
Random Matrix Theory for

Stochastic and Quantum

Many-Body Systems

Dissertation zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt von

Goran Nakerst
geboren am 01. Januar 1994 in Menden

Professur für Theoretische Festkörperphysik

Institut für Theoretische Physik, Fakultät Physik

Technische Universität Dresden

19.04.2024



Betreuer Dr. Masudul Haque

1. Gutachter Prof. Dr. Matthias Vojta

2. Gutachter Prof. Dr. Paul McClarty

Datum der Abgabe: 23.04.2024

Datum der Disputation: 04.09.2024



Für Mama





Abstract

Random matrix theory (RMT) is a mathematical framework that has found profound

applications in physics, particularly in the study of many-body systems. Its success lies

in its ability to predict universal statistical properties of complex systems, independent

of the specific details. This thesis explores the application of RMT to two classes of

many-body systems: quantum and stochastic many-body systems.

Within the quantum framework, this work focuses on the Bose-Hubbard system,

which is paradigmatic for modeling ultracold atoms in optical traps. According to

RMT and the Eigenstate Thermalization Hypothesis (ETH), eigenstate-to-eigenstate

fluctuations of expectation values of local observables decay rapidly with the system

size in the thermodynamic limit at sufficiently large temperatures. Here, we study

these fluctuations in the classical limit of fixed lattice size and increasing boson number.

We find that the fluctuations follow the RMT prediction for large system sizes but

deviate substantially for small lattices. Partly motivated by these results, the Bose-

Hubbard model on three sites is studied in more detail. On few sites, the Bose-Hubbard

model is known to be a mixed system, being neither fully chaotic nor integrable. We

compare energy-resolved classical and quantum measures of chaos, which show a strong

agreement. Deviations from RMT predictions are attributed to the mixed nature of

the few-site model.

In the context of stochastic systems, generators of Markov processes are studied.

The focus is on the spectrum. We present results from two investigations of Markov

spectra. First, we investigate the effect of sparsity on the spectrum of random generators.

Dense random matrices previously used as a model for generic generators led to very

large spectral gaps and therefore to unphysically short relaxation times. In this work,

a model of random generators with adjustable sparsity — number of zero matrix

elements — is presented, extending the dense framework. It is shown that sparsity

leads to longer, more physically realistic relaxation times. Second, the generator

spectrum of the Asymmetric Simple Exclusion Process (ASEP), a quintessential model

in non-equilibrium statistical mechanics, is analyzed. We investigate the spectral
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boundary, which is characterized by pronounced spikes. The emergence of these spikes

is analyzed from several points of view, including RMT.

The results presented in this thesis contribute to the understanding of the ap-

plicability of RMT to many-body systems. This thesis highlights successes such as

the explanation of “ETH fluctuations” in Bose-Hubbard models, the improvement of

random matrix descriptions by introducing sparsity, and the emergence of spikes in

the spectral boundary of the ASEP. The latter is a notable case where RMT provides

insights even though the ASEP is a Bethe-integrable system. Furthermore, this thesis

shows examples of the limits of RMT, exemplified by the results presented for the

Bose-Hubbard model with a few sites.



List of Publications and Preprints

• G. Nakerst, J. Brennan, and M. Haque

Gradient descent with momentum — to accelerate or to super-accelerate?

arXiv:2001.06472

• G. Nakerst, and M. Haque

Eigenstate thermalization scaling in approaching the classical limit

Phys. Rev. E 103, 042109 (2021).

• G. Nakerst, and M. Haque

Chaos in the three-site Bose-Hubbard model: Classical versus quantum

Phys. Rev. E 107, 024210 (2023).

• G. Nakerst, S. Denisov, and M. Haque

Random sparse generators of Markovian evolution and their spectral properties

Phys. Rev. E 108, 014102 (2023).

• P. C. Burke, G. Nakerst, and M. Haque

Assigning temperatures to eigenstates

Phys. Rev. E 107, 024102 (2023).

• P.C. Burke, G. Nakerst, and M. Haque

Structure of the Hamiltonian of mean force

Phys. Rev. E 110, 014111 (2024).

• G. Nakerst, T. Prosen, and M. Haque

The spectral boundary of the asymmetric simple exclusion process: Free fermions,

Bethe ansatz, and random matrix theory

Phys. Rev. E 110, 014110 (2024).





Table of contents

1 Introduction 1

1.1 Random matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Ensembles of random matrices . . . . . . . . . . . . . . . . . . . 4

1.1.2 Spectral densities . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.3 Eigenvalue correlations . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.5 The graph framework . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Quantum many-body systems . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Quantum chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.2 The Eigenstate Thermalization Hypothesis . . . . . . . . . . . . 25

1.2.3 The Bose-Hubbard model . . . . . . . . . . . . . . . . . . . . . 29

1.3 Stochastic many-body systems . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.1 Generators of Markov processes . . . . . . . . . . . . . . . . . . 35

1.3.2 The Asymmetric Simple Exclusion Process (ASEP) . . . . . . . 36

1.3.3 Random generators of Markov processes . . . . . . . . . . . . . 41

1.4 Outline and summary of main results . . . . . . . . . . . . . . . . . . . 45

2 “Eigenstate thermalization” in the classical limit 49

2.1 Eigenstate expectation value (EEV) fluctuations . . . . . . . . . . . . . 50

2.2 EEV fluctuations for random Gaussian states . . . . . . . . . . . . . . 52

2.2.1 General trace expressions . . . . . . . . . . . . . . . . . . . . . . 52

2.2.2 Quadratic observables . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.3 Scaling in the classical limit . . . . . . . . . . . . . . . . . . . . 55

2.3 EEV fluctuations for Bose-Hubbard eigenstates . . . . . . . . . . . . . 56

2.4 Non-reasons for anomalous scaling . . . . . . . . . . . . . . . . . . . . . 60

2.4.1 Participation ratios . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4.2 Non-identical distribution of eigenstate coefficients . . . . . . . . 63

2.4.3 Eigenstate correlations . . . . . . . . . . . . . . . . . . . . . . . 63



x Table of contents

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Classical and quantum chaos in a mixed many-body system 71

3.1 Main results for the three site Bose-Hubbard model . . . . . . . . . . . 72

3.2 Classical Lyapunov exponents . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.2 The three site case . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.3 More chaotic cases . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.4 Magnitudes of Lyapunov exponents as chaos indicator . . . . . . 80

3.3 Eigenvalue statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Level spacing ratio distribution . . . . . . . . . . . . . . . . . . 82

3.3.2 Average of level spacing ratios . . . . . . . . . . . . . . . . . . . 84

3.4 Eigenstate statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.5 Scaling of EEV fluctuations . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4 An ensemble of sparse random generators of Markov processes 91

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Defining the ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Bulk spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3.1 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Horizontal width . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.3 Ratio of mean and horizontal width . . . . . . . . . . . . . . . . 100

4.4 Spectral gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.1 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.2 Gap as the minimum of the diagonal . . . . . . . . . . . . . . . 102

4.4.3 Extreme value theory . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Complex spacing ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.1 Analytical results for the bulk spectrum . . . . . . . . . . . . . 113

4.7.2 Bound of the spectral gap for symmetric generators . . . . . . . 116

4.7.3 Stochastic systems presented in Figure 4.1 . . . . . . . . . . . . 117

5 The spectral boundary of the ASEP 121

5.1 The generator as interacting fermions . . . . . . . . . . . . . . . . . . . 122



Table of contents xi

5.1.1 Periodic boundary conditions (pbc) . . . . . . . . . . . . . . . . 122

5.1.2 Open boundary conditions (obc) . . . . . . . . . . . . . . . . . . 123

5.1.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2 The “non-interacting” ASEP with pbc . . . . . . . . . . . . . . . . . . 127

5.2.1 Single-body spectrum . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.2 Rotational invariance . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.3 Spectral boundary . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.4 Quantification of spikes . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 The “non-interacting” TASEP with obc . . . . . . . . . . . . . . . . . . 133

5.3.1 Rotational symmetry . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3.2 Single- and many-body spectrum . . . . . . . . . . . . . . . . . 134

5.3.3 Spectral boundary . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 The TASEP with pbc by Bethe ansatz . . . . . . . . . . . . . . . . . . 140

5.4.1 Coordinate Bethe ansatz . . . . . . . . . . . . . . . . . . . . . . 141

5.4.2 Solving the Bethe equations numerically . . . . . . . . . . . . . 147

5.4.3 Structure of the Bethe roots . . . . . . . . . . . . . . . . . . . . 149

5.4.4 Structure of the many-body spectrum . . . . . . . . . . . . . . . 151

5.4.5 “Thermodynamic limit” . . . . . . . . . . . . . . . . . . . . . . 153

5.5 The random matrix picture . . . . . . . . . . . . . . . . . . . . . . . . 154

5.5.1 From TASEP to graphs . . . . . . . . . . . . . . . . . . . . . . 154

5.5.2 Cycles of TASEP . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5.3 Random graph model . . . . . . . . . . . . . . . . . . . . . . . . 155

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6 Summary 159

References 161





Chapter 1

Introduction

Many-body systems in theoretical physics represent an extensive and intricate domain,

where the focus is on understanding the collective behavior of systems composed of

many interacting components. The term “body” can refer to anything from atoms in

a solid or electrons in a conductor to stars in a galaxy. Many-body systems are not

just a simple extrapolation of single-particle physics; they exhibit unique and often

unexpected behaviors emerging from the interactions between the many constituents

of the system.

The study of many-body systems presents several challenges. Real world systems

are often so complex that the terms and values for the interactions used to represent

them are unknown. Even with precise knowledge of these parameters, the explicit

analysis of many-body systems remains challenging. In interacting many-body systems,

the state space expands rapidly with the number of particles, making exact solutions

infeasible for all but the smallest systems. In addition, strong interactions preclude

treatment as small perturbations, necessitating non-perturbative techniques.

The use of random matrix theory (RMT) in many-body systems addresses these

challenges. The first application of RMT in physics, specifically to many-body systems,

dates back to the 1950s by Eugene Wigner. He showed that statistical correlations in

the energy spectra of highly excited heavy nuclei align with eigenvalue correlations in

large random matrices. As quantum mechanical many-body systems, heavy nuclei are

modeled by Hamiltonians that are represented by large matrices. The exact calculation

of high-energy eigenvalues in such complex systems is impractical. Wigner circumvented

this by shifting the focus to the statistical properties of energy levels and replacing the

Hamiltonian with large matrices having random entries.

The physical properties of the Hamiltonian impose constraints on the ensemble

of random matrices to be considered. The microscopic time-evolution of the physical



2 Introduction

system is unitary, so the random matrix should be Hermitian. Additionally, the

ensemble should adhere to the symmetries of the system, such as time-reversal symmetry.

Wigner demonstrated that only these general characteristics, rather than the intricate

details of the model, affect the correlations among energy eigenvalues.

In his application of RMT to the high-energy correlations in large nuclei, Wigner

demonstrated its utility in analyzing many-body systems. The RMT method starts

by pinpointing key structural aspects like symmetries and conservation laws. It then

assumes the system is a typical representation of a random distribution that adheres

to the identified structures.

In doing so, RMT parallels the principles of statistical mechanics, where emphasis is

shifted from detailed microstates to the aggregate macroscopic and statistical behaviors.

Unlike statistical mechanics, which requires understanding of the microscopic laws

governing interactions, RMT presupposes no specific knowledge of these laws but

adopts a probability distribution of all possible interactions. As Freeman Dyson

stated in the 1960s, RMT represents “a new kind of statistical mechanics, in which we

renounce exact knowledge not of the state of a system but of the nature of the system

itself” [1]. This approach makes RMT a fundamental yet comprehensive model for

many-body systems with complex or unknown interactions, capturing their essential

features without detailed microscopic insights.

In this thesis, we explore the applications of RMT to two classes of many-body

systems: quantum many-body systems and stochastic many-body systems. Despite

their distinct nature, these two classes can be mathematically modeled similarly. Both

are characterized by dynamics driven by linear operators, to which RMT can be applied.

In quantum mechanics, the state of a system is encapsulated by a wavefunction within a

Hilbert space, with its evolution governed by the Hamiltonian. Probabilistic systems are

characterized by probability distributions over microstates. For Markovian (memory-

less) systems the temporal change of these probability distributions is determined by a

linear generator known as the Kolmogorov operator.

In the quantum context, two major contributions of RMT are particularly relevant to

this thesis. First, RMT has been instrumental in bridging classical and quantum chaos.

Quantum systems with classical chaotic limits share features with random matrices,

including correlations among eigenvalues and the delocalization of eigenstates. This

led to classifying quantum systems, which mirror the behavior of random matrices, as

quantum chaotic. Second, RMT significantly aids in the understanding of thermalization

in isolated quantum many-body systems. Especially, a generalization of an RMT-ansatz

to eigenstates of these systems lead to the Eigenstate Thermalization Hypothesis (ETH).
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The ETH predicts that in large, generic systems, eigenstate-to-eigenstate fluctuations

of expectation values of observables are sufficiently small, allowing these expectation

values to attain their equilibrium value in the long time limit.

In this thesis, these two RMT insights are investigated for a specific quantum many-

body system — the Bose-Hubbard model which captures the physics of ultracold atoms

in optical lattices. We analyze different quantum chaos metrics and contrast them

with chaos indicators of its classical counterpart, the discrete nonlinear Schrödinger or

Gross-Pitaevskii equation. Furthermore, we explore the “ETH-fluctuations” of local

observables in the classical limit of the quantum model.

In our analysis of stochastic many-body systems, we focus on the spectrum of

Markov generators. This spectrum, particularly the spectral gap, indicates relaxation

times of the systems to their steady state. By studying random Markov generators, we

identify the sparsity — many zero matrix elements — of generators as the significant

structure that leads to physically realistic relaxation times. This is in contrast to

previously studied dense random generators which yield non-physical relaxation times.

Additionally, we analyze the generator spectrum of a paradigmatic stochastic many-

body system, the Asymmetric Simple Exclusion Process (ASEP). We derive in detail

the origin of spikes in the spectral boundary and link it to random matrices with higher-

order correlations between entries and random graphs with specific cycle structures.

The remainder of the introduction to this thesis is divided into four sections. Section

1.1 provides an introduction to RMT, with focus on spectral densities and correlations

of nearby eigenvalues. Additionally, we briefly discuss random matrix eigenstates and

the connection between matrices and graphs. Section 1.2 introduces the concepts of

quantum chaos and the ETH, as well as the Bose-Hubbard model and its classical

limit, the Gross-Pitaevskii equation. In Section 1.3, we introduce generators of Markov

processes and random (dense) generators. We present the ASEP as a paradigmatic

many-body Markov process. In Section 1.4, we outline the content of this thesis and

provide a summary of the main results.

1.1 Random matrices

This section introduces random matrices, with a focus on properties that are relevant

to the application of RMT to many-body systems. An introduction to RMT specifically

for physicists is provided by Livan, Nivaes and Vivo [2]. Thorough treatments of the

fundamentals, history and applications of random matrices are given in the books of

Mehta [3], Forrester [4], and Akeman et al [5] and the review by Edelman and Rao [6].
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This is only a short and personally motivated list of the extensive literature on the

topic of random matrices.

This introduction to RMT is organized as follows: In Section 1.1.1, we introduce

the Hermitian Gaussian ensembles and their non-Hermitian counterparts, the Ginibre

ensembles, and comment on their spectral decomposition. Further, we present more

general ensembles, which are relevant to this thesis. Section 1.1.2 focuses on the

spectral density in the limit of large matrix size. We present Wigner’s semicircle law

for Hermitian matrices and the circular law for non-Hermitian matrices. The latter is

generalized to the elliptic and hypotrochoidic law. The non-Hermitian spectral densities

are relevant for discussing the spectrum of random Kolmogorov operators in Chapter 4

and the ASEP in Chapter 5. Section 1.1.3 addresses correlations among eigenvalues,

with focus on the nearest and next-nearest neighbor correlations. We present results for

Hermitian matrices, relevant for our analysis of the Bose-Hubbard model, and results

for non-Hermitian matrices, which are important for discussing random Kolmogorov

operators. In Section 1.1.4, we comment on eigenstates of Hermitian random matrices.

These considerations are relevant in our analysis of the “ETH-fluctuations” and chaos

in the Bose-Hubbard model in Chapters 2 and 3. We conclude with presenting the

connection between matrices and graphs in Section 1.1.5. This relation is relevant for

discussing sparse matrices in Chapters 4 and 5.

1.1.1 Ensembles of random matrices

Gaussian ensembles

When Wigner [7] compared the energy correlations of heavy nuclei to random matrix

ensembles he considered the simplest ensemble of random matrices obeying the global

properties of the considered physical systems: Gaussian random ensembles. In Gaussian

random matrices, up to global constraints, all matrix entries are independent random

variables, with a common Gaussian distribution. The constraints on the matrix entries

ensure Hermiticity and possible symmetries like time-reversal symmetry.

In the Gaussian Orthogonal Ensemble (GOE), the matrices H are characterized by

their elements Hij, which are distributed according to

Hij ∼











N (0, 1), for i = j,

N
(

0, 1
2

)

, for i < j,
(1.1)
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where ∼ N (µ, Ã2) denotes equality in probability to a Gaussian distribution with mean

µ and variance Ã2. The lower triangular matrix elements are defined via the symmetry

condition Hij = Hji, which ensures the Hermitian nature of the matrix. Apart from

this condition of Hermiticity, the matrix elements are mutually independent.

The designation “orthogonal” in the GOE relates to the invariance of the ensemble

under orthogonal transformations. This is most evident when considering the probability

density P (H) of the GOE with respect to the Lebesgue measure dH =
∏

1fifjfD dHij

with dHij denoting the standard Lebesgue measure in R and D the matrix size. This

density is given by

P (H)dH =
1

Z
exp

(

−1

2
trH2

)

dH, (1.2)

where Z is a normalization constant ensuring that Eq. (1.2) integrated over R
D(D+1)/2

equals 1. The additional factor of 2 relating the variances of the diagonal and off-

diagonal matrix elements in Eq. (1.1) is crucial in deriving Eq. (1.2). When transform-

ing H via H → OTHO for an orthogonal matrix O, the trace term tr(H2) remains

unchanged. Furthermore, the Lebesgue measure dH is invariant under linear trans-

formations that satisfy | det(O)| = 1, a well-established result in measure theory [8].

Therefore, the GOE is invariant under orthogonal transformations.

The GOE, along with the Gaussian Unitary Ensemble (GUE) and the Gaussian

Symplectic Ensemble (GSE), form the triad of classical Hermitian Gaussian ensembles.

Each ensemble is defined by a unique symmetry: the GOE exhibits invariance under

orthogonal, the GUE under unitary, and the GSE under symplectic transformations. In

contrast to the real matrix elements of the GOE, the GUE and GSE are characterized by

matrix elements following complex and quaternionic Gaussian distributions, respectively.

A common feature across these ensembles is Hermiticity and, beyond this constraint,

the mutual independence of all matrix elements. The Gaussian measure, as specified

in Eq. (1.2), is the same for all three ensembles, except for the Lebesgue measure. It

operates over the complex numbers in the GUE case and over the quaternions in the

GSE case, with the constraint that diagonal elements are real.

Symmetries imply nature of matrix elements

The three Gaussian ensembles emerged from symmetry considerations of quantum

Hamiltonians, known as Dyson’s three-fold way [9, 10]. This approach aims to classify

the fundamental properties of a Hamiltonian H, which either exhibits or lacks time-

reversal symmetry T . The Hamiltonians H not invariant under T are most generally

expressed through Hermitian matrices with complex entries. If H is invariant under T ,
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two cases emerge: T 2 = +1 or T 2 = −1. When T 2 = +1, H is equal to its elementwise

complex conjugate, H = H∗, making H real symmetric. When T 2 = −1, the matrix

elements of H are quaternionic. These are Dyson’s three symmetry classes. They

are commonly enumerated by the Dyson index ´, which denotes the number of real

components of the matrix entries: ´ = 1 for real, ´ = 2 for complex, and ´ = 4 for

quaternionic matrix entries. The Gaussian measure given by Eq. (1.2) on these three

symmetry classes then leads to the GOE, GUE and GSE. In this thesis, we will consider

other measures on these symmetry classes as well.

We remark that Dyson’s three-fold way has been generalized into a broader frame-

work, the ten-fold way, which classifies, among other things [11], topological insulators

and superconductors [12–18, 10].

Spectral decomposition of Gaussian ensembles

With the application to physical systems in mind, understanding the eigenvalues and

eigenstates of random matrices is crucial. In quantum systems, eigenvalues represent

observable outcomes, with corresponding eigenstates indicating post-measurement

system states. In stochastic Markovian systems, eigenvalues are related to relaxation

timescales, while the stationary eigenstate encodes long-term microstate occupancies.

Therefore, rather than dealing with the distribution P (H) of matrix elements, we will

discuss the joint distribution P (¼1, . . . , ¼D, U) of the unordered eigenvalues ¼1, . . . , ¼D

and a matrix U encapsulating the eigenstates as its columns.

The transition from P (H) to P (¼1, . . . , ¼D, U) represents a change of variables. The

trace term exp(−1
2

trH2) is independent of the eigenstates and equals exp(−1
2

∑D
j=1 ¼

2
j).

Consequently, the Gaussian measure in terms of the eigenvalues ¼j and the eigenstates

in U is expressed as

P (H)dH ∝ e−
1

2

∑D

j=1
λ2

j | det Jac(H → (¼1, . . . , ¼D, U))|




D
∏

j=1

d¼j



 dU, (1.3)

where ∝ omits any normalizing constant Z and Jac(H → (¼1, . . . , ¼D, U)) is the

Jacobian of the transformation. The measure dU is the uniform (Haar) measure of

the orthogonal, unitary, or symplectic group, corresponding to the GOE, GUE, or

GSE, respectively. Here dU is a probability measure, which samples each matrix in

the corresponding invariant group equally likely. For the orthogonal or unitary groups,

such samples can be constructed by the Gram-Schmidt process applied to Ginibre

matrices, which will be introduced later.
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The Jacobian in Eq. (1.3) can be calculated as

| det Jac(H → (¼1, . . . , ¼D, U))| =
∏

1fj<kfD

|¼j − ¼k|β, (1.4)

where ´ is the Dyson index; ´ = 1 for GOE, ´ = 2 for GUE, and ´ = 4 for GSE.

Notably, the Jacobian term does not depend on U . The joint probability density

function (JPDF) of eigenvalues and eigenvectors of the Gaussian ensembles is thus

P (H)dH ∝ e−
1

2

∑D

j=1
λ2

j
∏

1fj<kfD

|¼j − ¼k|β




D
∏

j=1

d¼j



 dU. (1.5)

The dependence of the Gaussian ensemble on eigenstates solely arises from the Haar

measure dU , which greatly simplifies the study of the eigenstates in Section 1.1.4. By

integrating out dU the JPDF of eigenvalues of Gaussian matrices is obtained,

P (¼1, . . . , ¼D) ∝ e−
1

2

∑D

j=1
λ2

j
∏

1fj<kfD

|¼j − ¼k|β. (1.6)

The eigenvalue distribution of Gaussian matrices has an interesting physical in-

terpretation [1, 19, 20, 2]. By rescaling ¼ → ¼/
√
´ = ¼̃ the eigenvalue JPDF can be

recast into a Boltzmann weight

P (¼̃1, . . . , ¼̃D) ∝ e−
β

2

∑D

j=1
λ̃2

j
+ β

2

∑

j ̸=k
log |λ̃j−λ̃k| = e−βH(λ̃1,...,λ̃D), (1.7)

where the Hamiltonian H(¼̃1, . . . , ¼̃D) = 1
2

∑D
j=1 ¼̃

2
j − 1

2

∑

j ̸=k log |¼̃j − ¼̃k| characterizes

a 2D Coulomb gas, due to the logarithmic interaction, restricted to a 1D line in a

harmonic potential. In this model, the harmonic potential confines the particles, while

the logarithmic interaction induces repulsion among them. Such models are commonly

referred to as “log-gas” models [4]. Eq. (1.7) elucidates the interpretation of the Dyson

index ´ as analogous to an inverse temperature. A diagrammatic representation of

this log-gas model is depicted in Figure 1.1(b).

Non-Hermitian Ginibre ensembles

The random Gaussian matrices introduced so far are all Hermitian. However, applying

RMT to generators of stochastic many-body systems necessitates understanding of

non-Hermitian matrices. This leads us to the introduction of the Ginibre ensembles,

which are derived from the Gaussian ensembles by dropping the Hermiticity constraint

and letting all matrix elements be independent random variables. This implies the
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absence of any additional factor between the diagonal and off-diagonl matrix entries,

in contrast to Eq. (1.1). The so formed random matrix ensembles are the GinOE,

GinUE, and GinSE, with real, complex and quaternion matrix entries, respectively.

The Gaussian densities of the Ginibre ensembles can be expressed as

P (H)dH =
1

Z
exp

(

−1

2
trHH 

)

dH, (1.8)

where Z is a normalization constant ensuring that P (H) is a probability density. The

notation H varies across ensembles, indicating the Hermitian adjoint for the GinUE,

the transpose for the GinOE, and a specific symplectic form for the GinSE. The Ginibre

ensembles retain invariance under orthogonal, unitary, and symplectic transformations,

respectively, analogous to their Hermitian counterparts.

Similar reasoning as for the Hermitian Gaussian ensembles applies to the spectral

decomposition of the Ginibre ensembles. But there are some differences. A key

distinction is that the eigenvalues of the Ginibre ensembles are generally complex, and

their (left and right) eigenstates are typically not orthogonal.

The GinUE JPDF can be expressed as [21]

P (¼1, . . . , ¼D) ∝ e−
1

2

∑D

j=1
|λj |

2 ∏

1fj<kfD

|¼j − ¼k|2. (1.9)

This formulation bears a direct correspondence to the eigenvalue density of the GUE,

as denoted in Eq. (1.6) with ´ = 2. For the GinOE and GinSE, the situation diverges

from this correspondence. A notable feature of their eigenvalues is the presence of

an additional symmetry: eigenvalues are real or come in complex conjugate pairs.

For GinOE, a further complication arises due to the non-negligible probability of

encountering real eigenvalues [22]. This typically necessitates the exclusion of these

real eigenvalues in finite matrix size analyses.

More general ensembles

The Gaussian and Ginibre ensembles have been extended in various ways. Generaliza-

tions relevant to this thesis are presented in the following.

First, the Gaussian distribution of matrix elements has been generalized to arbitrary

distributions, maintaining the overall nature of independent and identically distributed

(iid) matrix elements. In the Hermitian case, these matrices are referred to as Wigner

matrices [23]. In the non-Hermitian case, they are referred to as non-Gaussian Ginibre

or simply Ginibre matrices. Both, Hermitian and non-Hermitian generalizations,
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typically inherit desirable properties of Gaussian matrices like a deterministic spectral

density and universal eigenvalue correlations in the limit of large matrix size D as

well as delocalized eigenstates. These aspects will be elaborated on in the following

Sections 1.1.2, 1.1.3 and 1.1.4.

Second, the quadratic term tr(H2) in the probability density of Gaussian matrices

given by Eq. (1.2) has been extended to more general functions V (H). The probability

densities for these ensembles are generally expressed as

P (D)dH =
1

Z
exp(− trV (H))dH, (1.10)

where V represents an even degree polynomial and dH denotes an appropriate Lebesgue

measure. The even degree polynomial ensures that, with a finite normalization Z,

P (D)dH constitutes a valid probability measure. The Gaussian scenario is the specific

case with harmonic potential V (x) = 1
2
x2. These ensembles are called invariant ensem-

bles, as they are like their Gaussian counterparts, invariant under the transformations

of the classical groups. For these invariant ensembles, the joint probability density of

eigenvalues is straightforwardly given by

P (¼1, . . . , ¼D) ∝ e−
∑D

j=1
V (λj)

∏

1fj<kfD

|¼j − ¼k|β, (1.11)

and admits a similar log-gas interpretation as the Gaussian case where the harmonic

potential is replaced by V .

Third, the parameter ´, previously limited to the integers 1, 2, and 4, has been

extended to any positive value, ´ g 0. These ´-ensembles are realized through

specific tridiagonal matrix models [24]. They facilitate the exploration of eigenvalue

correlations, varying from strong correlation for large ´ to complete independence

as ´ approaches zero. As discussed in Section 1.2, the transition from correlated to

uncorrelated eigenvalues is in the same spirit as the crossover from integrability to chaos

in quantum systems. The ´-ensembles have been directly applied in investigations of

such transitions [25, 26].

1.1.2 Spectral densities

So far we have examined the JPDF P (¼1, . . . , ¼D) for eigenvalues ¼1, . . . , ¼D, which,

outside of specific cases, generally lacks explicit formulations. However, with the

application of RMT to physical many-body systems in mind, the joint probability of

all eigenvalues for some finite matrix size D is of less importance than its marginal
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distributions in the limit of large D, such as the (average) spectral density or two point

correlations of nearby eigenvalues. This section focuses on the limiting behavior of the

spectral density, while Section 1.1.3 addresses correlations in form of spacings between

neighboring eigenvalues.

For a random matrix H, the spectral density ÄD(¼) is the normalized eigenvalue

counting function

ÄD(¼) =
1

D

D
∑

i=1

¶(¼− ¼i), (1.12)

where ¼i are the eigenvalues of H, and ¶ is the Dirac delta function. The dependence

of ÄD on H is implicit through the eigenvalues ¼i. The average eigenvalue counting

function equals the one-parameter marginal of the eigenvalue JPDF

ïÄD(¼)ð =
∫

RD−1

P (¼, ¼2, . . . , ¼D)d¼2 . . . ¼D, (1.13)

where ï. . . ð denotes the average over the random matrix ensemble. As the eigenvalues

¼j of H are unordered, the position of ¼ in P of Eq. (1.13) is arbitrary.

If ÄD admits, in an appropriate mathematical sense, a well defined limit of large

matrix size D we denote this limit as the limiting spectral density,

Ä(¼) = lim
D→∞

ÄD(¼). (1.14)

This limiting density, in principle, might still be random, but as we will see shortly,

it typically takes a deterministic form. Consequently, in the limit of large D, the

spectral density ÄD concentrates around its average ïÄDð, meaning a single large random

matrix represents the spectral density of its entire ensemble, ÄD ≈ ïÄDð ≈ Ä. This

concentration result goes under the name of “self-averaging”.

Hermitian matrices - Wigner’s semicircle law

Wigner matrices (Hermitian matrices with iid entries), which have a non-exotic distri-

bution of matrix elements, have, properly rescaled, a common, deterministic limiting

spectral density - the Wigner semicircle distribution [23, 27]. Specifically, for matrix

distributions with zero mean and finite variance the limiting spectral density is given

by

Äsc(¼) =
1

2Ã

√
4 − ¼2, (1.15)

where Äsc(¼) = 0 for ¼ outside of the interval [−2, 2]. The rescaling ensures that the

limiting distribution is supported on the interval [−2, 2] and, in the case of Gaussian
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Fig. 1.1 (a) The estimated eigenvalue density of a single 1000 × 1000 GUE matrix.
The red solid line denotes the Wigner semicircle density. (b) Log-gas picture. The
orange solid line denotes a harmonic potential and the blue markers are eigenvalues of
a single 30 × 30 GOE matrix.

matrices, is given by ¼ →
√

2¼/
√
´D. The alignment between the spectral density of

a single D ×D GUE matrix with D = 1000 and the semicircle distribution is depicted

in Figure 1.1(a), with the semicircle distribution (red solid line) serving as an accurate

approximation for the spectral density. This exemplifies the self-averaging nature of

the spectral density in sufficiently large Wigner matrices.

In the Gaussian case, the limiting spectral distribution can be obtained by a

technique common in statistical mechanics. By considering the log-gas picture of the

eigenvalue JPDF in Eq. (1.7), Wigner’s semicircle distribution emerges in the limit

of D → ∞ by minimizing the free energy corresponding to the partition function

Z =
∫

d¼̃e−βH(λ̃) with H given as in Eq. (1.7) [4, 2, 28].

The property of a common distribution of matrix entries can be relaxed in terms of

more general conditions [27]. Exceptions of the Wigner law occur for random matrices

with additional structure like Markov matrices [27, 29], sparse matrices with few

non-zero entries or sharply peaked matrix element distributions [30, 31], and banded

matrices with small bandwidth [32–42].

Non-Hermitian matrices - circular, elliptic and hypotrochoidic law

We turn to limiting spectral densities of non-Hermitian random matrices, which are

important in our analysis of random Kolmogorov and ASEP generator spectra in

Chapters 4 and 5. A distinction from the Hermitian case is that eigenvalues are

complex, hence, limiting spectral densities are defined within the complex plane.
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Fig. 1.2 The estimated eigenvalue density of the (a) GinUE, (b) elliptic ensemble with
Ä = 0.3 and (c) random graphs with cycle length g 5. Darker color indicates higher
density. Matrices are of size 1000 × 1000 and averages are over 200 samples. The red
solid curves denote the boundary of the Girko disc (a), an ellipse with axes 1 ± Ä (b),
and a hypotrochoidc curve (c), respectively.

The spectral densities of Ginibre matrices (iid entries) with non-exotic matrix

element distributions conform to a common, deterministic limiting spectral density.

This distribution is uniform on a disk centered at the origin of the complex plane

[43, 44]. Due to the simple shape of the support, the limiting law is called the circular

law. In honor to Girko, who first derived it in a general setting [43], it is also known

as Girko law. In this thesis, we will alternate between the two notions.

Figure 1.2(a) illustrates the computed spectral density of D ×D random GinUE

matrices with D = 1000. It shows a concentration predominantly within the Girko disc,

where it appears uniform. The GinUE matrices are rescaled by ¼ → ¼/
√
D resulting

in the Girko disc having unit radius. The minor variances noted in Figure 1.2(a) are

attributable to finite sample effects, derived from a dataset of 100 samples. We note

that due to the self-averaging of the spectral density, similar results to Figure 1.2(a)

would be obtained for a single realization of the GinUE with D ≈ 105.

The Girko disc is the limiting spectral density of random matrices with independent

entries. To investigate the spectral boundary of the ASEP in Chapter 5 from the RMT

perspective, it is advantageous to consider random matrices with correlated entries.

Let us first focus on random matrices with two-point correlations between opposite

off-diagonal matrix entries

ïHijHjið = Ä/D, (1.16)

where ï. . . ð denotes the averaging over the random matrix ensemble. Random matrices

of such ensembles have a uniform limiting spectral density, which is supported on the
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ellipse centered at 0 with semi-major and -minor axis 1 + Ä and 1 − Ä , respectively

[45, 46]. This density transitions from the Girko disk at Ä → 0 to Wigner’s semicircle

at Ä → 1. An ensemble of matrices Hell following this elliptic law is constructed by

mixing matrices H1 and H2, which adhere to the semicircle law, as

Hell =
1√
2

(√
1 + ÄH1 +

√
1 − ÄiH2

)

. (1.17)

Figure 1.2(b) displays the elliptic law, illustrating the limiting spectral distribution

of Eq. (1.17) with Ä = 0.3, where H1,2 are distributed according to the GUE. The

boundary of the support, marked by a red curve, corresponds to an ellipse with axes

1 ± Ä .

We note that the two-point correlations given by Eq. (1.16) imply 1
D

ïtr(H2)ð = Ä .

In this form, matrices adhering to the elliptical law are naturally generalized to matrices

with higher-order correlations by considering powers k g 2,

1

D
ïtr(Hk)ð = Ä. (1.18)

In the large matrix size limit, the spectral boundary of ensembles with such correlations

of matrix entries takes the form of a hypotrochoid, a curve generated by a point on

a smaller disk rolling inside a larger circle. The limiting density is thus called the

hypotrochoidic law [47]. For k = 2 the elliptic law and for k = 1 the Girko law are

recovered. We note that the limiting spectral density is not flat for k > 2, as evident

in Figure 1.2(c) for k = 5.

The hypotrochoid characterizing the spectral boundary can be parametrized as

e−it(µ1 + µ2e
ikt) (1.19)

with t running from 0 to 2Ã. The real constants µ1,2 depend on the matrix ensemble [47]

and their ratio adjusts the “spikiness” of the boundary. In the limit of µ2 → 0, the

circular law is recovered, resulting in a non-spiky boundary. For 0 j µ2 ≈ µ1/k the

spectral boundary appears spiky, as shown in Figure 1.2(c). This adjustability of the

spikiness in the parametrization of the hypotrochoid is relevant to our analysis of the

spectral boundary of the ASEP in Chapter 5.

An ensemble conforming to the hypotrochoidic law are adjacency matrices of random

directed graphs [47]. For these matrices to satisfy Eq. (1.18), the associated graphs

must predominantly contain cycles of length k. The relationship between the cycle

length of graphs and the trace powers, given by Eq. (1.18), will be detailed at the end
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of this introduction to RMT in Section 1.1.5. A modification of this graph ensemble

will be compared to the ASEP in Chapter 5.

Figure 1.2(c) displays the spectral density of adjacency matrices of random sparse

directed graphs, specifically designed without cycles shorter than length 5. These

graphs are formed by adding 400 cycles of length 5 to an initially empty graph with

D = 1000 vertices, ensuring no cycles of length < 5 exist. The resulting adjacency

matrices exhibit average trace correlations Ä , as defined by Eq. (1.18), with Ä = 0 for

k < 5 and Ä ≈ 2.2 for k = 5. While cycles longer than length 5 are present in this

ensemble, their correlations are less dominant. In this graph ensemble, the edge count

(2000) is comparable to the vertex count, resulting in significant spectral weight at

zero, which is not depicted in Figure 1.2(c).

1.1.3 Eigenvalue correlations

This section discusses correlations between adjacent eigenvalues, quantified by level

spacings and level spacing ratios. First, we will address the Hermitian case, where

eigenvalues are real. The eigenvalue correlations of Hermitian random matrices are an

important signature of quantum chaos. Level spacing ratios will be calculated for the

Bose-Hubbard model and compared to the RMT prediction in Chapter 3. Second, we

will focus on the non-Hermitian case, where eigenvalues are complex. We introduce

complex spacing ratios, which will be used in analyzing spectral correlations of random

Kolmogorov operators in Chapter 4. Third, we present level spacings and level spacing

ratios of uncorrelated random values. These are important for demarcating chaotic

from non-chaotic quantum systems in Chapter 3.

Real level spacings

Correlations of nearby real eigenvalues can be measured in terms of the spacing between

them. Let us consider ordered eigenvalues ¼j < ¼j+1. Given two adjacent energy levels

¼j and ¼j+1 the level spacing is defined as sj = ¼j+1 − ¼j.

For random matrix ensembles, where the JPDF of eigenvalues is known, the

distribution of the level spacings s can in principle be obtained by integrating out all

but two neighboring eigenvalues. This turns out to be a difficult task and closed form

expressions are up-to-date not known, even for the Gaussian ensembles. Nevertheless,

from the eigenvalue JPDF of the Gaussian ensembles given by Eq. (1.6), we should infer

some information on the level spacing distribution. For example, the power ´ of the

Euclidean distance between two eigenvalues suggests that the density for small spacing
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Fig. 1.3 (a) Wigner’s surmise of the level spacing distribution for GOE, GUE and the
GSE (bottom to top at peak). (b,c) Unfolded spacing distribution of a single random
matrix with dimension D = 10, 000 from the (b) GOE and (c) Wigner ensemble
with uniform entries between ±1. Both distributions are well approximated by the
corresponding Wigner surmise.

s should vanish proportional to sβ, while the density should vanish exponentially for

large s due to the confining harmonic potential.

