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ABSTRACT: Kinematic selection cuts and isolation requirements are a necessity in experi-
mental measurements for identifying prompt leptons and photons that originate from the
hard-interaction process of interest. We analyze how such cuts affect the application of
the gr and N-jettiness subtraction methods for fixed-order calculations. We consider both
fixed-cone and smooth-cone isolation methods. We find that kinematic selection and isola-
tion cuts both induce parametrically enhanced power corrections with considerably slower
convergence compared to the standard power corrections that are already present in inclu-
sive cross sections without additional cuts. Using analytic arguments at next-to-leading
order we derive their general scaling behavior as a function of the subtraction cutoff. We
also study their numerical impact for the case of gluon-fusion Higgs production in the
H — ~v decay mode and for pp — v direct diphoton production. We find that the
relative enhancement of the additional cut-induced power corrections tends to be more
severe for g, where it can reach an order of magnitude or more, depending on the choice
of parameters and subtraction cutoffs. We discuss how all such cuts can be incorporated
without causing additional power corrections by implementing the subtractions differen-
tially rather than through a global slicing method. We also highlight the close relation of
this formulation of the subtractions to the projection-to-Born method.
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1 Introduction

An important class of measurements at colliders such as the LHC are processes involving
leptons or photons in the final state. For example, the cleanest channels to measure Higgs
production are the H — 4¢ and H — <7y decay modes, and both have been studied
extensively by ATLAS and CMS [1-8]. Other important examples are inclusive W — (v
and Z/~v* — ¢¢ production [9-14], direct diphoton production pp — v [15-18], and
more generally any process involving prompt photons or electroweak bosons in leptonic
decay channels. In all such measurements, lepton and photon kinematic selection cuts and
isolation requirements are necessary to identify the leptons and photons originating from
the hard interaction and to suppress backgrounds such as misidentified jets or secondary
leptons and photons arising for example from the decay of hadrons.

The most prominent selection cuts are minimum pp requirements. The isolation is
commonly achieved by restricting the energy in a cone around the lepton or photon to be



bounded, for example
> ER<EF, (1.1)
i:d(i,y/0)<R
where the sum runs over all particles 7 in a cone of size R around the photon ~ or lepton £.

Since isolation requirements as in eq. (1.1) are sensitive to the momenta of all hadrons
in an event, incorporating them into higher-order calculations requires one to explicitly
take into account the isolation cuts when integrating over the phase space of real emissions.
This in turn requires fixed-order calculations that are fully exclusive in the final state of
real emissions. A key challenge in higher-order calculations is the cancellation of infrared
(IR) divergences from the soft and collinear limits of real emissions against corresponding
divergences from virtual corrections. At NLO, fully-exclusive calculations are achieved by
applying local subtraction techniques such as the FKS [19, 20] or CS [21-23] subtractions.
At next-to-next-to-leading order (NNLO), local subtraction techniques become much more
involved due to the overlap of virtual and real divergences, and a variety of such methods
have been developed [24-36].

Another approach to obtain fully-exclusive NNLO calculations is the use of global
slicing methods [37-39], where one exploits that the cancellation of IR divergences occurs
in the singular limit of a suitable resolution variable, and that this singular limit can be
predicted from a factorization theorem. For the transverse momentum q7, the relevant
factorization was first shown in refs. [40-42]. For N-jettiness Ty [43], the relevant factor-
ization was derived in refs. [43, 44] using the soft-collinear effective theory (SCET) [45-49].
All contributions to the cross section not described by the factorization, usually referred to
as nonsingular terms or power corrections, can then be obtained from an NLO calculation.
Hence, an advantage of the slicing methods is that they are comparably straightforward to
implement, since they allow reusing much of the existing NLO calculations. For the same
reasons, they are also extendable to N3LO [39, 50, 51].

An important aspect of slicing methods is that they require a resolution cutoff, which
induces power corrections from contributions below the cutoff that are neglected. To
improve the numerical performance, these power corrections can be included systematically
by computing them in an expansion in the resolution variable about the soft and collinear
limits. Recently, there has been significant interest and progress in understanding collider
cross sections at subleading power [52-69]. In particular, for inclusive Higgs and Drell-Yan
production the leading-logarithmic (LL) corrections at NNLO at next-to-leading power
(NLP) are known for 7p [70-72]. At NLO, the full NLP corrections are known for 7y [73, 74],
gr [75], and Ty [76].

The same power corrections are also important for the resummation of logarithms
In(gr/Q) or In(Ty/Q) in the gr or Ty spectra at small gr < @ or Tp < @ (with @ being
the relevant hard-interaction scale). This resummation is based on the same factorization
theorems underlying the subtraction methods, as the logarithmic terms precisely arise in
the singular limit of the cross section. In addition to the resummed singular cross section,
one has to include the power corrections in order to recover the full fixed-order result
for the spectrum. Thus, understanding the effect of selection and isolation cuts on the

factorization is equally important for resummation.



So far, studies of power corrections have only considered inclusive processes, while the
effect of selection and isolation cuts have not yet been considered. As we will see, these
cuts are an additional source of power corrections. Given their necessity for experimental
measurements, it is important to study the cut-induced power corrections, and in particular
determine if and when they lead to the dominant corrections or if they can even lead to a
breakdown of the factorization and thus the subtraction methods.

In this paper, we study the effect of kinematic selection and isolation cuts on g7 and
To factorization. For concreteness, we focus on the case of diphoton production, either in
the direct process pp — v~ or the Higgs decay mode pp — H — . We will therefore
primarily talk about photons, but we stress that our results and conclusions apply equally
to leptons. Using a simplified calculation at NLO, we determine the scaling of power
corrections induced by the cuts. In particular, we discuss the dependence on the isolation
method and parameters, considering both fixed-cone and smooth-cone isolations. We will
find that the cuts induce power corrections that are parametrically enhanced, and which can
thus be significantly larger than for the case without cuts. This enhancement is particularly
severe for the case of ¢r subtractions with smooth-cone isolation. This has important
ramifications for the numerical stability of the subtractions in practical applications. In
fact, in refs. [77, 78] it was already observed numerically that processes involving photon
isolation suffer from large enhanced power corrections, which is explained by our results.

Given the potentially significant size of the cut-induced power corrections, it is essential
to account for them. Since in general they are complicated and cut specific, including them
by an explicit analytic calculation (e.g. along the lines of the inclusive ones discussed above)
would be challenging and tedious. Differential subtractions [39] offer a way to avoid the
power corrections because they do not require the finite cutoff that is necessary in the
slicing approach. Exploiting this, we propose a strategy to incorporate the measurement
cuts exactly such that the additional cut-induced power corrections are avoided. It uses
the Born-like measurement that appears in the singular subtractions to separate the cut-
induced power corrections from the inclusive, cut-independent ones, where the former can
be kept exactly while the latter can be treated in the standard way. We also show that in
this way the projection-to-Born method [31] naturally appears as the special case where
the inclusive, cut-independent power corrections are fully known.

This paper is structured as follows. In section 2, we briefly review the gy and Ty
subtraction formalism and give an overview of different photon isolation methods. We
then provide a simple analytic study of the effect of both selection and isolation cuts on
the subtraction techniques in section 3, before verifying our results numerically in section 4.
Finally in section 5, we discuss how to incorporate the additional measurement cuts into
the subtractions. We conclude in section 6.

2 Review of subtractions and photon isolation

2.1 Review of gr and Txn subtractions

In this section, we briefly review the gr and Ty subtraction methods. For a detailed
discussion we refer to ref. [39)].



We denote the relevant dimensionful resolution variable generically as 7 and its di-
mensionless version as 7. For the case of color-singlet production (N = 0), it can be chosen
as the total transverse momentum of the color-singlet final state, 7 = q%, which yields gr
subtractions [37]. For 0O-jettiness subtractions, it is given by O-jettiness (aka beam thrust)
T = To. In terms of the hadronic final-state momenta k;, these are defined as'

NG
T=qh = (Z Fri) ™= gh/Q?, (2.1)
= TP = me{k+ Yiokre V), T=T,"/Q. (2.2)
Here, the sums over real emissions 7 in the final state. The k™ =n -k and k= = n - k are

lightcone momenta, with n* = (1,0,0,1) and 7* = (1,0,0,—1) being lightlike reference
vectors along the beam directions, and ) and Y are the total invariant mass and rapidity
of the Born (the color-singlet) final state.

