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Abstract: In this paper, we explore the behavior of several optimization methods for reducing coating
Brownian noise in the mirrors of gravitational wave detectors. We will refer to cryogenic operating
temperatures, where the low refractive index material has mechanical losses higher than those
of the high refractive index material. This situation is the exact opposite of that which occurs at
room temperature, which is already widely known. The optimal design of the dielectric mirror
(without a priori assumptions on thicknesses) can be obtained through the combined multi-objective
optimization of transmittance and thermal noise. In the following, we apply several multi-objective
meta-heuristics to compute the Pareto front related to the optimization problem of dielectric mirror
thicknesses made of two materials (binary coatings). This approach gives us more certainty about the
structure of the final result. We find strong evidence that all meta-heuristics converge to the same
solution. The final result can be interpreted with simple physical considerations, providing useful
rules to simplify the thicknesses of the optimization algorithm.

Keywords: coating and dielectric mirrors; gravitational waves detectors; optics

1. Introduction

The experimental research and the construction of large interferometric ground-based
antennas [1–7] aimed at the direct detection of gravitational waves have been very relevant
in recent years (see [8,9] for an introduction to the topics). During this period, we have
witnessed the first detection of a gravitational wave, as well as the first direct evidence of a
black hole mergers [10]; the joint detection achieved with three detectors, which allowed
for the great sky localization precision [11] (gravitational astronomy was born); and the the
first detection of a multi-messenger event [12,13], the publication of which has ended with
the third catalog [14]. To achieve these far-reaching results, there are many problems and
technological challenges that researchers have had to overcome, and it is precisely one of
these problems that we will discuss below.

In this work, we address the problem of identifying the optimal design of a totally
reflective dielectric mirror. The solution to the problem is of particular interest for the
realization of gravitational wave detectors [1,5,15,16], which must have the highest possible
reflectance and at the same time reduced thermal noise [17,18]. In fact, the sensitivity of
gravitational waves detectors is ultimately limited by the various noise sources determining
random fluctuations in the physical optical path length, in particular suspension thermal
noise and mirror thermal noise.

Therefore, the problem of optimal design naturally presents itself as a multi-objective
optimization problem. The highly non-linear and non-convex nature of the reflectance func-
tion due to the variation in the length of the layers makes it necessary to use optimization
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techniques that do not fall within the canonical methods of mathematical programming [19].
Furthermore, an analytical solution to this problem is not known in the current literature,
although solutions very close to the analytical one can be found in the literature [20] for the
case of detectors operating at room temperature.

Of course, there are other strategies for noise reduction in gravitational wave coatings:
those based on the use of three or more materials [21,22], and the production of nano-
engineered materials [23]. In this area, the study of the crystallization of materials as a
function of deposited thickness becomes crucial [24].

In this paper, we address the problem using a meta-heuristic approach. In particular,
we ask whether there is a single criterion (i.e., independent of the optimization method
used) that is representative of the set of solutions that make up the Pareto front.

In other words, the objective of the paper, rather than focusing on a specific optimiza-
tion technique, is to answer the question of whether there is also a unique criterion of
optimal design in the case of cryogenic detectors, and of what its physical interpretation is.
To achieve this goal, we compare the solutions offered by a multiplicity of multi-objective
meta-heuristic optimization methods with constraints. We will select among multiple opti-
mization methods those that have demonstrated well-established validity in applications.
Furthermore, the solution found offers some non-trivial physical interpretation cues and
original design criteria, showing a performance limit.

The remainder of this paper is organized as follows: Section 2 illustrates the physical
model of the dielectric mirror in the context of gravitational wave detection; Section 3
illustrates the mathematical formulation of the optimization problem; Section 4 outlines the
methods employed for solving the optimization problem; Section 5 reports the experimental
findings, describing the physical meaning of results; and the conclusions and perspective
are discussed in Section 6.

