply a reciprocal edge from j to i. For undirected graphs, both adjacency and
Laplacian matrices are symmetric with a real spectrum. In directed graphs, these

matrices are typically asymmetric, leading to a complex spectrum.

Spectra and graph structure

The spectra of the adjacency matrix A and the Laplacian L are deeply connected to
the properties and structure of the graph itself [60].
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One relation between the spectrum of the adjacency matrix and graph properties
has already been used at the end of Section 1.1.2 to construct an ensemble of random
adjacency matrices following the hypotrochoidic law. The sum of the kth powers of
k

()

eigenvalues of A, 3, \¥, equals tr(A¥), which in turn represent the total number of
closed walks of length k. The latter follows from considering the entry (A¥);; which
counts the distinct k-step walks between vertices j and ¢. The diagonal elements
(AF);; and tr(A*), respectively, count the unique closed walks of length k starting at
vertex ¢, and the total number of such walks graph-wide. A cycle is defined as a closed
walk without repeated edges. If tr(A¥) = 0, the graph lacks closed walks of length k,
and consequently, cycles of that length. Hence, the adjacency matrices of the graph
ensemble discussed in Section 1.1.2 exhibit zero trace correlations as per Eq. (1.18) for
k < 5, while these correlations become dominant when k = 5.

Like the spectra of adjacency matrices, the spectra of Laplacians are also related to
properties of the corresponding graph. By definition, the Laplacian spectrum resides
in the right half of the complex plane. The eigenvalue with the smallest real part is
A1 = 0. Its multiplicity reflects the connectivity of the graph. Specifically, if A\; has a
multiplicity of one, the graph is connected. In undirected graphs, this implies that every
vertex is accessible from any other vertex. In directed graphs, connectivity means that
all vertices are reachable from each other when edge directions are disregarded, allowing
bidirectional traversal. A directed graph where each vertex is accessible from every
other vertex, respecting the directed nature of the edges, is termed strongly-connected.

The spectral gap, defined as the real part of the second-smallest (by magnitude of
the real part) eigenvalue Ay of the Laplacian, provides further information about the
connectivity of the graph [61, 62]. In a nutshell, a large spectral gap in a (strongly)
connected graph implies “severe connectivity”, requiring the removal of numerous
vertices to disconnect it. In contrast, a small spectral gap makes the graph easily
disconnected by removing few vertices. For instance, a fully connected graph exhibits a
maximal spectral gap and remains connected despite removal of any number of vertices.
A one-dimensional line graph has a minimal spectral gap and becomes disconnected
with the removal of just one non-boundary vertex.

Random ensembles

Random graph ensembles can be defined by specifying properties (such as number
of vertices and edges, average degree, connectivity, or edge weight distributions) and
then considering a distribution, typically the uniform distribution, across all graphs

meeting these criteria. Sampling from these ensembles often involves starting with
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a deterministic graph, such as an empty or fully connected graph, and iteratively
modifying vertices and edges randomly.

The random matrices introduced in Section 1.1 are adjacency matrices of random
graph ensembles. Matrices with iid elements correspond to fully connected graphs with
random iid edge weights. In Section 1.1.2, the random matrix ensemble, following the
hypotrochoidic law, can be represented by adjacency matrices of graphs that are not
fully connected but rather sparse. The random graph ensemble was constructed by
iteratively adding cycles of length £ = 5 to an initially empty graph, ensuring that
each addition of a cycle into the graph did not create cycles with length shorter than
5. This process was continued until the graph contained a sufficient number of edges.
Samples created this way are expected to be approximately uniform over all graphs
with fixed number of vertices and edges and the property that no cycles with length
smaller than 5 are present in the graph.

More examples of random graph ensembles will be presented in Chapters 4 and 5.

1.2 Quantum many-body systems

This section provides some relevant background related to quantum many-body systems,
underpinned by Random Matrix Theory (RMT). Section 1.2.1 presents the interplay
between classical and quantum chaos, emphasizing the impact of RMT on quantum
chaos. In Section 1.2.2, we discuss the development of the Eigenstate Thermalization
Hypothesis (ETH) from RMT. In Chapters 2 and 3, the classical-quantum chaos
correspondence and statistical aspects related to the ETH are studied for the Bose-

Hubbard model. We introduce this many-body system in Section 1.2.3.

1.2.1 Quantum chaos

The concept of chaos in quantum systems has been a subject of debate since the
emergence of quantum mechanics [63]. While dynamics of classical chaotic systems
exhibit sensitivity to initial conditions [64], applying these ideas to quantum mechanics
is challenging due to its linear nature. This linearity contrasts with the non-linear
characteristics of classical chaos. Consequently, the principles of classical chaos do not
directly translate to the quantum realm.

The adoption of random matrices to describe complex quantum systems significantly
advanced the field of quantum chaos [65-67]. It was observed first in single particle

systems, particularly in quantized billiards where a single particle is confined by rigid
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walls, that high-energy level correlations follow RMT predictions when their classical
counterparts are chaotic. Conversely, when the classical system is (Liouville-) integrable,
possessing sufficient integrals of motion, the energy levels behave like uncorrelated
variables. This led to the hypothesis that quantum systems with a classically chaotic
limit should follow RMT level statistics [68, 69], while those with classical integrability
display Poisson level statistics [70].

Convincing evidence supporting the conjectures has been found in quantum systems
with classical limits other than billiards, such as coupled rotors or coupled tops [71-75],
bosonic systems [76-78], the Dicke model and other spin-boson systems [79-89], the
Sherrington-Kirkpatrick model [90], and spin systems [91-94]. A common theme is
that, for spin systems or systems with angular momentum, the large-spin or large
angular momentum limit is the classical limit. For bosonic systems, the classical
limit is attained for large number of bosons. In Section 1.2.3, we detail this for the
Bose-Hubbard model.

Besides the correlation of eigenvalues, other properties of quantum systems have
been used to distinguish between chaotic and non-chaotic systems. In quantum many-
body systems, RMT eigenvalue correlations typically coincide with delocalization of
cigenstates, with near-Gaussian distributed coefficients [95-104]. In contrast, non-
chaotic systems are characterized by imperfectly delocalized states, typically with
markedly non-Gaussian coefficient distributions [105, 95, 96, 99].

Other measures of chaos are based on the dynamics of quantum systems, such
as the out-of-time-ordered correlator (OTOC) [106-109]. It describes the averaged
evolution of quantum operators at different times. In the classical limit of quantum
chaotic many-body systems, the OTOC typically grows for short times exponentially
(110, 93, 83-85, 111, 112]. Although there are some exceptions [113]. This growth
rate is related to Lyapunov exponents of the classical limit. Consequently, the OTOC
has been identified as a quantum version of the classical Lyapunov exponent. In
classical systems, Lyapunov exponents indicate the sensitivity of dynamics to small
perturbations of initial conditions. They measure the exponential rate at which nearby

trajectories diverge. Lyapunov exponents will be discussed in Chapter 3.

1.2.2 The Eigenstate Thermalization Hypothesis

In the past decades, significant research efforts have been devoted to elucidating the
mechanisms by which isolated quantum systems undergo relaxation and thermalization.
Theoretical foundations of thermalization in closed quantum systems trace back to work

of von Neumann [114]. But recent advancements in ultra-cold atom and trapped ion
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experiments, enabling effective isolation of these systems over experimentally relevant
time-scales, have revitalized interest in this area [115]. A major challenge for the
emergence of thermalization is the unitary and reversible nature of time-evolution in
isolated quantum systems, echoing the difficulties encountered in linking classical and
quantum chaos.

A way to address this problem emerged in the 1990s, when Deutsch and Srednicki
introduced the Eigenstate Thermalization Hypothesis (ETH) [116-119], which has
since become pivotal in understanding thermalization in isolated quantum systems
[120-124]. In much the same way that RMT has been instrumental in advancing our
understanding of quantum chaos, it has similarly played a key role in addressing the
question of thermalization in these systems. Moreover, the ETH is strongly related to
eigenstates of random matrices (introduced in Section 1.1.4). Following Ref. [124], we
will present the progression from eigenstates of random matrices to the formulation
of the ETH. This not only highlights the relevance of RMT for the ETH and the
thermalization of isolated quantum systems, but also builds intuition for our analyses
of “ETH fluctuations” in Chapter 2.

From random matrix eigenstates to the ETH

We consider an isolated quantum system governed by the Hamiltonian H and an
observable of interest A. Let us denote the energy eigenvalues of H by F,, and the
corresponding eigenstate by |F,,). For simplicity, we assume that energy levels are
non-degenerate. This is typical for generic Hamiltonians, which have repulsive energy
correlations, akin to random matrices. The matrix elements of A in the eigenstate
basis of H are denoted by A,,,. Let us consider an initial state [1)) = >2_, ¢, |En),

which evolves unitarily according to H. Then the observable A evolves as

D
A(t) = ()] Ale(t) Z || A + Y ™ EnEmAL (1.30)

m#n

The dependence of the expression on the initial state for all times ¢, via c¢,, raises
the question of how thermalization can occur independently of the initial state. One
explanation is derived by assuming that the eigenstates | E,,) resemble those of random

matrices, being independent D-dimensional Gaussian states with mean 0 and variance
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D~1. Under this assumption, the operator elements satisfy

Litr(A) f =
(4,,) = A form=mn, (1.31)
0 for m # n,

where the average (...) is over the distribution of eigenstates. Thus the ensemble

averaged A(t) is
D

(A()) ) X lenl? = _1 = tn(4), (1.32)

where we use the normalization of the initial state |¢)). Consequently, averaging over the
randomness of the eigenstates implies that the observable A attains a time-independent
value, represented by the mean of all possible values that A can assume.

The fluctuations of A(t) around its average value are crucial in determining the
utility of the average as a reliable indicator of A(t). For eigenstates |E,,) that exhibit
RMT characteristics, these fluctuations decay in the limit of large Hilbert space size D.

For Gaussian states, the diagonal variance are given by [124]

_ztr(/@)
D D

(1.33)

This as well follows from a more general expression, derived in Chapter 2. Similarly,
the off-diagonal (m # n) variance is [124]

1 tr(A?)
A2 Y — (A = — . 1.34
(A2,) = (A = 50 (134)
Consequently, the matrix elements of the operator can be approximated by
tr(A 1 [tr(A2
A~ ZA 5 A g (1.35)
vDV D

where R,,, represents a D-independent random variable with a variance of O(1). If the

trgl) % are independent of D, the fluctuations of A,,, decay as D~1/?

terms and
and, after some initial dynamics, the observable A(t) fluctuates around %

Note that Eq. (1.35) does not have any direct dependence on the eigenvalues of H.
Hence, the random matrix picture should be only accurate at high energies, close to an
“infinite temperature” state. A more physically reasonable version of Eq. (1.35) should

include some energy dependence. Moreover, since relaxation times depend on the
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observable, the matrix elements A,,, in physical systems include information beyond
the RMT prediction in Eq. (1.35).

The generalization of Eq. (1.35) to describe observables in physical systems is the
ETH. In terms of the operators elements A,,, = (E,,| A|E,), where |E,,), |E,) are the
eigenstates of H, the ETH predicts that

A = fA(E)Spn + € 5E2g (B, w) Ry, (1.36)

where S is the thermodynamic entropy, with e (E) being the density of states at energy
E=(E,+E,)/2, and w = E,, — E,. The functions f4 and g4 are smooth functions,
and R,,, is a (pseudo) random variable with zero mean and unit variance. The RMT
eigenstate ansatz, Eq. (1.35), is recovered by specializing f4 = %, ga =/ @ and

e® = D, which are all energy (eigenvalue) independent quantities.

The ETH in many-body systems

Evidence from a large number of numerical studies strongly suggests that the ETH
is satisfied for eigenstates from the bulk of the spectrum of quantum-chaotic many-
body systems and for physical observables [120, 125-141, 124, 142, 143, 95, 144—
151, 97, 152, 153].

In contrast, the ETH is typically violated by integrable systems [125, 133, 154, 155,
135, 156, 138, 157, 158, 150, 159, 152], strongly localized systems [140, 160], and by
many-body scar states [161-163].

Quantifying if a system obeys the ETH or not involves finite size scaling analysis
of the fluctuations of matrix elements A,,, around the averages given by f and g. For
many-body systems with finite Hilbert space dimension D, the entropy in the bulk of
the spectrum typically increases as S ~ log D, implying e=5/2 ~ D~1/2. Fluctuations of
operator elements A,,, obeying the ETH thus decrease as D~'/2. This decrease of A,
fluctuations has been examined in several studies [133, 154, 155, 135, 137, 138, 156—
158, 143, 146, 149, 164, 165, 150, 151, 97, 152, 166].

For many-body systems, the Hilbert space dimension D is typically increasing
exponentially with the system size L. Therefore, fluctuations of A,,, obeying the ETH
decrease exponentially fast with increasing L. This exponential decay contrasts sharply

172 The fluctuations of

with integrable systems, which do not obey the ETH scaling D~
diagonal matrix elements A,,,, generally decrease as a power-law in L (logarithmically
in D) [154, 155, 135, 156-158, 150, 152], and the off-diagonal matrix elements generally

have a non-Gaussian distribution [138, 150, 159].
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The ETH is an ansatz of how observables in isolated quantum systems reach a
thermal value. Consequently, the finite size scaling analyses are conducted in the
thermodynamic limit. For systems with conserved particle number N, this typically
is the limit of both increasing L and N, keeping the particle density p = N/L fixed.
Here, the particle density p should not be confused with the spectral density p(\) of
random matrices. In Chapter 2, we investigate the fluctuations of A,,, in the classical
instead of the usual thermodynamic limit. The Bose-Hubbard system will serve as a
test model for this task.

1.2.3 The Bose-Hubbard model

The Bose-Hubbard model is a cornerstone in the study of quantum many-body systems,
particularly in the context of ultracold atoms in optical lattices. Originating from
the Hubbard model, which was initially formulated to describe electrons in solids,
the Bose-Hubbard model adapts the framework to bosonic particles. The model is
described by a Hamiltonian that includes two primary terms: the kinetic term, which
accounts for the tunneling of bosons between adjacent lattice sites, and the interaction
term, which describes the on-site interaction between bosons. This Hamiltonian H is

commonly denoted as

H=-

Y

U
Z(a}al +H.c)+ 2 > nj(ng—1) —p> nj. (1.37)
b J J

Here, J > 0 is the tunneling amplitude, U > 0 is the on-site interaction strength, pu is
the chemical potential, a; and a; are the bosonic creation and annihilation operators
at site j, and n; = a}aj is the number operator. The bosonic creation and annihilation
operators fulfill the usual commutation relations [a;, alT] = 0;. Throughout this thesis
we set i = 1. The sum (j,[) runs over nearest-neighbor pairs of lattice sites.

Due to its conceptual simplicity and computational tractability, the Bose-Hubbard
model has been used to study phenomena in condensed matter physics, such as
superfluid and Mott insulating phases [167-169]. In this thesis, the Bose-Hubbard
model serves as a many-body system to investigate the relation between classical and
quantum chaos and “ETH fluctuations” in the classical limit. For these studies, we
slightly modify the Hamiltonian in Eq. (1.37). Namely, we will consider Bose-Hubbard

systems restricted to open-boundary chains of length L, given by

1 U
H= 5 Z ijla}al + B an(nj - 1)- (138)
(3:0) J=1
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Compared to Eq. (1.37) we relax the condition of constant tunneling rate J per
site to a site-dependent, symmetric tunneling coefficient J;; = J; ;. In the remainder
of this thesis, we let J;o = 1.5 and J;; = 1 for j,/ > 2. This breaks the reflection
symmetry of the model. It will simplify the analyses conducted in Chapters 2 and 3,
but qualitative results are independent of breaking this symmetry.

Further, we set the chemical potential 4 = 0. The corresponding term 3;n; in
Eq. (1.37) is the number operator and is conserved by H. Thus a change in the chemical
potential results in a shift in the energy spectrum, which we can ignore without loss of
generality for the analyses presented in this thesis.

The Bose-Hubbard model consists of /N indistinguishable bosonic particles dis-
tributed across L sites. Because bosons are not restricted by the Pauli principle
the total Hilbert space dimension D is D = (N erl_ 1). The Hilbert space size grows
exponentially in the thermodynamic limit of increasing L and N and fixed particle
density p = N/L. In the classical limit of fixed L and increasing N the Hilbert space

size grows polynomially in N as D ~ N&71,

Classical limit of the Bose-Hubbard model

The Bose-Hubbard model has a classical limit for increasing particle number N — oo
and fixed system size L. For this limit to be well-defined, both the tunneling and the
interaction terms in the quantum Hamiltonian Eq. (1.38) need to have the same scaling
with N. For fixed number of sites L, the bandwidth of the hopping term a}al increases
as ~ N, while the bandwidth of the on-site potential n;(n; — 1) increases as ~ N2. The

faster increase of the on-site interaction term is absorbed into an interaction parameter
A=UN, (1.39)

which is kept constant in the limit of N — oo and L fixed. The Bose-Hubbard

Hamiltonian in terms of the renormalized interaction strength A is given by
1 Al &
H = -5 (Z% Jj,la}al + TN Zlnj(nj —1). (1.40)
4.l J=

To attain the classical limit, we have to renormalize the creation and annihilation

operators a') — a() /v/N = a®). In terms of @ and a', the renormalized Hamiltonian
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H is expressed as

H=H/N = ~5 Z lea a;+ — Zn] —1/N), (1.41)
(i)

where n = a'a. The renormalization of the bosonic operators makes the commutator
[@;,al] = 1/N vanish in the limit of N — co. Hence, in this limit, the renormalized
operators a and a' can be replaced by complex numbers 1 and 1*, respectively. Here,
* is the complex conjugate of 1. The so obtained Hamiltonian H is classical and

expressed as

S S Tt 5 Z 51 (1.42)
)

The dynamics of ¢(t) and ¢*(t) are given by Hamilton’s equations of motion

0 OH

2&1%’ = D) Z St + A|¢J| ¥, (1.43)

0v; G

where the index j runs from 1 to L and [ runs over all neighbors of j. Eq. (1.43) is
also known as the discrete nonlinear Schrodinger equation (DNLS), or the discrete
Gross-Pitaevskii equation [170-173]. By identifying the complex plane C with the
real plane R? the L complex equations in Eq. (1.43) become 2L real equations. Using
Cartesian coordinates proves to be computationally advantageous. Defining x = Re

and y = Im ), Hamilton’s equations of motion can be expressed as

0 10H 1
aiﬁj = 537% = —5 ;;) Jj,lyl + A($32 + y?)yj (1‘44)
.77
0 1OH 1
%Y T 90 2 >_ Jipwe = A§ + yf)w;. (1.45)
j .

Conserved quantities of the quantum Bose-Hubbard model impose constraints
on the classical dynamics. Specifically, the conservation of energy in the quantum
Hamiltonian directly corresponds to the conservation of the classical energy H of the
dynamics given by Eq. (1.43). Furthermore, the preservation of the total particle

number /N in the quantum system implies that

>l =1, (1.46)
J



32 Introduction

thereby limiting the phase space of the classical model to the real hyper-sphere S?/~!
within R22. This can be derived by taking the time derivative of Eq. (1.46) and applying
Eq. (1.43).

The formal replacement of operators @ and a' by complex numbers v and * can be
justified more rigorously by a semiclassical approximation of the quantum mechanical
propagator [174-176]. The propagator is expressed in terms of a path integral and a
stationary phase approximation is applied. The large parameter of the stationary phase
approximation is 1/h.;y = N and the saddle-point conditions are Hamilton’s equation
of motion in Eq. (1.43). This has led to a widespread use of the Bose-Hubbard model as
a testbed for semi-classical methods [177-195, 110, 196, 197], and the quantum model
has been compared to that of the DNLS [198, 76, 199, 200, 77, 201, 78, 103, 202-204].
In Chapter 3, we will, in similar spirit, compare several properties of the Bose-Hubbard

model related to quantum and classical measures of chaos.

Chaos and integrability

The competition between tunneling and interaction terms generally makes the Bose-
Hubbard model chaotic. The remainder of this section aims to provide some intuition
for which parameters L and A the model shows chaos and for which it does not.

Let us first focus on L = 2 sites. In this special case, the Bose-Hubbard model is
integrable for all A. In the quantum case, eigenvalues and eigenstates are expressible
by a Bethe ansatz [205-207], making this system Bethe-integrable. In such systems,
eigenvalue correlations typically follow Poisson statistics. The methodology connecting
Bethe-integrability to Poisson statistics will be discussed for the ASEP generator in
Section 1.3.2. Despite the non-Hermiticity of the the ASEP generator, the underlying
reasoning holds for the Hermitian Bose-Hubbard system as well. In the classical case,
dynamics happen in 2L = 4 real dimensions. This system has two integrals of motion:
energy and the norm of (¢,19) stated in Eq. (1.46). These are sufficiently many
integrals of motion to qualify the Bose-Hubbard model as Liouville-integrable.

For arbitrary system size L, both the quantum and the classical systems are
integrable in the limits of A — 0 and A — oco. We first discuss the classical case.
If A = 0 then Eq. (1.42) reduces to a free particle Hamiltonian. If A — oo then,
effectively, J can be neglected. Hence, the equations of motion presented in Eq. (1.43)
decouple. In both limits, the classical Hamiltonian has sufficient integrals of motion
to be considered Liouville-integrable. In the quantum case, Eq. (1.38) becomes a
free particle Hamiltonian in the limit of A — 0. For A — oo, the Hamiltonian given

by Eq. (1.38) is diagonal in the computational basis of mutual eigenstates of n;. In
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Fig. 1.7 Level ratios 7 averaged over the whole spectrum, as a function of interaction
strength A = UN, shown in the range A € (0.1,100). The horizontal lines are (7)p;

(lower green) and (7)gog (upper red).

both limits, the many-body eigenvalues of the quantum model are given by sums of
single particle eigenvalues. Consequently, they do not repel, which is a signature of
non-chaotic models.

For finite A, 0 < A < oo, the Bose-Hubbard model on L > 3 sites is known to be non-
integrable [208, 209, 77, 210, 103]. Despite being non-integrable, for L = 3 and to some
extent for L = 4 the system is not strongly chaotic but rather highly mixed, showing
signatures of chaotic and integrable models [180, 211, 199, 212-216, 78, 204, 217-219].
This mixed behavior of the Bose-Hubbard model, especially of the three site case, will
be discussed in Chapter 3.

To visually underline the parameter ranges under what the Bose-Hubbard model
is integrable or chaotic we present averaged spacing ratios of energy eigenvalues (of
the quantum model) in Figure 1.7 and compare with the prediction by RMT and
uncorrelated random variables. Similar figures have appeared in Refs. [211, 209, 217].

The Bose-Hubbard model belongs to the RMT-symmetry class of the GOE, as the
Hamiltonian in Eq. (1.38) is invariant under elementwise complex conjugation. Hence,
level statistics should be compared to those of the GOE. The corresponding average
level spacing ratio is (7)gog =~ 0.54 [51]. Conversely, an uncorrelated distribution of
random values leads to an average ratio of (F)py; ~ 0.39 [51].

Figure 1.7 displays the average ratio () as a function of A for different system

sizes L. It shows the transition of the system from integrable for small A to chaotic
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at intermediate A and back to integrable for large A. Notably, for small L, the level
ratio distributions deviate from both GOE and Poisson statistics at extreme A values.
This occurs because the Bose-Hubbard model transitions to free fermions as A — 0
and becomes diagonal in the computational basis when A — co. Consequently, the
eigenvalues are highly structured and do not adhere to any random sequence.
Furthermore, in small L systems, (r) peaks below the GOE value of approximately
0.54, even in highly chaotic regimes. This aligns with the mixed characteristics of the
Bose-Hubbard model for L = 3 and L = 4 sites. The peak approaches the GOE value

as L increases, indicating enhanced chaotic behavior in systems with larger L.

1.3 Stochastic many-body systems

The stochastic many-body systems considered in this thesis are placed within the
framework of continuous-time Markov chains (CTMCs). CTMCs are (continuous-time)
Markov processes that operate on finite state spaces. The characterizing property of a
Markov process is that future states depend solely on the present state, independent of
past states.

CTMCs provide a popular framework to model stochastic dynamics of many-
body systems in diverse fields ranging from physics, chemistry, and biology [220-223]
to economics [224, 225] and game theory [226, 227]. For example, they simulate
chemical reactions [228-234], gene regulation processes [235-239], quantum dynamics
(approximated by rate equations) [240-244]|, evolutionary game dynamics [227, 245, 246],
and many other processes. CTMCs are also the key element of such celebrated models
of statistical physics as contact processes [247-249], zero-range processes [250, 251]
and exclusion processes like the ASEP [250, 220, 252-258]. In some fields, CTMCs are
known under the names “classical Markovian master equations” or “rate equations” or
“Pauli rate/master equations”.

In this thesis, we consider generators of CTMCs and their spectra. We introduce
the generator of CTMCs in Section 1.3.1. In Section 1.3.2, we present the ASEP
as a prominent example of a stochastic many-body system modeled by a CTMC. In
Section 1.3.3, we introduce random (dense) generators of CTMCs and revisit their

spectral theory.
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1.3.1 Generators of Markov processes

For every time point ¢ > 0, a CTMC is described via a probability vector P(t). The
coefficients P;(t) denote the probability to be in state j at time ¢. We note that the
defining properties for a vector P to be a valid probability vector are that its coefficients
are non-negative, P; > 0, and sum to one, }>; P; = 1. Throughout this thesis, the total
number of states is denoted by D. Consequently, P(t) is a D-dimensional (probability)
vector.

The generator I of a CTMC represents the infinitesimal change of the probability
vector P(t). Due to the Markovian nature of CTMCs the infinitesimal change is given

by a linear first-order differential equation [259], the (Markovian) master equation,

d

ZP(t) = KP(). (1.47)

The generator K is known as Kolmogorov operator or Kolmogorov generator [260].
Since P(t) is a D-dimensional probability vector, K is a D x D-matrix. We choose P(t)
to be a column vector, so KC acts in Eq. (1.47) on P(t) from the left. Moving forward,
we will use calligraphic letters (e.g., ) to denote matrices related to generators of
CTMCs, and standard letters (e.g., K;;) for their matrix elements.

To be a valid Kolmogorov operator, a matrix K must satisfy two conditions:

(i) all its off-diagonal elements have to be real and non-negative, K;; > 0, i # j,

(i) the sum over every column should be zero, Y, K;; = 0.

The first condition implies that Kj;; can be interpreted as transition rate between states
i and j. Together with the second condition, it ensures that P(¢) remains a probability
vector at all times ¢, given that P(0) is a probability vector [261]. The sum in the
second condition is over the columns, since K is acting from the left in Eq. (1.47).
Due to the first condition the second condition is only met by defining all diagonal
elements Kj; of IC as
K= _ZKU- (1.48)
7]
Consequently, any Kolmogorov operator can be expressed by a matrix M, with real,

non-negative elements M;; > 0 for ¢ # j and zero diagonal M;; = 0, as
K=M-J, (1.49)

where J is a diagonal matrix with diagonal elements J;; = >°; M;;. This separation

into an off-diagonal matrix M and a diagonal matrix J will be useful throughout this
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thesis. We note that the diagonal of M can be modified arbitrarily without changing
IC, as any diagonal element M;; is canceled by subtracting 7.

In Chapters 4 and 5, we study the spectrum of K. As K is in general non-
Hermitian, its spectrum is typically complex. Further, the matrix elements of K are
real, so eigenvalues are either real or come in complex conjugated pairs. Following the
Gershgorin circle theorem, all eigenvalues are located in the left complex plane [262].

The spectrum of I is related to the dynamics of the system. For an initial probability

vector P(0), the master equation has the formal solution
P(t) = ™ P(0). (1.50)

Consequently, the real part of eigenvalues (which is < 0) relates to the relaxation times
of eigenmodes, while the imaginary part contributes to the oscillatory timescales of
the system.

Since the columns of L sum to zero, the spectrum contains at least one eigenvalue
A1 = 0. All coefficients of the corresponding left eigenvector are equal. Corresponding
right eigenvectors are called steady or stationary states. These are attained in the
limit of infinite time ¢ — oo. If the graph corresponding to I is strongly connected,
the steady state is unique [263, 264, 261]. The relation between the (graph) Laplacian,
—K, and the corresponding graph has been discussed in Section 1.1.5.

Of special importance are the eigenvalues A of I with the smallest absolute, non-
zero real part | Re A|. Their absolute real part equals the so-called spectral gap .. The
spectral gap is inverse to the timescale of relaxation of initial probability vectors P(0)

to the stationary state.

1.3.2 The Asymmetric Simple Exclusion Process (ASEP)

Before continuing with generic Kolmogorov generators it is instructive to consider
a paradigmatic example of a CTMC — the Asymmetric Simple Exclusion Process
(ASEP). In the following, we will overview the ASEP, formulate its generator in terms
of Pauli spin matrices, present phases of the stationary state and show the spiky
spectral boundary as an intriguing feature of its spectrum. Additionally, we highlight
the Bethe-integrability of ASEP and that eigenvalues are uncorrelated according to
the CSR distribution.

The ASEP is a paradigmatic stochastic many-body model in the realm of nonequi-
librium statistical mechanics and mathematical physics [250, 220, 252-258, 265]. It was

initially introduced to study kinetics of biopolymerization on nucleic acid templates
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Fig. 1.8 Sketches of the ASEP with (a) L = 10 sites (black dots), N = 5 particles
(red markers), and pbc and (b) L = 7 sites and obc. In (c) phase diagram of TASEP
(p=1and g =7 =0 =0) with obc.

(266, 267] but soon extended its reach to other fields, modeling phenomena such as
traffic flow [268, 269], biological transport mechanisms [266, 267, 270-272], and surface
growth [273-276], just to name a few. Over the years, ASEP has served as a testing
ground for theoretical tools and methods in nonequilibrium statistical mechanics, such
as the matrix product ansatz [277-279] and the Bethe ansatz [276, 254, 280, 281, 257].
The ASEP consists of interacting particles on a lattice, where each particle can hop to
a neighboring site subject to the exclusion principle, which prohibits more than one
particle from occupying the same site at any given time. The process is termed “asym-
metric” due to the unequal probabilities for particle movement in different directions,
leading to a directional bias and a net current of particles even in the steady state.
This distinguishes it from its equilibrium counterpart, the symmetric simple exclusion
process, where particles are equally likely to move in either direction, resulting in no
net flow in the steady state.

