

Search for Short-Duration Transient Gravitational Waves Emitted by Neutron Star Glitches

Dixeena Lopez* on behalf of the LIGO, Virgo, and KAGRA collaborations

Neutron stars are known to show an accelerated spin-up of their rotational frequency on a short time scale of around 40 s, called a “glitch” in the neutron star. These neutron star glitches can emit short-duration transient gravitational wave signals as f-mode oscillations at frequencies between 1.5 and 3 kHz and damping times of less than a few seconds. The observed rate of neutron star glitches are currently limited by their electromagnetic observations. There could be a population of the isolated neutron stars in the galaxy for which there is no electromagnetic observation, but they can produce gravitational wave signals. Here, the sensitivity of the generic all-sky search for short-duration transients towards neutron star glitches during the Advanced LIGO and Virgo’s third observing run using the Coherent WaveBurst algorithm is presented. The prospects of detecting signals from such glitching neutron stars for the upcoming fourth and fifth observing runs of Advanced LIGO and Virgo detectors are also described.

1. Introduction

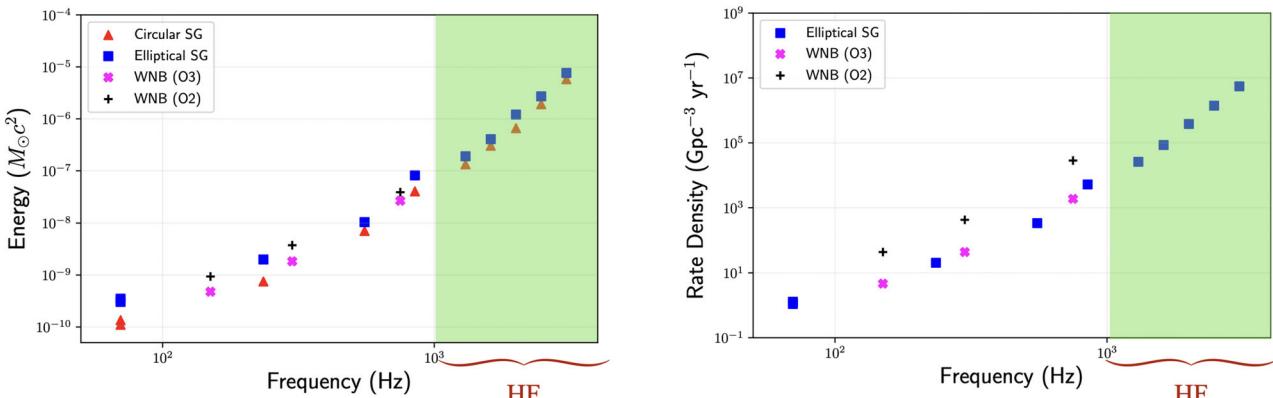
The current ground-based gravitational wave detectors are sensitive to gravitational wave (GW) burst (approximately milliseconds to few seconds) signals. The potential GW burst sources are coalescing compact binaries (CBC), core-collapse supernovae, cosmic strings, pulsar glitches, etc. Not all sources have robust or even known waveform models. The burst signals are targeted by searches with no assumptions regarding the incoming signal direction, polarization, or morphology called unmodeled searches. The third observing run (O3) of the Advanced LIGO and Advanced Virgo detectors extends from April 1, 2019 to March 21, 2020. Here we present the results for the all-sky search for short-duration transients using the unmodeled search method called Coherent WaveBurst (cWB) pipeline during the O3 run^[1] and the search sensitivity to GW burst signals emitted by the neutron star (NS) glitches. We also provide the prospects of detecting these

signals for the upcoming fourth and fifth observing runs of current generation GW detectors. A dedicated search for continuous gravitational waves from isolated NSs that have glitched during the O3 run is reported in refs. [2, 3].

This article is organized as follows, Section 2 will explain the search method. Section 3 shows the sensitivity to generic morphology and GWs from NS glitches. Finally, Section 4 summarizes the search results during the O3 and prospects of observing the signals during the future observing runs of the Advanced LIGO and Virgo.

