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Abstract Based on the perturbative quantum chromody-
namics (pQCD) approach and the quasi-two-body approx-
imation, we have studied the three-body decays B? —
¥ (3686, 3770)Kmr, which include the contributions of the
intermediate resonances K, (1430)°, K*(892)°, K*(1410)°,
K"(1680)°, and K, (1430)°. The time-like form factors cor-
responding to the distribution amplitudes of the S-, P-, and
D-wave of the kaon—pion pair were adopted in parameterized
form, and describe the interactions between K and 7 in the
resonance region. First, the decays B? — Y(2S,1D)K~nt
were calculated, followed by the calculation of the branch-
ing ratios of the decays Bg — ¥ (3686,3770)K~ ™+ using
the 2S—1D mixing scheme. In addition, the pQCD predic-
tions for the decays B — (25, 1D)Kw and BY —
¥ (3686, 3770)Kmr were obtained using the narrow-width
approximation relation given by the Clebsch—Gordan coef-
ficients. Our work shows that the K (892)O resonance is
the main contributor to the total decay, and the branch-
ing ratio and the longitudinal polarization fraction of the
w(ZS)E* (892)0 decay mode agree well with the currently
available data within errors. Furthermore, the theoretical pre-
dictions of the ¥ (2S) and v (3686) decay modes are very
close, indicating that they can be regarded as the same meson
state. Finally, the pQCD predictions for branching ratios of
decays B? — (3686, 3770)K7 are of the order of 10~ and
1079, respectively, which can be verified using the ongoing
LHCDb and Belle II experiments.

1 Introduction

In recent years, studies on B-meson decays have attracted
increasing attention, as they enable the testing of the standard
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model (SM) and enrich the field of quantum chromodynamics
(QCD). The three-body decays of the B meson involve both
resonant and non-resonant contributions. Thus their calcula-
tions are more complicated than those for two-body decays.
Because of mutual interferences between the resonant and
non-resonant states, it is difficult to calculate them separately
[1]. Based on the symmetry principles and factorization theo-
rems, a few theoretical models for calculating the three-body
decay have been developed. In this study, we have adopted
the widely used perturbative QCD (pQCD) factorization
approach [2-5]. The color-suppressed phenomenon occurs
when a Bg meson decays into a kaon—pion pair and a charmo-
nium. Thus, it is helpful to study the BY — (28, 1D)Kn
decays. Recently, significant advances have been made in
the research on heavy quarkonium generation mechanisms
[6]. The Large Hadron Collider beauty experiment (LHCb)
collaboration has detected the B? — Y (2S)K 7 decay [7]
and found that the main source of the decay branching ratio is
the K" (892)° resonance. These advances have allowed us to
reliably calculate and test the B? — ¥ (28, 1D)Kr decays.

The pQCD factorization approach was proposed based on
the k7 factorization theorem [8—10]. In this approach, a three-
body problem can be simplified to a quasi-two-body problem
by introducing two-hadron distribution amplitudes (DAs)
[11,12]. The predominant contributions in the decay pro-
cess are from the parallel motion range, where the invariant
mass of the double light meson pair is lower than O(AMp),
and A = Mp — my, represents the mass difference between
the B meson and the b-quark. Thus, the pQCD factorization
formula for the three-body decay of the B? meson can be
generally described as [9,10]

A='H®¢B§) ®¢h3 ®¢h1h2» ey

where the hard decay kernel, H, represents the contribution
of the Feynman diagram with only one gluon exchange in the
leading order, which can be calculated using perturbation the-
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ory. The terms 4’39’ ¢ny, and ¢y, p, represent the wave func-
tions of B?, h3, and the &1 h» pair, respectively. They are con-
sidered as non-perturbative inputs, which can be constructed
by extracting the relevant experimentally measured quanti-
ties or calculating them using the non-perturbative model.

Although the decay BY — /(3770)Km has not been
observed experimentally, the mixing structure of ¥ (3770)
can be investigated by making a theoretical prediction for
this decay channel. Since the charmonium mesons ¥ (3686)
and ¥ (3770) are regarded as 2S5—1D mixed states, the decays
BY — ¥ (25)Km and B — v (1D)Krm should first be cal-
culated, and then the fitting should be performed based on the
2S-1D mixing scheme to obtain the branching ratios of the
decays B‘? — (3686, 3770)Km. The (1 D) state denotes
the orbital quantum number / = 2 and the principal quantum
number n = 1, and 1 (2S) is the first radially excited state
of the charmonium meson.

The 2S—-1D mixing angle, 6, is related to the ratio of the
lepton decay widths of ¥ (3686) and v (3770) [13], and its
value can be obtained from the fitting of the non-relativistic
potential model [14—16]. The theoretical prediction for the
B — ¥ (3770)K decay is in line with the experimental
measurement when higher-twist effects are considered and
the 2S-1D mixing angle of 8 = —(12 £ 2)° has been
adopted [17]. In addition, two mixing angle options, namely,
6 = (27 £ 2)° and & = —(12 & 2)°, have been offered
[14-16]. Based on these views, ¥ (3686) and 1 (3770) can
be represented as follows [16,18]:

¥(3686) = sin 0]cé(1D)) + cos 0|cc(2S)),

¥ (3770) = cos 0]cé(1D)) — sin 0]cé(2S)). @

The branching ratio is affected by the width of the reso-
nant state and the interactions between the final-state meson
pair, especially the direct CP violations. Hence, introducing
an intermediate resonance, FO, is more appropriate [19-
21]. We consider the contributions of the S-, P-, and D-wave
resonances from the kaon—pion pair in the quasi-two-body
decays B‘? — (28, 1D)(I_{*0 — ) K. In this work, the con-
tributions of the following five intermediate resonances are
included: K, (1430)°, K*(892)°, K* (1410)°, K" (1680)°, and
E;(1430)0. According to Eq. (1), ¢, denotes the wave func-
tions of the charmonium v, and ¢y, ,, represent the various
partial-wave functions of the kaon—pion pair, such as S-wave
K, (1430)°, P-wave K (892)°, and D-wave K,(1430)°. We
refer to the study by Rui and Wang [22] to obtain the infor-
mation for the S-wave DAs. For the P-wave, there are three
possible polarizations: longitudinal, parallel, and perpendic-
ular amplitudes. Hence, we consider both the longitudinal
and transverse polarization cases of the P-wave DAs. The
P-wave DAs have been described analogously to the two-
pion DAs [23], which include the longitudinal polarization
fraction and the flavor-symmetry-breaking effect. At present,
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studies on the D-wave DAs are inadequate, and thus we have
adopted the method used in the study by Rui et al. [24] to
construct the D-wave DAs using a similar method of the KK
pair.

The contents of this paper are organized as follows. In
Sect. 2, we describe the computational framework and pro-
vide alist of the wave functions involved in this work. Expres-
sions for the various decay amplitudes associated with the
theoretical calculations are presented in Sect. 3. Section 4
presents the numerical results and the related discussion. The
study is summarized in Sect. 5.

2 Computational framework

The weak-effective Hamiltonian of the B? — (28, ID)E*O
(— K~m™) decays is expressed as [25]

G
Heft = { 5 Vea[C101 + C201]

V2
10

—ww@[E:QOJ}, 3)
=3

where V3 Vg and V; V4 are the Cabibbo—Kobayashi—
Maskawa (CKM) factors, O; is the localized four-quark oper-
ator, and C; is the Wilson coefficient corresponding to the
quark operator.