In this thesis, we consider the ASEP on one-dimensional chains of length L with
both periodic boundary conditions (pbc) and open boundary conditions (obc). In
the pbc case, particles move along a ring, depicted in Figure 1.8(a) with the rate to
move clockwise p and counterclockwise ¢q. In the obc case, particles move along a
one-dimensional chain, with particles entering and exiting at the ends of the chain (site
1 and L) from reservoirs. This is sketched in Figure 1.8(b). Similar to the pbc case,
the rate to hop right and left inside the chain is denoted by p and ¢, respectively. At
the ends of the chain, o and « correspond to the entry and exit rates of particles at
the left end (site 1), while 8 and ¢ are associated with the exit and entry of particles
at the right end (site L).
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The ASEP is a continuous time process; the dynamical parameters are rates. For
an infinitesimal time step dt the probability for a particle to hop right or left is pdt or
q dt, respectively. Without loss of generality, we let p + ¢ = 1 unless explicitly stated
otherwise.

In the case that particles can only hop in one direction, the process is called
the Totally Asymmetric Simple Exclusion Process (TASEP). For pbe, the TASEP
parameters are p = 1, ¢ = 0 and p = 0, ¢ = 1. For obc, in addition, the entry and
exit rates of particles at the end of the chain are set accordingly. If p =1 (¢ = 0),
then v = 0 = 0, only leaving @ and 3 as free parameters. The case of ¢ =1 (p = 0) is
analogous.

The microscopic dynamics of ASEP with particles moving randomly only constrained
by the exclusion principle makes this stochastic process Markovian. This, together
with the finite size of the chain, puts the ASEP in the framework of CTMCs. Next, we
will discuss its (Kolmogorov) generator, the stationary state and the spectrum of the

generator.

The Kolmogorov generator K

The number of particles in the chain is denoted by N and the particle density by
p = N/L. This should not be confused with p()), which denotes the spectral density
of random matrices. We note that the particle number N (and so p) is conserved for
pbe, while it varies for obc.

The Kolmogorov generator L = M — J of ASEP can be formulated in terms of
Pauli spin-1/2 matrices. The spin-up state is interpreted as a particle present, while
the spin-down state is interpreted as a particle absent. For pbc, the off-diagonal matrix
M is given by i

M = Z; (pO-JJ'rJrlO-; + qo_jo-jjrl) (1.51)
j=

and the diagonal matrix J is given by

iz(j 0% — ) (1.52)

j=1

Here, 0 denote spin raising and lowering operators, while 0 denotes the z-direction
of the spin. We identify o, as o;. The off-diagonal matrix M encodes the transition
rates of particles hopping in the ring, while 7 is fully determined by M and ensures

that IC is a valid Kolmogorov operator.
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Exchanging p and ¢ in Eq. (1.51) corresponds to taking the transpose of M and so
of K. This in particular implies that the spectrum of K is invariant under exchanging
p and q.

For obc, particles are allowed to enter and exit the chain at the boundaries. Thus,
the matrix M can be denoted as

L-1
M = (pa;;la; + qa;-“ajjrl) +aof +~o] + fo; + 007, (1.53)

<
Il

while the diagonal J is given by

‘7:_4Z<U;UJZ'+1—1)—;{(1);(]—@+7>0f+<q;p—5+5>02]
+-la+B+vy+0]. (1.54)

In this expression, the bulk term of M remains consistent with that for pbc. The
sources and sinks of particles at the end of the chain are modeled by single spin-flip
operators. As for pbc, the diagonal matrix 7 is determined by M to ensure that K is

a valid Kolmogorov operator.

Stationary state

The ASEP as a CTMC converges in the long time limit to a stationary state. This
stationary state is a non-equilibrium state with non-zero particle current whenever
p # q [282, 254].

In the obc case, the asymmetry of probabilities gives rise to nonequlibrium phase
transitions [283, 284, 279]. Already the TASEP, with p = 1 and ¢ = v = ¢ = 0, leaving
only o and 3 as free parameters, presents a rich and intricate phase diagram, depicted
in Figure 1.8(c). This diagram illustrates the different steady-state behaviors of the
system under varying rates of particle entry () and exit () and is typically divided
into three primary phases: low-density, high-density, and maximal current phases.
Each phase is characterized by distinct particle densities p = %Zf:1<nj) and flux
strengths J = (07 0;,), where the brackets (...) denote the expectation with respect
to the stationary state. These phases have to be understood in the limit of L — oo.

In the low-density phase, the determining factor is the particle entry rate o, subject
to a < min(f3,1/2). This results in a bulk density p = « below 1/2; with particle
current J = a(1 — «). In the high-density phase, constrained by f < min(a, 1/2),
the exit rate 8 becomes crucial, leading to a bulk density p =1 — § above 1/2 and a
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Fig. 1.9 Many-body spectrum of TASEP on L = 11 sites with (a) pbc and N =5
particles and (b) obc. Both cases show pronounced spikes. In (c), the distribution of
complex spacing ratios of TASEP with pbc and L = 17 and N = 8 is flat (= n~1) with
finite size fluctuations. This reflects the integrability of the model.

particle current J = (1 — ). The maximal current phase occurs when both « and
[ are larger than 1/2. Here, the bulk density is p = 1/2, and the particle current
is maximal, J = 1/4, irrespective of a and [ values. This phase is interesting as it
maximizes system throughput, with internal dynamics rather than boundary conditions
primarily influencing the system.

Spectrum of the generator

The steady state, while significant, is not the sole point of interest. The spectrum of
the Kolmogorov generator K also holds considerable importance. For example, the
spectral gap, the inverse of the timescale of relaxation to the steady state, decreases
in the limit of large L as L~3/2 [276, 285-287]. The exponent 3/2 is the same as the
dynamical exponent of the Kardar-Parisi-Zhang equation in one dimension [274].
The spectrum of K has another captivating aspect. Figure 1.9 presents its spectrum
in the totally asymmetric case for L = 11 with pbc and N = 5 in panel (a), and
obc in panel (b). Notably, it exhibits distinct spikes: L = 11 in the pbc case and
L + 1 =12 for obc. Spectra of the ASEP generator, which showed similar spikes, have
been presented in Refs. [288, 289]. The mechanism behind the emergence of the spikes,
together with its relation to RMT, will be explored in Chapter 5 of this thesis.

Bethe-integrability of the generator

The spectrum of the ASEP generators can be obtained by Bethe ansatz [276, 280, 257].
In the following, we will briefly discuss the coordinate Bethe ansatz [290], applied to
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the pbc case. Bethe equations for an extension (deformation) of the ASEP will be
derived in detail in Chapter 5.

The coordinate Bethe ansatz is a generalization of the plane-wave ansatz for single-
particle systems, in which eigenstates are linear combinations of plane-waves with
momenta k;. This ansatz assumes that an eigenstate |1)) of the Kolmogorov operator
KC with eigenvalue A is a combination of plane-waves with “generalized momenta” k:‘gk),
which are typically complex valued and depend on A. Specifically, the coordinate Bethe

ansatz is formulated as

(o onli) = 3 A I] €50, (1.55)

’TESN j=1

where |x1,...,zy) denotes the state with particles at position x; < --- < zy, A(T)

are complex amplitudes determined by the eigenvalue equations and the sum runs

over all permutations 7 of {1,..., N}. The logarithms of the generalized momenta are

called Bethe roots zjo) = eiky) and are solutions of recurrent relations, known as Bethe

equations. They determine the eigenstate [¢)) via Eq. (1.55) up to a phase. With this
(A

ansatz, every eigenvalue A of the ASEP is a sum of z; = z; ) and its reciprocal,

N
A= (pz ' +qz —1). (1.56)
j=1

AN of the bulk spectrum typically stem from

Nearest neighbor eigenvalues A and
sets of very different Bethe roots {z}} and {z]’-\NN}. Consequently, the eigenvalues A
and MV are statistically uncorrelated. We numerically confirm this for TASEP on
L = 17 sites with N = 8 particles by presenting the complex spacing ratio (CSR)
distribution. In Figure 1.9(c), the CSR distribution appears flat over its support to
very good approximation with minor fluctuations. These are attributed to the finite
size of the system. The flat CSR distribution is akin to the CSRs of uncorrelated values
(panel (c) of Figure 1.5).

A similar relation of the eigenvalues and Bethe roots holds for the obc case as
well [291-293, 280] and by the same argument the eigenvalues of the generator are

statistically uncorrelated.

1.3.3 Random generators of Markov processes

Following Wigner’s approach with random Hamiltonians, we model the Markovian

evolution of complex systems by random Kolmogorov operators.
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Fig. 1.10 Spectral density of (a) the Ginibre ensemble with x3 distributed elements
modeling M and (b) the diagonal matrix J, whose entries are the sums of columns
of M. Matrix sizes are D = 8104 with 100 samples. In (c) the spectrum of a single
realization of M with D = 1000.

A generic random Kolmogorov operator must satisfy the conditions to be a valid
generator of CTMCs, yet remain as general as possible. Such a generic model can
be stated in terms of Eq. (1.49), where any Kolmogorov operator K is expressed as
the difference of two matrices K = M — 7. In the following, we do not require that
the diagonal of M is non-zero. Hence, the only constraint on the matrix M is that
its matrix elements are real and non-negative. Following [294, 295, 260], the most
generic random matrix ensembles fulfilling this constraint are Ginibre ensembles with
non-negative element distributions. These ensembles are non-Hermitian and all matrix
elements are iid. Thus, the limiting spectral density is expected to adhere to Girko’s
law and, after appropriate rescaling, becomes uniform in the unit circle.

The matrix elements of I, and so of M, are the transition rates. Their magnitudes
are related to the timescales of dynamics; hence, have physical relevance. Therefore, we
do not rescale the matrix elements, but explicitly consider their mean py and variance
o2. The spectral density of the (unscaled) random matrix M is, in the large D limit,
well approximated by the disk of radius v/ Doy centered at 0.
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In Figure 1.10(a), we present the estimated spectral density of Ginibre matrices
with matrix elements distributed according to a x3 distribution. The y? distribution
is the sum of k squared, independent standard Gaussians [296]. The special case
of k = 2 is the distribution of the squared absolute value of a complex Gaussian.
The x3 distribution has mean o = 2 and variance 02 = 4. The matrix size of K
in Figure 1.10(a) is D = 8104. Consequently, the radius of the spectral density is
v/ Doy ~ 180, indicated by the red circle in panel (a).

As discussed in Section 1.1, the fact that matrix elements of M are real implies
that the eigenvalues are either real or come in complex conjugate pairs. As in the case
of the GinOE with Gaussian-distributed matrix elements, this implies substantially
many real eigenvalues, visible as the dark line on the real axis in Figure 1.10(a). Note
that this is not violating Girko’s law, as the real line is a Lebesgue-measure zero set in
the complex plane.

In contrast to the non-Hermitian Ginibre matrices considered in Section 1.1, the

matrix elements of M have a non-zero mean po. After subtracting the means,
M =M — Dpy|1)(1, (1.57)

where |1) = D~Y2(1,...,1)! is the normalized 1-vector, the matrix M fulfills the
requirements of Section 1.1 and adheres to Girko’s law. The difference between M
and M is a rank-1 perturbation Dyio|1)(1]. This implies that the spectrum of M is
concentrated at the Girko disc, with a single outlier eigenvalue around poD [297]. This
outlier is a Lebesgue-measure zero set, so M still obeys Girko’s law. As eigenvalues are
real whenever they do not come in a complex conjugated pair, the outlier is real. In
panel (c) of Figure 1.10, the spectrum of a single realization of M with x3-distributed
matrix elements and matrix dimension D = 1000 is shown. Besides the Girko disc
centered at zero, the single outlier around Dy = 2000 is well recognizable.

Let us now turn to J. The elements of the diagonal matrix J are the sums of
the columns of M. All elements of M are iid. Hence, in the limit of large D, the
central limit theorem implies that the elements .J; can be approximated with Gaussian-
distributed random variables having mean Dy and variance Doj. For D = 8104 the
distribution of J; is shown in Figure 1.10(b) for M;; distributed according to the x3
distribution. The J;; density is well approximated by a corresponding Gaussian density.

Comprehension of the spectra of M and J enables us to understand the spectrum
of K. In Figure 1.11, we present spectra of random K-generators with matrix size
D = 8104 and x3 element distribution. In panel (a) we show the spectrum of a single

sample. It consists of a bulk spectrum at —Dyy and a single outlier at exactly 0,
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Fig. 1.11 Spectrum of random dense Kolmogorov operators with matrix size D = 8104
and off-diagonal elements distributed according to a x3 distribution. In (a) a single
realization and in (b) the bulk density of 100 realizations.

which is the stationary state eigenvalue. The bulk is concentrated in relation to the
distance to the zero eigenvalue. This feature is inherited from M. For comparison, the
spectrum of a single realization of M is shown in Figure 1.11(a). It is shifted in the
real direction by —Dyg and in the imaginary direction by —D /8. The bulk spectra
of M — Dyugy and K are of the same order, while the outliers (around 0) are nearly
indistinguishable [297].

In panel (b) of Figure 1.11, we present the spectral density of the bulk without the
zero eigenvalue outlier. This density is bounded by a spindle-like curve (red). Without
going into the details of its derivation [298], it is plausible that this form of the bulk
spectrum emerges from a “combination” of the disk in panel (a) and the Gaussian
distribution in panel (b) of Figure 1.10.

One of the goals of modeling Kolmogorov operators by random matrices is to
understand more about the spectrum of physical generators of Markov processes,
like the ASEP. Comparing the spectrum of the ASEP in Figure 1.9(a-b) with the
spectrum of Kolmogorov operators in Figure 1.11(a) reveals a big difference between
these two: the spectral gap between the bulk and the stationary eigenvalue 0 is large
for random generators compared to the gap of the ASEP generators. In Chapter 4, we
will argue that the spectral gap is, typically, small for physical systems. This hints
essential missing structure in the model of random generators presented so far. In
Chapter 4, a model of random Kolmogorov operators will be investigated, generalizing
the IC-generators based on Ginibre M matrices. This ensemble has additional structure
in form of sparsity. We will show that sparse random generators have a small spectral

gap akin to physical generators like the ASEP.
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1.4 QOutline and summary of main results

The remainder of this thesis is divided into five chapters. Chapters 2 and 3 investigate
several RMT-related properties of the Bose-Hubbard model. Chapters 4 and 5 concern
generators of continuous-time Markov chains (CTMCs), with focus on random sparse
generators in Chapter 4 and the Asymmetric Simple Exclusion Process (ASEP) in
Chapter 5. We conclude in Chapter 6.

The following paragraphs provide a summary of the main results of each chapter
and reference associated publications. The last paragraph remarks on the author’s
publications and preprints that are not part of this thesis.

Chapter 2: “Figenstate thermalization” in the classical limit

The results of this chapter have mostly appeared in [299]

G. Nakerst, and M. Haque, Eigenstate thermalization scaling in approaching the
classical limit, Phys. Rev. E 103, 042109 (2021).

In Chapter 2, we investigate the eigenstate-to-eigenstate fluctuations of expectation
values (EEV fluctuations) of local observables in the Bose-Hubbard model. As outlined
in Section 1.2.2, the Eigenstate Thermalization Hypothesis (ETH) predicts that these
fluctuations should decrease as D~1/2 in the thermodynamic limit of increasing lattice
size L and particle number N with fixed density p = N/L. This has been confirmed
by several studies. Instead of the thermodynamic limit, we study the classical limit of
increasing N and constant L. We derive expressions for the expected scaling of EEV
fluctuations, assuming eigenstates are RMT-like. After an appropriate rescaling of
the local observables, the RMT-decrease of EEV fluctuations agrees with the ETH

/2 Numerical analyses reveal that EEV fluctuations of Bose-Hubbard

prediction D~
mid-spectrum eigenstates decrease as a power-law in D. For large L, the exponent of this
power-law agrees with the RMT prediction —1/2, while for small L, EEV fluctuations
decrease with a different exponent. We investigate several possible reasons for this
anomalous scaling. We show that ansatze of uncorrelated and two-point correlated
eigenstate coefficients result in an exponent of —1/2. Therefore, the anomalous scaling
must be due to some more subtle higher-order correlations of eigenstate coefficients.
Chapter 3: Classical and quantum chaos measures in a mized many-body system

The results of this chapter have mostly appeared in [300]

G. Nakerst, and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical
versus quantum, Phys. Rev. E 107, 024210 (2023).

In Chapter 3, we present the comparison of classical and quantum chaos measures in
the three-site Bose-Hubbard model. On three sites, the Bose-Hubbard model is neither



46 Introduction

integrable nor strongly chaotic, but shows a mixture of both behaviors. In the quantum
model, we investigate the level ratio distribution, (de-)localization of eigenstates and
the decay of EEV fluctuations and compare to the corresponding RMT predictions.
Chaos in the classical system, the discrete non-linear Schrédinger equation (DNLS), is
quantified in terms of Lyapunov exponents. These capture the exponential sensitivity
to perturbations of initial conditions. As a function of energy and interaction strength,
we demonstrate a strong overall correspondence between all four measures of chaos.
Chapter 4: An ensemble of sparse random generators of Markov processes

The results of this chapter have mostly appeared in [301]

G. Nakerst, S. Denisov, and M. Haque, Random sparse generators of Markovian
evolution and their spectral properties, Phys. Rev. E 108, 014102 (2023).

In Chapter 4, we introduce and study an ensemble of random generators K of
CTMCs with adjustable sparsity. This sparsity is controlled by a parameter ¢ denoting
the number of non-zero elements per row and column of K. In the graph framework,
KC is the negative Laplacian of a ¢-regular, directed graph with D vertices and 2¢p D
edges and random, iid edge weights. For ¢ = D — 1, the ensembles of dense random
Markov generators, introduced in Section 1.3.3, are recovered. For typical physical
CTMCs, ¢ is constant in D for single-body systems, while ¢ increases logarithmically
with D for many-body systems (e.g. ASEP).

We study the effects of sparsity on the spectrum of the generator matrix K. We
present results for the bulk of the spectrum, the spectral gap and correlations of
eigenvalues. Concerning the bulk spectrum, we show that the first moment of the
eigenvalue distribution scales as ~ ¢, and the standard deviation as ~ /. This
implies that the bulk diverges from the stationary eigenvalue 0, whenever ¢ increases
with D. For the spectral gap, we show that its well-approximated by the smallest
diagonal element of J. Using extreme value theory, we demonstrate how the spectral
gap is related to the tails of the edge weight distribution. For common distributions,
the spectral gap closes as a power-law in D for constant ¢ (single-body), is constant (up
to log D corrections) for ¢ ~ log D (many-body) and diverges, whenever ¢ increases
substantially faster than logarithmically with D. Consequently, sparsity closes the
large spectral gap, which is characteristic of dense random generators. Eigenvalue
correlations are analyzed through complex spacing ratio (CSR) statistics. We find that
starting already at ¢ > 2, the CSR distribution agrees with the RMT prediction, while
the extreme case ¢ = 1 is anomalous.

Chapter 5: The spectral boundary of the ASEP

The results of this chapter have appeared in [302]
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G. Nakerst, T. Prosen, and M. Haque, The spectral boundary of the asymmetric
simple exclusion process: Free fermions, Bethe ansatz, and random matrix theory,
Phys. Rev. E 110, 014110 (2024).

In Chapter 5, we analyze the K-generator spectrum of the Asymmetric Simple
Exclusion Process (ASEP); particularly, the spectral boundary. We examine finite
chains of length L, under periodic (pbc) and open boundary conditions (obc). Notably,
the spectral boundary exhibits L spikes for pbc and L+ 1 spikes for obc. We investigate
the origin of these spikes from several points of view. We map the generator K to
interacting non-Hermitian fermions and extend this model to have adjustable interaction
U. In the non-interacting case (U = 0), the analytically computed many-body spectrum
shows a spectral boundary with prominent spikes for both pbc and obc. For pbe, we use
the coordinate Bethe ansatz to interpolate between the non-interacting model (U = 0)
to the ASEP generator (U = 1). We show that spectral boundary spikes stem from
clustering of Bethe roots. We apply RMT by relating the ASEP generator to random
graphs with a distinct cycle structure. In these graphs, all cycle lengths are divisible
by L (L + 1 for obc). The corresponding adjacency matrices have higher-order trace
correlations, akin to the random matrices following the hypotrochoidic law discussed
in Section 1.1.2. The spectral boundaries of the adjacency matrices and Laplacians of
the random graph ensemble show L (L + 1 for obc) spikes, resembling those of ASEP
and of matrices obeying the hypotrochoidic law.

Results not included in this thesis

As outlined above, parts of this thesis are based on the publications [299-301]
and the preprint [302]. The author of this thesis has additionally contributed to the
publications and preprints [303-305]:

[303] G. Nakerst, J. Brennan, and M. Haque, Gradient descent with momentum
— to accelerate or to super-accelerate? (2020), arXiv:2001.06472.

[304] P. C. Burke, G. Nakerst, and M. Haque, Assigning temperatures to eigen-
states, Phys. Rev. E 107, 024102 (2023).

[305] P.C. Burke, G. Nakerst, and M. Haque, Structure of the Hamiltonian of
mean force, Phys. Rev. E 110, 014111 (2023).

The content of these works is not part of this thesis. The preprint [303] is not related
to RMT. The work in Refs. [304, 305] can be put into the framework of thermalization
of closed quantum systems, which has some relations to RMT. But the contribution of
RMT results in these works is minor compared to Refs. [299-302] and therefore has

not been incorporated in this thesis.






Chapter 2

“Eigenstate thermalization” in the

classical limit

The content of this chapter has appeared as part of [299]:

G. Nakerst, and M. Haque, Eigenstate thermalization scaling in approaching the
classical limit, Phys. Rev. E 103, 042109 (2021).

In this chapter, we explore the fluctuations of diagonal operator elements A,
in the basis of Bose-Hubbard eigenstates. According to the ETH, these fluctuations

decrease with increasing Hilbert space size D as D~'/2

in the thermodynamic limit.
The Bose-Hubbard model has another limit of increasing D, the classical limit of fixed
system size L and increasing particle number N. One might question whether the
ETH scaling of eigenstate expectation value A,, (EEV) fluctuations applies in the
classical limit too. This chapter addresses that question.

In Section 2.1, we introduce the notation and outline the numerical procedure to
compute EEV fluctuations. In Section 2.2, we derive analytical expressions for the EEV
fluctuations corresponding to GOE eigenstates. For such states, the EEV fluctuations
depend on D as a power-law ~ D~ with power ¢y = % — ﬁ This deviation from
the ETH prediction is attributed to the bandwidth of the operators A increasing with
N in the classical limit. After rescaling according to the bandwidth, EEV fluctuations
agree with the ETH prediction. In Section 2.3, we present a numerical analysis of EEVs
for Bose-Hubbard eigenstates. We find that the EEV fluctuations depend on D as a
power-law. For large system sizes L, the EEV fluctuations agree with those of GOE
eigenstates. For small L, we observe discrepancies between the numerical exponent
and the GOE prediction. In Section 2.4, we examine several plausible mechanisms for

these deviations. We summarize and suggest possible future studies in Section 2.5.
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Fig. 2.1 FEigenstate expectation values A, of the tunnel operator A = agah plotted
against eigenenergies E,, for a Bose-Hubbard chain with (a) L = 3 sites and (b)
L = 10 sites. The numbers of particles N are listed in the legends. In (a), the
larger cluster corresponds to N = 175 particles, while the smaller cluster on the left
corresponds to N = 60 particles. The interaction parameter is A &~ 2.477. Top panels
show full spectra. Bottom panels zoom into the 5th of ten equal-length energy intervals,
as indicated by the shorthand label “AFE = 5. Dotted lines are fitted linear functions.

2.1 Eigenstate expectation value (EEV) fluctua-

tions

In this chapter, we study the diagonal elements A,, = (E.| A|F,) of operators A in
the bases of eigenstates |E,) as a function of (energy) eigenvalues E,. We refer to the
Auna’s as eigenstate expectation values (EEVs). We discuss EEVs wrt Gaussian states
(GOE eigenstates) in Section 2.2, Bose-Hubbard eigenstates in Section 2.3 and other
random states in Section 2.4. To visualize the quantities of interest, we present EEVs
Auo for Bose-Hubbard eigenstates |E,) as functions of energy FE, in Figure 2.1. The

EEVs are calculated numerically by exact diagonalization.
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In general, EEVs A,, fluctuate with E,. To quantify this fluctuation we express
Aaa = f(A7 Ea) + U<A7 Ea)Raa (21)

in terms of functions f and ¢ and a pseudo-random random variable R, with mean 0
and unit variance. Here, f encodes the mean of A,, and ¢ the width of A,, around
its mean. In contrast to the ETH-formula presented in Section 1.2.2, we incorporated
the dependence on E, and the magnitude of fluctuations in a single function o. In
Eq. (2.1), we do not assume that the ETH holds. If the ETH holds, f and o are
smooth functions of E, and o ~ D~1/2,

Our main incentive in this chapter is to study the scaling of o with D in approaching
the classical limit of fixed L and increasing N. To calculate o, we first estimate f. If
f is smooth then it should be locally linear in E,. Therefore, we divide the energy
spectrum into 10 equal-length, disjoint intervals AE. In these intervals, we find that f
is indeed linear to an excellent approximation in our cases, as seen in panels (c) and (d)
of Figure 2.1. Additionally, ¢ as a function of E, appears constant in AFE. Therefore,
we can estimate o(A, E,) by fitting linear functions £, — b+ mkE, on AE to A,, and

considering the variance

1

0*(A,AE) = —
( ) Nag Ey in AE

|Apa — b — mE,|*. (2.2)
Here, Nag denotes the number of states in AFE.

Since the ETH is expected to hold only away from the edges, we are primarily
interested in mid-spectrum eigenstates. We will show data from the 5th, 6th and 7th
energy intervals. In shorthand, these will be labeled as AE =5, AE =6, AE =7,
with AF referring to the label and not the interval width. In Figure 2.1, we display
the EEVs for the full spectrum in (a,b) and for the AE = 5 interval in (c,d), for two
different values of L. Unless indicated otherwise, we present data for an intermediate
value of the interaction parameter A = UN around which the systems are found to be
significantly chaotic (Figure 1.7), namely, A = 10'%/33 ~ 2.477. Scaling of ¢ with D
will be investigated for a broad range of A and all energies in Chapter 3 for the three
site Bose-Hubbard system.

The ETH generally holds for operators that are sufficiently local. In this chapter,
we consider two operators: the tunnel operator agal from site 1 to site 2 and the
number operator n; on site 1. We have checked that our results are qualitatively the

same for ag a; with other ¢, j. It is noteworthy that the operator a£a1 is non-Hermitian.
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In cases where Hermiticity is required, we instead investigate the Hermitian operator
(agal + aJ{ag). This results in an additional multiplicative factor of 2 in the fluctuations

of EEVs.

2.2 EEV fluctuations for random Gaussian states

In this section, we present EEV fluctuations wrt random states, especially GOE
eigenstates approximated by Gaussian states. All results are obtained analytically.
The EEVs calculated for random states do not have large-scale smooth variation
as a function of energy, in contrast to EEVs presented in Figure 2.1. Thus, the
statistical standard deviation of EEVs can be directly compared with our measurement
of EEV fluctuations for physical eigenstates. The assumption of eigenstates being
effectively random has been previously used to derive scaling properties of EEVs in the
thermodynamic limit [131, 135, 97]. Here, we provide explicit expressions for o in terms
of trace properties of the operator matrix, and then specialize to both thermodynamic

and classical limits.

2.2.1 General trace expressions

Let A be a D x D square matrix representing the operator of interest, and |Z) be a
D-dimensional, multivariate random state with iid coefficients Z;, each with mean 0.

Then the statistical variance of Ay = (Z|A|Z) can be expressed as

D
0'2(142) = Z AZ‘J‘AZ‘/J‘/ COV(ZZ‘Z]', Zi’Zj’)y (23)

,5,0,5'=1

where cov(Z;Z;, Zy Z;) denotes the covariance between the random variables Z;Z; and

ZyZy. Its given by

COV(ZiZj, Zi/Zj/) = <ZiZjZi/Zj/> — <Z1Z]> . <Zi/Zj/>

where (...) denotes the average wrt to the random state |Z) and d;; denotes the
Kronecker symbol. By the independence of Z;, Z; for i # j, (Z;Z;ZyZ;) is only

non-zero if there is no index i, 5,4, j' different to the other three. The only possibilities
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for this are

i=j=1=7

i=jand i =y

i=1 and j =5

i=j and j =1, (2.5)

SO

(Z:2;Z3 7)) = 6150583 (Z2)
+ (1 — 0;50;i6:57) [6ij§i’j'<Zi2>2 + 5ii’5jj’<Zz'2>2 + 5ij'5ji'<Zi2>2} : (2.6)

Thus, the variance of Ay can be expressed as

= <Zil> Z Azzz + <212>2 Z AMA + Z A + Z Al]A]Z - <Z12>2 Z AiiAi’i/
i 4! i#j i#]j i,
= ((zh) =217 YA ; A2+ gA”Aﬂ
= ((2}) - 3(22) )ZA 22 [tr(A?) + tr(AAD)] . (2.7)

This rather general result, does not assume a particular distribution of the coefficients,
only that they should be independent and identically distributed and have mean 0.

Eq. (2.7) simplifies by specializing to the case of GOE eigenstates. As outlined in
Section 1.2.1, these are generically considered as reasonable models for the behavior of
mid-spectrum eigenstates of chaotic Hamiltonians. As discussed in Section 1.1.4, in the
large D limit, GOE eigenstate coefficients are to good approximation independently
Gaussian distributed with mean 0 and variance D~!. Their second and fourth moments
are given by (Z?) = D™! and (Z!') = 3D~2. For such Gaussian states |Z), Eq. (2.7)
simplifies to

(42) = () AL+ () + )
= L i) ). @)

The second of the two traces, tr(AAT), is the squared Hilbert-Schmidt norm or

the Frobenius norm of the operator. For Hermitian A the two trace terms are equal,
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tr(A2) = tr(AA"). In this case, we recover Eq. (1.33) from the introduction. Expressions
equivalent or analogous to Eq. (2.8) have appeared in Refs. [306-309, 124]. As tr(A?)
and tr(AAT) are invariant under a basis change, so is the variance Eq. (2.8). In contrast,

Eq. (2.7) is not basis-invariant, due to the first term.