2. Searches

The O3 run was divided into two 6 month segments, O3a (April 1, 2019 to October 1, 2019) and O3b (November 1, 2019 to March 27, 2020). We used the two pipelines, cWB^[4,5] and BayesWave algorithm,^[6] as the unmodeled search method for short-duration GW transients. The cWB algorithm provides results for the entire frequency range while the BayesWave performs as a follow-up of the loudest cWB candidates event with frequency up to one 1 kHz. cWB does not require prior assumptions on signal morphology. It relies upon the excess coherent power in the network of detectors. The analysis uses multi-resolution Wilson-Daubchies-Meyer wavelet transforms to characterize the signal features.^[4] cWB analysis was done in two frequency ranges separately for short-duration signals of up to approximately a few seconds, low-frequency (LF) analysis between 16 and 1024 Hz frequency range, and high-frequency (HF) analysis from 1024 to 4096 Hz.


During the O3 run, the Hanford–Livingston (HL) network has improved sensitivity over the Hanford–Livingston–Virgo (HLV) network. Since we focus on the maximization of detection efficiency, for the O3 LF analysis we consider the HL network rather than the HLV network.^[1,7] The Hanford–Virgo (HV) network and the Livingston–Virgo (LV) network were analyzed when data from either of the LIGO detectors were not available. We have used only the HL network for the high-frequency analysis since Virgo has a significant sensitivity imbalance for frequencies higher than 1 kHz (almost a factor 5).^[1] For cWB LF analysis, the triggers are divided into three mutually exclusive bins. It is based on background morphologies to isolate loud and frequent background glitches into a small parameter space. Whereas for the HF analysis, division of background triggers into bins is not

D. Lopez
Physik-Institut
University of Zurich
Winterthurerstrasse 190, Zurich 8057, Switzerland
E-mail: dlopez@physik.uzh.ch

 The ORCID identification number(s) for the author(s) of this article can be found under <https://doi.org/10.1002/andp.202200142>

© 2022 The Authors. Annalen der Physik published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: [10.1002/andp.202200142](https://doi.org/10.1002/andp.202200142)

Figure 1. (Left) The GW emitted energy corresponds to a 50% detection efficiency at an iFAR ≥ 100 years for a source at 10 kpc during the O3 run. The waveform morphologies like circularly (an optimally oriented source) and elliptically (uniform distribution in the cosine of the inclination angle) polarized SG and WNB are considered. (Right) Upper limits for the GW rate density at 90% confidence intervals assuming $1M_{\odot}c^2$ of GW energy has been emitted from the source during the O3 run. The results are compared to the second observing run (O2) for the WNB waveforms. The shaded region is the high-frequency search range. Figure 1 reproduced with permission.^[12] Copyright 2021, Phys. Rev. D.

required. The detailed description of binning is mentioned in refs. [1, 7].

