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Abstract Based on the perturbative quantum chromody-
namics (pQCD) approach and the quasi-two-body approx-
imation, we have studied the three-body decays B0

s →
ψ(3686, 3770)Kπ , which include the contributions of the
intermediate resonances K

∗
0(1430)0, K

∗
(892)0, K

∗
(1410)0,

K
∗
(1680)0, and K

∗
2(1430)0. The time-like form factors cor-

responding to the distribution amplitudes of the S-, P-, and
D-wave of the kaon–pion pair were adopted in parameterized
form, and describe the interactions between K and π in the
resonance region. First, the decays B0

s → ψ(2S, 1D)K−π+
were calculated, followed by the calculation of the branch-
ing ratios of the decays B0

s → ψ(3686, 3770)K−π+ using
the 2S–1D mixing scheme. In addition, the pQCD predic-
tions for the decays B0

s → ψ(2S, 1D)Kπ and B0
s →

ψ(3686, 3770)Kπ were obtained using the narrow-width
approximation relation given by the Clebsch–Gordan coef-
ficients. Our work shows that the K

∗
(892)0 resonance is

the main contributor to the total decay, and the branch-
ing ratio and the longitudinal polarization fraction of the
ψ(2S)K

∗
(892)0 decay mode agree well with the currently

available data within errors. Furthermore, the theoretical pre-
dictions of the ψ(2S) and ψ(3686) decay modes are very
close, indicating that they can be regarded as the same meson
state. Finally, the pQCD predictions for branching ratios of
decays B0

s → ψ(3686, 3770)Kπ are of the order of 10−5 and
10−6, respectively, which can be verified using the ongoing
LHCb and Belle II experiments.

1 Introduction

In recent years, studies on B-meson decays have attracted
increasing attention, as they enable the testing of the standard
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model (SM) and enrich the field of quantum chromodynamics
(QCD). The three-body decays of the B meson involve both
resonant and non-resonant contributions. Thus their calcula-
tions are more complicated than those for two-body decays.
Because of mutual interferences between the resonant and
non-resonant states, it is difficult to calculate them separately
[1]. Based on the symmetry principles and factorization theo-
rems, a few theoretical models for calculating the three-body
decay have been developed. In this study, we have adopted
the widely used perturbative QCD (pQCD) factorization
approach [2–5]. The color-suppressed phenomenon occurs
when a B0

s meson decays into a kaon–pion pair and a charmo-
nium. Thus, it is helpful to study the B0

s → ψ(2S, 1D)Kπ

decays. Recently, significant advances have been made in
the research on heavy quarkonium generation mechanisms
[6]. The Large Hadron Collider beauty experiment (LHCb)
collaboration has detected the B0

s → ψ(2S)K−π+ decay [7]
and found that the main source of the decay branching ratio is
the K

∗
(892)0 resonance. These advances have allowed us to

reliably calculate and test the B0
s → ψ(2S, 1D)Kπ decays.

The pQCD factorization approach was proposed based on
the kT factorization theorem [8–10]. In this approach, a three-
body problem can be simplified to a quasi-two-body problem
by introducing two-hadron distribution amplitudes (DAs)
[11,12]. The predominant contributions in the decay pro-
cess are from the parallel motion range, where the invariant
mass of the double light meson pair is lower than O(�̄MB),
and �̄ = MB − mb represents the mass difference between
the B meson and the b-quark. Thus, the pQCD factorization
formula for the three-body decay of the B0

s meson can be
generally described as [9,10]

A = H ⊗ φB0
s
⊗ φh3 ⊗ φh1h2 , (1)

where the hard decay kernel, H, represents the contribution
of the Feynman diagram with only one gluon exchange in the
leading order, which can be calculated using perturbation the-
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ory. The terms φB0
s
, φh3 , and φh1h2 represent the wave func-

tions of B0
s , h3, and the h1h2 pair, respectively. They are con-

sidered as non-perturbative inputs, which can be constructed
by extracting the relevant experimentally measured quanti-
ties or calculating them using the non-perturbative model.

Although the decay B0
s → ψ(3770)Kπ has not been

observed experimentally, the mixing structure of ψ(3770)

can be investigated by making a theoretical prediction for
this decay channel. Since the charmonium mesons ψ(3686)

and ψ(3770) are regarded as 2S–1D mixed states, the decays
B0
s → ψ(2S)Kπ and B0

s → ψ(1D)Kπ should first be cal-
culated, and then the fitting should be performed based on the
2S–1D mixing scheme to obtain the branching ratios of the
decays B0

s → ψ(3686, 3770)Kπ . The ψ(1D) state denotes
the orbital quantum number l = 2 and the principal quantum
number n = 1, and ψ(2S) is the first radially excited state
of the charmonium meson.

The 2S–1D mixing angle, θ , is related to the ratio of the
lepton decay widths of ψ(3686) and ψ(3770) [13], and its
value can be obtained from the fitting of the non-relativistic
potential model [14–16]. The theoretical prediction for the
B → ψ(3770)K decay is in line with the experimental
measurement when higher-twist effects are considered and
the 2S–1D mixing angle of θ = −(12 ± 2)◦ has been
adopted [17]. In addition, two mixing angle options, namely,
θ = (27 ± 2)◦ and θ = −(12 ± 2)◦, have been offered
[14–16]. Based on these views, ψ(3686) and ψ(3770) can
be represented as follows [16,18]:

ψ(3686) = sin θ |cc̄(1D)〉 + cos θ |cc̄(2S)〉,
ψ(3770) = cos θ |cc̄(1D)〉 − sin θ |cc̄(2S)〉. (2)

The branching ratio is affected by the width of the reso-
nant state and the interactions between the final-state meson
pair, especially the direct CP violations. Hence, introducing

an intermediate resonance, K
∗0

, is more appropriate [19–
21]. We consider the contributions of the S-, P-, and D-wave
resonances from the kaon–pion pair in the quasi-two-body

decays B0
s → ψ(2S, 1D)(K

∗0 →)Kπ . In this work, the con-
tributions of the following five intermediate resonances are
included: K

∗
0(1430)0, K

∗
(892)0, K

∗
(1410)0, K

∗
(1680)0, and

K
∗
2(1430)0. According to Eq. (1), φh3 denotes the wave func-

tions of the charmonium ψ , and φh1h2 represent the various
partial-wave functions of the kaon–pion pair, such as S-wave
K

∗
0(1430)0, P-wave K

∗
(892)0, and D-wave K

∗
2(1430)0. We

refer to the study by Rui and Wang [22] to obtain the infor-
mation for the S-wave DAs. For the P-wave, there are three
possible polarizations: longitudinal, parallel, and perpendic-
ular amplitudes. Hence, we consider both the longitudinal
and transverse polarization cases of the P-wave DAs. The
P-wave DAs have been described analogously to the two-
pion DAs [23], which include the longitudinal polarization
fraction and the flavor-symmetry-breaking effect. At present,

studies on the D-wave DAs are inadequate, and thus we have
adopted the method used in the study by Rui et al. [24] to
construct the D-wave DAs using a similar method of the KK
pair.

The contents of this paper are organized as follows. In
Sect. 2, we describe the computational framework and pro-
vide a list of the wave functions involved in this work. Expres-
sions for the various decay amplitudes associated with the
theoretical calculations are presented in Sect. 3. Section 4
presents the numerical results and the related discussion. The
study is summarized in Sect. 5.

2 Computational framework

The weak-effective Hamiltonian of the B0
s → ψ(2S, 1D)K

∗0

(→ K−π+) decays is expressed as [25]

Heff = GF√
2

{
V ∗
cbVcd [C1O1 + C2O2]

−V ∗
tbVtd

[
10∑
i=3

Ci Oi

]}
, (3)

where V ∗
cbVcd and V ∗

tbVtd are the Cabibbo–Kobayashi–
Maskawa (CKM) factors, Oi is the localized four-quark oper-
ator, and Ci is the Wilson coefficient corresponding to the
quark operator.

To simplify the calculation, we have chosen to describe the
decay process in the light-cone coordinate system. Assuming
that the initial state of the B0

s meson is stationary, the char-
monium ψ(2S, 1D) and the Kπ pair move in the directions
of the vectors v = (0, 1, 0T ) and n = (1, 0, 0T ), respec-
tively. The Feynman diagrams of the decay are depicted in

Fig. 1. pB , p, and p3 represent the momenta of the B0
s , K

∗0
,

and ψ(2S, 1D) mesons, respectively.

pB = MB0
s√

2
(1, 1, 0T ),

p = MB0
s√

2
(1 − r2, η, 0T ),

p3 = MB0
s√

2
(r2, 1 − η, 0T ).