A key property of 7 is that it is an IR-safe N-jet resolution variable, i.e. it vanishes
for the Born process and in the IR-singular limit where all real emissions k; become soft
or collinear. We can thus write the cross section o(X) as an integral over the cross section
differential in 7,

o(X)= /dT de(X) = o(X, Teut) -l—/ dr do(X) , (2.3)

T dr

Tcut
where the cumulative cross section as a function of 7., is defined as

o(X, Teut) = /thdr dad(:() . (2.4)

Here, X denotes all measurements. It includes the measurements performed on the Born
process, including any selection cuts on its constituents. It also contains any additional
cuts on the hadronic final state such as isolation cuts.

The slicing method is obtained by adding and subtracting a global subtraction term
Usub(X) Tcut)a

X
o(X)= os’ub(X7 Teut) + / dr dcrd( ) + Ao (X, Teut)
Tcut T
AJ(Xv 7_Cut> = U(X7 Tcut) - USUb(Xa 7_Cut> . (25)

Since 7 vanishes by construction in the Born limit, the integral in eq. (2.5) necessarily
involves at least one resolved real emission, and hence do(X)/dr can be calculated from
the corresponding Born+1-parton calculation at one lower order. The key requirement on

Sub(X Teut) 1S that it must contain the leading terms in the 7¢y — 0 limit. If that is
the case, then Ao (X, 7cyt) is a power correction of O(7¢yt) which vanishes as 7cy — 0 and
hence it can be neglected for sufficiently small 7¢,t.

'For 0-jettiness or beam thrust, one can define more generic measures [43, 79, 80]. We focus on %IEP,
whose power corrections are smaller than for other definitions [70, 74].



To construct ¢5"? and study the size of Ac, it is useful to expand the differential cross
section and its cumulant for 7 < 1 and correspondingly 7eut < 1,

do(X) do®(X) +Zda(2m)(X)

_ 2.6
dr dr = dr ’ (2:6)
U(Xa Tcut) = J(O) (X, 7_cut) + Z 0_(2m) (X, 7_cut) y
m>0
where the different contributions scale as
do® (X In? 7
(17()”5(7”2{7]; o (X o) ~ 14 It meu
j=0 j=0
(em)(x ) .
ngd() ~ ZTm In? 7, o2m) (X, Teut) Z Towi 107 Teyg - (2.7)
4 >0 >0

The do(® /d7 and ¢(%)(74y) are the leading-power (LP) or singular terms, as they diverge
as 1/7 for 7 — 0. In particular, they fully capture the cancellation of virtual and real IR
divergences, which is encoded in the ¢ and plus distributions. The da(Qm)/ dr with m > 0
contain at most integrable divergences for 7 — 0, and correspondingly o(*™) (1., — 0) — 0.
They are thus referred to as nonsingular or power-suppressed corrections.

For eq. (2.5) to provide a viable subtraction, o®™P (X, 7cyt) must at least contain the
singular terms, i.e., we require

(X, Teut) = 0O (X, Toue) [1 4+ O(7eut)] - (2.8)
The correction term in eq. (2.5) then scales as a power correction

Ao (X, Teut) = 0(Teut) — 0% (X, Tent) = o(ti) (2.9)

cut

where m is determined by the first term in the sum in eq. (2.6) that is not contained in o*".

For inclusive Higgs and Drell-Yan production, the sum in eq. (2.6) starts with m =1
for both ¢r [74] and Ty [39, 70-72]. In these cases, the full O(7l,;) correction is known at
NLO [73-75] and can be included in ¢*"P such that Ao ~ O(72,). In section 3, we will
determine the scaling of Ao in the presence of selection and isolation cuts.

2.2 Review of photon isolation

Photon production at hadron colliders such as the LHC is dominated by secondary photons
arising from the decay of hadrons inside final-state jets, in particular 7% n — v, whereas
one is interested in prompt photons directly produced in hard interactions. Experimen-
tally, secondary photons can be efficiently suppressed using the shape of the electromag-
netic showers in the calorimeter, see e.g. ref. [81]. This is supplemented by an additional
cone isolation which restricts the transverse energy inside a fixed cone of radius R around
the photon,

> Ep<Ep. (2.10)
i:d(i,7)<R



Here, the sum runs over all identified hadrons ¢ with momenta k;, E% = Ep(k;) is their
transverse energy, and the distance measure between two particles ¢ and j is as usual given
in terms of their difference in azimuth and pseudorapidity,

d(i,3) = \/ (6 — 6;)2 + (i — my)?. (2.11)
The isolation energy E%O is typically chosen as either a fixed value or relative to the photon
transverse energy, EX° = € pp,.

Theory predictions employing this fixed-cone isolation require the use of photon frag-
mentation functions D, to cancel collinear singularities arising from collinear quark split-
tings ¢ — ¢ 4+ ~. This is analogous to the absorption of collinear singularities from initial-
state splittings into parton distribution functions. The fragmentation functions are non-
perturbative objects and have been determined from data [82-85]. After their inclusion,
quark fragmentation factorizes into a nonperturbative and perturbative piece, allowing for
an infrared-safe calculation [86, 87].

Currently, the fragmentation functions D, are only poorly constrained from data,
yielding large theory uncertainties. Furthermore, for tight isolation cuts with small R < 1
one encounters large logarithms In(R) which can render the perturbative calculation un-
stable [87]. Their resummation has been addressed e.g. in refs. [88, 89].

To avoid the added complications of nonperturbative fragmentation functions, pertur-
bative calculations often employ the smooth-cone isolation proposed by Frixione [90], as
used e.g. in the NNLO calculations of direct diphoton production in refs. [91-93].2 Frixione
isolation modifies eq. (2.10) to

> Er<Ex(r) Vr<g, (2.12)
2:d(i,7y)<r

where x(r) is a function that vanishes as x(r — 0) — 0, and EI° can again be chosen as
a fixed value or relative to the photon momentum, EiTSO = e pr~. This isolation constraint
becomes stronger the closer the hadrons are to the photon. In particular, it fully suppresses
radiation exactly collinear to the photon, and hence removes the collinear singularities from
q — q + ~ splittings. On the other hand, soft radiation with E7 — 0 is not vetoed, which
is crucial to not spoil the cancellation of soft divergences. Thus, calculations employing
Frixione isolation are infrared safe without the inclusion of fragmentation functions. Due to
finite detector resolution, this isolation cannot be implemented experimentally, but it has
been shown to yield results compatible (within theory uncertainties) to fixed-cone isolation
for sufficiently tight isolations [93, 95, 96].

A common choice of x(r) is given by

1 — cos(r) ]“ (213)

x(r) = [1—(:03(]%)

20ne can also employ a hybrid approach by combining smooth-cone isolation with radius R with a fixed-
cone isolation of larger radius R < Ry, as used e.g. in the NNLO calculation of direct photon production
in ref. [94].



with the parameter n > 0, and we will use this implementation for our numerical results
in section 4. For the analytic study in section 3, we will instead use

x(r) = (%>2n, (2.14)

which is a good approximation of eq. (2.13) for r, R < 1.

For illustration purpose, we will also consider a harsh isolation criterion, where one
completely vetoes any radiation inside the isolation cone, implemented by restricting the
total hadronic transverse energy in the isolation cones to vanish,

> Ep=0. (2.15)

i:d(i,y)<R

While this criterion is of course infrared unsafe, as even soft radiation is vetoed, it will be
useful to illustrate how factorization-violating effects can potentially arise.

Finally we note that recently a new isolation technique based on jet substructure
techniques was proposed in ref. [97]. Here, one uses soft drop to identify “photon jets”
that do not contain notable substructure and defines these as isolated photons. In the case
of a single emission with momentum k and distance » < R from the photon, this technique
amounts to requiring that

Zeut(1/R)P

—_— 2.1
kT<pT’Yl_Zcut(r/R)B7 ( 6)

where R is size of the isolation cone, and zq, < 1/2 and f are soft-drop parameters.
As discussed in ref. [97], eq. (2.16) is equivalent to the Frixione isolation in eqgs. (2.12)
and (2.14) in the limit of small z¢y or r/R if one identifies E%,?O = Zew PT and = 2n.
Hence we will not discuss this technique separately.