To simplify the calculation, we have chosen to describe the
decay process in the light-cone coordinate system. Assuming
that the initial state of the BY meson is stationary, the char-
monium (2S5, 1 D) and the K pair move in the directions
of the vectors v = (0,1,07) and n = (1,0, 07), respec-
tively. The Feynman diagrams of the decay are depicted in
Fig. 1. pg, p, and p5 represent the momenta of the BA(,), f*o,
and ¥ (25, 1 D) mesons, respectively.

pp = 72‘(1, 1,07),
MBO
= —=(1—-r%n,07), )
p ﬁ n,Ur
MBO
p3= \/zs(rzvl_n»OT)'

In addition, the momenta of the light quark corresponding

to the B?, E*O, and ¥ (28, 1 D) mesons, respectively, are as
follows:

k (0 Mo & )
B = , ——XB,KBT |,
V2

MB()
k= Szl—ﬂ,ak>,
(ﬁ ( ) T
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Fig. 1 Feynman diagrams of (2S.1D)
the BY — y(25, 1D)(K"" —
YK~ m* decays
I_) « @ < L <
1\_ T (
(b)
(© (d)
. M po N Mo (1 = mxs. k ) ¥ (3770) states. This form has been successfully applied to
3 V2 3 V2 38T ) many charmonium mesons, such as ¥ (25), ¥ (3S), and J /v
0 . [18,30-32]. The longitudinally and transversely polarized
where Mg represents the mass of the B HESOH’ My is the wave functions of ¥ (25) and v (1D) are expressed as fol-
mass of the charmonium ¥ (28, 1D), r = 3; V’O , the variable  Jows [23,31,32]:
B

s

n=w>/(M 12;0 — sz), and w represents the invariant mass

of the kaon—pion pair, which conforms to the relationship
W = pz. XB, z, and x3 are the proportions of the momenta

of the spectator quark inside the B?, f*o, and ¥ (2S5, 1D)
mesons, respectively, with values in the range of [0, 1].

Then, the momenta p; and p, are defined in the kaon—pion
pair as follows:

p1=pT 01 =OpT pip),

6
py = (1 =0p*, ntp™, pap). ©

The variable { = i—]:: depicts the distribution of the longitu-

dinal momentum of the kaon with p%T = p%T =(1-¢)¢w’.
The B? meson is considered a heavy-light model, and its

wave function is expressed as [26-28]

Spe

The DA ¢, (xp, bp) is expressed as

B, (xp, bp) = Npxp’ (1 — xp)*

Mpoxs?

X exp [ - - —(CUBbe)21|, 3

20)1235 2

(Pp + Mpo)ys¢s, (x5, bp). @)

where Np is the normalization factor, and its value can be
obtained using the normalization relation fol dxpop, (xp,
bg = 0) = fgo/(24/2N,). Here, the color factor N, = 3,
and we select the shape parameter wp, = 0.50 & 0.05 GeV
[29].

We have applied the wave function form described on
the basis of the harmonic oscillator for the 1 (3686) and

1

ol = To M ALY (x3, b3)+ ¢51 P30 (x3, b3)], o
1

P, = ﬁ[Mw hrv " (x3,b3)+ éhr pav " (x3, b3)],

where p5 represents the momentum of the (2S5, 1 D) meson

and My is its mass. The longitudinal polarization vector
BY

€1 = y

. 3L . ﬁM“/l . .

ization vector €37 = (0, 0, 17). The twist-2 and twist-3 DAs

are as follows [18,31]:

(—=r?,(1 — 1),07) and the transverse polar-

YT (i, by) = JOSID VLT 7y

2J2N.
—\2
X exp |: — )@,%ﬂ |:w2b§ + <x3 7x3> ]:|,
w 2x3X3
(10)
Vi3, b3) = Zi;%l\’t(& —%3)°Z(x3)
= \2
X exp [ — )C3X3ﬁ |:w2b§ + <x3 7x3> ]]
w 2X3X3
(1)
vV (x3.b3) = %Nm + (3 — 53)°1Z(x3)
N
X exp [ — x3}3& |:w2b§ + <x3 7x3) ]],
w 2x3X3
(12)

where 7 (x3) = (ﬁ — n1cu)b§)(6x‘31 — 12x% + 7x§ —x3) —

_ 2 —

% for Y(1D) and Z(x3) = 1 — dmewxs¥sb3 +

me(1-2x3)2
wXx3X3

for ¥ (2S). We have selected the shape param-
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eters wip = 0.5 £ 0.05 GeV [18] and wrg = 0.2 £ 0.1
GeV [31]. The normalization factor N'(i = L,T,t,V) can be
obtained using the normalization relationship fol 1//5 (x3,b3 =

0)dxz = f;% Equations (10)—(12) are symmetric under
the transformation of x3 <> X3.
A form similar to the two-pion DA has been adopted for

the S-wave of the kaon—pion pair DA [33]:

1 '
(DS = \/2—T¢[ﬁ¢g(zv é" w2) + a)d)g'(z’ g" wz)

+o v — Dek(z, £, 0] (13)

The subscripts S, P, and D denote the corresponding sub-
waves, respectively, in the following description.

Using the description given by Wang et al. [34], the twist-2
DAs have been described in a form similar to the scalar meson
[35,36], whereas asymptotic forms for the twist-3 DAs have
been adopted in this work. They can be expressed as follows:

6
P9z, ¢, %) = 2\/WFs(wz)(z —2%)
C
1
x [% +B,C () + B3C§/2(t)i|, (14)
Ky 2 1 2
5z, 8, 07) = 2¢WFS(Q) ), (15)
C
1
Pz ¢ o) = 5 mmﬂ)(l - 22). (16)
C
The Gegenbauer polynomials are C?/ 2(t) = 3tand Cg/ 2(t) =
3(7t3 — 3t) with = 1 — 2z. In addition, y5 = T i

and my represent the corresponding current quark masses,
and the Gegenbauer moments are By = —0.57 £ 0.13 and
B3 = —0.42 £ 0.22 [35,37,38].

For the time-like scalar form factor, Fg(a)z), we have
adopted the parameterized fitting results of an improved
LASS (Large Aperture Superconducting Solenoid) line type
presented by Aston et al. [39]. Fs(w?) is expressed as [34]

m?io
Fs(0?) = 0"?0‘21, A vy — w(s -, (17)
mo—a)z—zmof% | p1 | [cot(p) — ]
al pi | 1
cot(8g) = + —. (18)
2 I p1|

In Eq. (17), the first term contains the resonant contribu-
tion with a phase factor to maintain unitarity, and the second
term is an empirical term of the elastic Km scattering. I'g
and m represent the width and the pole mass, respectively,
of the Eg(1430)0 resonance, | ﬁ | represents the momen-
tum of the decay product of the intermediate resonance, and
| ]76 |=| ﬁ | is available when w = my«0.a = (7.0 £2.4)
GeV-landl = (3.1 £ 1.0) GeV~! are the effective range
and the scattering length, respectively, which are universal in
describing the K meson pair.

@ Springer

According to Li et al. [40], the P-wave kaon—pion DAs
related to the longitudinal and transverse polarizations can
be expressed as

1 [ S
ok = oA PPz, . 0%) + w0dh (2. ¢, 0?)
+ 7’{;’2;?21?‘ ¢ (2, ¢, wz)],
_ (19)
oF = L |ys o pol (e £ o) + wps S . gL o)
P m i Pl 5 P S
wvpa vP —o
+io— LT g {,a)z)].