2.2.2 Quadratic observables

In the subsequent analysis, we compute the trace expressions tr(A42?) + tr(AAT) for

quadratic bosonic observables denoted by A. These observables can be represented as

f
j

be expressed as summations over ala;al,ay. Our aim is to determine tr(ala;al,a;).
A My gyt

linear combinations of the form a'a;. For such operators A, the terms A% and ATA can

Let us consider a basis state defined as |n) = |ny,...,ng), where n; denotes the

number of particles at site j. Consequently, we can represent

a}ai |n> = (SZ]TL,L \n) -+ (1 — (5ij)\/nj -+ 1\/77,_Z| ey — 1,nj + 1, Ce > . (29)
By applying Eq. (2.9) twice we get

<n[ a;aia},ai/ |n> = (5i/j/5ijni/ni + (1 — 6i’j’)<1 — (5ij)5ij/(5ﬂ-/(nj/ + 1)7%/ (210)

N—-I+L-2

I o ) states with [ particles on site

First let i = j =14 = j'. Given that there are (

1, we deduce

N—l+L—2>. (2.11)

N
tr(n?) = Zl2<
=0 L—-2

Writing {2 in terms of binomial coefficients and invoking an upper index Vandermonde

()0 (k) @12

for constants n, ¢; and ¢y, we derive

identity, namely

N@2N + L —1)
L(L+1)

tr(n?) =

(2

(2.13)

Now let i = j and i’ = j’ but ¢ £ i’. There are (N _lZiJgL_3> many states with [ particles

on site 7 and s particles on site ', so

NN IN—l—s+L—
tr(ning) = ls< st 3). (2.14)
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Applying the Vandermonde identity, as defined in Eq. (2.12), twice we infer

N(N —1)

AT (2.15)

tr(nmny) =

For the case i # j and ¢/ # 7', but j = ¢’ and i = j/, the computation mirrors the

scenario when i = j and i = j' but ¢ # ¢’. Applying Eq. (2.12) twice on

tr(a}aiagaj) = i Nz_:l(l + 1)5<N -1 ; ig L= 3) (2.16)
1=0 s=0
yields
tr(a;aia;raj) = m (2.17)
Particularly, for operators A = a}aj the traces are given by
tr(A?) 4 tr(AAT) = m i # 7§, (2.18a)
tr(A?) 4 tr(AAT) = QN(?(\;?[;)_ Yp i=j. (2.18b)

In the thermodynamic limit where the ratio N/L remains constant and both N and L
tend towards infinity, the coefficient preceding D is O(D") in both cases. Consequently,
D 1/2

this results in a relationship 0 &~ &5 = D!, thereby implying the standard o ~ D~

scaling for EEV fluctuations in the thermodynamic limit.
2.2.3 Scaling in the classical limit

We now turn our attention to the classical limit, L < N. We denote by A a linear

combination of terms such as a}ai. From the previous analysis we infer
tr(A?) + tr(AAT) ~ N?D. (2.19)

Since N ~ DY(=1 in the classical limit, the variance scales as

D . D2/(L-1)

0*(Az) ~ 7

= D%, (2.20)

where

ep =eo(L) == — (2.21)



56 “Eigenstate thermalization” in the classical limit

is the scaling exponent announced previously. When L > 1 but still L < N, the
second term in Equation (2.21) becomes negligible, leading to a scaling behavior of
o ~ D~1/2 similar to the thermodynamic limit.

For systems with a moderate number of sites, it’s important to note that the scaling
.i.
J
differs between the classical limit and the thermodynamic limit. Mathematically, this

of EEV fluctuations for two-point operators of the form a;a; or their linear combinations
difference can be attributed to the operators A scaling with N. By normalizing A
to A = A/N, the traces in Equation (2.19) scale as D rather than N2D, resulting in
scaling of the variance for all L as

- D
o*(Az) ~ D2

=D (2.22)
To summarize, in the classical limit, the EEV fluctuation scaling is ~D~/? for nor-
malized operators A = A/N for all L, and also for unnormalized operators A in the
L > 1 limit. This is the same exponent ey = % familiar from the thermodynamic limit

[135, 97]. However, for moderate L and for the operator A, the scaling is according to

1 1
2 T T

the exponent ¢y =

2.3 EEV fluctuations for Bose-Hubbard eigenstates

In this section, we present numerical results of the scaling of EEV fluctuations for
Bose-Hubbard eigenstates. In Figure 2.2, we show o of the EEVs for different energy
windows near the middle of the spectrum, plotted against D. Each panel shows a
different (fixed) number of sites L; in each case the classical limit is approached by
increasing N. Generally, the sequences follow clear power-law dependencies, o ~ D™°.
The power-law behavior sets in at relatively small values of D already.

It is clear from the L = 3 data, panel (a), that the exponent e does not match
the value predicted for Gaussian states, Eq. (2.21), which is eg = 0 for L = 3. The
EEV fluctuation for the system eigenstates increases with a positive exponent (e < 0)
instead of being flat as a function of D. Similarly, for the 4-site chain the exponent
e is seen to be slightly negative (o increases slowly with system size), whereas the
predicted value is eg = +1/6.

The calculations rely on full numerical diagonalization, and hence are limited by
the Hilbert space size D. Our limit was D < 10°. For each L, we increased the particle
number N as far as possible such that D did not exceed 100,000. For small L, this

provides a satisfactory number of available N values, and extracting the exponent e
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Fig. 2.2 EEV fluctuations o of the operator A = agal against Hilbert space size D
for various chain lengths L. Data shown for eigenstates in energy windows AF = 5
(blue circles), 6 (red squares), 7 (green inverted triangles). The o vs D data sequences
are arranged reasonably linearly in all cases in the log-log plots, suggesting o ~ D~°
behavior. The slopes of fitted lines (i.e., numerical estimates of —e) are given in the
legends. The Gaussian predictions ey for the exponents are 0, é ~ 0.1667, 0.25, and
£ ~ 0.3889 respectively for L = 3,4,5, and 10.

from a fit to o ~ D™¢ is quite reliable. For large L, only a few N values are available.
For the largest lattice (L = 15), only three data points (N =4, N =5, and N = 6)
were used. This means a large uncertainty in the estimation of e (Figure 2.3 inset). It
also means that the regime N > L is not reached.

In Figure 2.3, we present the exponents e extracted from the numerical data. In
addition to the exponents for the operator agal (corresponding to Figure 2.2), we
also show the exponents for the operator n;. For small L, the numerically observed
exponents e fall significantly below the Gaussian case, for both operators. For larger
L values, the Bose-Hubbard systems show EEV fluctuations closer to the Gaussian

case, at least for AE = 5,6. (The AE = 7 window shows larger deviation, presumably
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Fig. 2.3 The exponent e versus the chain length L for Bose-Hubbard eigenstates
in different energy windows, and for Gaussian states. The pink dashed curve is the
predicted formula for exponents, ey, which tends to 1/2 (solid horizontal line) for large
L. Inset to left panel shows the error bars for the estimation of e from AE =5 data.
The error bars are omitted elsewhere and will be omitted in later figures. In general,
error bars are small for L < 14.

because it is closer to the edges of the spectrum.) We interpret this as a signature of the
large-L Bose-Hubbard systems being more chaotic, so that mid-spectrum eigenstates
are better approximated by Gaussian states. The deviation for small L represents the
mixed nature of the few-site Bose-Hubbard Hamiltonians.

Figure 2.3 also shows numerically calculated exponents for EEV fluctuations in
Gaussian (pink triangles), and compares with the L < N prediction, Eq. (2.21) (pink
dashed curve). The agreement is good for all L and excellent for small L. At larger L,
computer memory limitations prevent our calculations from reaching particle numbers
N > L. This explains the (minor) deviation of the numerical exponents from the
N > L prediction.

One can view the same effects through the fluctuations of the normalized (A)

operators agal /N and n;/N. For these operators, the predicted exponent is 1/2 for
all L. We present the numerical exponents for such operators in Figure 2.4. However,
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Fig. 2.4 Similar data as in Figures 2.2 and 2.3 but with normalized operators A. The
operators are normalized by factors ~ NN; the precise factors are explained in the text.
(a) Points and fits are from top to bottom L =3, L =4, L =7 and L = 10.

we normalize by factors slightly different from N. The prediction ey = 1/2 was
obtained in the previous section by assuming N > L. In the trace expressions of
Eq. (2.18), this led to N(N + L) ~ N? and 2N (2N + L — 1) ~ 4N?. In our numerical
calculations, for larger L we do not have access to N values in this regime. Therefore, we
normalize the operators by the factor /N(N + L) for A = aj a; with 7 # j and by the
factor \/ N(@2N + L —1) for i = j. With this modification, the numerically calculated

exponents using Gaussian states (pink triangles) do not deviate systematically from

1/2 at large L, even though the N > L regime is not reached. The observed physical
exponents (for Bose-Hubbard eigenstates) are significantly different from the predicted

ep = 1/2 for small L, but approach this value as L is increased.
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Summarizing our numerical findings: power-law dependence of EEV fluctuations
on D is seen for all L. The exponent at larger L (more fully chaotic systems) matches
well the Gaussian prediction. For smaller L (mixed systems), there are significant
deviations from the Gaussian prediction. Remarkably, for small L, the departure of
the eigenstates from Gaussian behavior does not destroy the power-law dependence
of EEV fluctuations with D but changes the exponent substantially. In fact, for the
smallest sizes (L = 3 and L = 4) the numerically measured exponent e even turns
negative for unnormalized operators, so fluctuations of EEVs actually grow with N.

In the following section, we will examine possible explanations for this phenomenon.

2.4 Non-reasons for anomalous scaling

The discrepancy between observed and theoretically predicted EEV fluctuation scaling
for small L can be attributed to the eigenstates of Bose-Hubbard systems with few
sites deviating from the canonical Gaussian states. In this section, we investigate
multiple forms of deviation from the Gaussian framework and eliminate several tenable
hypotheses for the observed anomalous scaling.

First, it is plausible to assume that the eigenstates may occupy a restricted portion
of the full Hilbert space, in contrast to a Gaussian random state, and that this portion
exhibits sublinear scaling wrt D. This proposition can be tested through evaluation of
the participation ratio P,, which is the inverse of the IPR, introduced in Section 1.1.4.
In Section 2.4.1, we show that a scaling behavior of P, ~ D! leads to EEV fluctuations
scaling as derived in Section 2.2. We verify P, ~ D! for eigenstates of the L = 3 and
L = 6 systems. This excludes reduced Hilbert space occupancy as the underlying cause
for the anomalous EEV scaling exponents.

Another hypothesis one might consider is that the anomalous behavior of the
scaling exponents arises from the eigenstate coefficients not adhering to an identical
distribution. In Section 2.4.2, we present numerical data that excludes this as the
mechanism behind the anomalous scaling in EEV fluctuations.

These results lead us to conclude that non-Gaussian scaling phenomena stem from
correlations among eigenstates. In Section 2.4.3, we examine two-point correlations of
eigenstate coefficients. Surprisingly, we find that these two-point correlations do not
fully explain the observed anomalous scaling. Thus, we infer that the anomalous scaling
exponents of EEV fluctuations arise from more complex, higher-order correlations of

eigenstate coefficients.
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Fig. 2.5 Participation ratio in the basis of eigenstates of the operator agal + axaQ.

Horizontal lines indicate the Gaussian expectation (= ). In (a,b), normalized

participation ratio P, /D of energy eigenstates, versus corresponding energy eigenvalues.
In (c,d), average normalized participation ratio P for different energy intervals as
function of Hilbert space dimension D, for fixed chain length L and increasing particle
number N.

2.4.1 Participation ratios

For this section it will be convenient to consider the operator A to be Hermitian. We
expand the eigenstates |E,) of the Hamiltonian in the eigenstate basis |¢,) of the

operator A

[Eo) =YY o), (2.23)

where dl® = (¢,|E,). If we denote the cigenvalues of A as a,, then the EEVs can be

written as

D
Asa = Y_ |9 Pa,. (2.24)
v=1
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We treat the coeflicients c,(yo‘) as stochastic variables, with each eigenstate index («)
signifying an independent realization from a common underlying distribution. The
distribution is assumed to be the same for every ~. It is noteworthy that this model does
not account for large-scale dependencies of EEVs A, on the corresponding energies
E,,, which is acceptable given our focus on fluctuation characteristics.

The variance of the EEVs A,, wrt to the random coefficients cﬁfa) is

D
var(Aaa) = Y var (|cga)|2> a2 = var (]cgo‘)ﬁ) tr(A?). (2.25)

=1
The variance of |c(7°‘) > can be written as

1 1

2
var (|62F) = (119 = (57 1)° = 55 = 7 (2.26)

where we have used the definition of the participation ratio to be

-1

P, = (g_jl|cga>|4) = (D x (b)) (2.27)

Eq. (2.27) is the inverse of the IPR introduced in Section 1.1.4. By denoting P = P(AFE)
as the average of P, over an energy window AF, we arrive at the prediction for the

EEV variance

o2 = (DIP - 52) fr(A2) = (Dlp _ 1%2) tr(AAD). (2.28)

For Gaussian states, where P = D/3, this variance expression simplifies to Eq. (2.8).
More generally, provided the participation ratio P scales linearly with D, the factor in
brackets scales as ~ 1/D?, so that we obtain the same scaling as for Gaussian states.
For states characterized by P ~ DX with K < 1, the first term in brackets becomes
dominant, leading to a distinct scaling behavior.

In Figure 2.5, we show the behavior of the participation ratio in the eigenbasis
of (ata; + alay). For highly chaotic systems (with larger L), the mid-spectrum P,
approximates the Gaussian expectation closely. However, for L = 3, there is a significant
deviation from Gaussian behavior (P = D/3). In both scenarios, the scaling of P,
with the Hilbert space dimension D remains predominantly linear (as evident in the

lower panels).
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Consequently, Hilbert space occupancy fails to account for the observed anomalous

scaling in EEV fluctuations.

2.4.2 Non-identical distribution of eigenstate coefficients

The analysis in Section 2.2 is based on the assumption that eigenstate coefficients are
iid. One may inquire whether the anomalous scaling of EEV fluctuations for small L
values results from non-identical eigenstate coefficient distributions.

To explore this hypothesis, we relax the assumption of identically distributed
coefficients, while maintaining independence. In Figure 2.6, we present the EEV
fluctuations derived from an estimation of such underlying distributions of Bose-
Hubbard eigenstates. We assume that these distributions are identical within the same
energy interval AF but vary across different AE. Within a given energy interval AFE,
states are sampled from the corresponding distribution on a coefficient-by-coefficient
basis. For each coefficient a Bose-Hubbard eigenstate is selected randomly within AFE
and the corresponding entry of this eigenstate is used. The EEV fluctuations based on
such sampled states are denoted as “independent” in Figure 2.6. The results match
well with the EEV fluctuations obtained from Gaussian states but fail to align with
the EEV fluctuations in the actual physical systems for small L.

We conclude that models that assume eigenstates with independent coefficients are
insufficient in explaining the observed anomalous scaling for small L. Put differently,
the root of the anomaly cannot be traced back to non-identical or non-Gaussian
distributions of the eigenstate coefficients, nor can it be attributed to insufficient
occupancy of the Hilbert space. Rather, the crux of the matter lies in the fact that the

eigenstate coefficients are not truly independent.

2.4.3 Eigenstate correlations

Continuing our effort to identify what feature of small-L eigenstates is responsible
for the anomalous ETH scaling, we assume that eigenstates are drawn independently
from a multivariate distribution Z, with two-point correlations between coefficients.
Such correlations are quantified by the covariance matrix ¥. The covariance matrix
of eigenstates can be estimated by regarding the eigenstates within a specific energy
interval as different samples of a common Z. It is reasonable to assume that the mean

of all coefficients of Z is zero, as coefficients of mid-spectrum eigenstates generally have
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Fig. 2.6 The operator in all plots is a;al. Blue dots: eigenstates of physical Bose-

Hubbard system. Red squares: Gaussian states with i.i.d. coefficients. Green down
triangles: vectors with independent but non-identically distributed coefficients, each
coefficient sampled from system eigenstates. Purple up triangles: multivariate Gaus-
sian states with covariance matrix estimated from system eigenstates. (a,b) EEV
fluctuations. The dashed purple line is the prediction by Eq. (2.32). (c) The exponent
e, such that ¢ ~ D~¢, versus the number of sites L for the same distributions as in

(a,b).

zero mean. In this case, an estimate of ¥ is given by

>

E, in AE

S = Nak B (Edl. (2.29)

where E, and |FE,) denote eigenvalues and eigenstates, respectively, and Nag is the

number of eigenstates in the energy window AE. Eq. (2.29) follows directly from the
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Fig. 2.7 Normalized estimated covariance matrix D> of mid-spectrum eigenstates
(energy window AFE = 5) for Bose-Hubbard chains with L sites and N particles. The
estimate ¥ is defined in Eq. (2.29). The absolute values of matrix entries, |D - X/,
corresponding to the basis B described in text, are shown. The tick labels are row
and column indices, e.g. in the top left is the entry |D - ¥1;]. N had to be chosen
significantly smaller than in the rest of this chapter to visualize the patterns without
zooming. The patterns are stable for increasing N.

definition of the sample covariance matrix of Z, where the samples are the eigenstates
|Ea)-

In Figure 2.7, we show the estimated covariance matrices for L = 3 and L = 6. For
a multivariate distribution with uncorrelated entries, the off-diagonal elements of the
covariance matrix are all zero (white in Figure 2.7). The L = 3 case is seen to have
significant off-diagonal elements, arranged in intriguing patterns (black). The L = 6
case has still significant, but less pronounced off-diagonal elements than the L = 3
case. Hence, for small L, eigenstate coefficients appear to be two-point correlated. The
deviation of the covariance matrix from a diagonal matrix suggests that mid-spectrum
states, expected to be significantly chaotic states, deviate from infinite-temperature
states. This is consistent with Refs. [96, 95, 98, 99, 310, 311, 159, 104, 97].

The covariance matrices are basis-dependent. In Figure 2.7, the chosen basis B
is the computational basis. Its elements are the mutual eigenstates of the number
operators n;. Interpreted as (N + 1)-adic numbers, the elements of B are aranged

in descendant order. For example, for L = 3 and N = 2, the computational basis is
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ordered from left to right as
B =(]0,0,2),]0,1,1),/0,2,0),|1,0,1),]1,1,0),]2,0,0)). (2.30)

By assuming that the coefficients of the multivariate distribution Z have mean zero
and estimating a covariance matrix ¥, we have fixed the first two moments of Z. It is
natural to assume that higher moments are generic. Hence, we model eigenstates by a
multivariate Gaussian distribution Z with mean 0 and covariance matrix .

In Figure 2.6, the EEV fluctuations obtained from such sampled states are marked
as “correlated”. The values of the corresponding fluctuations are larger than those
obtained from the independent-coefficient random states, and more comparable to the
fluctuations obtained from the physical eigenstates. In the chaotic cases (large L), all
of these cases have the same scaling. However, in the L = 3 case, the scaling exponent
is close to the Gaussian case and does not reproduce the anomalous scaling at all. This
is seen in panel (a) of Figure 2.6, and also in panel (c¢) where the fitted exponents are
plotted. The fitted exponent is slightly off the Gaussian value for small L, but far from
the anomalous values of the physical system.

These results show that the deviation of the physical system from expected Gaussian
behavior is only partially captured by the two-point correlations between the eigenstate
coefficients. This suggests that the small-L eigenstates deviate from randomness in
some more drastic manner, which does not seem easy to quantify.

In addition to the direct numerical verification discussed above, we argue (non-
rigorously) that the inclusion of reasonable two-point correlations in the model of
random states should not change the EEV fluctuation scaling exponent. For this, we
decompose Z into Z = RX, where X is a vector whose independent coefficients are
Gaussian-distributed with mean zero and variance 1, and R is the Cholesky root of
the non-random matrix X, i.e ¥ = RR'. The statistical variance of the EEVs wrt Z is

given by

var(Az) = var((RX)'ARX) = var(X'R'ARX)
— var(1/VDX'DR'AR1/v/DX). (2.31)
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Since the coefficients of 1/v/DX are normally distributed with mean 0 and variance
1/D, we can make use of Eq. (2.8) with A replaced by R'AR,

var(Ay) = ;Q(tr(DQ(RtAR)Z) + (DR AR(R'AR)")
= Dl2(tr((D2A)2) +tr(DLADYAY). (2.32)

This is Eq. (2.8) with the change A — DXA. The variance of the wavefunction
coefficients is not fixed by normalization of the eigenstates any more. But it is
reasonable to assume that it still scales as ~ 1/D, and we have checked numerically
that this scaling holds for the mid-spectrum eigenstates of all our physical systems,
including L = 3. Since the variances of the wavefunction coefficients are the diagonal
entries of ¥, the diagonals of DX scale (at most) as constant in D. By the Cauchy-
Schwartz theorem the off-diagonal terms of 3 are bounded by the diagonal, so every
coefficient of DY is (at most) constant in D.

Without making assumptions about the detailed structure of 3, we cannot derive
rigorously the scaling of the traces in Eq. (2.32), which was possible for Eq. (2.18) or
(2.19). However, since DY, is elementwise at most ~ D°, and assuming X is not too
exotic, one can argue that the derivation in Section 2.2 should hold for this case as
well. In other words, for “reasonable” ¥, one expects the same scaling as in the case of
independent Gaussian eigenstates. This is consistent with Figure 2.6, where the matrix

Y} is estimated numerically from the physical eigenstates.

2.5 Discussion

In this chapter, we studied the ETH in the scaling sense, but considered increasing
Hilbert space dimensions along the classical limit rather than the usual thermodynamic
limit. This has led to a characterization of the distinctive properties of few-site
Bose-Hubbard systems in terms of anomalous scaling exponents.

Summary of analytic results. For GOE eigenstates, akin to Gaussian states, we
have derived trace expressions for the EEV fluctuation o, Eq. (2.8). For operators of
the type A = a}ai, the trace operators can be expressed as Eq. (2.18). Based on these
main expressions, we are able to predict ideal scaling behaviors of EEV fluctuations
in the classical limit, for both unnormalized operators of the type A and normalized
operators A = A/N. Of course, the usual ETH scaling of the thermodynamic limit

also follows from these expressions.
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In the classical limit N > L, the EEV fluctuations are found for such idealized
1 1

eigenstates to behave as 0 ~ D™, with ¢ = 5 — 7)) for unnormalized A operators
and ey = 1/2 for normalized A operators.

In addition, we have presented expressions for o for a number of related cases, e.g.,
for i.i.d. distributed eigenstate coefficients with the distribution not assumed to be
Gaussian, Eq. (2.7), in terms of the participation ratio, Eq. (2.28), and for the more
general case where the eigenstate coefficients are allowed to be correlated according to
a covariance matrix, Eq. (2.32).

Summary of numerical results. We have explored the scaling exponent for
various lattice lengths L, increasing the boson number N with fixed L to approach
the classical limit. At larger L, the exponent matches the RMT eigenstate prediction.
At small L, the fluctuation appears to have power-law dependence o ~ D~¢ on the
Hilbert space dimension D, i.e., e is well-defined, but the value of e differs markedly
from the RMT prediction. Through a series of additional numerical tests, we have
shown that this anomalous scaling is not explained by two-point correlations between
eigenstate coefficients. The small-size Bose-Hubbard systems thus have mid-spectrum
eigenstates which violate the usual randomness approximation.

Deviation from RMT. The deviation of quantum many-body systems from RMT
has been the subject of interest from multiple viewpoints in recent years. In many-body
systems that are nominally chaotic, mid-spectrum states are largely well-modeled
by random states, but small or subleading deviations have been observed in various
properties [310, 95, 96, 311, 98, 97, 99, 159, 104]. However, scaling properties in these
systems generally follow RMT predictions. In the small-L Bose-Hubbard systems,
we have shown a striking exception: a system which is not integrable or many-body
localized, but nevertheless violates the usual scaling behavior expected in chaotic
systems.

The present work opens up a number of new questions deserving investigation:

(1) We have found that the small-L Bose-Hubbard systems display EEV fluctuations
scaling with exponents that appear numerically well-defined but very clearly different
from the random-state prediction. An analytic explanation for these observed new
exponents is currently not available, and remains an open question. The anomalous
scaling is related to the insufficient chaoticity of few-site systems. Hence, a tempting
conjecture is that some property measuring the degree of chaos in the classical limit
might explain the exponents. A first step in this direction is conducted in Chapter 3,
where we compare the EEV fluctuation exponent e to other measures of quantum and

classical chaos.
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(2) Our analytic results have focused on essentially infinite-temperature (mid-
spectrum) states. It would be interesting to develop trace expressions for finite
temperatures. This is likely not possible to do in complete generality without making
assumptions on the system Hamiltonian, but perhaps some results can be derived with
minimal assumptions, such as locality of the Hamiltonian.

(3) Bose-Hubbard systems are, of course, not the only quantum systems with a
classical limit. It remains to be discovered how generic our findings are. Candidate
systems have been mentioned in Section 1.2.1. Studying the behavior of EEV fluctua-
tions in such systems when approaching the classical limit would provide interesting
characterizations of ergodicity, e.g., of how well RMT approximations work.

(4) As part of our effort to address the anomalous scaling at small L, we have
briefly examined the covariance matrix of eigenstates, treating each eigenstate as a
sample drawn from the distribution of eigenstates, according to Eq. (2.29). Studying
the so-defined covariance matrix might be fruitful for various quantum systems, as the
departure of this matrix from the identity matrix tells us how different the eigenstates
are from infinite-temperature states. A further significance of this covariance matrix is
that the same object is the microcanonical density matrix, and hence its structure should
provide insights into the connection between quantum eigenstates and thermodynamics.

In Ref. [304], some initial work has been done in this direction.






Chapter 3

Classical and quantum chaos in a

mixed many-body system

The content of this chapter has appeared as part of [300]:

G. Nakerst, and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical
versus quantum, Phys. Rev. E 107, 024210 (2023).

In this chapter, we will compare the classical limit of the Bose-Hubbard system (the
discrete non-linear Schrodinger equation (DNLS) or Gross-Pitaevskii equation) with the
quantum model by different chaos measures. In the previous chapter, we encountered
remarkable deviations from RMT in Bose-Hubbard systems with a few sites, related
to the fact that these systems are of “mixed” type (neither integrable nor strongly
chaotic). This motivated us to focus on such mixed systems in our classical-quantum
comparison, presented in this chapter.

Our study will cover various chaos measures. In the classical model, we calculate
Lyapunov exponents and compare these with quantum chaos indicators like eigenvalue
and eigenstate statistics, and fluctuations in eigenstate expectation values (EEVSs).
To connect the classical and the quantum model, the classical phase space is refined
into energy manifolds and compared with eigenvalues and eigenstates of the quantum
Hamiltonian in the corresponding energy ranges.

The main result of this chapter is a qualitative comparison of chaos measures as
a function of energy and interaction strength for the three site Bose-Hubbard model.
These results are presented in Section 3.1 and summarized in Figure 3.1. We find the
overall agreement of the chaotic regions depicted by different chaos measures striking.
In the remainder of this chapter, we detail the chaos measures shown in Figure 3.1 and

present related numerical results. In Section 3.2, we focus on Lyapunov exponents of
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Fig. 3.1 Heatmap of (a) classical chaos indicator and (b-d) quantum chaos indicators.
Relative energy 0 corresponds to the minimal (ground state) energy while 1 corresponds
to the maximal energy. A is the onsite interaction strength. Lighter color corresponds
to stronger chaos. (a) Fraction of states with positive largest Lyapunov exponent.
(b) Kullback-Leibler divergence of level ratios from GOE level ratios; capped at 0.15.
(c) Excess kurtosis of eigenstates; capped at 2%. (d) Exponent of EEV fluctuations,
clipped between 0 and 0.3.

the classical model. We analyze those for the three site Bose-Hubbard model in detail
and explain the data of Figure 3.1(a). We present results for more chaotic cases of
larger system sizes and explore alternate ways to Figure 3.1(a) of using the Lyapunov
exponent to demarcate chaotic and non-chaotic regions. In Section 3.3, we investigate
the eigenvalues of the quantum model leading to the results shown in Figure 3.1(b).
We present the average level ratio as function of energy and interaction strength for
the three site case, which extends the discussion in Section 1.2.3. In Section 3.4, the
eigenstates of the Bose-Hubbard model are compared to GOE eigenstates and the
numerical derivation of Figure 3.1(c) is explained. In Section 3.5, we quantify chaos
using EEV scaling exponents and explain how Figure 3.1(d) is obtained. The EEV
scaling exponents have been analyzed in detail for intermediate interaction strengths A

in Chapter 2. In Section 3.6, we conclude and provide suggestions for future studies.

3.1 Main results for the three site Bose-Hubbard

model

This chapter centers on contrasting classical Lyapunov exponents with quantum chaos
metrics, such as level statistics, eigenstate statistics, and EEV fluctuations. Chaos

in classical mechanics manifests in the sensitivity to initial conditions of the classical



3.1 Main results for the three site Bose-Hubbard model 73

motion and will be measured by the largest Lyapunov exponent A... It is generically
not possible to calculate the largest Lyapunov exponents analytically or exactly. Hence,
we will estimate them numerically by integrating classical motion up to a finite time, the
finite-time Lyapunov exponents (FTLEs). We will use the terms “Lyapunov exponents”
and “FTLEs" interchangeably. It is to be understood that all presented data for
Amax are the best available numerical estimates and that analytically exact values are
generally not available.

Figure 3.1 provides an overview of the results. Here we show chaoticity as a
function of interaction parameter A and relative energy. Chaos is visualized as grayscale
heatmaps, where the intensity indicates how chaotic that region is — the lighter the
more chaotic.

Figure 3.1(a) shows chaos of the classical Bose-Hubbard model, while panels (b-d)
show chaos measures of the quantum system. In (a) we show the fraction of positive
FTLEs of the classical model. We consider a FTLE as positive if it is greater than 107%,
and zero otherwise. In (b) we show the deviation of level statistics of the quantum
model from the RMT prediction measured by the Kullback-Leibler divergence. In (c)
we show how much eigenstates of the quantum model deviate from Gaussian states via
the kurtosis. The kurtosis obtained from the eigenstate coefficients in two different
bases are combined — the larger of the two is used at every point of the heatmap. In
(d) we show the exponent in the size-dependence of the fluctuations of EEVs. The data
in panels (b) and (c) are for N = 150 bosons, while the exponents in (d) are obtained
by fitting EEV fluctuations between N = 90 and N = 170. Overall, we have found
these quantum results to be broadly independent of N.