3 Effect of isolation and fiducial cuts on singular cross sections

In this section, we present analytic arguments to derive the size of power corrections induced
by kinematic selection and isolation cuts. For simplicity we consider the case of color-
singlet production, though our conclusions on the parametric size of the cut-induced power
corrections also apply to the N-jet case. The general setup to calculate such corrections is
presented in section 3.1, where we largely follow the strategy in refs. [74, 75]. Kinematic
selection cuts are discussed in section 3.2 and isolation cuts are discussed in section 3.3.
We will numerically verify our results in section 4.

3.1 General setup

We consider the production of a generic color-singlet final state L at fixed total invariant
mass () and rapidity Y, and in the presence of additional cuts X. In section 2.1 we kept
Q@ and Y as part of X. For our discussion here it is important to explicitly separate the
measurements () and Y that parametrize the Born phase space from the additional cuts X.
We also measure a 0-jet resolution variable 7 that is only sensitive to additional radiation



and thus vanishes at LO. Later on, we will specify to T = q% and 7 = 7y. The Born
process is denoted by

a(pa) +b(py) = L({pi}) , (3.1)

where a and b are the flavors of the incoming partons, which carry momenta p, and p,
the color-singlet final state is composed of particles with individual momenta {p;}, and we
denote the total momentum of L by ¢* =3, p!’. The Born cross section is given by

do LO(X) fa(xa)fb(xb)
dQ2dYdT  2z.xpE4,

AY(Q, Y X)8(T) (3:2)

where f, and f; are the parton distribution functions for particles a and b, E.py is the
hadronic center-of-mass energy, and the LO partonic cross section A¥0(Q,Y; X ) is given by

AMQ, Y X) = /d<I>L(pa + po) MR, 1 (Pas P {pi})|2fX({pi})u (3.3)

A% (g) = [H (‘;rp; 5.8 = )| (210 (s-3n), (3.

In eq. (3.3), fx({pi}) implements the cuts on the final state momenta {p;}, which are kept
implicit in the phase-space integral d®(q). In eq. (3.4), 5. (p?> — m?) = 0(p°)s(p? — m?)
are on-shell § functions. Finally, the incoming momenta of the Born process are given by

nt nt nt _ynt
p’gf = xaEcm? = Qe—’—Y? ) pz = becm7 = Qe Y? ) (3'5)

where as before n* = (1,0,0,1) and 2* = (1,0,0, —1) are lightlike reference vectors along
the beam directions.
Next, we consider the correction to eq. (3.1) from a single real emission,

a'(pa) + V' (py) = L({pi}) + k(k) (3.6)
where k* is the momentum of the emitted parton. The resulting cross section is given by
d real ( ¥ ddk‘ o (Ca) .

dQ2dydT ) (2m)? 26 B4,
2
x /dbe(piz +pp — k) | Ml ph b A fx (B, {p))) -
Here, M is the matrix element for the process in eq. (3.6), including the relevant strong
coupling constant o, and renormalization scale u4~*, and ’f'(k:) is the measurement operator
that determines the value of 7 as a function of k. The measurement function fx now acts

on both k£ and {p;}. The incoming momenta are now fully determined in terms of k and
the measurements of @Q and Y as

Pt = gaEcm"Qi - (k— + e*Y\/m)%#,
= ngcmﬁM (Kt +e YW)%“ (3.8)

The restriction that (.5 € [0, 1] is kept implicit in the support of the PDFs.



Resolution variables 7 sensitive to soft emission, k¥ — 0, and collinear emissions,
n-k — 0 or n-k — 0, become singular in these limits. Following the strategy of refs. [74, 75],
we can use the SCET power expansion to organize the expansion of the cross section in
the 7 — 0 limit by considering the relevant collinear and soft scalings of k*. Resolution
variables insensitive to the transverse momentum kr are described by SCET, where the
appropriate modes are

n-collinear :  k, ~ Q (\2,1,\) = k<kr<n-k, (3.9)

fi-collinear :  kn ~ Q (1, A%, \) = k<kr<n -k,
ultrasoft : ks~ QAN 0% = n-k ~kp ~7-k.

3

3

Here, we use the lightcone notation k* = (k¥ k=, kr) = (n-k,n -k, kr), and X is a
power-counting parameter. For example, for 0-jettiness 7y we have A ~ /7To/Q.

Resolution variables resolving the transverse momentum kr fall into the realm of
SCETyr and are characterized by the following modes,

n-collinear : k, ~Q (N, 1,\) = n-k<kpr<n-k, (3.10)
fi-collinear : knp ~Q(1,A%,\) = a-k<kr<n-k,
soft : ks ~Q(MMNA) = n-k~kp~n-k.

For example, for ¢r we have A ~ ¢r/Q. Eqgs. (3.9) and (3.10) only differ by the scaling
of soft and ultrasoft modes, which will not change the analytic calculations here, only the
resulting scaling of power corrections in A. In contrast, it does have a significant impact
on the singular limit of the matrix element itself, and for SCETy it requires the use of
rapidity regulators, see refs. [74, 75] for more details.

Inserting the appropriate scalings of eq. (3.9) or eq. (3.10) into eq. (3.7), we can
systematically expand the cross section in A,

0) em)(X
do(X)  do Z do (3.11)
dQ2AvdT dQ?deT dQQdeT
2 A2m—2
~AT ~\2m—

As briefly reviewed in section 2.1, 0(9) is referred to as leading-power or singular limit and
contains the cancellation of all IR divergences.
It is easy to see from egs. (3.7) and (3.8) that the total momentum of L reduces to its

\/ Q2 + k2 cosh(Y)

q=p,+p,—k= kr = pa +po + Okr) . (3.12)
\/ Q2 + k2 sinh(Y)

Hence at leading power, the phase space d®; in eq. (3.7) reduces to the Born phase

Born value at leading power, i.e.

space. Note also that the light-cone coordinates ¢ only receive relative corrections of

O(k7/Q%) ~ O(X?).



For the cuts X to be infrared safe they must be insensitive to collinear splittings or soft
emissions, and hence reduce to their Born result at leading power. For the measurement
function fx in eq. (3.7), this implies

d®r(p), +py, — k) fx (k. {pi}) = d®r(pa + p) Fx({pi}) X [1+ON™)]. (3.13)

Here, on the right hand side the total momentum ¢ is replaced by its Born value,
q¢—Pa+ps, and the individual momenta {p,} are correspondingly evaluated in the Born
limit {p;} —{pi}. Egs. (3.12) and (3.13) are key ingredients in the derivation of the fac-
torization theorem that predicts the leading singular terms (9. In particular, they imply
that to all orders in a4, the singular cross section is only sensitive to the Born kinematics
of the final state L. The corrections beyond the Born approximation crucially depend on
the precise definition of X, but are always suppressed by O(A™), where m > 0 encodes the
fact that X is infrared safe. For m = 0, X would modify the leading singular behavior in 7
and hence break the factorization for 7 and lead to a divergent result for the cross section.

The o®*™ with m > 0 in eq. (3.11) denote power corrections to the singular cross
section ¢(©). They can be systematically computed by expanding all ingredients in eq. (3.7)
to higher order in A. The expansion of PDFs and matrix elements in this approach has
already been carried out for Higgs and Drell-Yan production in refs. [74, 75], which found
that these corrections scale as A\’, i.e. the sum in eq. (3.11) starts indeed with m = 1 as
expected on general grounds.

Here, we extend these works by calculating the power corrections in eq. (3.13) aris-
ing from the color-singlet phase space and additional measurement cuts. They can be
calculated by considering the cross section

douts)(x) [ d*% Jar (Ca) frr (Gb) .
et = | ) Mg o7~ T

[ [0+ 54— 1) £ D) — 4@+ 1) Fx(pi})

X [ MW, vk D] (3.14)

and expanding it in the power-counting parameter A. The difference in square brackets is
the difference between the exact and LP limit on the left and right-hand sides of eq. (3.13).
Since it vanishes for £k — 0, the k integral is IR finite and can be evaluated in d = 4
dimensions.