The different twists in Eq. (19) when expanded using the Gegen-
bauer polynomial have the specific forms as follows:

3
PP (2.0, %) = WF}L(&)(Z — 2%
><|:1 +3ta) o + %(5:2 - l)agw]
Q¢ —a—1), (20)
3
Pz, ¢, 0%) = 2WF,%(w2)[z(1 +tai)
—(2z —2z%)ag;12¢ — 1), 1)
3
Pp (e £ 0") = S Fp @D + Br' = najj]
¢ - 1), (22)
3
P52 ¢ %) = o Fp(o®)(z — 2%
X |:1 + SIaf‘K* + %(St2 - 1)a§‘K*i|
¢ -2, (23)
3
$p (2. ¢ ) = 4WF}L(w2)[t(1 +al )
—2z —220al 1 - ¢2, (24)
Po(z, ¢, %) = 8¢ZTFE’(“’2)[1 + 12 +t3a'1‘v]

Ve—1¢2 (25)

The SU(3) asymmetry factor o« = (m?{i - mii)/a)z, and the

Gegenbauer moments ai‘K* =0.2+0.2, agk* =0.5+0.5, alJ-K,K =

1 _ 1 _ 1 _ I _
0.3 iHO.S, a5 =0.84+0.8, af; = —0.2,ai; =02,ay, =03

and aj, = 0.3 [40] have been adopted in this work.

The time-like shape factor, Fllll,(wz), of the P-wave is expressed
as [41]

2
CUM g (892)0

l, 2
Fp(w®) =

P .
Mies (892)0 ~ w? — M g+ (892)0 I (w?)

2
com
K*(1410)0
+ (1410)

2 2 _ 2
mK*(1410)0 - w- — lmK*(1410)ol"2(a) )
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€3 16500 99z, 0,01 = ——Fh@H 0z - 1)}
+— o o) (26) 22N,
M (16800 ~ @7~ Mk (168003 (@) - 5

xaj ¢ — /¢ —¢2, (34)

The three terms added together are derived from the K*(892)0, ) 3 1 2 5

K*(1410)°, and K*(1680) resonant states, and their corresponding ~ #p (2, ¢, @”) = _2«/WFD(CO )(1 — 6z +627)

weight coefficients are c; = 0.72,¢p = 0.134,and ¢3 = 0.143 [40], ¢

respectively. xalT(Zg — /¢ —¢2 (35

The mass-related width is given by

. — (2Lg+1)
mi\ (17|
F,-(wz):n-( )( = ) ,
© J\| po |

where I'; and m; denote the width and the pole mass, respectively, of
the corresponding resonance, and Lg represents the orbital angular
momentum, with values of 0, 1, and 2 for the S-, P-, and D-wave,
respectively. According to the study by Wang and Li [19], the fol-
lowing relation can be obtained

27)

Fp@?)  fi

)  fi

(28)

wheref1T<* = 0.185 £ 0.010 GeV and fg+ = 0.217 £ 0.005 GeV
[29]. We have adopted the procedure from the work by Li et al. [40];
studies on the decay constants of K*( 1410)0 and K*(1680)° are
limited, and thus we have used the two decay constants of K* (892)0
to determine the ratio fIT<* /fix-

A form similar to the two-kaon DAs has also been considered in
the D-wave kaon—pion DAs [24]:

ok — [2_ L [ 0 2 s 2
D — gﬁ-ﬂ¢D(Z» gsw )+CU¢D(Z,§,CU )

hnh-nh
o2t - 1)
1 1 T
<I>£ = \/gm Vs 6T ]M’{)(Z, §’w2)
+oys rdth (2. ¢, w?)
E”U’OUVMETUPIOnf(T
P -n_

NENS wz)],
(29)

+iw oh(, ¢, a)z):|,

where the coefficient \/g (\/g ) comes from the different definitions
of the polarization vector between the vector and tensor mesons in
the longitudinal (transverse) polarization.

The different twists in the D-wave DAs are [24,42-44]

° Al )i — Dz - 1)

V2N; P

xa)(1 — 67 4+ 6¢%),
9

42N.

xad(1 — 67 +6¢%),
9

42N,

xa(1 —6¢ +6¢2),

PNz ¢ 0?) =

(30)

¢35z, ¢ %) = — Fh (@) (1 — 6z +62%)

(3D
Fp (@) 2z — 1)(1 — 62 + 62%)

P (2. ¢ %) =

(32)

oLz, ¢, 0%) = Fp(@®)(z — 22z - 1)

9
V2N;

xal (2¢ — 1)y/¢ —¢2, (33)

The Gegenbauer moments are a? =04 =£0.1 and alT =08+
0.2, and a form similar to Eq. (26) has been adopted for the time-

like shape factor, Fg (wz). Furthermore, the approximate relation
Fﬁ(a)z)/F%(wz) A f[7;,£(1430)/fK»2k(1430) can also be found, with

T — —
f@(1430) = 0.077 £ 0.014 GeV and fgx(1430) = 0.118 + 0.005
GeV [42].
The differential decay ratios for the BY — v (25, 1D)K~

decays in the BY meson rest frame can be written as

YA

i=0,[,L

dB  Tpo@ | P11 P

do 3207 M o)’ (36)

where the three-momenta of K~ and ¢ (2S, 1 D) in the kaon—pion
center-of-mass system are expressed as

I
1P |= Z\/w4 + my +mh — 2(@?my + @?m + mgm?2),

I
| B3 |= 5 Mio + My + 0 = 2MR M}, + MEyo? + M} 7).

(37

The terms Ag, A, and A represent the longitudinal, parallel,
and perpendicular polarization amplitudes, respectively. The related
expressions are

Ap = Ag,
A = V2 Ay, (38)
Al =~2Ar7,

where the subscripts L, N, and T denote the longitudinal, normal,
and transverse polarizations, respectively. The polarization fraction
is defined as

| A; 2

= , 39
[ Ag >+ 1A 12+ AL 1 %)

Ji

with the normalization relation fy + f + f1L = 1.

3 Decay amplitudes

Based on the pQCD approach, the decay amplitude of Bg —
Y28, 1D)K nt is

Gf LL LL
ALNT = Wi |:V:bVCd (@1 F 7+ CaMp 1) = Vi Via
X (azFILJ’LN‘T + a3FIL‘{eN’T + (Cq + CIO)MIL‘{JN,T

+(Co + Cg)Mi{)N’T):|, (40)

@ Springer
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where F and M represent the factorization and non-factorization
contributions, respectively. The superscripts LL and LR denote the
weak vertices of the operators, and SP is the Fierz transformation
of LR. For the S-wave, the amplitude is only a longitudinal polar-
ization. The total decay amplitudes of the P-wave and the D-wave
are decomposed into

M (S) =

A= Ap + Aner - €37 + iATeaﬁpgnﬂ‘_néegegT. 41)

The decay amplitudes of the longitudinal polarization are as fol-
lows:

FEE(S) = 8nCr fy Mgg,

1 00
X/ dedZ/ bgbdbgdb(ﬁgv(xlg,bg)
0 0 :

)AL =m0+ (1 —2r%)2) — r?)pd

+y (=2l =2z —n+2nz

—(1 =2z +2n2)r?)