2. The Physical Model

In this section, we start describing the electromagnetic model of a coating made of
dielectric layers. This device is designed to reproduce the behaviour of a low-absorption
perfect mirror, i.e., of a mirror with a reflection coefficient near to the unity. The electro-
magnetic behaviour of a coating can be obtained by a simple matrix method [25] (for a
comprehensive introduction to the topic of layered structures, see [26,27]). The optical
response of a coating can be computed from the multi-layer characteristic matrix,

T = T1 · · · · · Tm · · · · · TNL (1)

where NL is the total number of layers numbered from the vacuum to the substrate, as
illustrated in Figure 1. The matrix Tm is associated with the geometrical and material
properties of the layer

Tm =

 cos(ξm) ı(n(m))−1 sin(ξm)

ın(m) sin(ξm) cos(ξm)

, (2)

where in the case of normal incidence

ξm =
2π

λ0
n(m)zm. (3)
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Figure 1. The figure shows the sketch of a multilayer structure with an electromagnetic wave coming
from the left, i.e., a monochromatic plane wave; an exp ıωt dependence on time is supposed, and λ0

is the free space wavelength. The symbol Γc denotes the complex reflection coefficients, while nH and
nL are the refractive indices of the alternating layers. The parameters of the densest material have the
subscript H, shile those of the least dense material have the subscript L. The indices n(0) and ns are
the refractive indices of the vacuum and substrate, respectively.

We have defined λ0 and zm as the free space wavelength (i.e., the laser frequency)
and the layer thickness, respectively, and n(m) is the refractive index of the m-th layer. The
refractive index of the whole coating can be obtained by using nl , i.e., the refractive index
of the layered structure:

nl =
T21 + nsT22

T11 + nsT12
, (4)

where ns is the refractive index of substrate (see Figure 1) and Tij represents the compo-
nents of characteristic Matrix (2). The Formula (4) can be used to compute the power
transmittance τc at the vacuum/coating interface :

τc = 1−
∣∣∣∣∣n(0) − nl

n(0) + nl

∣∣∣∣∣
2

. (5)

where n(0) = 1 is the refractive index of the vacuum. In the following, we should minimize
the transmittance τc as a function of z̄m = zm/λ0, the normalized layer thicknesses. The
reduction of transmittance is a general problem of the optical design of dielectric layered
structures, and the peculiarity of the gravitational wave coating design problem consists of
obtaining such a minimum constraint on the thermal noise .

Thermal noise in the coatings of the test-masses is presently the dominant noise source
in interferometric gravitatinal wave detectors [17], their ultimate visibility distance is set in
the (40–300) Hz band. The power spectral density of coating thermal noise is given, under
suitable simplifying assumptions, by [28]

SB
coat =

2kBT
f π3/2

1− σ2
s

wYs
φc (6)

where f is the frequency; T is the (absolute) temperature; w is the (assumed Gaussian) laser-
beam waist; and σs and Ys are the Poisson and Young modulus of the substrate, and the
coating loss angle φc. It is clear from Equation (6) that a viable method of reducing thermal
noise is to lower the temperature down to cryogenic values (i.e., T ∼ 20 K). The use of
cryogenic techniques to reduce the thermal noise of the coating, unfortunately, is limited by
the phenomenon of cryogenic peak of silica [29]. In particular, the mechanical losses of silica
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(the low-contrast material) worsen significantly at very low temperatures. The optimization
technique developed in this paper attempts to reduce the worsening of the loss angle due to
this cryogenic peak phenomenon. In this connection, we introduce a functional producing
the thermal noise of coating as a function of the normalized thicknesses of the layers

φc =
NL

∑
m=1

ηm z̄m (7)

where ηm are the specific thermal noise coefficients depending on the material that consti-
tutes the layer. The noise model used here is the one described in [28]; other models are
available in the literature [30], but despite their supposed higher accuracy they provide
comparable results (see discussion in [31] and supplementary material therein).

In the following, we study the dielectric structure made of alternating layers of two
materials indicated with the subscripts H and L, with the refractive index nH and nL, and
specific normalized loss coefficient ηH and ηL. The type L material is a low refractive index
material; thus, we have by definition nL < nH .

In view of the linearity of φc functional, see Equation (7), both as a function of z̄m and
ηm, we can take as a reference the material H and pose ηH = 1. This normalization takes the
lower specific noise coefficient between the two materials as unitary; in the cryogenic case
(due to the cryogenic peak of L-type material), the H-type material (supposed to have lower
mechanical losses) is taken as a reference (at room temperature the situation is reversed).