These heuristic guesses from the form of the eigenvalue JPDF are confirmed in the

case of matrix dimension D = 2, where the density of the only spacing s = ¼2 − ¼1 is

given by

P (s) =
1

Zβ
sβe −cβs

2

, (1.20)

with Zβ a normalization constant and cβ another constant. The functional form of

Eq. (1.20) confirms the expected power-law vanishing of s for small s and exponential

vanishing for large s. This is displayed in Figure 1.3(a).

Surprisingly, the spacing distribution of 2 × 2 Gaussian matrices is a good approx-

imation of the spacing distribution of large D Gaussian matrices. This is known as

Wigner’s surmise [7]. In Figure 1.3(b), the level spacing density of a single GOE matrix

with dimension D = 10, 000 is displayed and agrees well with the Wigner surmise for

´ = 1 given by Eq. (1.20).

Similar to the Wigner law governing the limiting spectral density, the Gaussian

level spacing distribution applies to a broader class of matrices beyond the Gaussian

ensembles. Specifically, random matrices that share the same moments of matrix

elements with the Gaussian ensembles exhibit identical level spacing distributions

[44, 48]. Typically, matching the first two moments — the mean and variance —

is sufficient [49]. This phenomenon is known as the universality of level spacing

distributions. The symmetry class (´ = 1 real, ´ = 2 complex or ´ = 4 quaternionic
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Fig. 1.4 Distribution of level ratios (a) r and (b) r̃ of a single GOE matrix with
dimension D = 10, 000; in both cases well approximated by the GOE Wigner-like
surmise Eq. (1.23).

matrix entries) of a Hermitian random matrix, irrespective of whether the measure is

Gaussian or not, determines the level spacing distribution.

This universality is highlighted in Figure 1.3(c) where the spacing distribution of

a Wigner matrix with uniformly distributed matrix elements between −1 and +1 is

displayed. As the matrix entries are real, the spacing distribution is well approximated

by the Wigner surmise with ´ = 1.

Real level spacing ratios

When considering differences between eigenvalues in terms of level spacings, we ignored

the overall scale of the differences. The level spacings depend on the local eigenvalue

density. A comparison of the level spacing distribution originating from different sources

(different parts of the spectrum or different random ensembles) is only meaningful with

a common local eigenvalue density. Unifying the local eigenvalue density is known as

unfolding of the spectrum.

In Eq. (1.20) as well as in Figure 1.3, the eigenvalue density in the form of Wigner’s

semicircle distribution was taken into account already, resulting in an average level

spacing of 1. This is evident in Figure 1.3, where the peak of the densities given by

Wigner’s surmise is located close to 1.

Unfolding the spectrum can be cumbersome, especially, when the (limiting) spectral

density is not known. This might not so much be an issue for random matrix ensembles,

which typically obey Wigner’s semicircular law, but can be problematic for physical

many-body systems. It has therefore become common to investigate instead of sj the
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distribution of spacing ratios [50, 51]

rj =
sj+1

sj
. (1.21)

Studying the ratio distribution bypasses the need to unfold the spectrum as the

dependence of sj on the spectral density cancels in the numerator and denominator.

Using the quantity

r̃j = min

(

rj,
1

rj

)

=
min (sj, sj+1)

max (sj, sj+1)
(1.22)

has the additional benefit of r̃j having bounded support, r̃j ∈ [0, 1]. This is an

advantage in numerical simulations, where only finitely many samples are available

and densities are approximated by histograms. The two ratio distributions are related

by P (r̃) = 2P (r)Θ(1 − r), where Θ denotes the Heaviside function [51].

The level ratio distributions of r and r̃j are not known in closed form, just like the

level spacing distribution. Similar to Wigner’s surmise, an approximation to the level

spacing ratio distribution is known [51] and given by

P (r) =
1

Zβ

(r + r2)β

(1 + r + r2)1+3β/2
, (1.23)

where Zβ is the normalization constant. For r̃ instead of r, Eq. (1.23) has an additional

factor of 2 and is confined to the interval [0, 1]. The spacing ratio distributions of

Gaussian random matrices with large matrix dimension D is well approximated by the

Wigner-like surmise in Eq. (1.23) [51].

In Figure 1.4, the spacing ratio distribution of r in (a) and r̃ in (b) are shown for

a single GOE matrix with D = 10, 000. The Wigner-like surmise with ´ = 1 given

by Eq. (1.23) is well approximating in both cases. The surmise for the spacing ratio

distribution has similar features to the Wigner surmise of the level spacings given by

Eq. (1.20). Both densities vanish for decreasing argument as power-law with power ´.

This enables either to distinguish between the universality classes.

Complex level spacing ratios

Let us now turn to eigenvalue correlations of non-Hermitian matrices. Eigenvalues of

such matrices are in general complex and do not follow a natural ordering. Nonetheless,

every eigenvalue ¼j has a nearest neighbor eigenvalue ¼NNj and a next-nearest eigen-

value ¼NNNj , which are closest and second closest in Euclidean distance, respectively.
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Fig. 1.5 Distribution of complex spacing ratios r of the (a) GinUE , (b) random
ensemble with complex entries uniformly distributed in [−1, 1]2 and (c) uncorrelated
complex normal variables. (a,b) Densities are estimated by 200 D ×D matrices with
D = 1000 and (c) 105 independent random variables.

Following the work by Ref. [52] we denote the complex spacing ratio (CSR) as

rj =
¼NNj − ¼j

¼NNNj − ¼j
. (1.24)

The CSR is in general complex valued with absolute value bounded by 1. We note

that this definition of a CSR does not reduce to the definition of the real spacing ratio

for real eigenvalues ¼, as it stills carries a sign. Taking the absolute value |r| results in

the real spacing ratio r̃ for real eigenvalues.

We first consider the CSR distribution of the GinUE. In Figure 1.5(a) we present

the CSR distribution of D ×D GinUE matrices with D = 1, 000 obtained from 200

samples. The CSR displays vanishing density at 0 and 1. Both are a consequence of

eigenvalue repulsion, evident from the eigenvalue JPDF of the GinUE presented in

Eq. (1.9) of Section 1.1.1. Vanishing density at 0 results from repulsion of ¼j and ¼NNj ,

while repulsion of ¼NNj and ¼NNNj implies vanishing density at 1.

Similar to the Hermitian case, the correlations of non-Hermitian Ginibre ensembles

do not depend on the details of the matrix element distribution. Ginibre matrices, with

matching first four moments of matrix element distributions, have common eigenvalue

correlations [53]. As an example we show the CSR density of Ginibre matrices with

uniformly distributed entries in [−1, 1]2 ¢ C in Figure 1.5(b). The estimated densities

in panels (a) and (b) of Figure 1.5 only differ by finite size and sample fluctuations.
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Fig. 1.6 (a) Estimated densities of level spacings and (b,c) level ratios for 105 uncor-
related Gaussian random variables. The solid blue lines correspond to the analytical
expressions in Eq. (1.26) and Eq. (1.27).

Uncorrelated random variables

This section so far has been concerned with correlated random variables typical for

eigenvalues of random matrices. Following, we present the level spacings and ratios

of uncorrelated random variables. This discussion is motivated by quantum chaos

distinctions: chaotic systems have correlated eigenvalues like random matrices, whereas

non-chaotic systems have eigenvalues resembling uncorrelated variables.

Let us consider D uncorrelated, ordered values ¼j < ¼j+1, which are distributed

according to some common distribution. After unfolding one can assume without loss

of generality that the ¼’s are distributed uniformly in [0, D]. This choice of an interval

ensures an average spacing of 1. The independence of the values ¼ is not altered by the

unfolding procedure. It is well known that ordered samples of the uniform distribution

follow the Beta-distribution and so do their increments [54]. Especially, the cumulative

distribution function F of the spacing s is given by

F (s) = 1 −
(

1 − s

D

)D

. (1.25)

The corresponding density P (s) = d
ds
F (s) in the limit of large D becomes the density

of the exponential distribution with mean 1,

PPoi(s) = e−s. (1.26)

Uncorrelated values are referred to as Poisson distributed, since the order statistics

of the unfolded values correspond to arrival times of a Poisson process [54]. The

distribution of spacings in Eq. (1.26) is therefore referred to as “Poisson level spacings”.
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Unlike the correlated eigenvalues of random matrices, the spacing distribution for

uncorrelated values, PPoi, approaches 1 at vanishing spacing s → 0. This is illustrated

in Figure 1.6(a), which shows the level spacings for uncorrelated random variables.

This distinctive feature is often employed when distinguishing between correlated and

uncorrelated nearest-neighbor levels.

Similarly to the level spacing distribution, the distribution of spacing ratios can

also be derived analytically,

PPoi(r) =
1

(r + 1)2
, (1.27)

with an additional factor of 2 for r̃ instead of r. For uncorrelated random variables

both spacing ratios r and r̃ are shown in Figure 1.6(b) and (c), respectively. Like the

level spacing, the level spacing ratio densities do not vanish for r → 0 (r̃ → 0). Hence,

both level spacing and level spacing ratios are able to demarcate between correlated

and uncorrelated random variables.

A similar line of reasoning can be applied to the case of complex uncorrelated

values. The corresponding CSR distribution r is flat in the unit circle [52]. This is in

contrast to the CSRs of random matrix eigenvalues, which show vanishing density at 0

and 1. The CSR distribution of uncorrelated complex normal variables is depicted in

Figure 1.5(c). Up to finite size and sample fluctuations the CSR density appears flat

inside the unit circle with value Ã−1.

1.1.4 Eigenstates

In this section, we present the distribution of eigenstates of random matrices. We focus

on eigenstates of Hermitian random matrices with real coefficients. Understanding

of such states is important for motivating the Eigenstate Thermalization Hypothesis

(ETH) in Section 1.2.2 and deriving random matrix eigenstate-to-eigenstate fluctuations

of bosonic operators in Chapter 2. Additionally, in Chapter 3, the (de-)localization of

eigenstates is used to demarcate chaos from integrability in the Bose-Hubbard model.

The random matrix eigenstate is the typical chaotic state.

For this thesis, it is sufficient to consider eigenstates of the GOE. As depicted in

Eq. (1.5), the density of the GOE depends on the eigenstates solely through the Haar

measure dU defined on the orthogonal group. The invariance of the Haar measure

under actions of this group implies that eigenstates are also invariant. Consequently,

normalized eigenstates of the GOE are uniformly distributed on the (D−1)-dimensional

unit sphere SD−1 in RD. In fact, all ensembles invariant under the orthogonal group

have such distributed eigenstates.
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The invariant distribution on high-dimensional spheres is somewhat elusive. Its

approximation for large D is more convenient to deal with. Specifically, eigenstates of

invariant ensembles are closely approximated by a D-dimensional Gaussian distribution

with independent entries, zero mean, and variance D−1 [55, 56]. The variance D−1

ensures approximate normalization of such states.

The D-dimensional Gaussian states are likely to be delocalized, with their eigenvec-

tor coefficients evenly spread across the entire basis. This is in contrast to localized

eigenvectors where only a few coefficients are significantly non-zero.

Effective measures for assessing this (de-)localization are the inverse participation

ratio (IPR) and the kurtosis ». Both concepts are important for our analysis of

eigenstates in Chapters 2 and 3. For a normalized eigenstate v = (v1, . . . , vD), where

∥v∥2
2 =

∑D
j=1 v

2
j = 1, the IPR is defined as

IPR =
D
∑

j=1

v4
j . (1.28)

Given the normalization of the eigenstate v, the IPR ranges from D−1 to 1. An IPR of

D−1 indicates a fully delocalized state (where vj = D−1/2 for all j), while an IPR of 1

signifies a completely localized state (where vj = ¶jk for some 1 f k f D).

A measure closely related to the IPR is the kurtosis of an eigenstate. It estimates

the standardized fourth moment of a distribution with samples vj. The kurtosis of a

state v is defined as

» = D

∑D
j=1(vj − v̄)4

(

∑D
j=1(vj − v̄)2

)2 , (1.29)

where v̄ = 1
D

∑D
j=1 vj denotes the average coefficient. For vanishing average, v̄ = 0, the

kurtosis » and the IPR are related by » = D × IPR.

For large D, the kurtosis » of a Gaussian state is » = 3 with probability approaching

1. Consequently, Gaussian states have an IPR of 3D−1, which is close to a completely

delocalized state. However, the inherent randomness in the Gaussian states inhibits

such states from reaching an IPR of D−1, which is characteristic of the deterministic,

completely delocalized state. Nevertheless, states with kurtosis close to 3 (or IPR close

to 3D−1) are considered delocalized.

Eigenstates of more general random matrix ensembles than the GOE, for example

Wigner matrices with non-exotic matrix element distributions, are typically delocalized

[57, 58]. Deviations appear in random banded matrices with small band width and in

adjacency matrices of sparse graphs with low connectivity [34, 30, 31, 59].
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1.1.5 The graph framework

In this section, we present the connection between matrices and graphs. Specifically,

we discuss adjacency and Laplacian matrices of graphs and how their spectra relate to

graph properties. Additionally, random graph ensembles and their sampling methods

will be briefly touched upon. The correspondence between matrices and graphs is

important for discussing Markov generators in Chapters 4 and 5. The relation between

graphs and matrices has already been used for presenting an ensemble of random

matrices, obeying the hypotrochoidic law in Section 1.1.2.

Graphs are composed of vertices, labeled 1, . . . , D, and edges (i, j) linking these

vertices. The degree of a vertex i denotes the number of edges connecting to i. In this

thesis, we deal exclusively with graphs without multiple edges connecting the same

pair of vertices. Consequently, graphs are one-to-one with the adjacency matrices A.

Their matrix entries, Aij, equal 1 if there is an edge (i, j) between vertices i and j, and

0 if not. This constitutes the standard definition of adjacency matrices. In this thesis,

the definition is expanded to include arbitrary real or complex values Aij. These are

referred to as the weights of the edges (i, j). A weight of Aij = 0 always signifies the

absence of an edge from vertex j to i. In Chapters 4 and 5, graphs with general edge

weights will be discussed.

The graph Laplacian matrix L = D −A offers an alternative matrix representation

to the adjacency matrix. Here, D is the degree matrix with each diagonal element

Dii representing the degree of vertex i. This Laplacian is related to the discrete

approximation of the continuous Laplace operator ∆ = ∇2 by finite differences. The

negative Laplacian −L serves as a generator for continuous-time Markov processes on

finite state spaces, as detailed in Section 1.3.1.

Graphs can be undirected or directed. In undirected graphs, edges lack orientation,

allowing traversal between vertices i and j in both directions. Conversely, directed

graphs have unidirectional edges, where an edge from vertex i to j does not necessarily

imply a reciprocal edge from j to i. For undirected graphs, both adjacency and

Laplacian matrices are symmetric with a real spectrum. In directed graphs, these

matrices are typically asymmetric, leading to a complex spectrum.

Spectra and graph structure

The spectra of the adjacency matrix A and the Laplacian L are deeply connected to

the properties and structure of the graph itself [60].
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One relation between the spectrum of the adjacency matrix and graph properties

has already been used at the end of Section 1.1.2 to construct an ensemble of random

adjacency matrices following the hypotrochoidic law. The sum of the kth powers of

eigenvalues of A,
∑

i ¼
k
i , equals tr(Ak), which in turn represent the total number of

closed walks of length k. The latter follows from considering the entry (Ak)ij which

counts the distinct k-step walks between vertices j and i. The diagonal elements

(Ak)ii and tr(Ak), respectively, count the unique closed walks of length k starting at

vertex i, and the total number of such walks graph-wide. A cycle is defined as a closed

walk without repeated edges. If tr(Ak) = 0, the graph lacks closed walks of length k,

and consequently, cycles of that length. Hence, the adjacency matrices of the graph

ensemble discussed in Section 1.1.2 exhibit zero trace correlations as per Eq. (1.18) for

k < 5, while these correlations become dominant when k = 5.

Like the spectra of adjacency matrices, the spectra of Laplacians are also related to

properties of the corresponding graph. By definition, the Laplacian spectrum resides

in the right half of the complex plane. The eigenvalue with the smallest real part is

¼1 = 0. Its multiplicity reflects the connectivity of the graph. Specifically, if ¼1 has a

multiplicity of one, the graph is connected. In undirected graphs, this implies that every

vertex is accessible from any other vertex. In directed graphs, connectivity means that

all vertices are reachable from each other when edge directions are disregarded, allowing

bidirectional traversal. A directed graph where each vertex is accessible from every

other vertex, respecting the directed nature of the edges, is termed strongly-connected.

The spectral gap, defined as the real part of the second-smallest (by magnitude of

the real part) eigenvalue ¼2 of the Laplacian, provides further information about the

connectivity of the graph [61, 62]. In a nutshell, a large spectral gap in a (strongly)

connected graph implies “severe connectivity”, requiring the removal of numerous

vertices to disconnect it. In contrast, a small spectral gap makes the graph easily

disconnected by removing few vertices. For instance, a fully connected graph exhibits a

maximal spectral gap and remains connected despite removal of any number of vertices.

A one-dimensional line graph has a minimal spectral gap and becomes disconnected

with the removal of just one non-boundary vertex.

Random ensembles

Random graph ensembles can be defined by specifying properties (such as number

of vertices and edges, average degree, connectivity, or edge weight distributions) and

then considering a distribution, typically the uniform distribution, across all graphs

meeting these criteria. Sampling from these ensembles often involves starting with
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a deterministic graph, such as an empty or fully connected graph, and iteratively

modifying vertices and edges randomly.

The random matrices introduced in Section 1.1 are adjacency matrices of random

graph ensembles. Matrices with iid elements correspond to fully connected graphs with

random iid edge weights. In Section 1.1.2, the random matrix ensemble, following the

hypotrochoidic law, can be represented by adjacency matrices of graphs that are not

fully connected but rather sparse. The random graph ensemble was constructed by

iteratively adding cycles of length k = 5 to an initially empty graph, ensuring that

each addition of a cycle into the graph did not create cycles with length shorter than

5. This process was continued until the graph contained a sufficient number of edges.

Samples created this way are expected to be approximately uniform over all graphs

with fixed number of vertices and edges and the property that no cycles with length

smaller than 5 are present in the graph.

More examples of random graph ensembles will be presented in Chapters 4 and 5.

1.2 Quantum many-body systems

This section provides some relevant background related to quantum many-body systems,

underpinned by Random Matrix Theory (RMT). Section 1.2.1 presents the interplay

between classical and quantum chaos, emphasizing the impact of RMT on quantum

chaos. In Section 1.2.2, we discuss the development of the Eigenstate Thermalization

Hypothesis (ETH) from RMT. In Chapters 2 and 3, the classical-quantum chaos

correspondence and statistical aspects related to the ETH are studied for the Bose-

Hubbard model. We introduce this many-body system in Section 1.2.3.

1.2.1 Quantum chaos

The concept of chaos in quantum systems has been a subject of debate since the

emergence of quantum mechanics [63]. While dynamics of classical chaotic systems

exhibit sensitivity to initial conditions [64], applying these ideas to quantum mechanics

is challenging due to its linear nature. This linearity contrasts with the non-linear

characteristics of classical chaos. Consequently, the principles of classical chaos do not

directly translate to the quantum realm.

The adoption of random matrices to describe complex quantum systems significantly

advanced the field of quantum chaos [65–67]. It was observed first in single particle

systems, particularly in quantized billiards where a single particle is confined by rigid
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walls, that high-energy level correlations follow RMT predictions when their classical

counterparts are chaotic. Conversely, when the classical system is (Liouville-) integrable,

possessing sufficient integrals of motion, the energy levels behave like uncorrelated

variables. This led to the hypothesis that quantum systems with a classically chaotic

limit should follow RMT level statistics [68, 69], while those with classical integrability

display Poisson level statistics [70].

Convincing evidence supporting the conjectures has been found in quantum systems

with classical limits other than billiards, such as coupled rotors or coupled tops [71–75],

bosonic systems [76–78], the Dicke model and other spin-boson systems [79–89], the

Sherrington-Kirkpatrick model [90], and spin systems [91–94]. A common theme is

that, for spin systems or systems with angular momentum, the large-spin or large

angular momentum limit is the classical limit. For bosonic systems, the classical

limit is attained for large number of bosons. In Section 1.2.3, we detail this for the

Bose-Hubbard model.

Besides the correlation of eigenvalues, other properties of quantum systems have

been used to distinguish between chaotic and non-chaotic systems. In quantum many-

body systems, RMT eigenvalue correlations typically coincide with delocalization of

eigenstates, with near-Gaussian distributed coefficients [95–104]. In contrast, non-

chaotic systems are characterized by imperfectly delocalized states, typically with

markedly non-Gaussian coefficient distributions [105, 95, 96, 99].

Other measures of chaos are based on the dynamics of quantum systems, such

as the out-of-time-ordered correlator (OTOC) [106–109]. It describes the averaged

evolution of quantum operators at different times. In the classical limit of quantum

chaotic many-body systems, the OTOC typically grows for short times exponentially

[110, 93, 83–85, 111, 112]. Although there are some exceptions [113]. This growth

rate is related to Lyapunov exponents of the classical limit. Consequently, the OTOC

has been identified as a quantum version of the classical Lyapunov exponent. In

classical systems, Lyapunov exponents indicate the sensitivity of dynamics to small

perturbations of initial conditions. They measure the exponential rate at which nearby

trajectories diverge. Lyapunov exponents will be discussed in Chapter 3.

1.2.2 The Eigenstate Thermalization Hypothesis

In the past decades, significant research efforts have been devoted to elucidating the

mechanisms by which isolated quantum systems undergo relaxation and thermalization.

Theoretical foundations of thermalization in closed quantum systems trace back to work

of von Neumann [114]. But recent advancements in ultra-cold atom and trapped ion
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experiments, enabling effective isolation of these systems over experimentally relevant

time-scales, have revitalized interest in this area [115]. A major challenge for the

emergence of thermalization is the unitary and reversible nature of time-evolution in

isolated quantum systems, echoing the difficulties encountered in linking classical and

quantum chaos.

A way to address this problem emerged in the 1990s, when Deutsch and Srednicki

introduced the Eigenstate Thermalization Hypothesis (ETH) [116–119], which has

since become pivotal in understanding thermalization in isolated quantum systems

[120–124]. In much the same way that RMT has been instrumental in advancing our

understanding of quantum chaos, it has similarly played a key role in addressing the

question of thermalization in these systems. Moreover, the ETH is strongly related to

eigenstates of random matrices (introduced in Section 1.1.4). Following Ref. [124], we

will present the progression from eigenstates of random matrices to the formulation

of the ETH. This not only highlights the relevance of RMT for the ETH and the

thermalization of isolated quantum systems, but also builds intuition for our analyses

of “ETH fluctuations” in Chapter 2.

From random matrix eigenstates to the ETH

We consider an isolated quantum system governed by the Hamiltonian H and an

observable of interest A. Let us denote the energy eigenvalues of H by Em and the

corresponding eigenstate by |Emð. For simplicity, we assume that energy levels are

non-degenerate. This is typical for generic Hamiltonians, which have repulsive energy

correlations, akin to random matrices. The matrix elements of A in the eigenstate

basis of H are denoted by Amn. Let us consider an initial state |Èð =
∑D
m=1 cm |Emð,

which evolves unitarily according to H. Then the observable A evolves as

A(t) = ïÈ(t)|A |È(t)ð =
D
∑

m=1

|cm|2Amm +
∑

m̸=n

cmc
∗
ne

i(En−Em)tAnm. (1.30)

The dependence of the expression on the initial state for all times t, via cn, raises

the question of how thermalization can occur independently of the initial state. One

explanation is derived by assuming that the eigenstates |Emð resemble those of random

matrices, being independent D-dimensional Gaussian states with mean 0 and variance
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D−1. Under this assumption, the operator elements satisfy

ïAmnð =











1
D

tr(A) for m = n,

0 for m ̸= n,
(1.31)

where the average ï. . . ð is over the distribution of eigenstates. Thus the ensemble

averaged A(t) is

ïA(t)ð = ïAmmð
D
∑

m=1

|cm|2 =
1

D
tr(A), (1.32)

where we use the normalization of the initial state |Èð. Consequently, averaging over the

randomness of the eigenstates implies that the observable A attains a time-independent

value, represented by the mean of all possible values that A can assume.

The fluctuations of A(t) around its average value are crucial in determining the

utility of the average as a reliable indicator of A(t). For eigenstates |Emð that exhibit

RMT characteristics, these fluctuations decay in the limit of large Hilbert space size D.

For Gaussian states, the diagonal variance are given by [124]

ïA2
mmð − ïAmmð2 =

2

D

tr(A2)

D
. (1.33)

This as well follows from a more general expression, derived in Chapter 2. Similarly,

the off-diagonal (m ̸= n) variance is [124]

ïA2
mnð − ïAmnð2 =

1

D

tr(A2)

D
. (1.34)

Consequently, the matrix elements of the operator can be approximated by

Amn ≈ tr(A)

D
¶mn +

1√
D

√

tr(A2)

D
Rmn, (1.35)

where Rmn represents a D-independent random variable with a variance of O(1). If the

terms tr(A)
D

and tr(A2)
D

are independent of D, the fluctuations of Amn decay as D−1/2

and, after some initial dynamics, the observable A(t) fluctuates around tr(A)
D

.

Note that Eq. (1.35) does not have any direct dependence on the eigenvalues of H.

Hence, the random matrix picture should be only accurate at high energies, close to an

“infinite temperature” state. A more physically reasonable version of Eq. (1.35) should

include some energy dependence. Moreover, since relaxation times depend on the
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observable, the matrix elements Amn in physical systems include information beyond

the RMT prediction in Eq. (1.35).

The generalization of Eq. (1.35) to describe observables in physical systems is the

ETH. In terms of the operators elements Amn = ïEm|A |Enð, where |Emð, |Enð are the

eigenstates of H, the ETH predicts that

Amn = fA(Ē)¶mn + e−S(Ē)/2gA(Ē, É)Rmn, (1.36)

where S is the thermodynamic entropy, with eS(Ē) being the density of states at energy

Ē = (En + Em)/2, and É = Em − En. The functions fA and gA are smooth functions,

and Rmn is a (pseudo) random variable with zero mean and unit variance. The RMT

eigenstate ansatz, Eq. (1.35), is recovered by specializing fA = tr(A)
D

, gA =
√

tr(A2)
D

and

eS = D, which are all energy (eigenvalue) independent quantities.

The ETH in many-body systems

Evidence from a large number of numerical studies strongly suggests that the ETH

is satisfied for eigenstates from the bulk of the spectrum of quantum-chaotic many-

body systems and for physical observables [120, 125–141, 124, 142, 143, 95, 144–

151, 97, 152, 153].

In contrast, the ETH is typically violated by integrable systems [125, 133, 154, 155,

135, 156, 138, 157, 158, 150, 159, 152], strongly localized systems [140, 160], and by

many-body scar states [161–163].

Quantifying if a system obeys the ETH or not involves finite size scaling analysis

of the fluctuations of matrix elements Amn around the averages given by f and g. For

many-body systems with finite Hilbert space dimension D, the entropy in the bulk of

the spectrum typically increases as S ∼ logD, implying e−S/2 ∼ D−1/2. Fluctuations of

operator elements Amn obeying the ETH thus decrease as D−1/2. This decrease of Amn
fluctuations has been examined in several studies [133, 154, 155, 135, 137, 138, 156–

158, 143, 146, 149, 164, 165, 150, 151, 97, 152, 166].

For many-body systems, the Hilbert space dimension D is typically increasing

exponentially with the system size L. Therefore, fluctuations of Amn obeying the ETH

decrease exponentially fast with increasing L. This exponential decay contrasts sharply

with integrable systems, which do not obey the ETH scaling D−1/2. The fluctuations of

diagonal matrix elements Amm generally decrease as a power-law in L (logarithmically

in D) [154, 155, 135, 156–158, 150, 152], and the off-diagonal matrix elements generally

have a non-Gaussian distribution [138, 150, 159].
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The ETH is an ansatz of how observables in isolated quantum systems reach a

thermal value. Consequently, the finite size scaling analyses are conducted in the

thermodynamic limit. For systems with conserved particle number N , this typically

is the limit of both increasing L and N , keeping the particle density Ä = N/L fixed.

Here, the particle density Ä should not be confused with the spectral density Ä(¼) of

random matrices. In Chapter 2, we investigate the fluctuations of Amn in the classical

instead of the usual thermodynamic limit. The Bose-Hubbard system will serve as a

test model for this task.

1.2.3 The Bose-Hubbard model

The Bose-Hubbard model is a cornerstone in the study of quantum many-body systems,

particularly in the context of ultracold atoms in optical lattices. Originating from

the Hubbard model, which was initially formulated to describe electrons in solids,

the Bose-Hubbard model adapts the framework to bosonic particles. The model is

described by a Hamiltonian that includes two primary terms: the kinetic term, which

accounts for the tunneling of bosons between adjacent lattice sites, and the interaction

term, which describes the on-site interaction between bosons. This Hamiltonian H is

commonly denoted as

H = −J

2

∑

ïj,lð

(a jal + H.c.) +
U

2

∑

j

nj(nj − 1) − µ
∑

j

nj. (1.37)

Here, J > 0 is the tunneling amplitude, U > 0 is the on-site interaction strength, µ is

the chemical potential, a j and aj are the bosonic creation and annihilation operators

at site j, and nj = a jaj is the number operator. The bosonic creation and annihilation

operators fulfill the usual commutation relations [aj, a
 
l ] = ¶jl. Throughout this thesis

we set ℏ = 1. The sum ïj, lð runs over nearest-neighbor pairs of lattice sites.

Due to its conceptual simplicity and computational tractability, the Bose-Hubbard

model has been used to study phenomena in condensed matter physics, such as

superfluid and Mott insulating phases [167–169]. In this thesis, the Bose-Hubbard

model serves as a many-body system to investigate the relation between classical and

quantum chaos and “ETH fluctuations” in the classical limit. For these studies, we

slightly modify the Hamiltonian in Eq. (1.37). Namely, we will consider Bose-Hubbard

systems restricted to open-boundary chains of length L, given by

H = −1

2

∑

ïj,lð

Jj,la
 
jal +

U

2

L
∑

j=1

nj(nj − 1). (1.38)
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Compared to Eq. (1.37) we relax the condition of constant tunneling rate J per

site to a site-dependent, symmetric tunneling coefficient Jj,l = Jl,j. In the remainder

of this thesis, we let J1,2 = 1.5 and Jj,l = 1 for j, l g 2. This breaks the reflection

symmetry of the model. It will simplify the analyses conducted in Chapters 2 and 3,

but qualitative results are independent of breaking this symmetry.

Further, we set the chemical potential µ = 0. The corresponding term
∑

j nj in

Eq. (1.37) is the number operator and is conserved by H. Thus a change in the chemical

potential results in a shift in the energy spectrum, which we can ignore without loss of

generality for the analyses presented in this thesis.

The Bose-Hubbard model consists of N indistinguishable bosonic particles dis-

tributed across L sites. Because bosons are not restricted by the Pauli principle

the total Hilbert space dimension D is D =
(

N+L−1
L−1

)

. The Hilbert space size grows

exponentially in the thermodynamic limit of increasing L and N and fixed particle

density Ä = N/L. In the classical limit of fixed L and increasing N the Hilbert space

size grows polynomially in N as D ∼ NL−1.

Classical limit of the Bose-Hubbard model

The Bose-Hubbard model has a classical limit for increasing particle number N → ∞
and fixed system size L. For this limit to be well-defined, both the tunneling and the

interaction terms in the quantum Hamiltonian Eq. (1.38) need to have the same scaling

with N . For fixed number of sites L, the bandwidth of the hopping term a jal increases

as ∼ N , while the bandwidth of the on-site potential nj(nj −1) increases as ∼ N2. The

faster increase of the on-site interaction term is absorbed into an interaction parameter

Λ = UN, (1.39)

which is kept constant in the limit of N → ∞ and L fixed. The Bose-Hubbard

Hamiltonian in terms of the renormalized interaction strength Λ is given by

H = −1

2

∑

ïj,lð

Jj,la
 
jal +

Λ

2

1

N

L
∑

j=1

nj(nj − 1). (1.40)

To attain the classical limit, we have to renormalize the creation and annihilation

operators a( ) → a( )/
√
N = ā( ). In terms of ā and ā , the renormalized Hamiltonian
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H̄ is expressed as

H̄ = H/N = −1

2

∑

ïj,lð

Jj,lā
 
j āl +

Λ

2

∑

j

n̄j(n̄j − 1/N), (1.41)

where n̄ = ā ā. The renormalization of the bosonic operators makes the commutator

[āj, ā
 
j] = 1/N vanish in the limit of N → ∞. Hence, in this limit, the renormalized

operators ā and ā can be replaced by complex numbers È and È∗, respectively. Here,

È∗ is the complex conjugate of È. The so obtained Hamiltonian H is classical and

expressed as

H = −1

2

∑

ïj,lð

Jj,lÈ
∗
jÈl +

Λ

2

∑

j

|Èj|4. (1.42)

The dynamics of È(t) and È∗(t) are given by Hamilton’s equations of motion

i
∂

∂t
Èj =

∂H
∂È∗

j

= −1

2

∑

ïj,lð

Jj,lÈl + Λ|Èj|2Èj, (1.43)

where the index j runs from 1 to L and l runs over all neighbors of j. Eq. (1.43) is

also known as the discrete nonlinear Schrödinger equation (DNLS), or the discrete

Gross-Pitaevskii equation [170–173]. By identifying the complex plane C with the

real plane R2 the L complex equations in Eq. (1.43) become 2L real equations. Using

Cartesian coordinates proves to be computationally advantageous. Defining x = ReÈ

and y = ImÈ, Hamilton’s equations of motion can be expressed as

∂

∂t
xj =

1

2

∂H
∂yj

= −1

2

∑

ïj,lð

Jj,lyl + Λ(x2
j + y2

j )yj (1.44)

∂

∂t
yj = −1

2

∂H
∂xj

=
1

2

∑

ïj,lð

Jj,lxl − Λ(x2
j + y2

j )xj. (1.45)

Conserved quantities of the quantum Bose-Hubbard model impose constraints

on the classical dynamics. Specifically, the conservation of energy in the quantum

Hamiltonian directly corresponds to the conservation of the classical energy H of the

dynamics given by Eq. (1.43). Furthermore, the preservation of the total particle

number N in the quantum system implies that

∑

j

|Èj|2 = 1, (1.46)
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thereby limiting the phase space of the classical model to the real hyper-sphere S2L−1

within R2L. This can be derived by taking the time derivative of Eq. (1.46) and applying

Eq. (1.43).

The formal replacement of operators ā and ā by complex numbers È and È∗ can be

justified more rigorously by a semiclassical approximation of the quantum mechanical

propagator [174–176]. The propagator is expressed in terms of a path integral and a

stationary phase approximation is applied. The large parameter of the stationary phase

approximation is 1/ℏeff = N and the saddle-point conditions are Hamilton’s equation

of motion in Eq. (1.43). This has led to a widespread use of the Bose-Hubbard model as

a testbed for semi-classical methods [177–195, 110, 196, 197], and the quantum model

has been compared to that of the DNLS [198, 76, 199, 200, 77, 201, 78, 103, 202–204].

In Chapter 3, we will, in similar spirit, compare several properties of the Bose-Hubbard

model related to quantum and classical measures of chaos.

Chaos and integrability

The competition between tunneling and interaction terms generally makes the Bose-

Hubbard model chaotic. The remainder of this section aims to provide some intuition

for which parameters L and Λ the model shows chaos and for which it does not.

Let us first focus on L = 2 sites. In this special case, the Bose-Hubbard model is

integrable for all Λ. In the quantum case, eigenvalues and eigenstates are expressible

by a Bethe ansatz [205–207], making this system Bethe-integrable. In such systems,

eigenvalue correlations typically follow Poisson statistics. The methodology connecting

Bethe-integrability to Poisson statistics will be discussed for the ASEP generator in

Section 1.3.2. Despite the non-Hermiticity of the the ASEP generator, the underlying

reasoning holds for the Hermitian Bose-Hubbard system as well. In the classical case,

dynamics happen in 2L = 4 real dimensions. This system has two integrals of motion:

energy and the norm of (È1, È2) stated in Eq. (1.46). These are sufficiently many

integrals of motion to qualify the Bose-Hubbard model as Liouville-integrable.

For arbitrary system size L, both the quantum and the classical systems are

integrable in the limits of Λ → 0 and Λ → ∞. We first discuss the classical case.

If Λ = 0 then Eq. (1.42) reduces to a free particle Hamiltonian. If Λ → ∞ then,

effectively, J can be neglected. Hence, the equations of motion presented in Eq. (1.43)

decouple. In both limits, the classical Hamiltonian has sufficient integrals of motion

to be considered Liouville-integrable. In the quantum case, Eq. (1.38) becomes a

free particle Hamiltonian in the limit of Λ → 0. For Λ → ∞, the Hamiltonian given

by Eq. (1.38) is diagonal in the computational basis of mutual eigenstates of nj. In
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Fig. 1.7 Level ratios r̃ averaged over the whole spectrum, as a function of interaction
strength Λ = UN , shown in the range Λ ∈ (0.1, 100). The horizontal lines are ïr̃ðPoi

(lower green) and ïr̃ðGOE (upper red).

both limits, the many-body eigenvalues of the quantum model are given by sums of

single particle eigenvalues. Consequently, they do not repel, which is a signature of

non-chaotic models.

For finite Λ, 0 < Λ < ∞, the Bose-Hubbard model on L g 3 sites is known to be non-

integrable [208, 209, 77, 210, 103]. Despite being non-integrable, for L = 3 and to some

extent for L = 4 the system is not strongly chaotic but rather highly mixed, showing

signatures of chaotic and integrable models [180, 211, 199, 212–216, 78, 204, 217–219].

This mixed behavior of the Bose-Hubbard model, especially of the three site case, will

be discussed in Chapter 3.

To visually underline the parameter ranges under what the Bose-Hubbard model

is integrable or chaotic we present averaged spacing ratios of energy eigenvalues (of

the quantum model) in Figure 1.7 and compare with the prediction by RMT and

uncorrelated random variables. Similar figures have appeared in Refs. [211, 209, 217].

The Bose-Hubbard model belongs to the RMT-symmetry class of the GOE, as the

Hamiltonian in Eq. (1.38) is invariant under elementwise complex conjugation. Hence,

level statistics should be compared to those of the GOE. The corresponding average

level spacing ratio is ïr̃ðGOE ≈ 0.54 [51]. Conversely, an uncorrelated distribution of

random values leads to an average ratio of ïr̃ðPoi ≈ 0.39 [51].

Figure 1.7 displays the average ratio ïr̃ð as a function of Λ for different system

sizes L. It shows the transition of the system from integrable for small Λ to chaotic
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at intermediate Λ and back to integrable for large Λ. Notably, for small L, the level

ratio distributions deviate from both GOE and Poisson statistics at extreme Λ values.

This occurs because the Bose-Hubbard model transitions to free fermions as Λ → 0

and becomes diagonal in the computational basis when Λ → ∞. Consequently, the

eigenvalues are highly structured and do not adhere to any random sequence.