X (9% + ¢%) + 2r2 LT X s (1)
expl—Sp0(ta) — Sp (ta)]

xSt (2)hq(xp, z, bp, b)

2 = n+ (0 —xp)r1(d — r?)ed

+2,/(1 =2l — 0 —r2(1 — xp)1$3]

xatg (1) expl—Sgo (1) — Spr (1)11

(le - 77|)hb(va vaBsb)}v (42)
FER(S) = FEE(S), (43)
MR (S) = ey Critiy / ! dupdads ment
L VN, b TP

o0
x /0 bibsdbgdbsds, (s, bp)

){[(1 =2 = I — xp — x3)
(1 =72 + (1 —2r)x3
14z —z))vlx3. b3)

+(1 = rrey (x3, b3)19 FEL(P) =
/A =2l =Pz + 20 — x3)r?
—xpr?) (1 — ne
—((1 =)zl =) + xprD)ei1vE (3, b3)]
xag (fc) eXp[—SBAg (te) = Sy (te) — Sy (te)]
hc(xB, Z, X3, bB? b3)
(A =r? =g —z 4272
—(1 472 = a3y L (xs, b3)
(1= mrrey! (x3, 6109 — /(1 — r2nl((xpr?
—@x3r? + (1 =) (1 — m)vl(xs, b3)
+4(1 = prrey’ (x3, b3)) P
—(epr? + (1 =z = )yl (s, b3)e5N FiRp) =
x o (tg) exp[—Sgo(tg) — Sy (tq)
. MEEP) =
=Sy (ta)1hg(xB, 2, x3, bp, b3)}, (44) N
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AL(P) = AL(S)|¢g,s

2
Ap(D) = \/;AL(S)|¢‘S’*S—>¢gs,¢g—>(1—rz)¢ﬁ)'

The decay amplitudes of normal polarization are as follows:

32w CrMp, /1
_ dxpdzdxs
~/2Ne 0
o0
x fo bybydbpdbspp, (xp. bg)

X{[(1 =0 —rHIA = x3)A +7r2 =) —xp
+z(1 = P2yt (a3, b3)
—(1 = yrrey’ (x3, 53)109

+y/ (1= r)nl((1 = (2 = Dz — xpr?)
o3t (a3, b3)

HIA = (2 = Dz —2(1 — x3)r%)
+xpr) vk (xs, by)

+4(1 = mrrey’ (x3, b3)1¢51]

xas (1) expl—S po (tc) — Sy (te) — Sy (1c)]
he(xp, z,x3,bp, b3)

H( =2 = (g —zm (1 —r?)
+x3(n — 1+ r2(1 = 2p) vt (x3, b3)

—(1 = myrrey’ (x3,b3)164

0=l = 21— )+ xpr)03

H(z 4 2x3r2 —zrH( = 1)
+xpr)ellvl (3, b3)]
xas (tq) expl—Sgo (ta) — Sna (ta) — Sy (t)]

hq(xp,z,x3,bp, b3)}. 45)

Ay (P) and Ay (D) can be expressed by the following replace-

=0 P (I=12) 6

1
SJTCFf,/,M;;?r/O dxpdz

o
X/ bBbdedbd)Bs(XB,bB)
0
{02 = 1= (1 =2z + 2zrD)m)p

+M((zr2 —2-2)¢% +z(1— r2)¢}’3)]

xds (ta) eXP[—SBg (ta) — Sy (ta)]
St (Z)hd (st <5 bB7 b)

/A=l + 1 —xp —rH)¢}

+(1+xp —n—r)pY]
xats (1) expl—Spo (1p) — Sy (1p)]

xSt (Ixp — n)hp(xB, z, bp, b)}, (47)
FiE(P), (48)
—647CEM3, 11
— 5 | dxpdzdx

V2N, /0 B
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o0
x /0 bbsdbgdbsds, (vg. by)

x{[(x3 — xp + 20— x3mry” (x3, b3)
—(1 = mrey T (x3, b3) 105

+/ A =r)nlxp —x3 — 2 +x3mry (x3, b3)

+(1 = ey’ (x3,53)16%)

xats (1q) expl—Spo (ta)

—Sp(ta) — Sy (ta)lha(xp, z, x3, b, b3), (49)
M (P) = —MEF(P). (50)

Apn(D) can be expressed by the following replacement:

1
An(D) = \/;AN(P)l gl gTa- (51)

The decay amplitudes of transverse polarization are as follows:
1
FEEP) = 8nCr fy Mgor/ dxpdz
N O

)
X/ bpbdbpdbep (xp,bp)
0

{02 =14 (1 =2z + 2z}

U= = 2= 29 + 20 - 6]

xag(ta) eXP[_SB? (ta) — Sm(ta)]
St(2ha(xp,z,bp, b)

—J A =rDnl(1 +n —xp —rH)eh

+(1+xp —n—rHph]

xas (1) expl—=S po (1p) — S (1)]

XSt(|xB — nDhp(xp, 2, b, b))}, (52)
Ry = FELp), (53)
—6471CFM;‘39

7 (P) SN

1 oo
X / dedZdX?,/ bBb3dedb3¢BS(xBabB)
0 0

x{[(x3 —xp — 27— x3mry” (x3, b3)
—(1 = ey (x3, b3)195

(= Plep = x5 — 2+ x3mryY (. by)

+0 = mrey’ (x3,53)16 )

xats (1) expl—S g0 (ta) — Spa (ta) = Sy (1))

xhg(xp, z,x3,bp, b3), 54)
M3 Py = —MEE(P). (55)

Ar(D) can be expressed by the following replacement:

1
AT(D) = \/;AT(P) |¢£.a,v_>¢g,a.v . (56)

—i . The

The mass ratio r, = AZ’C
B0

expressions for the Sudakov exponents § BY (1), Sp (1), and Sy, (1),
the threshold resummation factor Sy (x), the scattering kernel func-

tions h;(i = a,b,c,d), and the hard scales #; are given in the
Appendix.

Vertex correction is performed on the factorization diagrams in
this work. According to the naive dimensional regularization (NDR)
scheme [45-47], the relevant Wilson coefficients are expressed as

Cy
ai(S) = C1+f+fC2[ 18 — 121n< )
9 mp

Ne¢

7+ (1 =rhg;l,

Cy Cro
ar(S) —C3+f+C +7+f(C4+C10)

[18—12ln< >—|—f1—|—(1—r2)gl]
my

) =Cs+ Lo+ B L3 oty
a = — — 4+ =
3 5 Ne 7 Ne o 6 8

x [6+ 121n<i) - r2)g1] ,
mp

(57
a(BD) = €y + 2 + & o158 - 121n(£) + 1
Ne 97w mp
Cy C
a)(PD) = Cg+—+c +ﬁ+—(C4+C1o)
N, Nc¢
x [—18— 121n<—> +fh],
mp
(D) = C5+ <8 4 ¢ +@+*(C +Cy)
as = (35 Ne 7 N, 8
« [6+ 121n<—> - fh]~
mp
(58)

The renormalization scale, u, has been selected to be of the order
of my,. The Wilson coefficients aj 2 3(S) were applied to the decay
amplitude .A(S) with only longitudinal polarization, and the hard
scattering functions, f; and g;, are given in Ref. [48]. Meanwhile,
the Wilson coefficients ay 2 3(P.D) were applied to the decay ampli-
tudes A(P,D) with both longitudinal and transverse polarizations,
the hard scattering function, f h comes from the vertex corrections,
and the superscript / denotes the polarization state 7 = 0 for the
helicity O state, and 4 = = for the helicity = states. The expressions
for fo and £ can be found in Ref. [49].

