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Abstract. The ATLAS experiment is approaching mid-life: the long shutdown
period (LS2) between LHC Runs 1 and 2 (ending in 2018) and the future colli-
sion data-taking of Runs 3 and 4 (starting in 2021). In advance of LS2, we have
been assessing the future viability of existing computing infrastructure systems.
This will permit changes to be implemented in time for Run 3. In systems with
broad impact such as the conditions database, making assessments now is criti-
cal as the full chain of operations from online data-taking to offline processing
can be considered: evaluating capacity at peak times, looking for bottlenecks,
identifying areas of high maintenance, and considering where new technology
may serve to do more with less.
We have been considering changes to the ATLAS Conditions Database related
storage and distribution infrastructure based on similar systems of other exper-
iments. We have also examined how new technologies may help and how we
might provide more RESTful services to clients. In this presentation, we give
an overview of the identified constraints and considerations, and our conclu-
sions for the best way forward: balancing preservation of critical elements of
the existing system with the deployment of the new technology in areas where
the existing system falls short.

1 Introduction

The ATLAS experiment [1] is operating at the Large Hadron Collider (LHC) at CERN. AT-
LAS has been successfully collecting collision data for the past 8 years, and in the next few
years there will be significant upgrades of the LHC machine and of ATLAS subdetector sys-
tems, bringing an increase in luminosity and in the rate of collected data. The processing of
the experimental data collected by ATLAS requires a wide variety of auxiliary information
from many systems (e.g. Detector Control Systems (DCS), Trigger and DAQ, Data Quality,
the LHC accelerator and ATLAS sub-detectors) stored in the ATLAS Conditions Database.
Such pieces of information are heterogeneous both in data type (e.g. standard integer, floating
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point and string types, database-standard BLOBs, CLOBs, and types special to the Condi-
tions database infrastructure like references to external POOL and ROOT files) and in time
granularity (spanning intervals from minutes to hours in duration).

During the LHC Run 1 and Run 2, the ATLAS Collaboration deployed and used a sys-
tem based on the LHC Computing Grid (LCG) Conditions Database infrastructure and the
COOL API [2], a C++ library based on a software layer called CORAL which manages the
actual database access and the queries that should be issued (hiding the SQL complexity from
clients) and supports multiple relational platforms (SQLite and Oracle). We found that this
architecture worked well so far, but is showing signs that it will not scale to cope with the
processing of the increasingly complex and intense data flows coming with the growing LHC
luminosity.

For this reason, the ATLAS Conditions Database management is evolving to a new Con-
ditions Database system [3] which is based on RESTful 1 client-server interaction and has
an architecture which uses an intermediate server that disentangles the business components
dealing with the database management aspect of the client. This allows the client and server
to evolve separately via well-identified interfaces. In the new framework, the database access
layer is implemented at server level and the exchanged network traffic will be conditions-
database specific (instead of the present generic SQL), allowing to profit in a better way
of the parameters used to retrieve the data, which are today completely invisible inside the
SQL statement; this element can be relevant for caching optimization. During the interme-
diate transition phase, we are developing a set of new tools to permit RESTful access to
COOL/CORAL for preserving the functionality of the present system.

2 The ATLAS Conditions Database during LHC Run 1 and Run 2

ATLAS conditions data are stored in a relational database. The database design is based on
the LCG Conditions Database and is accessed by clients using the COOL API, both of which
were developed by the CERN IT department for the LCG [2]. COOL is a C++ API library
based on the CORAL access layer. It provides high level functionality which allows users
(the expert scientists that manage the conditions data for any ATLAS sub-detector) to create
their own COOL Database and fill it with payload data corresponding to a given time range
over which that data is valid (the IOV, or Interval of Validity). Using the COOL terminology,
a COOL Database for a given system is called a schema, and the database tables dedicated
to a given set of parameters inside each schema are called folders. A folder containing data
which can only have a fixed, unchangeable value in each time interval is defined as a single-
version (SV) folder: IOVs may only be appended and data cannot be overwritten. A folder is
defined as a multi-version (MV) folder when the payload data can have multiple versions in
any given IOV: each new version of the data is entered under a distinct folder tag. For data
processing involving many folders, a higher level global tag is defined which contains all the
folder tags to be used: this simplifies task configuration because event processing generally
requires the conditions data from over 150 different folders.

Conditions data are concurrently accessed by a large number of clients: the majority are
event processing jobs using Athena [4] the ATLAS event processing software framework.
Database access is managed via the COOL API using the intermediate Frontier/Squid [5]
services, as shown in Figure 1.

Database queries which are created via the COOL/CORAL stack are propagated as pa-
rameters inside a URL and sent as HTTP requests to the Frontier server. Access to the Oracle
Database is managed via a Java DB Connectivity (JDBC) layer. Since each request with an

1Representational State Transfer (REST): https://en.wikipedia.org/wiki/Representational_state_transfer
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Figure 1. Schematic of the COOL access mechanism

identical URL will retrieve the same data from Oracle, a simple web caching layer is imple-
mented via squid proxy.

The database design and the data access model have been generally stable through LHC
Run 1 and for most of Run 2, but in the later stages of Run 2 dips in data access efficiency
were observed. This led to a general survey of the system to assess how to improve current
operations as well as the viability of the current infrastructure for future operations. We found
they current system is problematic in a number of areas:

• Global management of the system is made more difficult because the conditions data are
contained in over 30 schemas and stored in over 10,000 underlying folder tables in the
database. The implementation of global tags in the LCG infrastructure proved cumbersome
in ATLAS because of the way in which it is implemented at the database level.

• The granularity of the conditions data in the current system is not well suited to the caching
mechanisms of Frontier.

• The support from CERN IT of the underlying software stack (COOL and CORAL) is de-
creasing and will stop at the beginning of Run 3. Maintenance of the complexity of the
current implementation will be magnified as new data is added to existing schemas and as
new detector systems come online. We also are concerned about the possible implications
in terms of data preservation.

These considerations lead us to evaluate new database models and architectures on the time
scale of the end of Run 3.

3 The new Conditions REST infrastructure

A new REST-based architecture for the management of ATLAS conditions data is now be-
ing developed. The new Conditions REST (CREST) architecture enhances the role of the
Frontier servers, as shown in Figure 2. CREST development started in collaboration with the
CMS experiment [6] who have been successfully using this underlying database model for
storing and accessing conditions data since the beginning of LHC Run 2. In this architec-
ture, the client is not aware of the underlying persistence technology used, and interacts with
the storage via functions implemented at server level, providing only the set of conditions
data or metadata that are needed directly inside the URL (or requests body or headers) of the
HTTP method (GET, POST,...) used. Having the client compose requests via an abstraction
layer above the SQL also allows alternative storage systems to be swapped on the server side
in the future without changes needed on the client side. We call this set of functions the
CREST API; the API has been written using OpenAPI [7] specifications (in short, a JSON
file describes the URLs and their parameters as well as the Request and Response content).
This enables us to take advantage of code generation tools: in our case, the client library (in
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