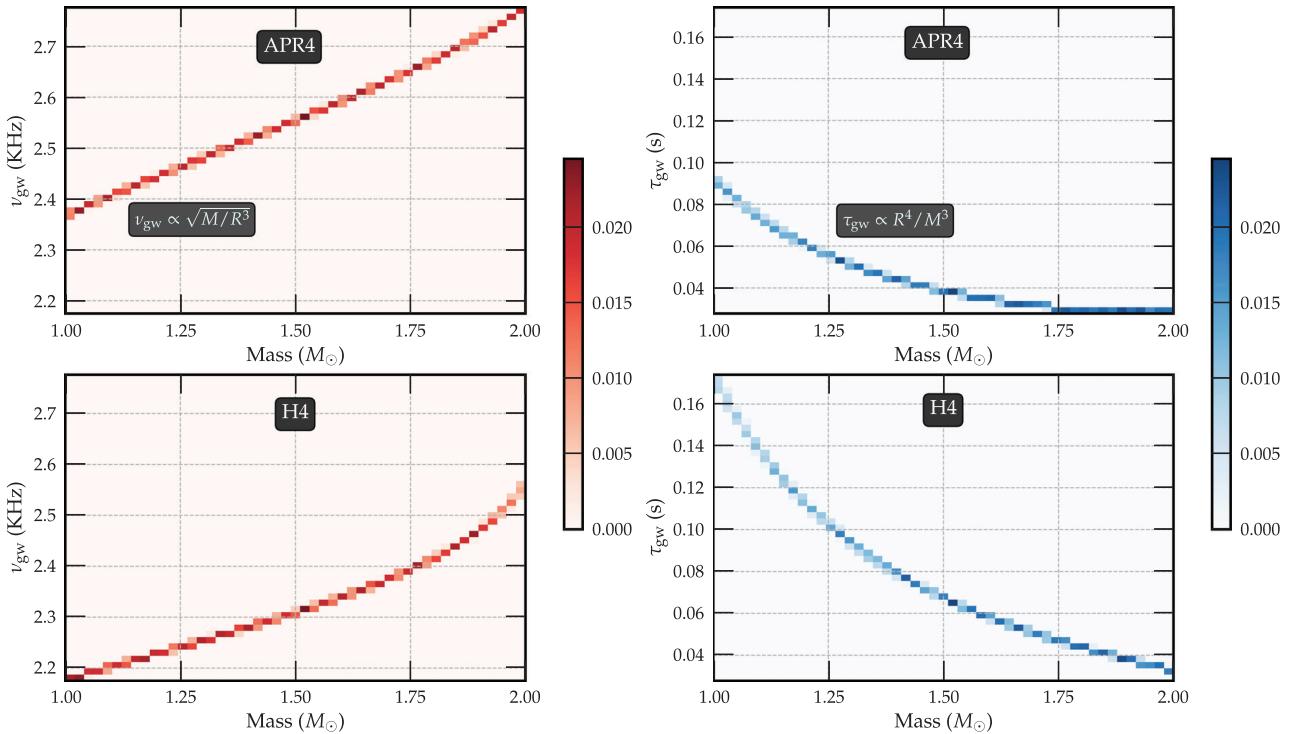
Short GW burst searches are sensitive to CBC sources, the GW signals from CBC observed during the O3 run are reported in catalog papers [8] and [9]. The LF analysis results found no new candidates apart from the known CBC with high statistical significance during the all-sky short-duration transients search. In this work, we focused on the HF region where the search does not find any significant events and the loudest event is well within the expected noise. HF part of the parameter space is cleaner in the duration of background (lower glitch rates) when compared to the LF, however there exist (non-)stationary lines in power spectral density of O3 run.^[1,10,11] The first part of the O3 run (until May 16, 2019) was affected by glitches at a very high frequency (> 3.4 kHz). Hence, the triggers with central frequency > 3.4 kHz were excised from the analysis before May 16, 2019.

3. Sensitivity

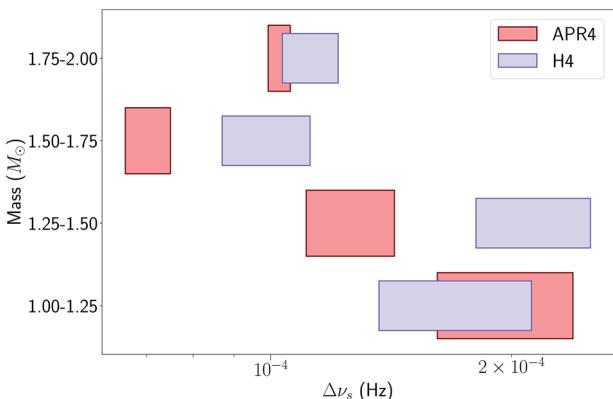
In order to place the search results in an astrophysical context, it is necessary to measure the detection efficiency of generic signal morphologies. The search sensitivity to the generic signal morphologies is described by a set of ad hoc waveforms sine-Gaussian wavelets (SG), Gaussian pulse (GA), and band-limited white-noise bursts (WNB). The ad hoc waveforms are injected over a range of amplitudes in the network of detectors in terms of the root-mean-squared strain amplitude (h_{rss}). Detection efficiency is expressed as the amount of energy emitted in GW for a detection, assuming source at a distance of $r_0 = 10$ kpc and isotropically radiating at a central frequency of f_0 . Assuming the signal to be circularly polarized and narrowband, the amount of energy radiated is

$$E_{\text{GW}}^{\text{iso}} = \frac{\pi^2 c^3}{G} r_0^2 f_0^2 h_{\text{rss}}^2 \quad (1)$$