(4)

In addition, the momenta of the light quark corresponding

to the B0
s , K

∗0
, and ψ(2S, 1D) mesons, respectively, are as

follows:

kB =
(

0,
MB0

s√
2
xB, kBT

)
,

k =
(MB0

s√
2
z(1 − r2), 0, kT

)
,
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Fig. 1 Feynman diagrams of

the B0
s → ψ(2S, 1D)(K

∗0 →
)K−π+ decays

k3 =
(MB0

s√
2
r2x3,

MB0
s√

2
(1 − η)x3, k3T

)
, (5)

where MB0
s

represents the mass of the B0
s meson, Mψ is the

mass of the charmonium ψ(2S, 1D), r = Mψ

M
B0
s

, the variable

η = ω2/(M2
B0
s

− Mψ
2), and ω represents the invariant mass

of the kaon–pion pair, which conforms to the relationship
ω2 = p2. xB , z, and x3 are the proportions of the momenta

of the spectator quark inside the B0
s , K

∗0
, and ψ(2S, 1D)

mesons, respectively, with values in the range of [0, 1].
Then, the momenta p1 and p2 are defined in the kaon–pion

pair as follows:

p1 = (ζp+, η(1 − ζ )p+, p1T ),

p2 = ((1 − ζ )p+, ηζp+, p2T ).
(6)

The variable ζ = p+
1

p+ depicts the distribution of the longitu-

dinal momentum of the kaon with p2
1T = p2

2T = (1−ζ )ζω2.
The B0

s meson is considered a heavy-light model, and its
wave function is expressed as [26–28]


B0
s

= i√
2Nc

( �pB + MB0
s
)γ5φBs (xB, bB). (7)

The DA φBs (xB, bB) is expressed as

φBs (xB, bB) = NBxB
2(1 − xB)2

× exp

[
−

M2
B0
s
xB2

2ω2
Bs

− 1

2
(ωBs bB)2

]
, (8)

where NB is the normalization factor, and its value can be
obtained using the normalization relation

∫ 1
0 dxBφBs (xB,

bB = 0) = fB0
s
/(2

√
2Nc). Here, the color factor Nc = 3,

and we select the shape parameter ωBs = 0.50 ± 0.05 GeV
[29].

We have applied the wave function form described on
the basis of the harmonic oscillator for the ψ(3686) and

ψ(3770) states. This form has been successfully applied to
many charmonium mesons, such as ψ(2S), ψ(3S), and J/ψ
[18,30–32]. The longitudinally and transversely polarized
wave functions of ψ(2S) and ψ(1D) are expressed as fol-
lows [23,31,32]:


L
ψ = 1√

2Nc
[Mψ �ε3Lψ L(x3, b3)+ �ε3L �p3ψ

t (x3, b3)],


T
ψ = 1√

2Nc
[Mψ �ε3TψV (x3, b3)+ �ε3T �p3ψ

T (x3, b3)],
(9)

where p3 represents the momentum of the ψ(2S, 1D) meson
and Mψ is its mass. The longitudinal polarization vector

ε3L = M
B0
s√

2Mψ
(−r2, (1 − η), 0T ) and the transverse polar-

ization vector ε3T = (0, 0, 1T ). The twist-2 and twist-3 DAs
are as follows [18,31]:

ψL,T(x3, b3) = f(2S,1D)

2
√

2Nc
NL,Tx3x3I(x3)

× exp

[
− x3x3

mc

w

[
w2b2

3 +
(
x3 − x3

2x3x3

)2]]
,

(10)

ψ t(x3, b3) = f(2S,1D)

2
√

2Nc
Nt(x3 − x3)

2I(x3)

× exp

[
− x3x3

mc

w

[
w2b2

3 +
(
x3 − x3

2x3x3

)2]]
,

(11)

ψV(x3, b3) = f(2S,1D)

2
√

2Nc
NV[1 + (x3 − x3)

2]I(x3)

× exp

[
− x3x3

mc

w

[
w2b2

3 +
(
x3 − x3

2x3x3

)2]]
,

(12)

where I(x3) = ( 1
x3x3

− mcwb2
3)(6x

4
3 − 12x3

3 + 7x2
3 − x3) −

mc(1−2x3)
2

4wx3x3
for ψ(1D) and I(x3) = 1 − 4mcwx3x3b2

3 +
mc(1−2x3)

2

wx3x3
for ψ(2S). We have selected the shape param-
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eters w1D = 0.5 ± 0.05 GeV [18] and w2S = 0.2 ± 0.1
GeV [31]. The normalization factor Ni(i = L,T,t,V) can be
obtained using the normalization relationship

∫ 1
0 ψ i(x3, b3 =

0)dx3 = f(2S,1D)

2
√

2Nc
. Equations (10)–(12) are symmetric under

the transformation of x3 ↔ x3.
A form similar to the two-pion DA has been adopted for

the S-wave of the kaon–pion pair DA [33]:


S = 1√
2Nc

[�pφ0
S(z, ζ, ω2) + ωφs

S(z, ζ, ω2)

+ω( �n �v − 1)φt
S(z, ζ, ω2)]. (13)

The subscripts S, P, and D denote the corresponding sub-
waves, respectively, in the following description.

Using the description given by Wang et al. [34], the twist-2
DAs have been described in a form similar to the scalar meson
[35,36], whereas asymptotic forms for the twist-3 DAs have
been adopted in this work. They can be expressed as follows:

φ0
S(z, ζ, ω2) = 6

2
√

2Nc
FS(ω

2)(z − z2)

×
[

1

μS
+ B1C

3/2
1 (t) + B3C

3/2
3 (t)

]
, (14)

φs
S(z, ζ, ω2) = 1

2
√

2Nc
FS(ω

2), (15)

φt
S(z, ζ, ω2) = 1

2
√

2Nc
FS(ω

2)(1 − 2z). (16)

The Gegenbauer polynomials areC3/2
1 (t) = 3t andC3/2

3 (t) =
5
2 (7t3 − 3t) with t = 1 − 2z. In addition, μS = ω

m2−m1
, m1,

and m2 represent the corresponding current quark masses,
and the Gegenbauer moments are B1 = −0.57 ± 0.13 and
B3 = −0.42 ± 0.22 [35,37,38].

For the time-like scalar form factor, FS(ω
2), we have

adopted the parameterized fitting results of an improved
LASS (Large Aperture Superconducting Solenoid) line type
presented by Aston et al. [39]. FS(ω

2) is expressed as [34]

FS(ω
2) =

m2
0


0
|−→p0 |

m2
0 − ω2 − im2

0

0
ω

|−→p1|
|−→p0 |

e2iδB + ω

| −→p1 | [cot(δB) − i] , (17)

cot(δB) = a| −→p1 |
2

+ 1

l| −→p1 | . (18)

In Eq. (17), the first term contains the resonant contribu-
tion with a phase factor to maintain unitarity, and the second
term is an empirical term of the elastic Kπ scattering. 
0

and m0 represent the width and the pole mass, respectively,
of the K

∗
0(1430)0 resonance, | −→p1 | represents the momen-

tum of the decay product of the intermediate resonance, and
| −→p0 |=| −→p1 | is available when ω = mK∗0 . a = (7.0 ± 2.4)

GeV−1 and l = (3.1 ± 1.0) GeV−1 are the effective range
and the scattering length, respectively, which are universal in
describing the Kπ meson pair.

According to Li et al. [40], the P-wave kaon–pion DAs
related to the longitudinal and transverse polarizations can
be expressed as


L
P = 1√

2Nc

[
�pφ0

P (z, ζ, ω2) + ωφs
P (z, ζ, ω2)

+ �p1 �p2− �p2 �p1

ω(2ζ − 1)
φt
P (z, ζ, ω2)

]
,


T
P = 1√

2Nc

[
γ5 �εT �pφT

P (z, ζ, ω2) + ωγ5 �εT φa
P (z, ζ, ω2)

+ iω
εμνρσ γμεT ν Pρn−σ

P · n−
φv
P (z, ζ, ω2)

]
.