Since eq. (3.14) contains the process-dependent matrix elements, it is not possible to
give a general result for the cut-induced power corrections. To obtain a generic analytic
understanding of their size, in the following we assume that the squared matrix element
only depends on the total momentum ¢* of L but not the individual momenta {p;}, i.e.,
we assume that

| ML, s b DD = | M@, Bl g (3.15)

This holds for Higgs production, where due to the isotropic decay all details of the decay
are encapsulated in the branching ratio. While this is a crude approximation for more
complicated processes such as direct photon production, it is completely sufficient to obtain

~10 -



a qualitative understanding of the cut effects, since their power suppression is determined
by the term in square brackets in eq. (3.14).
Using eq. (3.15) allows us to pull out the matrix element, so eq. (3.14) becomes

do 1) X) (/‘d4k Jar (Ga) frr (o
(

dQ2dydT ~ J (2n) 20 By

AA¢X(QQYJQ:i/[déL@%+#%_ﬁﬂfX(h{PB)_dQL@M4ﬂ%)fX(ﬂ%D}7 (3.16)

5, (k) )| Mgk )5 [T —T (k)] x ADx (Q.Y )

where A®x(Q,Y, k) fully contains the effect of the recoil due to the emission k on d®, as
well as the cuts X. Recall that p;b and p,p are determined in terms of @), Y, and k.

Using eq. (3.16), it is straightforward to deduce the scaling of the cut-induced power
corrections by expanding A®x to the first nonvanishing order in A, while keeping the
remaining terms in eq. (3.16) in the singular limit. If A®x scales as O(A\?™), then the
resulting power correction scales as do(“™s) (X)) /dT ~ A~2+2™_ More explicitly, for the two
cases we are interested in we have

do9(X) 1 (q%>’” do 19 (X) 1(75)’“

dQ2dvdeZ ¢ dQ2dYdT, ~ To

Q? Q

This should be compared to the normal power corrections that arise from expanding the

(3.17)

matrix elements, etc. for which m = 1. If the kinematic cuts or isolation requirements
yield a larger value, m > 1, then their effects are parametrically suppressed compared
to the normal power corrections, while for m < 1 they are parametrically enhanced, and
for m = 0 they would violate the factorization, as explained above. In the remainder of
this section, we will determine m for kinematic selection cuts and various photon isolation
techniques.

3.2 Kinematic selection cuts

We begin by discussing the power corrections induced by kinematic selection cuts. As an
illustrative example, we consider a color-singlet final state L composed of two massless
particles with momenta p; and p2, and impose a minimum transverse momentum cut on
both particles,

pri,pr2 > pE™. (3.18)

This is the most common selection cut, which is practically always applied. In addition, in
practice one also requires cuts on the rapidities y; 2, which we neglect here for simplicity
as they do not lead to qualitatively new features.

We write the total momentum ¢ and the individual momenta pq 2 as

g" = (\/ Q2 + q% cosh(Y), qr, 0,4/Q? + q% Sinh(Y)) ,

Py = pr(cosh(Y + Ay), cosp, sing, sinh(Y + Ay)),
vy =q" —py. (3.19)

Here, ¢" is parameterized in terms of its invariant mass @, rapidity Y, and transverse
momentum ¢7, and using overall azimuthal symmetry we choose to align the transverse
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momentum with the z axis. The massless momentum pj is expressed in terms of the angle
© between its transverse momentum pr and gr and the rapidity difference Ay = y; — Y,
where y; is the rapidity of p|’. Note that using this parameterization, for gr = 0 one has
y1,2 = Y £ Ay. For simplicity of notation, we now identify pr = pr1, while pr is defined
implicitly through eq. (3.19). Momentum conservation yields the relation

Q*/2
pr = .
\/ Q%+ q% cosh(Ay) — gr cos p

In terms of the above variables, the two-particle phase space in eq. (3.4) is given by

(3.20)

4 4
dd(q) = g L6, 0) (‘; =

Integrating this differential phase space in the presence of the cut in eq. (3.18) yields

2
5403) ()6 + 2 — ) = Hdpddy. (321)

O (g, ppm) = /d(I)L(Q) 0(pr1 — P™)0 (pr2 — PE™) (3.22)

T 00 2

= 4/ dw/ dAy 56 [min{ph. b} — 2prar cosp + i} — ()7
0 0 ™Q

In the second line, we combined the two cuts into one 6 function, and employed symmetry

of the integrand. Note that this integral is independent of the total rapidity Y.

Eq. (3.22) depends on the total transverse momentum gy only through the combina~
tions q% and g7 cos . Naively, one may thus expect that in the expansion of @ (q, p?in),
all odd powers of ¢r vanish due to the integral over the azimuthal angle ¢, which would
imply that the first power correction arises at O(g%). However, the minimum in eq. (3.22)

explicitly breaks the azimuthal symmetry. Concretely, in the limit ¢r < Q, we have

p%, cosp <0

min{p%,p% — 2prqr Cos ¢ + q%} = { , (3.23)

Pr — 2pTqr Cos ¢, cosp >0

up to corrections of C’)(q% /pQT), and it is clear that this result breaks the azimuthal sym-
metry, such that the ¢ integral does not vanish.
Expanding eq. (3.22) correspondingly in g7 < pr ~ @, we obtain the result

O (q, P = 0\ (g, pm) + &' (g, ) + O(g2/Q%), (3.24)

where the LP and NLP results are given by

min 0 Q — 2pmin min
o (q, ) = "2 a2, (3.25)
. 1 min 0 -9 min
(I)%)(q’p$1n) - _ QEPT (Q Pr ) (326)

Qi eer

These scale as O[(g7/Q)°] and O[(qr/Q)"], respectively. These results can be easily verified
by comparing against the numerical evaluation of the exact expression in eq. (3.22).
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Figure 1. The two-particle phase space ®r(qr) relative to its Born-level value ®(0) in the

presence of a cut pi'™ on the individual momenta, as a function of the transverse momentum gr.

For illustration, we show in figure 1 the relative difference between the exact phase
space ®; and its Born approximation <I>(LO) in the presence of three different cuts p?in,
namely pPit = 25 GeV (red solid), pit = 40 GeV (blue dashed), and pt = 60 GeV
(green dotted). From the slope of each of the three curves, one can easily see the linear

dependence on ¢, and the slope is in perfect agreement with the result in eq. (3.26).

The function APy that captures the power corrections induced by the p%m cut is
easily obtained by combining eqgs. (3.16) and (3.24),
i 0 i qr pmin
A = 1l 1) - 8 ™) = O B, (3.27)

This linear dependence on g translates into a relative power suppression of O(\). Thus
the power corrections in eq. (3.17) for a pi® cut have m = 1/2 and scale as

do9(X) 1gr  do(X) 1 [Ty (3.28)
dQ?dYdgy ¢r Q7 dQ*AYdTy  To\ Q° |

Hence, compared to the normal case of m = 1, where the power corrections scale as q% /Q?
and To/Q, corresponding to O(\?), the power corrections induced by the kinematic selection
cuts are enhanced as O(qr/Q) and O(1/7o/Q). Intuitively, this arises from breaking the
azimuthal symmetry that is present in the Born process, but which is explicitly broken by
the recoil of the color-singlet system against the real emission. Hence, additional kinematic
selection cuts will generically induce enhanced power corrections of O(\).

3.3 Photon isolation

Next, we study the impact of photon isolation cuts on the power corrections. To disentangle
this effect from the fiducial cuts considered in the previous section, we do not impose any
other cuts besides the isolation. We define an isolation function fis(k,p) to evaluate to
1 if the photon with momentum p,, is isolated from the emission with momentum k, and
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to evaluate to 0 otherwise. The integrated phase space for diphoton production in the
presence of such isolation, as defined in eq. (3.16), is given by

A®uo(Q. Vi) = [ (A0 + 25 F) ol ) (b p5) — 0L +0)] (329

where as before p’172 are the momenta of the two photons, pfl’b are the momenta of the
incoming partons, and k is the momentum of the real emission. To calculate the leading
power behavior of eq. (3.29), it suffices to work in the singular limit of the phase space,
where the photons are back to back with total momentum ¢* = (Q coshY,0,0,@sinhY).
We parameterize their individual momenta by

P = pr(cosh(Y + Ay), +cos(y), +sin(y), sinh(Y + Ay)),

Py =pr (cosh(Y — Ay), —cos(p), —sin(p), sinh(Y — Ay)) , (3.30)
where the rapidity difference Ay and the photon transverse momenta pr are related by
Q

cosh(Ay) = —. 3.31

(89) = 3= (331)
Using the expression eq. (3.21) for the diphoton phase space in the g7 = 0 limit, we obtain

1 dAy /7r

A(I>iso aYV, k) = d iso ka iso ka —-1]. 3.32
@)= 5z [ b [ ae Ul fuatip) =1 (332

The calculation can be further simplified by assuming that both photons are well separated,
such that their isolation cones never overlap with each other, and by assuming that the
isolation energies for both photons are identically chosen as E§§° Since we work in the Born
limit here, where pr1 = pro = pr, this assumption holds even if the isolation threshold
is chosen proportional to the photon momentum, E§§° = epp. This renders eq. (3.32)
symmetric in both momenta p; and p2, such that we obtain

1 dAy T
AB(QY.K) = 5 [ B [ e ol - 1), (3.33)

In the following, we evaluate eq. (3.33) for the different isolation techniques discussed in
section 2.2 to deduce the resulting power corrections.