Furthermore, in small L systems, ïr̃ð peaks below the GOE value of approximately

0.54, even in highly chaotic regimes. This aligns with the mixed characteristics of the

Bose-Hubbard model for L = 3 and L = 4 sites. The peak approaches the GOE value

as L increases, indicating enhanced chaotic behavior in systems with larger L.

1.3 Stochastic many-body systems

The stochastic many-body systems considered in this thesis are placed within the

framework of continuous-time Markov chains (CTMCs). CTMCs are (continuous-time)

Markov processes that operate on finite state spaces. The characterizing property of a

Markov process is that future states depend solely on the present state, independent of

past states.

CTMCs provide a popular framework to model stochastic dynamics of many-

body systems in diverse fields ranging from physics, chemistry, and biology [220–223]

to economics [224, 225] and game theory [226, 227]. For example, they simulate

chemical reactions [228–234], gene regulation processes [235–239], quantum dynamics

(approximated by rate equations) [240–244], evolutionary game dynamics [227, 245, 246],

and many other processes. CTMCs are also the key element of such celebrated models

of statistical physics as contact processes [247–249], zero-range processes [250, 251]

and exclusion processes like the ASEP [250, 220, 252–258]. In some fields, CTMCs are

known under the names “classical Markovian master equations” or “rate equations” or

“Pauli rate/master equations”.

In this thesis, we consider generators of CTMCs and their spectra. We introduce

the generator of CTMCs in Section 1.3.1. In Section 1.3.2, we present the ASEP

as a prominent example of a stochastic many-body system modeled by a CTMC. In

Section 1.3.3, we introduce random (dense) generators of CTMCs and revisit their

spectral theory.
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1.3.1 Generators of Markov processes

For every time point t g 0, a CTMC is described via a probability vector P (t). The

coefficients Pj(t) denote the probability to be in state j at time t. We note that the

defining properties for a vector P to be a valid probability vector are that its coefficients

are non-negative, Pj g 0, and sum to one,
∑

j Pj = 1. Throughout this thesis, the total

number of states is denoted by D. Consequently, P (t) is a D-dimensional (probability)

vector.

The generator K of a CTMC represents the infinitesimal change of the probability

vector P (t). Due to the Markovian nature of CTMCs the infinitesimal change is given

by a linear first-order differential equation [259], the (Markovian) master equation,

d

dt
P (t) = KP (t). (1.47)

The generator K is known as Kolmogorov operator or Kolmogorov generator [260].

Since P (t) is a D-dimensional probability vector, K is a D×D-matrix. We choose P (t)

to be a column vector, so K acts in Eq. (1.47) on P (t) from the left. Moving forward,

we will use calligraphic letters (e.g., K) to denote matrices related to generators of

CTMCs, and standard letters (e.g., Kij) for their matrix elements.

To be a valid Kolmogorov operator, a matrix K must satisfy two conditions:

(i) all its off-diagonal elements have to be real and non-negative, Kij g 0, i ̸= j,

(ii) the sum over every column should be zero,
∑

iKij = 0.

The first condition implies that Kij can be interpreted as transition rate between states

i and j. Together with the second condition, it ensures that P (t) remains a probability

vector at all times t, given that P (0) is a probability vector [261]. The sum in the

second condition is over the columns, since K is acting from the left in Eq. (1.47).

Due to the first condition the second condition is only met by defining all diagonal

elements Kjj of K as

Kjj = −
∑

i̸=j

Kij. (1.48)

Consequently, any Kolmogorov operator can be expressed by a matrix M, with real,

non-negative elements Mij g 0 for i ̸= j and zero diagonal Mii = 0, as

K = M − J , (1.49)

where J is a diagonal matrix with diagonal elements Jjj =
∑

iMij. This separation

into an off-diagonal matrix M and a diagonal matrix J will be useful throughout this
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thesis. We note that the diagonal of M can be modified arbitrarily without changing

K, as any diagonal element Mii is canceled by subtracting J .

In Chapters 4 and 5, we study the spectrum of K. As K is in general non-

Hermitian, its spectrum is typically complex. Further, the matrix elements of K are

real, so eigenvalues are either real or come in complex conjugated pairs. Following the

Gershgorin circle theorem, all eigenvalues are located in the left complex plane [262].

The spectrum of K is related to the dynamics of the system. For an initial probability

vector P (0), the master equation has the formal solution

P (t) = etKP (0). (1.50)

Consequently, the real part of eigenvalues (which is f 0) relates to the relaxation times

of eigenmodes, while the imaginary part contributes to the oscillatory timescales of

the system.

Since the columns of K sum to zero, the spectrum contains at least one eigenvalue

¼1 = 0. All coefficients of the corresponding left eigenvector are equal. Corresponding

right eigenvectors are called steady or stationary states. These are attained in the

limit of infinite time t → ∞. If the graph corresponding to K is strongly connected,

the steady state is unique [263, 264, 261]. The relation between the (graph) Laplacian,

−K, and the corresponding graph has been discussed in Section 1.1.5.

Of special importance are the eigenvalues ¼ of K with the smallest absolute, non-

zero real part | Re¼|. Their absolute real part equals the so-called spectral gap µ∗. The

spectral gap is inverse to the timescale of relaxation of initial probability vectors P (0)

to the stationary state.

1.3.2 The Asymmetric Simple Exclusion Process (ASEP)

Before continuing with generic Kolmogorov generators it is instructive to consider

a paradigmatic example of a CTMC — the Asymmetric Simple Exclusion Process

(ASEP). In the following, we will overview the ASEP, formulate its generator in terms

of Pauli spin matrices, present phases of the stationary state and show the spiky

spectral boundary as an intriguing feature of its spectrum. Additionally, we highlight

the Bethe-integrability of ASEP and that eigenvalues are uncorrelated according to

the CSR distribution.

The ASEP is a paradigmatic stochastic many-body model in the realm of nonequi-

librium statistical mechanics and mathematical physics [250, 220, 252–258, 265]. It was

initially introduced to study kinetics of biopolymerization on nucleic acid templates



1.3 Stochastic many-body systems 37

q

p

(a)

p

q

(b)

0 10

1

low
density

high
density

maximal
current

(c)

Fig. 1.8 Sketches of the ASEP with (a) L = 10 sites (black dots), N = 5 particles
(red markers), and pbc and (b) L = 7 sites and obc. In (c) phase diagram of TASEP
(p = 1 and q = µ = ¶ = 0) with obc.

[266, 267] but soon extended its reach to other fields, modeling phenomena such as

traffic flow [268, 269], biological transport mechanisms [266, 267, 270–272], and surface

growth [273–276], just to name a few. Over the years, ASEP has served as a testing

ground for theoretical tools and methods in nonequilibrium statistical mechanics, such

as the matrix product ansatz [277–279] and the Bethe ansatz [276, 254, 280, 281, 257].

The ASEP consists of interacting particles on a lattice, where each particle can hop to

a neighboring site subject to the exclusion principle, which prohibits more than one

particle from occupying the same site at any given time. The process is termed “asym-

metric” due to the unequal probabilities for particle movement in different directions,

leading to a directional bias and a net current of particles even in the steady state.

This distinguishes it from its equilibrium counterpart, the symmetric simple exclusion

process, where particles are equally likely to move in either direction, resulting in no

net flow in the steady state.

In this thesis, we consider the ASEP on one-dimensional chains of length L with

both periodic boundary conditions (pbc) and open boundary conditions (obc). In

the pbc case, particles move along a ring, depicted in Figure 1.8(a) with the rate to

move clockwise p and counterclockwise q. In the obc case, particles move along a

one-dimensional chain, with particles entering and exiting at the ends of the chain (site

1 and L) from reservoirs. This is sketched in Figure 1.8(b). Similar to the pbc case,

the rate to hop right and left inside the chain is denoted by p and q, respectively. At

the ends of the chain, ³ and µ correspond to the entry and exit rates of particles at

the left end (site 1), while ´ and ¶ are associated with the exit and entry of particles

at the right end (site L).
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The ASEP is a continuous time process; the dynamical parameters are rates. For

an infinitesimal time step dt the probability for a particle to hop right or left is p dt or

q dt, respectively. Without loss of generality, we let p+ q = 1 unless explicitly stated

otherwise.

In the case that particles can only hop in one direction, the process is called

the Totally Asymmetric Simple Exclusion Process (TASEP). For pbc, the TASEP

parameters are p = 1, q = 0 and p = 0, q = 1. For obc, in addition, the entry and

exit rates of particles at the end of the chain are set accordingly. If p = 1 (q = 0),

then µ = ¶ = 0, only leaving ³ and ´ as free parameters. The case of q = 1 (p = 0) is

analogous.

The microscopic dynamics of ASEP with particles moving randomly only constrained

by the exclusion principle makes this stochastic process Markovian. This, together

with the finite size of the chain, puts the ASEP in the framework of CTMCs. Next, we

will discuss its (Kolmogorov) generator, the stationary state and the spectrum of the

generator.

The Kolmogorov generator K

The number of particles in the chain is denoted by N and the particle density by

Ä = N/L. This should not be confused with Ä(¼), which denotes the spectral density

of random matrices. We note that the particle number N (and so Ä) is conserved for

pbc, while it varies for obc.

The Kolmogorov generator K = M − J of ASEP can be formulated in terms of

Pauli spin-1/2 matrices. The spin-up state is interpreted as a particle present, while

the spin-down state is interpreted as a particle absent. For pbc, the off-diagonal matrix

M is given by

M =
L
∑

j=1

(

pÃ+
j+1Ã

−
j + qÃ+

j Ã
−
j+1

)

(1.51)

and the diagonal matrix J is given by

J =
1

4

L
∑

j=1

(

ÃzjÃ
z
j+1 − 1

)

. (1.52)

Here, Ã± denote spin raising and lowering operators, while Ãz denotes the z-direction

of the spin. We identify ÃL+1 as Ã1. The off-diagonal matrix M encodes the transition

rates of particles hopping in the ring, while J is fully determined by M and ensures

that K is a valid Kolmogorov operator.
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Exchanging p and q in Eq. (1.51) corresponds to taking the transpose of M and so

of K. This in particular implies that the spectrum of K is invariant under exchanging

p and q.

For obc, particles are allowed to enter and exit the chain at the boundaries. Thus,

the matrix M can be denoted as

M =
L−1
∑

j=1

(

pÃ+
j+1Ã

−
j + qÃ+

j Ã
−
j+1

)

+ ³Ã+
1 + µÃ−

1 + ´Ã−
L + ¶Ã+

L , (1.53)

while the diagonal J is given by

J = −1

4

L−1
∑

j=1

(

ÃzjÃ
z
j+1 − 1

)

− 1

2

[(

p− q

2
− ³+ µ

)

Ãz1 +
(

q − p

2
− ¶ + ´

)

ÃzL

]

+
1

2
[³+ ´ + µ + ¶] . (1.54)

In this expression, the bulk term of M remains consistent with that for pbc. The

sources and sinks of particles at the end of the chain are modeled by single spin-flip

operators. As for pbc, the diagonal matrix J is determined by M to ensure that K is

a valid Kolmogorov operator.

Stationary state

The ASEP as a CTMC converges in the long time limit to a stationary state. This

stationary state is a non-equilibrium state with non-zero particle current whenever

p ̸= q [282, 254].

In the obc case, the asymmetry of probabilities gives rise to nonequlibrium phase

transitions [283, 284, 279]. Already the TASEP, with p = 1 and q = µ = ¶ = 0, leaving

only ³ and ´ as free parameters, presents a rich and intricate phase diagram, depicted

in Figure 1.8(c). This diagram illustrates the different steady-state behaviors of the

system under varying rates of particle entry (³) and exit (´) and is typically divided

into three primary phases: low-density, high-density, and maximal current phases.

Each phase is characterized by distinct particle densities Ä = 1
L

∑L
j=1ïnjð and flux

strengths J = ïÃ+
i Ã

−
i+1ð, where the brackets ï. . . ð denote the expectation with respect

to the stationary state. These phases have to be understood in the limit of L → ∞.

In the low-density phase, the determining factor is the particle entry rate ³, subject

to ³ < min(´, 1/2). This results in a bulk density Ä = ³ below 1/2, with particle

current J = ³(1 − ³). In the high-density phase, constrained by ´ < min(³, 1/2),

the exit rate ´ becomes crucial, leading to a bulk density Ä = 1 − ´ above 1/2 and a
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Fig. 1.9 Many-body spectrum of TASEP on L = 11 sites with (a) pbc and N = 5
particles and (b) obc. Both cases show pronounced spikes. In (c), the distribution of
complex spacing ratios of TASEP with pbc and L = 17 and N = 8 is flat (≡ Ã−1) with
finite size fluctuations. This reflects the integrability of the model.

particle current J = ´(1 − ´). The maximal current phase occurs when both ³ and

´ are larger than 1/2. Here, the bulk density is Ä = 1/2, and the particle current

is maximal, J = 1/4, irrespective of ³ and ´ values. This phase is interesting as it

maximizes system throughput, with internal dynamics rather than boundary conditions

primarily influencing the system.

Spectrum of the generator

The steady state, while significant, is not the sole point of interest. The spectrum of

the Kolmogorov generator K also holds considerable importance. For example, the

spectral gap, the inverse of the timescale of relaxation to the steady state, decreases

in the limit of large L as L−3/2 [276, 285–287]. The exponent 3/2 is the same as the

dynamical exponent of the Kardar-Parisi-Zhang equation in one dimension [274].

The spectrum of K has another captivating aspect. Figure 1.9 presents its spectrum

in the totally asymmetric case for L = 11 with pbc and N = 5 in panel (a), and

obc in panel (b). Notably, it exhibits distinct spikes: L = 11 in the pbc case and

L+ 1 = 12 for obc. Spectra of the ASEP generator, which showed similar spikes, have

been presented in Refs. [288, 289]. The mechanism behind the emergence of the spikes,

together with its relation to RMT, will be explored in Chapter 5 of this thesis.

Bethe-integrability of the generator

The spectrum of the ASEP generators can be obtained by Bethe ansatz [276, 280, 257].

In the following, we will briefly discuss the coordinate Bethe ansatz [290], applied to
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the pbc case. Bethe equations for an extension (deformation) of the ASEP will be

derived in detail in Chapter 5.

The coordinate Bethe ansatz is a generalization of the plane-wave ansatz for single-

particle systems, in which eigenstates are linear combinations of plane-waves with

momenta kj. This ansatz assumes that an eigenstate |Èð of the Kolmogorov operator

K with eigenvalue ¼ is a combination of plane-waves with “generalized momenta” k(λ)
j ,

which are typically complex valued and depend on ¼. Specifically, the coordinate Bethe

ansatz is formulated as

ïx1, . . . , xN |Èð =
∑

τ∈SN

A(Ä)
N
∏

j=1

e
ik

(λ)

τ(j)
xj , (1.55)

where |x1, . . . , xNð denotes the state with particles at position x1 < · · · < xN , A(Ä)

are complex amplitudes determined by the eigenvalue equations and the sum runs

over all permutations Ä of {1, . . . , N}. The logarithms of the generalized momenta are

called Bethe roots z(λ)
j = eik

(λ)
j and are solutions of recurrent relations, known as Bethe

equations. They determine the eigenstate |Èð via Eq. (1.55) up to a phase. With this

ansatz, every eigenvalue ¼ of the ASEP is a sum of zj = z
(λ)
j and its reciprocal,

¼ =
N
∑

j=1

(pz−1
j + qzj − 1). (1.56)

Nearest neighbor eigenvalues ¼ and ¼NN of the bulk spectrum typically stem from

sets of very different Bethe roots {zλj } and {zλNN

j }. Consequently, the eigenvalues ¼

and ¼NN are statistically uncorrelated. We numerically confirm this for TASEP on

L = 17 sites with N = 8 particles by presenting the complex spacing ratio (CSR)

distribution. In Figure 1.9(c), the CSR distribution appears flat over its support to

very good approximation with minor fluctuations. These are attributed to the finite

size of the system. The flat CSR distribution is akin to the CSRs of uncorrelated values

(panel (c) of Figure 1.5).

A similar relation of the eigenvalues and Bethe roots holds for the obc case as

well [291–293, 280] and by the same argument the eigenvalues of the generator are

statistically uncorrelated.

1.3.3 Random generators of Markov processes

Following Wigner’s approach with random Hamiltonians, we model the Markovian

evolution of complex systems by random Kolmogorov operators.
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Fig. 1.10 Spectral density of (a) the Ginibre ensemble with Ç2
2 distributed elements

modeling M and (b) the diagonal matrix J , whose entries are the sums of columns
of M. Matrix sizes are D = 8104 with 100 samples. In (c) the spectrum of a single
realization of M with D = 1000.

A generic random Kolmogorov operator must satisfy the conditions to be a valid

generator of CTMCs, yet remain as general as possible. Such a generic model can

be stated in terms of Eq. (1.49), where any Kolmogorov operator K is expressed as

the difference of two matrices K = M − J . In the following, we do not require that

the diagonal of M is non-zero. Hence, the only constraint on the matrix M is that

its matrix elements are real and non-negative. Following [294, 295, 260], the most

generic random matrix ensembles fulfilling this constraint are Ginibre ensembles with

non-negative element distributions. These ensembles are non-Hermitian and all matrix

elements are iid. Thus, the limiting spectral density is expected to adhere to Girko’s

law and, after appropriate rescaling, becomes uniform in the unit circle.

The matrix elements of K, and so of M, are the transition rates. Their magnitudes

are related to the timescales of dynamics; hence, have physical relevance. Therefore, we

do not rescale the matrix elements, but explicitly consider their mean µ0 and variance

Ã2
0. The spectral density of the (unscaled) random matrix M is, in the large D limit,

well approximated by the disk of radius
√
DÃ0 centered at 0.
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In Figure 1.10(a), we present the estimated spectral density of Ginibre matrices

with matrix elements distributed according to a Ç2
2 distribution. The Ç2

k distribution

is the sum of k squared, independent standard Gaussians [296]. The special case

of k = 2 is the distribution of the squared absolute value of a complex Gaussian.

The Ç2
2 distribution has mean µ0 = 2 and variance Ã2

0 = 4. The matrix size of K
in Figure 1.10(a) is D = 8104. Consequently, the radius of the spectral density is√
DÃ0 ≈ 180, indicated by the red circle in panel (a).

As discussed in Section 1.1, the fact that matrix elements of M are real implies

that the eigenvalues are either real or come in complex conjugate pairs. As in the case

of the GinOE with Gaussian-distributed matrix elements, this implies substantially

many real eigenvalues, visible as the dark line on the real axis in Figure 1.10(a). Note

that this is not violating Girko’s law, as the real line is a Lebesgue-measure zero set in

the complex plane.

In contrast to the non-Hermitian Ginibre matrices considered in Section 1.1, the

matrix elements of M have a non-zero mean µ0. After subtracting the means,

M̃ = M −Dµ0|1ðï1|, (1.57)

where |1ð = D−1/2(1, . . . , 1)t is the normalized 1-vector, the matrix M̃ fulfills the

requirements of Section 1.1 and adheres to Girko’s law. The difference between M
and M̃ is a rank-1 perturbation Dµ0|1ðï1|. This implies that the spectrum of M is

concentrated at the Girko disc, with a single outlier eigenvalue around µ0D [297]. This

outlier is a Lebesgue-measure zero set, so M still obeys Girko’s law. As eigenvalues are

real whenever they do not come in a complex conjugated pair, the outlier is real. In

panel (c) of Figure 1.10, the spectrum of a single realization of M with Ç2
2-distributed

matrix elements and matrix dimension D = 1000 is shown. Besides the Girko disc

centered at zero, the single outlier around Dµ0 = 2000 is well recognizable.

Let us now turn to J . The elements of the diagonal matrix J are the sums of

the columns of M. All elements of M are iid. Hence, in the limit of large D, the

central limit theorem implies that the elements Jii can be approximated with Gaussian-

distributed random variables having mean Dµ0 and variance DÃ2
0. For D = 8104 the

distribution of Jii is shown in Figure 1.10(b) for Mij distributed according to the Ç2
2

distribution. The Jii density is well approximated by a corresponding Gaussian density.

Comprehension of the spectra of M and J enables us to understand the spectrum

of K. In Figure 1.11, we present spectra of random K-generators with matrix size

D = 8104 and Ç2
2 element distribution. In panel (a) we show the spectrum of a single

sample. It consists of a bulk spectrum at −Dµ0 and a single outlier at exactly 0,
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Fig. 1.11 Spectrum of random dense Kolmogorov operators with matrix size D = 8104
and off-diagonal elements distributed according to a Ç2

2 distribution. In (a) a single
realization and in (b) the bulk density of 100 realizations.

which is the stationary state eigenvalue. The bulk is concentrated in relation to the

distance to the zero eigenvalue. This feature is inherited from M. For comparison, the

spectrum of a single realization of M is shown in Figure 1.11(a). It is shifted in the

real direction by −Dµ0 and in the imaginary direction by −D/8. The bulk spectra

of M − Dµ0 and K are of the same order, while the outliers (around 0) are nearly

indistinguishable [297].

In panel (b) of Figure 1.11, we present the spectral density of the bulk without the

zero eigenvalue outlier. This density is bounded by a spindle-like curve (red). Without

going into the details of its derivation [298], it is plausible that this form of the bulk

spectrum emerges from a “combination” of the disk in panel (a) and the Gaussian

distribution in panel (b) of Figure 1.10.

One of the goals of modeling Kolmogorov operators by random matrices is to

understand more about the spectrum of physical generators of Markov processes,

like the ASEP. Comparing the spectrum of the ASEP in Figure 1.9(a-b) with the

spectrum of Kolmogorov operators in Figure 1.11(a) reveals a big difference between

these two: the spectral gap between the bulk and the stationary eigenvalue 0 is large

for random generators compared to the gap of the ASEP generators. In Chapter 4, we

will argue that the spectral gap is, typically, small for physical systems. This hints

essential missing structure in the model of random generators presented so far. In

Chapter 4, a model of random Kolmogorov operators will be investigated, generalizing

the K-generators based on Ginibre M matrices. This ensemble has additional structure

in form of sparsity. We will show that sparse random generators have a small spectral

gap akin to physical generators like the ASEP.



1.4 Outline and summary of main results 45

1.4 Outline and summary of main results

The remainder of this thesis is divided into five chapters. Chapters 2 and 3 investigate

several RMT-related properties of the Bose-Hubbard model. Chapters 4 and 5 concern

generators of continuous-time Markov chains (CTMCs), with focus on random sparse

generators in Chapter 4 and the Asymmetric Simple Exclusion Process (ASEP) in

Chapter 5. We conclude in Chapter 6.

The following paragraphs provide a summary of the main results of each chapter

and reference associated publications. The last paragraph remarks on the author’s

publications and preprints that are not part of this thesis.

Chapter 2: “Eigenstate thermalization” in the classical limit

The results of this chapter have mostly appeared in [299]

G. Nakerst, and M. Haque, Eigenstate thermalization scaling in approaching the

classical limit, Phys. Rev. E 103, 042109 (2021).

In Chapter 2, we investigate the eigenstate-to-eigenstate fluctuations of expectation

values (EEV fluctuations) of local observables in the Bose-Hubbard model. As outlined

in Section 1.2.2, the Eigenstate Thermalization Hypothesis (ETH) predicts that these

fluctuations should decrease as D−1/2 in the thermodynamic limit of increasing lattice

size L and particle number N with fixed density Ä = N/L. This has been confirmed

by several studies. Instead of the thermodynamic limit, we study the classical limit of

increasing N and constant L. We derive expressions for the expected scaling of EEV

fluctuations, assuming eigenstates are RMT-like. After an appropriate rescaling of

the local observables, the RMT-decrease of EEV fluctuations agrees with the ETH

prediction D−1/2. Numerical analyses reveal that EEV fluctuations of Bose-Hubbard

mid-spectrum eigenstates decrease as a power-law inD. For large L, the exponent of this

power-law agrees with the RMT prediction −1/2, while for small L, EEV fluctuations

decrease with a different exponent. We investigate several possible reasons for this

anomalous scaling. We show that ansätze of uncorrelated and two-point correlated

eigenstate coefficients result in an exponent of −1/2. Therefore, the anomalous scaling

must be due to some more subtle higher-order correlations of eigenstate coefficients.

Chapter 3: Classical and quantum chaos measures in a mixed many-body system

The results of this chapter have mostly appeared in [300]

G. Nakerst, and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical

versus quantum, Phys. Rev. E 107, 024210 (2023).

In Chapter 3, we present the comparison of classical and quantum chaos measures in

the three-site Bose-Hubbard model. On three sites, the Bose-Hubbard model is neither
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integrable nor strongly chaotic, but shows a mixture of both behaviors. In the quantum

model, we investigate the level ratio distribution, (de-)localization of eigenstates and

the decay of EEV fluctuations and compare to the corresponding RMT predictions.

Chaos in the classical system, the discrete non-linear Schrödinger equation (DNLS), is

quantified in terms of Lyapunov exponents. These capture the exponential sensitivity

to perturbations of initial conditions. As a function of energy and interaction strength,

we demonstrate a strong overall correspondence between all four measures of chaos.

Chapter 4: An ensemble of sparse random generators of Markov processes

The results of this chapter have mostly appeared in [301]

G. Nakerst, S. Denisov, and M. Haque, Random sparse generators of Markovian

evolution and their spectral properties, Phys. Rev. E 108, 014102 (2023).

In Chapter 4, we introduce and study an ensemble of random generators K of

CTMCs with adjustable sparsity. This sparsity is controlled by a parameter φ denoting

the number of non-zero elements per row and column of K. In the graph framework,

K is the negative Laplacian of a φ-regular, directed graph with D vertices and 2φD

edges and random, iid edge weights. For φ = D − 1, the ensembles of dense random

Markov generators, introduced in Section 1.3.3, are recovered. For typical physical

CTMCs, φ is constant in D for single-body systems, while φ increases logarithmically

with D for many-body systems (e.g. ASEP).

We study the effects of sparsity on the spectrum of the generator matrix K. We

present results for the bulk of the spectrum, the spectral gap and correlations of

eigenvalues. Concerning the bulk spectrum, we show that the first moment of the

eigenvalue distribution scales as ∼ φ, and the standard deviation as ∼ √
φ. This

implies that the bulk diverges from the stationary eigenvalue 0, whenever φ increases

with D. For the spectral gap, we show that its well-approximated by the smallest

diagonal element of J . Using extreme value theory, we demonstrate how the spectral

gap is related to the tails of the edge weight distribution. For common distributions,

the spectral gap closes as a power-law in D for constant φ (single-body), is constant (up

to logD corrections) for φ ∼ logD (many-body) and diverges, whenever φ increases

substantially faster than logarithmically with D. Consequently, sparsity closes the

large spectral gap, which is characteristic of dense random generators. Eigenvalue

correlations are analyzed through complex spacing ratio (CSR) statistics. We find that

starting already at φ g 2, the CSR distribution agrees with the RMT prediction, while

the extreme case φ = 1 is anomalous.

Chapter 5: The spectral boundary of the ASEP

The results of this chapter have appeared in [302]
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G. Nakerst, T. Prosen, and M. Haque, The spectral boundary of the asymmetric

simple exclusion process: Free fermions, Bethe ansatz, and random matrix theory,

Phys. Rev. E 110, 014110 (2024).

In Chapter 5, we analyze the K-generator spectrum of the Asymmetric Simple

Exclusion Process (ASEP); particularly, the spectral boundary. We examine finite

chains of length L, under periodic (pbc) and open boundary conditions (obc). Notably,

the spectral boundary exhibits L spikes for pbc and L+1 spikes for obc. We investigate

the origin of these spikes from several points of view. We map the generator K to

interacting non-Hermitian fermions and extend this model to have adjustable interaction

U . In the non-interacting case (U = 0), the analytically computed many-body spectrum

shows a spectral boundary with prominent spikes for both pbc and obc. For pbc, we use

the coordinate Bethe ansatz to interpolate between the non-interacting model (U = 0)

to the ASEP generator (U = 1). We show that spectral boundary spikes stem from

clustering of Bethe roots. We apply RMT by relating the ASEP generator to random

graphs with a distinct cycle structure. In these graphs, all cycle lengths are divisible

by L (L+ 1 for obc). The corresponding adjacency matrices have higher-order trace

correlations, akin to the random matrices following the hypotrochoidic law discussed

in Section 1.1.2. The spectral boundaries of the adjacency matrices and Laplacians of

the random graph ensemble show L (L+ 1 for obc) spikes, resembling those of ASEP

and of matrices obeying the hypotrochoidic law.

Results not included in this thesis

As outlined above, parts of this thesis are based on the publications [299–301]

and the preprint [302]. The author of this thesis has additionally contributed to the

publications and preprints [303–305]:

[303] G. Nakerst, J. Brennan, and M. Haque, Gradient descent with momentum

— to accelerate or to super-accelerate? (2020), arXiv:2001.06472.

[304] P. C. Burke, G. Nakerst, and M. Haque, Assigning temperatures to eigen-

states, Phys. Rev. E 107, 024102 (2023).

[305] P.C. Burke, G. Nakerst, and M. Haque, Structure of the Hamiltonian of

mean force, Phys. Rev. E 110, 014111 (2023).

The content of these works is not part of this thesis. The preprint [303] is not related

to RMT. The work in Refs. [304, 305] can be put into the framework of thermalization

of closed quantum systems, which has some relations to RMT. But the contribution of

RMT results in these works is minor compared to Refs. [299–302] and therefore has

not been incorporated in this thesis.





Chapter 2

“Eigenstate thermalization” in the

classical limit

The content of this chapter has appeared as part of [299]:

G. Nakerst, and M. Haque, Eigenstate thermalization scaling in approaching the

classical limit, Phys. Rev. E 103, 042109 (2021).

In this chapter, we explore the fluctuations of diagonal operator elements Aαα
in the basis of Bose-Hubbard eigenstates. According to the ETH, these fluctuations

decrease with increasing Hilbert space size D as D−1/2 in the thermodynamic limit.

The Bose-Hubbard model has another limit of increasing D, the classical limit of fixed

system size L and increasing particle number N . One might question whether the

ETH scaling of eigenstate expectation value Aαα (EEV) fluctuations applies in the

classical limit too. This chapter addresses that question.

In Section 2.1, we introduce the notation and outline the numerical procedure to

compute EEV fluctuations. In Section 2.2, we derive analytical expressions for the EEV

fluctuations corresponding to GOE eigenstates. For such states, the EEV fluctuations

depend on D as a power-law ∼ D−e0 , with power e0 = 1
2

− 1
L−1

. This deviation from

the ETH prediction is attributed to the bandwidth of the operators A increasing with

N in the classical limit. After rescaling according to the bandwidth, EEV fluctuations

agree with the ETH prediction. In Section 2.3, we present a numerical analysis of EEVs

for Bose-Hubbard eigenstates. We find that the EEV fluctuations depend on D as a

power-law. For large system sizes L, the EEV fluctuations agree with those of GOE

eigenstates. For small L, we observe discrepancies between the numerical exponent

and the GOE prediction. In Section 2.4, we examine several plausible mechanisms for

these deviations. We summarize and suggest possible future studies in Section 2.5.
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Fig. 2.1 Eigenstate expectation values Aαα of the tunnel operator A = a 2a1, plotted
against eigenenergies Eα, for a Bose-Hubbard chain with (a) L = 3 sites and (b)
L = 10 sites. The numbers of particles N are listed in the legends. In (a), the
larger cluster corresponds to N = 175 particles, while the smaller cluster on the left
corresponds to N = 60 particles. The interaction parameter is Λ ≈ 2.477. Top panels
show full spectra. Bottom panels zoom into the 5th of ten equal-length energy intervals,
as indicated by the shorthand label “∆E = 5”. Dotted lines are fitted linear functions.

2.1 Eigenstate expectation value (EEV) fluctua-

tions

In this chapter, we study the diagonal elements Aαα = ïEα|A |Eαð of operators A in

the bases of eigenstates |Eαð as a function of (energy) eigenvalues Eα. We refer to the

Aαα’s as eigenstate expectation values (EEVs). We discuss EEVs wrt Gaussian states

(GOE eigenstates) in Section 2.2, Bose-Hubbard eigenstates in Section 2.3 and other

random states in Section 2.4. To visualize the quantities of interest, we present EEVs

Aαα for Bose-Hubbard eigenstates |Eαð as functions of energy Eα in Figure 2.1. The

EEVs are calculated numerically by exact diagonalization.
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In general, EEVs Aαα fluctuate with Eα. To quantify this fluctuation we express

Aαα = f(A,Eα) + Ã(A,Eα)Rα, (2.1)

in terms of functions f and Ã and a pseudo-random random variable Rα with mean 0

and unit variance. Here, f encodes the mean of Aαα and Ã the width of Aαα around

its mean. In contrast to the ETH-formula presented in Section 1.2.2, we incorporated

the dependence on Eα and the magnitude of fluctuations in a single function Ã. In

Eq. (2.1), we do not assume that the ETH holds. If the ETH holds, f and Ã are

smooth functions of Eα and Ã ∼ D−1/2.

Our main incentive in this chapter is to study the scaling of Ã with D in approaching

the classical limit of fixed L and increasing N . To calculate Ã, we first estimate f . If

f is smooth then it should be locally linear in Eα. Therefore, we divide the energy

spectrum into 10 equal-length, disjoint intervals ∆E. In these intervals, we find that f

is indeed linear to an excellent approximation in our cases, as seen in panels (c) and (d)

of Figure 2.1. Additionally, Ã as a function of Eα appears constant in ∆E. Therefore,

we can estimate Ã(A,Eα) by fitting linear functions Eα → b+mEα on ∆E to Aαα and

considering the variance

Ã2(A,∆E) =
1

N∆E

∑

Eα in ∆E

|Aαα − b−mEα|2. (2.2)

Here, N∆E denotes the number of states in ∆E.

Since the ETH is expected to hold only away from the edges, we are primarily

interested in mid-spectrum eigenstates. We will show data from the 5th, 6th and 7th

energy intervals. In shorthand, these will be labeled as ∆E = 5, ∆E = 6, ∆E = 7,

with ∆E referring to the label and not the interval width. In Figure 2.1, we display

the EEVs for the full spectrum in (a,b) and for the ∆E = 5 interval in (c,d), for two

different values of L. Unless indicated otherwise, we present data for an intermediate

value of the interaction parameter Λ = UN around which the systems are found to be

significantly chaotic (Figure 1.7), namely, Λ = 1013/33 ≈ 2.477. Scaling of Ã with D

will be investigated for a broad range of Λ and all energies in Chapter 3 for the three

site Bose-Hubbard system.

The ETH generally holds for operators that are sufficiently local. In this chapter,

we consider two operators: the tunnel operator a 2a1 from site 1 to site 2 and the

number operator n1 on site 1. We have checked that our results are qualitatively the

same for a iaj with other i, j. It is noteworthy that the operator a 2a1 is non-Hermitian.
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In cases where Hermiticity is required, we instead investigate the Hermitian operator

(a 2a1 + a 1a2). This results in an additional multiplicative factor of 2 in the fluctuations

of EEVs.

2.2 EEV fluctuations for random Gaussian states

In this section, we present EEV fluctuations wrt random states, especially GOE

eigenstates approximated by Gaussian states. All results are obtained analytically.

The EEVs calculated for random states do not have large-scale smooth variation

as a function of energy, in contrast to EEVs presented in Figure 2.1. Thus, the

statistical standard deviation of EEVs can be directly compared with our measurement

of EEV fluctuations for physical eigenstates. The assumption of eigenstates being

effectively random has been previously used to derive scaling properties of EEVs in the

thermodynamic limit [131, 135, 97]. Here, we provide explicit expressions for Ã in terms

of trace properties of the operator matrix, and then specialize to both thermodynamic

and classical limits.

2.2.1 General trace expressions

Let A be a D ×D square matrix representing the operator of interest, and |Zð be a

D-dimensional, multivariate random state with iid coefficients Zi, each with mean 0.

Then the statistical variance of AZ = ïZ|A|Zð can be expressed as

Ã2(AZ) =
D
∑

i,j,i′,j′=1

Ai,jAi′,j′ cov(ZiZj, Zi′Zj′), (2.3)

where cov(ZiZj, Zi′Zj′) denotes the covariance between the random variables ZiZj and

Zi′Zj′ . Its given by

cov(ZiZj, Zi′Zj′) = ïZiZjZi′Zj′ð − ïZiZjð · ïZi′Zj′ð
= ïZiZjZi′Zj′ð − ¶ij¶i′j′ïZ2

i ð2, (2.4)

where ï. . . ð denotes the average wrt to the random state |Zð and ¶ij denotes the

Kronecker symbol. By the independence of Zi, Zj for i ≠ j, ïZiZjZi′Zj′ð is only

non-zero if there is no index i, j, i′, j′ different to the other three. The only possibilities
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for this are

i = j = i′ = j′

i = j and i′ = j′

i = i′ and j = j′

i = j′ and j = i′, (2.5)

so

ïZiZjZi′Zj′ð = ¶ij¶ii′¶ij′ïZ4
i ð

+ (1 − ¶ij¶ii′¶ij′)
[

¶ij¶i′j′ïZ2
i ð2 + ¶ii′¶jj′ïZ2

i ð2 + ¶ij′¶ji′ïZ2
i ð2
]

. (2.6)

Thus, the variance of AZ can be expressed as

Ã2(AZ) = ïZ4
1ð
∑

i

A2
ii + ïZ2

1ð2





∑

i̸=i′
AiiAi′i′ +

∑

i̸=j

A2
ij +

∑

i̸=j

AijAji



− ïZ2
1ð2

∑

i,i′
AiiAi′i′

=
(

ïZ4
1ð − ïZ2

1ð2
)

∑

i

A2
ii + ïZ2

1ð2





∑

i̸=j

A2
ij +

∑

i̸=j

AijAji





=
(

ïZ4
1ð − 3ïZ2

1ð2
)

∑

i

A2
ii + ïZ2

1ð2
[

tr(A2) + tr(AA )
]

. (2.7)

This rather general result, does not assume a particular distribution of the coefficients,

only that they should be independent and identically distributed and have mean 0.

Eq. (2.7) simplifies by specializing to the case of GOE eigenstates. As outlined in

Section 1.2.1, these are generically considered as reasonable models for the behavior of

mid-spectrum eigenstates of chaotic Hamiltonians. As discussed in Section 1.1.4, in the

large D limit, GOE eigenstate coefficients are to good approximation independently

Gaussian distributed with mean 0 and variance D−1. Their second and fourth moments

are given by ïZ2
i ð = D−1 and ïZ4

i ð = 3D−2. For such Gaussian states |Zð, Eq. (2.7)

simplifies to

Ã2(AZ) =
(

3

D2
− 3

D2

)

∑

i

A2
ii +

1

D2

[

tr(A2) + tr(AA )
]

=
1

D2

[

tr(A2) + tr(AA )
]

. (2.8)

The second of the two traces, tr(AA ), is the squared Hilbert-Schmidt norm or

the Frobenius norm of the operator. For Hermitian A the two trace terms are equal,
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tr(A2) = tr(AA ). In this case, we recover Eq. (1.33) from the introduction. Expressions

equivalent or analogous to Eq. (2.8) have appeared in Refs. [306–309, 124]. As tr(A2)

and tr(AA ) are invariant under a basis change, so is the variance Eq. (2.8). In contrast,

Eq. (2.7) is not basis-invariant, due to the first term.