Figure 3.1(a) reveals features of the classical phase space, i.e., the phase space of
the three-site DNLS. For A < 1 all FTLEs are close to 0. For A > 1 regions with a
non-zero fraction of positive Lyapunov exponents emerge at intermediate energies. At
A = 3 there are positive largest FTLEs at most energies, except for smallest and largest
energies. For A > 3 the region of non-zero fractions of positive Lyapunov exponents
shrinks and shifts to lower energies, where it survives even for the largest A = 100 we
investigated. These results highlight the mixed nature of the classical phase space. In
particular, zero and non-zero Lyapunov exponents exist at the same energy for the
same A. This is explained in more detail in Section 3.2.

The same shape of the heatmap in Figure 3.1(a) is observed in (b-d) as well. The
white bars at the top right of the quantum plots do not show chaotic regions; these are
finite size defects (gaps in the spectra which are larger than the energy windows used

to compile the heatmaps). The exact measures used in these panels and the subtleties
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encountered for the quantum cases will be detailed in Sections 3.3, 3.4 and 3.5, which
focus respectively on level statistics, panel (b), on eigenstate coefficient statistics, panel
(c), and on EEV scaling, panel (d).

The overall visual agreement between classical chaos regions, panel (a), and quan-
tum chaos regions, panels (b-d), is striking. Chaotic energy regions of the classical
phase space correspond generally to chaotic regions of the spectrum of the quan-
tum Hamiltonian. Even fine structures in the heatmaps show some agreement. For
1 < A < 3 small bulbs appear at the chaotic-regular boundary in the classical spectrum
(a), which can be recognized in the level statistics (b) as well as in the kurtosis of
eigenstates (c¢). We conclude that overall there is a close correspondence of chaotic
and non-chaotic regions of the classical model and the quantum model. There are, of
course, some discrepancies, also among the various quantum measures, and various
artifacts due to the particular measures used. These issues will be discussed in the

remainder of this chapter.

Relative energy and energy intervals

Our classical-quantum comparison is energy-resolved. For each A, we compare the
degree of chaos in individual energy regions of the classical system with the degree of
chaos in corresponding energy regions of the quantum system.

Numerically, for each interaction A the possible energies are divided into 100 evenly
spaced energy intervals. We also rescale and shift the energy for each A to define the
relative energy o

E = E B (3.1)
which takes values in the range [0,1]. For the classical system, Ep, and Ey., are
the lowest and highest possible classical energies. For the quantum system, they are
respectively the lowest eigenenergy (ground state energy) and the highest eigenenergy.
Each energy interval corresponds to an interval of F having width 0.01. When we refer
to the interval at relative energy FE, we mean the interval [E —0.01, E]

For the classical calculation (Figure 3.1(a)), Lyapunov exponents are collected for
phase space points whose energy is in the desired interval. For the quantum eigenvalue
statistics (Figure 3.1(b)), the spacing between eigenvalues within the desired interval
is analyzed. For quantum measures based on eigenstates (Figure 3.1(c) and (d)), all

eigenstates whose eigenvalues lie in the interval are considered.
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3.2 Classical Lyapunov exponents

This section discusses Lyapunov exponents, particularly their finite time estimates
(FTLE), for the classical Bose-Hubbard model. We start by introducing Lyapunov
exponents in Section 3.2.1, followed by numerically calculated FTLEs for the highly
mixed three-site model in Section 3.2.2. FTLEs for larger chains with L > 3 are
explored in Section 3.2.3. We conclude with chaos indicators, incorporating FTLE

magnitudes, in Section 3.2.4.

3.2.1 Preliminaries

In the following, we introduce Lyapunov exponents, focusing on the largest Lyapunov
exponent, A\p... The subsequent derivations are either straightforward or detailed in
Refs. [312, 313].

Throughout this chapter, Lyapunov exponents are denoted by A. This notation
should not be confused with the eigenvalues of matrices in Chapters 1, 4 and 5.
The eigenvalues of the only matrices considered here, the quantum Bose-Hubbard
Hamiltonians, are denoted by F.

Intuitively, the largest Lyapunov exponent \,. captures the sensitivity of trajecto-
ries to perturbations of initial values. Consider two “close by” initial states vy and
Do. (Throughout this chapter, subscripts > 1 to ¢ are used as site indices. But there
should be no confusion with the use of the subscript 0 for initial values.) The states
Y(t) and 9(t) are time-evolved states with initial values 1y and 1)y, respectively. In
the classical Bose-Hubbard model, the time-evolution is via the equations of motion,
Egs. (1.43), introduced in Chapter 1. The largest Lyapunov exponent is informally
given by .

e 100 =60}
1460 — ol

where t denotes a large time point. Eq. (3.2) implies that if the largest Lyapunov

(3.2)

exponent Ay is positive the two states ¢ and 1 separate exponentially, while a zero
largest Lyapunov exponent \,.x = 0 means an at most polynomial spread.

Formally, Lyapunov exponents are defined through a linearization of Eq. (3.2).
This involves representing the time-evolution of the dynamical system, governed by

Hamilton’s equations of motion, as

D(t,40) = ¥(t), where (0) = to. (3.3)
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The dynamical system ® obeys the (semi-group) property ®(t + s,z) = (s, P(t, z9))
for all times ¢t and s. Consequently, Eq. (3.2) can be reformulated using ¢ and
do = 1y — 1y as follows:

et)\max ~ ”q)(ta ?/10 + ¢0) - (I)(t7 ¢O)H ‘ (34)

ol

By linearizing Eq. (3.4) we obtain the largest Lyapunov exponent as

Dy ®(t, 1) |y - HZZZZH

Amax = tliglo 1 log ‘ ’ . (3.5)
Note that J,® is in general a matrix, so the product - denotes the matrix-vector
product. The existence of the above limit is ensured by Osedelets theorem [314]. The
largest Lyapunov exponent is independent of the choice of the norm, as long as the
phase space is finite-dimensional. This is a consequence of the equivalence of norms in
finite dimensional vector spaces.

One can show that d;® evolves in time according to so called variational equations

8 0,0(1,) = 0,0, H(B(1)) - (1, ), (3.6)

where 0,,0,-H denotes the Hessian of the Hamiltonian #H in the variables ¢ and "
and the initial condition is 9,®(0,1y) = Id. In Eq. (3.5), the knowledge of the full
matrix d,® is not required. Only the deviation vector ¢(t) = OypP(t, V)| p=y,Po/ || Poll
is needed. The deviation vector evolves according to the variatonal equations (3.6)
as well. The largest Lyapunov exponent is related to the largest eigenvalue of the
deviation matrix dy®(¢,7) in Eq. (3.5). The other eigenvalues of 0, ®(¢,1)) give rise to
other Lyapunov exponents.

For the L-site Bose-Hubbard system, because there are 2L real equations of motion,
Oy ®(t,7) is a 2L x 2L-matrix. Thus, there are in total 2L Lyapunov exponents
Amax = A1 > -+ > Agp. For Hamiltonian systems Lyapunov exponents come in pairs
of equal magnitude and opposite sign, which is a consequence of Liouville’s theorem.
Consequently, the largest Lyapunov exponent A, is at least 0. Two pairs of Lyapunov
exponents are zero because of the conservation of energy and the conservation of norm,
as implied by Eq. (1.46). Thus, at most L — 2 exponents can be positive. For L = 3,
which we will focus on, there is at most one positive Lyapunov exponent, which is

)\max-
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Numerical calculation of FTLEs

To numerically compute the largest Lyapunov exponent, M., a straightforward
approach might involve selecting two initially close states and evaluating the right-hand
side of Eq. (3.2) over long time periods t. However, this method is ineffective for
systems with bounded state magnitudes, as is the case for the Bose-Hubbard model. In
these scenarios, the right-hand side of the equation is also bounded and consequently
does not exhibit exponential growth for large ¢.

Instead, one evolves Hamilton’s equations together with the variational equations to
obtain ¢(t) for some large time ¢ and determines Aoy via Eq. (3.5). Some care has to be
taken when A,y is positive. In this case the norm of ¢(¢) will blow up exponentially and
will quickly be unmanageable by finite precision. This is circumvented by renormalizing
¢(t) and restarting the time evolution, whenever it becomes too large.

Accurately estimating Lyapunov exponents in imperfectly chaotic systems, such as
the Bose-Hubbard model on few sites poses a significant numerical challenge, requiring
extensive time evolution. In this work, the FTLEs are computed by evolving the

systems for up to one million time units.

Sampling states

The continuous nature of the classical phase space precludes the calculation of Lyapunov
exponents for every initial state 15. One strategy to obtain representative results
is to sample states uniformly across this space. Given the total norm conservation
implied by Eq. (1.46), the classical phase space is limited to the sphere S?/~! within
R2L. Uniform sampling on S?/7! is achieved by selecting the 2L coefficients of states
from a Gaussian distribution and normalizing the resultant state.

However, this uniform sampling approach on S?*~! tends to under-represent states
at lower and higher energies. To ensure uniform energy distribution, we divide the
energy spectrum into 100 equally spaced segments and employ the rejection method
for uniform state sampling within these segments. This involves initially sampling

S2L=1 and retaining only those whose energy falls within a specified

states uniformly on
interval. In this way, for each interaction strength A, we obtain up to 10* states

uniformly distributed in energy and numerically calculate the corresponding FTLE.
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Fig. 3.2 FTLE estimates for the largest Lyapunov exponent A, for the classical limit,
Eq. (1.43). The numerical estimates for A\, are plotted against energy, for several
different values of the interaction parameter A. From left to right A is (a) A = 0.43,
(b) A =0.93, (c) A =248, (d) A =6.58 and (e) A = 24.77. The variational equations
were evolved up time ¢ = 10°.

3.2.2 The three site case

In Figure 3.2, we show FTLEs of sampled states against the energy of these states for
several interaction parameters A. Only estimates of the largest Lyapunov exponent
Amax are presented — the other LEs are either zero or the negative of A\ ..

For A = 0, the model is integrable and hence A« = 0. Figure 3.2(a) shows the
numerical estimates for A\y.x for non-zero but still small A (A & 0.43). The numerical
estimates for all six Lyapunov exponents have the same order of magnitude, 1075, This
implies that A, is either zero or vanishingly small up to some finite value of the
interaction.

For larger A, panels (b-e), we find cases of Aj.x being unambiguously zero, together
with cases of the FTLE being smaller than the cutoff 10~%, which we interpret as Apax
being zero. In each of these panels, there are low-energy and high-energy regimes where
there are only zero Apax, and a central energy regime with non-zero positive A\p... For
smaller A, the positive-A.x behavior is concentrated at higher energies (there is an
extended Apax = 0 range of low energies), panel (b). For large A, the converse is true:
Amax > 0 is seen at lower energies, panel (d),(e).

In general, when there are non-zero exponents, they coexist with zero exponents at
the same energy, i.e., the A\.x Vs energy function is multi-valued. The only exception
is in the intermediate-interaction panel (c), A & 2.48, for which an energy window with
a single non-zero branch is seen. In fact, for any A g 1, there appears always to be

some energy window where \., is multi-valued — we did not see any exceptions.
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The coexistence of zero and non-zero A,.x is a peculiar manifestation of the mixed
nature of the system. This is in contrast to integrable systems (for which Ap.x is
always zero except a measure zero set) and to strongly chaotic systems (for which
Amax 18 always positive except a measure zero set). To highlight this contrast, we give
examples of systems with stronger chaos, the same Hamiltonian on L = 4 sites and
L = 7 sites, in the next section.

In a fully chaotic system, the largest Lyapunov exponent is a smooth single valued
function of energy. We showed that A\,.. is not a single valued function, but rather
often has two branches. One can ask whether each branch is smooth. There are some
noisy features in the plots, especially in panels (a), (b) and (e). Presumably, these
are finite-time effects, and each branch would resolve into smooth lines if we could
integrate up to infinite times. While this conjecture could not be verified conclusively,
we observed that integrating up to longer times generally reduces the noisy aspect.

In one case, panel (d), Apax even appears to have three branches (one zero and two
non-zero). We have not seen any indication that this is a finite-time effect, although we
cannot rule it out. The data suggests that the mixed nature of the system even allows
for three A\.x values. Apparently, the same fixed-energy region of phase space can
consist of a regular (non-chaotic) sub-manifold as well as two different sub-manifolds
with different non-zero A .x.

In Figure 3.1(a), we used as an indicator of chaos the fraction of A\y.x which are

non-zero. The same measure has been used in Ref. [83].

3.2.3 More chaotic cases

The arguably most remarkable signature of mixedness in the I = 3 case is the multi-
branched behavior of the Lyapunov exponents, as presented in Figure 3.2. In fully
chaotic Hamiltonian systems, A\« depends solely on the single conserved quantity,
the energy and is therefore single-branched. In Figure 3.3 we present, for comparison,
FTLEs calculated for the 4-site chain and the 7-site chain. The systems are increasingly
more chaotic with increasing L. For the L = 4 case some multi-valued signature can
be seen at small and large energies, Figure 3.3(a). In the L = 7 case, Figure 3.3(b),
which is much more chaotic, the FTLE appears to be smooth and single-valued.
Obtaining good estimates for the Lyapunov exponents is more challenging for mixed
systems. Comparing Figure 3.2 and the two panels of Figure 3.3, we see cleaner (less
noisy) data for larger L, for the same time of propagation, even though there are more

variables (2L) to be evolved for larger L.
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Fig. 3.3 FTLE estimates for the classical largest Lyapunov exponent ., plotted
against energy, for the classical limits of Bose-Hubbard chains with L = 4 (left) and
L =7 (right) sites. The interaction parameter is A = 1.52. The variational equations
were evolved to time t = 10°.

3.2.4 Magnitudes of Lyapunov exponents as chaos indicator

The procedure of using the fraction of non-zero A\.x’s to characterize chaos neglects
the magnitudes of A\, altogether. One could also make use of the magnitude as a
chaos indicator. This raises the issue of comparing values of A, for systems with
different interactions A. We consider two ways of rescaling the Ap.. values. The
resulting heatmaps in Figure 3.4 show reasonable agreement with that in Figure 3.4(a).

The magnitude of \,.x depends on the timescales of the dynamics of the system.
From Eq. (1.43) one could expect that the dominant timescale will be given by the
inverse of the maximum of the Hamiltonian parameters, J and A. We fixed J15 = 1.5
and J3 = 1, so max(J, A) = max(1.5, A). In Figure 3.4(a), we show the average largest

Lyapunov exponent Am.x per energy interval, rescaled by
fa = max(1.5,A). (3.7)

The resulting heatmap in Figure 3.4(a), by construction, shows chaos in the same
region as in Figure 3.1(a). But Figure 3.4(a) shows more detail as it encapsulates the
information about the magnitude of \,., as well. We observe the highest intensities in
the mid of the spectrum for 1 < A < 10. From there it falls of in all directions. At
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Fig. 3.4 Average largest Lyapunov exponent Ap.x per relative energy interval renor-
malized by (a) fa given by Eq. (3.7) and (b) v given by Eq. (3.8).

the top end of Figure 3.4(a) we observe a dip in intensity and a sudden increase again,
before Apax becomes zero. These reflect the dips seen in Figure 3.2(c) and (d).
Another approach is to rescale all largest Lyapunov exponents in a system with
fixed interaction A by the maximal largest Lyapunov exponent A, in that specific
system. A problem occurs when all largest Lyapunov exponents are close to zero, as for
Bose-Hubbard systems with A < 1. In these systems there is simply no significantly
positive Apax. Therefore, we choose the cutoff 10~ by which all Lyapunov exponents

are minimally divided. The rescaling parameter is

YA = max(lO*A‘, mgx Amax (1)), (3.8)

where the maximum runs over all states ¥ in the phase space and Apax () denotes the
corresponding largest Lyapunov exponent. A heatmap of the average largest Lyapunov
exponent Amax with this rescaling is shown in Figure 3.4(Db).

The overall features are the same as in panel 3.4(a). There are some artifacts
at the boundary between chaotic and non-chaotic regions, around A = 0.7 in panel
(b), presumably because of numerical uncertainties when Ay is around 107%. The
intensity of the heatmap does not decrease with A beyond A & 10, unlike panel (a)

where this decrease is built into the scaling function [,.
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3.3 Eigenvalue statistics

In this section, we will investigate energy-eigenvalue correlations via the distribution
of the level ratios, which was introduced in Section 1.1.3.

We will characterize the degree of chaos at different energies. Hence, we compare
the distributions obtained from the energy levels within each of the 100 energy intervals
described in Section 3.1 to the level spacing distributions of the GOE and independent
random variables (Poisson). Such energy-resolved comparisons of level statistics have
appeared in Refs. [315, 103]. To compare with GOE or Poisson distributions, we use a
common measure of the difference between two distributions, namely the Kullback-
Leibler (KL) divergence [316]. The KL divergence between an observed distribution

P(z) and a reference distribution Q(x) is

DkL(P|Q) = /_OO P(x)log ggg dr. (3.9)
This quantity vanishes if P(z) is identical to Q(z). Generally, a larger KL divergence
indicates stronger deviation of P(x) from Q(x). In this section, P(z) will be the
ratio distribution obtained from the Bose-Hubbard energy levels within each energy
interval. We will use either the GOE or the Poisson ratio distribution, denoted in the
introduction by Eq. (1.23) or (1.27), as the reference Q(x).

3.3.1 Level spacing ratio distribution

In Figures 3.5(a-c), we show the observed ratio distributions for three different combi-
nations of relative energy £ and interaction parameter A. Since these distributions are
estimated from a finite number of energy eigenvalues within the respective energy win-
dows, they are shown as histograms. The data here is extracted from calculations with
N = 150 bosons. The histograms are expected to converge to a smooth distribution in
the limit N — oo. For visual guidance, the parameters (A, E) corresponding to the
panels in Figure 3.5 are marked with respective symbols in Figure 3.6(a).

The distribution in panel 3.5(a) is visually seen to be close to the Poisson case.
Hence we expect the KL divergence from the Poisson distribution (D) to be small
and the KL divergence from the GOE (D%CF) to be large. The situation in panel
3.5(b) is the opposite (close to GOE), while panel 3.5(c) shows an intermediate case.
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Fig. 3.5 (a-d) Level ratio distributions for combinations of interaction A and relative
energyE (a) A~ 0.28 and £ = 0.25, (b) A~ 248 and E = 0.4, (c) A ~ 12.33 and
E =0.65 and (d) A ~ 0.28 and E = 0.13. Solid and dashed lines are the Wigner-like
surmises Pgog(7) and Ppy(7), respectively. (e) KL divergence of the distribution of
the level ratios over the full spectrum from the GOE distribution.

These expectations are in line with the calculated KL divergences:

a)  DP'~0.05 DYFx0.4;
b) D™ ~0.22 DYF ~0.06;
¢) DY =~0.16, DYF ~0.29.

In Figure 3.1(b), we used D%°F as a quantifier of chaos and presented its values
in the entire (A, E) plane as a heatmap. We capped the values at 0.15, meaning that
values DYOF > (.15 are considered fully non-chaotic and are not distinguished. There
is some arbitrariness in the exact choice of this value, but the main results — the
overall shape in Figure 3.1(b) and its close correspondence with the classical case,
Figure 3.1(a) — are not strongly affected by the use of a cutoff. In Figure 3.5(e), we
show D%OF for the complete energy spectrum as a function of A, to provide a visual

sense of the role of the cutoff in separating chaotic from non-chaotic parameter values.
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Fig. 3.6 Distance of the mean of the level ratios () from (a) the GOE level ratio mean
(Mcor and (b) the Poisson level ratio mean (7)pyisson- The markers in (a) indicate
the systems shown in Figure 3.5. The square corresponds to Figure 3.5(a), the star to
(b), the rhombus to (c) and the circle to (d).

3.3.2 Average of level spacing ratios

Often only the first moment (average) of the level ratio distribution is used as a
measure of closeness to GOE or Poisson level statistics. An example was provided in
the introduction to this thesis, Section 1.2.3. In this section, we use the average level
spacing ratio as alternate chaos measure to the KL divergence.

The average level spacing ratio for the GOE is (7)gor =~ 0.54 and for Poisson values
(TYpoi = 0.39. In the previous cases (a), (b) and (c), the means are 0.39, 0.51, and 0.44.
They are, respectively, close to (7)p.i, close to (F)gog, and intermediate, as expected.

In Figure 3.6, we present the absolute distance from (a) (7)gor and from (b) (7)po;.
Compared to Figure 3.1(b), we see that the same information is captured; a more
chaotic region at intermediate A and intermediate E is clearly visible in both these
cases. Overall, the mean of level ratios is closer to (7)gor inside this region and closer
to (F)po; outside. Even the fine structures at the boundary between the two regions,
previously seen in the classical case in Figure 3.1(a), are visible.

However, there are some artifacts. The most prominent is the arc at the left
(small A) region, in Figure 3.6(a). The reason is that, at small A, the spectrum shows
features specific to the free-boson case, deviating from the Poisson model of completely

uncorrelated values. We can see this in Figure 3.5(d), which corresponds to a (A, E)
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combination falling on the arc of Figure 3.6(a). The distribution is neither Poisson-like
nor GOE-like: it is non-zero for ¥ — 0 and has a pronounced peak at 7 ~ 1. Together,
these lead to an average (7) &~ 0.52 which is coincidentally close to (7)gor. The
deviation from Poisson at very small A is also seen in panel 3.6(b), in the form of a
darker region at the very left of the heatmap.

Summarized, the chaos-regular demarcation in the (A, E) plane can also be visual-

ized using the mean (7), modulo some artifacts.

3.4 Eigenstate statistics

In this section, we will compare eigenstates of the Bose-Hubbard system to eigenstates of
random matrices, specifically random matrices of the GOE. As discussed in Section 1.1.4,
eigenstates of the GOE have real entries and are uniformly distributed on the (D — 1)
dimensional unit sphere SP~' C RP. For large D, the GOE ecigenstates are well
approximated by a D-dimensional Gaussian distribution with independent entries
and mean zero and variance 1/D. Consequently, we will compare the coefficients of
Bose-Hubbard eigenstates against states with iid Gaussian distributed entries.

To compare distributions of eigenstate coefficients, we use the excess kurtosis, k,
of the set of coefficients. The kurtosis is the fourth standardized moment and was
introduced in Section 1.1.4. The excess kurtosis of a distribution is the difference
between the kurtosis of that distribution and the kurtosis of a Gaussian distribution,
which is 3. Thus, large values of k represent larger deviations from Gaussianity
and hence from RMT/chaotic behavior, whereas small values represent more chaotic
behavior. When we report values of the kurtosis, we always mean the excess kurtosis
K, even when the word “excess” is omitted.

The deviation of many-body eigenstates from Gaussianity could also be measured
using the KL divergence, as in Ref. [96], or using the inverse participation ratio (IPR)
or multifractal exponents, as in Refs. [105, 310, 98, 99, 317, 103, 202]. We expect
these measures to provide very similar overall pictures as the one we present using the
kurtosis. As discussed in Section 1.1.4, when the average of the eigenstate coefficients
is negligible (which is true for most eigenstates excepting some at the spectral edges),
the kurtosis is proportional to the IPR.

Eigenstate coefficients are defined with respect to a basis. We will investigate

eigenstates of the Bose-Hubbard system with respect to three bases:

1. the computational basis, which is given by the mutual eigenstates of the number

operators n;;
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Fig. 3.7 Histograms of eigenstate coefficients of Bose-Hubbard systems with N = 100
particles, in the computational basis. In (a-c), the interaction and energy intervals,
(A, E)), are the same as those used in Figure 3.5(a-c). Panels (d-f) are zoomed into the
right tails of (a-c). The black dashed line indicates the standard deviation. The black
solid line is a Gaussian density with mean 0 and standard deviation 1/D. The excess
kurtosis is (a) k1 ~ 1.6, (b) k1 = 0.8, (c) k1 ~ 122.

T

2. the mutual eigenbasis of the hopping operators a,a;, i.e., the eigenbasis of the

non-interacting (free) system;

3. the eigenbasis of a perturbed free system with hopping terms J;; = 1 for all 7, j
and small on-site perturbing potentials >, ¢;n; with values ¢; = —0.01, €3 = 0.02
and e3 = —0.03 on the three sites.

We name the kurtosis of the coefficients in the three bases as k1, ko, k3 respectively.
In Figure 3.1(c), the quantity presented is obtained from a combination of the first
and third choices above, namely max(k1, k3).

We assume that the distributions underlying the eigenstate coefficients of two
eigenstates close in energy are similar. As before, we divide the energy spectrum of
each Bose-Hubbard system with interaction strength A into 100 equally spaced intervals
and refer to them by their relative energy E. We compute the kurtosis & for every
eigenstate and average the calculated kurtosis over each energy interval. If the mean is
zero, the averaged kurtosis in an energy interval equals the kurtosis of all coefficients
of all eigenstates in that energy interval.

In Figures 3.7(a-c), we show the eigenstate coefficient distributions in the compu-

tational (n;) basis, for the three (A, E) combinations used previously in Figure 3.5.



3.4 Figenstate statistics 87

a) b) c) d)
20 21 22 23 4 20 21 22 23 24 2t 22 23 24
127
1.0 ;__
10} |
0.8
8 |
0.6 ¢ 6l
0.4 al
0.2 ol
101 10° 10! 1021071 10° 10! 10%210°1! 10° 10! 102 00.0 0.5 1.0
A A A E

Fig. 3.8 Heatmaps of kurtosis of eigenstate coefficients, for three different bases, listed
in the text. The kurtosis is cut off at 2* in each case. Markers in (a) indicate the
(A, E) values for which histograms are shown in Figure 3.7. The kurtosis heatmap
shown in Sec. 3.1, Figure 3.1(b), is a combination of panels (a) and (c) here — for
cach (A, E), the larger of the two values is chosen in Figure 3.1(b). Panel (d) shows
vertical slices of panel (a) for values of A denoted in the legend of panel (d).

Visual guidance to these three parameter combinations is provided in Figure 3.6(a) and
3.8(a) using corresponding symbols. The calculated excess kurtosis for these cases are
respectively k1 &~ 1.6, k1 ~ 0.8 and k1 =~ 122. The case (b) is thus closest to Gaussian,
followed by (a), while case (c) is very far from Gaussian. This is consistent with the
visual appearance of the full distributions. It is also consistent with the comparison of
the tails of the distributions against the tails of the Gaussian distribution, as shown in
(d-f).

We note in Figure 3.7(b) that the coefficient distribution, although closest to
Gaussian, has a large peak near zero. Even in the most chaotic region of the (A, E)
plane, the eigenstates depart considerably from the random-matrix case. We attribute
this feature to the mixedness of the three-site Bose-Hubbard system.

In Figure 3.8(a) we show the kurtosis x; for eigenstates in the computational basis
as a heatmap in the (A, E) plane. Comparing with previous sections, we see that
small k1 correlates with non-zero Lyapunov exponents and GOE level statistics, while
intermediate and large x; correlates with zero Lyapunov exponents and non-GOE level
statistics. The shape of the small-x; region matches the more chaotic region identified
previously using classical Lyapunov exponents or using level statistics. Even subtle
features from the heatmaps in the previous sections, such as the bulges around A ~ 1
and E ~ 0.5 are visible.

For small A, the kurtosis in the computational basis in Figure 3.8(a) shows inter-

mediate rather than large kurtosis, thus failing to fully capture the highly non-chaotic
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nature of the system in this region. The reason is probably that the small-A eigenstates
are so different from the computational basis states (which are A — oo eigenstates)
that they have overlap with a large number of the basis states, leading to a small IPR
(hence small kurtosis).

A complementary view is obtained via ks in Figure 3.8(b), where A = 0 eigenstates
have been used as basis. Because of the large degeneracy at A = 0, there is some
computational arbitrariness in the choice of this basis. This basis now has the opposite
problem — it fails to show the non-chaotic nature of large-A region. The problem is
partially alleviated by choosing as basis the eigenstates of a non-interacting Hamiltonian
with small on-site perturbing potentials; the resulting excess kurtosis k3 is shown in
Figure 3.8(c).

For random-matrix eigenstates, one expects Gaussian behavior with respect to
almost any basis. In Figure 3.8, the high-chaos region is marked by low kurtosis in all
three basis choices, consistent with the idea of basis-independence. The other regions
appear more or less Gaussian-like depending on the basis choice. To demarcate the
highly chaotic region from less chaotic regions, we can use a combination of kurtosis
calculations, taking the larger one from the kurtosis obtained in the first and third

basis, i.e., max(ry, x3). This is what we did in Figure 3.1(b).

3.5 Scaling of EEV fluctuations

In Chapter 2, we investigated the dependence of the magnitude o of EEV fluctuations
on the Hilbert space dimension D and found that for renormalized local operators A,
o depends on D as a power-law o(A) ~ D~¢ with exponent e.

In Figure 3.1(d), we have presented a heatmap of the exponents e, determined
numerically, for each energy window E and interaction parameter A. The operator was
chosen as A = a;al /N. The exponents are determined by fitting o(A) vs D, for system
sizes ranging from N = 90 to N = 170 in steps of 10, i.e., D ranging from ~ 4, 000 to
~ 15,000. The numerically observed exponent e ranges from 0 in the regular regions
to & 0.3 in the most chaotic regions of the (A, E) plane. The exponent e = 0 in the
regular regions coincides with the ETH exponent for integrable models. In agreement
with the results of Chapter 2, even in the most chaotic regions, e is smaller than the
RMT exponent £. The resulting heatmap, Figure 3.1(d), is noisier and less sharp than
those obtained from the other measures discussed in previous sections. But the overall

demarcation of chaotic and non-chaotic regimes is clearly visible.
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3.6 Discussion

In this chapter, we considered a quantum many-body model that has a classical limit
and is well-known to be “mixed”, the Bose-Hubbard model on three sites. We compared
the classical Lyapunov exponents of the classical limit against quantum measures of
chaos obtained from eigenvalues (statistics of level spacing ratios) and eigenstates
(coefficient statistics, EEV fluctuations). Overall, the agreement in the chaos-regular
demarcation between the classical case and the various quantum measures is very good.

This reflects the general agreement of chaos measures between quantum systems
and their classical limit, when such a limit exists, observed computationally in many
different Hamiltonian systems.