3.3.1 Fixed-cone isolation

We first study the fixed-cone isolation as defined in eq. (2.10), for which we have
feone(k,py) =1 — 0(kr — EF°)0[R — d(k,py)], (3.34)

such that the photon is considered isolated unless the parton is inside the isolation cone of
size R and its transverse momentum exceeds the isolation energy E?O. Evaluating eq. (3.33)
with eq. (3.34) gives

Abune(@Y.k) = ML) [ S8V [ app[R— AV By

1672 cosh? Ay J_»
0(ky — EX°) / dAy
=— R2 — (Y + Ay —y)?2. 3.35
s | oz ay V-V A=) (3.35)
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Here, y; is the rapidity of k£, and the range of the Ay integral is kept implicit from the
support of the square root. Note that eq. (3.35) is always negative, because it arises from
an additional phase space restriction. For small R? < 1, it can be approximated by

R O(kr — EF)

A(1>Cone ) }/a k)= ——
@ ) 167 cosh?(Y — yp)

x [1+O(R?)]. (3.36)
This correction vanishes as R — 0, as in this limit the isolation turns off.

The nontrivial kinematic dependence of eq. (3.36) is entirely given by the denominator.
To understand the induced power corrections, we first rewrite it as

1 B 2¢Y —Yk 2 B Akt~ (337
cosh?(Y — ) \1+e2V-w) ) (k—e Y +kte¥)?’ :

Using the power counting from eqs. (3.9) and (3.10), we find in the n-collinear and soft
limits the corrections

1
n-collinear : k, ~Q (M, 1,)), = —s—-—— ~ 0OOW?),
n @ ) coshQ(Y — Yk) (3%)
1
soft : ks ~QAMAN). = —————  ~ O\ 3.38
~ QAN T O, (339)
and the corresponding 7n-collinear and ultrasoft behavior follows trivially. Eq. (3.38) implies
that only the (ultra)soft limit of eq. (3.36) can yield power corrections that are enhanced
relative to the normal O(A2?) corrections intrinsic to the factorization, as the collinear
corrections are always suppressed by (at least) O(A\?) as well.

From egs. (3.36) and (3.38), it follows immediately that the power correction to the
qr factorization from fixed-cone isolation is given by

d o (cone) (X) R2 )

—————> ~ —0(qr — ET°). 3.39
Thus, while the scaling behavior is that of a leading-power term, 1/ q% ~ A2, this correc-
tion only contributes to g > E§§°, and hence is suppressed for sufficiently large isolation
energies. For a tight isolation, the effect can however become sizable.

The impact on the 7y subtraction is more involved, as it remains to integrate over k
against the 7o measurement. To do so, we first note that the effect of collinear emissions
is always suppressed at least as Ty by virtue of eq. (3.38). Thus, an enhanced power
correction can only result from the soft limit, which can be deduced by an explicit one-loop
calculation. The bare expression for the soft limit without isolation effect is given by [74]

soft LO eYE ,,2€ 00 +31.—
do do™® a;C €5y / dkTdk (3.40)
0

dQ2dYdT ~ dQ2dY 7 D(L—e) )y (kTk)ite
X 0™ k™ —eYkT)6(To — ¥ kM) + 0¥ kT — e YET)o(To — e‘yk_)} :

where C = Cp,C4 is the appropriate Casimir for quark annihilation and gluon fusion.
Eq. (3.40) is the leading-power limit of the first line in eq. (3.16) without taking effects
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from A®x into account. By inserting eq. (3.36) into the integral in eq. (3.40), we can
thus calculate the leading correction from the isolation. Letting ¢ — 0 and rescaling
k* — eFYk* to remove any dependence on Y, we obtain

do o) do© o, CR? [*  dk™ .

—— Y = — Y 877 79 k_* EISO 2 9 k_*

AQavaT — dQEay  2r w [, (TohoEtl ok — (B0 =)
dol© asC R?

2 .
- - 79 _EISO
aQ2ay < or =« {76 (To — B1%) +

T
T3 + (Bf°)?

O(EX —To)|. (3.41)
In summary, the correction from fixed-cone isolation for 7y is given by
R? ( To

S - B
R .
@ 0 — . To> Ep°.

To

2
> , To < E¥,
(3.42)

For Ty > E,fﬁo, this yields the leading-power 1/7p behavior, albeit suppressed by R2, while
for Ty < EX° this contribution is highly suppressed as (7p/Es°)2.

3.3.2 Smooth-cone isolation

Next, we consider the smooth-cone isolation, eq. (2.12), using the definition of eq. (2.14)
for x(r). In this case, we have

fsmooth(kap’y> =1- e[kT - E$O(d(k‘,py)/R)2n]0[R — d(]{,ppy)]
=1— 0[dmin — d(k,py)] (3.43)

where

%, = min{ R?, R?(kp/E°)V/"} . (3.44)
According to eq. (3.43), the photon is considered isolated unless the parton is inside the
radiation cone and its transverse energy exceeds the threshold value, which itself depends
on the distance between photon and parton. Eq. (3.33) in the presence of the isolation

function eq. (3.43) can be evaluated similar to eq. (3.35) and yields

1 dAy T
A(I)smooth(CQa Y, k) = 1672 / coshQ(Ay) /_ﬂ_ d(p@[dmin - d(k7 ’7)]

_ R (kr/ER)"

— T x[14+0(dZ, 3.45
167 COShQ(Y—yk) X [ + ( mln)]a ( )

where we expanded in small dp,;y and used that in the singular limit k7 < @ the minimum
in eq. (3.44) is always dominated by the second value.

From egs. (3.45) and (3.38), it follows immediately that the power correction to the
qr factorization from smooth-cone isolation is given by

(smooth) 2 1/n 1/n
do () B (£ @) (3.46)
dQ?dY dgs. 7 \Q Else
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Here, the overall 1/ q% arises from multiplying the leading-power singular with the isolation
correction. This result should be compared to the inclusive power corrections, which scale
as q% /Q?%. Hence, while the absolute size of the isolation effect is suppressed by R2, it is
enhanced because the isolation energy Eiﬁo is typically much smaller than the hard scale
Q. For n > 1/2 the scaling in ¢ is also parametrically enhanced compared to the inclusive
case, and thus in practice the smooth-cone isolation can give sizable power corrections.
For T, we have to distinguish that for collinear modes k7 ~ AQ ~ +/ToQ, while
for ultrasoft modes kr ~ A?Q ~ To. Taking eq. (3.38) into account, we can deduce the
dominant corrections depending on the isolation parameter n from eq. (3.45) as

oot ) }7{62 (g>1+1/(2n) (EC;())U” <1,
W - R? To\1/n/ Q \1/n
T <5) (E;o)

As for the gp case, there is an enhancement in @)/ EiTSO due to the typically small value

(3.47)

, n>1/2.

for the isolation energy. Furthermore, compared to the inclusive case where the correction
scales as O(T!), the scaling in 7Ty is parametrically enhanced for n > 1. Hence, the relative
parametric enhancement compared to the normal case turns out to be more severe for gr
than 7.