2.2.2 Quadratic observables

In the subsequent analysis, we compute the trace expressions tr(A2) + tr(AA ) for

quadratic bosonic observables denoted by A. These observables can be represented as

linear combinations of the form a jai. For such operators A, the terms A2 and A A can

be expressed as summations over a jaia
 
j′ai′ . Our aim is to determine tr(a jaia

 
j′ai′).

Let us consider a basis state defined as |nð = |n1, . . . , nkð, where nj denotes the

number of particles at site j. Consequently, we can represent

a jai |nð = ¶ijni |nð + (1 − ¶ij)
√

nj + 1
√
ni |. . . , ni − 1, nj + 1, . . . ð . (2.9)

By applying Eq. (2.9) twice we get

ïn| a jaia j′ai′ |nð = ¶i′j′¶ijni′ni + (1 − ¶i′j′)(1 − ¶ij)¶ij′¶ji′(nj′ + 1)ni′ . (2.10)

First let i = j = i′ = j′. Given that there are
(

N−l+L−2
L−2

)

states with l particles on site

i, we deduce

tr(n2
i ) =

N
∑

l=0

l2
(

N − l + L− 2

L− 2

)

. (2.11)

Writing l2 in terms of binomial coefficients and invoking an upper index Vandermonde

identity, namely
n
∑

l=0

(

l

c1

)(

n− l

c2

)

=

(

n+ 1

c1 + c2 + 1

)

, (2.12)

for constants n, c1 and c2, we derive

tr(n2
i ) =

N(2N + L− 1)

L(L+ 1)
D. (2.13)

Now let i = j and i′ = j′ but i ≠ i′. There are
(

N−l−s+L−3
L−3

)

many states with l particles

on site i and s particles on site i′, so

tr(nini′) =
N
∑

l=0

N−l
∑

s=0

ls

(

N − l − s+ L− 3

L− 3

)

. (2.14)
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Applying the Vandermonde identity, as defined in Eq. (2.12), twice we infer

tr(nini′) =
N(N − 1)

(L+ 1)L
D. (2.15)

For the case i ≠ j and i′ ≠ j′, but j = i′ and i = j′, the computation mirrors the

scenario when i = j and i′ = j′ but i ̸= i′. Applying Eq. (2.12) twice on

tr(a jaia
 
iaj) =

N
∑

l=0

N−l
∑

s=0

(l + 1)s

(

N − l − s+ L− 3

L− 3

)

(2.16)

yields

tr(a jaia
 
iaj) =

N(N + L)

L(L+ 1)
D. (2.17)

Particularly, for operators A = a iaj the traces are given by

tr(A2) + tr(AA ) =
N(N + L)

L(L+ 1)
D i ̸= j, (2.18a)

tr(A2) + tr(AA ) =
2N(2N + L− 1)

L(L+ 1)
D i = j. (2.18b)

In the thermodynamic limit where the ratio N/L remains constant and both N and L

tend towards infinity, the coefficient preceding D is O(D0) in both cases. Consequently,

this results in a relationship Ã2 ≈ D
D2 = D−1, thereby implying the standard Ã ∼ D−1/2

scaling for EEV fluctuations in the thermodynamic limit.

2.2.3 Scaling in the classical limit

We now turn our attention to the classical limit, L j N . We denote by A a linear

combination of terms such as a jai. From the previous analysis we infer

tr(A2) + tr(AA ) ∼ N2D. (2.19)

Since N ∼ D1/(L−1) in the classical limit, the variance scales as

Ã2(AZ) ∼ D ·D2/(L−1)

D2
= D−2e0 , (2.20)

where

e0 = e0(L) =
1

2
− 1

(L− 1)
(2.21)
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is the scaling exponent announced previously. When L k 1 but still L j N , the

second term in Equation (2.21) becomes negligible, leading to a scaling behavior of

Ã ∼ D−1/2 similar to the thermodynamic limit.

For systems with a moderate number of sites, it’s important to note that the scaling

of EEV fluctuations for two-point operators of the form a jai or their linear combinations

differs between the classical limit and the thermodynamic limit. Mathematically, this

difference can be attributed to the operators A scaling with N . By normalizing A

to Ā = A/N , the traces in Equation (2.19) scale as D rather than N2D, resulting in

scaling of the variance for all L as

Ã2(ĀZ) ∼ D

D2
= D−1. (2.22)

To summarize, in the classical limit, the EEV fluctuation scaling is ∼D−1/2 for nor-

malized operators Ā = A/N for all L, and also for unnormalized operators A in the

L k 1 limit. This is the same exponent e0 = 1
2

familiar from the thermodynamic limit

[135, 97]. However, for moderate L and for the operator A, the scaling is according to

the exponent e0 = 1
2

− 1
(L−1)

.

2.3 EEV fluctuations for Bose-Hubbard eigenstates

In this section, we present numerical results of the scaling of EEV fluctuations for

Bose-Hubbard eigenstates. In Figure 2.2, we show Ã of the EEVs for different energy

windows near the middle of the spectrum, plotted against D. Each panel shows a

different (fixed) number of sites L; in each case the classical limit is approached by

increasing N . Generally, the sequences follow clear power-law dependencies, Ã ∼ D−e.

The power-law behavior sets in at relatively small values of D already.

It is clear from the L = 3 data, panel (a), that the exponent e does not match

the value predicted for Gaussian states, Eq. (2.21), which is e0 = 0 for L = 3. The

EEV fluctuation for the system eigenstates increases with a positive exponent (e < 0)

instead of being flat as a function of D. Similarly, for the 4-site chain the exponent

e is seen to be slightly negative (Ã increases slowly with system size), whereas the

predicted value is e0 = +1/6.

The calculations rely on full numerical diagonalization, and hence are limited by

the Hilbert space size D. Our limit was D ≲ 105. For each L, we increased the particle

number N as far as possible such that D did not exceed 100, 000. For small L, this

provides a satisfactory number of available N values, and extracting the exponent e
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Fig. 2.2 EEV fluctuations Ã of the operator A = a 2a1 against Hilbert space size D
for various chain lengths L. Data shown for eigenstates in energy windows ∆E = 5
(blue circles), 6 (red squares), 7 (green inverted triangles). The Ã vs D data sequences
are arranged reasonably linearly in all cases in the log-log plots, suggesting Ã ∼ D−e

behavior. The slopes of fitted lines (i.e., numerical estimates of −e) are given in the
legends. The Gaussian predictions e0 for the exponents are 0, 1

6
≈ 0.1667, 0.25, and

7
18

≈ 0.3889 respectively for L = 3, 4, 5, and 10.

from a fit to Ã ∼ D−e is quite reliable. For large L, only a few N values are available.

For the largest lattice (L = 15), only three data points (N = 4, N = 5, and N = 6)

were used. This means a large uncertainty in the estimation of e (Figure 2.3 inset). It

also means that the regime N k L is not reached.

In Figure 2.3, we present the exponents e extracted from the numerical data. In

addition to the exponents for the operator a 2a1 (corresponding to Figure 2.2), we

also show the exponents for the operator n1. For small L, the numerically observed

exponents e fall significantly below the Gaussian case, for both operators. For larger

L values, the Bose-Hubbard systems show EEV fluctuations closer to the Gaussian

case, at least for ∆E = 5, 6. (The ∆E = 7 window shows larger deviation, presumably
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Fig. 2.3 The exponent e versus the chain length L for Bose-Hubbard eigenstates
in different energy windows, and for Gaussian states. The pink dashed curve is the
predicted formula for exponents, e0, which tends to 1/2 (solid horizontal line) for large
L. Inset to left panel shows the error bars for the estimation of e from ∆E = 5 data.
The error bars are omitted elsewhere and will be omitted in later figures. In general,
error bars are small for L < 14.

because it is closer to the edges of the spectrum.) We interpret this as a signature of the

large-L Bose-Hubbard systems being more chaotic, so that mid-spectrum eigenstates

are better approximated by Gaussian states. The deviation for small L represents the

mixed nature of the few-site Bose-Hubbard Hamiltonians.

Figure 2.3 also shows numerically calculated exponents for EEV fluctuations in

Gaussian (pink triangles), and compares with the L j N prediction, Eq. (2.21) (pink

dashed curve). The agreement is good for all L and excellent for small L. At larger L,

computer memory limitations prevent our calculations from reaching particle numbers

N k L. This explains the (minor) deviation of the numerical exponents from the

N k L prediction.

One can view the same effects through the fluctuations of the normalized (Ā)

operators a 2a1/N and n1/N . For these operators, the predicted exponent is 1/2 for

all L. We present the numerical exponents for such operators in Figure 2.4. However,
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Fig. 2.4 Similar data as in Figures 2.2 and 2.3 but with normalized operators Ā. The
operators are normalized by factors ∼ N ; the precise factors are explained in the text.
(a) Points and fits are from top to bottom L = 3, L = 4, L = 7 and L = 10.

we normalize by factors slightly different from N . The prediction e0 = 1/2 was

obtained in the previous section by assuming N k L. In the trace expressions of

Eq. (2.18), this led to N(N + L) ≈ N2 and 2N(2N + L− 1) ≈ 4N2. In our numerical

calculations, for larger L we do not have access to N values in this regime. Therefore, we

normalize the operators by the factor
√

N(N + L) for A = a iaj with i ≠ j and by the

factor
√

N(2N + L− 1) for i = j. With this modification, the numerically calculated

exponents using Gaussian states (pink triangles) do not deviate systematically from

1/2 at large L, even though the N k L regime is not reached. The observed physical

exponents (for Bose-Hubbard eigenstates) are significantly different from the predicted

e0 = 1/2 for small L, but approach this value as L is increased.
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Summarizing our numerical findings: power-law dependence of EEV fluctuations

on D is seen for all L. The exponent at larger L (more fully chaotic systems) matches

well the Gaussian prediction. For smaller L (mixed systems), there are significant

deviations from the Gaussian prediction. Remarkably, for small L, the departure of

the eigenstates from Gaussian behavior does not destroy the power-law dependence

of EEV fluctuations with D but changes the exponent substantially. In fact, for the

smallest sizes (L = 3 and L = 4) the numerically measured exponent e even turns

negative for unnormalized operators, so fluctuations of EEVs actually grow with N .

In the following section, we will examine possible explanations for this phenomenon.

2.4 Non-reasons for anomalous scaling

The discrepancy between observed and theoretically predicted EEV fluctuation scaling

for small L can be attributed to the eigenstates of Bose-Hubbard systems with few

sites deviating from the canonical Gaussian states. In this section, we investigate

multiple forms of deviation from the Gaussian framework and eliminate several tenable

hypotheses for the observed anomalous scaling.

First, it is plausible to assume that the eigenstates may occupy a restricted portion

of the full Hilbert space, in contrast to a Gaussian random state, and that this portion

exhibits sublinear scaling wrt D. This proposition can be tested through evaluation of

the participation ratio Pα, which is the inverse of the IPR, introduced in Section 1.1.4.

In Section 2.4.1, we show that a scaling behavior of Pα ∼ D1 leads to EEV fluctuations

scaling as derived in Section 2.2. We verify Pα ∼ D1 for eigenstates of the L = 3 and

L = 6 systems. This excludes reduced Hilbert space occupancy as the underlying cause

for the anomalous EEV scaling exponents.

Another hypothesis one might consider is that the anomalous behavior of the

scaling exponents arises from the eigenstate coefficients not adhering to an identical

distribution. In Section 2.4.2, we present numerical data that excludes this as the

mechanism behind the anomalous scaling in EEV fluctuations.

These results lead us to conclude that non-Gaussian scaling phenomena stem from

correlations among eigenstates. In Section 2.4.3, we examine two-point correlations of

eigenstate coefficients. Surprisingly, we find that these two-point correlations do not

fully explain the observed anomalous scaling. Thus, we infer that the anomalous scaling

exponents of EEV fluctuations arise from more complex, higher-order correlations of

eigenstate coefficients.
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Fig. 2.5 Participation ratio in the basis of eigenstates of the operator a 2a1 + a 1a2.
Horizontal lines indicate the Gaussian expectation (= 1

3
). In (a,b), normalized

participation ratio Pα/D of energy eigenstates, versus corresponding energy eigenvalues.
In (c,d), average normalized participation ratio P for different energy intervals as
function of Hilbert space dimension D, for fixed chain length L and increasing particle
number N .

2.4.1 Participation ratios

For this section it will be convenient to consider the operator A to be Hermitian. We

expand the eigenstates |Eαð of the Hamiltonian in the eigenstate basis |ϕγð of the

operator A

|Eαð =
∑

γ

c(α)
γ |ϕγð , (2.23)

where c(α)
γ = ïϕγ|Eαð. If we denote the eigenvalues of A as aγ, then the EEVs can be

written as

Aαα =
D
∑

γ=1

|c(α)
γ |2aγ. (2.24)
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We treat the coefficients c(α)
γ as stochastic variables, with each eigenstate index (³)

signifying an independent realization from a common underlying distribution. The

distribution is assumed to be the same for every µ. It is noteworthy that this model does

not account for large-scale dependencies of EEVs Aαα on the corresponding energies

Eα, which is acceptable given our focus on fluctuation characteristics.

The variance of the EEVs Aαα wrt to the random coefficients c(α)
γ is

var(Aαα) =
D
∑

γ=1

var
(

|c(α)
γ |2

)

a2
γ = var

(

|c(α)
γ |2

)

tr(A2). (2.25)

The variance of |c(α)
γ |2 can be written as

var
(

|c(α)
γ |2

)

= ï|c(α)
γ |4ð −

(

ï|c(α)
γ |2ð

)2
=

1

DPα
− 1

D2
, (2.26)

where we have used the definition of the participation ratio to be

Pα =





D
∑

γ=1

|c(α)
γ |4





−1

=
(

D × ï|c(α)
γ |4ð

)−1
. (2.27)

Eq. (2.27) is the inverse of the IPR introduced in Section 1.1.4. By denoting P = P (∆E)

as the average of Pα over an energy window ∆E, we arrive at the prediction for the

EEV variance

Ã2 =
(

1

DP
− 1

D2

)

tr(A2) =
(

1

DP
− 1

D2

)

tr(AA ). (2.28)

For Gaussian states, where P = D/3, this variance expression simplifies to Eq. (2.8).

More generally, provided the participation ratio P scales linearly with D, the factor in

brackets scales as ∼ 1/D2, so that we obtain the same scaling as for Gaussian states.

For states characterized by P ∼ DK with K < 1, the first term in brackets becomes

dominant, leading to a distinct scaling behavior.

In Figure 2.5, we show the behavior of the participation ratio in the eigenbasis

of (a 2a1 + a 1a2). For highly chaotic systems (with larger L), the mid-spectrum Pα

approximates the Gaussian expectation closely. However, for L = 3, there is a significant

deviation from Gaussian behavior (P = D/3). In both scenarios, the scaling of Pα
with the Hilbert space dimension D remains predominantly linear (as evident in the

lower panels).
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Consequently, Hilbert space occupancy fails to account for the observed anomalous

scaling in EEV fluctuations.

2.4.2 Non-identical distribution of eigenstate coefficients

The analysis in Section 2.2 is based on the assumption that eigenstate coefficients are

iid. One may inquire whether the anomalous scaling of EEV fluctuations for small L

values results from non-identical eigenstate coefficient distributions.

To explore this hypothesis, we relax the assumption of identically distributed

coefficients, while maintaining independence. In Figure 2.6, we present the EEV

fluctuations derived from an estimation of such underlying distributions of Bose-

Hubbard eigenstates. We assume that these distributions are identical within the same

energy interval ∆E but vary across different ∆E. Within a given energy interval ∆E,

states are sampled from the corresponding distribution on a coefficient-by-coefficient

basis. For each coefficient a Bose-Hubbard eigenstate is selected randomly within ∆E

and the corresponding entry of this eigenstate is used. The EEV fluctuations based on

such sampled states are denoted as “independent” in Figure 2.6. The results match

well with the EEV fluctuations obtained from Gaussian states but fail to align with

the EEV fluctuations in the actual physical systems for small L.

We conclude that models that assume eigenstates with independent coefficients are

insufficient in explaining the observed anomalous scaling for small L. Put differently,

the root of the anomaly cannot be traced back to non-identical or non-Gaussian

distributions of the eigenstate coefficients, nor can it be attributed to insufficient

occupancy of the Hilbert space. Rather, the crux of the matter lies in the fact that the

eigenstate coefficients are not truly independent.

2.4.3 Eigenstate correlations

Continuing our effort to identify what feature of small-L eigenstates is responsible

for the anomalous ETH scaling, we assume that eigenstates are drawn independently

from a multivariate distribution Z, with two-point correlations between coefficients.

Such correlations are quantified by the covariance matrix Σ. The covariance matrix

of eigenstates can be estimated by regarding the eigenstates within a specific energy

interval as different samples of a common Z. It is reasonable to assume that the mean

of all coefficients of Z is zero, as coefficients of mid-spectrum eigenstates generally have
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Fig. 2.6 The operator in all plots is a 2a1. Blue dots: eigenstates of physical Bose-
Hubbard system. Red squares: Gaussian states with i.i.d. coefficients. Green down
triangles: vectors with independent but non-identically distributed coefficients, each
coefficient sampled from system eigenstates. Purple up triangles: multivariate Gaus-
sian states with covariance matrix estimated from system eigenstates. (a,b) EEV
fluctuations. The dashed purple line is the prediction by Eq. (2.32). (c) The exponent
e, such that Ã ∼ D−e, versus the number of sites L for the same distributions as in
(a,b).

zero mean. In this case, an estimate of Σ is given by

Σ = N−1
∆E

∑

Eα in ∆E

|Eαð ïEα| , (2.29)

where Eα and |Eαð denote eigenvalues and eigenstates, respectively, and N∆E is the

number of eigenstates in the energy window ∆E. Eq. (2.29) follows directly from the
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Fig. 2.7 Normalized estimated covariance matrix DΣ of mid-spectrum eigenstates
(energy window ∆E = 5) for Bose-Hubbard chains with L sites and N particles. The
estimate Σ is defined in Eq. (2.29). The absolute values of matrix entries, |D · Σij|,
corresponding to the basis B described in text, are shown. The tick labels are row
and column indices, e.g. in the top left is the entry |D · Σ11|. N had to be chosen
significantly smaller than in the rest of this chapter to visualize the patterns without
zooming. The patterns are stable for increasing N .

definition of the sample covariance matrix of Z, where the samples are the eigenstates

|Eαð.
In Figure 2.7, we show the estimated covariance matrices for L = 3 and L = 6. For

a multivariate distribution with uncorrelated entries, the off-diagonal elements of the

covariance matrix are all zero (white in Figure 2.7). The L = 3 case is seen to have

significant off-diagonal elements, arranged in intriguing patterns (black). The L = 6

case has still significant, but less pronounced off-diagonal elements than the L = 3

case. Hence, for small L, eigenstate coefficients appear to be two-point correlated. The

deviation of the covariance matrix from a diagonal matrix suggests that mid-spectrum

states, expected to be significantly chaotic states, deviate from infinite-temperature

states. This is consistent with Refs. [96, 95, 98, 99, 310, 311, 159, 104, 97].

The covariance matrices are basis-dependent. In Figure 2.7, the chosen basis B
is the computational basis. Its elements are the mutual eigenstates of the number

operators nj. Interpreted as (N + 1)-adic numbers, the elements of B are aranged

in descendant order. For example, for L = 3 and N = 2, the computational basis is
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ordered from left to right as

B = (|0, 0, 2ð , |0, 1, 1ð , |0, 2, 0ð , |1, 0, 1ð , |1, 1, 0ð , |2, 0, 0ð) . (2.30)

By assuming that the coefficients of the multivariate distribution Z have mean zero

and estimating a covariance matrix Σ, we have fixed the first two moments of Z. It is

natural to assume that higher moments are generic. Hence, we model eigenstates by a

multivariate Gaussian distribution Z with mean 0 and covariance matrix Σ.

In Figure 2.6, the EEV fluctuations obtained from such sampled states are marked

as “correlated”. The values of the corresponding fluctuations are larger than those

obtained from the independent-coefficient random states, and more comparable to the

fluctuations obtained from the physical eigenstates. In the chaotic cases (large L), all

of these cases have the same scaling. However, in the L = 3 case, the scaling exponent

is close to the Gaussian case and does not reproduce the anomalous scaling at all. This

is seen in panel (a) of Figure 2.6, and also in panel (c) where the fitted exponents are

plotted. The fitted exponent is slightly off the Gaussian value for small L, but far from

the anomalous values of the physical system.

These results show that the deviation of the physical system from expected Gaussian

behavior is only partially captured by the two-point correlations between the eigenstate

coefficients. This suggests that the small-L eigenstates deviate from randomness in

some more drastic manner, which does not seem easy to quantify.

In addition to the direct numerical verification discussed above, we argue (non-

rigorously) that the inclusion of reasonable two-point correlations in the model of

random states should not change the EEV fluctuation scaling exponent. For this, we

decompose Z into Z = RX, where X is a vector whose independent coefficients are

Gaussian-distributed with mean zero and variance 1, and R is the Cholesky root of

the non-random matrix Σ, i.e Σ = RRt. The statistical variance of the EEVs wrt Z is

given by

var(AZ) = var((RX)tARX) = var(X tRtARX)

= var(1/
√
DX tDRtAR1/

√
DX). (2.31)
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Since the coefficients of 1/
√
DX are normally distributed with mean 0 and variance

1/D, we can make use of Eq. (2.8) with A replaced by RtAR,

var(AZ) =
1

D2
(tr(D2(RtAR)2) + tr(D2RtAR(RtAR)t)

=
1

D2
(tr((DΣA)2) + tr(DΣADΣAt). (2.32)

This is Eq. (2.8) with the change A → DΣA. The variance of the wavefunction

coefficients is not fixed by normalization of the eigenstates any more. But it is

reasonable to assume that it still scales as ∼ 1/D, and we have checked numerically

that this scaling holds for the mid-spectrum eigenstates of all our physical systems,

including L = 3. Since the variances of the wavefunction coefficients are the diagonal

entries of Σ, the diagonals of DΣ scale (at most) as constant in D. By the Cauchy-

Schwartz theorem the off-diagonal terms of Σ are bounded by the diagonal, so every

coefficient of DΣ is (at most) constant in D.

Without making assumptions about the detailed structure of Σ, we cannot derive

rigorously the scaling of the traces in Eq. (2.32), which was possible for Eq. (2.18) or

(2.19). However, since DΣ is elementwise at most ∼ D0, and assuming Σ is not too

exotic, one can argue that the derivation in Section 2.2 should hold for this case as

well. In other words, for “reasonable” Σ, one expects the same scaling as in the case of

independent Gaussian eigenstates. This is consistent with Figure 2.6, where the matrix

Σ is estimated numerically from the physical eigenstates.

2.5 Discussion

In this chapter, we studied the ETH in the scaling sense, but considered increasing

Hilbert space dimensions along the classical limit rather than the usual thermodynamic

limit. This has led to a characterization of the distinctive properties of few-site

Bose-Hubbard systems in terms of anomalous scaling exponents.

Summary of analytic results. For GOE eigenstates, akin to Gaussian states, we

have derived trace expressions for the EEV fluctuation Ã, Eq. (2.8). For operators of

the type A = a jai, the trace operators can be expressed as Eq. (2.18). Based on these

main expressions, we are able to predict ideal scaling behaviors of EEV fluctuations

in the classical limit, for both unnormalized operators of the type A and normalized

operators Ā = A/N . Of course, the usual ETH scaling of the thermodynamic limit

also follows from these expressions.
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In the classical limit N k L, the EEV fluctuations are found for such idealized

eigenstates to behave as Ã ∼ D−e0 , with e0 = 1
2

− 1
(L−1)

for unnormalized A operators

and e0 = 1/2 for normalized Ā operators.

In addition, we have presented expressions for Ã for a number of related cases, e.g.,

for i.i.d. distributed eigenstate coefficients with the distribution not assumed to be

Gaussian, Eq. (2.7), in terms of the participation ratio, Eq. (2.28), and for the more

general case where the eigenstate coefficients are allowed to be correlated according to

a covariance matrix, Eq. (2.32).

Summary of numerical results. We have explored the scaling exponent for

various lattice lengths L, increasing the boson number N with fixed L to approach

the classical limit. At larger L, the exponent matches the RMT eigenstate prediction.

At small L, the fluctuation appears to have power-law dependence Ã ∼ D−e on the

Hilbert space dimension D, i.e., e is well-defined, but the value of e differs markedly

from the RMT prediction. Through a series of additional numerical tests, we have

shown that this anomalous scaling is not explained by two-point correlations between

eigenstate coefficients. The small-size Bose-Hubbard systems thus have mid-spectrum

eigenstates which violate the usual randomness approximation.

Deviation from RMT. The deviation of quantum many-body systems from RMT

has been the subject of interest from multiple viewpoints in recent years. In many-body

systems that are nominally chaotic, mid-spectrum states are largely well-modeled

by random states, but small or subleading deviations have been observed in various

properties [310, 95, 96, 311, 98, 97, 99, 159, 104]. However, scaling properties in these

systems generally follow RMT predictions. In the small-L Bose-Hubbard systems,

we have shown a striking exception: a system which is not integrable or many-body

localized, but nevertheless violates the usual scaling behavior expected in chaotic

systems.

The present work opens up a number of new questions deserving investigation:

(1) We have found that the small-L Bose-Hubbard systems display EEV fluctuations

scaling with exponents that appear numerically well-defined but very clearly different

from the random-state prediction. An analytic explanation for these observed new

exponents is currently not available, and remains an open question. The anomalous

scaling is related to the insufficient chaoticity of few-site systems. Hence, a tempting

conjecture is that some property measuring the degree of chaos in the classical limit

might explain the exponents. A first step in this direction is conducted in Chapter 3,

where we compare the EEV fluctuation exponent e to other measures of quantum and

classical chaos.
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(2) Our analytic results have focused on essentially infinite-temperature (mid-

spectrum) states. It would be interesting to develop trace expressions for finite

temperatures. This is likely not possible to do in complete generality without making

assumptions on the system Hamiltonian, but perhaps some results can be derived with

minimal assumptions, such as locality of the Hamiltonian.

(3) Bose-Hubbard systems are, of course, not the only quantum systems with a

classical limit. It remains to be discovered how generic our findings are. Candidate

systems have been mentioned in Section 1.2.1. Studying the behavior of EEV fluctua-

tions in such systems when approaching the classical limit would provide interesting

characterizations of ergodicity, e.g., of how well RMT approximations work.

(4) As part of our effort to address the anomalous scaling at small L, we have

briefly examined the covariance matrix of eigenstates, treating each eigenstate as a

sample drawn from the distribution of eigenstates, according to Eq. (2.29). Studying

the so-defined covariance matrix might be fruitful for various quantum systems, as the

departure of this matrix from the identity matrix tells us how different the eigenstates

are from infinite-temperature states. A further significance of this covariance matrix is

that the same object is the microcanonical density matrix, and hence its structure should

provide insights into the connection between quantum eigenstates and thermodynamics.

In Ref. [304], some initial work has been done in this direction.





Chapter 3

Classical and quantum chaos in a

mixed many-body system

The content of this chapter has appeared as part of [300]:

G. Nakerst, and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical

versus quantum, Phys. Rev. E 107, 024210 (2023).

In this chapter, we will compare the classical limit of the Bose-Hubbard system (the

discrete non-linear Schrödinger equation (DNLS) or Gross-Pitaevskii equation) with the

quantum model by different chaos measures. In the previous chapter, we encountered

remarkable deviations from RMT in Bose-Hubbard systems with a few sites, related

to the fact that these systems are of “mixed” type (neither integrable nor strongly

chaotic). This motivated us to focus on such mixed systems in our classical-quantum

comparison, presented in this chapter.

Our study will cover various chaos measures. In the classical model, we calculate

Lyapunov exponents and compare these with quantum chaos indicators like eigenvalue

and eigenstate statistics, and fluctuations in eigenstate expectation values (EEVs).

To connect the classical and the quantum model, the classical phase space is refined

into energy manifolds and compared with eigenvalues and eigenstates of the quantum

Hamiltonian in the corresponding energy ranges.

The main result of this chapter is a qualitative comparison of chaos measures as

a function of energy and interaction strength for the three site Bose-Hubbard model.

These results are presented in Section 3.1 and summarized in Figure 3.1. We find the

overall agreement of the chaotic regions depicted by different chaos measures striking.

In the remainder of this chapter, we detail the chaos measures shown in Figure 3.1 and

present related numerical results. In Section 3.2, we focus on Lyapunov exponents of
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Fig. 3.1 Heatmap of (a) classical chaos indicator and (b-d) quantum chaos indicators.
Relative energy 0 corresponds to the minimal (ground state) energy while 1 corresponds
to the maximal energy. Λ is the onsite interaction strength. Lighter color corresponds
to stronger chaos. (a) Fraction of states with positive largest Lyapunov exponent.
(b) Kullback-Leibler divergence of level ratios from GOE level ratios; capped at 0.15.
(c) Excess kurtosis of eigenstates; capped at 24. (d) Exponent of EEV fluctuations,
clipped between 0 and 0.3.

the classical model. We analyze those for the three site Bose-Hubbard model in detail

and explain the data of Figure 3.1(a). We present results for more chaotic cases of

larger system sizes and explore alternate ways to Figure 3.1(a) of using the Lyapunov

exponent to demarcate chaotic and non-chaotic regions. In Section 3.3, we investigate

the eigenvalues of the quantum model leading to the results shown in Figure 3.1(b).

We present the average level ratio as function of energy and interaction strength for

the three site case, which extends the discussion in Section 1.2.3. In Section 3.4, the

eigenstates of the Bose-Hubbard model are compared to GOE eigenstates and the

numerical derivation of Figure 3.1(c) is explained. In Section 3.5, we quantify chaos

using EEV scaling exponents and explain how Figure 3.1(d) is obtained. The EEV

scaling exponents have been analyzed in detail for intermediate interaction strengths Λ

in Chapter 2. In Section 3.6, we conclude and provide suggestions for future studies.

3.1 Main results for the three site Bose-Hubbard

model

This chapter centers on contrasting classical Lyapunov exponents with quantum chaos

metrics, such as level statistics, eigenstate statistics, and EEV fluctuations. Chaos

in classical mechanics manifests in the sensitivity to initial conditions of the classical
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motion and will be measured by the largest Lyapunov exponent ¼max. It is generically

not possible to calculate the largest Lyapunov exponents analytically or exactly. Hence,

we will estimate them numerically by integrating classical motion up to a finite time, the

finite-time Lyapunov exponents (FTLEs). We will use the terms “Lyapunov exponents”

and “FTLEs" interchangeably. It is to be understood that all presented data for

¼max are the best available numerical estimates and that analytically exact values are

generally not available.

Figure 3.1 provides an overview of the results. Here we show chaoticity as a

function of interaction parameter Λ and relative energy. Chaos is visualized as grayscale

heatmaps, where the intensity indicates how chaotic that region is — the lighter the

more chaotic.

Figure 3.1(a) shows chaos of the classical Bose-Hubbard model, while panels (b-d)

show chaos measures of the quantum system. In (a) we show the fraction of positive

FTLEs of the classical model. We consider a FTLE as positive if it is greater than 10−4,

and zero otherwise. In (b) we show the deviation of level statistics of the quantum

model from the RMT prediction measured by the Kullback-Leibler divergence. In (c)

we show how much eigenstates of the quantum model deviate from Gaussian states via

the kurtosis. The kurtosis obtained from the eigenstate coefficients in two different

bases are combined — the larger of the two is used at every point of the heatmap. In

(d) we show the exponent in the size-dependence of the fluctuations of EEVs. The data

in panels (b) and (c) are for N = 150 bosons, while the exponents in (d) are obtained

by fitting EEV fluctuations between N = 90 and N = 170. Overall, we have found

these quantum results to be broadly independent of N .

Figure 3.1(a) reveals features of the classical phase space, i.e., the phase space of

the three-site DNLS. For Λ ≲ 1 all FTLEs are close to 0. For Λ > 1 regions with a

non-zero fraction of positive Lyapunov exponents emerge at intermediate energies. At

Λ ≈ 3 there are positive largest FTLEs at most energies, except for smallest and largest

energies. For Λ > 3 the region of non-zero fractions of positive Lyapunov exponents

shrinks and shifts to lower energies, where it survives even for the largest Λ = 100 we

investigated. These results highlight the mixed nature of the classical phase space. In

particular, zero and non-zero Lyapunov exponents exist at the same energy for the

same Λ. This is explained in more detail in Section 3.2.

The same shape of the heatmap in Figure 3.1(a) is observed in (b-d) as well. The

white bars at the top right of the quantum plots do not show chaotic regions; these are

finite size defects (gaps in the spectra which are larger than the energy windows used

to compile the heatmaps). The exact measures used in these panels and the subtleties
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encountered for the quantum cases will be detailed in Sections 3.3, 3.4 and 3.5, which

focus respectively on level statistics, panel (b), on eigenstate coefficient statistics, panel

(c), and on EEV scaling, panel (d).

The overall visual agreement between classical chaos regions, panel (a), and quan-

tum chaos regions, panels (b-d), is striking. Chaotic energy regions of the classical

phase space correspond generally to chaotic regions of the spectrum of the quan-

tum Hamiltonian. Even fine structures in the heatmaps show some agreement. For

1 < Λ < 3 small bulbs appear at the chaotic-regular boundary in the classical spectrum

(a), which can be recognized in the level statistics (b) as well as in the kurtosis of

eigenstates (c). We conclude that overall there is a close correspondence of chaotic

and non-chaotic regions of the classical model and the quantum model. There are, of

course, some discrepancies, also among the various quantum measures, and various

artifacts due to the particular measures used. These issues will be discussed in the

remainder of this chapter.

Relative energy and energy intervals

Our classical-quantum comparison is energy-resolved. For each Λ, we compare the

degree of chaos in individual energy regions of the classical system with the degree of

chaos in corresponding energy regions of the quantum system.

Numerically, for each interaction Λ the possible energies are divided into 100 evenly

spaced energy intervals. We also rescale and shift the energy for each Λ to define the

relative energy

Ẽ =
E − Emin

Emax − Emin

(3.1)

which takes values in the range [0, 1]. For the classical system, Emin and Emax are

the lowest and highest possible classical energies. For the quantum system, they are

respectively the lowest eigenenergy (ground state energy) and the highest eigenenergy.

Each energy interval corresponds to an interval of Ẽ having width 0.01. When we refer

to the interval at relative energy Ẽ, we mean the interval [Ẽ − 0.01, Ẽ].

For the classical calculation (Figure 3.1(a)), Lyapunov exponents are collected for

phase space points whose energy is in the desired interval. For the quantum eigenvalue

statistics (Figure 3.1(b)), the spacing between eigenvalues within the desired interval

is analyzed. For quantum measures based on eigenstates (Figure 3.1(c) and (d)), all

eigenstates whose eigenvalues lie in the interval are considered.
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3.2 Classical Lyapunov exponents

This section discusses Lyapunov exponents, particularly their finite time estimates

(FTLE), for the classical Bose-Hubbard model. We start by introducing Lyapunov

exponents in Section 3.2.1, followed by numerically calculated FTLEs for the highly

mixed three-site model in Section 3.2.2. FTLEs for larger chains with L > 3 are

explored in Section 3.2.3. We conclude with chaos indicators, incorporating FTLE

magnitudes, in Section 3.2.4.

3.2.1 Preliminaries

In the following, we introduce Lyapunov exponents, focusing on the largest Lyapunov

exponent, ¼max. The subsequent derivations are either straightforward or detailed in

Refs. [312, 313].

Throughout this chapter, Lyapunov exponents are denoted by ¼. This notation

should not be confused with the eigenvalues of matrices in Chapters 1, 4 and 5.

The eigenvalues of the only matrices considered here, the quantum Bose-Hubbard

Hamiltonians, are denoted by E.

Intuitively, the largest Lyapunov exponent ¼max captures the sensitivity of trajecto-

ries to perturbations of initial values. Consider two “close by” initial states È0 and

È̃0. (Throughout this chapter, subscripts g 1 to È are used as site indices. But there

should be no confusion with the use of the subscript 0 for initial values.) The states

È(t) and È̃(t) are time-evolved states with initial values È0 and È̃0, respectively. In

the classical Bose-Hubbard model, the time-evolution is via the equations of motion,

Eqs. (1.43), introduced in Chapter 1. The largest Lyapunov exponent is informally

given by

etλmax ≈ ∥È̃(t) − È(t)∥
∥È̃0 − È0∥

, (3.2)

where t denotes a large time point. Eq. (3.2) implies that if the largest Lyapunov

exponent ¼max is positive the two states È and È̃ separate exponentially, while a zero

largest Lyapunov exponent ¼max = 0 means an at most polynomial spread.

Formally, Lyapunov exponents are defined through a linearization of Eq. (3.2).

This involves representing the time-evolution of the dynamical system, governed by

Hamilton’s equations of motion, as

Φ(t, È0) = È(t), where È(0) = È0. (3.3)
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The dynamical system Φ obeys the (semi-group) property Φ(t+ s, x0) = Φ(s,Φ(t, x0))

for all times t and s. Consequently, Eq. (3.2) can be reformulated using Φ and

ϕ0 = È0 − È̃0 as follows:

etλmax ≈ ∥Φ(t, È0 + ϕ0) − Φ(t, È0)∥
∥ϕ0∥

. (3.4)

By linearizing Eq. (3.4) we obtain the largest Lyapunov exponent as

¼max = lim
t→∞

1

t
log

∥

∥

∥

∥

∥

∂ψΦ(t, È)|ψ=ψ0
· ϕ0

∥ϕ0∥

∥

∥

∥

∥

∥

. (3.5)

Note that ∂ψΦ is in general a matrix, so the product · denotes the matrix-vector

product. The existence of the above limit is ensured by Osedelets theorem [314]. The

largest Lyapunov exponent is independent of the choice of the norm, as long as the

phase space is finite-dimensional. This is a consequence of the equivalence of norms in

finite dimensional vector spaces.

One can show that ∂ψΦ evolves in time according to so called variational equations

i
d

dt
∂ψΦ(t, È) = ∂ψ∂ψ∗H(È(t)) · ∂ψΦ(t, È), (3.6)

where ∂ψ∂ψ∗H denotes the Hessian of the Hamiltonian H in the variables È and È∗

and the initial condition is ∂ψΦ(0, È0) = Id. In Eq. (3.5), the knowledge of the full

matrix ∂ψΦ is not required. Only the deviation vector ϕ(t) = ∂ψΦ(t, È)|ψ=ψ0
ϕ0/∥ϕ0∥

is needed. The deviation vector evolves according to the variatonal equations (3.6)

as well. The largest Lyapunov exponent is related to the largest eigenvalue of the

deviation matrix ∂ψΦ(t, È) in Eq. (3.5). The other eigenvalues of ∂ψΦ(t, È) give rise to

other Lyapunov exponents.

For the L-site Bose-Hubbard system, because there are 2L real equations of motion,

∂ψΦ(t, È) is a 2L × 2L-matrix. Thus, there are in total 2L Lyapunov exponents

¼max = ¼1 g · · · g ¼2L. For Hamiltonian systems Lyapunov exponents come in pairs

of equal magnitude and opposite sign, which is a consequence of Liouville’s theorem.