For classical systems, it is common in the literature to demarcate chaotic and non-
chaotic regimes using Poincaré sections [71, 318, 319, 91, 211, 182, 79, 80, 86, 87]. We
have focused instead on the Lyapunov exponent, and presented it as a multi-branched
function of energy. Inspired by Ref. [83], we have used the fraction of Lyapunov
exponents which are positive as a chaos measure, and compared it with other ways of
exploiting the FTLE results to demarcate highly chaotic and less chaotic behaviors. It
is clear that, if the phase space at fixed energy is separated into regular and chaotic
regions, then the Lyapunov exponent plotted against energy (with many phase space
points sampled in each energy window) will have to be a multi-valued plot. We hope
that explicitly presenting and analyzing this multi-valued dependence will contribute
to the intuition available on mixed systems.

For quantum systems, we used several measures: (1) the statistics of level spacing
ratios based on eigenvalues alone; (2) the coefficients of eigenstates, based on eigenstates
expressed in different bases; (3) the scaling of EEV fluctuations, based on eigenstate
properties. Level spacing statistics and eigenstate coefficients have been considered and
used as chaos measures for several decades. The EEV fluctuation scaling is based on
understanding that has emerged in recent years, motivated by studies of thermalization
and the ETH.

Of course, there are other interesting measures of quantum chaos that could be
considered for comparison. A candidate is the out-of-time-ordered correlator (OTOC)
whose initial growth defines a quantum Lyapunov exponent for chaotic systems. For
our mixed system, we were unable to unambiguously identify or rule out exponential
regimes in the dynamics, for the parameter combinations we attempted. It remains
unclear to us whether the OTOC is a useful measure for numerically demarcating
more-chaotic parameter regimes from less-chaotic and non-chaotic parameter regimes

in mixed systems. Another measure of chaos is the fractal dimension of eigenstates,
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which was presented in Refs. [103, 202] for a quantum Bose-Hubbard chain, not
in the classical (fixed L, large N) limit but rather for parameters relevant to the
thermodynamic (large L, fixed N/L) limit. The authors found a similar chaotic region
for intermediate A and E.

There are some peculiar features in both the eigenvalue and eigenstate statistics,
whose origins remain unclear and might be clarified in future studies. In Figure 3.6(a),
the arc in the small-A part of the heatmap is due to the level spacing having peculiar
statistics, as shown in Figure 3.5(d), due to a significant number of successive equal
spacings. In the eigenvector statistics, there are some mid-spectrum states that
are highly non-Gaussian, even at intermediate A, as seen through the dark nearly
horizontal line in Figure 3.8(a) at intermediate energies, and the dark curved line in
Figure 3.1(c), running through the more-chaotic light-colored region at intermediate
energies. Presumably, such peculiar features are less likely to appear in more fully

chaotic systems, such as the Bose-Hubbard system with larger number of sites.



Chapter 4

An ensemble of sparse random

generators of Markov processes

The content of this chapter has appeared as part of [301]:

G. Nakerst, S. Denisov, and M. Haque, Random sparse generators of Markovian
evolution and their spectral properties, Phys. Rev. E 108, 014102 (2023).

In this chapter, we discuss an ensemble of random Kolmogorov generators for
continuous-time Markov chains (CTMCs) with adjustable sparsity. This ensemble
aims to address the unrealistic large spectral gaps seen in dense random Kolmogorov
operators (introduced in Section 1.3.3), which result in long, less physical relaxation
times. The discrepancy between the spectral gaps of dense random generators and
non-random generators of physical models is highlighted in Figure 4.1.

The ensemble of random Kolmogorov generators, introduced in this chapter, is
characterized by ¢ non-zero off-diagonal elements per row and column. For small ¢
these operators are sparse, while for large ¢ they become denser. The dense random
generator case is recovered for ¢ = D — 1, with D denoting the matrix size, or
equivalently, the size of the state space. For typical physical CTMCs, ¢ is constant in
D for single-body systems, while ¢ increases logarithmically with D for many-body
systems.

In Section 4.1, we discuss how dense random Kolmogorov generators (p = D — 1)
differ from typical physical generators. In Section 4.2, we introduce the ensemble of
sparse random Kolmogorov operators. The bulk spectrum is analyzed in Section 4.3.
We show that whenever ¢ increases with D the bulk spectrum is shifted away from the
stationary value 0, independent of the distribution of non-zero elements of the generator

matrix. In Section 4.4, we address the spectral gap. In contrast to the bulk, the gap
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Fig. 4.1 Spectra of CTMC generators. (a) Dense (non-sparse) random generator
with x2 edge weight distribution, (b) TASEP on a ring with staggered hopping
probabilities [52], (¢) ASEP on a chain with open boundary conditions and next
nearest neighbor terms, (d) a process of particle hopping on an open boundary grid
with random hopping probabilities, (e) a 1D contact process, (f) a gene transcription
model from Ref. [239]. In each plot the real and imaginary axes have the same scale.
Further details of the models are presented in an appendix in Section 4.7.3.

depends on the distribution of non-zero matrix elements, particularly on the left tail.
For typical distributions, we show using extreme value theory that the gap decreases as a
power-law in D for constant ¢ (single-body), is constant (up to logarithmic corrections)
for ¢ ~ log D (many-body), and increases whenever ¢ increases substantially faster
than log D. In Section 4.5, we discuss correlations between eigenvalues in terms of
complex spacing ratios (CSRs). We show that already for ¢ > 2, CSRs agree with the
GinOE, while the extreme case ¢ = 1 is anomalous. We conclude with a summary of
our results in Section 4.6 and highlight open questions. An appendix in Section 4.7
contains details of the models whose spectra are presented in Figure 4.1 and the details

of analytical derivations.

4.1 Motivation

In this section, we contrast the spectra of physical Markov process generators with those
of dense random generators, discussed in Section 1.3.3. The observation that dense
random generators exhibit significantly larger spectral gaps than physical generators

motivates us to explore sparse generators in this chapter.



4.1 Motivation 93

In Figure 4.1(a) we present the spectrum of a random dense KC-generator. Similar
to Figure 1.11(a) from the introduction, the spectral bulk is well separated from the
stationary eigenvalue 0. The Kolmogorov operator K in Figure 4.1(a) has x3-distributed
elements. As discussed in Section 1.3.3, the spectrum of such generators is independent
of the specific matrix element distribution, provided the distributions are non-exotic
and have similar mean and variance.

In contrast to panel (a), panels (b-f) show the spectrum of physical CTMC gen-
erators. These are non-random matrices which emerge from microscopic laws. Panel
(b) shows the spectrum of a modified TASEP according to Ref. [52], (c) the ASEP
with obc and next-nearest neighbor hopping terms, (d) a single particle hopping on a
distorted two-dimensional grid, (e) a contact process modeling epidemic spread, and
(f) a biological model describing the accumulation and release of mechanical strain
of DNA during transcription. Further information and details of these models are
presented in Section 4.7.3.

The large gap of dense random generators implies rapid convergence from any
generic initial probability vector to the steady state. The relaxation time, which is the
inverse of the spectral gap, decreases inversely in the state space size D. In contrast,
physical generators of CTMCs in general exhibit spectral gaps and relaxation times
that depend on D in ways that are not simply (anti-)linear. For example, the ASEP
on a 1D chain with L sites shows a spectral gap vanishing as O(L~%/2).

Our preference for sparse random generators in modeling physical generators stems
from the observation that, in many established models, the corresponding K-generators
are inherently sparse. This sparsity typically arises due to locality, which limits
permissible transitions within the state spaces of the models. In systems involving
multiple components or particles, a generic generator matrix element often represents
simultaneous changes in several (or all) components. For example in the ASEP, a
generic matrix element corresponds to correlated hopping of many particles. However,
such processes are typically absent in models that are motivated by physical, biological,
economic, or other considerations. This results in a predominance of zero elements in
the C-matrices.

The inability of dense random generators to reasonably model the spectral gap
and relaxation times of physical generators, combined with the inherent sparsity of
these physical generators, motivates us to refine the RMT approach to Kolmogorov

operators by incorporating sparsity.
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4.2 Defining the ensemble

In this section, we define an ensemble of random sparse Kolmogorov operators. As

discussed in Section 1.3.1, every Kolmogorov operator can be decomposed into

where M is a matrix with non-negative entries and J is a diagonal matrix, with its
diagonal elements formed by column sums of M. In the following, we will describe how
to randomly generate M as a sparse matrix. By Eq. (4.1) the associated Kolmogorov
operator IC will be sparse, too.

The matrix M can be considered as the adjacency matrix of a random directed
graph with positive, iid edge weights, without self-loops, and with fixed vertex degree
equal to . Therefore, the Kolmogorov operator K is the negative combinatorial
Laplacian associated with the graph.

In this chapter, we will consider directed graphs which in general makes M and so K
non-symmetric and their spectra complex. We focus on ¢-regular graphs, characterized
by each vertex having ¢ outgoing and incoming edges, with ¢ denoting the vertex
degree. Such graphs possess exactly 2D¢ edges. This regularity ensures that the
adjacency matrix M contains precisely ¢ non-zero elements in every row and column.
For simplicity, we do not allow self-loops that are edges with the same starting and
ending vertex. This ensures that the adjacency matrix M has zero diagonal and the
Kolmogorov operator K has exactly ¢ + 1 non-zero elements in every column and
row (including the negative diagonal element). The sparsity of the random graphs is
controlled by the vertex degree ¢, which is bounded by 1 < ¢ < D — 1. For small ¢
the graph and the adjacency matrix M are very sparse while for larger ¢ they become
denser. The fully connected graphs are recovered for maximal ¢ = D — 1.

The adjacency matrix M is uniformly drawn from the set of all graphs with the
above properties. Said differently, M is uniformly distributed on the set of p-regular
directed graphs on D vertices without self-loops. Sampling such a graph begins with a
graph on D vertices and no edges. Then, each vertex is connected to ¢ other vertices
iteratively, while rejecting edges if the corresponding vertex already has ¢ incoming
edges. For the final vertices, it may not be possible to connect to other vertices without
violating the constraint of ¢ incoming edges for each vertex. In such cases, the entire
process is restarted. To mitigate the risk of restarting the procedure, we reduce the

probability of connecting to a vertex that already has a high degree. Following this
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approach, we find that we rarely need to restart the algorithm for the matrix sizes and
vertex degrees  examined in this chapter.

So far we have not specified the non-zero elements of M. In un-weighted graphs the
non-zero elements of the adjacency matrix are typically 1. Here, we consider the more
general framework of weighted graphs. In these graphs the edges and the non-zero
elements of M have weights different from 1. Because all entries of M have to be
non-negative the weight distributions we consider are all non-negative. Explicit results
in the following sections are mostly derived for uniform and y3 distributions. (The x3
distribution is the sum of k squared, independent standard Gaussians.) However, our
results can be adapted to other weight distributions.

The sparse graph ensemble considered here is quite generic. For example, the
graph corresponding to the K-generator of a single particle hopping on a d-dimensional
hypercubic lattice with periodic boundary conditions and random hopping rates is
a particular (to the nearest-neighbor connections) realization of the ensemble with
¢ = 2d. Figure 4.1(d) shows an example spectrum for d = 2.

The regularity of the graphs ensures that, with probability 1 — O(D~#71), they
are strongly connected as long as ¢ > 2 [320]. As discussed in Section 1.1.5, strongly
connected means that by traversing along the edges of the graph every vertex can be
reached from every other vertex. Strong connectivity is a desirable feature for a minimal
random K-generator model. It implies that the matrix K is not of block-diagonal
structure and the state space is not partitioned into disconnected subsets. Additionally,
strong connectivity implies that the multiplicity of the zero eigenvalue is one, which
makes the steady state unique. Finally, every state in the state space is reachable
from every other state. Therefore, the steady state has all states populated. All
physical models motivating this study and presented in Figure 4.1 are - except for
the contact process - all strongly connected. The contact process is only effectively
strongly connected, with one exceptional state. In the following sections, we will focus
on sparse generators with ¢ > 2. The case ¢ = 1 will be discussed in Section 4.5.

The physical models presented in Figure 4.1 motivate us to focus on two types
of dependencies of ¢ on the matrix size D, namely ¢ = const and ¢ ~ log D. For
generators of single particle hopping models - an example is shown in Figure 4.1(d) - the
average number of non-zero elements per column and row is constant and independent
of D. In many-body hopping models such as the ASEP or the contact process,
Figure 4.1(b), (c¢), and (e), it increases logarithmically with D. There is no simple
dependence of ¢ on D in the gene transcription model, Figure 4.1(f), as the matrix

size D is controlled by multiple parameters.
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Fig. 4.2 Spectral densities of random Kolmogorov operators with x3 weight distribution.
The matrix size is D =~ 8000 and the densities are estimated with 100 samples. White
areas contain no eigenvalues. (a) Dense matrix without the zero eigenvalue, (b) sparse
matrix with ¢ = /D non-zero elements per row and column, (c) ¢ = log D and
(d) ¢ = 3. The insets show spectra of single realizations. In each plot, the real and

imaginary axes have the same scale. The red dots mark the location of p(\), given by
Eq. (4.2), and the intervals shown in black are [u(A) — (M), u(A) + o(N)], where o(A)
is given by Eq. (4.4).

A similar setup to the one presented here was studied in Ref. [295], where an
ensemble of oriented Erdés-Rényi graphs [321] was used. In these graphs, edges
between vertices are present with a probability p(D). Hence, the vertex degrees are
binomial-distributed [321] and not constant as in our case. However, one might expect
similar behavior in the D — oo limit with the correspondence p(D) = ¢/D. The
authors of Ref. [295] considered the regime Dp(D) > (log D)%, which they found to
have the same universal properties as in the non-sparse case. In this work, we consider
sparsity beyond this limit, including specifically ¢ ~ D° (vertex degree not growing
with D) and ¢ ~ log D.

4.3 Bulk spectrum

In this section, we analyze the dependence of the position and horizontal width of the
bulk of the spectrum on the sparsity parameter ¢ and the matrix dimension D. We
first provide (Sections 4.3.1 and 4.3.2) expressions and bounds for the position and the
width, characterized respectively by the mean p(\) of all eigenvalues and the standard
deviation o(Re \) of the real parts of the eigenvalues. These results are expressed in
terms of the mean and standard deviation of the weight distribution (distribution of
non-zero elements of the Kolmogorov operator K), denoted by py and oy, respectively.

Since the most prominent effect of sparsity is to reduce the parametrically large gap
seen in the full random case, it is instructive to analyze the ratio a = |u(M)|/o(Re ).

This quantity provides insight into the distance of the bulk of the spectrum from the
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origin, relative to the size of the bulk. Section 4.3.3 is devoted to an analysis of the
ratio a.

Numerical results presented in this section are obtained by sampling edge weights
from the x3 and the standard uniform distribution.

The spectrum of dense generators (¢ = D — 1) consists of two distinct parts - an
eigenvalue A\; = 0 and the rest of the eigenvalues forming the spectral bulk away from
the imaginary axis, as shown in Figure 4.1 (a) and Figure 4.2 (a). In contrast, the bulk
of the spectrum is much closer to the imaginary axis for ¢ < D, as seen in Figure 4.2
for (b) ¢ = VD, (c) for ¢ = log D and (d) for ¢ = 3. For ¢ = v/D, the bulk of the
spectrum is visibly separated from zero, as in the dense case. In fact, the spectral
boundary has the same spindle-like form as the dense case ¢ = D — 1. Whether the
spectral distribution is separated from zero for ¢ = log D and ¢ = 3 is difficult to say

with certainty from the available numerical data (D =~ 8000).

4.3.1 Position

The position of the spectral bulk of K can be identified with the estimated mean p(\)

of the eigenvalues \; of IC,
1 D
n(A) = <D > )‘i> ; (4.2)
i=1

where the average (...) is taken over the ensemble of random Kolmogorov operators
described in Section 4.2. Because the eigenvalues are either real or come in complex
conjugate pairs, the mean of the spectral bulk is real, () = u(Re ).

A simple calculation shows that p(\) can be expressed as

B = {55 000) ) = 3 () =~ (43)

=1

The averaging (...) over the matrix ensemble in Eq. (4.2) and Eq. (4.3) is, in
principle, not needed since self-averaging is expected, i.e., for large enough D, a single
sample will display all the spectral features of the ensemble. This is because the
quantity 3 tr(K) is concentrated around its average <% tr(lC)> for increasing D, which
we show in an appendix in Section 4.7.1.

For the four different dependencies of ¢ on D shown in Figure 4.2, Eq. (4.3) implies
the following: For ¢ = const, the mean is independent of the matrix size D. For
¢ =log D (¢ = v/D) the mean decreases logarithmically with D (as ~ v/D) and for

¢ = D the mean decreases linearly with D as is expected for the dense generators [294].
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In Figure 4.2, the location p(\) of generator matrices K is indicated with a red dot
in each panel. The real part of the dot resides in the bulk of the spectrum for every

dependence of ¢ on D shown in Figure 4.2.

4.3.2 Horizontal width

In Section 4.3.1, we investigated the bulk location of the spectrum in the complex
plane. In this section, we will analyze the width of the distribution, particularly the
horizontal width.

We characterize the width of the bulk spectrum, both in the real and imaginary

directions, Re A and Im A\, using the estimated variances
1 Z 12\
o?(Re)) = <DZ Re)\i—EZ)\j > (4.4)
i=1 j=1

o2(Im \) = < LS (1 )2 > (4.5)

=1

U

where we used the fact that Zle Aj is real. Since eigenvalues are real or appear in

complex conjugate pairs, 02(Re\) and o(Im \) are related to the estimated complex
pseudo-variance via
1

-5 (55 )
ol

= 0%*(Re\) — o?(Im
The estimated pseudo variance lower bounds the estimated variance of the real parts
of the eigenvalues, 0?(\) < o?(Re \).

The complex pseudo variance can be analytically calculated for the ensemble of

Mu

7

(4.6)

random generator matrices as

1 1
20y) _ 2
o2(2) = <Dtr(lC )> _ <D2tr(IC) >
%) 1
— ¢ (B + St - 5ot). (4.7)
Details of the calculation are provided in an appendix in Section 4.7.1. The bound of
the estimated real variance by the pseudo variance together with Eq. (4.7) leads to the

asymptotic lower bound of o(Re \) in terms of the sparsity parameter . As 1 < ¢ < D,

the estimated horizontal width of the bulk spectrum cannot grow asymptotically slower
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Fig. 4.3 Ratio a of mean u(Re ) and horizontal width o(Re\) of the bulk of the
spectrum of sparse random Kolmogorov operators with (a) x3 and (b) standard
uniform weight distributions. In (c) o as a function of /. The bottom markers
correspond to x5 and the top to uniform distribution. Dependencies of ¢ on D are ¢ =
constant, ¢ = log D, ¢ = 2log D, and ¢ = DY?. The black solid lines correspond to
o = c1 + 2,/ (€12 given in the main text) and the dashed lines denote o = p/00/@.

than /o,
o(Re)) > /o (4.8)

Numerically, we find that the bound in Eq. (4.8) is asymptotically sharp for ¢ < D,
as shown in Figure 4.3 through the ratio o of mean u(Re \) and width o(Re A). The
collapse of the data points in Figure 4.3(c) implies that o(Re X) ~ |/@.
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4.3.3 Ratio of mean and horizontal width

In this section, we combine the information of the location of the spectrum given by
Eq. (4.2) and the horizontal width of the bulk given by Eq. (4.4) into the ratio

a="—=. (4.9)

This quantifies how close the bulk spectrum is, relative to its size, to the stationary
value A\; = 0. i.e., to the imaginary axis. For o = O(1) the estimated width of the bulk
is of the same order as the estimated mean, thus the spectrum is located close to 0.
For v > 1 the estimated mean is much bigger than the horizontal width of the bulk
and the bulk of the spectrum is far away from 0.

The analytical result for the estimated mean of the spectrum, Eq. (4.3), together
with the asymptotic bound on the standard deviation of the real parts of the spectrum,

Eq. (4.7), imply the following asymptotic bound on «

a< Ve (4.10)

Numerically, we observe that the bound in Eq. (4.10) is asymptotically tight for ¢ < D,
ie.
o~ Cc+ 02\/_7 (411)

for constants ¢; and cy. Since pu(A) scales linearly with ¢, this behavior is consistent
with o(Re \) ~ /@, stated previously. The constants are found to be ¢; ~ 0.15 (~ 0.1)
and ¢y &~ 0.84 (& 1.3) for the x3 (uniform) distribution.

Numerical results for a are summarized in Figure 4.3. For each combination of ¢
and D, « is averaged over n samples of random generators such that nD = 50, 000.
The weight distribution is the x3 distribution in (a) and in the lower part of (c), and
is the uniform distribution in [0, 1] in (b) and in the upper part of Figure 4.3(c). We
have found that these results are qualitatively the same for exponentially distributed
edge weights.

In Figure 4.3(a,b), we show the value of « as a function of D and ¢. On the z-axis
D varies in steps of 10® between 103 and 10*. We observe that « increases with ¢
and is independent of D, as predicted by Eq. (4.11). In Figure 4.3(c) we show « as a
function of ¢ for different dependencies of p on D. In all the cases, values of « collapse
onto the black solid line given by Eq. (4.11).

For ¢ ~ D, the ratio a scales as ~ v/D, thus recovering the parametrically large

gap in the non-sparse case. For constant ¢, the location of the bulk relative to its size
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is constant and independent of D, i.e, if measured relative to the size of the bulk, the
bulk does not move away from the imaginary axis with increasing D. We have thus
quantified how sparsity cures one of the less physical aspects of the non-sparse random

model of Markov generators.

4.4 Spectral gap

In this section, we will consider the spectral gap v, of K,
7. = min{|Re A\;| : Re \; < 0}. (4.12)

The spectral gap ~, is asymptotically, approximately bounded by the right extent of
the bulk |p(A)| — o(A), which depends on ¢ as ~ ¢ — /@ ~ ¢. So for constant ¢, the
spectral gap is bounded from above, while for ¢ increasing with D the spectral gap
can increase with D.

In this section, the edge weights are distributed according to the x3 and the
standard uniform distributions. We first demonstrate numerically that, for ¢ = const,
the average spectral gap (7,) decreases as D~'/¢, while (v,) is constant if ¢ increases
logarithmically with D. We then show that the spectral gap is well approximated by the
smallest (in magnitude) diagonal term of 7 (KC) and use the theory of extreme values
(EVT) to underpin the numerical observations. The results are then generalized to
weight distributions with power-law left tails in that for constant ¢ the average spectral
gap decreases as a power-law in D and the crossover from decreasing to increasing ()

happens when ¢ ~ log D.

4.4.1 Numerical results

In Figure 4.4, we show the average spectral gap (v,) for edge weights distributed as x3
(a-c) and according to the standard uniform distribution (d-f). For every combination of
¢ and D, the average of the spectral gap is estimated with 100 samples. In Figure 4.4(a)
and (d) we show (v,) as a function of D for different dependencies of ¢ on D. The
average spectral gaps for constant ¢ = 3, 5,8, 13 (presented with colored circles) clearly
follow a power-law scaling with D.

In Figure 4.4(b) and (e), we show the average spectral gap (7.) as a function of ¢
and D. The black dashed lines are contour lines of constant (v,). They are straight
lines to a very good approximation, showing that for a logarithmic increase of ¢ in D

the spectral gap is constant.
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Fig. 4.4 The average spectral gap (7.) with x3 (top) and standard uniform (bottom)
weight distributions. Solid lines in the log-log plots are analytical predictions from
Eq. (4.21) in (a) and Eq. (4.24) in (d). Black dashed lines in the heatmaps denote
contours of constant gap. White circles in the heatmap in (e) are given by Eq. (4.26).

We show the average spectral gap (7.) as a function of D for ¢ = glogD +8in
Figure 4.4(a) and ¢ = {5log D 4 8 in (d) as black diamonds. These dependencies of ¢
on D agree well with the top dashed contour lines in (b) and (e), respectively. The
average spectral gap of ¢ depending logarithmically on D is constant in Figure 4.4(a)
and (d).

4.4.2 Gap as the minimum of the diagonal

Let us assume for a moment that the generator matrix K is Hermitian with eigenvalues

Ap <+ <Ay <A =0. Then 1 = (1,...,1)" is the eigenvector with eigenvalue 0 and
all other eigenvectors are orthogonal to it. By the Courant-Fischer theorem [322]

. =—X = min v(—K 4.13

g 2= min o ), (4.13)

where the minimum runs over all vectors v € R”, which have Euclidean norm |v| = 1

and are perpendicular to 1. Choosing 1 <1 < D arbitrarily and v as (see the appendix
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Fig. 4.5 The average relative error (Eq. (4.19)) between the spectral gap and the
minimal value of J. Weight distributions are the x3 distribution in (a) and the
standard uniform distribution in (b). Averages are over 100 samples.

in Section 4.7.2 for more details)

1-1 1 =1
v; = P l (4.14)
NG s
together with a simple calculation shows that
1 .
Vx S (1 + m) 1I<I%1<11D Jll- (415)

Similarly, by using the Courant-Fisher theorem for the eigenvalue with largest magni-
tude A\p we find
—Ap = maxv'(—K)v, (4.16)

v[=1

and with v as the [-th vector of the standard basis of R”
“A\p >
)\D = 1%&;]% Jll- (417)

Under some mild conditions on random weights [;;, a result from Ref. [323] shows
that the inequality Eq. (4.17) becomes an equality in the large D limit with probability
approaching 1. Motivated by this observation and the bound from Eq. (4.15), we
expect a similar asymptotic tightness for Eq. (4.15). However, it is an open question
whether the result from Ref. [323] applies to the bound of the spectral gap, Eq. (4.15).
Further, the proof presented in Ref. [323] makes use of the Central Limit Theorem for
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the diagonal elements J;; of J, and so the corresponding result does not apply to the
case of constant or logarithmically increasing (with D) sparsity parameter ¢.

Nevertheless, the above arguments allow us to conjecture that in the limit of large
D and ¢ < D the spectral gap 7, is well approximated by the minimum of the diagonal
of 7,

Ve 12%1%11) Jll, (418)

for general, non-hermitian random generator matrices K, with iid and non-exotic edge

weight distributions. We support our conjecture with numerical data presented in

Figures 4.5(a) and (b). We quantify the approximation in Eq. (4.18) by the relative

error between the spectral gap 7. and the minimum min; <;<p Jy; of the diagonal of 7,
7% — miny<<p Ji

5, = . 4.19
5 o (4.19)

Figure 4.5 shows (07,) as a function of ¢ and D for the x3 distribution and the standard
uniform distribution. The average relative error is at least two orders of magnitude
smaller than the average spectral gap shown in Figure 4.4(b) and (e). For increasing
D, the approximation in Eq. (4.18) improves. We conclude that the approximation in
Eq. (4.18) works well in the case ¢ < D.

4.4.3 Extreme value theory

The distribution of the right-hand side of Eq. (4.18) can be tackled with EVT. As all
non-zero entries of M (edge weights) are iid distributed random variables, so are the
diagonal entries of J. Let the cumulative distribution function (CDF) of the diagonal
entries Jy of J be denoted by F' and its probability density function by f(z) = d%F ().
If the edge weights are distributed according to a x? distribution (or any gamma
distribution) the CDF F of Jj; is a gamma distribution function; if the edge weights
are uniformly distributed, F' is an Irwin-Hall distribution function [296]. The expected

value of min;<;<p Jy is given in terms of F' (and f) by

< min J”> - D/d:mf(x)(l — F(a)P (4.20)

1<I<D

Eq. (4.18) and Eq. (4.20) imply that

() ~ D/dxxf(x)(l — F(z))P, (4.21)
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We demonstrate the validity of Eq. (4.21) with Figure 4.4(a), where the solid lines,
given by Eq. (4.21), perfectly match numerically sampled average spectral gap (7.). In
the remainder of this section, we will use EVT to approximate the integral in Eq. (4.21)

by elementary functions of ¢ and D.

Power-law tail distributions

Let us consider first the case ¢ = const and increasing D. By the Fisher-Tippet-
Gnedenko or extreme value theorem [324], min;<;<p Ji; converges in law, under some
mild assumptions on the distribution of J; and proper renormalization, to the Weibull
distribution. The Weibull CDF is given by ¥s(z) = e‘””ﬁ, where § > 0 and the support
is on the positive real line.

The specifics of the convergence type are less critical for the outcomes of this
chapter. Convergence in law, a weak form of convergence in probability theory, is often
used in extreme value analysis. We will proceed under the assumption that moments
of the distributions converge as well and concentrate on the asymptotic behavior of
the integral in Eq. (4.21). Our approximations are supported by numerical results,
which validate sufficient accuracy. While the details of the convergence type present a
mathematical interest, they are not the focus here.

For distributions of J;; with power-law left tail, the renormalization of min;<;<p Jy
for convergence to the Weibull distribution is well known, see e.g. Theorem 3.3.2, page
137 in Ref. [324]. We use a version modified to our case. Let a positive random variable
X have CDF F with g-power left tail, i.e.

F(z)=Ca® for0<a<CYP (4.22)

where C' > 0 is a constant. Further, let mp = min;<;<p X;, where the X; are iid copies
of X. Then
(DCYYPmp — Ws  in law. (4.23)

The Irwin-Hall distribution has a left power-law tail given by F(x) = % for 0 <z <1
The constants for the Irwin-Hall distribution are listed in Table 4.1.

We assume that the convergence in Eq. (4.23) is not only in distribution but that
the renormalized moments of mp converge as well. If the convergence of the moments
is sufficiently fast, then Eq. (4.23) together with Eq. (4.18) imply

(7.) &~ (mp) ~ T (1 + ;) (e D=1/, (4.24)
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off-diag. K = M;; % uniform
diag. K = Jy gamma(%‘p, 2) Irwin-Hall
C 2% % I
kcp! . P!
B 2% p

Table 4.1 The distributions of the off-diagonal elements M;; of K (edge weights) and
the corresponding distributions of the diagonal elements J;; of IC and the corresponding
constants C' and f3 for the convergence of .Jy; to the Weibull distribution W4 in Eq. (4.23).
(*) constants obtained by a power-law approximation of the left tail of the gamma
distribution.

whenever the weight distribution (distribution of non-zero off-diagonal elements of K)
is such that the diagonal of 7 has a power-law left tail and the coefficients C' and
are given by C' = 1/¢! and 5 = ¢.

Finally, we consider the case that the weight distribution is uniform. We observe
that the approximation in Eq. (4.24) works very well in this case. The solid lines
in Figure 4.4(d) are given by the right-hand side of Eq. (4.24) and they match the
numerically calculated average spectral gap.