(19)

The different twists in Eq. (19) when expanded using the Gegen-
bauer polynomial have the specific forms as follows:

φ0
P (z, ζ, ω2) = 3√

2Nc
F‖
P(ω2)(z − z2)

×
[

1 + 3ta‖
1K∗ + 3

2
(5t2 − 1)a‖

2K∗
]

(2ζ − α − 1), (20)

φs
P (z, ζ, ω2) = 3

2
√

2Nc
F⊥
P (ω2)[t (1 + ta⊥

1s)

−(2z − 2z2)a⊥
1s ](2ζ − 1), (21)

φt
P (z, ζ, ω2) = 3

2
√

2Nc
F⊥
P (ω2)[t2 + (3t3 − t)a⊥

1t ]
(2ζ − 1), (22)

φT
P (z, ζ, ω2) = 3√

2Nc
F⊥
P (ω2)(z − z2)

×
[

1 + 3ta⊥
1K∗ + 3

2
(5t2 − 1)a⊥

2K∗
]

√
ζ − ζ 2, (23)

φa
P (z, ζ, ω2) = 3

4
√

2Nc
F‖
P(ω2)[t (1 + ta‖

1a)

−(2z − 2z2)a‖
1a]

√
ζ − ζ 2, (24)

φv
P (z, ζ, ω2) = 3

8
√

2Nc
F‖
P(ω2)[1 + t2 + t3a‖

1v]√
ζ − ζ 2. (25)

The SU (3) asymmetry factor α = (m2
K± − m2

π±)/ω2, and the

Gegenbauer moments a‖
1K∗ = 0.2±0.2, a‖

2K∗ = 0.5±0.5, a⊥
1K∗ =

0.3 ± 0.3, a⊥
2K∗ = 0.8 ± 0.8, a⊥

1s = −0.2, a⊥
1t = 0.2, a‖

1a = −0.3

and a‖
1v = 0.3 [40] have been adopted in this work.

The time-like shape factor, F‖
P(ω2), of the P-wave is expressed

as [41]

F‖
P(ω2) =

c1m
2
K∗(892)0

m2
K∗(892)0 − ω2 − imK∗(892)0
1(ω2)

+
c2m

2
K∗(1410)0

m2
K∗(1410)0 − ω2 − imK∗(1410)0
2(ω2)
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+
c3m

2
K∗(1680)0

m2
K∗(1680)0 − ω2 − imK∗(1680)0
3(ω2)

. (26)

The three terms added together are derived from the K∗(892)0,
K∗(1410)0, andK∗(1680)0 resonant states, and their corresponding
weight coefficients are c1 = 0.72, c2 = 0.134, and c3 = 0.143 [40],
respectively.

The mass-related width is given by


i(ω
2) = 
i

(
mi

ω

)( | −→p1 |
| −→p0 |

)(2LR+1)

, (27)

where 
i andmi denote the width and the pole mass, respectively, of
the corresponding resonance, and LR represents the orbital angular
momentum, with values of 0, 1, and 2 for the S-, P-, and D-wave,
respectively. According to the study by Wang and Li [19], the fol-
lowing relation can be obtained

F⊥
P (ω2)

F‖
P(ω2)

≈ fTK∗
fK∗

, (28)

where fTK∗ = 0.185 ± 0.010 GeV and fK∗ = 0.217 ± 0.005 GeV
[29]. We have adopted the procedure from the work by Li et al. [40];
studies on the decay constants of K∗(1410)0 and K∗(1680)0 are
limited, and thus we have used the two decay constants ofK∗(892)0

to determine the ratio fTK∗/fK∗ .
A form similar to the two-kaon DAs has also been considered in

the D-wave kaon–pion DAs [24]:


L
D =

√
2

3

1√
2Nc

[
�pφ0

D(z, ζ, ω2) + ωφs
D(z, ζ, ω2)

+ �p1 �p2− �p2 �p1

ω(2ζ − 1)
φt
D(z, ζ, ω2)

]
,


T
D =

√
1

2

1√
2Nc

[
γ5 �εT �pφT

D(z, ζ, ω2)

+ ωγ5 �εT φa
D(z, ζ, ω2)

+ iω
εμνρσ γμεT ν Pρn−σ

P · n−
φv
D(z, ζ, ω2)

]
,

(29)

where the coefficient
√

2
3 (

√
1
2 ) comes from the different definitions

of the polarization vector between the vector and tensor mesons in
the longitudinal (transverse) polarization.

The different twists in the D-wave DAs are [24,42–44]

φ0
D(z, ζ, ω2) = 9√

2Nc
F‖
D(ω2)(z − z2)(2z − 1)

×a0
1(1 − 6ζ + 6ζ 2), (30)

φs
D(z, ζ, ω2) = − 9

4
√

2Nc
F⊥
D(ω2)(1 − 6z + 6z2)

×a0
1(1 − 6ζ + 6ζ 2), (31)

φt
D(z, ζ, ω2) = 9

4
√

2Nc
F⊥
D(ω2)(2z − 1)(1 − 6z + 6z2)

×a0
1(1 − 6ζ + 6ζ 2), (32)

φT
D(z, ζ, ω2) = 9√

2Nc
F⊥
D(ω2)(z − z2)(2z − 1)

×aT1 (2ζ − 1)

√
ζ − ζ 2, (33)

φa
D(z, ζ, ω2) = 3

2
√

2Nc
F‖
D(ω2)(2z − 1)3

×aT1 (2ζ − 1)

√
ζ − ζ 2, (34)

φv
D(z, ζ, ω2) = − 3

2
√

2Nc
F‖
D(ω2)(1 − 6z + 6z2)

×aT1 (2ζ − 1)

√
ζ − ζ 2. (35)

The Gegenbauer moments are a0
1 = 0.4 ± 0.1 and aT1 = 0.8 ±

0.2, and a form similar to Eq. (26) has been adopted for the time-

like shape factor, F‖
D(ω2). Furthermore, the approximate relation

F⊥
D(ω2)/F‖

D(ω2) ≈ fTK∗
2(1430)

/fK∗
2(1430) can also be found, with

fTK∗
2(1430)

= 0.077 ± 0.014 GeV and fK∗
2(1430) = 0.118 ± 0.005

GeV [42].
The differential decay ratios for the B0

s → ψ(2S, 1D)K−π+
decays in the B0

s meson rest frame can be written as

dB
dω

=
τB0

s
ω | −→p1 || −→p3 |

32(πMB0
s
)3

∑
i=0,‖,⊥

| Ai |2, (36)

where the three-momenta of K− and ψ(2S, 1D) in the kaon–pion
center-of-mass system are expressed as

| −→p1 |= 1

2ω

√
ω4 + m4

K + m4
π − 2(ω2m2

K + ω2m2
π + m2

Km
2
π ),

| −→p3 |= 1

2ω

√
M4

B0
s

+ M4
ψ + ω4 − 2(M2

B0
s
M2

ψ + M2
B0
s
ω2 + M2

ψω2).

(37)

The terms A0, A‖, and A⊥ represent the longitudinal, parallel,
and perpendicular polarization amplitudes, respectively. The related
expressions are

A0 = AL,

A‖ = √
2AN,

A⊥ = √
2AT,

(38)

where the subscripts L, N, and T denote the longitudinal, normal,
and transverse polarizations, respectively. The polarization fraction
is defined as

fi = | Ai |2
| A0 |2 + | A‖ |2 + | A⊥ |2 , (39)

with the normalization relation f0 + f‖ + f⊥ = 1.

3 Decay amplitudes

Based on the pQCD approach, the decay amplitude of B0
s →

ψ(2S, 1D)K−π+ is

AL,N,T = GF√
2

[
V ∗
cbVcd

(
a1F

LL
L,N,T + C2M

LL
L,N,T

) − V ∗
tbVtd

×(
a2F

LL
L,N,T + a3F

LR
L,N,T + (C4 + C10)MLL

L,N,T

+(C6 + C8)MSP
L,N,T

)]
, (40)
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where F and M represent the factorization and non-factorization
contributions, respectively. The superscripts LL and LR denote the
weak vertices of the operators, and SP is the Fierz transformation
of LR. For the S-wave, the amplitude is only a longitudinal polar-
ization. The total decay amplitudes of the P-wave and the D-wave
are decomposed into

A = AL + ANεT · ε3T + iATεαβρσ n
α+nβ

−ε
ρ
T εσ

3T. (41)

The decay amplitudes of the longitudinal polarization are as fol-
lows:

FLLL (S) = 8πCF fψ M4
B0
s

×
∫ 1

0
dxBdz

∫ ∞
0

bBbdbBdbφBs (xB , bB)

×{[((1 − η)(1 + (1 − 2r2)z) − r2)φ0
S

+
√

(1 − r2)η[(1 − 2z − η + 2ηz

−(1 − 2z + 2ηz)r2)

×(φs
S + φt

S) + 2r2φt
S]] × αs(ta)

exp[−SB0
s
(ta) − SM (ta)]

×St (z)ha(xB , z, bB , b)

+[[η2 − η + (η − xB)r2](1 − r2)φ0
S

+2
√

(1 − r2)η[1 − η − r2(1 − xB)]φs
S]

×αs(tb) exp[−SB0
s
(tb) − SM (tb)]St

(|xB − η|)hb(xB, z, bB, b)}, (42)

FLRL (S) = FLLL (S), (43)