Consequently, the largest Lyapunov exponent ¼max is at least 0. Two pairs of Lyapunov

exponents are zero because of the conservation of energy and the conservation of norm,

as implied by Eq. (1.46). Thus, at most L− 2 exponents can be positive. For L = 3,

which we will focus on, there is at most one positive Lyapunov exponent, which is

¼max.



3.2 Classical Lyapunov exponents 77

Numerical calculation of FTLEs

To numerically compute the largest Lyapunov exponent, ¼max, a straightforward

approach might involve selecting two initially close states and evaluating the right-hand

side of Eq. (3.2) over long time periods t. However, this method is ineffective for

systems with bounded state magnitudes, as is the case for the Bose-Hubbard model. In

these scenarios, the right-hand side of the equation is also bounded and consequently

does not exhibit exponential growth for large t.

Instead, one evolves Hamilton’s equations together with the variational equations to

obtain ϕ(t) for some large time t and determines ¼max via Eq. (3.5). Some care has to be

taken when ¼max is positive. In this case the norm of ϕ(t) will blow up exponentially and

will quickly be unmanageable by finite precision. This is circumvented by renormalizing

ϕ(t) and restarting the time evolution, whenever it becomes too large.

Accurately estimating Lyapunov exponents in imperfectly chaotic systems, such as

the Bose-Hubbard model on few sites poses a significant numerical challenge, requiring

extensive time evolution. In this work, the FTLEs are computed by evolving the

systems for up to one million time units.

Sampling states

The continuous nature of the classical phase space precludes the calculation of Lyapunov

exponents for every initial state È0. One strategy to obtain representative results

is to sample states uniformly across this space. Given the total norm conservation

implied by Eq. (1.46), the classical phase space is limited to the sphere S2L−1 within

R
2L. Uniform sampling on S2L−1 is achieved by selecting the 2L coefficients of states

from a Gaussian distribution and normalizing the resultant state.

However, this uniform sampling approach on S2L−1 tends to under-represent states

at lower and higher energies. To ensure uniform energy distribution, we divide the

energy spectrum into 100 equally spaced segments and employ the rejection method

for uniform state sampling within these segments. This involves initially sampling

states uniformly on S2L−1 and retaining only those whose energy falls within a specified

interval. In this way, for each interaction strength Λ, we obtain up to 104 states

uniformly distributed in energy and numerically calculate the corresponding FTLE.
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Fig. 3.2 FTLE estimates for the largest Lyapunov exponent ¼max for the classical limit,
Eq. (1.43). The numerical estimates for ¼max are plotted against energy, for several
different values of the interaction parameter Λ. From left to right Λ is (a) Λ = 0.43,
(b) Λ = 0.93, (c) Λ = 2.48, (d) Λ = 6.58 and (e) Λ = 24.77. The variational equations
were evolved up time t = 106.

3.2.2 The three site case

In Figure 3.2, we show FTLEs of sampled states against the energy of these states for

several interaction parameters Λ. Only estimates of the largest Lyapunov exponent

¼max are presented — the other LEs are either zero or the negative of ¼max.

For Λ = 0, the model is integrable and hence ¼max = 0. Figure 3.2(a) shows the

numerical estimates for ¼max for non-zero but still small Λ (Λ ≈ 0.43). The numerical

estimates for all six Lyapunov exponents have the same order of magnitude, 10−6. This

implies that ¼max is either zero or vanishingly small up to some finite value of the

interaction.

For larger Λ, panels (b-e), we find cases of ¼max being unambiguously zero, together

with cases of the FTLE being smaller than the cutoff 10−4, which we interpret as ¼max

being zero. In each of these panels, there are low-energy and high-energy regimes where

there are only zero ¼max, and a central energy regime with non-zero positive ¼max. For

smaller Λ, the positive-¼max behavior is concentrated at higher energies (there is an

extended ¼max = 0 range of low energies), panel (b). For large Λ, the converse is true:

¼max > 0 is seen at lower energies, panel (d),(e).

In general, when there are non-zero exponents, they coexist with zero exponents at

the same energy, i.e., the ¼max vs energy function is multi-valued. The only exception

is in the intermediate-interaction panel (c), Λ ≈ 2.48, for which an energy window with

a single non-zero branch is seen. In fact, for any Λ ⪆ 1, there appears always to be

some energy window where ¼max is multi-valued — we did not see any exceptions.
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The coexistence of zero and non-zero ¼max is a peculiar manifestation of the mixed

nature of the system. This is in contrast to integrable systems (for which ¼max is

always zero except a measure zero set) and to strongly chaotic systems (for which

¼max is always positive except a measure zero set). To highlight this contrast, we give

examples of systems with stronger chaos, the same Hamiltonian on L = 4 sites and

L = 7 sites, in the next section.

In a fully chaotic system, the largest Lyapunov exponent is a smooth single valued

function of energy. We showed that ¼max is not a single valued function, but rather

often has two branches. One can ask whether each branch is smooth. There are some

noisy features in the plots, especially in panels (a), (b) and (e). Presumably, these

are finite-time effects, and each branch would resolve into smooth lines if we could

integrate up to infinite times. While this conjecture could not be verified conclusively,

we observed that integrating up to longer times generally reduces the noisy aspect.

In one case, panel (d), ¼max even appears to have three branches (one zero and two

non-zero). We have not seen any indication that this is a finite-time effect, although we

cannot rule it out. The data suggests that the mixed nature of the system even allows

for three ¼max values. Apparently, the same fixed-energy region of phase space can

consist of a regular (non-chaotic) sub-manifold as well as two different sub-manifolds

with different non-zero ¼max.

In Figure 3.1(a), we used as an indicator of chaos the fraction of ¼max which are

non-zero. The same measure has been used in Ref. [83].

3.2.3 More chaotic cases

The arguably most remarkable signature of mixedness in the L = 3 case is the multi-

branched behavior of the Lyapunov exponents, as presented in Figure 3.2. In fully

chaotic Hamiltonian systems, ¼max depends solely on the single conserved quantity,

the energy and is therefore single-branched. In Figure 3.3 we present, for comparison,

FTLEs calculated for the 4-site chain and the 7-site chain. The systems are increasingly

more chaotic with increasing L. For the L = 4 case some multi-valued signature can

be seen at small and large energies, Figure 3.3(a). In the L = 7 case, Figure 3.3(b),

which is much more chaotic, the FTLE appears to be smooth and single-valued.

Obtaining good estimates for the Lyapunov exponents is more challenging for mixed

systems. Comparing Figure 3.2 and the two panels of Figure 3.3, we see cleaner (less

noisy) data for larger L, for the same time of propagation, even though there are more

variables (2L) to be evolved for larger L.
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Fig. 3.3 FTLE estimates for the classical largest Lyapunov exponent ¼max plotted
against energy, for the classical limits of Bose-Hubbard chains with L = 4 (left) and
L = 7 (right) sites. The interaction parameter is Λ = 1.52. The variational equations
were evolved to time t = 106.

3.2.4 Magnitudes of Lyapunov exponents as chaos indicator

The procedure of using the fraction of non-zero ¼max’s to characterize chaos neglects

the magnitudes of ¼max altogether. One could also make use of the magnitude as a

chaos indicator. This raises the issue of comparing values of ¼max for systems with

different interactions Λ. We consider two ways of rescaling the ¼max values. The

resulting heatmaps in Figure 3.4 show reasonable agreement with that in Figure 3.4(a).

The magnitude of ¼max depends on the timescales of the dynamics of the system.

From Eq. (1.43) one could expect that the dominant timescale will be given by the

inverse of the maximum of the Hamiltonian parameters, J and Λ. We fixed J12 = 1.5

and J23 = 1, so max(J,Λ) = max(1.5,Λ). In Figure 3.4(a), we show the average largest

Lyapunov exponent ¼max per energy interval, rescaled by

´Λ = max(1.5,Λ). (3.7)

The resulting heatmap in Figure 3.4(a), by construction, shows chaos in the same

region as in Figure 3.1(a). But Figure 3.4(a) shows more detail as it encapsulates the

information about the magnitude of ¼max as well. We observe the highest intensities in

the mid of the spectrum for 1 < Λ < 10. From there it falls of in all directions. At
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Fig. 3.4 Average largest Lyapunov exponent ¼̄max per relative energy interval renor-
malized by (a) ´Λ given by Eq. (3.7) and (b) µΛ given by Eq. (3.8).

the top end of Figure 3.4(a) we observe a dip in intensity and a sudden increase again,

before ¼̄max becomes zero. These reflect the dips seen in Figure 3.2(c) and (d).

Another approach is to rescale all largest Lyapunov exponents in a system with

fixed interaction Λ by the maximal largest Lyapunov exponent ¼max in that specific

system. A problem occurs when all largest Lyapunov exponents are close to zero, as for

Bose-Hubbard systems with Λ j 1. In these systems there is simply no significantly

positive ¼max. Therefore, we choose the cutoff 10−4 by which all Lyapunov exponents

are minimally divided. The rescaling parameter is

µΛ = max(10−4,max
ψ

¼max(È)), (3.8)

where the maximum runs over all states È in the phase space and ¼max(È) denotes the

corresponding largest Lyapunov exponent. A heatmap of the average largest Lyapunov

exponent ¼̄max with this rescaling is shown in Figure 3.4(b).

The overall features are the same as in panel 3.4(a). There are some artifacts

at the boundary between chaotic and non-chaotic regions, around Λ ≈ 0.7 in panel

(b), presumably because of numerical uncertainties when ¼max is around 10−4. The

intensity of the heatmap does not decrease with Λ beyond Λ ≈ 10, unlike panel (a)

where this decrease is built into the scaling function ´Λ.
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3.3 Eigenvalue statistics

In this section, we will investigate energy-eigenvalue correlations via the distribution

of the level ratios, which was introduced in Section 1.1.3.

We will characterize the degree of chaos at different energies. Hence, we compare

the distributions obtained from the energy levels within each of the 100 energy intervals

described in Section 3.1 to the level spacing distributions of the GOE and independent

random variables (Poisson). Such energy-resolved comparisons of level statistics have

appeared in Refs. [315, 103]. To compare with GOE or Poisson distributions, we use a

common measure of the difference between two distributions, namely the Kullback-

Leibler (KL) divergence [316]. The KL divergence between an observed distribution

P (x) and a reference distribution Q(x) is

DKL(P |Q) =
∫ ∞

−∞
P (x) log

P (x)

Q(x)
dx. (3.9)

This quantity vanishes if P (x) is identical to Q(x). Generally, a larger KL divergence

indicates stronger deviation of P (x) from Q(x). In this section, P (x) will be the

ratio distribution obtained from the Bose-Hubbard energy levels within each energy

interval. We will use either the GOE or the Poisson ratio distribution, denoted in the

introduction by Eq. (1.23) or (1.27), as the reference Q(x).

3.3.1 Level spacing ratio distribution

In Figures 3.5(a-c), we show the observed ratio distributions for three different combi-

nations of relative energy Ẽ and interaction parameter Λ. Since these distributions are

estimated from a finite number of energy eigenvalues within the respective energy win-

dows, they are shown as histograms. The data here is extracted from calculations with

N = 150 bosons. The histograms are expected to converge to a smooth distribution in

the limit N → ∞. For visual guidance, the parameters (Λ, Ẽ) corresponding to the

panels in Figure 3.5 are marked with respective symbols in Figure 3.6(a).

The distribution in panel 3.5(a) is visually seen to be close to the Poisson case.

Hence we expect the KL divergence from the Poisson distribution (DPoi) to be small

and the KL divergence from the GOE (DGOE) to be large. The situation in panel

3.5(b) is the opposite (close to GOE), while panel 3.5(c) shows an intermediate case.
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Fig. 3.5 (a-d) Level ratio distributions for combinations of interaction Λ and relative
energy Ẽ. (a) Λ ≈ 0.28 and Ẽ = 0.25, (b) Λ ≈ 2.48 and Ẽ = 0.4, (c) Λ ≈ 12.33 and
Ẽ = 0.65 and (d) Λ ≈ 0.28 and Ẽ = 0.13. Solid and dashed lines are the Wigner-like
surmises PGOE(r̃) and PPoi(r̃), respectively. (e) KL divergence of the distribution of
the level ratios over the full spectrum from the GOE distribution.

These expectations are in line with the calculated KL divergences:

a) DPoi ≈ 0.05, DGOE ≈ 0.4;

b) DPoi ≈ 0.22, DGOE ≈ 0.06;

c) DPoi ≈ 0.16, DGOE ≈ 0.29.

In Figure 3.1(b), we used DGOE as a quantifier of chaos and presented its values

in the entire (Λ, Ẽ) plane as a heatmap. We capped the values at 0.15, meaning that

values DGOE > 0.15 are considered fully non-chaotic and are not distinguished. There

is some arbitrariness in the exact choice of this value, but the main results — the

overall shape in Figure 3.1(b) and its close correspondence with the classical case,

Figure 3.1(a) — are not strongly affected by the use of a cutoff. In Figure 3.5(e), we

show DGOE for the complete energy spectrum as a function of Λ, to provide a visual

sense of the role of the cutoff in separating chaotic from non-chaotic parameter values.
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Fig. 3.6 Distance of the mean of the level ratios ïr̃ð from (a) the GOE level ratio mean
ïr̃ðGOE and (b) the Poisson level ratio mean ïr̃ðPoisson. The markers in (a) indicate
the systems shown in Figure 3.5. The square corresponds to Figure 3.5(a), the star to
(b), the rhombus to (c) and the circle to (d).

3.3.2 Average of level spacing ratios

Often only the first moment (average) of the level ratio distribution is used as a

measure of closeness to GOE or Poisson level statistics. An example was provided in

the introduction to this thesis, Section 1.2.3. In this section, we use the average level

spacing ratio as alternate chaos measure to the KL divergence.

The average level spacing ratio for the GOE is ïr̃ðGOE ≈ 0.54 and for Poisson values

ïr̃ðPoi ≈ 0.39. In the previous cases (a), (b) and (c), the means are 0.39, 0.51, and 0.44.

They are, respectively, close to ïr̃ðPoi, close to ïr̃ðGOE, and intermediate, as expected.

In Figure 3.6, we present the absolute distance from (a) ïr̃ðGOE and from (b) ïr̃ðPoi.

Compared to Figure 3.1(b), we see that the same information is captured; a more

chaotic region at intermediate Λ and intermediate Ẽ is clearly visible in both these

cases. Overall, the mean of level ratios is closer to ïr̃ðGOE inside this region and closer

to ïr̃ðPoi outside. Even the fine structures at the boundary between the two regions,

previously seen in the classical case in Figure 3.1(a), are visible.

However, there are some artifacts. The most prominent is the arc at the left

(small Λ) region, in Figure 3.6(a). The reason is that, at small Λ, the spectrum shows

features specific to the free-boson case, deviating from the Poisson model of completely

uncorrelated values. We can see this in Figure 3.5(d), which corresponds to a (Λ, Ẽ)
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combination falling on the arc of Figure 3.6(a). The distribution is neither Poisson-like

nor GOE-like: it is non-zero for r̃ → 0 and has a pronounced peak at r̃ ≈ 1. Together,

these lead to an average ïr̃ð ≈ 0.52 which is coincidentally close to ïr̃ðGOE. The

deviation from Poisson at very small Λ is also seen in panel 3.6(b), in the form of a

darker region at the very left of the heatmap.

Summarized, the chaos-regular demarcation in the (Λ, Ẽ) plane can also be visual-

ized using the mean ïr̃ð, modulo some artifacts.

3.4 Eigenstate statistics

In this section, we will compare eigenstates of the Bose-Hubbard system to eigenstates of

random matrices, specifically random matrices of the GOE. As discussed in Section 1.1.4,

eigenstates of the GOE have real entries and are uniformly distributed on the (D − 1)

dimensional unit sphere SD−1 ¢ R
D. For large D, the GOE eigenstates are well

approximated by a D-dimensional Gaussian distribution with independent entries

and mean zero and variance 1/D. Consequently, we will compare the coefficients of

Bose-Hubbard eigenstates against states with iid Gaussian distributed entries.

To compare distributions of eigenstate coefficients, we use the excess kurtosis, »,

of the set of coefficients. The kurtosis is the fourth standardized moment and was

introduced in Section 1.1.4. The excess kurtosis of a distribution is the difference

between the kurtosis of that distribution and the kurtosis of a Gaussian distribution,

which is 3. Thus, large values of » represent larger deviations from Gaussianity

and hence from RMT/chaotic behavior, whereas small values represent more chaotic

behavior. When we report values of the kurtosis, we always mean the excess kurtosis

», even when the word “excess” is omitted.

The deviation of many-body eigenstates from Gaussianity could also be measured

using the KL divergence, as in Ref. [96], or using the inverse participation ratio (IPR)

or multifractal exponents, as in Refs. [105, 310, 98, 99, 317, 103, 202]. We expect

these measures to provide very similar overall pictures as the one we present using the

kurtosis. As discussed in Section 1.1.4, when the average of the eigenstate coefficients

is negligible (which is true for most eigenstates excepting some at the spectral edges),

the kurtosis is proportional to the IPR.

Eigenstate coefficients are defined with respect to a basis. We will investigate

eigenstates of the Bose-Hubbard system with respect to three bases:

1. the computational basis, which is given by the mutual eigenstates of the number

operators ni;
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Fig. 3.7 Histograms of eigenstate coefficients of Bose-Hubbard systems with N = 100
particles, in the computational basis. In (a-c), the interaction and energy intervals,
(Λ, Ẽ), are the same as those used in Figure 3.5(a-c). Panels (d-f) are zoomed into the
right tails of (a-c). The black dashed line indicates the standard deviation. The black
solid line is a Gaussian density with mean 0 and standard deviation 1/D. The excess
kurtosis is (a) »1 ≈ 1.6, (b) »1 ≈ 0.8, (c) »1 ≈ 122.

2. the mutual eigenbasis of the hopping operators a iaj, i.e., the eigenbasis of the

non-interacting (free) system;

3. the eigenbasis of a perturbed free system with hopping terms Jij = 1 for all i, j

and small on-site perturbing potentials
∑

i ϵini with values ϵ1 = −0.01, ϵ2 = 0.02

and ϵ3 = −0.03 on the three sites.

We name the kurtosis of the coefficients in the three bases as »1, »2, »3 respectively.

In Figure 3.1(c), the quantity presented is obtained from a combination of the first

and third choices above, namely max(»1, »3).

We assume that the distributions underlying the eigenstate coefficients of two

eigenstates close in energy are similar. As before, we divide the energy spectrum of

each Bose-Hubbard system with interaction strength Λ into 100 equally spaced intervals

and refer to them by their relative energy Ẽ. We compute the kurtosis » for every

eigenstate and average the calculated kurtosis over each energy interval. If the mean is

zero, the averaged kurtosis in an energy interval equals the kurtosis of all coefficients

of all eigenstates in that energy interval.

In Figures 3.7(a-c), we show the eigenstate coefficient distributions in the compu-

tational (ni) basis, for the three (Λ, Ẽ) combinations used previously in Figure 3.5.
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Fig. 3.8 Heatmaps of kurtosis of eigenstate coefficients, for three different bases, listed
in the text. The kurtosis is cut off at 24 in each case. Markers in (a) indicate the
(Λ, Ẽ) values for which histograms are shown in Figure 3.7. The kurtosis heatmap
shown in Sec. 3.1, Figure 3.1(b), is a combination of panels (a) and (c) here — for
each (Λ, Ẽ), the larger of the two values is chosen in Figure 3.1(b). Panel (d) shows
vertical slices of panel (a) for values of Λ denoted in the legend of panel (d).

Visual guidance to these three parameter combinations is provided in Figure 3.6(a) and

3.8(a) using corresponding symbols. The calculated excess kurtosis for these cases are

respectively »1 ≈ 1.6, »1 ≈ 0.8 and »1 ≈ 122. The case (b) is thus closest to Gaussian,

followed by (a), while case (c) is very far from Gaussian. This is consistent with the

visual appearance of the full distributions. It is also consistent with the comparison of

the tails of the distributions against the tails of the Gaussian distribution, as shown in

(d-f).

We note in Figure 3.7(b) that the coefficient distribution, although closest to

Gaussian, has a large peak near zero. Even in the most chaotic region of the (Λ, Ẽ)

plane, the eigenstates depart considerably from the random-matrix case. We attribute

this feature to the mixedness of the three-site Bose-Hubbard system.

In Figure 3.8(a) we show the kurtosis »1 for eigenstates in the computational basis

as a heatmap in the (Λ, Ẽ) plane. Comparing with previous sections, we see that

small »1 correlates with non-zero Lyapunov exponents and GOE level statistics, while

intermediate and large »1 correlates with zero Lyapunov exponents and non-GOE level

statistics. The shape of the small-»1 region matches the more chaotic region identified

previously using classical Lyapunov exponents or using level statistics. Even subtle

features from the heatmaps in the previous sections, such as the bulges around Λ ≈ 1

and Ẽ ≈ 0.5 are visible.

For small Λ, the kurtosis in the computational basis in Figure 3.8(a) shows inter-

mediate rather than large kurtosis, thus failing to fully capture the highly non-chaotic



88 Classical and quantum chaos in a mixed many-body system

nature of the system in this region. The reason is probably that the small-Λ eigenstates

are so different from the computational basis states (which are Λ → ∞ eigenstates)

that they have overlap with a large number of the basis states, leading to a small IPR

(hence small kurtosis).

A complementary view is obtained via »2 in Figure 3.8(b), where Λ = 0 eigenstates

have been used as basis. Because of the large degeneracy at Λ = 0, there is some

computational arbitrariness in the choice of this basis. This basis now has the opposite

problem — it fails to show the non-chaotic nature of large-Λ region. The problem is

partially alleviated by choosing as basis the eigenstates of a non-interacting Hamiltonian

with small on-site perturbing potentials; the resulting excess kurtosis »3 is shown in

Figure 3.8(c).

For random-matrix eigenstates, one expects Gaussian behavior with respect to

almost any basis. In Figure 3.8, the high-chaos region is marked by low kurtosis in all

three basis choices, consistent with the idea of basis-independence. The other regions

appear more or less Gaussian-like depending on the basis choice. To demarcate the

highly chaotic region from less chaotic regions, we can use a combination of kurtosis

calculations, taking the larger one from the kurtosis obtained in the first and third

basis, i.e., max(»1, »3). This is what we did in Figure 3.1(b).

3.5 Scaling of EEV fluctuations

In Chapter 2, we investigated the dependence of the magnitude Ã of EEV fluctuations

on the Hilbert space dimension D and found that for renormalized local operators Ā,

Ã depends on D as a power-law Ã(Ā) ∼ D−e with exponent e.

In Figure 3.1(d), we have presented a heatmap of the exponents e, determined

numerically, for each energy window Ẽ and interaction parameter Λ. The operator was

chosen as Ā = a 2a1/N . The exponents are determined by fitting Ã(Ā) vs D, for system

sizes ranging from N = 90 to N = 170 in steps of 10, i.e., D ranging from ≈ 4, 000 to

≈ 15, 000. The numerically observed exponent e ranges from 0 in the regular regions

to ≈ 0.3 in the most chaotic regions of the (Λ, Ẽ) plane. The exponent e = 0 in the

regular regions coincides with the ETH exponent for integrable models. In agreement

with the results of Chapter 2, even in the most chaotic regions, e is smaller than the

RMT exponent 1
2
. The resulting heatmap, Figure 3.1(d), is noisier and less sharp than

those obtained from the other measures discussed in previous sections. But the overall

demarcation of chaotic and non-chaotic regimes is clearly visible.
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3.6 Discussion

In this chapter, we considered a quantum many-body model that has a classical limit

and is well-known to be “mixed”, the Bose-Hubbard model on three sites. We compared

the classical Lyapunov exponents of the classical limit against quantum measures of

chaos obtained from eigenvalues (statistics of level spacing ratios) and eigenstates

(coefficient statistics, EEV fluctuations). Overall, the agreement in the chaos-regular

demarcation between the classical case and the various quantum measures is very good.

This reflects the general agreement of chaos measures between quantum systems

and their classical limit, when such a limit exists, observed computationally in many

different Hamiltonian systems.

For classical systems, it is common in the literature to demarcate chaotic and non-

chaotic regimes using Poincaré sections [71, 318, 319, 91, 211, 182, 79, 80, 86, 87]. We

have focused instead on the Lyapunov exponent, and presented it as a multi-branched

function of energy. Inspired by Ref. [83], we have used the fraction of Lyapunov

exponents which are positive as a chaos measure, and compared it with other ways of

exploiting the FTLE results to demarcate highly chaotic and less chaotic behaviors. It

is clear that, if the phase space at fixed energy is separated into regular and chaotic

regions, then the Lyapunov exponent plotted against energy (with many phase space

points sampled in each energy window) will have to be a multi-valued plot. We hope

that explicitly presenting and analyzing this multi-valued dependence will contribute

to the intuition available on mixed systems.

For quantum systems, we used several measures: (1) the statistics of level spacing

ratios based on eigenvalues alone; (2) the coefficients of eigenstates, based on eigenstates

expressed in different bases; (3) the scaling of EEV fluctuations, based on eigenstate

properties. Level spacing statistics and eigenstate coefficients have been considered and

used as chaos measures for several decades. The EEV fluctuation scaling is based on

understanding that has emerged in recent years, motivated by studies of thermalization

and the ETH.

Of course, there are other interesting measures of quantum chaos that could be

considered for comparison. A candidate is the out-of-time-ordered correlator (OTOC)

whose initial growth defines a quantum Lyapunov exponent for chaotic systems. For

our mixed system, we were unable to unambiguously identify or rule out exponential

regimes in the dynamics, for the parameter combinations we attempted. It remains

unclear to us whether the OTOC is a useful measure for numerically demarcating

more-chaotic parameter regimes from less-chaotic and non-chaotic parameter regimes

in mixed systems. Another measure of chaos is the fractal dimension of eigenstates,
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which was presented in Refs. [103, 202] for a quantum Bose-Hubbard chain, not

in the classical (fixed L, large N) limit but rather for parameters relevant to the

thermodynamic (large L, fixed N/L) limit. The authors found a similar chaotic region

for intermediate Λ and Ẽ.

There are some peculiar features in both the eigenvalue and eigenstate statistics,

whose origins remain unclear and might be clarified in future studies. In Figure 3.6(a),

the arc in the small-Λ part of the heatmap is due to the level spacing having peculiar

statistics, as shown in Figure 3.5(d), due to a significant number of successive equal

spacings. In the eigenvector statistics, there are some mid-spectrum states that

are highly non-Gaussian, even at intermediate Λ, as seen through the dark nearly

horizontal line in Figure 3.8(a) at intermediate energies, and the dark curved line in

Figure 3.1(c), running through the more-chaotic light-colored region at intermediate

energies. Presumably, such peculiar features are less likely to appear in more fully

chaotic systems, such as the Bose-Hubbard system with larger number of sites.



Chapter 4

An ensemble of sparse random

generators of Markov processes

The content of this chapter has appeared as part of [301]:

G. Nakerst, S. Denisov, and M. Haque, Random sparse generators of Markovian

evolution and their spectral properties, Phys. Rev. E 108, 014102 (2023).

In this chapter, we discuss an ensemble of random Kolmogorov generators for

continuous-time Markov chains (CTMCs) with adjustable sparsity. This ensemble

aims to address the unrealistic large spectral gaps seen in dense random Kolmogorov

operators (introduced in Section 1.3.3), which result in long, less physical relaxation

times. The discrepancy between the spectral gaps of dense random generators and

non-random generators of physical models is highlighted in Figure 4.1.

The ensemble of random Kolmogorov generators, introduced in this chapter, is

characterized by φ non-zero off-diagonal elements per row and column. For small φ

these operators are sparse, while for large φ they become denser. The dense random

generator case is recovered for φ = D − 1, with D denoting the matrix size, or

equivalently, the size of the state space. For typical physical CTMCs, φ is constant in

D for single-body systems, while φ increases logarithmically with D for many-body

systems.

In Section 4.1, we discuss how dense random Kolmogorov generators (φ = D − 1)

differ from typical physical generators. In Section 4.2, we introduce the ensemble of

sparse random Kolmogorov operators. The bulk spectrum is analyzed in Section 4.3.

We show that whenever φ increases with D the bulk spectrum is shifted away from the

stationary value 0, independent of the distribution of non-zero elements of the generator

matrix. In Section 4.4, we address the spectral gap. In contrast to the bulk, the gap
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Fig. 4.1 Spectra of CTMC generators. (a) Dense (non-sparse) random generator
with Ç2

2 edge weight distribution, (b) TASEP on a ring with staggered hopping
probabilities [52], (c) ASEP on a chain with open boundary conditions and next
nearest neighbor terms, (d) a process of particle hopping on an open boundary grid
with random hopping probabilities, (e) a 1D contact process, (f) a gene transcription
model from Ref. [239]. In each plot the real and imaginary axes have the same scale.
Further details of the models are presented in an appendix in Section 4.7.3.

depends on the distribution of non-zero matrix elements, particularly on the left tail.

For typical distributions, we show using extreme value theory that the gap decreases as a

power-law in D for constant φ (single-body), is constant (up to logarithmic corrections)

for φ ∼ logD (many-body), and increases whenever φ increases substantially faster

than logD. In Section 4.5, we discuss correlations between eigenvalues in terms of

complex spacing ratios (CSRs). We show that already for φ g 2, CSRs agree with the

GinOE, while the extreme case φ = 1 is anomalous. We conclude with a summary of

our results in Section 4.6 and highlight open questions. An appendix in Section 4.7

contains details of the models whose spectra are presented in Figure 4.1 and the details

of analytical derivations.

4.1 Motivation

In this section, we contrast the spectra of physical Markov process generators with those

of dense random generators, discussed in Section 1.3.3. The observation that dense

random generators exhibit significantly larger spectral gaps than physical generators

motivates us to explore sparse generators in this chapter.
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In Figure 4.1(a) we present the spectrum of a random dense K-generator. Similar

to Figure 1.11(a) from the introduction, the spectral bulk is well separated from the

stationary eigenvalue 0. The Kolmogorov operator K in Figure 4.1(a) has Ç2
2-distributed

elements. As discussed in Section 1.3.3, the spectrum of such generators is independent

of the specific matrix element distribution, provided the distributions are non-exotic

and have similar mean and variance.

In contrast to panel (a), panels (b-f) show the spectrum of physical CTMC gen-

erators. These are non-random matrices which emerge from microscopic laws. Panel

(b) shows the spectrum of a modified TASEP according to Ref. [52], (c) the ASEP

with obc and next-nearest neighbor hopping terms, (d) a single particle hopping on a

distorted two-dimensional grid, (e) a contact process modeling epidemic spread, and

(f) a biological model describing the accumulation and release of mechanical strain

of DNA during transcription. Further information and details of these models are

presented in Section 4.7.3.

The large gap of dense random generators implies rapid convergence from any

generic initial probability vector to the steady state. The relaxation time, which is the

inverse of the spectral gap, decreases inversely in the state space size D. In contrast,

physical generators of CTMCs in general exhibit spectral gaps and relaxation times

that depend on D in ways that are not simply (anti-)linear. For example, the ASEP

on a 1D chain with L sites shows a spectral gap vanishing as O(L−3/2).

Our preference for sparse random generators in modeling physical generators stems

from the observation that, in many established models, the corresponding K-generators

are inherently sparse. This sparsity typically arises due to locality, which limits

permissible transitions within the state spaces of the models. In systems involving

multiple components or particles, a generic generator matrix element often represents

simultaneous changes in several (or all) components. For example in the ASEP, a

generic matrix element corresponds to correlated hopping of many particles. However,

such processes are typically absent in models that are motivated by physical, biological,

economic, or other considerations. This results in a predominance of zero elements in

the K-matrices.

The inability of dense random generators to reasonably model the spectral gap

and relaxation times of physical generators, combined with the inherent sparsity of

these physical generators, motivates us to refine the RMT approach to Kolmogorov

operators by incorporating sparsity.
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4.2 Defining the ensemble

In this section, we define an ensemble of random sparse Kolmogorov operators. As

discussed in Section 1.3.1, every Kolmogorov operator can be decomposed into

K = M − J , (4.1)

where M is a matrix with non-negative entries and J is a diagonal matrix, with its

diagonal elements formed by column sums of M. In the following, we will describe how

to randomly generate M as a sparse matrix. By Eq. (4.1) the associated Kolmogorov

operator K will be sparse, too.

The matrix M can be considered as the adjacency matrix of a random directed

graph with positive, iid edge weights, without self-loops, and with fixed vertex degree

equal to φ. Therefore, the Kolmogorov operator K is the negative combinatorial

Laplacian associated with the graph.

In this chapter, we will consider directed graphs which in general makes M and so K
non-symmetric and their spectra complex. We focus on φ-regular graphs, characterized

by each vertex having φ outgoing and incoming edges, with φ denoting the vertex

degree. Such graphs possess exactly 2Dφ edges. This regularity ensures that the

adjacency matrix M contains precisely φ non-zero elements in every row and column.

For simplicity, we do not allow self-loops that are edges with the same starting and

ending vertex. This ensures that the adjacency matrix M has zero diagonal and the

Kolmogorov operator K has exactly φ + 1 non-zero elements in every column and

row (including the negative diagonal element). The sparsity of the random graphs is

controlled by the vertex degree φ, which is bounded by 1 f φ f D − 1. For small φ

the graph and the adjacency matrix M are very sparse while for larger φ they become

denser. The fully connected graphs are recovered for maximal φ = D − 1.

The adjacency matrix M is uniformly drawn from the set of all graphs with the

above properties. Said differently, M is uniformly distributed on the set of φ-regular

directed graphs on D vertices without self-loops. Sampling such a graph begins with a

graph on D vertices and no edges. Then, each vertex is connected to φ other vertices

iteratively, while rejecting edges if the corresponding vertex already has φ incoming

edges. For the final vertices, it may not be possible to connect to other vertices without

violating the constraint of φ incoming edges for each vertex. In such cases, the entire

process is restarted. To mitigate the risk of restarting the procedure, we reduce the

probability of connecting to a vertex that already has a high degree. Following this
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approach, we find that we rarely need to restart the algorithm for the matrix sizes and

vertex degrees φ examined in this chapter.

So far we have not specified the non-zero elements of M. In un-weighted graphs the

non-zero elements of the adjacency matrix are typically 1. Here, we consider the more

general framework of weighted graphs. In these graphs the edges and the non-zero

elements of M have weights different from 1. Because all entries of M have to be

non-negative the weight distributions we consider are all non-negative. Explicit results

in the following sections are mostly derived for uniform and Ç2
2 distributions. (The Ç2

k

distribution is the sum of k squared, independent standard Gaussians.) However, our

results can be adapted to other weight distributions.

The sparse graph ensemble considered here is quite generic. For example, the

graph corresponding to the K-generator of a single particle hopping on a d-dimensional

hypercubic lattice with periodic boundary conditions and random hopping rates is

a particular (to the nearest-neighbor connections) realization of the ensemble with

φ = 2d. Figure 4.1(d) shows an example spectrum for d = 2.

The regularity of the graphs ensures that, with probability 1 − O(D−ϕ−1), they

are strongly connected as long as φ g 2 [320]. As discussed in Section 1.1.5, strongly

connected means that by traversing along the edges of the graph every vertex can be

reached from every other vertex. Strong connectivity is a desirable feature for a minimal

random K-generator model. It implies that the matrix K is not of block-diagonal

structure and the state space is not partitioned into disconnected subsets. Additionally,

strong connectivity implies that the multiplicity of the zero eigenvalue is one, which

makes the steady state unique. Finally, every state in the state space is reachable

from every other state. Therefore, the steady state has all states populated. All

physical models motivating this study and presented in Figure 4.1 are - except for

the contact process - all strongly connected. The contact process is only effectively

strongly connected, with one exceptional state. In the following sections, we will focus

on sparse generators with φ g 2. The case φ = 1 will be discussed in Section 4.5.

The physical models presented in Figure 4.1 motivate us to focus on two types

of dependencies of φ on the matrix size D, namely φ = const and φ ∼ logD. For

generators of single particle hopping models - an example is shown in Figure 4.1(d) - the

average number of non-zero elements per column and row is constant and independent

of D. In many-body hopping models such as the ASEP or the contact process,

Figure 4.1(b), (c), and (e), it increases logarithmically with D. There is no simple

dependence of φ on D in the gene transcription model, Figure 4.1(f), as the matrix

size D is controlled by multiple parameters.
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Fig. 4.2 Spectral densities of random Kolmogorov operators with Ç2
2 weight distribution.

The matrix size is D ≈ 8000 and the densities are estimated with 100 samples. White
areas contain no eigenvalues. (a) Dense matrix without the zero eigenvalue, (b) sparse
matrix with φ =

√
D non-zero elements per row and column, (c) φ = logD and

(d) φ = 3. The insets show spectra of single realizations. In each plot, the real and
imaginary axes have the same scale. The red dots mark the location of µ(¼), given by
Eq. (4.2), and the intervals shown in black are [µ(¼) − Ã(¼), µ(¼) + Ã(¼)], where Ã(¼)
is given by Eq. (4.4).

A similar setup to the one presented here was studied in Ref. [295], where an

ensemble of oriented Erdős-Rényi graphs [321] was used. In these graphs, edges

between vertices are present with a probability p(D). Hence, the vertex degrees are

binomial-distributed [321] and not constant as in our case. However, one might expect

similar behavior in the D → ∞ limit with the correspondence p(D) = φ/D. The

authors of Ref. [295] considered the regime Dp(D) k (logD)6, which they found to

have the same universal properties as in the non-sparse case. In this work, we consider

sparsity beyond this limit, including specifically φ ∼ D0 (vertex degree not growing

with D) and φ ∼ logD.

4.3 Bulk spectrum

In this section, we analyze the dependence of the position and horizontal width of the

bulk of the spectrum on the sparsity parameter φ and the matrix dimension D. We

first provide (Sections 4.3.1 and 4.3.2) expressions and bounds for the position and the

width, characterized respectively by the mean µ(¼) of all eigenvalues and the standard

deviation Ã(Re¼) of the real parts of the eigenvalues. These results are expressed in

terms of the mean and standard deviation of the weight distribution (distribution of

non-zero elements of the Kolmogorov operator K), denoted by µ0 and Ã0, respectively.

Since the most prominent effect of sparsity is to reduce the parametrically large gap

seen in the full random case, it is instructive to analyze the ratio ³ = |µ(¼)|/Ã(Re¼).

This quantity provides insight into the distance of the bulk of the spectrum from the
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origin, relative to the size of the bulk. Section 4.3.3 is devoted to an analysis of the

ratio ³.

Numerical results presented in this section are obtained by sampling edge weights

from the Ç2
2 and the standard uniform distribution.

The spectrum of dense generators (φ = D − 1) consists of two distinct parts - an

eigenvalue ¼1 = 0 and the rest of the eigenvalues forming the spectral bulk away from

the imaginary axis, as shown in Figure 4.1 (a) and Figure 4.2 (a). In contrast, the bulk

of the spectrum is much closer to the imaginary axis for φ j D, as seen in Figure 4.2

for (b) φ =
√
D, (c) for φ = logD and (d) for φ = 3. For φ =

√
D, the bulk of the

spectrum is visibly separated from zero, as in the dense case. In fact, the spectral

boundary has the same spindle-like form as the dense case φ = D − 1. Whether the

spectral distribution is separated from zero for φ = logD and φ = 3 is difficult to say

with certainty from the available numerical data (D ≈ 8000).