Eq. (4.24) implies for ¢ = const and increasing D that the average spectral gap
decreases as

(7,) ~ D7Y%, (4.25)

In Figure 4.4(f) we show that the numerically retrieved power-law exponents of the
average spectral gap, Figure 4.4(d), match the scaling in Eq. (4.25).

We find that the large deviation result is not only valid for constant ¢ and increasing
D but also for ¢ increasing logarithmically with D; see Figure 4.4(d). This allows us
to estimate the crossover from decreasing to increasing spectral gap. Let ¢ denote a
constant and let (7,) = ¢. Then by Eq. (4.24)

r(1+1)
C

%)
ol (4.26)

~
~

In Figure 4.4(e) the contour lines of constant average spectral gap ¢ perfectly line up
with the functional dependence of D on ¢ through Eq. (4.26) shown as white dots.
To find ¢ as a function of D such that the average spectral gap is constant, we

assume that ¢ is reasonably large and approximate I' (1 + é) ~ 1 and by Stirling’s
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formula (¢!)Y/% ~ 2. Denoting y = log £ and rearranging Eq. (4.26) gives us

log D
ce

~ yeY, (4.27)

which can be inverted by the Lambert W function. Resubstituting ¢ = cee? we arrive
at

logD)

pmce- V), (4.28)
which for log D > ce? behaves as [325]

log D
. R (4.29)
(loglog D —logc — 1)

where n(D) — 0 slowly, as n(D) ~ (loglog D). So in the limit 1 < ¢ < D
the crossover from decreasing to increasing spectral gap happens at ¢ ~ log D with
corrections of the order loglog D. This confirms our numerical observations that the
average spectral gap (7.) appears to be constant for ¢ ~ log D in the range of matrix
sizes D we considered.

Approximate power-law distributions

If the weight distribution is a x? or exponential distribution, the diagonal elements
of J are distributed according to a Gamma distribution, see Table 4.1. The left tail
of the Gamma distribution only follows approximately a power-law. Approximating
the left tail by a Taylor expansion, we obtain constants C' and  presented in Table
4.1. Especially, for the x3 distribution, the power-law approximation of the gamma
distribution and the large deviation result in the previous subsection suggest that the
average spectral gap (7.) decreases for constant ¢ and increasing D as a power in D
with exponent given —1/¢.

In Figure 4.4(c), we present the numerically calculated exponents of the power-law
decrease of (v,), for x2 weight distribution, with D and compare it to the prediction
—1/¢. We find excellent agreement for small ¢ < 5. For larger ¢ the deviation between
the numerical exponent and —1/¢ is visible, but the agreement is still good.

A quantitative comparison between the numerically calculated spectral gap (7.)
and the EVT prediction by a power-law approximation of the left tail of the gamma
distribution resulted in poor agreement. As the expected minimum value of the

diagonal of J perfectly agrees with (v,), we attribute the disagreement to the power-
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law approximation of the left tail and slow convergence of Eq. (4.23) for diagonal

elements of J distributed according to the gamma distribution.

4.4.4 Summary

We presented numerical and analytical arguments that, for the weight distributions
considered, the average spectral gap decreases as a power-law for constant ¢ and
increasing D with exponent given (approximately) by —1/¢. The crossover between
decreasing and increasing spectral gap happens at ¢ ~ log D, with loglog D corrections,
for uniform weight distribution. For x3 distributed edge weights the crossover was
observed at ¢ ~ logD. If ¢ increases with D faster than log D then the average
spectral gap increases.

The presented results generalize. Let us assume that the spectral gap is well
approximated by the smallest diagonal element of 7, at least in the regime of large D
and ¢ < D. Then the distribution of the spectral gap is given by the limiting extreme
value distribution of the diagonal elements of 7. Consequently, the classification
of functional dependencies of the spectral gap on ¢ and D with respect to weight
distributions reduces to the classification of extreme value distributions. Extensive
research has been conducted in this field [326, 324]. Therefore, the presented approach
allows the calculation of the distribution of the spectral gap for broad classes of weight

distributions.

4.5 Complex spacing ratios

So far we considered the marginal distribution of eigenvalues of sparse random generator
matrices. But correlations between the eigenvalues are also of interest.

In Section 1.1.3 of the introduction, we presented the complex spacing ratio r (CSR)
distribution as a measure of eigenvalue correlations. As discussed there, uncorrelated
eigenvalues A have uniform CSR density, while eigenvalues of random matrices typically
have a CSR density, which vanishes at » = 0 and » = 1. The random generators
considered in this chapter have real entries, so they should be compared to real Ginibre
matrices (GinOE).

In Figure 4.6, we show the CSR densities of (a) GinOE members (with Gaussian
entries) and (b-d) sparse random generators with y3 distributed edge weights and
© = 1,2,3. The densities are estimated from 100 samples for D = 10,000. We also
checked that the obtained densities are independent of the weight distribution. As
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Fig. 4.6 Density of complex spacing ratios (CSRs) r for (a) GinOE and (b-d) sparse
Kolmogorov operators with ¢ = 1,2, 3. The number of states D = 10, 000 and densities
are obtained from 100 samples. Edge weights are distributed according to the x3
distribution. The color range is from 0 to 0.8 in (a), (c), and (d) and from 0 to 260 in

(b).

suggested in Ref. [52], we avoid eigenvalues close to the real line (by excluding all
eigenvalues from the strip Im A < 107!*) when sampling CSR densities.

The CSR density of GinOE matrices shown in Figure 4.6(a) exhibits typical depletion
at r =0 and r = 1, similar to the CSRs of the GinUE presented in Figure 1.5(a) in
Section 1.1.3. In Ref. [260], it was shown that the CSR density obtained for dense
random Kolmogorov operators agrees well with the distribution shown in Figure 4.6(a).
The CSR density of sparse generators with sparsity ¢ > 2 (c,d) agrees remarkably well
with the GinOE case.

The CSR density for ¢ = 1 is anomalous, as observed in Figure 4.6(b). It has
an extremely high density around r = —1 while being nearly flat on the rest of the
unit disk. This anomalous CSR density is a consequence of the graph of Kolmogorov
operators with ¢ = 1 fragmenting into a set of disjoint (distorted) cycle graphs. The
spectra of each of these fragments are approximately arranged on (distorted) circles,

as observed in Figure 4.7. Consequently, the CSRs of the fragments are likely close to
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Fig. 4.7 Spectrum of a random Kolmogorov operator with ¢ = 1 and 3 weight
distribution. The matrix size is D = 1,000. Inset: same data plotted with both axes
having the same scale.

GinOE | o =1 | p=2 | ¢p=3
—(cos @) | 0.7379 | 0.7871 | 0.7359 | 0.7372
(Ir]) 0.2347 | 0.3516 | 0.2225 | 0.2284

Table 4.2 Mean and angle of spacing ratio distributions obtained with 100 samples
of random D x D-matrices with D = 10,000 rounded to the 4th digit. The matrix
ensembles correspond to the ones shown in Figure 4.6.

r = —1. The independence of the fragments implies the flatness of the CSR density
away from r = —1, akin to the CSRs of independent random variables.

To quantify the difference between CSR distributions, we use the average length
{|r]) and the average cosine of the angle —(cos ) of spacing ratios, where (...) again
denotes the average over the random matrix ensemble [52]. We numerically estimate
(Ir])cinor =~ 0.7379 and —(cos0)ginor ~ 0.2347 for 100 D x D-matrices with D =
10, 000. These agree well with (|r|) and —(

4.2. We found similar results for ¢ > 3 (not shown). In contrast, the corresponding

cos ) for o = 2 and ¢ = 3, as shown in Table

quantities for ¢ = 1 deviate substantially from (|r|)ginor and —(cos#)ginoE, as also
shown in Table 4.2. We conclude that, for ¢ > 2, correlations between eigenvalues of
sparse random Kolmogorov operators agree with correlations of eigenvalues of GinOE

madtrices.
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4.6 Discussion

Summary of results

Motivated by the inability of dense random Kolmogorov operators to reasonably model
the spectral gap of physical Markov processes we introduced and analyzed an ensemble
of sparse random Kolmogorov operators. We showed that, if the number of non-zero
elements per column (and row) ¢ increases with the matrix size D, the bulk of the
spectrum is shifted away from the stationary eigenvalue 0 in the limit of large matrix
size D. This is independent of the weight distribution, i.e. of the distribution of the
non-zero matrix elements.

In contrast, the spectral gap depends on the tails of the weight distribution. These
tails determine, together with ¢, the tails of the diagonal elements of generator
matrices. We numerically showed that the spectral gap is well approximated by the
minimum of the diagonal elements. From extreme value theory it follows that for
diagonal distributions with power-law left tails (this includes among others edge weights
being uniform, exponential, x?, gamma or beta distributed), the average spectral gap
decreases as a power-law in D for fixed ¢, is constant for ¢ ~ log D and increases,
whenever ¢ increases with D substantially faster than log D.

Additionally, we showed that CSR distributions of generator matrices with ¢ > 2
follow the distribution typical of the GinOE, while there is a strong anomaly for ¢ = 1.

Open questions

(1) We have introduced sparsity to model K-generators of physical Markov processes,
and have used the sparsity to tune spectral features of the generators. There are other
ways of providing random matrices with a structure that models physical constraints
(e.g., locality). For example, one could consider banded matrices [32-35, 38-41, 59, 42]
or matrices with decaying off-diagonal terms [36, 37, 59] or temperature based models
[327]. These are alternate routes to tuning spectral features. To the best of our
knowledge, generators of continuous-time Markov processes with such structures have
not yet been considered.

(2) The application of extreme value theory to find the limiting distribution of
the spectral gap relied on the observation that the spectral gap is well approximated
by the minimum of the diagonal of the generator matrix. For symmetric generators,
the Courant-Fisher theorem implies that the extremes of the diagonal are upper and
lower bounds for the gap and the largest eigenvalue in magnitude, respectively. In this

case, a concentration of the largest eigenvalue in magnitude around the maximum of
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the diagonal was shown in [323]. An analytical treatment of general non-symmetric
generators and the spectral gap is to the best of our knowledge not known. We hope
that our results motivate a rigorous investigation of the connection between the spectral
gap and the diagonal of the generator matrix.

(3) Kolmogorov generators have real entries and thus their eigenvalues are real
or come in complex conjugate pairs. In the investigation of correlations between
eigenvalues, we left out real eigenvalues. The appearance of a large number of real
eigenvalues in the spectrum of non-Hermitian matrices is a phenomenon of wide interest
[22, 328-332, 294, 333, 53, 334, 335]. For real Ginibre matrices, the average number
of real eigenvalues is ~ D~'/2 [328-330] while for dense generators, it is substantially
larger [294]. We observed that the fraction of real eigenvalues is larger for small ¢ and
smaller for larger ¢ (not presented). Understanding of the functional dependence of
the number of real eigenvalues for sparse generators is an interesting problem.

(4) We focused on the location and extent of the bulk spectrum as well as the spectral
gap. One could inquire about other features of the spectral distribution as a function of
sparsity, e.g., about the envelope of the spectral distribution. Following Ref. [260], the
spectral density of dense random Kolmogorov operators emerges as convolution of an
asymptotically free matrix and a diagonal Gaussian matrix. This lead to the prominent
spindle shape of the spectral boundary. Free probability arguments break down for
sparse random Kolmogorov generators. Analytical tools which have been employed to
calculate the spectral density of sparse, random matrices include replica tricks [336-340],
single defect and effective medium approximations [341-343], supersymmetry-based
techniques [30, 344] and the cavity approach [345-347, 340]. Spectral properties of
symmetric, sparse, random Kolmogorov generators have been investigated with the
cavity method [348-350] and with supersymmetric approaches [344]. Investigations of
the spectral density of non-symmetric sparse, random Kolmogorov operators with the
above methods might be an interesting objective.

(5) In this chapter, we have considered sparse generators based on strongly connected,
sparse random graphs. It is an open question whether our results can be generalized to
other sparse graph ensembles. One potential avenue to explore are directed Erdés-Rényi
(dER) graphs. In dER graphs, the probability of an edge connecting any two vertices is
0 < p < 1. For a dER graph to be strongly connected with a high probability, the value
of p must exceed ~ log D/D [351, 352]. As a result, the average degree of the vertices
must increase logarithmically with D to ensure strong connectivity. Consequently, the
range of constant average vertex degree and increasing vertex number D is excluded.

Nonetheless, modifying the dER graph by enforcing a minimum (in- and out-) degree
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> 2 guarantees strong connectivity with high probability [320]. Exploring the spectral
properties of Kolmogorov generators based on dER graphs may represent a promising

next step towards generalizing our results.

4.7 Appendix

4.7.1 Analytical results for the bulk spectrum

In this section, we will derive the analytical results of the estimated mean p(\) in
Eq. (4.3) and the estimated pseudo-variance in Eq. (4.7) in the main text of this
chapter and show that & >>;_; A; concentrates around its average (...).

We denote by ¢ the function ¢ : {1,...,¢} x {1,...,D} — {1,...,D}? with
t(l,7) = (i,7) where i is the {th non-zero index in column j in M. Note that
t(l,7) = (i,7) implies i # j and | — «(l,7) is injective for fixed j. Further, let
in this appendix the location of the bulk be denoted as

12 1

n(A) = Dj;)\j = Btf(’C)
and the pseudo-variance as
2
1 & 12 tr(K?)  tr(K)?
ZNN==Y - [=Y )| = — ) 4.

Here we explicitly do not include the averaging over the random matrix ensemble (. ..)
in contrast to the main text.

Location

The average value with respect to (...) of the location p(\) can then be computed as

() = { () ) = 5 3 (Kiy) = 5 XX (Kuway) = —soro

1 12 12
j=1 j=11=1
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where we used that <Kb(z,j)> = —pp. This is Eq. (4.3) in the main text. Similarly, it
holds that

)

<tr(lC)2>— i lz < v(l,41) 52J2)>
ED: z@:< >+Z< ¢(l1,9) 123> + Z Z <K l,51) 1232)>‘

j=11l=1 l1#l2 J1#j2 l,la=1

Although the off-diagonal elements of K are weakly dependent because of the constraint
that the number of non-zero elements per row and column has to equal ¢, the non-zero
elements K, ;) are independent. Hence, <KL(11,J-)KL([2J)> = <KL(11,]')> <KL(12J)> and

<Kb(l17j1)> <Kb(l27j2)>7 50

(t1(K)?) = Deplag + ) + Dplip — g + D(D = 1)

= Dyog + (Dopo)?,

where we used that the second moment <K i j)> equals o + p2. This implies that

() — Gy = (T (MDY et

The right-hand side vanishes for increasing D and ¢ growing slower with D than

linearly. Relatively to (u(X)) the typical deviation of p(\) from its average value always
vanishes for either increasing D or ¢, as

Vi) =2 oy
o w P

Complex pseudo-variance

The first term in the averaged pseudo-variance given by Eq. (4.30) can be calculated as
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We proceed with 2 (K2) in Eq. (4.31) and get

ZD: <K§i> ZD: << ZKJ1)2> = XD: > (KjiKu)

i=1 i=1 i i=1 j,l£i

_ZZ Y > (K (K. (4.32)

i=1 j#i i=1 j,l#1;5#1
The former sum in Eq. (4.32) is given by
D D ¢
2 2., 2
DD (KT =20 (K ) = Dep(og + i), (4.33)
i=1 j#i i=11=1

where we used that (K7, ,)) = o7 + pg. The latter sum in Eq. (4.32) is

D D ¥
o N EED =0 Y (K Eumg) = Do — 1)k (4.34)
1=1 jl#£i;5#1 1=1 k=1 n=1;u(n,i)#c(k,i)
Combining Eq. (4.33) and Eq. (4.34) we get
D
S (K2) = Do(og + u3) + Dol — g = Doy + D
i=1
Now, we are left with calculating =, ; (K;;Kj;), the second term in Eq. (4.31),

%
Z< o) “>>’

Mc

S KK

i1#£j %

~

1

—_

where 7 denotes swapping the first and second component, ¢(l,7) = ¢(i,1). Note that
KW is not necessarily a non-zero entry of K, hence Km and K, ; depend weakly
on each other. In the large D limit, we can assume that the dependence is sufficiently
weak and we treat K( and K, as independent, thus <K 0 l)K(l Z)> = L <Km>
By the assumed mdependenee the mean of every entry in the i¢th row, except the

diagonal, is <KW> = S o. Hence,

> (K ED: = 115

i#j

@ \
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Collecting the above results we arrive at
(tr(K?)) = Dgog + Dp*pg + ¢* g = Doy + (D + 1)1,
The second term of the averaged pseudo-variance in Eq. (4.30) is
(tr(K)?) = Doy + (Dippo)”.

Finally, we can evaluate

tr( K2 tr(K)? 1 1
(o*(V) = < (D >> — < ;2) > = 00 + g + 597G — 5900 — PG

® 1
= (ot = 58).

which is Eq. (4.7) in the main text.

4.7.2 Bound of the spectral gap for symmetric generators

In this section, we present the proof of Eq. (4.15). Let K = M — J be a symmet-
ric generator matrix. According to Eq. (4.13), we have to show that v'(—K)v <

(1 + ﬁ) min;<;<p Jy for the vector v defined as

1-+ i=1

1 .
T /b " # 1,

where 1 <[ < D is arbitrary. Let us fix any 1 <1 < D. It is easy to see that |v]? = 1

and v is orthogonal to 1 = (1,...,1)". So we proceed with

V; =

D D D
Y V(T = Mo =Y v (T — M)y = > vid;; — > viv; My,
ij=1 i=1 ij=1
D D D
= > UMy — D vuMy = Y viMy(v; —vi).  (4.35)

3,j=1 3,j=1 3,j=1
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Note that any summand in Eq. (4.35) where either i = j or i # [ and j # [ is zero.
Therefore, by using the symmetry of M and the definition of v we get

Ve <D uMy(v —v;) + ZUlej(Uj —v) =Y My [v(v — v;) + vi(v; — v)]

i#l J#l i#l
1
NG (1 + ) S My = <1 + ) Ju. (4.36)
1#£l 1#£l D —

Since the index [ was chosen arbitrarily, we get

< (1 ! in J
’V*_( +D—1> 12}21[) I,

which is Eq. (4.15) in the main text.

4.7.3 Stochastic systems presented in Figure 4.1

In this section we present physical Markov processes, whose generator spectra have
been depicted in Figure 4.1.

Modified TASEP

Figure 4.1(b) illustrates an adapted version of the TASEP on a ring, consisting of
L = 12 sites with alternating hopping amplitudes. The matrix M can be expressed as
[52]

1

1 &
M = 50{“ + 301 +Y pjo; o), (4.37)
=1

where the hopping amplitude p; is assigned a value of 1 for even indices j and 0.2
for odd indices. Contrasting with the ASEP presented in Section 1.3.2, which was
Bethe-integrable, this particular version of TASEP is non-integrable.

Single particle system

The random hopping of a single particle on a two-dimensional lattice constitutes a

CTMC. The corresponding M matrix for this process can be expressed as

M = Z p(ijj) — (@, /)U,L]O'j:] (4.38)
((4,9),(#,3"))

where (... ) indicates a summation over nearest neighbors. The spin-up state represents

the particle present, while a spin-down state indicates absence of any particle. The



118 An ensemble of sparse random generators of Markov processes

transition probabilities p(; j)—( ;) from site (4, ) to site (¢, ;") are chosen randomly

within the range of 0 to 1, subject to the constraint p; ;1) = 1 — P j1)—(i)-
Figure 4.1(d) illustrates the spectrum of a single particle moving on a 65 x 65 grid

with pbe and uniformly random hopping amplitudes. While the model in Eq. (4.38)

can be extended to multiple particles, we present the single-particle sector.

Contact Process

The contact process [247, 220, 255] is another fundamental model in the study of
non-equilibrium statistical mechanics, particularly in the context of phase transitions
and critical phenomena [353-355]. Originating from the field of interacting particle
systems, it serves as a prototypical example for understanding the dynamics of spreading
phenomena, such as infection spread in epidemiology or growth of bacterial colonies
[356-358].

At its core, the contact process is a stochastic model defined on a lattice where each
site can be in one of two states: active (infected) or inactive (healthy). The dynamics
are governed by two primary processes: the spontaneous recovery of an active site to
an inactive state, and the infection of neighboring inactive sites by an active site.

The matrix M for the contact process, characterized by a recovery rate p and an

infection rate A, can be represented as
M=—pd o7 =AY noj, (4.39)
i (i.3)

where n; signifies the spin-up state (n; = 1) or spin-down state (n;, = 0) at site 1.
The first term models the recovery process at infected sites, while the second term,
summing over adjacent site pairs (i, j), accounts for the infection of inactive sites.

In Figure 4.1(e), we show the spectrum of a contact process on a one-dimensional

chain with L = 12 sites and obc as well as u =\ = 1.

Gene transcription model

Finally, in Figure 4.1(f) we show the spectrum of the generator matrix K of a gene
transcription model taken from [239]. The following master equations model the
accumulation and release of mechanical strain of DNA during transcription. The
parameters chosen are the mRNA transcription rate r = 2 and decay rate A = 0.05,
the maximum number of transcripts until no further strain can be put on the DNA

m. = 10, the relaxation rate of the DNA string ¢ = 0.05 and a maximum number of



4.7 Appendix 119

transcription events my., = 400 to make the generator matrix M finite. By m we
denote the number of current transcripts and by « the number of transcripts made
since the last relaxation event. Then for 0 < m < Mmp. and 1 < o < m, — 1 the

master equation reads

d

%Pa =—(r+g+Im)P,(m,t) + A(m+ 1)P,(m+1,t) + rP,_1(m — 1,t) (4.40)

while for o« = 0 we have

d me
£Po = —(r+g+xm)Py(m,t) + A(m+ 1)Py(m +1,t) + g > Pa(m,t)  (4.41)

a=0

and for « = m,

d
%Pmc =—(g+Xm)P,.(m,t) + A(m+ 1)P, (m~+ 1,t) + rPy,,_1(m —1,t). (4.42)

These dynamical equations are collected into a Kolmogorov generator K such
that £P(t) = KP(t) with P = (Py(0,t),...,Py(m,t), Pi(0,t),..., Pnc(m,t)). The
corresponding spectrum is presented in Figure 4.1(f).






Chapter 5

The spectral boundary of the ASEP

The content of this chapter has appeared as part of [302]:

G. Nakerst, T. Prosen, and M. Haque, The spectral boundary of the Asymmetric
Simple Exclusion Process (ASEP) — free fermions, Bethe ansatz and random
matrix theory (2024), arXiv:2402.00662.

In this chapter, we investigate the spectrum of the ASEP with focus on the spectral
boundary. This boundary is characterized by pronounced spikes: L spikes for pbc and
L + 1 spikes for obc. We analyze the emergence of the spikes in the spectral boundary
from several points of view.

We start in Section 5.1 by rewriting the generator matrices of ASEP, formulated
in terms of spin-1/2 operators in Section 1.3.2, as interacting fermions. The presence
of single Pauli matrices in the obc generator makes this a nontrivial task. The
emergence of spikes in the spectral boundary is then elucidated in three ways. First, in
Sections 5.2 and 5.3, we present results of the non-interacting ASEP with pbc and obc,
respectively. In these cases, the spikes in the spectral boundary emerge since many-
body eigenvalues are sums of circular/elliptic single-body eigenvalues. We analytically
derive a parametrization of the spectral boundary of the non-interacting ASEP. This
parametrization is similar to the hypotrochoidic curve enclosing non-Hermitian random
matrices with correlated entries, presented in Section 1.1.2. Second, in Section 5.4, we
reintroduce the interactions and study the TASEP with pbc using the coordinate Bethe
ansatz. In this case, many-body eigenvalues are sums of Bethe roots. We demonstrate
a sufficient clustering of Bethe roots, which in turn leads to a spiky spectral boundary.
Third, in Section 5.5, we compare the TASEP to random graphs. These graphs are
similar to the graphs in Section 1.1.2, which followed the hypotrochoidic law. In the
graphs resembling the TASEP, all cycle lengths are integer multiples of L (L + 1 for
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obc). We show that the spectral boundaries of the corresponding adjacency matrices
and Laplacians have an identical number of pronounced spikes, similar to the TASEP.

In Section 5.6, we provide a summary and present open questions.

5.1 The generator as interacting fermions

In this chapter, we investigate the spectrum of Kolmogorov generators of the ASEP.
As discussed in Section 1.3.1 of the introduction, every Kolmogorov generator K can
be expressed as

K=M-J, (5.1)

where M is a matrix with zero diagonal entries and 7 is a diagonal matrix, containing
the column sums of M as diagonal elements. One way to gain insight into the spectrum
of IC is to study the spectrum of M. An advantage of studying M is that, in the case
of ASEP, we can obtain its spectrum analytically. To extend results of M to K, we
generalize Eq. (5.1) to

K=M-UJ, (5.2)

with 0 < U < 1. The generator in Eq. (5.1) is recovered for U = 1. We note that for
general U # 1, the matrix I is not a generator of a CTMC, as its column sums are
non-zero. For ASEP, J can be expressed as a 4-point (2-body) fermion interaction.
Therefore, we refer to U as “interaction strength”.

In the remainder of this section, we express M in terms of fermions and present
spectra of M and K.

5.1.1 Periodic boundary conditions (pbc)

In Section 1.3.2, we showed that the matrices M and J for pbc can be expressed in

terms of Pauli spin-1/2 matrices as

L
M= Z (po-;_-}-lo-j_ + qaj_aj_-i-l) ) (5'3)
j=1
1 L
J=- > (o305, —1). (5.4)
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The matrices M and J (and so K) can be written in terms of spinless fermions by a

Jordan-Wigner transformation

=1 =1

G = (jl_[(_o-lz>) O-j_v C}L' = (h(_05>) 0-;_7 (55)

where c; and c} are fermionic annihilation and creation operators, respectively. In

terms of these fermionic operators, M and J are given by

L-1
M =" (pchyrej +achejn) + (1N (peler + gefen), (5.6)
j=1
L
J==-> c}cjc}Jrlch + N. (5.7)
=1

Therefore, M represents non-Hermitian free fermions with a possible, N-dependent,

twist in the boundary conditions, while J denotes a quartic fermion interaction.

5.1.2 Open boundary conditions (obc)

In the case of obc, it was shown in Section 1.3.2 that the matrix M can be expressed

as

-1
M=3 (pa;;lajf - qa;-Lajjrl) +aoy +~yoy + Bo +dof, (5.8)
=1

and the diagonal J as

T =i g oo ) =g [(gt maw)ei+ (FFF -6+ )ed
+5la+pB+y+9]. (5.9)

Similar to the pbc case, M and J can be reformulated in terms of fermions, where
M is non-Hermitian and quadratic in these fermions, while the diagonal 7 contains
terms, which are quartic in fermions. In the following, we will express M in terms of
fermions. A similar approach is applicable to 7.

The single spin operators at the end of the chain on site 1 and L hinder a straight-
forward application of a Jordan-Wigner transformation. Instead, we will treat the
reservoirs as an additional site. For this, we enlarge the chain of length L by adding
a site L + 1. The matrix M in terms of o-operators acts trivially on this site. Con-

sequently, the multiplicity of every eigenvalue of M acting on L + 1 sites is doubled
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compared to M acting on the original L-site chain. The incorporation of an additional

site allows us to apply the Kramers-Wannier duality transformation [359]

J
o = [[ ot af—)—(Hal) ooy, 0f = 0j07,,. (5.10)
=1

Application of this transformation to M, followed by the Jordan-Wigner transformation

=1 =1

wj = (ﬁ(—af)) o, ij- = (ﬁ(—af)) o, (5.11)

and rewriting in terms of Majorana “real” and “imaginary” parts of the Dirac fermions
w, w',

Vi1 = wj- Twi, V2= z(wj — wj), (5.12)

implies that M in terms of the Majorana ~-fermions is given by

L—1
p+aq,. . b—q
M= Z [ 4 (17j+1.1%41,2 — 17j,2742,1) + 1 (%‘+1,1%‘+2,1 + '7j,2'7j+1,2)
j=1
1 .
+ 5 (a4 y)iviiv1e + (@ = Y)v172.1]

L+1
(H 2%,1%, ) 5 + 5)WL+1,17L+1,2 - (5 - 5)’YL,27L+1,2] . (5-13)

The string of Majoranas, Hf:ll (i7j17j2) = (=1)X*1P,,, equals, up to a sign, the parity

operator P, of Dirac w-fermions,
L1t
Py = (—1)25=1 ¥ (5.14)

This parity operator commutes with M. Thus, restricted to the subspaces of constant
parity, M is quadratic. Note that M in terms of the Majorana 7-fermions acts
non-trivially on the additional site L + 1.

To keep the algebra simpler we restrict to the TASEP casep=1and¢g=~v=9 =0,
leaving o and (3 as free parameters. The following calculations can be straightforwardly

generalized to arbitrary p,q,v,0. Thus, M in terms of the Majorana ~-fermions
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simplifies to

1 . 1Lt 1 —i -
M = —aliviavie + el + = (Vi2> Vir11) | T2
2 4 j=1 o1 Yi+2,1
S ()P, Bl 515
5 wBlIYL+1,1VL 41,2 T Vo2V 41,2]- (5.15)

The eigenvalues of the 2 x 2-matrix are 0 and 2, while the eigenvectors are (1, —i)*
and (1,4)", respectively. Thus the following pairing of Majorana fermions

1 , 1 .
C} - 5(%‘,2 —iYj411), ¢ = 5(%‘,2 + +11), (5.16)

into Dirac c-fermions simplifies the bulk term. Note that this pairing differs from the
pairing of y-Majoranas into Dirac w-fermions. By identifying 7421 = 71,1, the pairing
in Eq. (5.16) turns the chain into a ring, connecting site 1 and L + 1. The matrix M

is given in terms of c-fermions as

L—1
M = alern = chp)d + Y |eeba] + (1) PeBer(crn + ), (5.17)
j=1

where P. denotes the parity of the Dirac c-fermions,

L+1 i,

P, = (—1)2= 99 = (—1)V, (5.18)
and N, denotes the number of c-fermions. The parity is conserved by M. Restricted
to a fixed parity sector, M is quadratic. The corresponding spectrum is the same for
each parity sector leading to the aforementioned doubling of the spectral multiplicity.
This follows from results presented in Section 5.3.2.