The results in egs. (3.46) and (3.47) hold for gr < EX° or Ty < Ei°, in which case the
minimum in eq. (3.44) is given by the second term, which then induces the k7 dependence
of eq. (3.45). For the opposite case of gr > EI° or Ty > E°, the minimum in eq. (3.44) is
instead given by dmin = R, such that smooth-cone isolation reduces to fixed-cone isolation.
Thus, we find that for ¢gr > E;EO or To > E° smooth-cone isolation yields the same
leading-power 1/qr or 1/7g behavior as for fixed-cone isolation.

3.3.3 Harsh isolation

Finally, we consider the harsh isolation defined in eq. (2.15), where

fharsh(kvpv) =1- Q[R - d(kap'y)] ) (348)

which vetoes any radiation inside the isolation cone. The corresponding result for eq. (3.33)
is easily obtained from eq. (3.36) by setting Ei° = 0,

B2 (kn)

Aparsh (Q, Y, k) = — o ——5
harsh (Q ) 167 cosh?(Y — yp.)

x [1+O(R?)]. (3.49)

The induced correction then follows directly from eqgs. (3.39) and (3.42) as

d o (harsh) (X) R2 do_(harsh) (X) R2

o G 3.50
dQ?dvdgd @ dQXAYAT, | To (3:50)

This is a leading power (singular) effect, as the harsh isolation completely removes part of
the real emission phase space, namely the vicinity of the two photons, and thus immediately
breaks both factorization theorems, which rely on an analytic integration over the full
emission phase space.
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3.4 Factorization violation in photon isolation

In this section, we briefly discuss a potential source for factorization violation for isolation
methods when not carefully applying the isolation procedure. In general, one only keeps
events that satisfy the chosen isolation criterion. The remaining events can then still
contain jets, as defined by a suitable jet algorithm applied after the isolation, that are
inside or overlapping the isolation cones, e.g. if the jets are sufficiently soft.

Since any jet inside the isolation cone will typically be quite soft, as part of the overall
isolation procedure one can in principle also remove any jets inside the isolation cone from
further consideration, i.e., the events are kept but the jets are not further considered for
the calculation of physical quantities, e.g. jet selection cuts. This approach is for example
proposed in the original definition of smooth-cone isolation in ref. [90].

For the purpose of the subtractions, it is however crucial to keep all reconstructed jets,
or more generally all emissions, for the determination of the resolution variable 7. More
generally, this applies to employing any factorization theorem, irrespective of whether it is
used for subtractions or resummation of large logarithms. For example, recall the definition
for 0-jettiness, see eq. (2.2)

To =Y min{kf e’ ke "} (3.51)

Here, the sum 4 runs over all particles ¢ in the final state, only excluding the color-singlet
final state, which is critical for the derivation of the 7y factorization theorem. Excluding
any emissions inside the isolation cones from the sum in eq. (3.51) would thus change the
definition of 7y and immediately violate the 7y factorization theorem. For example, at
one loop, where one has only one real emission, excluding jets inside the isolation cones
is equivalent to excluding the emission. As far as calculating 7y is concerned, this exactly
corresponds to the harsh isolation defined in eq. (2.15). As discussed in section 3.3.3, this
induces leading-power corrections, which exactly corresponds to breaking the factorization.

For gr subtraction, one can trivially avoid this problem by determining qr directly
from the color-singlet final state L, i.e. g7 = g7,r. On the other hand, if g7 is obtained
from the sum of all real emissions, gr = |}, l_f'm\, then as for 7y, the sum over ¢ must not
exclude emissions inside the isolation cones to not violate the factorization.

Lastly, we point out that this leads to a trivial yet dangerous pitfall in the calculation
of power corrections. For example, to calculate the NLO cross section for pp — H using
To subtractions, one would use pp — H + j at LO to calculate the power corrections or
the above-cut contributions in the slicing approach. Naively applying the smooth-cone
isolation including the discussed treatment of jets to the resulting H + j events, one would
classify all events where the emitted parton falls inside the isolation cone as 0-jet events,
which depending on the used tool might be discarded in a pp — H + j calculation, where
at least one jet is required at Born level. We have explicitly checked that this is the case for
MCFMS [98-101]. To not violate the subtraction method, it is however mandatory to keep
all such events, and we have turned off this mechanism in MCFMS8 to obtain the correct
results for our numerical studies in section 4. (This does not impact the NLO calculations
in MCFMS itself, which keeps the H +j events that are otherwise classified as 0-jet events.)
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4 Numerical results

To validate our findings and assess the importance of the discussed power corrections,
we numerically study the gr and 7Ty spectrum at NLOg,? for direct diphoton production,
pp— 7, and for gluon-fusion Higgs production in the diphoton decay mode, pp— H — 7,
using different photon acceptance cuts and isolation methods. In all cases, we compare the
full QCD result obtained from MCFMS8 [98-101] against the predicted singular spectrum
obtained from SCETIib [102]. For both processes, we use the PDFALHC15_nnlo_mc [103]
PDF set and fix the factorization and renormalization scales to jiy = p, = mpyg = 125 GeV.

To present our results, we normalize the cross section with the cuts X to the LO cross
section 0O (XTC) and split it into singular and nonsingular contributions,

doM(X) _ 1 do(X) _ degTE | d6m(X)
d7T — oLO(XLO) 47 4T dT
da_sing dghons dAgnons (X)
S T ar T ar (4.1)

Here, X™© indicates that the cuts only act on the Born kinematics of the produced diphoton
system, which in particular implies that there are no isolation effects. For the normalized
singular cross section 658 = ¢(0)(X1O) /gLO(XLO) the dependence on X“O fully cancels
since the LP cross section only depends on the Born-level cuts X“C. The nonsingular
cross section 6"°"(X) = ¢M"(X) — 558 contains all power-suppressed contributions. In
the second line, we have further split this piece into the power corrections dé™°"s that are
already present without additional cuts* and the additional power corrections dA&2°"(X)
that are induced by the cuts X. Comparing these two thus gives a direct indication of
their relative importance.

For Higgs production, we work in the on-shell limit where the invariant mass is fixed to
Q = mpg = 125 GeV, while for diphoton production we restrict ) = m,, = 120-130 GeV
such that m,, ~ mpy. In both cases, we are inclusive over the rapidity Y of the final
state. For direct photon production, we furthermore restrict ourselves to the gg — vy + ¢
channel to avoid contributions from the fragmentation process qg — v + ¢(— q + 7).
This allows us to obtain results without any photon isolation or fragmentation functions,
and thus compare the results with and without photon isolation. Since direct diphoton
production is divergent in the forward limit pr — 0, we always impose selection cuts
pr > pn = 25 GeV to obtain a finite cross section. This is not necessary for Higgs
production, which we can also consider without any photon selection cuts.

4.1 Kinematic selection cuts

We first study the effect of fiducial cuts by comparing pp — H — 7 with a lower cut on

the photon transverse momenta, pr > p%li“ = 25 GeV, to the inclusive case without such

3We use this nomenclature to stress that this is part of the NLO correction to the 0-jet Born process
pp — L, rather than considering it as the LO; result for the Born+1-parton process pp — L + j.
“When considering the effect of isolation cuts, this piece corresponds to the nonsingular contribution

min

without isolation but with a potential p7'™ cut.
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Figure 2. Comparison of Higgs production with and without a cut on the photon transverse
momenta for the gr spectrum (left) and the Ty spectrum (right).

a cut. As mentioned above, the same comparison cannot be performed for direct diphoton
production, since it diverges in the forward limit.

In figure 2, we show the g spectrum (left) and 7y spectrum (right). The red solid curve
shows the full spectrum 6™ for reference. The blue dashed curve shows the nonsingular

min

without the pin cut. Its slope shows the O(¢2.) and O(Tp) suppression of

spectrum g"°"s

the nonsingular corrections without any cuts. For 7g, the nonsingular terms change sign
around Tg &~ 30 GeV, which due to the logarithmic scale leads to the kink of the blue-dashed
curve. The green dotted curve shows the additional nonsingular corrections Ag™°"™ from
applying the pI cut on the photons. Its less steep slope shows the O(qr) and O(v/To)
scaling, consistent with the result of section 3.2. The cut-induced corrections dominate
< 5GeV and Ty <

~ ~

up to rather large values qr 1 GeV, and hence have a significant
impact for both subtractions and resummation applications. At typical subtraction cutoffs
gr <1 GeV the cut-induced corrections are almost an order of magnitude enhanced, while

for 7o < 0.1 GeV they are enhanced by a factor of two.