Considering the above definitions and for a dielectric mirror made of two alternating
materials starting with the H layer, we have the following functional:

φc =
bNL/2c

∑
m=0

z̄2m+1 +
bNL/2c

∑
m=1

ηL z̄2m (8)

in this case, we should suppose that NL is an odd number, in order to have an H-type layer
at the end of the device. The opposite case, where the first layer is an L-type material, leads
to the following formula:

φc =
bNL/2c

∑
m=1

ηL z̄2m−1 +
bNL/2c

∑
m=1

z̄2m. (9)

where NL is supposed even in order to terminate the device with an H-type layer. The
last layer is, in any case, the high refractive material in the sense that the substrate has a
refractive index such that ns ∼ nL (i.e., low contrast).

3. The Optimization: The Mathematical Problem

In this section, we formulate, in three different ways, the optimization problem for
coatings used as high reflective mirros in gravitational wave detectors. The problem formu-
lation applies to both cases of sequences beginning with either material L or material H;
obviously, the transmittance and noise functionals must change according to the sequences.

First of all, the search space Ω is defined by the following inequalities: 0 ≤ z̄m ≤ 0.5/nH
for m where n(m) = nH (H-type layers), and 0 ≤ z̄m ≤ 0.5/nL for m where n(m) = nL
(L-type layers). The straightforward definition of the optimization problem, driven by
physical interpretation, is

Min
z̄1,...,z̄NL∈Ω

φc(z̄1, . . . , z̄NL).

subject to τc(z̄1, . . . , z̄NL) ≤ τ0

(10)
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The problem in (10) can be alternatively written [32]:

Min
z̄1,...,z̄NL∈Ω

τc(z̄1, . . . , z̄NL)

subject to φc(z̄1, . . . , z̄NL) ≤ φ0

(11)

where φ0 is the maximum allowed loss angle and τ0 is the constraint on the transmittance.
In the paper [33], it has been shown that the constrained optimization problems (10) or (11)
can be further formulated in an equivalent multi-objective fashion, as follows:

Min
z̄1,...,z̄NL∈Ω

[φc(z̄1, . . . , z̄NL), τc(z̄1, . . . , z̄NL)]. (12)

The coating optimization using the multi-objective approach reduces to the computa-
tion of the Pareto front of the optimization problem (12); for a tutorial on multi-objective
optimization, see [34]. In [33], it has been shown that the three formulations of the opti-
mization problem (10)–(12) are equivalent, for the case of coatings designed to operate at
room temperature. It must be remembered that the problem (10) can be solved using the
Pareto front of (12), by choosing the point on the Pareto boundary with a transmittance
component equal to τ0. Similar considerations can be made for the problem (11), which can
be solved by taking the point on the Pareto boundary with a noise component equal to φ0.
Such a result arises from the properties of the Pareto front, which turns out to be continuous
and monotonic for the problem (12). In the remainder of this paper, we will show that the
above results are also true in the case of the optimization of coatings operating at cryogenic
temperatures.

4. The Optimization Methods

The problem of optimized coating can be tackled using a series of algorithms that,
over the years, have been developed specifically for multi-objective optimization problems.
In our experimentation, we compared the following algorithms: NSGA2, NSGA3, GDE3,
MOEA/D, Borg MOEA, and Particle Swarm (MOPSO). In the following subsections, we
will describe the heuristic optimization algorithms used in the simulations. This paragraph
does not seek to describe in detail all the methods but only to supply one road map for the
reader who wants to explore this matter further.

4.1. Optimization Heuristic NSGA2 and NSGA3

The NSGA2 algorithm (see references [34,35]) implements two main strategies: a fast
non-dominated sorting solution, and the preservation of the solution’s diversity. The initial
population is generated at random according to the number of defined chromosomes.
The population sorting is made by non-dominated solutions. This step follows the same
procedure used in [35]; the crowding distance is also applied. The selection (i.e., the
natural selection) is made by the tournament method, where the confrontation of two
individuals of the initial population (chose at random) is made to stock the individuals
with the best Pareto front. If the two confronted members are of the same front, the decision
is made according to the crowding distance criteria. The crossover algorithm generates
two cut-points selected at random in one parent, so the chromosome is divided into three
sub-vectors (segments); then, the first segment is exchanged with the last one.