Summarized, the non-interacting TASEP M on L sites with obc can be written
as a quadratic, non-Hermitian fermion model on L + 1 sites, with twisted pbc and
super-conducting terms cg,)lc(;il connecting to the additional site L + 1. The reservoirs
at the ends of the original chain are converted into an additional site on the chain. The
superconducting terms connecting site 1 and L with the additional site L + 1 relate to

the entry and exit of particles from the reservoirs.

5.1.3 Spectrum

Figure 5.1 presents the K-spectrum of the TASEP on a lattice with L = 11 sites. The
spectral boundary shows L spikes for pbc (N = 5 particles) for U = 1 in (a) and
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Fig. 5.1 Spectrum of the generator matrix IC of TASEP (a,b) and the interaction free
TASEP (c,d) on L = 11 sites. The spectrum shows L spikes in (a,c) for pbc with
N =5 particles and L + 1 spikes in (b,d) for obc. Red solid lines in (c,d) denote the
spectral boundary according to Eq. (5.30).

U =01in (c) and L + 1 spikes for obc and U =1 in (b) and U = 0 in (d). For obc the
parameters corresponding to the reservoirs are chosen asa = = 1and vy = 4§ = 0. The
reminder of this chapter is dedicated to elucidating the nature of the spikes observed
in the spectral boundary of the ASEP.

Panels (c¢) and (d) of Figure 5.1 reveal a highly structured spectrum for the non-
interacting TASEP M, exhibiting rotational invariance at angles 27 /L for pbc and
27 /(L + 1) for obc. This characteristic stems from a “quasi-symmetry” of M, which
will be presented in Sections 5.2 and 5.3.

For TASEP with obc, the spectral boundary spikes are always prominent, as
illustrated for the non-interacting TASEP in Sec. 5.3. However, this is not the case
for pbe. In Fig. 5.3(a) the spectrum of the pbc TASEP (U = 1) and in (b) its non-
interacting variant (U = 0) are presented for L = 40 sites and N = 2 particles, without

any noticeable spikes in the spectral boundary. In Section 5.2, we will demonstrate
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I 4

@ tips
@ boundary

Rev R

Fig. 5.2 Spectrum of M on L = 11 sites with pbc. Single-body eigenvalues with p =1
and ¢ = 01in (a) and p = 0.7 and ¢ = 0.3 in (b). In (c) we show part of the many-body
spectrum with N = 5 particles highlighting the tips of the spikes (red) and other
boundary eigenvalues (blue). All boundary eigenvalues are located on circles of radius
1, with crosses marking the midpoints.

that, technically, the spectral boundary of the non-interacting TASEP has L = 40
spikes, but their distinctiveness fades in the dilute limit where p = N/L — 0.

5.2 The “non-interacting” ASEP with pbc

In this section, we investigate the spectrum of the non-interacting ASEP M for pbc
given by Eq. (5.3) and Eq. (5.6). Section 5.2.1 is devoted to the calculation of the
single-body eigenvalues of M. In Section 5.2.2, we show the rotational invariance of the
many-body spectrum and in Section 5.2.3, we discuss how the spiky spectral boundary
emerges. We quantify the prominence of the spikes in Section 5.2.4 and comment on

whether they survive in the limit of large L.

5.2.1 Single-body spectrum

The matrix M represents non-Hermitian free fermions. Its (many-body) eigenvalues
are therefore expressible as sums of single-body eigenvalues. In the following, we
will present these single-body eigenvalues v. Due to the dependence of the boundary
conditions in Eq. (5.6) on (—1)V, the single-particle spectrum for even and odd N

differs slightly. Let us consider the totally asymmetric case p = 1 and ¢ = 0 first. Then
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v are the roots of a polynomial,

v+ (-1D)N =0, (5.19)

which in turn are given by v = w?, where w = ™% and 0 < j < 2L runs over all even
(odd) integers when N is odd (even). Thus, the single-body spectrum is evenly spaced
on the unit circle. In Figure 5.2(a), the single-body spectrum for p = 1 and ¢ = 0 and
L =11 and odd N is shown together with the unit circle.

For arbitrary values of p and ¢, the single-body eigenvalues v are
v=pw +qu, (5.20)

with j defined as previously. This spectrum, as described by Eq. (5.20), forms an

ellipse with foci at +2,/pg and semi-major axis p + ¢ and semi-minor axis p — ¢,
{(p+¢q)cos(t) +i(p—q)sin(t) : 0 <t < 27}. (5.21)

Figure 5.2 (b) illustrates the single-body spectrum for p = 0.7 and ¢ = 0.3, alongside
the ellipse defined by Eq. (5.21).

The structure of the single-body spectrum for general p, g suggests a straightforward
relation with the totally asymmetric case ¢ = 0. By rescaling the imaginary part while

keeping the real part constant,

z—>Rez—|—ip+q
pP—q

Im 2, (5.22)

we can map the single-body eigenvalues for general p, ¢ values to the totally asymmetric
case. This transforms the ellipse into a circle of radius p+ ¢. Without loss of generality,

we restrict ourselves to p = 1 and ¢ = 0 for the remainder of this section.

5.2.2 Rotational invariance

With p =1 and ¢ = 0, the single-body spectrum remains unchanged under complex
plane rotations of 27/L. This rotational invariance also applies to the many-body
spectrum, which consists of sums of single-body eigenvalues.

Furthermore, this symmetry of the spectrum is related to a “quasi-symmetry” of
T

M. Transforming ¢; — e2™/Lc; = & and c} — e’%j/Lc} = ¢j, or in terms of spin

operators o; — e=?™/Lg = 57 results in e?"/“ M = M. Here, M is constructed

like M, but using the modified operators & ¢ (6%). Since these altered operators
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maintain their respective (anti-)commutation relations, the spectra of M and M are

identical. Consequently, the spectrum of M is invariant under 27/ L rotations.

5.2.3 Spectral boundary

The structure of the many-body spectrum as observed in Figure 5.1(c) is now a
consequence of the relation of single-body to many-body eigenvalues and the rotational
symmetry. For ease of notation, we define v; = w* when N is odd, and v; = w?*!
for even N. The many-body eigenvalues correspond uniquely to configurations s =
(s1,---,s.) € {0,1}", where >; s; = N, and are given by

L
A= s (5.23)
j=1

The many-body eigenvalues \;, which form the spike tips, have the largest absolute
values and are derived from configurations s with contiguous non-zero s; entries.
Specifically, each of the L tips \;(jo) is linked to an index 1 < j, < L and a configuration
s = 84(jo) with

I jo<j<jo+tN-1

S = (5.24)
0 otherwise.

Here, j = j — L is applied for j > L. The eigenvalues \;(jo) are calculated as

jo+N-1
M) = > v (5.25)
j=jo
Configurations s that lead to spike tips are termed “domain wall configurations” The
many-body eigenvalues \; are depicted as red circles in Figure 5.2(c).

Boundary eigenvalues in the many-body spectrum arise from “interpolating” between
configurations of adjacent spike tips. These configurations consist of exactly two
domain walls, each separated by one site. The interpolation process involves moving a
single particle (or executing a single spin flip). Specifically, boundary configurations
s = sp(Jo, lo) are associated with indices 1 < jo < L and jo < ly < jo + NV, defined as

L jo<j<jo+Nandj#l
s;=140 j=1I (5.26)

0 otherwise.
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Again, j = j — L is used for j > L. The corresponding boundary eigenvalues A (jo, o)

are expressible as
Jjo+N

No(do, 1) = Do vy (5.27)
J=jo;i#l
When [y = jo or Iy = jo+ N (indicating a single domain wall), the boundary eigenvalue
matches a spike tip, \y(jo, jo) = Ae(jo + 1) or Ap(Jo, Jo + N) = A\(Jo), respectively. The
boundary eigenvalues X\,(jo,!) for jo < I < jo+ N are those many-body eigenvalues
located “between” the spike tips A;(jo) and A\(jo + 1), depicted as blue circles in
Figure 5.2(c).
Eq.(5.27) can be reformulated as

jot+N

)\b(jo, l) = Z vy — 1. (528)

J=jo

Given |y| = 1 and the independence of the sum from [, all boundary eigenvalues are on

L circles of radius 1. For N < L/2, the circle midpoints are the many-body spectrum

)\§N+1)( .

tips Jo) with N + 1 particles. The tips )\,gN) intersect two adjacent circles. This

is illustrated in Figure 5.2(c) with circles as black lines and midpoints as gray crosses.
According to Eq. (5.25), all tips reside on a circle, centered at 0 with radius R,
defined as

— e2mN/L| gin(r
e ity -

This radius, combined with the circular pattern of the boundary eigenvalues, enables

-

1 — ei2n/L

us to establish a continuous boundary for the many-body spectrum. It is formed by
the intersection of all circles of radius 1 with the disc of radius R from Eq. (5.29). The

boundary can be parameterized by

zp(t) = eI (31 + 76 | (5.30)

sin(mp)
sin(7/L)

with 7, = and 9 = 1, while the function f is piece-wise constant,

s Lt
t)y=—(2|—|—1 5.31
f®) L ( {QWJ ) ’ ( )
and g is piece-wise the identity,

g(t) =7(1 — p) + p(t mod 2m). (5.32)
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The continuous boundary zp(t) is illustrated in Figure 5.1(c) as a red curve for L = 11
and N = 5.

The spectral boundary of the non-interacting TASEP is intentionally parameterized
as in Eq. (5.30). It underlines the similarity to the spectral boundary of random
matrices with higher-order cyclic correlations and adjacency matrices of random graphs
with dominant cycle lengths, introduced in Section 1.1.2. The spectral boundary of
such matrices adheres to the hypotrochoidic law, which can be parametrized as in
Eq. (5.30) by setting f(t) = g(t) = t. The similarity between the functions f and g of
the non-interacting TASEP and random matrices adhering to the hypotrochoidic law
indicates a relation between the spectral boundary of the non-interacting TASEP and

RMT. In Section 5.5, one possible link will be investigated in detail.

5.2.4 Quantification of spikes

This section aims to measure the sharpness of the spectral boundary of M, focusing on
whether spikes persist in large system sizes and, if so, how. For simplicity, we consider
particle densities 0 < p < 1/2. As the spectrum of M is invariant under changing
p — 1 — p this comes with no loss of generality.

To assess the spikiness of the spectral boundary, we examine the ratio between two
distances: d;, the distance between spike tips, and dj, the maximum extension of the
spectral boundary beyond a circle of radius R, given by Eq. (5.29). This circle of radius
R represents the smallest enclosing disk for the M-spectrum. d, measures how far the
circles with radius 1, carrying the boundary eigenvalues, reach into the enclosing circle.
A larger dj relative to d; indicates that the circles with radius 1 extend more into the
enclosing circle. Therefore, the ratio 2d,/d; quantifies the spikiness of the spectral
boundary. A value close to 1 suggests a spiky boundary, while a significantly smaller
ratio implies a less spiky boundary. The factor of two arises because d; relates to the
diameter of the boundary circles, whereas d; is compared to their radius.

Following some simple trigonometry one finds that the distances d; and dj, are given
by

dy = 2sin(7p) (5.33)
and cos(mp + 7/(2L))

d = cos(m/(2L))

(5.34)
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The fraction 2d,/d; then simplifies to

Qdcib = tan(mp/2) + tan(n/(2L)). (5.35)

Eq. (5.35) shows a monotonic increase with p, indicating that the spectral boundary
becomes more spiky at higher p values. Due to the invariance of the spectrum under
the transformation p — 1 — p, the boundary reaches its maximum spikiness at p = 1/2.
In examining the large L limit, we will explore two scenarios: the “thermodynamic”
limit, where both N and L increase to infinity while maintaining a fixed p, and the

few-particle (dilute) limit, where N remains constant and only L approaches infinity.

“Thermodynamic” limit

In the thermodynamic limit, the distance d; remains constant, whereas d, approaches
1 — cos(m/p). Consequently, the ratio 2d,/d; tends towards tan(mp/2). This implies
that for any non-zero p, the spiky structure of the spectral boundary is preserved in
the thermodynamic limit, becoming more pronounced with increasing p.

Fig. 5.1(c) presents the many-body spectrum of the non-interacting TASEP for
L =11 and N = 5, with Fig. 5.2(c) offering a closer view of the spectral boundary.
Here, p ~ 0.45 and 2d,/d; ~ 1.01 indicate pronounced spikes of the spectral boundary,
as evident.

Regarding the length scales at which these spikes are observable, consider the
following: The radius R of the spectrum scales as O(L), necessitating a rescaling of
the spectrum by 1/L to ensure a well-defined spectral density in the thermodynamic
limit. At an infinite L, this rescaled spectrum densely fills the unit circle. For finite L,
the tips of the spikes are spaced at a distance of d, = O(1/L), and the distance d;, of
the spectral boundary from the unit circle is also O(1/L). Therefore, at the length
scale of 1/L, the spiky nature of the spectral boundary is distinctly visible.

Dilute limit (large L, constant V)

In the scenario where N is fixed and L increases, both distances d; and d;, decrease,
scaling as O(1/L) and O(1/L?), respectively. Consequently, the ratio 2d,/d; tends
towards 0, as indicated by Eq. (5.35). Therefore, in this limit, the spiky structure of
the spectral boundary does not persist.

In Fig. 5.3, we present the many-body spectrum of the TASEP for L = 40 and
N = 2, representative of the dilute limit. We show both a TASEP case (U = 1) in (a)
and a non-interacting TASEP case M (U = 0) in (b). The non-interacting case has a
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Fig. 5.3 Spectrum of the generator matrix K of (a) TASEP and (b) the “non-interacting”
TASEP on L = 40 sites with N = 2 particles (dilute limit). The red solid line in (b)
denotes the spectral boundary according to Eq. (5.30). The spectral boundary appears
smooth and non-spiky in both panels.

2dy,/d; ratio of ~ 0.01. Thus, the spectral boundary (red curve) is not spiky but barely

distinguishable from a circle.

5.3 The “non-interacting” TASEP with obc

In this section, we will present the analytical derivation of the spectrum of the non-
interacting TASEP M with obc, specifically for p =1 and ¢ = v = § = 0. We expect
our results to extend to general p, q, 7, 9.

In Section 5.3.1, we establish the rotational invariance of the M-spectrum. In
Section 5.3.2, we derive single-particle eigenvalues of M and demonstrate the relation
to the spectrum of M. In Section 5.3.3, we demonstrate that the spectral boundary
of M is, as for pbc, defined by the intersection of circles with a disk, featuring L + 1
spikes. In the limit of large L, this boundary is similar to the pbc case with density

p=1/2.

5.3.1 Rotational symmetry

The spectrum of the non-interacting TASEP M is invariant under rotations of angle

.27 .
LQ—L. Similar to the pbc case, consider the change of operators c; — e'T+1/ c} = E}

and ¢; :) eii%jcj = ¢; or, equivalently, U;E — eﬂ%jafc = 6*. This change implies
that €'+ M = M, where M is M with ¢, ¢! (o) replaced by the tilde operators.

As the tilde operators fulfill the canonical (anti-)commutation relations of fermion
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operators (Pauli matrices), the spectrum of the non-interacting TASEP is invariant

2

under rotations of angle 775

5.3.2 Single- and many-body spectrum

Before we diagonalize M, let’s specify the parity sector as s = (—1)P,. To simplify
the following arguments, we will abuse notation and not distinguish between M and
M restricted to a subspace of constant parity. At the end of this subsection, we will
take the difference into account properly.

Let us collect the Dirac fermion operators c, ¢ into a (2L + 2)-dimensional vector

c=(c1,...,c041, ci, . ,cTLH)t. We express M given by Eq. (5.17) as

1 A B 1
— —¢f — Zcf
M 5€ (C’ —At) c=5c M.c (5.36)

where the (L + 1) x (L 4 1)-matrices A, B and C' are given by

Aij = —0; j+1mod(L+1)

+ (1= B85)0i,14105 + (1 — @)d; 165 141, (5.37)
Bij = a(6i16j,r+1 — 6i,n410;,1), (5.38)
Cij = Bs(05,1.0;,L+41 — 0i,1+10j,1), (5.39)

and ¢ denotes the Kronecker symbol. The matrix A is, up to deformations in the
(1, L + 1)th and (L + 1, L)th entries, a circulant matrix. The matrices B and C only

contain two non-zero entries. Thus, the solutions v and u to the eigenvalue problem
M.u = vu, (5.40)

are closely related to the eigen-decomposition of circulant matrices, which in turn are

given by Fourier transforms. In terms of w = (u1,...,ur41,u], ..., u7, ) the eigenvalue
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equation reads
vug = —a(tpyr — Upyq) 5.41)
Vg = —1Uy 5.42)
vup_1 = —Up_9 (5.43)
vy = —Up_1 (5.44)
vury = —sPBup — au (5.45)
and
vuy = ug 5.46)
vuy = uj 5.47)
vuy_ = uj (5.48)
vy = Bs(urs1 + upy) (5.49)
vy = —PBsur + ouj. (5.50)
Combining Eqs. (5.42)-(5.44) with uq,...,u; and Eqs. (5.46)-(5.48) with u},..., u}
recursively we get for 2 < j < L
and
ui=wvul_y = =1 (5.52)

Especially, the following holds
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By substituting Eq. (5.53) and Eq. (5.54) into Eq. (5.45) and Eq. (5.50), respectively,

we get the following self-consistent set of equations

ur = av=H(—upy g,
uppy = Bs(—v) Fuy — av ™,
uy = v Bs(upr + Uy y)

up = Bs(—v) Fuy + av .

Adding and subtracting Eq. (5.56) and Eq. (5.58), respectively, leads to

Uri1 + Uy = 2Bs(—v) Fuy (5.59)
—upi1 Uy = 200, (5.60)
which in turn implies that
u) = 2(—=1)Fv2E 3%, (5.61)
uy = 20V, (5.62)

by using Eqs. (5.55) and (5.57). Combining the last two equations leads to
uy = 4(af)?(—1) v 22y, (5.63)

which implies, for u; # 0,
2D — (—1)P4(ap). (5.64)

The roots of this polynomial, and therefore the eigenvalues of M, are given by

v= (2087 T <2L.+22k) b even, (5.65)
exp (525(2k — 1)) L odd,

where k = 1,...,2L + 2. Especially, the eigenvalues v are independent of the parity
sector s and appear in pairs of +uv.

The matrix M in Eq. (5.17) is non-Hermitian, preventing the direct application
of the (Hermitian) Bogoliubov-de-Gennes formalism for linking the eigenvalues of M,

to the many-body spectrum of M. Hence, we will pursue an alternative method. We
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proceed as in [360] and express c, ¢’ in terms of Majorana fermions

1 1
_ T _ T
Qﬁj,l = \/§(Cj + Cj), ¢j72 = i\/ﬁ(cj — Cj). (566)
The column vector ¢, defined as ¢ = (¢1.1, P12, .., Pri1.1, Pr11.2)", encapsulates the

Majorana fermions ¢;;. Utilizing this vector, the matrix M can be reformulated as

M= ;¢tM¢¢, (5.67)

where M, represents a complex and anti-symmetric (2L + 2) x (2L + 2)-matrix.
The transformation of Majorana fermions ¢ to Dirac fermions ¢ via Eq. (5.66) is
unitary, making M, and M, unitarily equivalent and, consequently, they have the same
eigenvalues.

As My is anti-symmetric, it can be factorized [360] as
1 ¢
My = SVAIV (5.68)

where

01
VIV = J =1dp ® (1 o) , (5.69)

Id 41 denotes the (L+1) x (L+1) identity matrix and A is a diagonal matrix containing
the eigenvalues of M, (M.). The anti-symmetry of M, implies that its eigenvalues
come in pairs v, which is consistent with the solutions of Eq. (5.64). The diagonal
of A is ordered as vy, —11, ... V41, —Vr41. We fix the choice between v; and —v; by
requiring Rev; > 0.

Let us define another type of Dirac fermions b, b’ as

(bi, By, bryy)' = (Vi) (5.70)

These fulfill the usual anti-commutation relations of Dirac fermions [360], but b’ is in
general not the Hermitian adjoint of b. Nevertheless, M becomes diagonal in terms of

b, b,
L+1 L+1

1
M = Z I/jb;bj — 5 Z Vj. (571)
j=1 j=1

The eigenstates of M are given by creation operators b acting on the vacuum 0),,
which are 25*! in total. But not all eigenstates correspond to an eigenvalue of M

given by Eq. (5.17). We have to take into account that the Dirac fermions b, ¥’ are only
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defined on fixed parity subspaces. We numerically find that the parity operator P, of
the b,V fermions obeys

Pb = —SPC, (5.72)

where P. denotes the parity operator of the ¢ fermions. In the beginning of this
section, we set s = (—1)LP,. Thus, the admissible b'-fermion states must have b-parity
P, = —(—1)L = (=1)L*L. Especially, the parity of the admissible b-states does not
depend on s. Consequently, both parity sectors give rise to the same many-body
spectrum of M in Eq. (5.71).

Summarized, the spectrum of M, subject to a global shift in the complex plane,
consists of sums of the L + 1 roots from Eq. (5.64) with positive real parts. These are
scaled roots of 41 with magnitude proportional to (a3)Y“*1). Depending on whether
L is odd or even, an even or odd number of summands, respectively, are included in

the sums.

5.3.3 Spectral boundary

The relation of the M-spectrum to single-particle eigenvalues for obc follows a similar
principle to the pbc case, discussed in Section 5.2: both consist of sums of (scaled) roots
of £1. In the following, we want to show how the spiky spectral boundary emerges for
obc. Especially, we will show that, similar to pbc, the spectral boundary lies on L + 1
circles with radius (2a3)Y/ &+,

We discuss the spectral boundary associated with the most negative real parts. This
is illustrated in Figure 5.4, where the eigenvalues of the relevant sectors are marked
with blue and red circles. The rotational symmetry of the spectrum implies that the
structure of the boundary is a repetitive pattern reflecting the shape of sectors with
the smallest real parts. Hence, the restriction to sectors with the most negative real
part eigenvalues comes with no loss of generality.

Let us first consider even L. In this case the many-body spectrum is given by
sums of an odd number of positive real part roots of the polynomial in Eq. (5.64).
Let us denote the L + 1 roots with non-negative real part by v4,...,vp1. The L4+ 1
many-body eigenvalues A with the smallest real parts are eigenvalues lying on the

spectral boundary and given by

1
)\b = Vj - 5 Z V. (573)
=1
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Fig. 5.4 Many-body spectrum of the non-interacting TASEP with obc on (a) L =6
and (b) L = 7 sites. Similar to pbc in Fig. 5.2, all boundary eigenvalues lie on circles,
with midpoints denoted by crosses.

If we label v; by increasing angle with branch-cut on the negative imaginary axis then
the tips \; of the sector are given by the indices j = 1 and j = L + 1. In Figure 5.4(a),
we show the spectrum of the non-interacting TASEP with obc on L = 6 sites. The
spectrum shows L + 1 = 7 spikes. The boundary and tips according to Eq. (5.73) are
shown as blue and red markers, respectively. The markers lie on a circle with midpoint

—1 54 v and radius |v;] = (2a8)Y/ D,

Let us now consider the case of odd L. In Figure 5.4(b) we show the many-body
spectrum on L = 7 sites. The tip \; of the spectral edge with the smallest real part is
given by an “empty” sum of v;’s and thus is Ay = —3 LS E41 . The boundary eigenvalues

Ap are given by the (shifted) sum of two single-particle eigenvalues,

1 L+l

o =V + V141 — 3 ZZ; v, (5.74)

where 2 < j < L; vy corresponds to the lower spectral boundary in Figure 5.4(b)

while vy corresponds to the upper part. The midpoints of the circles are given by
V41 — 3 21 v and the radius again by |v;| = (2a8)YEFD.

Similar to the pbc case, we can establish a continuous boundary for the many-body

spectrum, parametrized by Eq. (5.30). In the obc case the constants 7 o are given by
1

2sin(m/(2L 4 2))
12 = (2ap)Y, (5.76)

M = (208)"/ 0+ (5.75)
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while the piece-wise constant f and the piece-wise identify function g are given by

f(t) = % (2 {QL;J - 1) : (5.77)
L+2 L

W2L+2+2L+2(tm0d 27). (5.78)
The continuous boundary zg(t) with the above parameters is illustrated in Figure 5.1(d)
as a red curve for L = 11.

The parametrization of the spectral boundary for obc shows a clear link to the
spectral boundary for pbc. Specifically, in the large L limit with constant «, 3, the obc
spectral boundary aligns with the pbc case at p = 1/2. This relation is immediately
evident for v, f, and g. For 7, a series expansion in the large L limit reveals that the
leading term, 7, = L/m + O(1), is identical in both cases, with differences emerging
only at O(1). Consequently, in the large L limit, the spiky spectral boundary in the obc
case remains pronounced, as does the spectral boundary for pbc in the thermodynamic

limit.

5.4 The TASEP with pbc by Bethe ansatz

In Section 5.2, we showed that in the non-interacting TASEP (U = 0) with pbc, the
spiky boundary of the many-body spectrum emerges essentially as sums of circularly
arranged single-body eigenvalues vy, ...,v;. This section expands that concept to
interaction strengths 0 < U. Employing the coordinate Bethe ansatz, we generalize
the single-body framework to Bethe roots, which tend to cluster close to vq,...,vr.
This clustering, combined with TASEP many-body eigenvalues being sums of Bethe
roots, results in a spiky spectrum boundary for any interaction strength 0 < U < 1.

This section focuses on p ~ 1/2, where the most prominent spectral boundary spikes
in the non-interacting ASEP were observed. In the low-density limit (p approaching
zero), we anticipate a spectral boundary for the usual ASEP similar to the non-
interacting case, characterized by a smooth, circular boundary without spikes. Fig. 5.3
partly supports this, showing similar many-body spectra for TASEP with U =1 (a)
and U = 0 (b), both featuring smooth, non-spiky spectral boundaries.

In Section 5.4.1, we derive the coordinate Bethe ansatz for arbitrary U, while nu-
merical solution methods are detailed in Section 5.4.2. In Section 5.4.3, we demonstrate
the clustering of solutions to the Bethe equations and in Section 5.4.4, we establish

how this clustering results in a spiky spectral boundary.
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5.4.1 Coordinate Bethe ansatz

In this section, we determine the eigenvalues of IC for arbitrary U by application of the
coordinate Bethe ansatz. Readers familiar with Bethe ansatz techniques can skip to
the end of this section. For ASEP, the eigenvalues A in terms of the Bethe roots z;
are given by Eq. (5.89), with z; fulfilling the recurrent relations in Eq. (5.88). For the
specific case of TASEP, simplified versions are given by Eq. (5.90) and Eq. (5.91). We
follow the derivation of the U = 1 case in Refs. [276, 254], but present derivations in

much more detail.

Bethe equations for ASEP with general U

We denote the state of N particles at positions zq,...,xy by |z1,...,2y), with
r1 < --- < xy up to an overall shift in the indices. A state [¢) in the basis of
|Z1,...,zN) 18
) = Z (xy, ..., xN) T, .. TN,
oy <<z
where ¥(z1,...,2y) denotes the coefficient of |¢)) wrt |z,...,zx). In the following,

|4) is an eigenstate of K with eigenvalue A, i.e. K|ip) = A|¢). The matrix K in terms

of spin matrices is given by

L

K=> (pa{aﬁl + qaja;H) + =3 (‘7@ 07— ) . (5.79)

i=1 =1

=S

The spin-up state is interpreted as a particle present, while the spin-down state is
interpreted as particle absent.

First, let us consider the action of the off-diagonal term in Eq. (5.79) on |x1, ..., zx).
It follows that

L1 N-1
Soiotilr, . an) =Y (L —0(zj1 — x5, 1) |2,z L ay),
i—1 =1

L-1 N

oo, an) =D (1 =6z — o1, 1) |z, .z — 1, o),
i=1 =2

where §(z,y) = 1 whenever x = y and is zero otherwise. The boundary terms are

determined as follows. If zy # L then o o) |71,...,2y5) =0, so let zy = L. Then

OZUT |$17 s 7$N> = (1 - 5($17 1)) |17$17 B axN*1>

=(1—=6(zry —xy mod L, 1)) |xy,...,xny_1,2n + 1)
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by identifying |x1,...,2ny_1, L+ 1) = |1,21,...,2x_1). On the other hand, whenever

r1 # 1 we have o} oy |71,...,2y5) = 0, while for z; = 1 we get

0-2_0-1_ |1'1,...,ZEN> = (1_5(xN7L))|m2a"'7$NaL>

=(1—=0(xy —xy mod L, 1)) |x; — 1,29,...,2N),

where we identified |0, xo,...,xN) = |z2,..., 2y, L). Taking everything together we
have
L N
Y oioif |z, any =Y (1= 6(zje — 2y mod L, 1)) |z, ...,2; 4+ 1,...,2n),
=1 j=1

-1

(1—-6(xj —xj_gy mod L, 1)) |zy,...,2; — 1,...,2N),

L
Zafa;rl |z1, ..., ZN)
i=1

<.
Il
-

where we additionally identified z;,1 = x; and z¢p = .

Before calculating the action of the diagonal term in Eq. (5.79) on |z1,...,zx), let
us denote n; = £(07 + 1), such that n; = 1 for a particle (spin-up) at position i and
n; = 0 otherwise. Then it follows that

—
=
YN

)
<
+

[
\_/
.-lk\»-lk

L 9 L L
Z N1 — Z n; — Z Z Nip1 = Z niniy1| — N
i:I i=1 i=1

Thus, the diagonal term in Eq. (5.79) is acting on |z1,...,zy) as

1L
ZZ (JfoH - 1) |z1, ..., zN)

=1

=

1
=) (0(zjs1 — 25, ) +6(x1 —an, 1 = L) = 1) [z1,...,2n)

.
Il
—

(0(xj41 —x; mod L,1) — 1) |zq,...,zN).

-

1

<.
Il
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Summarized, the action of K on |z1,...,xy) is

Klzy,...,zn) =p» (1 =0(zj1 —xj mod L, 1)) |zy,...,x;+1,...,zn)

-

Il
,_.