MLL
L (S) =

−32πCFM
4
B0
s√

2Nc

∫ 1

0
dxBdzdx3

×
∫ ∞

0
bBb3dbBdb3φBs (xB , bB)

×{[(1 − r2 − η)[((1 − xB − x3)

(1 − r2) + η((1 − 2r2)x3

−1 + z − zr2))ψL (x3, b3)

+(1 − η)rrcψ
t (x3, b3)]φ0

S

+
√

(1 − r2)η[((1 − r2)z + 2(1 − x3)r2

−xBr
2)(1 − η)φt

S

−((1 − r2)z(1 − η) + xBr
2)φs

S]ψL (x3, b3)]
×αs(tc) exp[−SB0

s
(tc) − SM (tc) − Sψ(tc)]

hc(xB , z, x3, bB , b3)

+[(1 − r2 − η)[(xB − z + zr2

−(1 + r2 − η)x3)ψL (x3, b3)

+(1 − η)rrcψ
t (x3, b3)]φ0

S −
√

(1 − r2)η[((xBr2

−(2x3r
2 + (1 − r2)z)(1 − η))ψL (x3, b3)

+4(1 − η)rrcψ
t (x3, b3))φt

S

−(xBr
2 + (1 − η)z(1 − r2))ψL (x3, b3)φs

S]]
×αs(td ) exp[−SB0

s
(td ) − SM (td )

−Sψ(td )]hd (xB , z, x3, bB , b3)}, (44)

MSP
L (S) =

32πCFM
4
B0
s√

2Nc

∫ 1

0
dxBdzdx3

×
∫ ∞

0
bBb3dbBdb3φBs (xB , bB)

×{[(1 − η − r2)[((1 − x3)(1 + r2 − η) − xB
+z(1 − r2))ψL (x3, b3)

−(1 − η)rrcψ
t (x3, b3)]φ0

S

+
√

(1 − r2)η[((1 − η)(r2 − 1)z − xBr
2)

φs
Sψ

L (x3, b3)

+[((1 − η)((r2 − 1)z − 2(1 − x3)r2)

+xBr
2)ψL (x3, b3)

+4(1 − η)rrcψ
t (x3, b3)]φt

S]]
×αs(tc) exp[−SB0

s
(tc) − SM (tc) − Sψ(tc)]

hc(xB , z, x3, bB , b3)

+[(1 − r2 − η)[((xB − zη)(1 − r2)

+x3(η − 1 + r2(1 − 2η)))ψL (x3, b3)

−(1 − η)rrcψ
t (x3, b3)]φ0

S

+
√

(1 − r2)η[((1 − r2)z(1 − η) + xBr
2)φs

S

+((z + 2x3r
2 − zr2)(η − 1)

+xBr
2)φt

S]ψL (x3, b3)]
×αs(td ) exp[−SB0

s
(td ) − SM (td ) − Sψ(td )]

hd (xB , z, x3, bB , b3)}. (45)

AL(P) and AL(D) can be expressed by the following replace-
ment:

AL(P) = AL(S)|
φ
0,s
S →φ

0,s
P ,φt

S→(1−r2)φt
P
,

AL(D) =
√
2

3
AL(S)|

φ
0,s
S →φ

0,s
D ,φt

S→(1−r2)φt
D
.

(46)

The decay amplitudes of normal polarization are as follows:

FLLN (P) = 8πCF fψ M4
B0
s
r
∫ 1

0
dxBdz

×
∫ ∞

0
bBbdbBdbφBs (xB , bB)

×{[(r2 − 1 − (1 − 2z + 2zr2)η)φT
P

+
√

(1 − r2)η((zr2 − 2 − z)φa
P + z(1 − r2)φv

P )]
×αs(ta) exp[−SB0

s
(ta) − SM (ta)]

St (z)ha(xB , z, bB , b)

−
√

(1 − r2)η[(1 + η − xB − r2)φa
P

+(1 + xB − η − r2)φv
P ]

×αs(tb) exp[−SB0
s
(tb) − SM (tb)]

×St (|xB − η|)hb(xB, z, bB, b)}, (47)

FLRN (P) = FLLN (P), (48)

MLL
N (P) =

−64πCFM
4
B0
s√

2Nc

∫ 1

0
dxBdzdx3
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×
∫ ∞

0
bBb3dbBdb3φBs (xB , bB)

×{[(x3 − xB + zη − x3η)rψV (x3, b3)

−(1 − η)rcψ
T (x3, b3)]φT

P

+
√

(1 − r2)η[(xB − x3 − z + x3η)rψV (x3, b3)

+(1 − η)rcψ
T (x3, b3)]φa

P }
×αs(td ) exp[−SB0

s
(td )

−SM (td ) − Sψ(td )]hd (xB , z, x3, bB , b3), (49)

MSP
N (P) = −MLL

N (P). (50)

AN(D) can be expressed by the following replacement:

AN(D) =
√
1

2
AN(P)|

φ
T,a,v
P →φ

T,a,v
D

. (51)

The decay amplitudes of transverse polarization are as follows:

FLLT (P) = 8πCF fψ M4
B0
s
r
∫ 1

0
dxBdz

×
∫ ∞

0
bBbdbBdbφBs (xB , bB)

×{[(r2 − 1 + (1 − 2z + 2zr2)η)φT
P

+
√

(1 − r2)η((zr2 − 2 − z)φv
P + z(1 − r2)φa

P )]
×αs(ta) exp[−SB0

s
(ta) − SM (ta)]

St (z)ha(xB , z, bB , b)

−
√

(1 − r2)η[(1 + η − xB − r2)φv
P

+(1 + xB − η − r2)φa
P ]

×αs(tb) exp[−SB0
s
(tb) − SM (tb)]

×St (|xB − η|)hb(xB, z, bB, b)}, (52)

FLRT (P) = FLLT (P), (53)

MLL
T (P) =

−64πCFM
4
B0
s√

2Nc

×
∫ 1

0
dxBdzdx3

∫ ∞
0

bBb3dbBdb3φBs (xB , bB)

×{[(x3 − xB − zη − x3η)rψV (x3, b3)

−(1 − η)rcψ
T (x3, b3)]φT

P

+
√

(1 − r2)η[(xB − x3 − z + x3η)rψV (x3, b3)

+(1 − η)rcψ
T (x3, b3)]φv

P }
×αs(td ) exp[−SB0

s
(td ) − SM (td ) − Sψ(td )]

×hd (xB , z, x3, bB , b3), (54)

MSP
T (P) = −MLL

T (P). (55)

AT(D) can be expressed by the following replacement:

AT(D) =
√
1

2
AT(P)|

φ
T,a,v
P →φ

T,a,v
D

. (56)

The mass ratio rc = mc
M

B0
s

and the group factor CF = 4
3 . The

expressions for the Sudakov exponents SB0
s
(t), SM (t), and Sψ(t),

the threshold resummation factor St (x), the scattering kernel func-

tions hi (i = a, b, c, d), and the hard scales ti are given in the
Appendix.

Vertex correction is performed on the factorization diagrams in
this work. According to the naïve dimensional regularization (NDR)
scheme [45–47], the relevant Wilson coefficients are expressed as

a1(S) = C1 + C2

Nc
+ αs

9π
C2[−18 − 12ln

(
μ

mb

)

+fI + (1 − r2)gI ],
a2(S) = C3 + C4

Nc
+ C9 + C10

Nc
+ αs

9π
(C4 + C10)

×
[
−18 − 12ln

(
μ

mb

)
+ fI + (1 − r2)gI

]
,

a3(S) = C5 + C6

Nc
+ C7 + C8

Nc
+ αs

9π
(C6 + C8)

×
[

6 + 12ln

(
μ

mb

)
− fI − (1 − r2)gI

]
,

(57)

a1(P,D) = C1 + C2

Nc
+ αs

9π
C2[−18 − 12ln

(
μ

mb

)
+ f h],

a2(P,D) = C3 + C4

Nc
+ C9 + C10

Nc
+ αs

9π
(C4 + C10)

×
[
−18 − 12ln

(
μ

mb

)
+ f h

]
,

a3(P,D) = C5 + C6

Nc
+ C7 + C8

Nc
+ αs

9π
(C6 + C8)

×
[

6 + 12ln

(
μ

mb

)
− f h

]
.

(58)

The renormalization scale, μ, has been selected to be of the order
of mb. The Wilson coefficients a1,2,3(S) were applied to the decay
amplitude A(S) with only longitudinal polarization, and the hard
scattering functions, fI and gI , are given in Ref. [48]. Meanwhile,
the Wilson coefficients a1,2,3(P,D) were applied to the decay ampli-
tudes A(P,D) with both longitudinal and transverse polarizations,
the hard scattering function, f h, comes from the vertex corrections,
and the superscript h denotes the polarization state h = 0 for the
helicity 0 state, and h = ± for the helicity ± states. The expressions
for f 0 and f ± can be found in Ref. [49].