The last step is a population update. After applying the genetic operators and the pop-
ulation sorting criterion (fronts and crowding distance), we must determine the individuals
that will be kept for the next generation. We begin with an initial population; we create the
children in order to have a final population that will be classified in terms of fronts and
the crowding distance to keep a constant number of individuals (i.e., the population size
remains unchanged).
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The NSGA3 algorithm is a modification of NSGA2 specifically designed to handle
optimizations with more than two objectives. This enhanced algorithm was proposed
in [36] but with some selection mechanisms changed.

4.2. Optimization Heuristic GDE3

Generalized differential evolution (GDE3) is an algorithm that extends differential
evolution in order to tackle multi-objective optimization problems [37] with an arbitrary
number of objectives and constraints. The differential evolution [38] optimizes a problem
by maintaining a population of candidate solutions and creating new candidate solutions
by combining existing ones according to simple (linear) formulae. The candidates with
the best fitness with respect to the optimization problem at hand are introduced into the
population. In this way, the optimization problem is treated as a black box that merely
provides a measure of the fitness of the candidates in the population (the gradient is
therefore not needed).

4.3. Optimization Heuristic MOEA/D

The MOEA/D is a multi-objective evolutionary algorithm based on decomposition.
This method is a general-purpose algorithm framework; it decomposes a multi-objective
optimization problem into a number of single-objective optimization sub-problems (or
simple multi-objective optimization problems) and then uses a search heuristic to optimize
these sub-problems simultaneously and cooperatively (see the seminal paper [39]; for
recent developments, see [40]).

4.4. Optimization Heuristic Borg MOEA

To solve optimization problems with an evolutionary algorithm, the individuals
of a population are associated by the encoding procedure to a physical solution of a
given problem (in our case, the layer thicknesses sequence); the selection probability
is proportional to the quality of the represented solution, i.e., to the fitness function to
be optimized.

The population then undergoes selection crossover and mutation (like in natural
genetics evolution), producing new children and updating the population [41]. The process
is repeated over various generations until a suitable termination criteria is reached.

The peculiarity of the Borg MOEA evolutionary method consists in changing the
above-described operators adaptively [42,43]. The Borg MOEA algorithm is therefore more
robust with respect to the probability of being trapped in local minima. Let us emphasize
that among all the algorithms used in this paper, Borg MOEA has already been successfully
applied to the coating optimization problem in Ref. [33] in the case of mirrors operating at
room temeprature.

4.5. Optimization Heuristic Particle Swarming (MOPSO)

The particle swarm optimization is a heuristic method that optimizes a problem by
iteratively trying to improve a candidate solution with regard to a given measure of quality
(fitness function), possibly subject to a constriant (see the seminal paper [44,45]). It solves a
problem by having a population of candidate solutions, here dubbed particles, and moving
these particles around in the search space according to a simple mathematical formula for
the particle’s position and velocity. Each particle’s movement is influenced by its local best
known position but is also guided toward the best known positions in the search space,
which are updated as better positions are found by other particles. This is expected to move
the swarm toward the best solutions. For an updated account of the method, including also
the multi-objective variant, we refer to [46] and references therein.

5. Numerical Experiments

We perform many numerical experiments with different meta-heuristics to obtain
strong evidence that the Pareto front and its properties of continuity and monotony are
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confirmed, and that all methods converge to the same endpoint. As mentioned above, in a
previous paper [33] clear indications of the structure and convergence of Pareto fronts and
design were found using only the Borg MOEA meta-heuristic [43], in the case of the room
temperature operation of the coating.

In this paper, we generalize the numerical experiments by implementing different
algorithms and considering a physical situation that was never analyzed previously. The
behavior at room temperature (T = 300 K) of the dielectric mirror was found by using for H
and L-type materials the values ηL = 1 and ηH ∼ 10; at cryogenic temperature (T = 20 K),
the situation could be reversed, i.e., ηL ∼ 10 and ηH = 1.

In the following, we will focus on the optimization of coatings based on layer sequences
starting with material H because it has been observed that the optimization of sequences
starting with material L always reduces to the latter.

Assuming that the relationship between the specific noise coefficients is ηL > ηH
(in particular, ηL ∼ 10 and ηH = 1), we perform simulations with the following algo-
rithms: GDE3, NSGA2, NSGA3, MOEA/D, Borg MOEA, and MOPSO, to verify that the
results found in [33] remain valid (see [47,48] for pratical implementations of considered
heuristics).