J

NE

+4q (1—(5(1}]‘—1’]’_1IIlOdL,l))|$1,...,l’j—1,...,IN>

J

M= L

—U» (1 =96(xj41 —x; mod L, 1)) |z1,...,2N) . (5.80)

1

<.
Il

Next, we consider the eigenvalue equation K [¢)) = A ),

Klvy=" > ¥,...,an)Klz1,...,on) = > d(x1,..,zn) N |z, .. 2y).

r1<--<TN r1<--<TN
First, we concentrate on the term in Eq. (5.80) proportional to p,
N
Py Y. W(zr,...,an)(1 = 8(zjp — 2y mod L, 1)) |z, ...,z + 1, zN).
j=1la1<-<an
After a change of variables Z; = x; for i # j and Z; = x; + 1 the above equation reads
N
pY. > (1,3 =1, &Z8)(1 = 8(F; — &1 mod L, 1)) |F1,...,ZN).
j=1F1<<En

Second, we consider the term in Eq. (5.80) proportional to g. One finds with the change
.i?j :.Cl,’j—1<$j+1—1:i’j+1—1, thus :i‘j+1 —i‘j > 1 and i‘j,1 = Zj-1 <Q3j—1:jj,

that this term equals

g >, U(@,....,%+1,...,28)(1 = 8(Zj41 — T mod L,1))|Z1,...,3N),

T1<-<ITN

where the first constraint is realized via the delta term and the second constraint by

the summation. By orthogonality of |z1,...,zy) the eigenvalue equation K |¢)) = A |1))
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turns into (ﬁ) equations for the coefficients ¥ (zy,...,xy),
N
pY (1 —xj_1) mod L,1)] (Y(xq,...,2; —1,...,2n) = Ut(21,...,2N))
7j=1
N
+¢> 1= 0((xj41 — z;) mod L, 1)] (Y(z1,...,2; +1,...,2n5) — Up(z1,...,2N))
7=1
= \)(xq,...,2N). (5.81)
Now, we make the ansatz for the coefficients ¢(x1, ..., zn),

U(x1,...,on) = > AT H 20 (5.82)

TESN

where Sy denotes the symmetric group. Its elements 7 are permutations of {1,..., N}.
The z,’s are the Bethe roots and, together with A(7), complex numbers.

Let us consider a configuration x; < --- < xy where all particles have at least
distance 1, so no particle is adjacent to any other particle. Additionally, we assume
that 1 # 1 and zy # L, so we do not have to consider the pbc. Then Eq. (5.81)
reduces to

N

N
pzw(xl,...,a:j—1,...,$N)+qz¢(x1,...,xj+1,...,a:]v)—UNQ/)(:El,...,a:N)

j=1 j=1

= \)(xq,...,2N). (5.83)

Plugging the ansatz into the term proportional to p results in

N
;¢(x17"‘7$j_1""7xN):ZZA H zT(l)

j=171€SN —1, J

N
=2 Al lHlZfénZIZ?é)
=

TESN

N
= ZZ]-_lw<£L'1, ce 733N)>
j=1

where the sum over j is independent of 7 since 7 is a permutation of {1,..., N}.

Similarly, one gets the analogous expression for the term proportional to ¢ with the
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change z; e z;. Consequently, Eq. (5.81) reduces to

N
= (g2 +p' - U). (5.84)
j=1

Eq. (5.84) relates the Bethe-ansatz eigenvalue A of IC to the Bethe roots z;. Next, we
derive recurrent relations for the Bethe roots. For this, we replace A in Eq. (5.81) with
the right-hand side of Eq. (5.84).

We consider a configuration z; < --- < xy with exactly two particles adjacent to
each other, ;.1 = x; + 1. To avoid dealing with the boundary conditions, we consider
x1 # 1 and xy # L. For this configuration, Eq. (5.81) is

p Z ’QD(,ZL']—L)—FC]Z?/)(,,I’]—I—L)—U(N—l)’ll)(ﬁl,,[)ﬁ']v)

JFk+1 JF#k

=p> Y(..x;—=1,..)+¢> (.., +1,...) = UNY(z,...,2N)
J J
and therefore

p(c o xpr— 1, )+ qu(c e+ 1, 000) F UY(2q, ..., zn) = 0.

By considering the chosen configuration, this equation reads in terms of the Bethe

ansatz

Z A(r ( H le ) k)z (k+1) (p + Q2r (k) Zr (k1) — UzT(kH)) = 0. (5.85)

TESN l#k,k+1

Requiring that the last term in Eq. (5.85) vanishes for every 7 is too restrictive. We
note that the Bethe roots in Eq. (5.85) are invariant under swapping 7(k) with 7(k+1).
Therefore, Eq. (5.85) can be fulfilled by letting

A(T) (p + qZr (k)27 (k+1) — U,Z-r(k+1)> = —A(T/) (p + QZ7r(k)Zr(k+1) — UZT(k)) , (5.86)

where 7/ differs from 7 by swapping 7(k) <> 7(k + 1).
Next, we derive restrictions on A implied by the pbe. For a particle hopping across
the boundary, we identified (0, xo,...,xy) = (22, ..., TN, L). In terms of the Bethe

ansatz, this expression reads

> Alr 7(1)2 5Ny = D A(T)szl)...zfgv_l)sz)_

’TESN ’TESN



146 The spectral boundary of the ASEP

This equation can be fulfilled by letting
A(r) = A(TJ)zTL(l), (5.87)

for the permutation o € Sy which shifts all indices by one, o(j) = 7+ 1 and o(N) = 1.
Combining Eq. (5.86) and Eq. (5.87) leads to the Bethe equations

N

L Us,

L= ] <_p a5 ZJ) _ (5.88)
k=1;k+#] P + qzjz — U,Zk

Summarized, the Bethe ansatz eigenvalues A\ for arbitrary U are given by
N
A= (pz ' +qz-U), (5.89)
j=1

where z; are the so-called Bethe roots, which in turn are solutions of the recurrent
relations given in Eq. (5.88).

By construction of the Bethe ansatz, all solutions (z1, ..., z1) of Eq. (5.88) give rise
to an eigenvalue A of K via Eq. (5.89). Numerical data indicates that in small systems,
each eigenvalue is a sum of Bethe roots, but a formal proof of the completeness of the
Bethe ansatz is lacking [361, 362]. However, in our finite ASEP system investigations,

all eigenvalues conformed to the Bethe ansatz.

Bethe equations for TASEP with general U

In the case of TASEP with ¢ = 1 and p = 0, the eigenvalues \ expressed in terms of
Bethe roots simplify to

1 N
A= 2; (z;-U), (5.90)
with
Zj = 22j — U

representing scaled, shifted Bethe roots. We refer to the z;’s and the Z;’s as Bethe
roots. The Bethe Eqgs. (5.88) simplify to

fo B (3t 4 pefiay
etz \ 2% — Uz (z; = U) k=1 ~k
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SO

_ N U
AN - U = ()N
k=1 ~k

In terms of 7, they are

N N oz —U
U+ 2)"NU - 2z)N = 2] 22—

. 5.91
i1 26+ U ( )

In Egs. (5.91), the main simplification from the general p, ¢ case is the independence

of the right-hand side from j, which makes the solutions Z; roots of the polynomial
Pz)=(U+2)"""(U-2)" -, (5.92)

with Y given by the right-hand side of Eq. (5.91). This not only simplifies the
numerical computation of the Bethe roots Z;, but also ensures their continuity in U

[363]. Consequently, we will focus on the TASEP case for the remainder of Section 5.4.

5.4.2 Solving the Bethe equations numerically

In this section, we outline the numerical procedure for solving the TASEP Bethe
equations. Solutions are obtained by self-consistently iterating Eqs. (5.91), similar to
Ref. [257]. The challenge lies not in identifying a single solution to the Bethe equations
but in systematically finding all (ﬁ) solutions.

In the following, ¥ will denote an arbitrary complex number and the right-hand
side of Eq. (5.91) will be referred to as

N
Y(Zy,...,Zx) = 2L]£[12’:+g.
Then every solution Zi,...,Zy of Eq. (5.91) consists of roots of the polynomial P
with Y =Y (Zy,..., Zx).

To find solutions of the Bethe equations numerically one can proceed as follows.
First, calculate the roots Zl(l), cee Zg) of P for an initial Y. Of these L roots of P
choose N roots, Zfl), . Z](\}), and evaluate the next Y® = ?(Z{l), e ZJ(\})). Again,
the roots Z§2), cee Zg) of P with Y = Y® are calculated and N roots Zfl), N Z](\}) are
chosen to evaluate the next Y3 = ?(Zfz), cee Z](\?)). This procedure is then iterated
until convergence all of the N chosen roots is reached, ZJ@ ~ ZJ(-ZH) forall 1 < j7 < N.
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Fig. 5.5 Visualization of solving the Bethe Egs. (5.91) of TASEP (pbc) for L = 6 and
N = 3. All markers are roots of the polynomial P, given by Eq. (5.92), for different Y.
The outer (square) markers are the roots for initial Y(!) = 10 x 2, the inner (triangles)
markers for Y converged, and the circles denote roots of P for intermediate Y. Red

markers (upper complex plane) are chosen to calculate the next Y. The gray circle has
a radius of |[Y(D|V/L,

The convergence of this procedure presupposes consistency of the choice of the N

roots out of L roots of the polynomial P [364, 289]. The first choice of Zfl), ey ](\})

O]
1 9 ..

out of Zfl), cee Zg) is arbitrary. Subsequent roots Z . Z](\l,) are chosen to be closest

to the previous roots

72V = argmin |2" — 27V, (5.93)
ZWa<k<r
where the minimum runs over all roots Zl(l), ceey Zg) of P with Y = Y®_ If multiple

Z,gl) are close to Zj(lfl) we do not update Y+ with Z](-l) but with a linear combination

of Z{V and 2!V ie. YU = V(.. dY 2V +(1—dY)Z{™V,...) where 0 < dY < 1
denotes the fraction of interpolation between Z](-l) and Zj(l_l) .

The above-described procedure typically leads to convergence of Zfl), cee Z](\l,) and
thus to a solution of the Bethe Egs. (5.91). In Figure 5.5 we show the roots z0 . Z0
obtained during the algorithm for L = 6 and N = 3. The square markers denote
the initial Zfl), cee Zél) with Y1) = 10 x 2~ while the triangles denote the final and
converged Z\" ..,z (relative or absolute error of Eq. (5.91) < 107%). The

circles indicate intermediate roots. Initially, the 3 red squares (upper half-plane) are
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chosen as Zfl), cee él), and subsequent roots (upper half-plane in red) according to

their previous closest roots. For visualization purposes, dY was chosen to be dY = 0.5.

To find all solutions to the Bethe Egs. (5.91) systematically we use different
combinations of intial Y and initial root choices. Namely, we typically choose Y1)
with |[Y(D|YE > U, This ensures that the roots of P with Y = Y are close to the
circle with radius Y|V, In Figure 5.5 the roots of P for Y = Y1) = 10 x 26 denoted
by the square markers are close to the circle with radius 2 x 10/¢ ~ 2.9. Then we solve
the Bethe equations for every combination of N roots out of L. This typically gives us
almost all solutions of the Bethe Eqs. (5.91). By iterating this procedure for a handful
initial YY" we found all Bethe roots for the systems we investigated (up to L = 22).

We note that in Ref. [289] a transformation of the TASEP Bethe Egs. (5.91) lead
to a self-consistent solution algorithm, which is less dependent on the initial condition
Y.

5.4.3 Structure of the Bethe roots

To examine the spectral boundary in terms of the Bethe roots, we will consider, in the
L

complex plane, the Bethe roots (z; or Z;) corresponding to each of the ( N) eigenstates.
There are thus N x ( f,) Bethe roots in total, for any value of U. Such plots are shown
in Figure 5.6.

For U = 0, the Bethe roots z; satisfy the equation 2/ = (Z;/2)" = (=1)"*!, and
agree with the single-body eigenvalues of M (stated in Eq. (5.20)). Therefore, the
spectrum derived via the Bethe ansatz for U = 0 aligns with that of the non-interacting
ASEP model discussed in Section 5.2, as expected. An illustrative example of the Bethe
roots Z; = 2z; for U = 0 is provided in Figure 5.6(a) for L = 8 and N = 4. Here, each
solution of the Bethe equations contributes N = 4 roots, which together describe one
of the (i) eigenstates. We plot all the 4 x (i) roots together in a single plot. Since for
U = 0 every solution to the Bethe equations is a subset of the 8 single-body eigenvalues
of M, the union of all solutions is highly degenerate and only 8 unique markers show
up in Fig. 5.6(a).

For U > 0 the degeneracy of the U = 0 case is lifted and the 4 x (i) Bethe roots Z;
become distinct, as observed in Fig. 5.6(b-d) for U = 0.33, 0.66, and U = 1, respectively.
The continuity of Bethe roots z; in U suggests that for small U, these roots should be

N+1

proximate to the Lth roots of (—1)"**. Numerically, this is confirmed as the Bethe

roots z; tend to cluster around the Lth roots of (—1)V*! for small U. As depicted in

Figure 5.6(b) and (c) for U = 0.33 and U = 0.66 respectively, the Z;’s distinctly form
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Fig. 5.6 (a-d) All N x (]{“,) Bethe roots Z; of the TASEP with L =8 and N = 4 for

different values of U. (e) Bethe roots for L = 14 and N = 7 with U = 1.
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L = 8 clusters around the Bethe roots for U = 0. This clustering is even discernible
for U =1, as shown in Figure 5.6(d), where the L = 8 clusters remain identifiable.

For larger L, the Bethe root clusters overlap at U = 1, evident from Fig. 5.6(e) for
L =14 and N = 7. However, the statistical width of these clusters diminishes with
larger L. This is demonstrated in Fig. 5.8, where the average cluster width decreases
as L™Y? in the thermodynamic limit with p = N/L = 1/2 and N, L — oc.

We define the locations and widths of these clusters by fitting a Gaussian mixture
model of L independent Gaussians with complex means to the Bethe roots. The Bethe
root distribution is approximated as %Zle fj, with f; representing Gaussian densities.
We label the Gaussians of the optimal fit as N for j = 1,..., L, each characterized by

its mean y; (in C) and standard deviation o; (in Rxg).

5.4.4 Structure of the many-body spectrum

In this section, we demonstrate that by considering only the centers y; and widths o; of
the Bethe root clusters, rather than their specific structure, it is possible to approximate
a many-body spectrum that exhibits characteristics of the TASEP many-body spectrum,
particularly its spiky boundary.

For U = 0 each many-body eigenvalue X is a sum of N out of L single-body

eigenvalues. Specifically, A is given by

L
A= ZSJ'VJ' = Z I/j, (594)
j=1

Sj;éo

where s € {0,1}* is a configuration with > ;s; = N and v; are the single-particle
eigenvalues determined in Section 5.2.3. According to Eq. (5.90), every many-body
eigenvalue of the TASEP (U = 1) corresponds to a sum of N Bethe roots and by the
continuation from U = 1 to U = 0 each Bethe root belongs to one of the L clusters.
Instead of summing solutions of the Bethe Eqgs. (5.91), we employ a statistical ansatz

and consider random many-body eigenvalues of the form

L
Arand = Z Sj-/\[j = -/\/’37 (595)

j=1

where N, denotes a Gaussian with mean p, = Zle s;jp; and variance o2 = Zle sja?-.
We refer to N, as many-body Gaussians and denote their density by f,. We let
the random variables N, be independent for different configurations s. The full

random many-body spectrum is a superposition of many-body Gaussians N for all
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Fig. 5.7 (a) The many-body spectrum of TASEP with L = 14 and N = 7 (multiplied
by 2 and shifted by N). (b) Probability density function of the many-body spectrum
of the random Bethe roots Z for L = 14 and N = 7 capped at 1073. Red dots are the
means of the complex Gaussians.

configurations s € {0,1}* with 3=;s; = N. The density of this many-body spectrum is

given by
1
> Xk (5.96)
s€{0,1}%
Ss1+-+sp=N

where Z = ( f,) is a normalization constant. The many-body spectrum of the TASEP
is a specific sample of the distribution in Eq. (5.96). For U = 0 the random spec-
trum becomes deterministic and agrees with the non-interacting many-body spectrum
presented in Section 5.2.

In Figure (5.7)(b), we present the probability density from Eq. (5.96) for L = 14,
N =7, and U = 1, with the density capped at 1072 for clarity. The red markers
indicate the means p, of the many-body Gaussians N,. Both the discrete means and
the continuous density exhibit pronounced spikes at the boundary. When these means
are compared to the many-body spectrum of the TASEP shown in Figure 5.7(a), even
finer details of the TASEP spectrum are discernible in the structure of the means.

The boundary of the random many-body spectrum is mainly determined by Gaus-
sians N, associated with domain wall configurations of one or two domain walls,
separated by at most one empty site. This is a consequence of the exponential decay
of Gaussian probability density functions. These configurations are identical to those

defining the spectral boundary in the non-interacting case.
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Fig. 5.8 The width o of the complex Gaussians fitted to the clusters of the Bethe roots
for U =1 at half-filling N = L/2. The solid line denotes the average (0;); = 7 >; 0;
of the cluster widths and the dotted line guides the eye to L='/2. The inset shows the
absolute value of the centers of the complex Gaussians |u|. Black solid line indicates
the average.

The random Bethe spectrum and the TASEP spectrum share a remarkably similar
overall shape. However, differences do exist. The boundary of the random Bethe
spectrum is not skewed towards larger negative real parts, as is the boundary of the
TASEP spectrum. This is attributed to the additional structure in the Bethe root

clusters seen in Figure 5.6, which is not represented by rotationally invariant Gaussians.

5.4.5 “Thermodynamic limit”

Similar to the non-interacting case with U = 0, we will argue that the spiky boundary
persists in the thermodynamic limit as L and N increase while maintaining a fixed
density p = N/L.

Let us first focus on the means p, of the many-body Gaussians N, depicted as red
dots in Figure 5.7. According to the inset of Figure 5.8, the absolute values of ||
appear to be independent of L. This independence suggests that the non-interacting
scenario, presented in Section 5.2, also applies to the many-body Gaussian centers .
They scale as o« L. The spiky structure of the boundary is of O(1); more precisely,
the tip distance (d;) and boundary depth (dp), investigated in Section 5.2.4, are of
O(1). Hence, the spiky structure of the boundary Gaussian centers is maintained in

the thermodynamic limit.
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However, this doesn’t automatically imply that the spiky spectral boundary of
the random spectrum, as defined in Eq. (5.96), persists in the thermodynamic limit.
For this to hold true, the widths o; of the Gaussians A, in the mixture model must
decrease sufficiently fast. More precisely, the widths of the corresponding many-body
Gaussians Ny must be (at most) of the same order as the length scale of the spike
structure, which is O(1).

Figure 5.8 displays the widths o; of N for the TASEP case (U = 1) at half-filling
(N = L/2), with L ranging from 8 to 22. The cluster widths o; vary. They are larger for
clusters with smaller | Re Z| and smaller for those with larger | Re Z|. This is observed
in Figure 5.6(e) as well. Despite this variation, the widths o; are centered around their

12 as shown

average (0;); = %ZJLZI o;. This average decreases approximately as oc L~
by the dashed line in Figure 5.8. Consequently, the variance o2 = Zle 3]-0]2- of the
many-body Gaussians N scales as o< 1 and so does the standard deviation o,. The
spiky structure of the statistical many-body spectrum for U = 1 therefore persists in

the thermodynamic limit.

5.5 The random matrix picture

In the previous sections, we showed that the spectral boundary spikes of the TASEP are
a consequence of the many-body spectrum being generated by summing single-particle
eigenvalues or Bethe root clusters. In this section, we demonstrate that the spiky
spectral boundary is characteristic for a broad range of systems, extending beyond
those solvable by the (coordinate) Bethe ansatz. Specifically, this feature is typical in
systems where the many-body graph exhibits a particular cycle structure, where all

cycle lengths are integer multiples of the spike count.

5.5.1 From TASEP to graphs

The matrix elements of the non-interacting TASEP M are either zero or one. Thus,
M is the adjacency matrix of a directed graph. This graph, termed the many-body
graph of TASEP, has vertices representing particle configurations in the chain and
edges indicating permissible transitions. For TASEP with U = 1, its generator matrix

KC is the negative Laplacian of this graph.
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5.5.2 Cycles of TASEP

The permissible transitions between particle configurations impose constraints on the
structure of the many-body graph. Our focus is on the nature of cycles in this graph.

The cycle lengths in the TASEP many-body graph are divisible by L for pbc and by
L + 1 for obc [288]. This is evident in cycles among configurations s € {0, 1}¥, which
only contain a single particle, s; = d;;. These cycles consist of L particle movements
(L 4+ 1 for obc) such that the particle arrives at its original position. For general
configurations s let us restrict to the pbc case. The following argument applies to the
obc case with L + 1 instead of L as well. Consider the sum X(s) = le jsjmod L of
particle positions in the configuration s [288]. This sum X partitions the many-body
graph of TASEP into L subgraphs X; = {s: X(s) = j} for j =0,...,L — 1. Within
each X; no two vertices are connected. The only allowed transitions are between
configurations of X; and X;;1meq . Thus, for returning to a configuration s an integer
multiple of L transitions have to be performed and cycle lengths of the many-body
graph are divisible by L.

As discussed in Section 1.1.5, the number of closed walks with length & is given by
tr(MPF). Especially, if tr(M*) = 0 then the graph does not contain any closed walks,
thus any cycle, of length k. In Figure 5.9(e), we depict tr(M*) 4+ 1 as blue squares as
a function of £ =1,...,2L for a system of L = 12 sites and pbc with N = 6 particles.
The addition of +1 facilitates a logarithmic scale on the y-axis. Here, tr(M*) equals
zero for all values of k not divisible by L, indicating the absence of cycles in the graph
with length k& mod L # 0. Similarly, for obc, tr(M)* = 0 if and only if k mod L+1 =0

(not shown).

5.5.3 Random graph model

To demonstrate that the spiky spectral boundary is a generic feature, we compare
the TASEP spectrum with the spectral density of a random graph ensemble. The
distribution of the random graphs is the uniform distribution over all graphs with D
vertices, n edges and the property that all cycle lengths are divisible by L. (We discuss
the pbe case. The obc case is equivalent by changing L to L + 1.)

To sample a random graph from such an ensemble, one starts with a directed cycle
on D vertices. Then, one randomly chooses a vertex and traverses the graph randomly
along L — 1 edges. The vertex reached after L — 1 steps is connected back to the
starting vertex, creating a closed walk of length L. This process is repeated until the

graph contains n edges. If the length of the initial cycle on all D vertices is divisible
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Fig. 5.9 TASEP spectrum (pbc) with L =12 and N =6in (a) U =0 and (c) U = 1.
In (b,d) spectral density of random graphs with cycle length divisible by L; in (b)
of the adjacency matrix and in (d) of the negative (combinatorial) Laplacian. In
(e) traces of powers of the non-interacting TASEP generator A = M (squares) and
adjacency matrices A of random graphs (circles).

by L, then the presented procedure ensures that all cycle lengths are divisible by L.
We expect this algorithm to sample approximately uniformly from the above described
random graph ensemble.

Figure 5.9 compares the random graph ensemble to the TASEP with L = 12 sites
and N = 6 particles. Quantities of the random graph ensemble are averaged over 2, 000
samples. The number of vertices is D = 924, matching the Hilbert space dimension of
the TASEP, and the number of edges was chosen accordingly.

In Figure 5.9(e), we present tr(A*)+1 as red circles, where A is the adjacency matrix
of the random graphs. There, tr(AF) is zero for all k that are not integer multiple of L.
Whenever k is an integer multiple of L, tr(A*) is comparable in magnitude to tr(M?¥)
for TASEP. This similarity suggests that the number of closed walks in the random
graph ensemble is on par with that in the TASEP many-body graph.
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Figure 5.9(a~d) show a comparison between spectra of the random graph ensemble
and the TASEP. In (a) and (b), we show the spectrum of the non-interacting TASEP
alongside the estimated spectral density of the adjacency matrix. Both have L distinct
spikes. In Figure 5.9(c) and (d), we present the spectrum of TASEP (U = 1) and the
spectral density of the negative graph Laplacian. Notably, the random graph Laplacian
also presents L pronounced spikes. The spike patterns, particularly their “bending”
towards the left, show a resemblance to the TASEP spikes. The overall shape of the
Laplacian spectral density (ignoring the spikes) has a spindle-like form, characteristic

of sparse random generators of continuous-time Markov chains discussed in Chapter 4.

5.6 Discussion

In this chapter, we explored the connections between the ASEP, free fermion models,
and RMT, focusing on the distinctive spiky spectral boundary. We reformulated the
generator of the ASEP as non-Hermitian fermionic models with a variable interaction
parameter U, where U = 1 corresponds to the standard ASEP. We analytically
demonstrated that in the non-interacting ASEP (U = 0), this spiky spectral boundary
arises from summing single-particle eigenvalues positioned on ellipses (circles for
TASEP). For pbc, we extended this concept to interacting TASEP (U = 1), showing
that the spiky boundary remains and originates from the summation of clustered Bethe
roots. Lastly, we confirmed the robustness of this spiky boundary by considering only
the cycle structure in the many-body graph, revealing that corresponding random
graphs exhibit a similar spiky spectral boundary.

This research opens up several questions for further exploration. We demonstrated
the spiky spectral boundary in TASEP, largely attributed to Bethe roots clustering. It’s
intriguing to consider whether such clustering also occurs in ASEP. The straightforward
connection between TASEP and ASEP in their non-interacting forms suggests that
the spiky spectral boundary might extend to standard ASEP (with U = 1) as well.
However, it remains to be seen how introducing interactions influences Bethe roots
clustering and the potential emergence of a spiky spectral boundary.

In this chapter, we concentrated on the Bethe ansatz for pbc. The ASEP with
obc is also solvable via the Bethe ansatz, though the equations are more complex
[280, 365-367]. A promising area for future research is to explore whether a clustering
of Bethe roots in the obc case similarly results in a spiky spectral boundary.

The random graphs following the hypotrochoidic law usually lack cycles shorter

than L but can have cycles longer than L. However, the random graph ensemble we
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introduced in this chapter deviates from this standard hypotrochoidic law, likely due
to its more restricted cycle structure, where all cycles are of lengths divisible by L.
Extending the hypotrochoidic law to encompass this specific graph ensemble would be
a valuable advancement.

This study concentrated on the spiky spectral boundary of the ASEP. Formation
of spikes in the complex plane have been observed in the off-diagonals of reduced
density matrices in the symmetric simple exclusion process [156] and the observable
representation of Ising chain Glauber dynamics [368]. These observations together with
the robustness of the spiky spectral boundary to perturbations make the investigation
of other models, both classical and quantum, that possess a similar cycle structure in
their many-body graphs or comparable trace correlations in their generator matrices,

an intriguing direction for future research.



Chapter 6
Summary

The content of this thesis is placed in the broad context of studying many-body systems
through the lens of random matrix theory (RMT). We focused on two types of many-
body systems: quantum and stochastic many-body systems. In the quantum case we
investigated a specific system — the Bose-Hubbard model. We studied several aspects
of this model related to quantum chaos and the Eigenstate Thermalization Hypothesis
(ETH). In the case of stochastic many-body systems we focused on generators of
Markovian processes. We investigated the spectra of generic systems — an ensemble
of random generator matrices — and the spectral boundary of a specific system — the
Asymmetric Simple Exclusion Process (ASEP).

In Chapter 2, we investigated eigenstate-to-eigenstate fluctuations of expectation
values of local observables (EEV fluctuations) in the 1D Bose-Hubbard model. The
ETH predicts that in the thermodynamic limit of increasing lattice size and fixed
particle density these fluctuations decrease in the Hilbert space dimension D as D~'/2.
In this thesis, we investigated EEV fluctuations in the classical limit of fixed lattice size
and increasing particle density. We showed analytically that for RMT-like eigenstates,
EEV fluctuations decrease as D~/ after appropriate renormalization of the observables.
Fluctuations of mid-spectrum Bose-Hubbard eigenstates conform to this decrease for
large lattice sizes. For small lattice sizes however, EEV fluctuations decrease as a
power-law in D~¢, but with an exponent e smaller than 1/2. We showed that this
anomalous scaling is not explained by two-point correlations between eigenstates but
is due to subtle higher-order correlations of eigenstate coefficients.

Partly motivated by the anomalous EEV fluctuation scaling, in Chapter 3, we
studied the Bose-Hubbard model on three sites in detail. We compared the quantum
model to its classical limit — the discrete nonlinear Schrodinger equation (DNLS). For

three sites, the Bose-Hubbard model is known to be neither integrable nor strongly
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chaotic but shows mixed behavior. We calculated several quantities used to demarcate
chaos from integrability. In the quantum model we studied correlations of energy
eigenvalues, statistics of eigenstates and the decrease of EEV fluctuations. In each
case, the degree of adherence to RMT predictions quantifies how chaotic the quantum
system is. In the DNLS, we calculated Lyapunov exponents. As a function of energy
and interaction strength, we demonstrated a strong overall correspondence between all
four measures of chaos.

In Chapter 4, we presented a model of random sparse generator matrices of Marko-
vian evolution. We investigated its spectral properties, particularly, the first two
moments of the eigenvalue distribution and the spectral gap, the inverse of the relax-
ation time. The dependence of the eigenvalue moments on the sparsity ¢ — number
of non-zero elements per column — implied divergence of the bulk spectrum from the
stationary eigenvalue, whenever ¢ increased with the matrix size D. However, in the
limit of large D, the spectral gap decreases for constant ¢ (single-particle case) and
is constant (up to logarithmic corrections) for ¢ ~ log D (many-body case). These
results show that sparsity cures the large spectral gap, leading to unphysically long
relaxation times, which is characteristic for nonsparse random generators.

In Chapter 5, we focused on the spectrum of a particular generator of Markovian
evolution — the ASEP. The spectral boundary of the ASEP features characteristic
spikes: L spikes for periodic boundary conditions (pbc) and L + 1 for open boundary
conditions (obc), with L being the system size. We elucidated the emergence of
these spikes in several ways. First, we expressed the generator as an interacting
non-Hermitian fermion model. In the noninteracting case, the spectral boundary spikes
emerged as sums of single-particle eigenvalues on ellipses. Second, by invoking Bethe
ansatz techniques we interpolated between the noninteracting and the ASEP limit.
In the totally ASEP (TASEP) case, the spikes stem from clustering of Bethe roots.
Third, we investigated adjacency and Laplacian matrices of random graphs with cycle
lengths divisible by the spike count. In the many-body graph of the TASEP all cycle
lengths are divisible by L (L + 1 for obc). We demonstrated that the spectra of these
random graphs have L (L + 1) prominent spikes akin to spectra of random matrices

with higher-order trace correlations.
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