According to the 2S–1D mixing scheme, the decay amplitudes
of B0

s → ψ(3686, 3770)K−π+ can be constructed as

A(B0
s → ψ(3686)K−π+) = sin θA(B0

s → ψ(1D)K−π+)

+ cos θA(B0
s → ψ(2S)K−π+), (59)

A(B0
s → ψ(3770)K−π+) = cos θA(B0

s → ψ(1D)K−π+)

− sin θA(B0
s → ψ(2S)K−π+). (60)

4 Numerical results and discussion

The parameters used in the calculation are presented in Table 1,
which include the masses of the involved mesons, their decay con-
stants, the lifetime of the B0

s meson, and the Wolfenstein parameters.
The pole masses of the quarks were adopted in this study [52].

123



  441 Page 8 of 15 Eur. Phys. J. C           (2022) 82:441 

Table 1 Various parameters
used in the calculation [50–52]

Masses MB0
s

= 5.367 GeV Mψ(2S)
= 3.686 GeV Mψ(1D)

= 3.77 GeV

mb = 4.75 GeV mc = 1.4 GeV mK = 0.494 GeV

mπ = 0.140 GeV

Decay constants fB0
s

= 227.2 ± 3.4 MeV fψ(2S)
= 296+3

−2 MeV fψ(1D)
= 45.8 MeV

Lifetime of meson τB0
s

= 1.509 ps

Wolfenstein parameters A = 0.836 ± 0.015 λ = 0.22453 ± 0.00044 η̄ = 0.355+0.012
−0.011

ρ̄ = 0.122+0.018
−0.017

Table 2 Pole masses and widths for the different resonances [41]

Resonance Mass Width

K∗(892)0 895.55 ± 0.20 MeV 47.3 ± 0.5 MeV

K∗(1410)0 1414 ± 15 MeV 232 ± 21 MeV

K∗
0(1430)0 1425 ± 50 MeV 270 ± 80 MeV

K∗
2(1430)0 1432.4 ± 1.3MeV 109 ± 5 MeV

K∗(1680)0 1717 ± 27 MeV 322 ± 110 MeV

The data in Table 2 are taken from Ref. [41], and the relevant
information that should be considered in the study for the S-, P-,
and D-wave resonances is contained in the table. In this work, the
dynamic limit of the invariant mass of the resonance is mK+mπ <

ω < MB0
s

− Mψ . In addition, although the mass of the K∗
(1680)0

resonance exceeds the upper limit, its decay channels should be
considered in the study because of its large width(
K∗(1680)0 =
322 ± 110 MeV).

The decay branching ratios of the K
∗
0(1430)0 resonance of the

S-wave were first calculated and the results obtained are given in
Table 3. The errors were derived from the shape parameter, ωBs ,
in the wave function of the B0

s meson, the Gegenbauer moments in
the DAs of the kaon–pion pair, and the hard scale t(0.9t ∼ 1.1t),
respectively. The errors in the following tables were analyzed in the
same order.

Next, the resonances of the P-wave were calculated considering
K

∗
(892)0,K∗

(1410)0, andK∗
(1680)0, and the results thus obtained

are given in Table 4. The experimental measurement data B(
B0
s →

ψ(2S)K
∗
(892)0(→ K−π+)

) = (2.2 ± 0.3) × 10−5 was taken
from the article by Zyla et al. [51]. Our pQCD prediction agrees
well with it within errors.

Finally, the contributions of the K
∗
2(1430)0 intermediate reso-

nance of the D-wave were considered, and the calculation results
are presented in Table 5.

The theoretical prediction for the branching ratio of the B0
s →

ψ(2S)K−π+ decay is 3.67+1.56+1.42+0.15
−1.12−1.15−0.10 × 10−5 in this work,

which includes contributions from the intermediate resonances of
the S-, P-, and D-wave. This result is consistent with the latest exper-
imental data (3.1±0.4)×10−5 [51] within errors. From the numer-
ical results, it is observed that K∗

(892)0 is the main contributor to
the B0

s → ψ(2S)(K−π+)P decay, accounting for approximately
91.55%, whereas the contributions of theK∗

(1410)0 andK∗
(1680)0

resonances account for 1.75% and 0.79%, respectively. Further,
the interference contribution of the three resonances amounts to
roughly 5.91%. The K

∗
(892)0 resonance is also the main source

for the B0
s → ψ(1D)(K−π+)P decay, accounting for approxi-

mately 93.44%, whereas the K∗
(1410)0 and K

∗
(1680)0 resonances

account for 1.29% and 0.47%, respectively. In addition, the inter-
ference contribution amounts to approximately 4.80%. Referring to
Table 4, the branching ratios of the ψK

∗
(1410)0 and ψK

∗
(1680)0

decay modes are of the same order, attributable to the large width
of the K

∗
(1680)0 resonance.

In comparison, the branching ratio of the ψ(2S) decay channel is
2.76 times that of the ψ(1D) decay channel of the S-wave. Further-
more, the branching ratios of the ψ(2S) decay modes of the P-wave
and D-wave are 5.01 ∼ 8.57 and 21.71 times those of the ψ(1D)

decay modes, respectively. In our calculation, the main contribu-
tions of the ψ(2S) and ψ(1D) decay modes of the S-wave were
the non-factorized diagrams, the amplitudes of which are slightly
affected by the change in the wave function from ψ(2S) to ψ(1D),
thus leading to the appearance of only a small gap between the
branching ratios of the two decay modes of the S-wave. However,
the amplitudes of the P- and D-wave decay channels are dominated
by the factorized diagrams, especially the D-wave decay channels,
which are significantly affected by the change in the decay constant
from fψ(2S) to fψ(1D). Thus, a large gap can be observed between
the branching ratios of the ψ(2S) and ψ(1D) decay modes. As
mentioned above, the different effects of the factorized and non-
factorized diagrams in the decay modes of the S-, P-, and D-wave
might be related to the differences in the wave function models with
regard to the scalar, vector, and tensor mesons.

In our study, the main uncertainty in the S-wave decay modes
comes from the shape parameter ωBs . For the ψ(2S) decay modes of
the P-wave, the errors from the shape parameter and the Gegenbauer
moments are very close, whereas the maximum error term for the
D-wave decay modes is from the Gegenbauer moments. These dif-
ferences can be interpreted as the range of the values of the Gegen-
bauer moments of the P-wave kaon–pion DAs being larger than that
of the S-wave kaon–pion DAs (for example, B1 = −0.57 ± 0.13

and B3 = −0.42 ± 0.22 for the S-wave, and a‖
1K∗ = 0.2 ± 0.2

and a‖
2K∗ = 0.5 ± 0.5 for the P-wave), and the single Gegenbauer

moment of the D-wave dominating both the twist-2 and twist-3 DAs
in the corresponding polarization case. The error caused by the hard
scale, t , is the smallest among the three error terms, attributable to
the selected range (0.9t − 1.1t).

The polarization fractions are defined by Eq. (39), and they are
listed in Tables 4 and 5. For the P-wave ψ(2S) decay mode, the
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Table 3 Branching ratios of the
S-wave resonance in the
quasi-two-body decays B0

s →
ψ(2S, 1D)K

∗0
(→ K−π+)

calculated using the pQCD
factorization approach

Decay mode pQCD prediction Experimental data

B0
s → ψ(2S)K

∗
0(1430)0(→ K−π+) 3.94+1.82+0.56+0.11

−1.16−0.49−0.07 × 10−6 · · ·
B0
s → ψ(1D)K

∗
0(1430)0(→ K−π+) 1.43+0.53+0.07+0.03

−0.37−0.07−0.02 × 10−6 · · ·

Table 4 Branching ratios of the
P-wave resonances in the
quasi-two-body decays B0

s →
ψ(2S, 1D)K

∗0
(→ K−π+)