While for the elliptically polarized waveforms, the energy is given as $E_{\text{GW}}^{\text{rot}} = (2/5) \times E_{\text{GW}}^{\text{iso}}$. The h_{rss} value at which 50% of the signals are detected with an inverse false alarm rate (iFAR) \geq


100 years is used to find the amount of energy radiated by the source. The results are shown in Figure 1 (left) since the search does not find any GW transient sources other than CBC signals. The upper limit of the rate per unit volume of non-CBC GW burst sources at 90% confidence, assuming $1M_{\odot}c^2$ of GW energy emitted is shown in Figure 1 (right). The energy can be scaled to any emission energy by the relation rate density $\propto E_{\text{GW}}^{-3/2}$. The high-frequency search was interpreted in terms of neutron star f -modes, which may be excited by pulsar glitches.

3.1. Sensitivity to Neutron Star Glitches


The two main proposed mechanisms for pulsar glitches are starquakes and superfluid crust interactions.^[13] NS glitches are a well-known and observed phenomenon in EM astronomy.^[14] We detect only a sub-set of NSs in our galaxy and the population of NSs nearby us can be much more than what we observe in the EM spectrum. NS glitches can be a potential source of short-duration GW bursts during the spin-up phase. The pulsar glitch may excite various oscillations damped by GW emission in the form of a decaying sinusoid. The f -mode oscillations in particular are thought to be primary emitters of GW.^[15-18] Assuming that the bulk of GW emission associated with oscillatory motion is generated by mass quadrupole (spherical harmonic index $l = 2$) f -mode oscillations, if all the available energy is absorbed into the excitation of the fundamental mode of oscillation^[15] the energy generated during the glitch is given as

$$E_{\text{glitch}} = 4\pi^2 I v_s \Delta v_s \quad (2)$$

where $I \approx 10^{38} \text{ kg m}^2$ is the NS moment of inertia, v_s is the spin frequency, and Δv_s is the increase in the spin frequency. The signal is modeled as a damped sinusoid, with frequency v_{gw} induced at time $t = 0$ and damps on a timescale τ_{gw} . Calculations of the frequency and damping time of the fundamental quadrupole mode for various models of the equation of state (EoS) indicate that the frequency lies in the range $1 \leq v_{\text{gw}} \leq 3$ kHz and the damping time lies in the range $0.05 \leq \tau_{\text{gw}} \leq 0.5$ s.^[19] Hence GWs

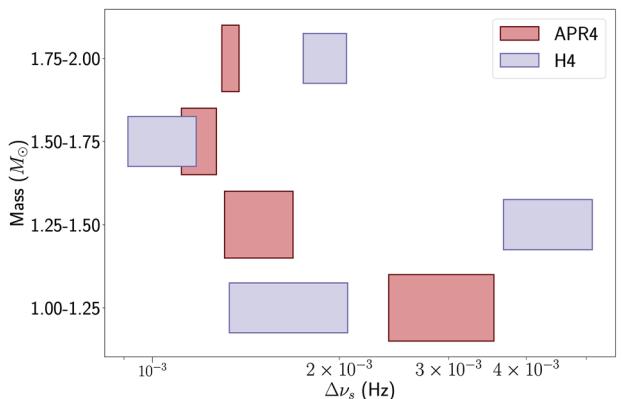


Figure 2. Distribution of GW frequency (left) and damping time (right) as a function of NS mass and EoS for APR4 and H4. Here we compare the relation for two EoS, APR4 (soft) and H4 (hard).