We find that each of the previous heuristics converges with its specificity toward
a common trade-off curve. Finally, the result can be interpreted with physical consid-
erations, providing useful rules to simplify the design structure on which to perform
thickness optimization.

5.1. Asseveration of Convergence

In order to better describe the results of the convergence of the various optimization
methods used, we introduce the common Pareto Front. This common Pareto front is
obtained by combining (i.e., joining together) the lists of the different Pareto fronts found
with the methods indicated above and extracting a single Pareto front made of all the
non-dominated points [49]. In Figure 2, we show the common Pareto front for the above
methods; the parameters used in the simulations are reported in the caption of the figure
itself (the same as the end of Table 1); the number of the layers is NL = 23, and the red dot
shows the position of the quarter wavelength design (which terminates the tradeoff curve).

Table 1. Physical parameters of the H- and L-type materials, used in the simulations at cryogenic
temperature (we suppose that the laser operating wavelength is λ0 = 1550 nm). The substrate has
the same refractive index as the L-type material ns = nL.

Property H Material L Material

refractive index 2.1 1.45

loss angle 10−4 7.8× 10−4

extinction 4× 10−8 8.4× 10−11

η coeff. 1 7

Some interesting comments have already been made on Figure 2; even in the case
of cryogenic temperature (where the parameters fulfill the relation ηH < ηL), the Pareto
front has several bumps (see closeup in Figure 2) and is therefore not convex. Compared
to the case studied in the literature by some of us (i.e., ηH > ηL), a discontinuity appears
in the closeup region. This discontinuity present at high transmittance arises from the
abrupt transition in the optimal mirror design that occurs when going from one layer of
the H-material to two layers of the H and L materials (in the cryogenic case it has a highly
specific noise coefficient).
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Common Pareto Front

Closeup 

bump 

Figure 2. The figure shows the common Pareto Front for the GDE3, NSGA2, NSGA3, MOEA/D, Borg
MOEA, and MOPSO methods. The execution time of each method is 105 s; the parameters used in
the simulation are reported in Table 1, and NL = 23 is the total number of alternating layers. The red
dot represents the performance of the quarter wavelength coating with NL = 23 layers. At the top
right of the figure, a closeup of the region with high transmittance and low thermal noise is shown.
It is clear that the Pareto front is bumpy and therefore not convex; it shows a discontinuity in the
closeup region.

In Figure 3, the absolute errors of the various trade off curves with respect to the
common Pareto front, each computed with its algorithm, are shown. The vertical green line
shows the last point computed by the heuristics, indicating the termination of the numerical
Pareto curve. This line is not shown when it coincides with the quarter wavelength coating
design (the endpoint of the Pareto front, the red dot in Figure 2). Note the empty spaces
(see the dashed light blue area) in the panel of the Borg MOEA and MOEA/D methods,
before the last point on the Pareto curve. In that range, the absolute error is comparable to
numerical accuracy, which is why it was not reported. The tendency of the Pareto fronts
to concentrate on a region of the constraint space (often called focus in the jargon) is one
of the methodological problems studied in the literature [50]. In some recent papers on
the subject, some authors have stated that they can exploit this tendency to reduce the
computational load and speed up the convergence to a specific region of constraint space
of greater interest [51].

For the heuristics in Figure 3 indicated with NSGA2 and NSGA3 labels, we show, in
red, the error curves of the methods when the evolution time is halved. These curves give us
quantitative information about error reduction and confirm that the optimization methods
converge. Similar curves have been computed for all algorithms (although not reported)
showing the same direction of error reduction. In the panels related to MOEA/D and GDE3,
we show, in red, the error curves for the Pareto fronts computed, adding a further constraint
on the transmittance (i.e., τc < 0.01) and leaving the computation time unchanged. With
this expedient, we see that is possible to slightly improve the performance of these two
methods in the low transmittance (high thermal noise) region. The improvement of the
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convergence of these two methods is also shown in Figure 4, where the three trade-off
curves for the MOEA/D and GDE3 methods are shown. In this figure, the yellow curve is
the common trade-off curve, and the red and green curves are the Pareto front with and
without the additional constraint, respectively.