calculated using the pQCD
factorization approach

Decay mode pQCD prediction Experimental data

B0
s → ψ(2S)K

∗
(892)0(→ K−π+) B (10−5) 2.71+1.16+1.03+0.11

−0.83−0.84−0.07 2.20 ± 0.33

f0 (%) 43.2+23.2+9.6+1.5
−16.2−8.5−0.7 52.0 ± 6.0

f‖ (%) 27.7+8.5+15.1+1.1
−6.6−11.8−0.7 · · ·

f⊥ (%) 29.1+11.1+13.3+1.5
−7.7−10.7−1.1 · · ·

B0
s → ψ(2S)K

∗
(1410)0(→ K−π+) B (10−7) 5.19+1.69+2.11+0.21

−1.36−1.18−0.11 · · ·
f0 (%) 44.1+16.6+9.1+1.3

−12.9−7.9−0.6 · · ·
f‖ (%) 26.8+7.3+15.2+1.0

−6.2−10.8−0.6 · · ·
f⊥ (%) 29.1+8.7+16.4+1.7

−7.1−4.0−1.0 · · ·
B0
s → ψ(2S)K

∗
(1680)0(→ K−π+) B (10−7) 2.33+0.80+0.92+0.10

−0.58−0.56−0.05 · · ·
f0 (%) 44.2+17.2+9.4+1.3

−12.0−8.2−0.9 · · ·
f‖ (%) 26.6+8.2+15.9+0.9

−6.0−11.2−0.4 · · ·
f⊥ (%) 29.2+9.0+14.2+2.1

−7.9−4.7−0.9 · · ·
B0
s → ψ(2S)(K−π+)P B (10−5) 2.96+1.26+1.17+0.13

−0.91−0.95−0.09 · · ·
f0 (%) 42.9+22.6+11.5+1.7

−15.5−9.8−0.7 · · ·
f‖ (%) 27.6+9.5+15.2+1.4

−7.4−11.8−1.0 · · ·
f⊥ (%) 29.5+10.5+12.8+1.4

−7.8−10.5−1.4 · · ·
B0
s → ψ(1D)K

∗
(892)0(→ K−π+) B (10−6) 5.41+1.57+4.55+0.12

−1.16−2.62−0.05 · · ·
f0 (%) 9.6+3.1+1.1+0.4

−2.8−0.9−0.2 · · ·
f‖ (%) 46.8+13.1+40.9+0.9

−10.0−23.7−0.4 · · ·
f⊥ (%) 43.6+12.8+42.1+0.9

−8.8−24.0−0.4 · · ·
B0
s → ψ(1D)K

∗
(1410)0(→ K−π+) B (10−8) 7.46+2.38+7.02+0.17

−1.80−3.98−0.12 · · ·
f0 (%) 10.5+5.5+3.6+0.4

−4.0−2.0−0.3 · · ·
f‖ (%) 47.5+13.7+44.9+1.1

−10.5−24.9−0.8 · · ·
f⊥ (%) 42.0+12.7+45.6+0.8

−9.7−26.4−0.5 · · ·
B0
s → ψ(1D)K

∗
(1680)0(→ K−π+) B (10−8) 2.72+0.89+2.54+0.07

−0.65−1.44−0.06 · · ·
f0 (%) 10.3+5.9+3.3+0.4

−4.0−2.2−0.4 · · ·
f‖ (%) 47.4+14.0+44.9+1.1

−10.3−24.6−1.1 · · ·
f⊥ (%) 42.3+12.9+45.2+1.1

−9.6−26.1−0.7 · · ·
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Table 4 continued
Decay mode pQCD prediction Experimental data

B0
s → ψ(1D)(K−π+)P B (10−6) 5.79+1.69+4.62+0.11

−1.27−2.72−0.05 · · ·
f0 (%) 10.0+3.8+1.0+0.3

−2.6−0.7−0.2 · · ·
f‖ (%) 46.6+13.1+39.0+0.9

−10.2−22.8−0.3 · · ·
f⊥ (%) 43.4+12.3+39.7+0.7

−9.2−23.5−0.3 · · ·

Table 5 Branching ratios of the
D-wave resonance in the
quasi-two-body decays B0

s →
ψ(2S, 1D)K

∗0
(→ K−π+)

calculated using the pQCD
factorization approach

Decay mode pQCD prediction Experimental data

B0
s → ψ(2S)K

∗
2(1430)0(→ K−π+) B (10−6) 3.17+1.18+1.90+0.11

−0.92−1.46−0.06 · · ·
f0 (%) 39.4+15.1+24.6+0.6

−11.7−18.3−0.3 · · ·
f‖ (%) 33.1+12.0+19.2+1.6

−9.5−15.1−0.9 · · ·
f⊥ (%) 27.5+10.1+16.1+1.3

−7.9−12.6−0.6 · · ·
B0
s → ψ(1D)K

∗
2(1430)0(→ K−π+) B (10−7) 1.46+0.41+0.62+0.04

−0.31−0.48−0.03 · · ·
f0 (%) 13.0+8.9+11.0+0.7

−5.5−8.2−0.7 · · ·
f‖ (%) 30.1+6.2+9.6+0.7

−4.8−6.2−0.0 · · ·
f⊥ (%) 56.9+13.0+21.9+1.4

−11.0−18.5−1.4 · · ·

Fig. 2 Differential branching ratios of the S-wave for a B0
s → ψ(2S)K−π+ and b B0

s → ψ(1D)K−π+

longitudinal polarization fraction is approximately 43%, whereas in
the ψ(1D) mode, it is about 10%, with parallel and vertical fractions
being approximately equal in both modes. For the D-wave ψ(2S)

decay mode, the three polarization fractions are roughly at the same
level of approximately 33%, but they are distinctly different in the
ψ(1D) mode. We expect additional abundant and detailed data to be
obtained from future experiments so that our theoretical predictions
can be accurately verified and more systematic analysis for B0

s →
ψ(2S, 1D)K

∗
(→ K−π+) decays can be performed.

From the experimental data, the relative fraction between the
branching ratios is [7]

B(B
0
s → ψ(2S)K∗(892)0)

B(B0 → ψ(2S)K∗
(892)0)

= 5.58 ± 0.57(stat)

± 0.40(syst) ± 0.32(fs/fd)%.

(61)

By comparing the branching ratio of the B0
s → ψ(2S)K

∗
(892)0(→ K−π+) decay calculated using the pQCD factor-
ization approach with the pQCD prediction for the B0 →
ψ(2S)K∗(892)0(→ K+π−) decay [40], we obtain the relative frac-
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Fig. 3 Differential branching ratios of the P-wave for a B0
s → ψ(2S)K−π+ and b B0

s → ψ(1D)K−π+

Fig. 4 Differential branching ratios of the D-wave for a B0
s → ψ(2S)K−π+ and b B0

s → ψ(1D)K−π+

tion of the theoretical calculation as

B(B0
s → ψ(2S)K

∗
(892)0(→ K−π+))

B(B0 → ψ(2S)K∗(892)0(→ K+π−))
= 8.01%. (62)

The discrepancy in the values comes from the vertex correction
and the selection of different values for some of the parameters.
However, this discrepancy is still within the acceptable limit. The
relative fraction results predicted by the theory agree somewhat
with the experimental data, which supports the pQCD factoriza-
tion approach and also contributes to further studies on resonance
mesons.

Figures 2, 3, and 4 depict the function images of the ω depen-
dence of the differential branching ratios of the S-, P-, and D-wave of
the B0

s → ψ(2S, 1D)K−π+ decays, respectively. Figure 2 shows
that a small peak can always be detected near the invariant mass
ω = 0.892GeV, which can be attributed to the interference effect
of the K

∗
(892)0 resonance on the S-wave. On the other hand, the

function images of the ψ(1D) mode drop faster at the end than
those of the ψ(2S) mode due to the difference in the upper limit
of their invariant masses ω of Kπ . Obviously, the peak values of
all function images appear at the pole mass of the correspond-
ing resonance. Therefore, the main part of the branching ratios
is in the region around the resonance and almost in the range of
ω = [mK∗ − 
K∗ ,mK∗ + 
K∗ ], and the branching ratios of the
S-, P-, and D-wave decay modes in this range account for 43.91%,
74.73%, and 78.68% of the total branching ratios, respectively. The
value of 43.91% can be interpreted as the interference effect of the
K

∗
(892)0 resonance on the S-wave that is not included.
Using Eqs. (59) and (60),the branching ratios of the B0

s →
ψ(3686, 3770)K−π+ decays were obtained using the fitting scheme
based on the S-D mixing mechanism. The calculation results are
presented in Tables 6 and 7, respectively.