Figure 3. Sensitivity to neutron star glitches is shown in terms of detectable glitch size by considering the Vela pulsar as a reference in the distance and spin frequency for soft (APR4) and hard (H4) EoS, assuming an optimally oriented source distributed uniform in all-sky direction. For each EoS, the boxes show the search sensitivity of the glitch size for 50% detection efficiency at iFAR ≥ 100 years, and the spread of the box shows the variation within the mass bin. Figure 3 reproduced with permission.^[1] Copyright 2021, Phys. Rev. D.

from the NS glitches is in the high-frequency part of the cWB search. Here we consider the Cowling approximation^[20] which gives the upper limit on the frequency, which is a conservative choice as the detector loses sensitivity at high frequencies. For the current study, we consider the NS masses are in the range of $1-2 M_{\odot}$ and the radius of the NS is determined by the APR4 (soft) and H4 EoS.^[1] **Figure 2** shows the distribution of GW frequency

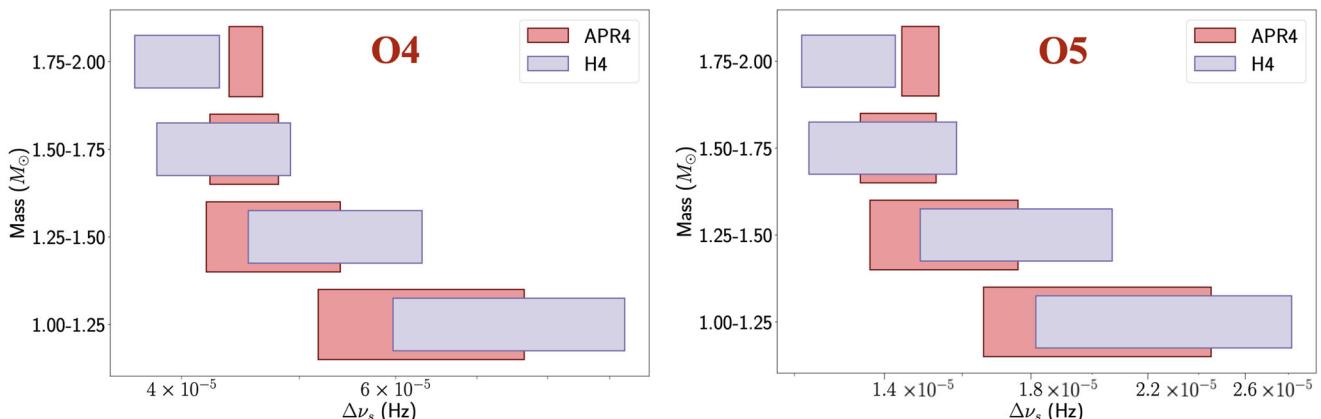


Figure 4. Sensitivity of neutron star glitches at iFAR ≥ 10 years during O3a run for EoS APR4 and H4 considering Vela pulsar as a distance and spin frequency reference. The source is assumed to be uniformly distributed in our galaxy and has uniform distribution in orientation.

and damping time for two EoS, APR4 and H4, as a function of NS mass and EoS in Cowling approximation.

The peak amplitude h_0 of short-transient GW emitted by the source at distance d can be determined by GW luminosity.^[15]

$$h_0 = 7.21 \times 10^{-24} \left(\frac{1 \text{ kpc}}{d} \right) \left(\frac{\nu_s}{10 \text{ Hz}} \right)^{1/2} \left(\frac{\Delta \nu_s}{10^{-7} \text{ Hz}} \right)^{1/2} \times \left(\frac{1 \text{ kHz}}{\nu_{\text{gw}}} \right) \left(\frac{0.1 \text{ s}}{\tau_{\text{gw}}} \right)^{1/2} \quad (3)$$

Figure 5. Sensitivity of neutron star glitches at iFAR ≥ 10 years for O4 (left) and O5 (right) power spectral density. The source is assumed to be uniformly distributed in our galaxy and has uniform distribution in orientation, keeping the Vela pulsar as a reference.