Normalized Thermal Noise

T
ra

ns
m

itt
an

ce
 E

rr
or

Numerical precision reached Numerical 
precision 
reached

MOEA/D

MOPSO

Figure 3. The figure shows the absolute errors of the individual Pareto fronts compared to the
common Pareto front. The parameters of the materials are reported in Table 1, and the coating designs
are the same as those displayed in Figure 2. In the panels, the green vertical bar (if present) indicates
the last point computed by the used heuristics and placed on the numeric Pareto front. The light blue
area indicates the region where absolute error is comparable with numerical precision. The execution
time is 105 s and is the same for all the simulations. For the panels relating to NSGA2 and NSGA3,
we show, in red, the error curves of the methods when the evolution time is halved. In the panels
labeled MOEA/D and GDE3, we show, in red, the error curves for the Pareto fronts constrained to
stay in the low transmittance region (less than τc < 0.01); also, in this case, the computation time is
105 s and the physical parameters are unchanged.

Let us now comment on the set of Figures 2–4; it is clear that regardless of the heuristics
used, there is a unique convergence towards a well defined Pareto front. This is, in our
opinion, the main result of this work. It can be seen that each method converges with its
peculiarities. Some heuristics converge well across the accessible noise range before quarter-
wave design (NSGA2, Borg MOEA); others focus more (GDE3, NSGA3, and MOPSO) or
less (MOEA/D) well on the part with low noise and high transmittances. The peculiarities
found are well known in the literature [34], and therefore we will not dwell on them later.
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MOEA/D

GDE3

Figure 4. The figure shows the common Pareto Front (yellow) and the two curves computed with
and without the constraint on the transmittance, for the two optimization procedures MOEA/D and
GDE3. A fortiori, it can be seen that without constraint on transmittance, the two heuristics poorly
reconstruct the low-transmittance part of the trade-off curve (the green curve). The red curve shows
the Pareto curve with the constraint to look for solutions below the transmittance values of τc < 0.01.
The computation time is 105 s, and the physical parameters are reported in Table 1.

5.2. Physical Properties of the Optimal Design

In this section, we try to understand what happens to the common Pareto fronts when
the number of layers of the two materials used is increased. This comparison is made in
Figure 5, where using the same parameters of Table 1, different Pareto fronts, obtained by
changing the number of layers, are shown. The analysis of Figure 5 reveals that common
Pareto fronts tend to collapse on a single asymptotic (bumpy) curve. It has been verified
that for the realisitc values of NH (i.e.,∼20), this asymptotic Pareto front is near a decreasing
exponential, i.e., the gray dashed line shown in Figure 5. This behavior is the analog of
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that found in [33] and further elucidated in [20]; the gray dashed line in Figure 5 is the
perfomance limit of the optimization method. The equation of the decreasing exponential
in the cryogenic case becomes

log(τc) = log
(

4
nL

)
− 2nHηe

ηenH + nL
log
(

nH
nL

)
+

− φ̄c
8nLnH

ηenH + nL
log
(

nH
nL

)
(13)

where τc is the trasmittance, φc is the normalized thermal noise, and ηe ∼ 6 is the effective
noise ratio (the value is relevant for the materials considered in Table 1). The result (13)
is obtained by specializing the reasoning made in the Appendix of paper [33] to the
cryogenic case. The asymptotic curve (13) is dominated by the red straight line in
Figure 5, which represents the curve on which the quarter-wave designs are located.
Figures 3 and 5 suggest that the number of bumps present on the Pareto Front is equal to
the number NH of layers made of the H-type material. Let us recall that for designs starting
with an H-type material at the interface with the vacuum, the following relationship applies
NL = 2NH − 1.

10

12

14

9

11

13

8

Closeup

8

NH

Figure 5. Various common Pareto fronts for NH = 8 (1) 14 are shown in the figure. It can be seen that
the common Pareto fronts join together in a single curve in the region with high transmittances and
low noise. The bump-like structure is also present here; the number of bumps is equal to the number
of layers with a high refractive index NH . The gray dashed line in the figure represents the curve in
Equation (13) to which the Pareto fronts approach when NH increases. The physical parameters are
those of Table 1, and the common Pareto fronts are computed by implementing the above-mentioned
meta-heuristics each running for 105 s.