4.3.1 Position

The position of the spectral bulk of K can be identified with the estimated mean µ(¼)

of the eigenvalues ¼i of K,

µ(¼) =

〈

1

D

D
∑

i=1

¼i

〉

, (4.2)

where the average ï. . . ð is taken over the ensemble of random Kolmogorov operators

described in Section 4.2. Because the eigenvalues are either real or come in complex

conjugate pairs, the mean of the spectral bulk is real, µ(¼) = µ(Re¼).

A simple calculation shows that µ(¼) can be expressed as

µ(¼) =
〈

1

D
tr(K)

〉

=
1

D

D
∑

j=1

ïKjjð = −φµ0. (4.3)

The averaging ï. . . ð over the matrix ensemble in Eq. (4.2) and Eq. (4.3) is, in

principle, not needed since self-averaging is expected, i.e., for large enough D, a single

sample will display all the spectral features of the ensemble. This is because the

quantity 1
D

tr(K) is concentrated around its average
〈

1
D

tr(K)
〉

for increasing D, which

we show in an appendix in Section 4.7.1.

For the four different dependencies of φ on D shown in Figure 4.2, Eq. (4.3) implies

the following: For φ = const, the mean is independent of the matrix size D. For

φ = logD (φ =
√
D) the mean decreases logarithmically with D (as ∼

√
D) and for

φ = D the mean decreases linearly with D as is expected for the dense generators [294].
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In Figure 4.2, the location µ(¼) of generator matrices K is indicated with a red dot

in each panel. The real part of the dot resides in the bulk of the spectrum for every

dependence of φ on D shown in Figure 4.2.

4.3.2 Horizontal width

In Section 4.3.1, we investigated the bulk location of the spectrum in the complex

plane. In this section, we will analyze the width of the distribution, particularly the

horizontal width.

We characterize the width of the bulk spectrum, both in the real and imaginary

directions, Re¼ and Im ¼, using the estimated variances

Ã2(Re¼) =

〈

1

D

D
∑

i=1



Re¼i − 1

D

D
∑

j=1

¼j





2〉

(4.4)

Ã2(Im ¼) =

〈

1

D

D
∑

i=1

(Im ¼i)
2

〉

, (4.5)

where we used the fact that
∑D
j=1 ¼j is real. Since eigenvalues are real or appear in

complex conjugate pairs, Ã2(Re¼) and Ã2(Im ¼) are related to the estimated complex

pseudo-variance via

Ã2(¼) =

〈

1

D

D
∑

i=1



¼i − 1

D

D
∑

j=1

¼j





2〉

= Ã2(Re¼) − Ã2(Im ¼). (4.6)

The estimated pseudo variance lower bounds the estimated variance of the real parts

of the eigenvalues, Ã2(¼) f Ã2(Re¼).

The complex pseudo variance can be analytically calculated for the ensemble of

random generator matrices as

Ã2(¼) =
〈

1

D
tr(K2)

〉

−
〈

1

D2
tr(K)2

〉

= φ
(

Ã2
0 +

φ

D
µ2

0 − 1

D
Ã2

0

)

. (4.7)

Details of the calculation are provided in an appendix in Section 4.7.1. The bound of

the estimated real variance by the pseudo variance together with Eq. (4.7) leads to the

asymptotic lower bound of Ã(Re¼) in terms of the sparsity parameter φ. As 1 f φ f D,

the estimated horizontal width of the bulk spectrum cannot grow asymptotically slower
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Fig. 4.3 Ratio ³ of mean µ(Re¼) and horizontal width Ã(Re¼) of the bulk of the
spectrum of sparse random Kolmogorov operators with (a) Ç2

2 and (b) standard
uniform weight distributions. In (c) ³ as a function of

√
φ. The bottom markers

correspond to Ç2
2 and the top to uniform distribution. Dependencies of φ on D are φ ≡

constant, φ = logD, φ = 2 logD, and φ = D1/3. The black solid lines correspond to
³ = c1 + c2

√
φ (c1,2 given in the main text) and the dashed lines denote ³ = µ0/Ã0

√
φ.

than
√
φ,

Ã(Re¼) ≳
√
φ. (4.8)

Numerically, we find that the bound in Eq. (4.8) is asymptotically sharp for φ j D,

as shown in Figure 4.3 through the ratio ³ of mean µ(Re¼) and width Ã(Re¼). The

collapse of the data points in Figure 4.3(c) implies that Ã(Re¼) ∼ √
φ.
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4.3.3 Ratio of mean and horizontal width

In this section, we combine the information of the location of the spectrum given by

Eq. (4.2) and the horizontal width of the bulk given by Eq. (4.4) into the ratio

³ =
|µ(Re¼)|
Ã(Re¼)

. (4.9)

This quantifies how close the bulk spectrum is, relative to its size, to the stationary

value ¼1 = 0. i.e., to the imaginary axis. For ³ = O(1) the estimated width of the bulk

is of the same order as the estimated mean, thus the spectrum is located close to 0.

For ³ k 1 the estimated mean is much bigger than the horizontal width of the bulk

and the bulk of the spectrum is far away from 0.

The analytical result for the estimated mean of the spectrum, Eq. (4.3), together

with the asymptotic bound on the standard deviation of the real parts of the spectrum,

Eq. (4.7), imply the following asymptotic bound on ³

³ ≲
√
φ. (4.10)

Numerically, we observe that the bound in Eq. (4.10) is asymptotically tight for φ j D,

i.e.

³ ≈ c1 + c2
√
φ, (4.11)

for constants c1 and c2. Since µ(¼) scales linearly with φ, this behavior is consistent

with Ã(Re¼) ∼ √
φ, stated previously. The constants are found to be c1 ≈ 0.15 (≈ 0.1)

and c2 ≈ 0.84 (≈ 1.3) for the Ç2
2 (uniform) distribution.

Numerical results for ³ are summarized in Figure 4.3. For each combination of φ

and D, ³ is averaged over n samples of random generators such that nD = 50, 000.

The weight distribution is the Ç2
2 distribution in (a) and in the lower part of (c), and

is the uniform distribution in [0, 1] in (b) and in the upper part of Figure 4.3(c). We

have found that these results are qualitatively the same for exponentially distributed

edge weights.

In Figure 4.3(a,b), we show the value of ³ as a function of D and φ. On the x-axis

D varies in steps of 103 between 103 and 104. We observe that ³ increases with φ

and is independent of D, as predicted by Eq. (4.11). In Figure 4.3(c) we show ³ as a

function of φ for different dependencies of φ on D. In all the cases, values of ³ collapse

onto the black solid line given by Eq. (4.11).

For φ ∼ D, the ratio ³ scales as ∼
√
D, thus recovering the parametrically large

gap in the non-sparse case. For constant φ, the location of the bulk relative to its size
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is constant and independent of D, i.e, if measured relative to the size of the bulk, the

bulk does not move away from the imaginary axis with increasing D. We have thus

quantified how sparsity cures one of the less physical aspects of the non-sparse random

model of Markov generators.

4.4 Spectral gap

In this section, we will consider the spectral gap µ∗ of K,

µ∗ = min{| Re¼i| : Re¼i < 0}. (4.12)

The spectral gap µ∗ is asymptotically, approximately bounded by the right extent of

the bulk |µ(¼)| − Ã(¼), which depends on φ as ∼ φ− √
φ ∼ φ. So for constant φ, the

spectral gap is bounded from above, while for φ increasing with D the spectral gap

can increase with D.

In this section, the edge weights are distributed according to the Ç2
2 and the

standard uniform distributions. We first demonstrate numerically that, for φ = const,

the average spectral gap ïµ∗ð decreases as D−1/ϕ, while ïµ∗ð is constant if φ increases

logarithmically with D. We then show that the spectral gap is well approximated by the

smallest (in magnitude) diagonal term of J (K) and use the theory of extreme values

(EVT) to underpin the numerical observations. The results are then generalized to

weight distributions with power-law left tails in that for constant φ the average spectral

gap decreases as a power-law in D and the crossover from decreasing to increasing ïµ∗ð
happens when φ ∼ logD.

4.4.1 Numerical results

In Figure 4.4, we show the average spectral gap ïµ∗ð for edge weights distributed as Ç2
2

(a-c) and according to the standard uniform distribution (d-f). For every combination of

φ and D, the average of the spectral gap is estimated with 100 samples. In Figure 4.4(a)

and (d) we show ïµ∗ð as a function of D for different dependencies of φ on D. The

average spectral gaps for constant φ = 3, 5, 8, 13 (presented with colored circles) clearly

follow a power-law scaling with D.

In Figure 4.4(b) and (e), we show the average spectral gap ïµ∗ð as a function of φ

and D. The black dashed lines are contour lines of constant ïµ∗ð. They are straight

lines to a very good approximation, showing that for a logarithmic increase of φ in D

the spectral gap is constant.
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Fig. 4.4 The average spectral gap ïµ∗ð with Ç2
2 (top) and standard uniform (bottom)

weight distributions. Solid lines in the log-log plots are analytical predictions from
Eq. (4.21) in (a) and Eq. (4.24) in (d). Black dashed lines in the heatmaps denote
contours of constant gap. White circles in the heatmap in (e) are given by Eq. (4.26).

We show the average spectral gap ïµ∗ð as a function of D for φ = 4
5

logD + 8 in

Figure 4.4(a) and φ = 7
10

logD + 8 in (d) as black diamonds. These dependencies of φ

on D agree well with the top dashed contour lines in (b) and (e), respectively. The

average spectral gap of φ depending logarithmically on D is constant in Figure 4.4(a)

and (d).

4.4.2 Gap as the minimum of the diagonal

Let us assume for a moment that the generator matrix K is Hermitian with eigenvalues

¼D f · · · f ¼2 < ¼1 = 0. Then 1 = (1, . . . , 1)t is the eigenvector with eigenvalue 0 and

all other eigenvectors are orthogonal to it. By the Courant-Fischer theorem [322]

µ∗ = −¼2 = min
|v|=1,v§1

vt(−K)v, (4.13)

where the minimum runs over all vectors v ∈ R
D, which have Euclidean norm |v| = 1

and are perpendicular to 1. Choosing 1 f l f D arbitrarily and v as (see the appendix
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Fig. 4.5 The average relative error (Eq. (4.19)) between the spectral gap and the
minimal value of J . Weight distributions are the Ç2

2 distribution in (a) and the
standard uniform distribution in (b). Averages are over 100 samples.

in Section 4.7.2 for more details)

vi =











√

1 − 1
D

i = l

− 1√
D(D−1)

i ̸= l,
(4.14)

together with a simple calculation shows that

µ∗ f
(

1 +
1

D − 1

)

min
1flfD

Jll. (4.15)

Similarly, by using the Courant-Fisher theorem for the eigenvalue with largest magni-

tude ¼D we find

−¼D = max
|v|=1

vt(−K)v, (4.16)

and with v as the l-th vector of the standard basis of R
D

−¼D g max
1flfD

Jll. (4.17)

Under some mild conditions on random weights Kij, a result from Ref. [323] shows

that the inequality Eq. (4.17) becomes an equality in the large D limit with probability

approaching 1. Motivated by this observation and the bound from Eq. (4.15), we

expect a similar asymptotic tightness for Eq. (4.15). However, it is an open question

whether the result from Ref. [323] applies to the bound of the spectral gap, Eq. (4.15).

Further, the proof presented in Ref. [323] makes use of the Central Limit Theorem for



104 An ensemble of sparse random generators of Markov processes

the diagonal elements Jll of J , and so the corresponding result does not apply to the

case of constant or logarithmically increasing (with D) sparsity parameter φ.

Nevertheless, the above arguments allow us to conjecture that in the limit of large

D and φ j D the spectral gap µ∗ is well approximated by the minimum of the diagonal

of J ,

µ∗ ≈ min
1flfD

Jll, (4.18)

for general, non-hermitian random generator matrices K, with iid and non-exotic edge

weight distributions. We support our conjecture with numerical data presented in

Figures 4.5(a) and (b). We quantify the approximation in Eq. (4.18) by the relative

error between the spectral gap µ∗ and the minimum min1flfD Jll of the diagonal of J ,

¶µ∗ =
|µ∗ − min1flfD Jll|

µ∗
. (4.19)

Figure 4.5 shows ï¶µ∗ð as a function of φ and D for the Ç2
2 distribution and the standard

uniform distribution. The average relative error is at least two orders of magnitude

smaller than the average spectral gap shown in Figure 4.4(b) and (e). For increasing

D, the approximation in Eq. (4.18) improves. We conclude that the approximation in

Eq. (4.18) works well in the case φ j D.

4.4.3 Extreme value theory

The distribution of the right-hand side of Eq. (4.18) can be tackled with EVT. As all

non-zero entries of M (edge weights) are iid distributed random variables, so are the

diagonal entries of J . Let the cumulative distribution function (CDF) of the diagonal

entries Jll of J be denoted by F and its probability density function by f(x) = d
dx
F (x).

If the edge weights are distributed according to a Ç2 distribution (or any gamma

distribution) the CDF F of Jll is a gamma distribution function; if the edge weights

are uniformly distributed, F is an Irwin-Hall distribution function [296]. The expected

value of min1flfD Jll is given in terms of F (and f) by

〈

min
1flfD

Jll

〉

= D
∫

dxxf(x)(1 − F (x))D−1. (4.20)

Eq. (4.18) and Eq. (4.20) imply that

ïµ∗ð ≈ D
∫

dxxf(x)(1 − F (x))D−1. (4.21)
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We demonstrate the validity of Eq. (4.21) with Figure 4.4(a), where the solid lines,

given by Eq. (4.21), perfectly match numerically sampled average spectral gap ïµ∗ð. In

the remainder of this section, we will use EVT to approximate the integral in Eq. (4.21)

by elementary functions of φ and D.

Power-law tail distributions

Let us consider first the case φ = const and increasing D. By the Fisher-Tippet-

Gnedenko or extreme value theorem [324], min1flfD Jll converges in law, under some

mild assumptions on the distribution of Jll and proper renormalization, to the Weibull

distribution. The Weibull CDF is given by Ψβ(x) = e−x
β

, where ´ > 0 and the support

is on the positive real line.

The specifics of the convergence type are less critical for the outcomes of this

chapter. Convergence in law, a weak form of convergence in probability theory, is often

used in extreme value analysis. We will proceed under the assumption that moments

of the distributions converge as well and concentrate on the asymptotic behavior of

the integral in Eq. (4.21). Our approximations are supported by numerical results,

which validate sufficient accuracy. While the details of the convergence type present a

mathematical interest, they are not the focus here.

For distributions of Jll with power-law left tail, the renormalization of min1flfD Jll

for convergence to the Weibull distribution is well known, see e.g. Theorem 3.3.2, page

137 in Ref. [324]. We use a version modified to our case. Let a positive random variable

X have CDF F with ´-power left tail, i.e.

F (x) = Cxβ for 0 f x f C1/β, (4.22)

where C > 0 is a constant. Further, let mD = min1flfDXl, where the Xl are iid copies

of X. Then

(DC)1/βmD → Ψβ in law. (4.23)

The Irwin-Hall distribution has a left power-law tail given by F (x) = xϕ

ϕ!
for 0 f x f 1.

The constants for the Irwin-Hall distribution are listed in Table 4.1.

We assume that the convergence in Eq. (4.23) is not only in distribution but that

the renormalized moments of mD converge as well. If the convergence of the moments

is sufficiently fast, then Eq. (4.23) together with Eq. (4.18) imply

ïµ∗ð ≈ ïmDð ≈ Γ

(

1 +
1

φ

)

(φ!)1/ϕD−1/ϕ, (4.24)
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off-diag. K = Mij Ç2
k uniform

diag. K = Jll gamma
(

kϕ
2
, 2
)

Irwin-Hall
C 2ϕ

ϕ!
* 1

ϕ!

´ k
2
φ* φ

Table 4.1 The distributions of the off-diagonal elements Mij of K (edge weights) and
the corresponding distributions of the diagonal elements Jll of K and the corresponding
constants C and ´ for the convergence of Jll to the Weibull distribution Ψβ in Eq. (4.23).
(*) constants obtained by a power-law approximation of the left tail of the gamma
distribution.

whenever the weight distribution (distribution of non-zero off-diagonal elements of K)

is such that the diagonal of J has a power-law left tail and the coefficients C and ´

are given by C = 1/φ! and ´ = φ.

Finally, we consider the case that the weight distribution is uniform. We observe

that the approximation in Eq. (4.24) works very well in this case. The solid lines

in Figure 4.4(d) are given by the right-hand side of Eq. (4.24) and they match the

numerically calculated average spectral gap.

Eq. (4.24) implies for φ = const and increasing D that the average spectral gap

decreases as

ïµ∗ð ∼ D−1/ϕ. (4.25)

In Figure 4.4(f) we show that the numerically retrieved power-law exponents of the

average spectral gap, Figure 4.4(d), match the scaling in Eq. (4.25).

We find that the large deviation result is not only valid for constant φ and increasing

D but also for φ increasing logarithmically with D; see Figure 4.4(d). This allows us

to estimate the crossover from decreasing to increasing spectral gap. Let c denote a

constant and let ïµ∗ð = c. Then by Eq. (4.24)

D ≈




Γ
(

1 + 1
ϕ

)

c





ϕ

φ!. (4.26)

In Figure 4.4(e) the contour lines of constant average spectral gap c perfectly line up

with the functional dependence of D on φ through Eq. (4.26) shown as white dots.

To find φ as a function of D such that the average spectral gap is constant, we

assume that φ is reasonably large and approximate Γ
(

1 + 1
ϕ

)

≈ 1 and by Stirling’s
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formula (φ!)1/ϕ ≈ ϕ
e
. Denoting y = log ϕ

ce
and rearranging Eq. (4.26) gives us

logD

ce
≈ yey, (4.27)

which can be inverted by the Lambert W function. Resubstituting φ = ceey we arrive

at

φ ≈ ce · eW( log D
ce ), (4.28)

which for logD g ce2 behaves as [325]

φ ≈ logD

(log logD − log c− 1)1−η(D)
, (4.29)

where ¸(D) → 0 slowly, as ¸(D) ∼ (log logD)−1. So in the limit 1 j φ j D

the crossover from decreasing to increasing spectral gap happens at φ ∼ logD with

corrections of the order log logD. This confirms our numerical observations that the

average spectral gap ïµ∗ð appears to be constant for φ ∼ logD in the range of matrix

sizes D we considered.

Approximate power-law distributions

If the weight distribution is a Ç2 or exponential distribution, the diagonal elements

of J are distributed according to a Gamma distribution, see Table 4.1. The left tail

of the Gamma distribution only follows approximately a power-law. Approximating

the left tail by a Taylor expansion, we obtain constants C and ´ presented in Table

4.1. Especially, for the Ç2
2 distribution, the power-law approximation of the gamma

distribution and the large deviation result in the previous subsection suggest that the

average spectral gap ïµ∗ð decreases for constant φ and increasing D as a power in D

with exponent given −1/φ.

In Figure 4.4(c), we present the numerically calculated exponents of the power-law

decrease of ïµ∗ð, for Ç2
2 weight distribution, with D and compare it to the prediction

−1/φ. We find excellent agreement for small φ f 5. For larger φ the deviation between

the numerical exponent and −1/φ is visible, but the agreement is still good.

A quantitative comparison between the numerically calculated spectral gap ïµ∗ð
and the EVT prediction by a power-law approximation of the left tail of the gamma

distribution resulted in poor agreement. As the expected minimum value of the

diagonal of J perfectly agrees with ïµ∗ð, we attribute the disagreement to the power-
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law approximation of the left tail and slow convergence of Eq. (4.23) for diagonal

elements of J distributed according to the gamma distribution.

4.4.4 Summary

We presented numerical and analytical arguments that, for the weight distributions

considered, the average spectral gap decreases as a power-law for constant φ and

increasing D with exponent given (approximately) by −1/φ. The crossover between

decreasing and increasing spectral gap happens at φ ∼ logD, with log logD corrections,

for uniform weight distribution. For Ç2
2 distributed edge weights the crossover was

observed at φ ∼ logD. If φ increases with D faster than logD then the average

spectral gap increases.

The presented results generalize. Let us assume that the spectral gap is well

approximated by the smallest diagonal element of J , at least in the regime of large D

and φ j D. Then the distribution of the spectral gap is given by the limiting extreme

value distribution of the diagonal elements of J . Consequently, the classification

of functional dependencies of the spectral gap on φ and D with respect to weight

distributions reduces to the classification of extreme value distributions. Extensive

research has been conducted in this field [326, 324]. Therefore, the presented approach

allows the calculation of the distribution of the spectral gap for broad classes of weight

distributions.

4.5 Complex spacing ratios

So far we considered the marginal distribution of eigenvalues of sparse random generator

matrices. But correlations between the eigenvalues are also of interest.

In Section 1.1.3 of the introduction, we presented the complex spacing ratio r (CSR)

distribution as a measure of eigenvalue correlations. As discussed there, uncorrelated

eigenvalues ¼ have uniform CSR density, while eigenvalues of random matrices typically

have a CSR density, which vanishes at r = 0 and r = 1. The random generators

considered in this chapter have real entries, so they should be compared to real Ginibre

matrices (GinOE).

In Figure 4.6, we show the CSR densities of (a) GinOE members (with Gaussian

entries) and (b-d) sparse random generators with Ç2
2 distributed edge weights and

φ = 1, 2, 3. The densities are estimated from 100 samples for D = 10, 000. We also

checked that the obtained densities are independent of the weight distribution. As
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Fig. 4.6 Density of complex spacing ratios (CSRs) r for (a) GinOE and (b-d) sparse
Kolmogorov operators with φ = 1, 2, 3. The number of states D = 10, 000 and densities
are obtained from 100 samples. Edge weights are distributed according to the Ç2

2

distribution. The color range is from 0 to 0.8 in (a), (c), and (d) and from 0 to 260 in
(b).

suggested in Ref. [52], we avoid eigenvalues close to the real line (by excluding all

eigenvalues from the strip Im ¼ < 10−14) when sampling CSR densities.

The CSR density of GinOE matrices shown in Figure 4.6(a) exhibits typical depletion

at r = 0 and r = 1, similar to the CSRs of the GinUE presented in Figure 1.5(a) in

Section 1.1.3. In Ref. [260], it was shown that the CSR density obtained for dense

random Kolmogorov operators agrees well with the distribution shown in Figure 4.6(a).

The CSR density of sparse generators with sparsity φ g 2 (c,d) agrees remarkably well

with the GinOE case.

The CSR density for φ = 1 is anomalous, as observed in Figure 4.6(b). It has

an extremely high density around r = −1 while being nearly flat on the rest of the

unit disk. This anomalous CSR density is a consequence of the graph of Kolmogorov

operators with φ = 1 fragmenting into a set of disjoint (distorted) cycle graphs. The

spectra of each of these fragments are approximately arranged on (distorted) circles,

as observed in Figure 4.7. Consequently, the CSRs of the fragments are likely close to
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Fig. 4.7 Spectrum of a random Kolmogorov operator with φ = 1 and Ç2
2 weight

distribution. The matrix size is D = 1, 000. Inset: same data plotted with both axes
having the same scale.

GinOE φ = 1 φ = 2 φ = 3
−ïcos ¹ð 0.7379 0.7871 0.7359 0.7372

ï|r|ð 0.2347 0.3516 0.2225 0.2284

Table 4.2 Mean and angle of spacing ratio distributions obtained with 100 samples
of random D × D-matrices with D = 10, 000 rounded to the 4th digit. The matrix
ensembles correspond to the ones shown in Figure 4.6.

r = −1. The independence of the fragments implies the flatness of the CSR density

away from r = −1, akin to the CSRs of independent random variables.

To quantify the difference between CSR distributions, we use the average length

ï|r|ð and the average cosine of the angle −ïcos ¹ð of spacing ratios, where ï. . . ð again

denotes the average over the random matrix ensemble [52]. We numerically estimate

ï|r|ðGinOE ≈ 0.7379 and −ïcos ¹ðGinOE ≈ 0.2347 for 100 D × D-matrices with D =

10, 000. These agree well with ï|r|ð and −ïcos ¹ð for φ = 2 and φ = 3, as shown in Table

4.2. We found similar results for φ > 3 (not shown). In contrast, the corresponding

quantities for φ = 1 deviate substantially from ï|r|ðGinOE and −ïcos ¹ðGinOE, as also

shown in Table 4.2. We conclude that, for φ g 2, correlations between eigenvalues of

sparse random Kolmogorov operators agree with correlations of eigenvalues of GinOE

matrices.
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4.6 Discussion

Summary of results

Motivated by the inability of dense random Kolmogorov operators to reasonably model

the spectral gap of physical Markov processes we introduced and analyzed an ensemble

of sparse random Kolmogorov operators. We showed that, if the number of non-zero

elements per column (and row) φ increases with the matrix size D, the bulk of the

spectrum is shifted away from the stationary eigenvalue 0 in the limit of large matrix

size D. This is independent of the weight distribution, i.e. of the distribution of the

non-zero matrix elements.

In contrast, the spectral gap depends on the tails of the weight distribution. These

tails determine, together with φ, the tails of the diagonal elements of generator

matrices. We numerically showed that the spectral gap is well approximated by the

minimum of the diagonal elements. From extreme value theory it follows that for

diagonal distributions with power-law left tails (this includes among others edge weights

being uniform, exponential, Ç2, gamma or beta distributed), the average spectral gap

decreases as a power-law in D for fixed φ, is constant for φ ∼ logD and increases,

whenever φ increases with D substantially faster than logD.

Additionally, we showed that CSR distributions of generator matrices with φ g 2

follow the distribution typical of the GinOE, while there is a strong anomaly for φ = 1.

Open questions

(1) We have introduced sparsity to model K-generators of physical Markov processes,

and have used the sparsity to tune spectral features of the generators. There are other

ways of providing random matrices with a structure that models physical constraints

(e.g., locality). For example, one could consider banded matrices [32–35, 38–41, 59, 42]

or matrices with decaying off-diagonal terms [36, 37, 59] or temperature based models

[327]. These are alternate routes to tuning spectral features. To the best of our

knowledge, generators of continuous-time Markov processes with such structures have

not yet been considered.

(2) The application of extreme value theory to find the limiting distribution of

the spectral gap relied on the observation that the spectral gap is well approximated

by the minimum of the diagonal of the generator matrix. For symmetric generators,

the Courant-Fisher theorem implies that the extremes of the diagonal are upper and

lower bounds for the gap and the largest eigenvalue in magnitude, respectively. In this

case, a concentration of the largest eigenvalue in magnitude around the maximum of
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the diagonal was shown in [323]. An analytical treatment of general non-symmetric

generators and the spectral gap is to the best of our knowledge not known. We hope

that our results motivate a rigorous investigation of the connection between the spectral

gap and the diagonal of the generator matrix.

(3) Kolmogorov generators have real entries and thus their eigenvalues are real

or come in complex conjugate pairs. In the investigation of correlations between

eigenvalues, we left out real eigenvalues. The appearance of a large number of real

eigenvalues in the spectrum of non-Hermitian matrices is a phenomenon of wide interest

[22, 328–332, 294, 333, 53, 334, 335]. For real Ginibre matrices, the average number

of real eigenvalues is ∼ D−1/2 [328–330] while for dense generators, it is substantially

larger [294]. We observed that the fraction of real eigenvalues is larger for small φ and

smaller for larger φ (not presented). Understanding of the functional dependence of

the number of real eigenvalues for sparse generators is an interesting problem.

(4) We focused on the location and extent of the bulk spectrum as well as the spectral

gap. One could inquire about other features of the spectral distribution as a function of

sparsity, e.g., about the envelope of the spectral distribution. Following Ref. [260], the

spectral density of dense random Kolmogorov operators emerges as convolution of an

asymptotically free matrix and a diagonal Gaussian matrix. This lead to the prominent

spindle shape of the spectral boundary. Free probability arguments break down for

sparse random Kolmogorov generators. Analytical tools which have been employed to

calculate the spectral density of sparse, random matrices include replica tricks [336–340],

single defect and effective medium approximations [341–343], supersymmetry-based

techniques [30, 344] and the cavity approach [345–347, 340]. Spectral properties of

symmetric, sparse, random Kolmogorov generators have been investigated with the

cavity method [348–350] and with supersymmetric approaches [344]. Investigations of

the spectral density of non-symmetric sparse, random Kolmogorov operators with the

above methods might be an interesting objective.

(5) In this chapter, we have considered sparse generators based on strongly connected,

sparse random graphs. It is an open question whether our results can be generalized to

other sparse graph ensembles. One potential avenue to explore are directed Erdős-Rényi

(dER) graphs. In dER graphs, the probability of an edge connecting any two vertices is

0 < p f 1. For a dER graph to be strongly connected with a high probability, the value

of p must exceed ∼ logD/D [351, 352]. As a result, the average degree of the vertices

must increase logarithmically with D to ensure strong connectivity. Consequently, the

range of constant average vertex degree and increasing vertex number D is excluded.

Nonetheless, modifying the dER graph by enforcing a minimum (in- and out-) degree
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g 2 guarantees strong connectivity with high probability [320]. Exploring the spectral

properties of Kolmogorov generators based on dER graphs may represent a promising

next step towards generalizing our results.

4.7 Appendix

4.7.1 Analytical results for the bulk spectrum

In this section, we will derive the analytical results of the estimated mean µ(¼) in

Eq. (4.3) and the estimated pseudo-variance in Eq. (4.7) in the main text of this

chapter and show that 1
D

∑

j=1 ¼j concentrates around its average ï. . . ð.
We denote by º the function º : {1, . . . , φ} × {1, . . . , D} → {1, . . . , D}2 with

º(l, j) = (i, j) where i is the lth non-zero index in column j in M. Note that

º(l, j) = (i, j) implies i ̸= j and l → º(l, j) is injective for fixed j. Further, let

in this appendix the location of the bulk be denoted as

µ(¼) =
1

D

D
∑

j=1

¼j =
1

D
tr(K)

and the pseudo-variance as

Ã2(¼) =
1

D

D
∑

j=1

¼2
j −





1

D

D
∑

j=1

¼j





2

=
tr(K2)

D
− tr(K)2

D2
. (4.30)

Here we explicitly do not include the averaging over the random matrix ensemble ï. . . ð
in contrast to the main text.

Location

The average value with respect to ï. . . ð of the location µ(¼) can then be computed as

ïµ(¼)ð =
〈

1

D
tr(K)

〉

=
1

D

D
∑

j=1

ïKjjð =
1

D

D
∑

j=1

ϕ
∑

l=1

〈

Kι(l,j)

〉

= −φµ0,
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where we used that
〈

Kι(l,j)

〉

= −µ0. This is Eq. (4.3) in the main text. Similarly, it

holds that

〈

tr(K)2
〉

=
D
∑

j1,j2=1

ϕ
∑

l1,l2=1

〈

Kι(l1,j1)Kι(l2,j2)

〉

=
D
∑

j=1





ϕ
∑

l=1

〈

K2
ι(l,j)

〉

+
∑

l1 ̸=l2

〈

Kι(l1,j)Kι(l2,j)

〉



+
∑

j1 ̸=j2

ϕ
∑

l1,l2=1

〈

Kι(l1,j1)Kι(l2,j2)

〉

.

Although the off-diagonal elements of K are weakly dependent because of the constraint

that the number of non-zero elements per row and column has to equal φ, the non-zero

elements Kι(l,j) are independent. Hence,
〈

Kι(l1,j)Kι(l2,j)

〉

=
〈

Kι(l1,j)

〉 〈

Kι(l2,j)

〉

and
〈

Kι(l1,j1)

〉 〈

Kι(l2,j2)

〉

, so

〈

tr(K)2
〉

= Dφ(Ã2
0 + µ2

0) +Dφ(φ− 1)µ2
0 +D(D − 1)φ2µ2

0

= DφÃ2
0 + (Dφµ0)

2,

where we used that the second moment
〈

K2
ι(l,j)

〉

equals Ã2
0 + µ2

0. This implies that

〈

µ(¼)2
〉

− ïµ(¼)ð2 =

〈

tr(K)2

D2

〉

−
〈

tr(K)

D

〉2

=
φÃ2

0

D
.

The right-hand side vanishes for increasing D and φ growing slower with D than

linearly. Relatively to ïµ(¼)ð the typical deviation of µ(¼) from its average value always

vanishes for either increasing D or φ, as

√

ïµ(¼)2ð − ïµð2

| ïµ(¼)ð | =
Ã0

µ0

(φD)−1/2 .

Complex pseudo-variance

The first term in the averaged pseudo-variance given by Eq. (4.30) can be calculated as

〈

tr(K2)
〉

=
D
∑

i,j=1

ïKijKjið =
D
∑

i=1

ïK2
iið +

∑

i̸=j

ïKijKjið. (4.31)
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We proceed with
∑D
i=1ïK2

iið in Eq. (4.31) and get

D
∑

i=1

〈

K2
ii

〉

=
D
∑

i=1

〈



−
∑

j ̸=i

Kji





2〉

=
D
∑

i=1

∑

j,l ̸=i

ïKjiKlið

=
D
∑

i=1

∑

j ̸=i

ïK2
jið +

D
∑

i=1

∑

j,l ̸=i;j ̸=l

ïKjiðïKlið . (4.32)

The former sum in Eq. (4.32) is given by

D
∑

i=1

∑

j ̸=i

ïK2
jið =

D
∑

i=1

ϕ
∑

l=1

ïK2
ι(l,i)ð = Dφ(Ã2

0 + µ2
0), (4.33)

where we used that ïK2
ι(l,i)ð = Ã2

0 + µ2
0. The latter sum in Eq. (4.32) is

D
∑

i=1

∑

j,l ̸=i;j ̸=l

ïKjiðïKlið =
D
∑

i=1

ϕ
∑

k=1

ϕ
∑

n=1;ι(n,i) ̸=ι(k,i)

ïKι(k,i)ðïKι(n,i)ð = Dφ(φ− 1)µ2
0. (4.34)

Combining Eq. (4.33) and Eq. (4.34) we get

D
∑

i=1

〈

K2
ii

〉

= Dφ(Ã2
0 + µ2

0) +Dφ(φ− 1)µ2
0 = DφÃ2

0 +Dφ2µ2
0.

Now, we are left with calculating
∑

i̸=jïKijKjið, the second term in Eq. (4.31),

∑

i̸=j

ïKijKjið =
D
∑

i=1

ϕ
∑

l=1

〈

Kι(l,i)Mι(l,i)

〉

,

where º denotes swapping the first and second component, º̄(l, i) = º(i, l). Note that

Kι(l,i) is not necessarily a non-zero entry of K, hence Kι(l,i) and Kι(l,i) depend weakly

on each other. In the large D limit, we can assume that the dependence is sufficiently

weak and we treat Kι(l,i) and Kι(l,i) as independent, thus
〈

Kι(l,i)Kι(l,i)

〉

= µ0

〈

Kι(l,i)

〉

.

By the assumed independence the mean of every entry in the ith row, except the

diagonal, is
〈

Kι(l,i)

〉

= ϕ
D
µ0. Hence,

∑

i̸=j

ïKijKjið =
D
∑

i=1

1

D
φ2µ2

0 = φ2µ2
0.
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Collecting the above results we arrive at

〈

tr(K2)
〉

= DφÃ2
0 +Dφ2µ2

0 + φ2µ2
0 = DφÃ2

0 + (D + 1)φ2µ2
0.

The second term of the averaged pseudo-variance in Eq. (4.30) is

〈

tr(K)2
〉

= DφÃ2
0 + (Dφµ0)

2.

Finally, we can evaluate

〈

Ã2(¼)
〉

=

〈

tr(K2)

D

〉

−
〈

tr(K)2

D2

〉

= φÃ2
0 + φ2µ2

0 +
1

D
φ2µ2

0 − 1

D
φÃ2

0 − φ2µ2
0

= φ
(

Ã2
0 +

φ

D
µ2

0 − 1

D
Ã2

0

)

,

which is Eq. (4.7) in the main text.

4.7.2 Bound of the spectral gap for symmetric generators

In this section, we present the proof of Eq. (4.15). Let K = M − J be a symmet-

ric generator matrix. According to Eq. (4.13), we have to show that vt(−K)v f
(

1 + 1
D−1

)

min1flfD Jll for the vector v defined as

vi =











√

1 − 1
D

i = l

− 1√
D(D−1)

i ̸= l,

where 1 f l f D is arbitrary. Let us fix any 1 f l f D. It is easy to see that |v|2 = 1

and v is orthogonal to 1 = (1, . . . , 1)t. So we proceed with

µ∗ f vt(J − M)v =
D
∑

i,j=1

vivj(J − M)ij =
D
∑

i=1

v2
jJjj −

D
∑

i,j=1

vivjMij

=
D
∑

i,j=1

v2
jMij −

D
∑

i,j=1

vivjMij =
D
∑

i,j=1

vjMij(vj − vi). (4.35)
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Note that any summand in Eq. (4.35) where either i = j or i ̸= l and j ≠ l is zero.

Therefore, by using the symmetry of M and the definition of v we get

µ∗ f
∑

i̸=l

vlMil(vl − vi) +
∑

j ̸=l

vjMlj(vj − vl) =
∑

i̸=l

Mil [vl(vl − vi) + vi(vi − vl)]

=
∑

i̸=l

Mil(vi − vl)
2 =

(

1 +
1

D − 1

)

∑

i̸=l

Mil =
(

1 +
1

D − 1

)

Jll. (4.36)

Since the index l was chosen arbitrarily, we get

µ∗ f
(

1 +
1

D − 1

)

min
1flfD

Jll,

which is Eq. (4.15) in the main text.

4.7.3 Stochastic systems presented in Figure 4.1

In this section we present physical Markov processes, whose generator spectra have

been depicted in Figure 4.1.

Modified TASEP

Figure 4.1(b) illustrates an adapted version of the TASEP on a ring, consisting of

L = 12 sites with alternating hopping amplitudes. The matrix M can be expressed as

[52]

M =
1

2
Ã+

1 +
1

2
Ã−

1 +
L
∑

j=1

pjÃ
−
j Ã

+
j+1, (4.37)

where the hopping amplitude pj is assigned a value of 1 for even indices j and 0.2

for odd indices. Contrasting with the ASEP presented in Section 1.3.2, which was

Bethe-integrable, this particular version of TASEP is non-integrable.

Single particle system

The random hopping of a single particle on a two-dimensional lattice constitutes a

CTMC. The corresponding M matrix for this process can be expressed as

M =
∑

ï(i,j),(i′,j′)ð

p(i,j)→(i′,j′)Ã
−
i,jÃ

+
i′,j′ , (4.38)

where ï. . . ð indicates a summation over nearest neighbors. The spin-up state represents

the particle present, while a spin-down state indicates absence of any particle. The
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transition probabilities p(i,j)→(i′,j′) from site (i, j) to site (i′, j′) are chosen randomly

within the range of 0 to 1, subject to the constraint p(i,j)→(i′,j′) = 1 − p(i′,j′)→(i,j).

Figure 4.1(d) illustrates the spectrum of a single particle moving on a 65 × 65 grid

with pbc and uniformly random hopping amplitudes. While the model in Eq. (4.38)

can be extended to multiple particles, we present the single-particle sector.