4.2 Photon isolation cuts

Next, we consider the effect of photon isolation cuts. We begin by illustrating the depen-
dence of the power corrections for smooth-cone isolation on the isolation parameters, as
given in egs. (3.46) and (3.47). To not mix effects from the photon isolation and kinematic
acceptance cuts, we restrict ourselves to Higgs production with p%jn = 0. Since the induced
power corrections depend trivially on the isolation radius R, Aé ~ R?, we fix R = 0.4 and
only vary the isolation energy Ei° and the parameter n. We consider the three choices

green dotted: E$° =12GeV, R=04, n=2,
orange dot-dashed: E%O =3GeV, R=04, n=2,
gray dashed: E$°=3GeV, R=04,n=1, (4.2)

for which we show in figure 3 the gp and 7y spectra. The red solid curve shows the full
result 6™ for reference. The blue dashed curve shows the nonsingular corrections "o
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Figure 3. Power corrections in H — ~v with smooth-cone isolation for the ¢r spectrum (left)
and the 7y spectrum (right). The red and blue dashed lines show the full and nonsingular results
without isolation. The other curves show the additional nonsingular corrections induced by the
isolation for different isolation parameters.

without isolation cuts. Its slope shows the normal O(g%) and O(7p) suppression (and
similar to figure 2 the kink around 7y ~ 30 GeV is due to a sign change). The additional
curves as stated in eq. (4.2) show the additional nonsingular correction Ag™°™ from the
different isolations requirements, which for small g7 and 7y obey the O(q%/ ") and (’)(761/ ™
behavior as predicted by egs. (3.46) and (3.47). The gap between the green-dotted and
orange-dot-dashed curves corresponds to a factor of 2, correctly reflecting the scaling of
the power corrections with \/E? for n = 2. Above gr > Eijﬁo and Ty > E%O, the different
isolations agree as in this limit each emission that falls into an isolation cone is necessarily
too energetic to be allowed, independently of the chosen isolation method. In this region,
the isolation is in fact a leading-power effect, while below this region it becomes a power
correction which leads to the kink at qr = E;?O and Ty = E}?O. (For 7o, this follows from
the explicit calculation presented in section 3.3.1.)

Overall, we find that in each case the smooth-cone isolation yields large additional
corrections, which as expected from the relative scaling are significantly enhanced compared
to the normal power corrections (blue dashed), and which exhibit a very slow convergence
to zero for gy — 0 or Top — 0. The relative enhancement is particularly severe for qr,
easily exceeding an order of magnitude for ¢y < 1GeV. This suggests that calculations of
processes involving smooth-cone isolation with g7 or 7Tn subtractions should prefer a loose
isolation, which however goes opposite to the recommendation of refs. [93, 95, 96] to employ
tight cuts in order for smooth-cone isolation to yield similar results as fixed-cone isolation.

In figure 4, we compare fixed-cone, smooth-cone, and harsh isolations. The top
(middle) row shows Higgs production in the diphoton decay mode with a cut p?in =0
(p?in = 25 GeV) on the photons. The bottom row shows direct diphoton production
pp — vy with p?m = 25 GeV, where only the gq§ — y7yg channel is taken into account to
avoid fragmentation contributions. In all figures, the red solid curves show the full result

ot for reference. The blue dashed curves show the nonsingular corrections 6™ without
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Figure 4. Comparison of the power corrections for the gr spectrum (left) and the 7o spectrum
(right) for different photon isolation methods. The red and blue curves show the full result and
nonsingular corrections without any isolation. The other curves show the additional nonsingu-
lar corrections induced by the isolation using fixed-cone isolation (green), smooth-cone isolation
(orange), and harsh isolation (gray).
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any isolation but including the p?in cut. The additional nonsingular corrections induced
by the isolation are shown in green dotted for fixed-cone isolation, orange dot-dashed for
smooth-cone isolation with n = 2, and in gray dashed for harsh isolation. In each case, we
use R = 0.4 and EX° =3 GeV.

For the ¢ spectrum, we see that cone isolation has no power corrections for gp < Eiﬁo,
and likewise almost negligible corrections to the Ty spectrum for Ty < Eiﬁo, consistent
with our findings in section 3.3. In contrast, smooth-cone isolation shows the predicted
much weaker suppression of (’)(qflp/ ") and (’)(761/ ™). As a result, it yields in all cases sizable
additional power corrections, which for gr clearly dominate over the corrections without

isolation, both with and without the p?in cut. For 7y, they are of the same order as the
corrections induced by the p?in cut, while for p%in = 0 the isolation again dominates over

the inclusive nonsingular corrections. Finally, the harsh isolation yields an almost constant
correction on the logarithmic plot, which translates into leading-power correction in 1/qp
and 1/7p. Note that these are not integrable as gr, Ty — 0, reflecting the factorization
violation from the infrared-unsafe isolation procedure.

5 7T subtractions including measurement cuts

In this section, we discuss how all cut-induced power corrections can be accounted for ex-
actly in the subtraction procedure. Our starting point are differential 7y subtractions [39],
using which the cross section with a measurement X is given by

o(X) = o™ (X, 7o) + / dr [d"d(f ) _ d"sj;(X Jo(r < Toﬁ.«)}
— 05X, 1) + /TOHdT [dad(f) - dUS;bT(X)} + /de dgd(j() . (51)

As in section 2.1, 7 stands for any (dimensionless) N-jet resolution variable for which a LP
factorization theorem is known. The differential subtraction term do®*P(X)/dr captures
the leading-power singularities for 7 — 0, which means it satisfies

do"P(X)  do©®(X)

T - @ [1+0(7)], (5.2)

such that the integrand in square brackets in eq. (5.1) is a power correction with at most
integrable singularities for 7 — 0, and so the integral can be carried out numerically. Since
the integral exists and is finite, the point 7 = 0 is irrelevant, which means the integrand is
never evaluated at 7 = 0. Hence, the full result for do(X)/dr is only needed for nonzero
7 > 0 and thus reduces to performing the NLO Born+1-parton calculation. Similarly
the distributional structure of do*"?(X)/dr at 7 = 0 is not needed for the differential
subtraction terms, which are fully known to N3LO for both ¢z and Ty subtractions [51].
The first term in eq. (5.1) is the cumulant of do®™P(X)/dr up to 7og. Its evaluation does
require the full distributional structure of de®*P(X)/dr.

Note that in principle the integrand does need to be sampled arbitrarily close to 7 = 0,
but due to the subtraction the contribution from a region 7 < § is of O(¢). This is similar to
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the fact that even in a fully local subtraction method the real-emission phase-space formally
needs to be sampled arbitrarily close to the IR-singular region, but the subtractions ensure
that the total subtracted integrand is well-behaved, so the contribution from a region of
size § around the singularity only contributes an amount of O(J). Letting 6 — 0 still
requires evaluating the real-emissions matrix elements arbitrarily close to the singularity,
and to avoid numerical instabilities due to arbitrarily large numerical cancellations one
always has a technical cutoff § that cuts out the actual singular points of phase space.

The parameter 7, determines the range over which the subtractions act, and by taking
Toff ~ 1 there are no large numerical cancellations between the first and second term in
eq. (5.1). (In the context of resummation, 7og corresponds to where the 7 resummation
is turned off.) The slicing method described in section 2.1 is obtained from eq. (5.1) by
taking Tof = Teut, See eq. (2.5). In this case, the integral below T, = 7cut corresponds to
Ao (X, Teut) and is neglected, which induces the power corrections. In contrast, eq. (5.1) is
exact and involves no neglected power corrections.

The practical challenge in implementing eq. (5.1) is that the NLO calculation for
do(X)/dr has to be obtained as a function of 7. In general this is not easy as it requires
to organize the integration over the real-emission phase space in such a way that 7 is
preserved, which by default is not the case for standard NLO subtractions. For a more
detailed discussion we refer to ref. [39].