In the previous section, we have seen that the common Pareto front has bumps. In this
section, we will try to explain where they come from. To this end, recall that the trade-off
curves shown above were obtained by considering that the thicknesses of all the layers
may vary without a priori assumptions.

Let us now introduce the trade-off curves for the periodic structures, i.e., the periodic
designs in the thicknesses and in the materials. The periodicity assumption reduces the
optimization problem to the maximization of a function of two variables with a linear
constraint (see Refs. [32,52] for the development of this idea). The thicknesses of the two
alternating materials are the unknowns to be optimized; the number of periodic doublets is
to be considered as a parameter. Additionally, in this simple case, we can identify a Pareto
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curve that varies with the number of doublets, i.e., it varies with the number of H-type
layers. It is necessary to take a small precaution for the design that, at the first interface
(near to the vacuum), has an H-type material layer; the last L-type layer should not be
taken into account in the noise computation, being of the same material as the substrate
(in principle it can be removed without affecting the coating transmittance). With these
considerations in mind, we comment on Figure 6, where the common Pareto front for
NH = 12 (i.e., NL = 23) is shown together with the Pareto fronts of the periodic design; the
numbers of H-type layers change accordingly NH = 3(1)8. The envelope of the periodic
case Pareto fronts always lies above the common Pareto front. Furthermore, in Figure 6 it
is noted that each bump of the common Pareto front is close to a periodic design Pareto
front with given NH . This is further elucidated in Figure 7; in the upper right b) panel we
display the closeup of two common Pareto fronts with NH = 12, 14 (they join together, as
noted before). In the same panel, the periodic design Pareto fronts for NH = 3, 4, 5, are
displayed and all the curves of the Pareto fronts are intersected with a horizontal straight
line, indicating a transmittance of τc = 0.2. The intersection identifies a point on (both)
the common Pareto fronts that is in the fourth bump (counting from above). Furthermore,
the line τc = 0.2 intersects the periodic design Pareto curve with NH = 4 i.e., the curve
with four H-type layers. In the upper left panel (a) this periodic design is shown, and
in the same column in the panels (c) and (e), the design relative to the common Pareto
fronts with NH = 12, 14 is shown. The periodic design for τc = 0.2 in panel (a) does not
seem to be similar to those obtained from the common Pareto fronts in panels (c) and (e),
but if we manipulate the thicknesses sequence by eliminating layers with thicknesses
much smaller than λ/4 and joining two contiguous layers of the same material, then the
situation changes. This reduction was performed on the sequences displayed in (c) and (e)
by providing panels (d) and (f); it is clear that the two solutions are very similar to panel a),
and all three correspond to a quasi-periodic design with initial and final tweaking.

Common Pareto Front (black)
NH=12

periodic design (colored)

4

5

6

7

3

8

NH

Figure 6. The common Pareto fronts for NH = 12 are shown in the figure; furthermore, in the figure
we show the Pareto fronts for periodic designs with the variable NH = 3(1)8. The envelope of the
periodic Pareto fronts always lies above the common Pareto front. The physical parameters are
those of Table 1, and the common Pareto front is computed by implementing the above-mentioned
meta-heuristics, with each running for 105 s. The Pareto tradeoff curves of the periodic design are
computed in ∼102 s.
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Figure 7. In the panel (b), we show the common Pareto fronts for NH = 12, 14 (see arrow in the
figure), and the Pareto curves for NH = 3, 4, and 5 in the case of periodic design . Panel (a) shows
the periodic design (i.e., the thicknesses sequence) in the case NH = 4; this design correspond to
the point on the Pareto front (the green line in panel b) with τc = 0.2. In panels (c,e), the computed
optimal design for τc = 0.2 on the common Pareto fronts are displayed; on the right in panels (d,f),
we see the corresponding design after the reduction operation. In panels (a,c,e,f), the blu bar (resp.
red) corresponds to the H-type material (resp. L-type). The physical parameters are those of Table 1,
and the common Pareto front is computed by implementing the above-mentioned meta-heuristics,
with each running for 105 s.