According to the 2S—1D mixing scheme, the decay amplitudes
of B? — (3686, 3770)K~ T can be constructed as

ABY — ¢ (3686)K ) = sin0 AB? — y(1D)K =)

+cosOABY — y 2K 7 T), (59)
AB? - v (3770)K 7 t) = cos 0 ABY — w(1D)K =)
—sin0ABY — y 2K ). (60)

4 Numerical results and discussion

The parameters used in the calculation are presented in Table 1,
which include the masses of the involved mesons, their decay con-
stants, the lifetime of the Bg meson, and the Wolfenstein parameters.
The pole masses of the quarks were adopted in this study [52].

@ Springer
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Table 1 Various parameters

used in the calculation [50-52] S

Mpgo = 5.367 GeV
my, = 4.75 GeV

My = 3.686 GeV
me = 1.4 GeV

My, = 3.77 GeV
mg = 0.494 GeV

my = 0.140 GeV

Decay constants
Lifetime of meson

Wolfenstein parameters

fpo =227.2 £3.4 MeV

A =0.836 £0.015

Svas = 2963 MeV Svap) =45.8 MeV

Tpo = 1.509 ps

- 0.012
A =0.2245340.00044 7 = 035570912

~ +0.018
p=0.12275413

Table 2 Pole masses and widths for the different resonances [41]

Resonance Mass Width

K*(892)° 895.55 £ 0.20 MeV 47.3 £ 0.5 MeV
K*(1410)° 1414 + 15 MeV 232 £ 21 MeV
K3(1430)0 1425 + 50 MeV 270 £+ 80 MeV
1(3(1430)0 1432.4 + 1.3MeV 109 £+ 5 MeV
K*(1680)° 1717 £ 27 MeV 322 £ 110 MeV

The data in Table 2 are taken from Ref. [41], and the relevant
information that should be considered in the study for the S-, P-,
and D-wave resonances is contained in the table. In this work, the
dynamic limit of the invariant mass of the resonance is mg +my <
< Mo — My In addition, although the mass of the K” (1680)°
resonance exceeds the upper limit, its decay channels should be
considered in the study because of its large width(I" g+ (1680)0 =
322 + 110 MeV).

The decay branching ratios of the f3(1430)0 resonance of the
S-wave were first calculated and the results obtained are given in
Table 3. The errors were derived from the shape parameter, wp,,
in the wave function of the BY meson, the Gegenbauer moments in
the DAs of the kaon—pion pair, and the hard scale #(0.9r ~ 1.17),
respectively. The errors in the following tables were analyzed in the
same order.

Next, the resonances of the P-wave were calculated considering
K (892)0, K (1410)0, and K" (1680)0, and the results thus obtained
are given in Table 4. The experimental measurement data B(B? —
Y (2K (892)°(— K~nF)) = (2.2 £ 0.3) x 107 was taken
from the article by Zyla et al. [51]. Our pQCD prediction agrees
well with it within errors.

Finally, the contributions of the 1?3(1430)0 intermediate reso-
nance of the D-wave were considered, and the calculation results
are presented in Table 5.

The theoretical prediction for the branching ratio of the B‘Q —
Y(2S)K~ T decay is 3671“}?21“}‘1‘?:8}8 x 1079 in this work,
which includes contributions from the intermediate resonances of
the S-, P-, and D-wave. This result is consistent with the latest exper-
imental data (3.1£0.4) x 1075 [51] within errors. From the numer-
ical results, it is observed that f*(892)0 is the main contributor to
the B? — ¥ (28)(K~nt)p decay, accounting for approximately
91.55%, whereas the contributions of the K- (141 O)0 andK" (1 680)0

@ Springer

resonances account for 1.75% and 0.79%, respectively. Further,
the interference contribution of the three resonances amounts to
roughly 5.91%. The K" (892)° resonance is also the main source
for the B? — Y(1D)(K~7T)p decay, accounting for approxi-
mately 93.44%, whereas the K ( 1410)0 and K (1 680)0 resonances
account for 1.29% and 0.47%, respectively. In addition, the inter-
ference contribution amounts to approximately 4.80%. Referring to
Table 4, the branching ratios of the ¥ K" (1410) and v K" (1680)°
decay modes are of the same order, attributable to the large width
of the Ii(>k(l680)0 resonance.

In comparison, the branching ratio of the 1 (25) decay channel is
2.76 times that of the ¥ (1 D) decay channel of the S-wave. Further-
more, the branching ratios of the ¥ (25) decay modes of the P-wave
and D-wave are 5.01 ~ 8.57 and 21.71 times those of the v (1D)
decay modes, respectively. In our calculation, the main contribu-
tions of the ¢ (2S5) and (1 D) decay modes of the S-wave were
the non-factorized diagrams, the amplitudes of which are slightly
affected by the change in the wave function from v (25) to ¥ (1D),
thus leading to the appearance of only a small gap between the
branching ratios of the two decay modes of the S-wave. However,
the amplitudes of the P- and D-wave decay channels are dominated
by the factorized diagrams, especially the D-wave decay channels,
which are significantly affected by the change in the decay constant
from fy 25y to fy(1p)- Thus, a large gap can be observed between
the branching ratios of the ¥ (2S) and v (1D) decay modes. As
mentioned above, the different effects of the factorized and non-
factorized diagrams in the decay modes of the S-, P-, and D-wave
might be related to the differences in the wave function models with
regard to the scalar, vector, and tensor mesons.

In our study, the main uncertainty in the S-wave decay modes
comes from the shape parameter w g . For the 1 (25) decay modes of
the P-wave, the errors from the shape parameter and the Gegenbauer
moments are very close, whereas the maximum error term for the
D-wave decay modes is from the Gegenbauer moments. These dif-
ferences can be interpreted as the range of the values of the Gegen-
bauer moments of the P-wave kaon—pion DAs being larger than that
of the S-wave kaon—pion DAs (for example, By = —0.57 £ 0.13

and B3 = —0.42 &+ 0.22 for the S-wave, and a‘llK« =02+02
I

and a = 0.5 £ 0.5 for the P-wave), and the single Gegenbauer
moment of the D-wave dominating both the twist-2 and twist-3 DAs
in the corresponding polarization case. The error caused by the hard
scale, 7, is the smallest among the three error terms, attributable to
the selected range (0.9t — 1.17).

The polarization fractions are defined by Eq. (39), and they are
listed in Tables 4 and 5. For the P-wave ¢ (2S) decay mode, the



Eur. Phys. J. C (2022) 82:441

Page 9of 15 441

Table 3 Branching ratios of the

; Decay mode
S-wave resonance in the

pQCD prediction

Experimental data

quasi-two-body decays BS —
v (25, 1D)K (= K—n)
calculated using the pQCD
factorization approach

BY — 1//(2S)71(k0(1430)0(—> K7t

BY — y(1D)K,(1430)°(— K~ 7 t)

+1.82+40.5640.11 -6
3.9471 16 049-0.07 X 10

+0.53+0.07+0.03 6
L4375537 007002 X 10

Table 4 Branching ratios of the

. Decay mode
P-wave resonances in the

Experimental data

quasi-two-body decays B? —
(28, 1D)K (= K nt)
calculated using the pQCD
factorization approach

BY — ¢ (2$)K"(892)°(— K~ n )

BY — ¢ (2$)K"(1410)°(— K~ 7™T)

BY — ¢ (28)K"(1680)°(— K~ ")