We present the sensitivity at 50% detection efficiency and iFAR ≥ 100 years in terms of detachable glitch size by assuming Vela pulsar as a reference in distance and spin. We also assume all the glitch energy is being converted to GW. The injections are distributed uniformly in the sky direction with an optimal orientation of the inclination angle (face on). We show the results for various NS masses and two EoS (soft and hard) in Figure 3.

To study the prospects of detecting GW signals from glitching pulsars in future observing runs of Advanced LIGO and Advanced Virgo detectors, we generated Gaussian colored noise as background for the fourth (O4) and fifth (O5) observing runs.^[21] Here we injected the waveforms uniformly over the galactic disk. We chose the orientation to be uniform over the range of inclination angles. In Figures 4 and 5 we show the comparison of the upper limit on glitch magnitude observable during O3a run and for O4, O5 sensitivity at an iFAR ≥ 10 years. The detectable glitch size for the O3 run is around 10^{-3} Hz, whereas the actual glitch size varies between 10^{-9} and 10^{-4} Hz. The sensitivities obtained during the O3 run are thus not in the range where the detection would be expected at the energy scale of pulsar glitches like Vela pulsar. Future observing runs can show an improvement of an order of magnitude for the detectable glitch size.

4. Conclusion

We have interpreted the all-sky short-duration high-frequency search in terms of the detectable glitch size of NSs. During the O3 run, we have searched for the short transient GW burst signals emitted by NSs, keeping Vela as a reference in distance and spin frequency. No significant events were found by the all-sky short-duration search for the O3 run. For the third observing run, we require the glitch size of the order $\approx 10^{-4}$ Hz to confidently detect 50% of events for optimally oriented sources which are distributed uniformly in all-sky direction at iFAR ≥ 100 years. At the same time, the sources which are distributed uniformly in galactic disk with orientation uniform over the full range of inclination angles require an order $\approx 10^{-3}$ Hz to be observed with O3 run sensitivity. Improvements in the detector sensitivities for the next observing run can probe the NS's glitch size. For the fourth and fifth observing runs, we expect to probe glitch sizes down to

10^{-5} Hz; these glitch sizes are expected for the most extreme scenario.

Acknowledgements

This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidencia i Conselleria d'Innovació, Recerca i Turisme and the Conselleria d'Educació i Universitat del Govern de les Illes Balears, the Conselleria d'Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO), Belgium, the Paris île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC,

INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005 (Kajita 2014–2018), JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program A: Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK.

Open access funding provided by Universitat Zurich.

Conflict of Interest

The authors declare no conflict of interest.