123



  441 Page 12 of 15 Eur. Phys. J. C           (2022) 82:441 

Table 6 Branching ratios of the quasi-two-body decays B0
s →

ψ(3686)K
∗0

(→ K−π+) under the 2S–1D mixing mechanism calcu-

lated using the pQCD factorization approach. The first three uncertain-
ties are derived from the uncertainties in the previous tables, whereas
the last one is derived from the mixing angle

Decay mode θ = (−12 ± 2)◦ θ = (27 ± 2)◦

B0
s → ψ(3686)K

∗
0(1430)0(→ K−π+) B (10−6) 2.87+1.36+0.50+0.09+0.21

−0.85−0.43−0.05−0.21 5.39+2.36+0.49+0.07+0.03
−1.52−0.44−0.04−0.03

B0
s → ψ(3686)K

∗
(892)0(→ K−π+) B (10−5) 2.26+1.06+0.92+0.11+0.08

−0.78−0.77−0.07−0.08 2.95+1.18+1.25+0.12+0.07
−0.86−1.03−0.08−0.07

f0 (%) 45.6+23.9+12.4+1.8+1.8
−16.8−11.1−0.9−1.3 36.3+22.0+7.8+1.7+0.7

−14.6−7.5−1.0−1.0

f‖ (%) 26.1+11.5+15.0+1.3+0.9
−8.8−12.8−0.9−0.9 29.8+8.1+17.6+1.0+0.7

−7.1−13.9−0.7−0.7

f⊥ (%) 28.3+11.5+13.3+1.8+0.9
−8.8−10.2−1.3−1.3 33.9+9.8+16.9+1.4+1.0

−7.5−13.6−1.0−0.7

B0
s → ψ(3686)K

∗
(1410)0(→ K−π+) B (10−7) 4.16+1.41+1.63+0.20+0.16

−1.14−0.90−0.11−0.18 5.66+1.73+2.49+0.21+0.09
−1.39−1.52−0.11−0.08

f0 (%) 47.4+17.5+10.8+1.4+1.7
−13.5−9.4−0.7−1.7 37.6+14.8+6.2+1.2+0.7

−11.5−5.4−0.5−0.9

f‖ (%) 25.2+7.9+14.2+1.2+1.0
−6.7−10.3−0.7−1.2 29.9+6.7+17.1+0.9+0.5

−5.8−12.9−0.5−0.4

f⊥ (%) 27.4+8.4+14.2+2.2+1.2
−7.2−1.9−1.2−1.4 32.5+9.0+20.7+1.6+0.4

−7.2−8.5−0.9−0.2

B0
s → ψ(3686)K

∗
(1680)0(→ K−π+) B (10−7) 1.60+0.56+0.59+0.10+0.06

−0.42−0.37−0.05−0.06 2.18+0.68+0.93+0.11+0.05
−0.52−0.60−0.06−0.04

f0 (%) 46.3+18.1+10.6+1.9+1.3
−13.1−9.4−1.3−1.9 37.2+15.1+6.4+1.4+0.9

−11.5−5.5−0.9−0.9

f‖ (%) 25.0+8.1+14.4+1.3+1.3
−6.3−10.0−0.7−0.7 29.4+6.9+18.3+1.4+0.5

−5.5−12.4−0.5−0.5

f⊥ (%) 28.7+8.8+11.9+3.1+1.3
−6.9−3.8−1.3−1.3 33.4+9.2+17.9+2.3+0.9

−6.9−9.6−1.4−0.5

B0
s → ψ(3686)(K−π+)P B (10−5) 2.53+1.10+0.95+0.11+0.08

−0.77−0.75−0.07−0.09 3.24+1.20+1.25+0.12+0.07
−0.89−1.03−0.09−0.07

f0 (%) 44.7+22.5+11.9+1.6+1.6
−14.6−9.9−0.8−1.6 36.4+20.4+7.1+1.5+0.6

−13.6−6.8−0.9−0.9

f‖ (%) 26.5+10.3+13.8+1.2+0.8
−7.9−11.1−0.8−0.8 29.9+7.4+16.4+0.9+0.6

−6.5−12.7−0.9−0.6

f⊥ (%) 28.8+10.7+11.9+1.6+0.8
−7.9−8.6−1.2−1.2 33.7+9.3+15.7+1.2+0.9

−7.4−12.3−0.9−0.6

B0
s → ψ(3686)K

∗
2(1430)0(→ K−π+) B (10−6) 2.79+1.09+1.73+0.06+0.08

−0.80−1.30−0.03−0.07 2.98+1.03+1.70+0.05+0.07
−0.80−1.31−0.03−0.07

f0 (%) 40.5+15.4+25.1+0.7+1.1
−11.5−18.3−0.4−1.1 36.9+15.1+23.8+0.7+1.0

−11.1−17.8−0.3−1.0

f‖ (%) 33.0+12.9+20.1+0.7+1.1
−9.3−15.4−0.4−0.7 33.6+11.1+18.1+0.7+1.0

−8.4−13.8−0.3−0.7

f⊥ (%) 26.5+10.8+16.8+0.7+0.7
−7.9−12.9−0.4−0.7 29.5+8.4+15.1+0.3+0.3

−7.4−12.4−0.3−0.7

Considering the Clebsch–Gordan coefficients, we can write the
following relation:

∣∣∣∣Kπ, I = 1

2

〉
=

√
1

3
|K0

π0〉 −
√

2

3
|K−π+〉. (63)

In our calculation, for the quasi-two-body decay B0
s →

ψK
∗0 → ψK−π+, isospin conservation was assumed for the

strong decays of an I = 1/2 intermediate resonance K
∗0 to Kπ ,

which can be expressed as follows:


(K
∗0 → K

0
π0)


(K
∗0 → Kπ)

= 1

3
,

(K

∗0 → K−π+)


(K
∗0 → Kπ)

= 2

3
. (64)

Therefore, the branching ratios of B0
s → ψ(2S, 1D)K

∗0
(→

Kπ) and B0
s → ψ(3686, 3770)K

∗0
(→ Kπ) decays can be directly

extracted under the narrow-width approximation relation

B(B0
s → ψK

∗0 → ψK−π+) = B(B0
s → ψK

∗0
)

·B(K
∗0 → Kπ) · 2

3
. (65)

A comparison of the branching ratios for ψ(3770) decay modes
when the mixing angle is set to θ = −12◦ and θ = 27◦ reveals
a significant difference between the two choices, which can be
attributed to the visibly small decay constant of ψ(1D) compared
to that of ψ(2S). These results are in accordance with the analyses
presented in other studies [16,17,50,53,54]. In addition, when the
2S–1D mixing scheme is considered for the B0

s → ψ(3686)K−π+
decay, the numerical result is slightly different from that of the
B0
s → ψ(2S)K−π+ decay, indicating that the ψ(3686) state might

be deemed the ψ(2S) state. Further, according to Eqs. (59) and (60),
the reason for the markedly different sensitivity of the ψ(3686) and
ψ(3770) decay modes to the change in the mixing angle under
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Table 7 Branching ratios of the quasi-two-body decays B0
s →

ψ(3770)K
∗0

(→ K−π+) under the 2S–1D mixing mechanism calcu-

lated using the pQCD factorization approach. The first three uncertain-
ties are derived from the uncertainties in the previous tables, whereas
the last one is derived from the mixing angle