To make the differential subtractions more viable in practice, we can follow the same
basic strategy as in section 3 to separate the different sources of power corrections. We
first note that the LP singular contribution only depends on the Born phase space. That
is, the factorization theorem for 7 is always fully differential in the Born phase space,
which involves choosing a specific set of kinematic variables to parametrize the Born phase
space. The measurement X is then evaluated on this reference Born phase space. In other
words, constructing do(®) (X)/dr involves choosing a Born projection & (® ) from the
real-emission phase-space with k£ additional emissions, ® .k, to the Born phase space,
® . For color-singlet production (N = 0), a typical choice is to use  and Y as the Born
variables, as we did in section 3 above. The LP measurement function that actually enters
in do(®(X)/dr is then given by

0 ~
£ @) = fx[n(@nsa)] (5.3)
For color-singlet production at NLO, this is precisely the LP term on the right-hand side
of eq. (3.13). Denoting this LP measurement by X (9, we therefore have

dosub (X) dosupb (X(O))
dr dr ’
Next, we can consider the full cross section but with the measurement replaced by

(X, 7o) = 5P (X O 7). (5.4)

this LP Born reference measurement, do(X(?)/dr. By adding and subtracting it, we can
rewrite eq. (5.1) as

do(X©)  deob(x () do(X — X))
— ;sub( y(0) _
o(X)=0""(X ,Toff)+/dr { = < Toﬁ)] +/dT -

=o(XN)4o(X-x©0). (5.5)
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We have now isolated the two different sources of power corrections. The sum of the
first two terms in the first line of eq. (5.5) is the calculation of the reference cross section
o(X©) using differential 7 subtractions. Since it involves the same reference measurement
X everywhere, the difference do(X () — do®*(X () does not involve any cut-induced
power corrections, hence reducing the problem of power corrections to the normal and
well-studied case, and for which the power corrections can be systematically calculated
if necessary [70-76]. In particular, if the implementation of the differential 7 subtrac-
tions proves too difficult in practice, this contribution could be calculated with the slicing
approach (see below).

The last term in eq. (5.5) amounts to measuring the difference between X and X©) on
the full cross section. Here we exploited that the difference of the two cross sections can
be combined into a single cross section, as the only difference lies in the measurement,

/dT [d”d(f) - d”(X(O))} = /dT do(X - XO) _ o(X — X0, (5.6)

dr dr

That is, o(X — X)) contains the difference of the full and LP measurement functions,
fx(Onik) — f)(?)((IDNJrk). For example, for color-singlet production at NLO, do(X — X (©))
is precisely given by eq. (3.14). Since for any infrared safe X this measurement difference
vanishes in the singular limit, (X — X (9)) still amounts to effectively performing a Born41-
parton calculation at one lower order. It contains all cut-induced power corrections, which
as we discussed can be potentially large, and it should therefore be treated exactly. Since
it can be formulated as a specific choice of measurement, it can be implemented straight-
forwardly into existing NLO calculations. Once this is done, the explicit dependence on 7
disappears. (In general it might still be implicit through the choice of X(©).) One might
say that the reference cross section do(X(©) in eq. (5.6) effectively acts as a fully local
subtraction term. However, this is somewhat misleading, since the IR singularities do not
cancel in the difference of two singular contributions. Rather, they are simply regulated
by performing an IR-safe Born+1-parton measurement.

When performing the calculation of o(X — X(©)) one might still have to integrate near
the singular region of phase space, but only to the extent to which the full measurement
is sensitive to, which is the best one can hope for. For example, if X contains isolation
cuts, then X© will contain no isolation cuts. The difference X — X(©) then measures the
cross section that is removed by the isolation, which is sensitive to real emissions with
energies down to E%O, while below that the difference of the two measurements explicitly
vanishes. For selection cuts, one can still get sensitive to arbitrarily soft emissions, e.g.,
when measuring the pr of the photons in H — ~7 very close to the Born limit pp = my /2.
However, this is a well-known feature of such cuts and inherent to the measurement itself
and not related the subtraction method.

From the above discussion, we can also see the connection to the projection-to-Born
method [31]. It amounts to the special case where the reference cross section do(X(©))
is known analytically or from some other calculation, while the last term is precisely the
effective Born+1-parton calculation that also appears in the projection-to-Born method.
In other words, the projection-to-Born method is simply the statement that o(X) can be
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calculated as
o(X)=o(X) +o(X — X0y, (5.7)

when the full cross section (X)) for some reference measurement X (%) is already known,
and the correction term o (X — X (9)) is calculated by evaluating the X — X (©) measurement
for the lower-order Born+1-parton calculation as described above.

To conclude, we note that if the reference cross section o(X () is obtained via a global
7 slicing, one can of course combine both Born+1-parton calculations into a single one,

o(X) = 0""P(XO 70) + 0[X = XO0(r < 7e)] + Ac(X O 7). (5.8)

This makes it explicit that in contrast to eq. (2.5), here the power corrections Aa (X, 7.u)
are only those for the chosen reference measurement. The cut-induced power corrections
are accounted for by the Born+1-parton calculation in the second term, because it correctly
captures the difference X — X ©) below Teut-

6 Conclusions

We have studied the impact of kinematic selection cuts and isolation requirements for
leptons and photons on the gr and N-jettiness subtraction methods. Using a simplified
one-loop calculation, we analytically determined the scaling of power corrections induced
by these cuts including their dependence on the isolation method and its parameters. We
find that both selection cuts and isolation induce additional power corrections that are
parametrically enhanced relative to the usual, cut-independent power corrections inherent
to the ¢r and 7 factorization theorems. We have also discussed how the cut effects can be
fully incorporated into the subtraction, thereby avoiding the additional power corrections,
by employing differential subtractions for them instead of a global slicing method.
To summarize our key findings, we expand the differential g7 and Ty spectra as

do(X) _ dU(O)(X) 2 /12\m
dQ2dydg2  dQ2dydgs | [1 +0l(ar/@7) ” )
do(X)  do®(X)

dQ2dYdT,  dQdydT, 1+ o[/ . (6.1)

where ¢ are the leading-power limits predicted by the factorization theorems. We find
the following power corrections in the square brackets in eq. (6.1) for typical selection and
isolation cuts:

e For inclusive processes without any cuts, one has m = 1.

" gelection cut for photons or leptons yields enhanced power

e A typical py > pii
corrections with m = 1/2 and proportional to ~ p?in/ Q). Since this arises from
breaking azimuthal symmetry that is only present in the Born process, we expect a

similar enhancement for generic fiducial cuts.
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e All photon isolation methods yield leading-power corrections (m = 0) for ¢r > E}
and Ty > E%?O, respectively, which are proportional to the size of the isolation cone
~ O(R?).

e At one loop, fixed-cone isolation induces no corrections for gr < E§§° and highly
suppressed corrections (m = 2) for 7o < EX°. At higher orders one can expect
nontrivial corrections also below Eiﬁo, which should be power suppressed.

e Smooth-cone isolation as defined in eq. (2.14) yields power corrections scaling as
m = 1/(2n) for gr and m = 1/n for 7y, respectively. They are further enhanced by
an overall factor (Q/Ei)!/.

In general, tight cuts can thus yield significantly enhanced power corrections. The enhance-
ment is most severe for smooth-cone isolation with gy subtractions. We have numerically
verified and studied these findings for the examples of pp — H — vy and pp — 7.

While our analysis is based on an explicit one-loop study, we expect the dominant
qualitative behavior to persist at NNLO and beyond, since the same kinematic effects will
also appear at higher orders. For example, our results immediately apply to real-virtual
contributions at higher orders involving a single real emission. For contributions with
two or more real emissions additional nontrivial kinematic correlations among multiple
emissions are likely to lead to additional effects, e.g., one can expect the kinks at gr = E;?O
and Ty = E§§° to get smeared out. It seems extremely unlikely though that such effects
from multiple emissions could somehow improve the behavior that is already present for
a single real emission — one might hope that they do not make things worse. Note that
at order o, the inclusive power corrections contain up to 2n — 1 logarithms In(Q/qr) and
In(Q/7p), respectively, and it would be interesting to study in detail to what extent the
enhanced power corrections also receive such additional logarithmic factors, which would
make them numerically even more important.

Our results provide an important step for a better understanding of power corrections
whenever kinematic selection cuts or isolation cuts are applied. This is crucial both for sub-
traction methods and the resummation of large logarithms in such processes. In principle,
our technique can be employed to exactly calculate the induced corrections. In practice,
it will however be more advantageous to account for all cut-induced corrections within the
subtraction method itself as discussed in section 5.
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