BY > y(2S)(K~mH)p

BY — y(1D)K"(892)°(— K~ =)

BY — y(1D)K (1410)°(— K~ n 1)

BY — y(1D)K (1680)°(— K~ x 1)

pQCD prediction
B (107%) 271 0 007
fo (%) 4321838803
fi (%) 277 s o
L (%) 29117
B (1077 5190 et o T
fo (%) 44101805 0
i (%) 26813 05 06
f1 (%) 2015 THGH
B(1077) 23310 05 00
fo (%) 442075000
fi (%) 2667837105107
) 292459115755
B (107%) 2.96% 430 555 009
fo (%) 4295
fi (%) 276" 051
L (%) 29538 0%
B (107%) SALTTH 0
fo (%) 9.6734 755703
fi (%) 46.8%100739510%
) 436155050
B (1078 7467750 3001
fo (%) 105530556104
fi (%) 4750101500 0
L (%) 42,015 TEE 0TS
B (107%) 272} e a0 06
fo (%) 10.3530533704
fi (%) 47450908
fL (%) 3%

2.20 £0.33

52.0+6.0
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Table 4 continued Decay mode pQCD prediction Experimental data
- _ 1.69+4.62-40.11
BY — y(ID)(K 7 *)p B (107%) 57901 7592 00s
fo (%) 10.0558555403
13.1439.040.9
fi (%) 46.61155508703
fL (%) 43415
]T;:,l:\,i rlssf;fr}:;z% I:a;ﬁgs of the Decay mode pQCD prediction Experimental data
o 0 _
quasi-two '{’ﬁ)y decays By — BY — ¢ (25)K5(1430)°(— K- 7t) B (1079 317 A8 104000
¥(2S, 1D)K" (= K~ 7h) s Lm0
calculated using the pQCD fo (%) 39.41'}?:%%21'8:?
factorization approach +12.0+19.2+1.6
fir (%) 33159575109
i (%) 275550506
BY — y(1D)K5(1430)°(— K~ 7%) B (1077) 1467031 0557003
fo (%) 130155555205
fi (%) 30.1453765 00
i (%) 56,9410 8514
20 04
15 03!
8 10 &8 02
& e |
5 5
m i Q I
S 05 S 01
| I
0.0 0.0
Tos 10 12 a4 s " os 10 12 14 18
w(GeV) w(GeV)
@ =

Fig. 2 Differential branching ratios of the S-wave for a B? — Y (2S)K 7T and b B? — y(ID)K ™t

longitudinal polarization fraction is approximately 43%, whereas in
the ¥ (1 D) mode, itis about 10%, with parallel and vertical fractions
being approximately equal in both modes. For the D-wave ¥ (25)
decay mode, the three polarization fractions are roughly at the same
level of approximately 33%, but they are distinctly different in the
¥ (1 D) mode. We expect additional abundant and detailed data to be
obtained from future experiments so that our theoretical predictions
can be accurately verified and more systematic analysis for B? —
(28, ID)E*(—> K~ 7T) decays can be performed.

@ Springer

From the experimental data, the relative fraction between the
branching ratios is [7]
B(BY - ¥ 25)K*(892)%)
B(BY — ¢ (28)K*(892)%)

= 5.58 4 0.57(stat) 61

+ 0.40(syst) + 0.32(F,/f,) %.

By comparing the branching ratio of the B? - YK
(892)0(—> K~ nt) decay calculated using the pQCD factor-
ization approach with the pQCD prediction for the BY —
v (2SK* (892)0(—> Kt 77) decay [40], we obtain the relative frac-



Eur. Phys. J. C (2022) 82:441 Page 11 of 15 441
40 0.8
30 0.6
.9 20 n'(’_') 04
b A
5 5
) o
© 10 ° 02
0 0.0
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Fig. 3 Differential branching ratios of the P-wave for a B? — Y (2S)K 7T and b B? — y(ID)K 7+
4 0.04
3: 0.03 ,
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Fig. 4 Differential branching ratios of the D-wave for a B? — Y(S)K 7T and b B? — Yy(ID)K~n+

tion of the theoretical calculation as

B(BY - ¢ (28K (892)°(— K—nt))

62
B(BO — ¢ (28)K*(892)0(— Ktm ™)) (62)

= 8.01%.

The discrepancy in the values comes from the vertex correction
and the selection of different values for some of the parameters.
However, this discrepancy is still within the acceptable limit. The
relative fraction results predicted by the theory agree somewhat
with the experimental data, which supports the pQCD factoriza-
tion approach and also contributes to further studies on resonance
mesons.

Figures 2, 3, and 4 depict the function images of the w depen-
dence of the differential branching ratios of the S-, P-, and D-wave of
the B? — ¥ (2S, 1D)K~mt decays, respectively. Figure 2 shows
that a small peak can always be detected near the invariant mass
w = 0.892GeV, which can be attributed to the interference effect
of the ?(892)0 resonance on the S-wave. On the other hand, the

function images of the ¥ (1D) mode drop faster at the end than
those of the ¥ (2S) mode due to the difference in the upper limit
of their invariant masses @ of K. Obviously, the peak values of
all function images appear at the pole mass of the correspond-
ing resonance. Therefore, the main part of the branching ratios
is in the region around the resonance and almost in the range of
w = [mgx — L=, mg= + T'gx], and the branching ratios of the
S-, P-, and D-wave decay modes in this range account for 43.91%,
74.73%, and 78.68% of the total branching ratios, respectively. The
value of 43.91% can be interpreted as the interference effect of the
F(892)0 resonance on the S-wave that is not included.

Using Egs. (59) and (60),the branching ratios of the B? —
¥ (3686, 3770)K~ T decays were obtained using the fitting scheme
based on the S-D mixing mechanism. The calculation results are
presented in Tables 6 and 7, respectively.
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Table 6 Branching ratios of the quasi-two-body decays B —
1//(3686)E*0 (— K~ 7") under the 2S—1D mixing mechanism calcu-

lated using the pQCD factorization approach. The first three uncertain-
ties are derived from the uncertainties in the previous tables, whereas
the last one is derived from the mixing angle

Decay mode

9= (=12£2)°

0 =(27+2)°

BY — ¥ (3686)K,(1430)%(— K~ 7t) B (107%)
B (107%)
Jo (%)
i (%)
f1 (%)

B(1077)

BY — ¥ (3686)K" (892)°(— K~ nt)

BY — ¥ (3686)K" (1410)°(— K~ )
Jo (%)
i (%)
fL (%)
BY — 1 (3686)K" (1680)°(— K~ ) B (1077)
Jo (%)
Jii (%)
fL (%)
B) — ¥(3686) (K~ )p B (107%)
Jo (%)
i (%)
f1 (%)
B (107%)
fo (%)
i (%)
f1 (%)

B — ¥/ (3686)K, (1430)°(— K~ n™")