Decay mode θ = (−12 ± 2)◦ θ = (27 ± 2)◦

B0
s → ψ(3770)K

∗
0(1430)0(→ K−π+) B (10−7) 26.46+10.50+1.21+0.53+2.11

−7.18−1.75−0.31−2.10 1.30+0.49+0.31+0.08+0.37
−0.28−0.16−0.05−0.22

B0
s → ψ(3770)K

∗
(892)0(→ K−π+) B (10−6) 10.29+3.25+6.60+0.63+0.78

−2.45−4.17−0.26−0.79 3.11+2.22+3.16+0.36+0.41
−1.46−1.78−0.24−0.38

f0 (%) 17.4+12.8+1.0+0.8+3.7
−8.7−0.6−0.4−3.7 38.9+12.9+20.6+1.9+7.7

−8.0−16.1−1.3−7.1

f‖ (%) 40.7+8.2+31.0+2.0+1.6
−6.9−18.8−1.7−1.7 38.9+34.1+45.0+5.8+3.2

−24.8−25.1−3.9−2.9

f⊥ (%) 41.9+10.6+32.2+3.3+2.3
−8.2−21.2−2.4−2.3 22.2+24.4+36.0+3.9+2.3

−14.1−16.1−2.6−2.3

B0
s → ψ(3770)K

∗
(1410)0(→ K−π+) B (10−8) 18.13+5.31+12.56+1.18+1.72

−4.13−7.34−0.85−1.65 4.70+2.11+3.18+0.27+0.73
−1.55−1.67−0.21−0.60

f0 (%) 19.8+9.2+1.3+2.9+3.8
−6.9−0.1−2.6−3.6 38.5+10.9+18.1+1.1+9.6

−8.7−16.0−0.6−8.5

f‖ (%) 40.4+9.2+28.6+1.0+2.4
−7.4−19.8−0.7−2.3 39.6+23.8+32.6+1.5+3.0

−17.2−12.6−1.1−2.3

f⊥ (%) 39.8+10.9+35.4+2.6+3.3
−8.5−20.6−1.4−3.2 21.9+15.4+17.0+3.2+3.0

−7.0−6.8−2.8−1.9

B0
s → ψ(3770)K

∗
(1680)0(→ K−π+) B (10−8) 6.53+2.04+4.69+0.32+0.66

−1.57−2.85−0.22−0.62 1.73+0.85+1.29+0.14+0.29
−0.61−0.65−0.08−0.23

f0 (%) 19.9+10.1+1.1+2.5+3.8
−7.5−0.5−1.7−3.8 38.2+11.6+20.8+1.7+10.4

−8.7−16.2−0.6−8.7

f‖ (%) 40.3+9.6+34.5+1.1+2.6
−7.7−21.0−0.6−2.5 40.0+26.0+34.7+2.3+3.7

−18.5−13.9−1.2−2.3

f⊥ (%) 39.8+11.5+36.3+1.4+3.5
−8.9−22.2−1.1−3.2 21.8+11.6+19.1+4.0+2.9

−8.1−7.5−2.9−2.3

B0
s → ψ(3770)(K−π+)P B (10−6) 10.84+3.29+6.64+0.66+0.80

−2.48−4.20−0.49−0.78 3.38+2.25+3.19+0.36+0.42
−1.47−1.77−0.24−0.38

f0 (%) 17.6+12.4+1.0+0.9+3.6
−8.3−0.5−0.5−3.4 38.5+12.1+19.2+1.8+7.1

−8.3−14.8−1.2−6.5

f‖ (%) 40.6+7.8+29.5+1.9+1.6
−6.9−18.4−1.6−1.6 39.1+31.7+41.7+5.3+3.0

−22.5−23.1−3.6−2.7

f⊥ (%) 41.8+10.1+30.7+3.2+2.2
−7.7−19.9−2.5−2.2 22.4+22.8+33.4+3.6+2.4

−12.7−14.5−2.4−2.1

B0
s → ψ(3770)K

∗
2(1430)0(→ K−π+) B (10−7) 5.40+1.44+2.52+0.12+0.76

−1.19−1.95−0.09−0.69 3.29+1.17+1.73+0.11+0.74
−0.84−1.30−0.07−0.69

f0 (%) 25.7+12.8+18.1+0.9+5.9
−9.1−14.3−0.7−5.4 45.3+14.0+25.5+1.2+8.8

−10.9−18.5−0.6−8.2

f‖ (%) 32.8+7.0+13.5+0.7+4.4
−5.7−8.7−0.6−4.1 29.8+9.7+13.1+1.2+7.6

−7.3−10.9−0.9−7.3

f⊥ (%) 41.5+6.9+15.0+0.6+3.7
−7.2−13.1−0.4−3.3 24.9+11.9+14.0+0.9+6.1

−7.3−10.0−0.6−5.5

the 2S–1D mixing scheme can be understood as follows. Numer-
ically, A(B0

s → ψ(2S)K−π+) is much larger than A(B0
s →

ψ(1D)K−π+), and thus the former dominates the decay amplitudes
of both the ψ(3686) and ψ(3770) decay modes. The value of the
amplitude sin θA(B0

s → ψ(2S)K−π+) is greatly changed when
the mixing angle is switched between θ = −12◦ and θ = 27◦. On
the contrary, the amplitude cos θA(B0

s → ψ(2S)K−π+) is rela-
tively stable under this switch. Thus, the branching ratio of the decay

B0
s → ψ(3686)K

∗0
(→ K−π+) is stable under the switch between

the two values of the mixing angle, whereas the branching ratio of

the decay B0
s → ψ(3770)K

∗0
(→ K−π+) is highly sensitive to

the variation in the mixing angle. The running LHCb experiment is

an excellent place to detect decays B0
s → ψ(3686, 3770)K

∗0
(→

K−π+) with branching ratios of the order of 10−5 − 10−8, which
will help us gain a better understanding of the mixing mechanism
of the charmonium mesons.

5 Summary

In this work, we have studied the B0
s → ψ(2S, 1D)K

∗0
(→

K−π+) decays using the pQCD factorization approach by intro-
ducing the kaon–pion DAs. We considered the S-wave resonance
K

∗
0(1430)0, the P-wave resonances K

∗
(892)0, K

∗
(1410)0, and

K
∗
(1680)0, and the D-wave resonance K∗

2(1430)0. This study cov-
ers three types of polarization amplitudes, namely, longitudinal,
parallel, and vertical, which reflect the roles of the different polar-
ization conditions in the decay in terms of the polarization frac-
tions. Based on the 2S–1D mixing scheme, we have obtained the
branching ratios of the B0

s → ψ(3686, 3770)K−π+ decays by fit-
ting the decay amplitudes of the ψ(2S) and ψ(1D) decay modes.
Finally, the pQCD predictions for the B0

s → ψ(2S, 1D)Kπ and
B0
s → ψ(3686, 3770)Kπ decays have been obtained using a

narrow-width approximation relation.
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The pQCD predictions indicate that the K
∗
(892)0 resonance is

the main contributor to the total decay, and the branching ratios of
the ψ(2S) decay modes agree well with the existing experimental
data within acceptable errors. Our calculations show that the branch-
ing ratios of the ψ(3686) and ψ(2S) decay modes are very similar,
suggesting that they can be regarded as the same state. Theoretical
predictions for the branching ratios of the ψ(3686) and ψ(3770)

decay channels are of the order of 10−5 and 10−6, respectively,
which will be verified using the data from future experimental mea-
surements. The detected data will help us to gain a further under-
standing of the internal structures of the ψ(3686) and ψ(3770)

mesons.
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Appendix: Functions involved in the calculation

Important formulae used in the calculations are listed in this section.
The Sudakov exponents in the decay amplitudes are defined as

SB0
s

= s(xB p+
1 , bB) + 5

3

∫ t

1/bB
dμ̄

γq (αs(μ̄))

μ̄
,

SM = s(z̄ p+, b) + s(zp+, b) + 2
∫ t

1/b
dμ̄

γq (αs(μ̄))

μ̄
,

Sψ = sc(x̄3 p
−
3 , b3) + sc(x3 p

−
3 , b3) + 2

∫ t

mc

dμ̄
γq (αs(μ̄))

μ̄
,

(A.1)

where the Sudakov factors, s(Q, b) and sc(Q, b), have been derived
from the resummation of the double logarithms. Their specific
expressions can be found in Refs. [55,56].

The parameterized expression of the threshold resummation
function St (x) is [57]

St (x) = [x(1 − x)]c 21+2c
( 3
2 + c)√

π
(1 + c)
, (A.2)

where c = 0.04Q2 − 0.51Q+ 1.87 and Q =
√
M2

B0
s
(1 − r2) [58].

The hard scattering kernel functions hi in the decay amplitudes
have been derived from the Fourier transform of the virtual quark
and the gluon propagators, which can be specifically expressed as

ha(xB , z, bB , b) = K0(MB0
s
bB

√
(1 − r2)xBz)[θ(b − bB)

I0(MB0
s
bB

√
(1 − r2)z)K0(MB0

s
b
√

(1 − r2)z)+(bB ↔ b)],

hb(xB , z, bB , b) = K0(MB0
s
b
√

(1 − r2)xBz)

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ iπ2 θ(b − bB)J0(MB0
s
bB

√|κ|)H (1)
0

(MB0
s
b
√|κ|) + (bB ↔ b)], κ < 0

[θ(b − bB)I0(MB0
s
bB

√
κ)K0

(MB0
s
b
√

κ) + (bB ↔ b)], κ ≥ 0

hc(xB , z, x3, bB , b3) = [θ(b3 − bB)I0

(MB0
s
bB

√
(1 − r2)xBz)

K0(MB0
s
b3

√
(1 − r2)xBz) + (bB ↔ b3)]

×
{
iπ
2 H (1)

0 (MB0
s
b3

√|β|), β < 0

K0(MB0
s
b3

√
β), β ≥ 0

hd (xB , z, x3, bB , b3) = hc(xB , z, x̄3, bB , b3),

(A.3)

where κ = (xB−η)(1−r2) and β = r2
c −(x̄3r

2+(1−r2)z)(x̄3η̄−
xB). I0 , K0 are the modified Bessel functions and J0 is the Bessel

function with H (1)
0 (x) = iY0(x) + J0(x).

To eliminate the radiative corrections of large logarithms, the
hard scales, ti , in the decay amplitudes are chosen as

ta = Max

{
MB0

s

√
(1 − r2)z,

1

bB
,

1

b

}
,

tb = Max

{
MB0

s

√|κ|, 1

bB
,

1

b

}
,

tc = Max

{
MB0

s

√
(1 − r2)xBz, MB0

s

√|β|, 1

bB
,

1

b3

}
,

td = tc|x3→x̄3 .

(A.4)
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