5.3. The Coating Length Optimization

In this section, we shall carry out some recapitulation. In previous articles [32,52], we
studied coating optimization in the case of two materials at room temperature, assuming
that the pattern structure was periodic, leaving open the possibility of alternative designs
(completely aperiodic). The first suggestion that quasi-periodic structures (i.e., periodic
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structures with thicknesses tweaked in the top and bottom layers) with two materials could
be the only solution is formulated in [33]. In this paper, we show the uniqueness of the con-
vergence by analyzing many optimization methods in the case of two materials at cryogenic
temperatures (i.e., ηH < ηL).

We find strong evidence that tweaked periodic designs are the optimized designs;
no other possible designs are allowed, as in the case of purely mathematical interest
ηH = ηL = 1 (the case of minimal coating length). This is shown in Figure 8, where for
NH = 10 we display the common Pareto front in the panel (a). We note that for this case,
the monotonic properties of the Pareto front are preserved, but discontinuities appear near
the red dots representing the quarter-wave designs.

Reduced a)

b)

c)

  

L-type material

H-type material

Legend

Figure 8. The panel (a) of the figure shows the common Pareto front in the case ηH = ηL = 1; the
dielectric parameters are the same as in Table 1. The red dots represent the λ/4 design. For the
case τc = 0.05 in the right panel (c), the corresponding design is shown, and in the above panel (b),
the reduced design is shown. In the panels (b,c), the blue bar (resp. red) corresponds to H-type
material (resp. L-type). The common Pareto front is computed by implementing the above-mentioned
meta-heuristics, with each running for 105 s.

To show that the similar conclusions discussed above on the tweaked design also hold
true in this case, we add panels (b) and (c) in Figure 8. In these two panels of Figure 8, the
design for τc = 0.05 on the common Pareto fronts in panel (b) and the reduced design (with
NH = 6) are displayed, showing that the tweaked quasi-periodic structure is again the best
configuration of the layer thicknesses.

6. Conclusions

This work conclusively addresses a problem of great importance in the construction
of gravitational wave antennas. The problem of optimizing the dielectric mirrors of the
Fabry–Perot constitutes one of the arms of the Michelson–Morley interferometer. The
aforementioned problem, in our opinion, also has relevance for the optics since this research
field is new and full of possible applications. Normally, in the theory and practice of
multilayer coatings in optics, the focus is on optimizing reflectance alone. The coating-
design optimization problem for dielectric mirrors of gravitational wave antennas is an
inherently multi-objective problem that we propose to address with appropriate global
optimization heuristics. In this connection, we propose to simultaneously minimize the
transmittance and the thermal noise of the mirrors.

In a previous paper [33], we analyzed the case of global multi-objective optimization
of a coating operating at room temperature, where the relation ηH > ηL holds. In [33],
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however, a thorough convergence analysis has never been done, using only an optimiza-
tion method (i.e., BorgMOEA). Unfortunately, when using heuristic global optimization
methods, for nonlinear and nonconvex problems, there is always the possibility that they
will be trapped in local minima by not converging to the sought solution.

In this work, we extend the study to the cryogenic case ηH < ηL, and for completeness
to the case of purely mathematical interest ηH = ηL (coating length minimization). We
find that in all physically relevant cases, the global multi-objective optimization heuristics
(GDE3, NSGA2, NSGA3, MOEA/D, Borg MOEA, and MOPSO) converge to the same
trade-off curves, and all features of the Pareto fronts and the optimal designs shown
in [20,33] hold regardless of the global optimization method used. This is the first strong
evidence of the correctness and uniqueness of the optimal designs previously found and
is also the main result of this paper. The optimal design found, i.e., the sequence of the
layers thicknesses of the dielectric mirrors, falls in all cases in the class of tweaked periodic
structures. These structures improve the performance of the periodic designs analyzed
in Refs. [32,52], which are therefore sub-optimal. Furthermore, it is definitively excluded
that other types of designs, i.e., fractal or aperiodic, can improve the performance of the
dielectric mirror. In fact, we have verified that the heuristics used in the present work
to compute Pareto fronts and optimal designs, when applied to the room-temperature
case, reproduce the results reported in Ref. [33]. In conclusion, we believe that methods
developed in this work will enable us to understand the goodness of convergence of the
global optimization heuristics, even in cases of multi-material and possibly nano-layered
coating design.
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