Keywords

gravitational waves, neutron stars, pulsar glitches, *f*-mode

Received: March 30, 2022

Revised: June 19, 2022

Published online: July 22, 2022

- [1] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, et al., *Phys. Rev. D* **2021**, *104*, 122004.
- [2] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, N. Andres, et al., arXiv:2112.10990, **2021**.
- [3] L. M. Modafferi, J. Moragues, D. Keitel, for the LIGO Scientific Collaboration and the Virgo Collaboration and the KAGRA Collaboration, *J. Phys. Conf. Ser.* **2021**, *2156*, 012079.
- [4] S. Klimenko, G. Vedovato, M. Drago, F. Salemi, V. Tiwari, G. A. Prodi, C. Lazzaro, K. Ackley, S. Tiwari, C. F. Da Silva, G. Mitselmakher, *Phys. Rev. D* **2016**, *93*, 042004.
- [5] M. Drago, S. Klimenko, C. Lazzaro, E. Milott, G. Mitselmakher, V. Necula, B. Brian, G. A. Prodi, F. Salemi, M. Szczepanczyk, S. Tiwari, V. Tiwari, G. V. Gabriele Vedovato, I. Yakushin, *SoftwareX* **2021**, *14*, 100678.
- [6] N. J. Cornish, T. B. Littenberg, *Classical Quantum Gravity* **2015**, *32*, 135012.
- [7] D. Lopez, V. Gayathri, A. Pai, I. S. Heng, C. Messenger, S. K. Gupta, *Phys. Rev. D* **2022**, *105*, 063024.
- [8] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, K. Ackley, A. Adams, C. Adams, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Akcay, G. Allen, A. Allocca, P. A. Altin, A. Amato, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, S. V. Angelova, S. Ansoldi, J. M. Antelis, S. Antier, et al., *Phys. Rev. X* **2021**, *11*, 021053.
- [9] R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, N. Adhikari, R. X. Adhikari, V. B. Adya, C. Affeldt, D. Agarwal, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, S. Akcay, T. Akutsu, S. Albanesi, A. Allocca, P. A. Altin, A. Amato, C. Anand, S. Anand, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, T. Andrade, et al., arXiv:2111.03606, **2021**.
- [10] P. B. Covas, A. Effler, E. Goetz, P. M. Meyers, A. Neunzert, M. Oliver, B. L. Pearlstone, V. J. Roma, R. M. S. Schofield, V. B. Adya, P. Astone, S. Biscoveanu, T. A. Callister, N. Christensen, A. Colla, E. Coughlin, M. W. Coughlin, S. G. Crowder, S. E. Dwyer, S. Hourihane, S. Kandasamy, W. Liu, A. P. Lundgren, A. Matas, R. McCarthy, J. McIver, G. Mendell, R. Ormiston, C. Palomba, O. J. Piccinni, et al., *Phys. Rev. D* **2018**, *97*, 082002.
- [11] D. Davis, G. S. Wallace, LIGO Scientific Collaboration, Virgo Collaboration, *Classical Quantum Gravity* **2021**, *38*, 135014.
- [12] D. Lopez, S. Tiwari, M. Drago, D. Keitel, C. Lazzaro, G. A. Prodi, arXiv: 2206.14515 **2022**.
- [13] B. Haskell, A. Melatos, *Int. J. Mod. Phys. D* **2015**, *24*, 1530008.
- [14] J. R. Fuentes, C. M. Espinoza, A. Reisenegger, B. Shaw, B. W. Stappers, A. G. Lyne, *Astron. Astrophys.* **2017**, *608*, A131.
- [15] W. C. G. Ho, D. I. Jones, N. Andersson, C. M. Espinoza, *Phys. Rev. D* **2020**, *101*, 103009.
- [16] G. Yim, D. I. Jones, arXiv:2204.12869, **2022**.
- [17] J. Abadie, B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, G. Allen, E. Amador Ceron, R. S. Amin, S. B. Anderson, W. G. Andersson, M. A. Arain, M. Araya, Y. Asa, S. Aston, P. Aufmuth, C. Aulbert, S. Babak, P. Baker, S. Ballmer, D. Barker, B. Barr, P. Barriga, L. Bartotti, M. A. Barton, I. Bartos, R. Bassiri, M. Bastarrica, B. Behnke, M. Benacquista, et al., *Phys. Rev. D* **2011**, *83*, 042001.
- [18] D. Keitel, G. Woan, M. Pitkin, C. Schumacher, B. Pearlstone, K. Riles, A. G. Lyne, J. Palfreyman, B. Stappers, P. Weltevrede, *Phys. Rev. D* **2019**, *100*, 064058.
- [19] D. D. Doneva, E. Gaertig, K. D. Kokkotas, C. Krüger, *Phys. Rev. D* **2013**, *88*, 044052.
- [20] T. G. Cowling, *Mon. Not. R. Astron. Soc.* **1941**, *101*, 367.
- [21] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, V. B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O. D. Aguiar, L. Aiello, A. Ain, P. Ajith, T. Akutsu, B. Allen, A. Allocca, P. A. Altin, A. Ananyeva, S. B. Anderson, W. G. Anderson, M. Ando, S. Appert, K. Arai, A. Araya, et al., *Living Rev. Rel.* **2018**, *21*, 3.