Contact Process

The contact process [247, 220, 255] is another fundamental model in the study of

non-equilibrium statistical mechanics, particularly in the context of phase transitions

and critical phenomena [353–355]. Originating from the field of interacting particle

systems, it serves as a prototypical example for understanding the dynamics of spreading

phenomena, such as infection spread in epidemiology or growth of bacterial colonies

[356–358].

At its core, the contact process is a stochastic model defined on a lattice where each

site can be in one of two states: active (infected) or inactive (healthy). The dynamics

are governed by two primary processes: the spontaneous recovery of an active site to

an inactive state, and the infection of neighboring inactive sites by an active site.

The matrix M for the contact process, characterized by a recovery rate µ and an

infection rate ¼, can be represented as

M = −µ
∑

i

Ã−
i − ¼

∑

ïi,jð

niÃ
+
j , (4.39)

where ni signifies the spin-up state (ni = 1) or spin-down state (ni = 0) at site i.

The first term models the recovery process at infected sites, while the second term,

summing over adjacent site pairs ïi, jð, accounts for the infection of inactive sites.

In Figure 4.1(e), we show the spectrum of a contact process on a one-dimensional

chain with L = 12 sites and obc as well as µ = ¼ = 1.

Gene transcription model

Finally, in Figure 4.1(f) we show the spectrum of the generator matrix K of a gene

transcription model taken from [239]. The following master equations model the

accumulation and release of mechanical strain of DNA during transcription. The

parameters chosen are the mRNA transcription rate r = 2 and decay rate ¼ = 0.05,

the maximum number of transcripts until no further strain can be put on the DNA

mc = 10, the relaxation rate of the DNA string g = 0.05 and a maximum number of
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transcription events mmax = 400 to make the generator matrix M finite. By m we

denote the number of current transcripts and by ³ the number of transcripts made

since the last relaxation event. Then for 0 f m f mmax and 1 f ³ f mc − 1 the

master equation reads

d

dt
Pα = −(r + g + ¼m)Pα(m, t) + ¼(m+ 1)Pα(m+ 1, t) + rPα−1(m− 1, t) (4.40)

while for ³ = 0 we have

d

dt
P0 = −(r + g + ¼m)P0(m, t) + ¼(m+ 1)P0(m+ 1, t) + g

mc
∑

α=0

Pα(m, t) (4.41)

and for ³ = mc

d

dt
Pmc

= −(g + ¼m)Pmc
(m, t) + ¼(m+ 1)Pmc

(m+ 1, t) + rPmc−1(m− 1, t). (4.42)

These dynamical equations are collected into a Kolmogorov generator K such

that d
dt
P (t) = KP (t) with P = (P0(0, t), . . . , P0(m, t), P1(0, t), . . . , Pmc(m, t)). The

corresponding spectrum is presented in Figure 4.1(f).





Chapter 5

The spectral boundary of the ASEP

The content of this chapter has appeared as part of [302]:

G. Nakerst, T. Prosen, and M. Haque, The spectral boundary of the Asymmetric

Simple Exclusion Process (ASEP) – free fermions, Bethe ansatz and random

matrix theory (2024), arXiv:2402.00662.

In this chapter, we investigate the spectrum of the ASEP with focus on the spectral

boundary. This boundary is characterized by pronounced spikes: L spikes for pbc and

L+ 1 spikes for obc. We analyze the emergence of the spikes in the spectral boundary

from several points of view.

We start in Section 5.1 by rewriting the generator matrices of ASEP, formulated

in terms of spin-1/2 operators in Section 1.3.2, as interacting fermions. The presence

of single Pauli matrices in the obc generator makes this a nontrivial task. The

emergence of spikes in the spectral boundary is then elucidated in three ways. First, in

Sections 5.2 and 5.3, we present results of the non-interacting ASEP with pbc and obc,

respectively. In these cases, the spikes in the spectral boundary emerge since many-

body eigenvalues are sums of circular/elliptic single-body eigenvalues. We analytically

derive a parametrization of the spectral boundary of the non-interacting ASEP. This

parametrization is similar to the hypotrochoidic curve enclosing non-Hermitian random

matrices with correlated entries, presented in Section 1.1.2. Second, in Section 5.4, we

reintroduce the interactions and study the TASEP with pbc using the coordinate Bethe

ansatz. In this case, many-body eigenvalues are sums of Bethe roots. We demonstrate

a sufficient clustering of Bethe roots, which in turn leads to a spiky spectral boundary.

Third, in Section 5.5, we compare the TASEP to random graphs. These graphs are

similar to the graphs in Section 1.1.2, which followed the hypotrochoidic law. In the

graphs resembling the TASEP, all cycle lengths are integer multiples of L (L+ 1 for
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obc). We show that the spectral boundaries of the corresponding adjacency matrices

and Laplacians have an identical number of pronounced spikes, similar to the TASEP.

In Section 5.6, we provide a summary and present open questions.

5.1 The generator as interacting fermions

In this chapter, we investigate the spectrum of Kolmogorov generators of the ASEP.

As discussed in Section 1.3.1 of the introduction, every Kolmogorov generator K can

be expressed as

K = M − J , (5.1)

where M is a matrix with zero diagonal entries and J is a diagonal matrix, containing

the column sums of M as diagonal elements. One way to gain insight into the spectrum

of K is to study the spectrum of M. An advantage of studying M is that, in the case

of ASEP, we can obtain its spectrum analytically. To extend results of M to K, we

generalize Eq. (5.1) to

K = M − UJ , (5.2)

with 0 f U f 1. The generator in Eq. (5.1) is recovered for U = 1. We note that for

general U ≠ 1, the matrix K is not a generator of a CTMC, as its column sums are

non-zero. For ASEP, J can be expressed as a 4-point (2-body) fermion interaction.

Therefore, we refer to U as “interaction strength”.

In the remainder of this section, we express M in terms of fermions and present

spectra of M and K.

5.1.1 Periodic boundary conditions (pbc)

In Section 1.3.2, we showed that the matrices M and J for pbc can be expressed in

terms of Pauli spin-1/2 matrices as

M =
L
∑

j=1

(

pÃ+
j+1Ã

−
j + qÃ+

j Ã
−
j+1

)

, (5.3)

J = −1

4

L
∑

j=1

(

ÃzjÃ
z
j+1 − 1

)

. (5.4)
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The matrices M and J (and so K) can be written in terms of spinless fermions by a

Jordan-Wigner transformation

cj =





j−1
∏

l=1

(−Ãzl )


Ã−
j , c j =





j−1
∏

l=1

(−Ãzl )


Ã+
j , (5.5)

where cj and c j are fermionic annihilation and creation operators, respectively. In

terms of these fermionic operators, M and J are given by

M =
L−1
∑

j=1

(

pc j+1cj + qc jcj+1

)

+ (−1)N+1(pc 1cL + qc Lc1), (5.6)

J = −
L
∑

j=1

c jcjc
 
j+1cj+1 +N. (5.7)

Therefore, M represents non-Hermitian free fermions with a possible, N -dependent,

twist in the boundary conditions, while J denotes a quartic fermion interaction.

5.1.2 Open boundary conditions (obc)

In the case of obc, it was shown in Section 1.3.2 that the matrix M can be expressed

as

M =
L−1
∑

j=1

(

pÃ+
j+1Ã

−
j + qÃ+

j Ã
−
j+1

)

+ ³Ã+
1 + µÃ−

1 + ´Ã−
L + ¶Ã+

L , (5.8)

and the diagonal J as

J = −1

4

L−1
∑

j=1

(

ÃzjÃ
z
j+1 − 1

)

− 1

2

[(

p− q

2
− ³+ µ

)

Ãz1 +
(

q − p

2
− ¶ + ´

)

ÃzL

]

+
1

2
[³+ ´ + µ + ¶] . (5.9)

Similar to the pbc case, M and J can be reformulated in terms of fermions, where

M is non-Hermitian and quadratic in these fermions, while the diagonal J contains

terms, which are quartic in fermions. In the following, we will express M in terms of

fermions. A similar approach is applicable to J .

The single spin operators at the end of the chain on site 1 and L hinder a straight-

forward application of a Jordan-Wigner transformation. Instead, we will treat the

reservoirs as an additional site. For this, we enlarge the chain of length L by adding

a site L+ 1. The matrix M in terms of Ã-operators acts trivially on this site. Con-

sequently, the multiplicity of every eigenvalue of M acting on L+ 1 sites is doubled
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compared to M acting on the original L-site chain. The incorporation of an additional

site allows us to apply the Kramers-Wannier duality transformation [359]

Ãxj →
j
∏

l=1

Ãzl , Ãyj → −




j−1
∏

l=1

Ãzl



ÃyjÃ
x
j+1, Ãzj → Ãxj Ã

x
j+1. (5.10)

Application of this transformation to M, followed by the Jordan-Wigner transformation

wj =





j−1
∏

l=1

(−Ãzl )


Ã−
j , w 

j =





j−1
∏

l=1

(−Ãzl )


Ã+
j , (5.11)

and rewriting in terms of Majorana “real” and “imaginary” parts of the Dirac fermions

w,w ,

µj,1 = w 
j + wj, µj,2 = i(w 

j − wj), (5.12)

implies that M in terms of the Majorana µ-fermions is given by

M =
L−1
∑

j=1

[

p+ q

4
(iµj+1,1µj+1,2 − iµj,2µj+2,1) +

p− q

4
(µj+1,1µj+2,1 + µj,2µj+1,2)

]

+
1

2
[(³+ µ)iµ1,1µ1,2 + (³− µ)µ1,1µ2,1]

+
1

2





L+1
∏

j=1

iµj,1µj,2



 [(¶ + ´)iµL+1,1µL+1,2 − (¶ − ´)µL,2µL+1,2] . (5.13)

The string of Majoranas,
∏L+1
j=1 (iµj,1µj,2) = (−1)L+1Pw, equals, up to a sign, the parity

operator Pw of Dirac w-fermions,

Pw = (−1)
∑L+1

j=1
w 

j
wj . (5.14)

This parity operator commutes with M. Thus, restricted to the subspaces of constant

parity, M is quadratic. Note that M in terms of the Majorana µ-fermions acts

non-trivially on the additional site L+ 1.

To keep the algebra simpler we restrict to the TASEP case p = 1 and q = µ = ¶ = 0,

leaving ³ and ´ as free parameters. The following calculations can be straightforwardly

generalized to arbitrary p, q, µ, ¶. Thus, M in terms of the Majorana µ-fermions
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simplifies to

M =
1

2
³[iµ1,1µ1,2 + µ1,1µ2,1] +

1

4

L−1
∑

j=1



(µj,2, µj+1,1)





1 −i
i 1









µj+1,2

µj+2,1









+
1

2
(−1)L+1Pw´[iµL+1,1µL+1,2 + µL,2µL+1,2]. (5.15)

The eigenvalues of the 2 × 2-matrix are 0 and 2, while the eigenvectors are (1,−i)t
and (1, i)t, respectively. Thus the following pairing of Majorana fermions

c j =
1

2
(µj,2 − iµj+1,1), cj =

1

2
(µj,2 + iµj+1,1), (5.16)

into Dirac c-fermions simplifies the bulk term. Note that this pairing differs from the

pairing of µ-Majoranas into Dirac w-fermions. By identifying µL+2,1 = µ1,1, the pairing

in Eq. (5.16) turns the chain into a ring, connecting site 1 and L+ 1. The matrix M
is given in terms of c-fermions as

M = ³(cL+1 − c L+1)c
 
1 +

L−1
∑

j=1

[

cjc
 
j+1

]

+ (−1)LPc´cL(cL+1 + c L+1), (5.17)

where Pc denotes the parity of the Dirac c-fermions,

Pc = (−1)
∑L+1

j=1
c 

j
cj = (−1)Nc , (5.18)

and Nc denotes the number of c-fermions. The parity is conserved by M. Restricted

to a fixed parity sector, M is quadratic. The corresponding spectrum is the same for

each parity sector leading to the aforementioned doubling of the spectral multiplicity.

This follows from results presented in Section 5.3.2.

Summarized, the non-interacting TASEP M on L sites with obc can be written

as a quadratic, non-Hermitian fermion model on L + 1 sites, with twisted pbc and

super-conducting terms c( )
L,1c

( )
L+1 connecting to the additional site L+ 1. The reservoirs

at the ends of the original chain are converted into an additional site on the chain. The

superconducting terms connecting site 1 and L with the additional site L+ 1 relate to

the entry and exit of particles from the reservoirs.

5.1.3 Spectrum

Figure 5.1 presents the K-spectrum of the TASEP on a lattice with L = 11 sites. The

spectral boundary shows L spikes for pbc (N = 5 particles) for U = 1 in (a) and
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Fig. 5.1 Spectrum of the generator matrix K of TASEP (a,b) and the interaction free
TASEP (c,d) on L = 11 sites. The spectrum shows L spikes in (a,c) for pbc with
N = 5 particles and L+ 1 spikes in (b,d) for obc. Red solid lines in (c,d) denote the
spectral boundary according to Eq. (5.30).

U = 0 in (c) and L+ 1 spikes for obc and U = 1 in (b) and U = 0 in (d). For obc the

parameters corresponding to the reservoirs are chosen as ³ = ´ = 1 and µ = ¶ = 0. The

reminder of this chapter is dedicated to elucidating the nature of the spikes observed

in the spectral boundary of the ASEP.

Panels (c) and (d) of Figure 5.1 reveal a highly structured spectrum for the non-

interacting TASEP M, exhibiting rotational invariance at angles 2Ã/L for pbc and

2Ã/(L+ 1) for obc. This characteristic stems from a “quasi-symmetry” of M, which

will be presented in Sections 5.2 and 5.3.

For TASEP with obc, the spectral boundary spikes are always prominent, as

illustrated for the non-interacting TASEP in Sec. 5.3. However, this is not the case

for pbc. In Fig. 5.3(a) the spectrum of the pbc TASEP (U = 1) and in (b) its non-

interacting variant (U = 0) are presented for L = 40 sites and N = 2 particles, without

any noticeable spikes in the spectral boundary. In Section 5.2, we will demonstrate
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Fig. 5.2 Spectrum of M on L = 11 sites with pbc. Single-body eigenvalues with p = 1
and q = 0 in (a) and p = 0.7 and q = 0.3 in (b). In (c) we show part of the many-body
spectrum with N = 5 particles highlighting the tips of the spikes (red) and other
boundary eigenvalues (blue). All boundary eigenvalues are located on circles of radius
1, with crosses marking the midpoints.

that, technically, the spectral boundary of the non-interacting TASEP has L = 40

spikes, but their distinctiveness fades in the dilute limit where Ä = N/L → 0.

5.2 The “non-interacting” ASEP with pbc

In this section, we investigate the spectrum of the non-interacting ASEP M for pbc

given by Eq. (5.3) and Eq. (5.6). Section 5.2.1 is devoted to the calculation of the

single-body eigenvalues of M. In Section 5.2.2, we show the rotational invariance of the

many-body spectrum and in Section 5.2.3, we discuss how the spiky spectral boundary

emerges. We quantify the prominence of the spikes in Section 5.2.4 and comment on

whether they survive in the limit of large L.

5.2.1 Single-body spectrum

The matrix M represents non-Hermitian free fermions. Its (many-body) eigenvalues

are therefore expressible as sums of single-body eigenvalues. In the following, we

will present these single-body eigenvalues ¿. Due to the dependence of the boundary

conditions in Eq. (5.6) on (−1)N , the single-particle spectrum for even and odd N

differs slightly. Let us consider the totally asymmetric case p = 1 and q = 0 first. Then
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¿ are the roots of a polynomial,

¿L + (−1)N = 0, (5.19)

which in turn are given by ¿ = Éj, where É = eiπ/L and 0 f j < 2L runs over all even

(odd) integers when N is odd (even). Thus, the single-body spectrum is evenly spaced

on the unit circle. In Figure 5.2(a), the single-body spectrum for p = 1 and q = 0 and

L = 11 and odd N is shown together with the unit circle.

For arbitrary values of p and q, the single-body eigenvalues ¿ are

¿ = pÉj + qÉ−j, (5.20)

with j defined as previously. This spectrum, as described by Eq. (5.20), forms an

ellipse with foci at ±2
√
pq and semi-major axis p+ q and semi-minor axis p− q,

{(p+ q) cos(t) + i(p− q) sin(t) : 0 f t f 2Ã}. (5.21)

Figure 5.2 (b) illustrates the single-body spectrum for p = 0.7 and q = 0.3, alongside

the ellipse defined by Eq. (5.21).

The structure of the single-body spectrum for general p, q suggests a straightforward

relation with the totally asymmetric case q = 0. By rescaling the imaginary part while

keeping the real part constant,

z → Re z + i
p+ q

p− q
Im z, (5.22)

we can map the single-body eigenvalues for general p, q values to the totally asymmetric

case. This transforms the ellipse into a circle of radius p+ q. Without loss of generality,

we restrict ourselves to p = 1 and q = 0 for the remainder of this section.

5.2.2 Rotational invariance

With p = 1 and q = 0, the single-body spectrum remains unchanged under complex

plane rotations of 2Ã/L. This rotational invariance also applies to the many-body

spectrum, which consists of sums of single-body eigenvalues.

Furthermore, this symmetry of the spectrum is related to a “quasi-symmetry” of

M. Transforming cj → e−i2πj/Lcj = c̃j and c j → ei2πj/Lc j = c̃ j, or in terms of spin

operators Ã±
j → e±i2πj/LÃ±

j = Ã̃±
j , results in ei2π/LM = M̃. Here, M̃ is constructed

like M, but using the modified operators c̃, c̃ (Ã̃±). Since these altered operators
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maintain their respective (anti-)commutation relations, the spectra of M and M̃ are

identical. Consequently, the spectrum of M is invariant under 2Ã/L rotations.

5.2.3 Spectral boundary

The structure of the many-body spectrum as observed in Figure 5.1(c) is now a

consequence of the relation of single-body to many-body eigenvalues and the rotational

symmetry. For ease of notation, we define ¿j = É2j when N is odd, and ¿j = É2j+1

for even N . The many-body eigenvalues correspond uniquely to configurations s =

(s1, . . . , sL) ∈ {0, 1}L, where
∑

j sj = N , and are given by

¼ =
L
∑

j=1

sj¿j. (5.23)

The many-body eigenvalues ¼t, which form the spike tips, have the largest absolute

values and are derived from configurations s with contiguous non-zero sj entries.

Specifically, each of the L tips ¼t(j0) is linked to an index 1 f j0 f L and a configuration

s = st(j0) with

sj =











1 j0 f j f j0 +N − 1

0 otherwise.
(5.24)

Here, j ≡ j − L is applied for j > L. The eigenvalues ¼t(j0) are calculated as

¼t(j0) =
j0+N−1
∑

j=j0

¿j. (5.25)

Configurations s that lead to spike tips are termed “domain wall configurations”. The

many-body eigenvalues ¼t are depicted as red circles in Figure 5.2(c).

Boundary eigenvalues in the many-body spectrum arise from “interpolating” between

configurations of adjacent spike tips. These configurations consist of exactly two

domain walls, each separated by one site. The interpolation process involves moving a

single particle (or executing a single spin flip). Specifically, boundary configurations

s = sb(j0, l0) are associated with indices 1 f j0 f L and j0 f l0 f j0 +N , defined as

sj =























1 j0 f j f j0 +N and j ̸= l0

0 j = l0

0 otherwise.

(5.26)
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Again, j ≡ j − L is used for j > L. The corresponding boundary eigenvalues ¼b(j0, l0)

are expressible as

¼b(j0, l) =
j0+N
∑

j=j0;j ̸=l

¿j. (5.27)

When l0 = j0 or l0 = j0 +N (indicating a single domain wall), the boundary eigenvalue

matches a spike tip, ¼b(j0, j0) = ¼t(j0 + 1) or ¼b(j0, j0 +N) = ¼t(j0), respectively. The

boundary eigenvalues ¼b(j0, l) for j0 < l < j0 + N are those many-body eigenvalues

located “between” the spike tips ¼t(j0) and ¼t(j0 + 1), depicted as blue circles in

Figure 5.2(c).

Eq.(5.27) can be reformulated as

¼b(j0, l) =
j0+N
∑

j=j0

¿j − ¿l. (5.28)

Given |¿l| = 1 and the independence of the sum from l, all boundary eigenvalues are on

L circles of radius 1. For N f L/2, the circle midpoints are the many-body spectrum

tips ¼(N+1)
t (j0) with N + 1 particles. The tips ¼(N)

t intersect two adjacent circles. This

is illustrated in Figure 5.2(c) with circles as black lines and midpoints as gray crosses.

According to Eq. (5.25), all tips reside on a circle, centered at 0 with radius R,

defined as

R =

∣

∣

∣

∣

∣

1 − ei2πN/L

1 − ei2π/L

∣

∣

∣

∣

∣

=
sin(ÃN/L)

sin(Ã/L)
. (5.29)

This radius, combined with the circular pattern of the boundary eigenvalues, enables

us to establish a continuous boundary for the many-body spectrum. It is formed by

the intersection of all circles of radius 1 with the disc of radius R from Eq. (5.29). The

boundary can be parameterized by

zB(t) = e−if(t)
(

µ1 + µ2e
ig(kt)

)

, (5.30)

with µ1 = sin(πρ)
sin(π/L)

and µ2 = 1, while the function f is piece-wise constant,

f(t) =
Ã

L

(

2
⌊

Lt

2Ã

⌋

− 1
)

, (5.31)

and g is piece-wise the identity,

g(t) = Ã(1 − Ä) + Ä(tmod 2Ã). (5.32)
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The continuous boundary zB(t) is illustrated in Figure 5.1(c) as a red curve for L = 11

and N = 5.

The spectral boundary of the non-interacting TASEP is intentionally parameterized

as in Eq. (5.30). It underlines the similarity to the spectral boundary of random

matrices with higher-order cyclic correlations and adjacency matrices of random graphs

with dominant cycle lengths, introduced in Section 1.1.2. The spectral boundary of

such matrices adheres to the hypotrochoidic law, which can be parametrized as in

Eq. (5.30) by setting f(t) = g(t) = t. The similarity between the functions f and g of

the non-interacting TASEP and random matrices adhering to the hypotrochoidic law

indicates a relation between the spectral boundary of the non-interacting TASEP and

RMT. In Section 5.5, one possible link will be investigated in detail.

5.2.4 Quantification of spikes

This section aims to measure the sharpness of the spectral boundary of M, focusing on

whether spikes persist in large system sizes and, if so, how. For simplicity, we consider

particle densities 0 f Ä f 1/2. As the spectrum of M is invariant under changing

Ä → 1 − Ä this comes with no loss of generality.

To assess the spikiness of the spectral boundary, we examine the ratio between two

distances: dt, the distance between spike tips, and db, the maximum extension of the

spectral boundary beyond a circle of radius R, given by Eq. (5.29). This circle of radius

R represents the smallest enclosing disk for the M-spectrum. db measures how far the

circles with radius 1, carrying the boundary eigenvalues, reach into the enclosing circle.

A larger db relative to dt indicates that the circles with radius 1 extend more into the

enclosing circle. Therefore, the ratio 2db/dt quantifies the spikiness of the spectral

boundary. A value close to 1 suggests a spiky boundary, while a significantly smaller

ratio implies a less spiky boundary. The factor of two arises because dt relates to the

diameter of the boundary circles, whereas db is compared to their radius.

Following some simple trigonometry one finds that the distances dt and db are given

by

dt = 2 sin(ÃÄ) (5.33)

and

db = 1 − cos(ÃÄ+ Ã/(2L))

cos(Ã/(2L))
. (5.34)
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The fraction 2db/dt then simplifies to

2db
dt

= tan(ÃÄ/2) + tan(Ã/(2L)). (5.35)

Eq. (5.35) shows a monotonic increase with Ä, indicating that the spectral boundary

becomes more spiky at higher Ä values. Due to the invariance of the spectrum under

the transformation Ä → 1 − Ä, the boundary reaches its maximum spikiness at Ä = 1/2.

In examining the large L limit, we will explore two scenarios: the “thermodynamic”

limit, where both N and L increase to infinity while maintaining a fixed Ä, and the

few-particle (dilute) limit, where N remains constant and only L approaches infinity.

“Thermodynamic” limit

In the thermodynamic limit, the distance dt remains constant, whereas db approaches

1 − cos(Ã/Ä). Consequently, the ratio 2db/dt tends towards tan(ÃÄ/2). This implies

that for any non-zero Ä, the spiky structure of the spectral boundary is preserved in

the thermodynamic limit, becoming more pronounced with increasing Ä.

Fig. 5.1(c) presents the many-body spectrum of the non-interacting TASEP for

L = 11 and N = 5, with Fig. 5.2(c) offering a closer view of the spectral boundary.

Here, Ä ≈ 0.45 and 2db/dt ≈ 1.01 indicate pronounced spikes of the spectral boundary,

as evident.

Regarding the length scales at which these spikes are observable, consider the

following: The radius R of the spectrum scales as O(L), necessitating a rescaling of

the spectrum by 1/L to ensure a well-defined spectral density in the thermodynamic

limit. At an infinite L, this rescaled spectrum densely fills the unit circle. For finite L,

the tips of the spikes are spaced at a distance of dt = O(1/L), and the distance db of

the spectral boundary from the unit circle is also O(1/L). Therefore, at the length

scale of 1/L, the spiky nature of the spectral boundary is distinctly visible.

Dilute limit (large L, constant N)

In the scenario where N is fixed and L increases, both distances dt and db decrease,

scaling as O(1/L) and O(1/L2), respectively. Consequently, the ratio 2db/dt tends

towards 0, as indicated by Eq. (5.35). Therefore, in this limit, the spiky structure of

the spectral boundary does not persist.

In Fig. 5.3, we present the many-body spectrum of the TASEP for L = 40 and

N = 2, representative of the dilute limit. We show both a TASEP case (U = 1) in (a)

and a non-interacting TASEP case M (U = 0) in (b). The non-interacting case has a
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Fig. 5.3 Spectrum of the generator matrix K of (a) TASEP and (b) the “non-interacting”
TASEP on L = 40 sites with N = 2 particles (dilute limit). The red solid line in (b)
denotes the spectral boundary according to Eq. (5.30). The spectral boundary appears
smooth and non-spiky in both panels.

2db/dt ratio of ≈ 0.01. Thus, the spectral boundary (red curve) is not spiky but barely

distinguishable from a circle.

5.3 The “non-interacting” TASEP with obc

In this section, we will present the analytical derivation of the spectrum of the non-

interacting TASEP M with obc, specifically for p = 1 and q = µ = ¶ = 0. We expect

our results to extend to general p, q, µ, ¶.

In Section 5.3.1, we establish the rotational invariance of the M-spectrum. In

Section 5.3.2, we derive single-particle eigenvalues of M and demonstrate the relation

to the spectrum of M. In Section 5.3.3, we demonstrate that the spectral boundary

of M is, as for pbc, defined by the intersection of circles with a disk, featuring L+ 1

spikes. In the limit of large L, this boundary is similar to the pbc case with density

Ä = 1/2.

5.3.1 Rotational symmetry

The spectrum of the non-interacting TASEP M is invariant under rotations of angle
2π
L+1

. Similar to the pbc case, consider the change of operators c j → ei
2π

L+1
jc j = c̃ j

and cj → e−i
2π

L+1
jcj = c̃j or, equivalently, Ã±

j → e±i
2π

L+1
jÃ±
j = Ã̃±. This change implies

that ei
2π

L+1 M = M̃, where M̃ is M with c, c (Ã) replaced by the tilde operators.

As the tilde operators fulfill the canonical (anti-)commutation relations of fermion
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operators (Pauli matrices), the spectrum of the non-interacting TASEP is invariant

under rotations of angle 2π
L+1

.

5.3.2 Single- and many-body spectrum

Before we diagonalize M, let’s specify the parity sector as s = (−1)LPc. To simplify

the following arguments, we will abuse notation and not distinguish between M and

M restricted to a subspace of constant parity. At the end of this subsection, we will

take the difference into account properly.

Let us collect the Dirac fermion operators c, c into a (2L+ 2)-dimensional vector

c = (c1, . . . , cL+1, c
 
1, . . . , c

 
L+1)

t. We express M given by Eq. (5.17) as

M =
1

2
c 





A B

C −At



 c =
1

2
c Mcc (5.36)

where the (L+ 1) × (L+ 1)-matrices A,B and C are given by

Aij = −¶i,j+1mod(L+1)

+ (1 − ´s)¶i,L+1¶j,L + (1 − ³)¶i,1¶j,L+1, (5.37)

Bij = ³(¶i,1¶j,L+1 − ¶i,L+1¶j,1), (5.38)

Cij = ´s(¶i,L¶j,L+1 − ¶i,L+1¶j,L), (5.39)

and ¶ denotes the Kronecker symbol. The matrix A is, up to deformations in the

(1, L+ 1)th and (L+ 1, L)th entries, a circulant matrix. The matrices B and C only

contain two non-zero entries. Thus, the solutions ¿ and u to the eigenvalue problem

Mcu = ¿u, (5.40)

are closely related to the eigen-decomposition of circulant matrices, which in turn are

given by Fourier transforms. In terms of u = (u1, . . . , uL+1, u
′
1, . . . , u

′
L+1) the eigenvalue



5.3 The “non-interacting” TASEP with obc 135

equation reads

¿u1 = −³(uL+1 − u′
L+1) (5.41)

¿u2 = −u1 (5.42)

. . .

¿uL−1 = −uL−2 (5.43)

¿uL = −uL−1 (5.44)

¿uL+1 = −s´uL − ³u′
1 (5.45)

and

¿u′
1 = u′

2 (5.46)

¿u′
2 = u′

3 (5.47)

. . .

¿u′
L−1 = u′

L (5.48)

¿u′
L = ´s(uL+1 + u′

L+1) (5.49)

¿u′
L+1 = −´suL + ³u′

1. (5.50)

Combining Eqs. (5.42)-(5.44) with u1, . . . , uL and Eqs. (5.46)-(5.48) with u′
1, . . . , u

′
L

recursively we get for 2 f j f L

uj = −¿−1uj−1 = · · · = (−¿)−j+1u1 (5.51)

and

u′
j = ¿u′

j−1 = · · · = ¿j−1u′
1. (5.52)

Especially, the following holds

uL = (−¿)−L+1u1 (5.53)

u′
L = ¿L−1u′

1. (5.54)
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By substituting Eq. (5.53) and Eq. (5.54) into Eq. (5.45) and Eq. (5.50), respectively,

we get the following self-consistent set of equations

u1 = ³¿−1(−uL+1 + u′
L+1) (5.55)

uL+1 = ´s(−¿)−Lu1 − ³¿−1u′
1 (5.56)

u′
1 = ¿−L´s(uL+1 + u′

L+1) (5.57)

u′
L+1 = ´s(−¿)−Lu1 + ³¿−1u′

1. (5.58)

Adding and subtracting Eq. (5.56) and Eq. (5.58), respectively, leads to

uL+1 + u′
L+1 = 2´s(−¿)−Lu1 (5.59)

−uL+1 + u′
L+1 = 2³¿−1u′

1, (5.60)

which in turn implies that

u′
1 = 2(−1)L¿−2L´2u1 (5.61)

u1 = 2³2¿−2u′
1, (5.62)

by using Eqs. (5.55) and (5.57). Combining the last two equations leads to

u1 = 4(³´)2(−1)L¿−2L−2u1, (5.63)

which implies, for u1 ̸= 0,

¿2(L+1) = (−1)L4(³´)2. (5.64)

The roots of this polynomial, and therefore the eigenvalues of Mc are given by

¿ = (2³´)
1

L+1











exp
(

iπ
2L+2

2k
)

L even,

exp
(

iπ
2L+2

(2k − 1)
)

L odd,
(5.65)

where k = 1, . . . , 2L+ 2. Especially, the eigenvalues ¿ are independent of the parity

sector s and appear in pairs of ±¿.

The matrix M in Eq. (5.17) is non-Hermitian, preventing the direct application

of the (Hermitian) Bogoliubov-de-Gennes formalism for linking the eigenvalues of Mc

to the many-body spectrum of M. Hence, we will pursue an alternative method. We
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proceed as in [360] and express c, c in terms of Majorana fermions

ϕj,1 =
1√
2

(cj + c j), ϕj,2 =
1

i
√

2
(cj − c j). (5.66)

The column vector φ, defined as φ = (ϕ1,1, ϕ1,2, . . . , ϕL+1,1, ϕL+1,2)
t, encapsulates the

Majorana fermions ϕj,l. Utilizing this vector, the matrix M can be reformulated as

M =
1

2
φtMφφ, (5.67)

where Mφ represents a complex and anti-symmetric (2L + 2) × (2L + 2)-matrix.

The transformation of Majorana fermions ϕ to Dirac fermions c via Eq. (5.66) is

unitary, making Mφ and Mc unitarily equivalent and, consequently, they have the same

eigenvalues.

As Mφ is anti-symmetric, it can be factorized [360] as

Mφ =
1

2
V ΛJV t (5.68)

where

V tV = J = IdL+1 ¹




0 1

1 0



 , (5.69)

IdL+1 denotes the (L+1)×(L+1) identity matrix and Λ is a diagonal matrix containing

the eigenvalues of Mφ (Mc). The anti-symmetry of Mφ implies that its eigenvalues

come in pairs ±¿, which is consistent with the solutions of Eq. (5.64). The diagonal

of Λ is ordered as ¿1,−¿1, . . . ¿L+1,−¿L+1. We fix the choice between ¿j and −¿j by

requiring Re ¿j g 0.

Let us define another type of Dirac fermions b, b′ as

(b1, b
′
1, . . . , bL+1, b

′
L+1)

t =
(

V tφ
)

. (5.70)

These fulfill the usual anti-commutation relations of Dirac fermions [360], but b′ is in

general not the Hermitian adjoint of b. Nevertheless, M becomes diagonal in terms of

b, b′,

M =
L+1
∑

j=1

¿jb
′
jbj − 1

2

L+1
∑

j=1

¿j. (5.71)

The eigenstates of M are given by creation operators b′j acting on the vacuum |0ðb,
which are 2L+1 in total. But not all eigenstates correspond to an eigenvalue of M
given by Eq. (5.17). We have to take into account that the Dirac fermions b, b′ are only
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defined on fixed parity subspaces. We numerically find that the parity operator Pb of

the b, b′ fermions obeys

Pb = −sPc, (5.72)

where Pc denotes the parity operator of the c fermions. In the beginning of this

section, we set s = (−1)LPc. Thus, the admissible b′-fermion states must have b-parity

Pb = −(−1)L = (−1)L+1. Especially, the parity of the admissible b-states does not

depend on s. Consequently, both parity sectors give rise to the same many-body

spectrum of M in Eq. (5.71).

Summarized, the spectrum of M, subject to a global shift in the complex plane,

consists of sums of the L+ 1 roots from Eq. (5.64) with positive real parts. These are

scaled roots of ±1 with magnitude proportional to (³´)1/(L+1). Depending on whether

L is odd or even, an even or odd number of summands, respectively, are included in

the sums.

5.3.3 Spectral boundary

The relation of the M-spectrum to single-particle eigenvalues for obc follows a similar

principle to the pbc case, discussed in Section 5.2: both consist of sums of (scaled) roots

of ±1. In the following, we want to show how the spiky spectral boundary emerges for

obc. Especially, we will show that, similar to pbc, the spectral boundary lies on L+ 1

circles with radius (2³´)1/(L+1).

We discuss the spectral boundary associated with the most negative real parts. This

is illustrated in Figure 5.4, where the eigenvalues of the relevant sectors are marked

with blue and red circles. The rotational symmetry of the spectrum implies that the

structure of the boundary is a repetitive pattern reflecting the shape of sectors with

the smallest real parts. Hence, the restriction to sectors with the most negative real

part eigenvalues comes with no loss of generality.

Let us first consider even L. In this case the many-body spectrum is given by

sums of an odd number of positive real part roots of the polynomial in Eq. (5.64).

Let us denote the L+ 1 roots with non-negative real part by ¿1, . . . , ¿L+1. The L+ 1

many-body eigenvalues ¼ with the smallest real parts are eigenvalues lying on the

spectral boundary and given by

¼b = ¿j − 1

2

L+1
∑

l=1

¿l. (5.73)
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Fig. 5.4 Many-body spectrum of the non-interacting TASEP with obc on (a) L = 6
and (b) L = 7 sites. Similar to pbc in Fig. 5.2, all boundary eigenvalues lie on circles,
with midpoints denoted by crosses.

If we label ¿l by increasing angle with branch-cut on the negative imaginary axis then

the tips ¼t of the sector are given by the indices j = 1 and j = L+ 1. In Figure 5.4(a),

we show the spectrum of the non-interacting TASEP with obc on L = 6 sites. The

spectrum shows L+ 1 = 7 spikes. The boundary and tips according to Eq. (5.73) are

shown as blue and red markers, respectively. The markers lie on a circle with midpoint

−1
2

∑L+1
l=1 ¿l and radius |¿j| = (2³´)1/(L+1).

Let us now consider the case of odd L. In Figure 5.4(b) we show the many-body

spectrum on L = 7 sites. The tip ¼t of the spectral edge with the smallest real part is

given by an “empty” sum of ¿l’s and thus is ¼t = −1
2

∑L+1
l=1 ¿l. The boundary eigenvalues

¼b are given by the (shifted) sum of two single-particle eigenvalues,

¼b = ¿j + ¿1,L+1 − 1

2

L+1
∑

l=1

¿l, (5.74)

where 2 f j f L; ¿1 corresponds to the lower spectral boundary in Figure 5.4(b)

while ¿L+1 corresponds to the upper part. The midpoints of the circles are given by

¿1,L+1 − 1
2

∑L+1
l=1 ¿l and the radius again by |¿j| = (2³´)1/(L+1).

Similar to the pbc case, we can establish a continuous boundary for the many-body

spectrum, parametrized by Eq. (5.30). In the obc case the constants µ1,2 are given by

µ1 = (2³´)1/(L+1) 1

2 sin(Ã/(2L+ 2))
(5.75)

µ2 = (2³´)1/(L+1), (5.76)
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while the piece-wise constant f and the piece-wise identify function g are given by

f(t) =
Ã

L

(

2
⌊

Lt

2Ã

⌋

− 1
)

, (5.77)

g(t) = Ã
L+ 2

2L+ 2
+

L

2L+ 2
(tmod 2Ã). (5.78)

The continuous boundary zB(t) with the above parameters is illustrated in Figure 5.1(d)

as a red curve for L = 11.

The parametrization of the spectral boundary for obc shows a clear link to the

spectral boundary for pbc. Specifically, in the large L limit with constant ³, ´, the obc

spectral boundary aligns with the pbc case at Ä = 1/2. This relation is immediately

evident for µ2, f , and g. For µ1, a series expansion in the large L limit reveals that the

leading term, µ1 = L/Ã + O(1), is identical in both cases, with differences emerging

only at O(1). Consequently, in the large L limit, the spiky spectral boundary in the obc

case remains pronounced, as does the spectral boundary for pbc in the thermodynamic

limit.

5.4 The TASEP with pbc by Bethe ansatz

In Section 5.2, we showed that in the non-interacting TASEP (U = 0) with pbc, the

spiky boundary of the many-body spectrum emerges essentially as sums of circularly

arranged single-body eigenvalues ¿1, . . . , ¿L. This section expands that concept to

interaction strengths 0 < U . Employing the coordinate Bethe ansatz, we generalize

the single-body framework to Bethe roots, which tend to cluster close to ¿1, . . . , ¿L.