2 87+1A36+0A50+0.O9+0A21
*27-0.85-0.43—-0.05-0.21

+1.06+0.924-0.11+40.08
2'26—0.78—0.77—0.07—0408

+23.94+12.4+1.8+1.8
45‘6—16.871 1.1-0.9-1.3

+11.5+15.0+1.34+0.9
26'17&8—12.870‘970‘9

+11.5+13.3+1.840.9
28'3—8.8—10.2—1.3—1.3

+1.4141.6340.204-0.16
4‘1671.1470.9070.1 1-0.18

+17.5410.84-1.4+1.7
47'4—135—9‘4—0.7—1.7

+7.94+14.2+1.241.0
25 '2767— 10.3-0.7—-1.2

+8.44+14.242.24+1.2
27'477.271.9—1.2—] 4

3 39+2A36+0A49+0AO7+0.03
*~7—1.52—-0.44—-0.04—-0.03

2 95+ 1.18+1.2540.12+0.07
+7~—0.86—1.03—0.08—0.07

+22.04+7.841.74+0.7
36.37 14.6—-7.5—-1.0—-1.0

+8.14+17.6+1.04-0.7
29‘8—7A 1-13.9-0.7-0.7

+9.8416.94+1.4+1.0
33'9775— 13.6—1.0-0.7

+1.734-2.49+4-0.21+40.09
5.66% 1.39—1.52—-0.11-0.08

+14.84-6.2+1.24-0.7
37.6° 11.5-5.4-0.5-0.9

+6.74+17.14+0.94-0.5
29'9—5.8— 12.9-0.5-0.4

+9.04+-20.741.64+0.4
32’5—7.2—8.5—09—02

2 18+0‘68+0'93+0' 1140.05

1 60+0.56+0.59+0.10+0.06
7 —0.42—-0.37—-0.05-0.06 —0.52-0.60—0.06—0.04
46 3+18<1+10.6+1.9+1‘3

+15.146.44+1.44+0.9
13.1-9.4—-1.3-19 37.2

—11.5-5.5-0.9-0.9

25 0+8.1+14.4+1.3+1.3

6.94+18.34+1.4+0.5
2947
—6.3—10.0—-0.7—-0.7

—5.5-12.4-0.5-0.5

28 7+8.8+1149+3.1+1.3

+9.2417.94+2.340.9
—6.9-3.8—1.3-1.3 .

—6.9-9.6—1.4-0.5

2 53+1A10+0.95+0.11+0408

3 24+1.20+1A25+0. 1240.07
—0.77-0.75-0.07-0.09 .

—0.89—1.03—-0.09-0.07

+22.54+11.94+1.6+1.6 +20.44+7.14+1.54+0.6
44'7714.679.970.871.6 36‘4713.676.870.970.9

+10.3+13.8+1.240.8
26,5103+ 13

+7.4416.4+0.94-0.6
7.9-11.1-0.8-0.8 29.9

—6.5-12.7-0.9-0.6

28 8+10‘7+11'9+1'6+0‘8

+9.34+15.7+1.240.9
—7.9-8.6—12—-12 33.7

—7.4-12.3-0.9-0.6

2 79+1.09+1.73+0406+0A08
*17-0.80—1.30-0.03-0.07

+15.44-25.140.741.1
40'571 1.5-18.3-0.4—1.1

2 98+1‘03+1'70+0'05+0'07
+7%-0.80—1.31-0.03—-0.07

+15.1423.840.741.0
36'9—1 1.1-17.8-0.3—-1.0

33 0+12.9+2041+0.7+1.1

+11.14-18.14-0.7+1.0
—9.3-15.4-0.4-0.7 33.6

—8.4—-13.8-0.3-0.7

26 5+1048+16.8+0.7+0.7

+8.4+15.140.3+0.3
7.9-12.9-0.4—0.7 29.5

—7.4-12.4-0.3-0.7

Considering the Clebsch—Gordan coefficients, we can write the
following relation:

_NW_J1 o_ﬁ -+ 63
Kﬂ,1_2>_\/;|E0n) Sk, (63)

In our calculation, for the quasi-two-body decay B? —

—*0 — . . .
vK® > WK~ 7T, isospin conservation was assumed for the

strong decays of an / = 1/2 intermediate resonance I?*O to Km,
which can be expressed as follows:

r&’ =& 1 1r®° ->kahH 2 64)
r&® k7 3

r&’ -k 3

Therefore, the branching ratios of B? — Y28, lD)?‘O(—>
Km) and B? — (3686, 3770)?*0(—> Kir) decays can be directly
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extracted under the narrow-width approximation relation
BBY > yK - yk xt) = BBY - y&')
— 2
BE?C > Kkn) - = (65)

A comparison of the branching ratios for 1 (3770) decay modes
when the mixing angle is set to & = —12° and 6 = 27° reveals
a significant difference between the two choices, which can be
attributed to the visibly small decay constant of ¥ (1 D) compared
to that of ¥ (25). These results are in accordance with the analyses
presented in other studies [16,17,50,53,54]. In addition, when the
2S—1D mixing scheme is considered for the BY — v (3686)K~ 7+
decay, the numerical result is slightly different from that of the
B? — Y (2S)K~ 7T decay, indicating that the v (3686) state might
be deemed the ¥ (25) state. Further, according to Egs. (5§9) and (60),
the reason for the markedly different sensitivity of the ¥ (3686) and
¥ (3770) decay modes to the change in the mixing angle under
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Table 7 Branching ratios of the quasi-two-body decays B? —
1//(3770)f*0 (— K~ ") under the 2S—1D mixing mechanism calcu-

lated using the pQCD factorization approach. The first three uncertain-
ties are derived from the uncertainties in the previous tables, whereas
the last one is derived from the mixing angle

Decay mode

0= (=12£2)°

9 =(27+2)°

BY — y(3770)Ky(1430)°(— K~ 7) B (1077)
BY — ¥ (3770)K"(892)°(— K~ nt) B (109
fo (%)
Jir (%)
f1 (%)
BY — ¢ (3770)K" (1410)°(— K~ 7t) B(107%)
Jo (%)
i (%)
fL (%)
BY — ¢ (3770)K" (1680)°(— K~7t) B (107%)
Jo (%)
i (%)
f1 (%)
B} — y(3770)(K 7 )p B (107
Jo (%)
fii (%)
f1 (%)
B — ¥ (3770)K;(1430)°(— K7 ) B (1077)
fo (%)
i (%)
f1 (%)

+10.5041.2140.53+42.11
26'46—1 18—1.75—-0.31-2.10

+3.2546.60+0.634-0.78
10'29—2,45—4 17-0.26—0.79

+12.84-1.0+0.84-3.7
17'4—8.7—0.6—0‘4—347

+8.2431.04+2.0+1.6
40'776.9718.871.7717

+10.6+432.24-3.34-2.3
41 '9—8.2—21‘2—2.4—2.3

+5.314-12.56+41.184-1.72
18'1374.1377.3470.8571.65

+9.24+1.34+2.94+3.8
19’876.970. 1-2.6-3.6

+9.2428.6+1.04-2.4
40'4—74—]9.870‘7—2‘3

+10.9435.442.643.3
39'8—8.5—20‘6— 1.4-32

6 53+2.04+4<69+0.32+0A66
*v—1.57-2.85-0.22-0.62

+10.14+1.142.54+3.8
19‘9—7.5—0.5—1.7—3‘8

+9.64+34.5+1.142.6
40'3—7.7—21‘0—0.6—2‘5

+11.54-36.34-1.4+3.5
39‘878,9722271‘173‘2

+3.2946.64+0.66+0.80
1O'84—2.48—4.20—049—0‘78

+12.44-1.0+0.94-3.6
17'678.370.570.57344

+7.8429.5+1.9+1.6
40'6—6.9—1844—1.6—1.6

+10.14-30.74-3.2+2.2
41 ‘8—7.7— 19.9-2.5-2.2

+1.44+42.52+0.12+0.76
5407 1.19—-1.95-0.09—-0.69

+12.84-18.14-0.9+5.9
25'779.1 —14.3-0.7-5.4

+7.0+13.540.7+4.4
32'875.778.770.674,1

+6.94+15.0+0.6+3.7
41 '5—7.2—1341—0.4—3.3

1 30+0A49+0.31+0A08+0A37
Y —-0.28-0.16—-0.05-0.22

3 11+2.22+3.l6+036+0‘4l
©T 7 —1.46—1.78—0.24—-0.38

+12.94-20.6+1.94+7.7
38'9—8‘0— 16.1-1.3-7.1

+34.1+45.0+5.8+3.2
38‘9—24.8—25.1—3.9—2.9

+24.44-36.043.942.3
22.27 14.1-16.1-2.6-2.3

+2.114-3.184-0.2740.73
4'7071 .55—1.67-0.21-0.60

+10.9+18.1+1.149.6
38‘5—&7—16.0—0.6—8.5

+23.84-32.64+1.5+3.0
39‘6—172— 12.6—-1.1-2.3

+15.4417.04+-3.243.0
21 '9—7‘0—6.8—2.8—1.9

1 73+0.85+l.29+0A14+0.29
*12-0.61-0.65—-0.08—0.23

+11.6+20.8+1.7+10.4
38‘278,7716.270.678.7

+26.04-34.742.343.7
40‘0—18.5— 13.9-12-23

+11.64+19.14+4.0+2.9
21‘8—84 1-7.5-2.9-23

3 38+2.25+3.19+0.36+0.42
05 -1.47-1.77-0.24-0.38

+12.1419.2+1.847.1
38'57&3714.871.276.5

39 1+31.7+41.7+5.3+3.0
©1—22.5-23.1-3.6-2.7

+22.84-33.443.6+2.4
2247 12.7-14.5-2.4-2.1

+1.1741.73+0.11+0.74
3'29—0.84— 1.30-0.07—-0.69

+14.0425.5+1.248.8
45'3710.9718.570.678.2

+9.74+13.14+1.24+7.6
29'8—7‘3—10“)—0.9—7.3

+11.9414.0+0.9+6.1
24"9—7.3— 10.0-0.6—-5.5

the 2S—1D mixing scheme can be understood as follows. Numer-
ically, A(B? — Y (2S)K~xT) is much larger than .A(B? —
W (1D)K~ 7 1), and thus the former dominates the decay amplitudes
of both the ¥ (3686) and v (3770) decay modes. The value of the
amplitude sin GA(B? — Y (28)K~nT) is greatly changed when
the mixing angle is switched between & = —12° and 6 = 27°. On
the contrary, the amplitude cos GA(B? — Y 2K 7 T) is rela-
tively stable under this switch. Thus, the branching ratio of the decay
BY — ¥ (3686)K*"(— K~ ) s stable under the switch between
the two values of the mixing angle, whereas the branching ratio of
the decay B? — 1//(3770)?0(—) K~mT) is highly sensitive to
the variation in the mixing angle. The running LHCb experiment is
an excellent place to detect decays B? — (3686, 3770)?‘0(%
K~ ™) with branching ratios of the order of 1075 — 10_8, which
will help us gain a better understanding of the mixing mechanism
of the charmonium mesons.

5 Summary

In this work, we have studied the BO — (28, 1D)K*(—
K~77T) decays using the pQCD factorization approach by intro-
ducing the kaon—pion DAs. We considered the S-wave resonance
K5 (1430)0, the P-wave resonances K (892)%, K*(1410)°, and
]7Q(1680)0, and the D-wave resonance ?5(1430)0. This study cov-
ers three types of polarization amplitudes, namely, longitudinal,
parallel, and vertical, which reflect the roles of the different polar-
ization conditions in the decay in terms of the polarization frac-
tions. Based on the 2S—1D mixing scheme, we have obtained the
branching ratios of the Bg — (3686, 3770)K~ 7t decays by fit-
ting the decay amplitudes of the ¥ (2S) and ¥ (1 D) decay modes.
Finally, the pQCD predictions for the B — (25, 1D)Kn and
B? — (3686, 3770)Km decays have been obtained using a
narrow-width approximation relation.

@ Springer
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The pQCD predictions indicate that the K" (892)° resonance is
the main contributor to the total decay, and the branching ratios of
the ¥ (2S) decay modes agree well with the existing experimental
data within acceptable errors. Our calculations show that the branch-
ing ratios of the ¥ (3686) and v/ (25) decay modes are very similar,
suggesting that they can be regarded as the same state. Theoretical
predictions for the branching ratios of the ¥ (3686) and 1 (3770)
decay channels are of the order of 1073 and 1079, respectively,
which will be verified using the data from future experimental mea-
surements. The detected data will help us to gain a further under-
standing of the internal structures of the ¥ (3686) and v (3770)
mesons.
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Appendix: Functions involved in the calculation

Important formulae used in the calculations are listed in this section.
The Sudakov exponents in the decay amplitudes are defined as

50 veles(iD)
Spo =s(x3p1+,b3>+§fl/b du%,
B

¢ _
4V (Otf ()
b

Sy = sGpT.b) +s@pt.b) +2/ O AD
1/

t )

o _ _yq(as (i)

Sy = se(@3py b3) +5c(x3p3, b3) +2/ g,
me

where the Sudakov factors, s (Q, b) and s.(Q, b), have been derived
from the resummation of the double logarithms. Their specific
expressions can be found in Refs. [55,56].

The parameterized expression of the threshold resummation
function S (x) is [57]

21+26F(% +C)
/7T (14 0)

where ¢ = 0.040% —0.510 +1.87and Q = /Méo(l —r2) [58].

@ Springer

Si(x) = [x(1 = x)]° (A.2)

The hard scattering kernel functions #4; in the decay amplitudes
have been derived from the Fourier transform of the virtual quark
and the gluon propagators, which can be specifically expressed as

ha(xp,z,bp,b) = Ko(Mpobp,/ (1 — r2)xp2)[0(b — bp)
To(Mpobp+/ (1 — FZ)Z)KO(Mng\/ (1=r2)2)+(bp < b)],
hy(xg,z,bg,b) = KO(MB?b,/(l —r2)xpz)

156 — bp)Jo(M gobp/IeT) Hg

(MB.?b\/W) + (bg < b)], k<0
[0(b —bp)Io(Mpobp/)Ko
(Mpob/ic) + (bg <> )], k>0 (A.3)

he(xp,z,x3,bp,b3) =[0(b3 —bp) Iy

(Mpobpy/ (1 = r?)xpz)
Ko(Mpob3y/ (1 — r2)xpz) + (bp < b3)]

i (1
| B HY MpobsIBD. B <0
Ko(Mpob3/B), =0
hq(xg,z,x3,bp,b3) = he(xp, z, X3, bp, b3),
wherex = (xg—n)(1—r2)and B = r2 — (&3r2+(1—r?)z2) (X371 —
xp). Iy , Ko are the modified Bessel functions and Jj is the Bessel
function with H{" (x) = i¥p(x) + Jo(x).

To eliminate the radiative corrections of large logarithms, the
hard scales, #;, in the decay amplitudes are chosen as

1 1
ta =Max { Mpo/(1 —r®)z, —, — |,
a ax{ poy (I =79)z bg b}

1 1
) = Max MBo,/|x|,—,f s
3 bB b

1 1
te = Max {MB?‘/(l —r?)xpz, MB?V 181, g, E} )

Iq =Ic |x3%)€3 .

(A4)
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