This clustering, combined with TASEP many-body eigenvalues being sums of Bethe

roots, results in a spiky spectrum boundary for any interaction strength 0 f U f 1.

This section focuses on Ä ≈ 1/2, where the most prominent spectral boundary spikes

in the non-interacting ASEP were observed. In the low-density limit (Ä approaching

zero), we anticipate a spectral boundary for the usual ASEP similar to the non-

interacting case, characterized by a smooth, circular boundary without spikes. Fig. 5.3

partly supports this, showing similar many-body spectra for TASEP with U = 1 (a)

and U = 0 (b), both featuring smooth, non-spiky spectral boundaries.

In Section 5.4.1, we derive the coordinate Bethe ansatz for arbitrary U , while nu-

merical solution methods are detailed in Section 5.4.2. In Section 5.4.3, we demonstrate

the clustering of solutions to the Bethe equations and in Section 5.4.4, we establish

how this clustering results in a spiky spectral boundary.
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5.4.1 Coordinate Bethe ansatz

In this section, we determine the eigenvalues of K for arbitrary U by application of the

coordinate Bethe ansatz. Readers familiar with Bethe ansatz techniques can skip to

the end of this section. For ASEP, the eigenvalues ¼ in terms of the Bethe roots zj
are given by Eq. (5.89), with zj fulfilling the recurrent relations in Eq. (5.88). For the

specific case of TASEP, simplified versions are given by Eq. (5.90) and Eq. (5.91). We

follow the derivation of the U = 1 case in Refs. [276, 254], but present derivations in

much more detail.

Bethe equations for ASEP with general U

We denote the state of N particles at positions x1, . . . , xN by |x1, . . . , xNð, with

x1 < · · · < xN up to an overall shift in the indices. A state |Èð in the basis of

|x1, . . . , xNð is

|Èð =
∑

x1<···<xN

È(x1, . . . , xN) |x1, . . . , xNð ,

where È(x1, . . . , xN) denotes the coefficient of |Èð wrt |x1, . . . , xNð. In the following,

|Èð is an eigenstate of K with eigenvalue ¼, i.e. K |Èð = ¼ |Èð. The matrix K in terms

of spin matrices is given by

K =
L
∑

i=1

(

pÃ−
i Ã

+
i+1 + qÃ+

i Ã
−
i+1

)

+
U

4

L
∑

i=1

(

Ãzi Ã
z
i+1 − 1

)

. (5.79)

The spin-up state is interpreted as a particle present, while the spin-down state is

interpreted as particle absent.

First, let us consider the action of the off-diagonal term in Eq. (5.79) on |x1, . . . , xNð.
It follows that

L−1
∑

i=1

Ã−
i Ã

+
i+1 |x1, . . . , xNð =

N−1
∑

j=1

(1 − ¶(xj+1 − xj, 1)) |x1, . . . , xj + 1, . . . , xNð ,

L−1
∑

i=1

Ã+
i Ã

−
i+1 |x1, . . . , xNð =

N
∑

j=2

(1 − ¶(xj − xj−1, 1)) |x1, . . . , xj − 1, . . . , xNð ,

where ¶(x, y) = 1 whenever x = y and is zero otherwise. The boundary terms are

determined as follows. If xN ̸= L then Ã−
LÃ

+
1 |x1, . . . , xNð = 0, so let xN = L. Then

Ã−
LÃ

+
1 |x1, . . . , xNð = (1 − ¶(x1, 1)) |1, x1, . . . , xN−1ð

= (1 − ¶(x1 − xN mod L, 1)) |x1, . . . , xN−1, xN + 1ð
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by identifying |x1, . . . , xN−1, L+ 1ð = |1, x1, . . . , xN−1ð. On the other hand, whenever

x1 ̸= 1 we have Ã+
LÃ

−
1 |x1, . . . , xNð = 0, while for x1 = 1 we get

Ã+
LÃ

−
1 |x1, . . . , xNð = (1 − ¶(xN , L)) |x2, . . . , xN , Lð

= (1 − ¶(x1 − xN mod L, 1)) |x1 − 1, x2, . . . , xNð ,

where we identified |0, x2, . . . , xNð = |x2, . . . , xN , Lð. Taking everything together we

have

L
∑

i=1

Ã−
i Ã

+
i+1 |x1, . . . , xNð =

N
∑

j=1

(1 − ¶(xj+1 − xj mod L, 1)) |x1, . . . , xj + 1, . . . , xNð ,

L
∑

i=1

Ã+
i Ã

−
i+1 |x1, . . . , xNð =

N
∑

j=1

(1 − ¶(xj − xj−1 mod L, 1)) |x1, . . . , xj − 1, . . . , xNð ,

where we additionally identified xL+1 = x1 and x0 = xL.

Before calculating the action of the diagonal term in Eq. (5.79) on |x1, . . . , xNð, let

us denote ni = 1
2
(Ãzi + 1), such that ni = 1 for a particle (spin-up) at position i and

ni = 0 otherwise. Then it follows that

1

4

L
∑

i=1

(

Ãzi Ã
z
i+1 − 1

)

=
4

4

L
∑

i=1

nini+1 − 2

4

L
∑

i=1

ni − 2

4

L
∑

i=1

ni+1 =

[

L
∑

i=1

nini+1

]

−N.

Thus, the diagonal term in Eq. (5.79) is acting on |x1, . . . , xNð as

1

4

L
∑

i=1

(

Ãzi Ã
z
i+1 − 1

)

|x1, . . . , xNð

=
N−1
∑

j=1

(¶(xj+1 − xj, 1) + ¶(x1 − xN , 1 − L) − 1) |x1, . . . , xNð

=
N
∑

j=1

(¶(xj+1 − xj mod L, 1) − 1) |x1, . . . , xNð .
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Summarized, the action of K on |x1, . . . , xNð is

K |x1, . . . , xNð = p
N
∑

j=1

(1 − ¶(xj+1 − xj mod L, 1)) |x1, . . . , xj + 1, . . . , xNð

+ q
N
∑

j=1

(1 − ¶(xj − xj−1 mod L, 1)) |x1, . . . , xj − 1, . . . , xNð

− U
N
∑

j=1

(1 − ¶(xj+1 − xj mod L, 1)) |x1, . . . , xNð . (5.80)

Next, we consider the eigenvalue equation K |Èð = ¼ |Èð,

K |Èð =
∑

x1<···<xN

È(x1, . . . , xN)K |x1, . . . , xNð =
∑

x1<···<xN

È(x1, . . . , xN)¼ |x1, . . . , xNð .

First, we concentrate on the term in Eq. (5.80) proportional to p,

p
N
∑

j=1

∑

x1<···<xN

È(x1, . . . , xN)(1 − ¶(xj+1 − xj mod L, 1)) |x1, . . . , xj + 1, . . . , xNð .

After a change of variables x̃i = xi for i ≠ j and x̃j = xj + 1 the above equation reads

p
N
∑

j=1

∑

x̃1<···<x̃N

È(x̃1, . . . , x̃j − 1, . . . , x̃N)(1 − ¶(x̃j − x̃j−1 mod L, 1)) |x̃1, . . . , x̃Nð .

Second, we consider the term in Eq. (5.80) proportional to q. One finds with the change

x̃j = xj − 1 < xj+1 − 1 = x̃j+1 − 1, thus x̃j+1 − x̃j > 1 and x̃j−1 = xj−1 < xj − 1 = x̃j,

that this term equals

q
∑

x̃1<···<x̃N

È(x̃1, . . . , x̃j + 1, . . . , x̃N)(1 − ¶(x̃j+1 − x̃j mod L, 1)) |x̃1, . . . , x̃Nð ,

where the first constraint is realized via the delta term and the second constraint by

the summation. By orthogonality of |x1, . . . , xNð the eigenvalue equation K |Èð = ¼ |Èð



144 The spectral boundary of the ASEP

turns into
(

L
N

)

equations for the coefficients È(x1, . . . , xN),

p
N
∑

j=1

[1 − ¶((xj − xj−1) mod L, 1)] (È(x1, . . . , xj − 1, . . . , xN) − UÈ(x1, . . . , xN))

+q
N
∑

j=1

[1 − ¶((xj+1 − xj) mod L, 1)] (È(x1, . . . , xj + 1, . . . , xN) − UÈ(x1, . . . , xN))

= ¼È(x1, . . . , xN). (5.81)

Now, we make the ansatz for the coefficients È(x1, . . . , xN),

È(x1, . . . , xN) =
∑

τ∈SN

A(Ä)
N
∏

j=1

z
xj

τ(j), (5.82)

where SN denotes the symmetric group. Its elements Ä are permutations of {1, . . . , N}.

The zj’s are the Bethe roots and, together with A(Ä), complex numbers.

Let us consider a configuration x1 < · · · < xN where all particles have at least

distance 1, so no particle is adjacent to any other particle. Additionally, we assume

that x1 ̸= 1 and xN ≠ L, so we do not have to consider the pbc. Then Eq. (5.81)

reduces to

p
N
∑

j=1

È(x1, . . . , xj − 1, . . . , xN) + q
N
∑

j=1

È(x1, . . . , xj + 1, . . . , xN) − UNÈ(x1, . . . , xN)

= ¼È(x1, . . . , xN). (5.83)

Plugging the ansatz into the term proportional to p results in

N
∑

j=1

È(x1, . . . , xj − 1, . . . , xN) =
N
∑

j=1

∑

τ∈SN

A(Ä)z
xj−1
τ(j)

N
∏

l=1;l ̸=j

zxl

τ(l)

=
∑

τ∈SN

A(Ä)
N
∏

l=1

zxl

τ(l)

N
∑

j=1

z−1
τ(j)

=
N
∑

j=1

z−1
j È(x1, . . . , xN),

where the sum over j is independent of Ä since Ä is a permutation of {1, . . . , N}.

Similarly, one gets the analogous expression for the term proportional to q with the
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change z−1
j → zj. Consequently, Eq. (5.81) reduces to

¼ =
N
∑

j=1

(

qzj + pz−1
j − U

)

. (5.84)

Eq. (5.84) relates the Bethe-ansatz eigenvalue ¼ of K to the Bethe roots zj. Next, we

derive recurrent relations for the Bethe roots. For this, we replace ¼ in Eq. (5.81) with

the right-hand side of Eq. (5.84).

We consider a configuration x1 < · · · < xN with exactly two particles adjacent to

each other, xk+1 = xk + 1. To avoid dealing with the boundary conditions, we consider

x1 ̸= 1 and xN ̸= L. For this configuration, Eq. (5.81) is

p
∑

j ̸=k+1

È(. . . , xj − 1, . . . ) + q
∑

j ̸=k

È(. . . , xj + 1, . . . ) − U(N − 1)È(x1, . . . , xN)

= p
∑

j

È(. . . , xj − 1, . . . ) + q
∑

j

È(. . . , xj + 1, . . . ) − UNÈ(x1, . . . , xN)

and therefore

pÈ(. . . , xk+1 − 1, . . . ) + qÈ(. . . , xk + 1, . . . ) + UÈ(x1, . . . , xN) = 0.

By considering the chosen configuration, this equation reads in terms of the Bethe

ansatz

∑

τ∈SN

A(Ä)





∏

l ̸=k,k+1

zxl

τ(l)



 zxk

τ(k)z
xk

τ(k+1)

(

p+ qzτ(k)zτ(k+1) − Uzτ(k+1)

)

= 0. (5.85)

Requiring that the last term in Eq. (5.85) vanishes for every Ä is too restrictive. We

note that the Bethe roots in Eq. (5.85) are invariant under swapping Ä(k) with Ä(k+1).

Therefore, Eq. (5.85) can be fulfilled by letting

A(Ä)
(

p+ qzτ(k)zτ(k+1) − Uzτ(k+1)

)

= −A(Ä ′)
(

p+ qzτ(k)zτ(k+1) − Uzτ(k)

)

, (5.86)

where Ä ′ differs from Ä by swapping Ä(k) ´ Ä(k + 1).

Next, we derive restrictions on A implied by the pbc. For a particle hopping across

the boundary, we identified È(0, x2, . . . , xN ) = È(x2, . . . , xN , L). In terms of the Bethe

ansatz, this expression reads

∑

τ∈SN

A(Ä)z0
τ(1)z

x2

τ(2) . . . z
xN

τ(N) =
∑

τ∈SN

A(Ä)zx2

τ(1) . . . z
xN

τ(N−1)z
L
τ(N).
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This equation can be fulfilled by letting

A(Ä) = A(ÄÃ)zLτ(1), (5.87)

for the permutation Ã ∈ SN which shifts all indices by one, Ã(j) = j + 1 and Ã(N) = 1.

Combining Eq. (5.86) and Eq. (5.87) leads to the Bethe equations

zLj =
N
∏

k=1;k ̸=j

(

−p+ qzjzk − Uzj
p+ qzjzk − Uzk

)

. (5.88)

Summarized, the Bethe ansatz eigenvalues ¼ for arbitrary U are given by

¼ =
N
∑

j=1

(

pz−1
j + qzj − U

)

, (5.89)

where zj are the so-called Bethe roots, which in turn are solutions of the recurrent

relations given in Eq. (5.88).

By construction of the Bethe ansatz, all solutions (z1, . . . , zL) of Eq. (5.88) give rise

to an eigenvalue ¼ of K via Eq. (5.89). Numerical data indicates that in small systems,

each eigenvalue is a sum of Bethe roots, but a formal proof of the completeness of the

Bethe ansatz is lacking [361, 362]. However, in our finite ASEP system investigations,

all eigenvalues conformed to the Bethe ansatz.

Bethe equations for TASEP with general U

In the case of TASEP with q = 1 and p = 0, the eigenvalues ¼ expressed in terms of

Bethe roots simplify to

¼ =
1

2

N
∑

j=1

(

Zj − U
)

, (5.90)

with

Zj = 2zj − U

representing scaled, shifted Bethe roots. We refer to the zj’s and the Zj’s as Bethe

roots. The Bethe Eqs. (5.88) simplify to

zLj =
N
∏

k=1;k ̸=j

(

−zjzk − Uzj
zjzk − Uzk

)

=
zNj

(zj − U)N
(−1)N−1

N
∏

k=1

zk − U

zk
,
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so

zL−Nj (zj − U)N = (−1)N−1
N
∏

k=1

zk − U

zk
.

In terms of Zk they are

(U + Zj)
L−N (U − Zj)

N = −2L
N
∏

k=1

Zk − U

Zk + U
. (5.91)

In Eqs. (5.91), the main simplification from the general p, q case is the independence

of the right-hand side from j, which makes the solutions Zj roots of the polynomial

P (z) = (U + z)L−N (U − z)N − Y, (5.92)

with Y given by the right-hand side of Eq. (5.91). This not only simplifies the

numerical computation of the Bethe roots Zj, but also ensures their continuity in U

[363]. Consequently, we will focus on the TASEP case for the remainder of Section 5.4.

5.4.2 Solving the Bethe equations numerically

In this section, we outline the numerical procedure for solving the TASEP Bethe

equations. Solutions are obtained by self-consistently iterating Eqs. (5.91), similar to

Ref. [257]. The challenge lies not in identifying a single solution to the Bethe equations

but in systematically finding all
(

L
N

)

solutions.

In the following, Y will denote an arbitrary complex number and the right-hand

side of Eq. (5.91) will be referred to as

Ỹ (Z1, . . . , ZN) = 2L
N
∏

k=1

Zk − U

Zk + U
.

Then every solution Z1, . . . , ZN of Eq. (5.91) consists of roots of the polynomial P

with Y = Ỹ (Z1, . . . , ZN).

To find solutions of the Bethe equations numerically one can proceed as follows.

First, calculate the roots Z(1)
1 , . . . , Z

(1)
L of P for an initial Y (1). Of these L roots of P

choose N roots, Z(1)
1 , . . . , Z

(1)
N , and evaluate the next Y (2) = Ỹ (Z

(1)
1 , . . . , Z

(1)
N ). Again,

the roots Z(2)
1 , . . . , Z

(2)
L of P with Y = Y (2) are calculated and N roots Z(1)

1 , . . . , Z
(1)
N are

chosen to evaluate the next Y (3) = Ỹ (Z
(2)
1 , . . . , Z

(2)
N ). This procedure is then iterated

until convergence all of the N chosen roots is reached, Z(l)
j ≈ Z

(l+1)
j for all 1 f j f N .
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Fig. 5.5 Visualization of solving the Bethe Eqs. (5.91) of TASEP (pbc) for L = 6 and
N = 3. All markers are roots of the polynomial P , given by Eq. (5.92), for different Y .
The outer (square) markers are the roots for initial Y (1) = 10 × 2L, the inner (triangles)
markers for Y converged, and the circles denote roots of P for intermediate Y . Red
markers (upper complex plane) are chosen to calculate the next Y . The gray circle has
a radius of |Y (1)|1/L.

The convergence of this procedure presupposes consistency of the choice of the N

roots out of L roots of the polynomial P [364, 289]. The first choice of Z(1)
1 , . . . , Z

(1)
N

out of Z(1)
1 , . . . , Z

(1)
L is arbitrary. Subsequent roots Z(l)

1 , . . . , Z
(l)
N are chosen to be closest

to the previous roots

Z
(l)
j = argmin

Z
(l)
k

:1fkfL

|Z(l)
k − Z

(l−1)
j |, (5.93)

where the minimum runs over all roots Z(l)
1 , . . . , Z

(l)
L of P with Y = Y (l). If multiple

Z
(l)
k are close to Z(l−1)

j we do not update Y (l+1) with Z(l)
j but with a linear combination

of Z(l)
j and Z(l−1)

j , i.e. Y (l+1) = Ỹ (. . . , dY Z
(l)
j + (1 −dY )Z

(l−1)
j , . . . ) where 0 < dY f 1

denotes the fraction of interpolation between Z
(l)
j and Z

(l−1)
j .

The above-described procedure typically leads to convergence of Z(l)
1 , . . . , Z

(l)
N and

thus to a solution of the Bethe Eqs. (5.91). In Figure 5.5 we show the roots Z(l)
1 , . . . , Z

(l)
6

obtained during the algorithm for L = 6 and N = 3. The square markers denote

the initial Z(1)
1 , . . . , Z

(1)
6 with Y (1) = 10 × 2L, while the triangles denote the final and

converged Z
(end)
1 , . . . , Z

(end)
6 (relative or absolute error of Eq. (5.91) < 10−3). The

circles indicate intermediate roots. Initially, the 3 red squares (upper half-plane) are
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chosen as Z(1)
1 , . . . , Z

(1)
3 , and subsequent roots (upper half-plane in red) according to

their previous closest roots. For visualization purposes, dY was chosen to be dY = 0.5.

To find all solutions to the Bethe Eqs. (5.91) systematically we use different

combinations of intial Y (1) and initial root choices. Namely, we typically choose Y (1)

with |Y (1)|1/L k U . This ensures that the roots of P with Y = Y (1) are close to the

circle with radius |Y (1)|1/L. In Figure 5.5 the roots of P for Y = Y (1) = 10×26 denoted

by the square markers are close to the circle with radius 2 × 101/6 ≈ 2.9. Then we solve

the Bethe equations for every combination of N roots out of L. This typically gives us

almost all solutions of the Bethe Eqs. (5.91). By iterating this procedure for a handful

initial Y (1) we found all Bethe roots for the systems we investigated (up to L = 22).

We note that in Ref. [289] a transformation of the TASEP Bethe Eqs. (5.91) lead

to a self-consistent solution algorithm, which is less dependent on the initial condition

Y (1).

5.4.3 Structure of the Bethe roots

To examine the spectral boundary in terms of the Bethe roots, we will consider, in the

complex plane, the Bethe roots (zj or Zj) corresponding to each of the
(

L
N

)

eigenstates.

There are thus N ×
(

L
N

)

Bethe roots in total, for any value of U . Such plots are shown

in Figure 5.6.

For U = 0, the Bethe roots zj satisfy the equation zLj = (Zj/2)L = (−1)N+1, and

agree with the single-body eigenvalues of M (stated in Eq. (5.20)). Therefore, the

spectrum derived via the Bethe ansatz for U = 0 aligns with that of the non-interacting

ASEP model discussed in Section 5.2, as expected. An illustrative example of the Bethe

roots Zj = 2zj for U = 0 is provided in Figure 5.6(a) for L = 8 and N = 4. Here, each

solution of the Bethe equations contributes N = 4 roots, which together describe one

of the
(

8
4

)

eigenstates. We plot all the 4 ×
(

8
4

)

roots together in a single plot. Since for

U = 0 every solution to the Bethe equations is a subset of the 8 single-body eigenvalues

of M, the union of all solutions is highly degenerate and only 8 unique markers show

up in Fig. 5.6(a).

For U > 0 the degeneracy of the U = 0 case is lifted and the 4 ×
(

8
4

)

Bethe roots Zj
become distinct, as observed in Fig. 5.6(b-d) for U = 0.33, 0.66, and U = 1, respectively.

The continuity of Bethe roots zj in U suggests that for small U , these roots should be

proximate to the Lth roots of (−1)N+1. Numerically, this is confirmed as the Bethe

roots zj tend to cluster around the Lth roots of (−1)N+1 for small U . As depicted in

Figure 5.6(b) and (c) for U = 0.33 and U = 0.66 respectively, the Zj’s distinctly form
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Fig. 5.6 (a-d) All N ×
(

L
N

)

Bethe roots Zj of the TASEP with L = 8 and N = 4 for
different values of U . (e) Bethe roots for L = 14 and N = 7 with U = 1.
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L = 8 clusters around the Bethe roots for U = 0. This clustering is even discernible

for U = 1, as shown in Figure 5.6(d), where the L = 8 clusters remain identifiable.

For larger L, the Bethe root clusters overlap at U = 1, evident from Fig. 5.6(e) for

L = 14 and N = 7. However, the statistical width of these clusters diminishes with

larger L. This is demonstrated in Fig. 5.8, where the average cluster width decreases

as L−1/2 in the thermodynamic limit with Ä = N/L = 1/2 and N,L → ∞.

We define the locations and widths of these clusters by fitting a Gaussian mixture

model of L independent Gaussians with complex means to the Bethe roots. The Bethe

root distribution is approximated as 1
L

∑L
j=1 fj, with fj representing Gaussian densities.

We label the Gaussians of the optimal fit as Nj for j = 1, . . . , L, each characterized by

its mean µj (in C) and standard deviation Ãj (in Rg0).

5.4.4 Structure of the many-body spectrum

In this section, we demonstrate that by considering only the centers µj and widths Ãj of

the Bethe root clusters, rather than their specific structure, it is possible to approximate

a many-body spectrum that exhibits characteristics of the TASEP many-body spectrum,

particularly its spiky boundary.

For U = 0 each many-body eigenvalue ¼ is a sum of N out of L single-body

eigenvalues. Specifically, ¼ is given by

¼ =
L
∑

j=1

sj¿j =
∑

sj ̸=0

¿j, (5.94)

where s ∈ {0, 1}L is a configuration with
∑

j sj = N and ¿j are the single-particle

eigenvalues determined in Section 5.2.3. According to Eq. (5.90), every many-body

eigenvalue of the TASEP (U = 1) corresponds to a sum of N Bethe roots and by the

continuation from U = 1 to U = 0 each Bethe root belongs to one of the L clusters.

Instead of summing solutions of the Bethe Eqs. (5.91), we employ a statistical ansatz

and consider random many-body eigenvalues of the form

¼rand =
L
∑

j=1

sjNj = Ns, (5.95)

where Ns denotes a Gaussian with mean µs =
∑L
j=1 sjµj and variance Ã2

s =
∑L
j=1 sjÃ

2
j .

We refer to Ns as many-body Gaussians and denote their density by fs. We let

the random variables Ns be independent for different configurations s. The full

random many-body spectrum is a superposition of many-body Gaussians Ns for all
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Fig. 5.7 (a) The many-body spectrum of TASEP with L = 14 and N = 7 (multiplied
by 2 and shifted by N). (b) Probability density function of the many-body spectrum
of the random Bethe roots Z for L = 14 and N = 7 capped at 10−3. Red dots are the
means of the complex Gaussians.

configurations s ∈ {0, 1}L with
∑

j sj = N . The density of this many-body spectrum is

given by
1

Z
∑

s∈{0,1}L

s1+···+sL=N

fs, (5.96)

where Z =
(

L
N

)

is a normalization constant. The many-body spectrum of the TASEP

is a specific sample of the distribution in Eq. (5.96). For U = 0 the random spec-

trum becomes deterministic and agrees with the non-interacting many-body spectrum

presented in Section 5.2.

In Figure (5.7)(b), we present the probability density from Eq. (5.96) for L = 14,

N = 7, and U = 1, with the density capped at 10−3 for clarity. The red markers

indicate the means µs of the many-body Gaussians Ns. Both the discrete means and

the continuous density exhibit pronounced spikes at the boundary. When these means

are compared to the many-body spectrum of the TASEP shown in Figure 5.7(a), even

finer details of the TASEP spectrum are discernible in the structure of the means.

The boundary of the random many-body spectrum is mainly determined by Gaus-

sians Ns, associated with domain wall configurations of one or two domain walls,

separated by at most one empty site. This is a consequence of the exponential decay

of Gaussian probability density functions. These configurations are identical to those

defining the spectral boundary in the non-interacting case.
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Fig. 5.8 The width Ã of the complex Gaussians fitted to the clusters of the Bethe roots
for U = 1 at half-filling N = L/2. The solid line denotes the average ïÃjðj = 1

L

∑

j Ãj
of the cluster widths and the dotted line guides the eye to L−1/2. The inset shows the
absolute value of the centers of the complex Gaussians |µ|. Black solid line indicates
the average.

The random Bethe spectrum and the TASEP spectrum share a remarkably similar

overall shape. However, differences do exist. The boundary of the random Bethe

spectrum is not skewed towards larger negative real parts, as is the boundary of the

TASEP spectrum. This is attributed to the additional structure in the Bethe root

clusters seen in Figure 5.6, which is not represented by rotationally invariant Gaussians.

5.4.5 “Thermodynamic limit”

Similar to the non-interacting case with U = 0, we will argue that the spiky boundary

persists in the thermodynamic limit as L and N increase while maintaining a fixed

density Ä = N/L.

Let us first focus on the means µs of the many-body Gaussians Ns, depicted as red

dots in Figure 5.7. According to the inset of Figure 5.8, the absolute values of |µj|
appear to be independent of L. This independence suggests that the non-interacting

scenario, presented in Section 5.2, also applies to the many-body Gaussian centers µs.

They scale as ∝ L. The spiky structure of the boundary is of O(1); more precisely,

the tip distance (dt) and boundary depth (db), investigated in Section 5.2.4, are of

O(1). Hence, the spiky structure of the boundary Gaussian centers is maintained in

the thermodynamic limit.
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However, this doesn’t automatically imply that the spiky spectral boundary of

the random spectrum, as defined in Eq. (5.96), persists in the thermodynamic limit.

For this to hold true, the widths Ãj of the Gaussians Nj in the mixture model must

decrease sufficiently fast. More precisely, the widths of the corresponding many-body

Gaussians Ns must be (at most) of the same order as the length scale of the spike

structure, which is O(1).

Figure 5.8 displays the widths Ãj of Nj for the TASEP case (U = 1) at half-filling

(N = L/2), with L ranging from 8 to 22. The cluster widths Ãj vary. They are larger for

clusters with smaller | ReZ| and smaller for those with larger | ReZ|. This is observed

in Figure 5.6(e) as well. Despite this variation, the widths Ãj are centered around their

average ïÃjðj = 1
L

∑L
j=1 Ãj. This average decreases approximately as ∝ L−1/2, as shown

by the dashed line in Figure 5.8. Consequently, the variance Ã2
s =

∑L
j=1 sjÃ

2
j of the

many-body Gaussians Ns scales as ∝ 1 and so does the standard deviation Ãs. The

spiky structure of the statistical many-body spectrum for U = 1 therefore persists in

the thermodynamic limit.

5.5 The random matrix picture

In the previous sections, we showed that the spectral boundary spikes of the TASEP are

a consequence of the many-body spectrum being generated by summing single-particle

eigenvalues or Bethe root clusters. In this section, we demonstrate that the spiky

spectral boundary is characteristic for a broad range of systems, extending beyond

those solvable by the (coordinate) Bethe ansatz. Specifically, this feature is typical in

systems where the many-body graph exhibits a particular cycle structure, where all

cycle lengths are integer multiples of the spike count.

5.5.1 From TASEP to graphs

The matrix elements of the non-interacting TASEP M are either zero or one. Thus,

M is the adjacency matrix of a directed graph. This graph, termed the many-body

graph of TASEP, has vertices representing particle configurations in the chain and

edges indicating permissible transitions. For TASEP with U = 1, its generator matrix

K is the negative Laplacian of this graph.
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5.5.2 Cycles of TASEP

The permissible transitions between particle configurations impose constraints on the

structure of the many-body graph. Our focus is on the nature of cycles in this graph.

The cycle lengths in the TASEP many-body graph are divisible by L for pbc and by

L+ 1 for obc [288]. This is evident in cycles among configurations s ∈ {0, 1}L, which

only contain a single particle, sj = ¶jk. These cycles consist of L particle movements

(L + 1 for obc) such that the particle arrives at its original position. For general

configurations s let us restrict to the pbc case. The following argument applies to the

obc case with L+ 1 instead of L as well. Consider the sum X(s) =
∑L
j=1 jsj mod L of

particle positions in the configuration s [288]. This sum X partitions the many-body

graph of TASEP into L subgraphs Xj = {s : X(s) = j} for j = 0, . . . , L− 1. Within

each Xj no two vertices are connected. The only allowed transitions are between

configurations of Xj and Xj+1 mod L. Thus, for returning to a configuration s an integer

multiple of L transitions have to be performed and cycle lengths of the many-body

graph are divisible by L.

As discussed in Section 1.1.5, the number of closed walks with length k is given by

tr(Mk). Especially, if tr(Mk) = 0 then the graph does not contain any closed walks,

thus any cycle, of length k. In Figure 5.9(e), we depict tr(Mk) + 1 as blue squares as

a function of k = 1, . . . , 2L for a system of L = 12 sites and pbc with N = 6 particles.

The addition of +1 facilitates a logarithmic scale on the y-axis. Here, tr(Mk) equals

zero for all values of k not divisible by L, indicating the absence of cycles in the graph

with length k modL ̸= 0. Similarly, for obc, tr(M)k = 0 if and only if k mod L+1 = 0

(not shown).

5.5.3 Random graph model

To demonstrate that the spiky spectral boundary is a generic feature, we compare

the TASEP spectrum with the spectral density of a random graph ensemble. The

distribution of the random graphs is the uniform distribution over all graphs with D

vertices, n edges and the property that all cycle lengths are divisible by L. (We discuss

the pbc case. The obc case is equivalent by changing L to L+ 1.)

To sample a random graph from such an ensemble, one starts with a directed cycle

on D vertices. Then, one randomly chooses a vertex and traverses the graph randomly

along L − 1 edges. The vertex reached after L − 1 steps is connected back to the

starting vertex, creating a closed walk of length L. This process is repeated until the

graph contains n edges. If the length of the initial cycle on all D vertices is divisible



156 The spectral boundary of the ASEP

Fig. 5.9 TASEP spectrum (pbc) with L = 12 and N = 6 in (a) U = 0 and (c) U = 1.
In (b,d) spectral density of random graphs with cycle length divisible by L; in (b)
of the adjacency matrix and in (d) of the negative (combinatorial) Laplacian. In
(e) traces of powers of the non-interacting TASEP generator A = M (squares) and
adjacency matrices A of random graphs (circles).

by L, then the presented procedure ensures that all cycle lengths are divisible by L.

We expect this algorithm to sample approximately uniformly from the above described

random graph ensemble.

Figure 5.9 compares the random graph ensemble to the TASEP with L = 12 sites

and N = 6 particles. Quantities of the random graph ensemble are averaged over 2, 000

samples. The number of vertices is D = 924, matching the Hilbert space dimension of

the TASEP, and the number of edges was chosen accordingly.

In Figure 5.9(e), we present tr(Ak)+1 as red circles, where A is the adjacency matrix

of the random graphs. There, tr(Ak) is zero for all k that are not integer multiple of L.

Whenever k is an integer multiple of L, tr(Ak) is comparable in magnitude to tr(Mk)

for TASEP. This similarity suggests that the number of closed walks in the random

graph ensemble is on par with that in the TASEP many-body graph.
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Figure 5.9(a-d) show a comparison between spectra of the random graph ensemble

and the TASEP. In (a) and (b), we show the spectrum of the non-interacting TASEP

alongside the estimated spectral density of the adjacency matrix. Both have L distinct

spikes. In Figure 5.9(c) and (d), we present the spectrum of TASEP (U = 1) and the

spectral density of the negative graph Laplacian. Notably, the random graph Laplacian

also presents L pronounced spikes. The spike patterns, particularly their “bending”

towards the left, show a resemblance to the TASEP spikes. The overall shape of the

Laplacian spectral density (ignoring the spikes) has a spindle-like form, characteristic

of sparse random generators of continuous-time Markov chains discussed in Chapter 4.

5.6 Discussion

In this chapter, we explored the connections between the ASEP, free fermion models,

and RMT, focusing on the distinctive spiky spectral boundary. We reformulated the

generator of the ASEP as non-Hermitian fermionic models with a variable interaction

parameter U , where U = 1 corresponds to the standard ASEP. We analytically

demonstrated that in the non-interacting ASEP (U = 0), this spiky spectral boundary

arises from summing single-particle eigenvalues positioned on ellipses (circles for

TASEP). For pbc, we extended this concept to interacting TASEP (U = 1), showing

that the spiky boundary remains and originates from the summation of clustered Bethe

roots. Lastly, we confirmed the robustness of this spiky boundary by considering only

the cycle structure in the many-body graph, revealing that corresponding random

graphs exhibit a similar spiky spectral boundary.

This research opens up several questions for further exploration. We demonstrated

the spiky spectral boundary in TASEP, largely attributed to Bethe roots clustering. It’s

intriguing to consider whether such clustering also occurs in ASEP. The straightforward

connection between TASEP and ASEP in their non-interacting forms suggests that

the spiky spectral boundary might extend to standard ASEP (with U = 1) as well.

However, it remains to be seen how introducing interactions influences Bethe roots

clustering and the potential emergence of a spiky spectral boundary.

In this chapter, we concentrated on the Bethe ansatz for pbc. The ASEP with

obc is also solvable via the Bethe ansatz, though the equations are more complex

[280, 365–367]. A promising area for future research is to explore whether a clustering

of Bethe roots in the obc case similarly results in a spiky spectral boundary.

The random graphs following the hypotrochoidic law usually lack cycles shorter

than L but can have cycles longer than L. However, the random graph ensemble we
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introduced in this chapter deviates from this standard hypotrochoidic law, likely due

to its more restricted cycle structure, where all cycles are of lengths divisible by L.

Extending the hypotrochoidic law to encompass this specific graph ensemble would be

a valuable advancement.

This study concentrated on the spiky spectral boundary of the ASEP. Formation

of spikes in the complex plane have been observed in the off-diagonals of reduced

density matrices in the symmetric simple exclusion process [156] and the observable

representation of Ising chain Glauber dynamics [368]. These observations together with

the robustness of the spiky spectral boundary to perturbations make the investigation

of other models, both classical and quantum, that possess a similar cycle structure in

their many-body graphs or comparable trace correlations in their generator matrices,

an intriguing direction for future research.



Chapter 6

Summary

The content of this thesis is placed in the broad context of studying many-body systems

through the lens of random matrix theory (RMT). We focused on two types of many-

body systems: quantum and stochastic many-body systems. In the quantum case we

investigated a specific system — the Bose-Hubbard model. We studied several aspects

of this model related to quantum chaos and the Eigenstate Thermalization Hypothesis

(ETH). In the case of stochastic many-body systems we focused on generators of

Markovian processes. We investigated the spectra of generic systems — an ensemble

of random generator matrices — and the spectral boundary of a specific system — the

Asymmetric Simple Exclusion Process (ASEP).

In Chapter 2, we investigated eigenstate-to-eigenstate fluctuations of expectation

values of local observables (EEV fluctuations) in the 1D Bose-Hubbard model. The

ETH predicts that in the thermodynamic limit of increasing lattice size and fixed

particle density these fluctuations decrease in the Hilbert space dimension D as D−1/2.

In this thesis, we investigated EEV fluctuations in the classical limit of fixed lattice size

and increasing particle density. We showed analytically that for RMT-like eigenstates,

EEV fluctuations decrease as D−1/2 after appropriate renormalization of the observables.

Fluctuations of mid-spectrum Bose-Hubbard eigenstates conform to this decrease for

large lattice sizes. For small lattice sizes however, EEV fluctuations decrease as a

power-law in D−e, but with an exponent e smaller than 1/2. We showed that this

anomalous scaling is not explained by two-point correlations between eigenstates but

is due to subtle higher-order correlations of eigenstate coefficients.

Partly motivated by the anomalous EEV fluctuation scaling, in Chapter 3, we

studied the Bose-Hubbard model on three sites in detail. We compared the quantum

model to its classical limit — the discrete nonlinear Schrödinger equation (DNLS). For

three sites, the Bose-Hubbard model is known to be neither integrable nor strongly
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chaotic but shows mixed behavior. We calculated several quantities used to demarcate

chaos from integrability. In the quantum model we studied correlations of energy

eigenvalues, statistics of eigenstates and the decrease of EEV fluctuations. In each

case, the degree of adherence to RMT predictions quantifies how chaotic the quantum

system is. In the DNLS, we calculated Lyapunov exponents. As a function of energy

and interaction strength, we demonstrated a strong overall correspondence between all

four measures of chaos.

In Chapter 4, we presented a model of random sparse generator matrices of Marko-

vian evolution. We investigated its spectral properties, particularly, the first two

moments of the eigenvalue distribution and the spectral gap, the inverse of the relax-

ation time. The dependence of the eigenvalue moments on the sparsity φ — number

of non-zero elements per column — implied divergence of the bulk spectrum from the

stationary eigenvalue, whenever φ increased with the matrix size D. However, in the

limit of large D, the spectral gap decreases for constant φ (single-particle case) and

is constant (up to logarithmic corrections) for φ ∼ logD (many-body case). These

results show that sparsity cures the large spectral gap, leading to unphysically long

relaxation times, which is characteristic for nonsparse random generators.

In Chapter 5, we focused on the spectrum of a particular generator of Markovian

evolution — the ASEP. The spectral boundary of the ASEP features characteristic

spikes: L spikes for periodic boundary conditions (pbc) and L+ 1 for open boundary

conditions (obc), with L being the system size. We elucidated the emergence of

these spikes in several ways. First, we expressed the generator as an interacting

non-Hermitian fermion model. In the noninteracting case, the spectral boundary spikes

emerged as sums of single-particle eigenvalues on ellipses. Second, by invoking Bethe

ansatz techniques we interpolated between the noninteracting and the ASEP limit.

In the totally ASEP (TASEP) case, the spikes stem from clustering of Bethe roots.

Third, we investigated adjacency and Laplacian matrices of random graphs with cycle

lengths divisible by the spike count. In the many-body graph of the TASEP all cycle

lengths are divisible by L (L+ 1 for obc). We demonstrated that the spectra of these

random graphs have L (L+ 1) prominent spikes akin to spectra of random matrices

with higher-order trace correlations.
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