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Abstract In this paper, we employ one variant of the Gen-
eralized Uncertainty Principle (GUP) model, i.e., the Kempf—
Mangano—Mann (KMM) model, and discuss the impact of
GUP on the EoS of nuclear and neutron star matter based on
the relativistic mean field (RMF) model. We input the result
in the Serrano-LiSka (SL) gravity theory to discuss the corre-
sponding Neutron Star (NS) properties. We have shown that
the upper bound for the GUP parameter from nuclear matter
properties is < 2 x 107 MeV 2. If we used this 8 upper
bound to calculate NS matter, and considering SL parame-
ter ¢ as an independent parameter, we have found that the
upper bound for the SL parameter, which modifies the Ein-
stein field equation, is ¢ < 107 m2. This beta upper bound is
determined by considering the anisotropy magnitude smaller
than the pressure magnitude. By employing 8 = 2 x 1077
MeV~—2 and ¢ = 107 m?2, we obtain the mass—radius relation
that satisfies NICER data for both PSR J0740+6620 (whose
massis ~ 2.1Mg) and PSR J0030+0451 (M ~ 1.4Mg). Our
GUP parameter upper bound perfectly matches the constraint
from 37Rb cold-atom-recoil experiment. If we consider that
the same strength from the additional logarithmic term in
the entropy from both GUP and SL model are dependent,
for B < 2 x 1077 MeV~2, it is clear that SL parameter
lower bound is ¢ > —16 x 1073 m?. The magnitude of
this bound is 10~#° smaller than the upper bound magnitude
of SL parameter considering as independent parameter i.e.,
¢ < 10" m?.
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1 Introduction

The grand theory of quantum gravity remains an elusive the-
ory to be discovered. Several models have been proposed, for
example, loop quantum gravity and string theory. These mod-
els have a common notion, i.e., on the existence of minimal
measurable length O(/,), with /,, is Planck length. There-
fore, the spatial distance cannot be reduced to a point. In
other words, there is a scale where space is fuzzy. In string
theory, for instance, one cannot demand the spatial resolu-
tion to be smaller than the fundamental length of the string
[1,2]. In loop quantum gravity, on the other hand, the space
granularity is inherited by the SU(2) structure of the quan-
tum theory, which results in the area and volume eigenvalues
described by the angular momentum j representation [3—5].
The consequence of incorporating a minimal length in quan-
tum mechanics (QM) formulation is modifying the Heisen-
berg uncertainty principle known as the generalized uncer-
tainty principle (GUP). There are many GUP model propos-
als. However, the first attempts to construct a GUP model
were made by Kempf-Mangano—Mann [6]. This model is
quite popular and commonly known as the KMM model
in the literature. The commutator between the position and
momentum operator in the KMM model depends on the
quadratic momentum. Many authors have investigated the
effect of GUP on QM and gravitation systems. For example,
we can find the discussions of the effect of GUP in the har-
monic oscillator in [7] and hydrogen atom in [8]. We can also
find the discussion that the GUP yields black-hole remnants
in [9]. Atthe same time, the corresponding impact on the den-
sity of states and cosmological constant is discussed in [10].
While Hawking’s temperature is in [11], and astrophysical
objects are in [12, 13]. Furthermore, some works to incorpo-
rate the formalism of GUP into quantum field systems have
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also been reported recently. In particular, the procedures have
been made to the standard electromagnetic field to describe
the Casimir effect [14,15]. Inspired by GUP, recently in [16]
has also implemented the modified Poisson relation of the
minisuperspace and midisuperspace variables of the Wheeler
de Witt system. To this end, we need to highlight that through
GUP, the universality of quantum gravity corrections could
be found in any quantum mechanical system [17].

It is known that the obstacle behind a direct test of quan-
tum gravity is the energy scale related to the Planck length
(Up) Ep ~ 10'° GeV. This energy scale is outside of the capa-
bility of current experimental technology. Therefore, deter-
mining the upper bound values of the GUP parameter from a
theoretical framework, from gravitational observations, and
experimental framework using QM systems becomes very
crucial as an indirect test of the quantum gravity effect. Many
attempts have been performed to constrain the GUP parame-
ter values from theoretical and all possible observations and
experimental frameworks, including those from QM systems.
See Refs. [18-20] and the references therein for the review of
the recent upper bound constraint of the parameter of GUP
models. Note that other attempts to find possible methods
or experimental setups to constrain the GUP parameter. For
example, they have been discussed in Refs. [13,21-29]. We
need to highlight the results of review report in [18-20].
The different theoretical frameworks and explicit calcula-
tions yield a value for quadratic GUP parameter in the same
order, i.e., 8 & 1. The best upper bound on 8 value from
gravitational origin probe, if we allow for violation of the
Equivalence Principle, gives 8 < 10?! [30] while if the
Equivalence Principle is preserved, the upper bound of B
prediction becomes larger [31]. While the more restricted
upper-bound prediction than the ones of gravitational probes
comes from QM system probes (harmonic oscillators), i.e.,
B < 10°. Therefore, it is obvious that the challenge and issue
is the large difference in the upper bound of GUP parameters
between the one predicted by theoretical frameworks and the
ones from observation or experimental measurements.

This fact motivates us to investigate whether the sym-
metric nuclear matter (SNM), pure neutron matter (PNM),
and neutron stars (NSs) within the relativistic mean-field
approach (RMF) could constrain the free parameter KMM
GUP model. Note that the nuclear matters are dense many-
body QM systems. They might be an appropriate area to test
the GUP because we have a relatively certain and sufficient
number of experimental data to constrain the equation of state
(EoS) from low to relatively high-density regions of nuclear
matters and NSs are the most compact horizonless objects
observed in the universe. Furthermore, the nuclear matters
and finite nuclei properties predicted by the standard RMF
model are compatible with experiment and observation data.
For detailed discussions related to SNM and PNM predicted
by standard RMF models and their compatibility with exper-
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imental data and NS properties predictions, please see Ref.
[32-36] and the references therein. In this work, we will also
show that when we consider GUP correction in the EoS of
matter, the first law of thermodynamics is preserved only
if the pressure of matter is anisotropic. Many authors have
already explored and investigated the impacts of GUP on the
many aspects of white dwarf’s properties. Please see Refs.
[13,37] and the references therein. On the other hand, as far
as we know that the impacts of GUP on NS properties were
only discussed in Ref. [38]. The authors use the linear RMF
(Walecka) model and general relativity (GR) to describe EoS
and gravity, respectively. In this work, we use the standard
RMF model to describe the relative realistic NS EoS, and we
also consider the impact of GUP in the gravity sector. There-
fore, we use Serrano—LiSka [39] gravity theory to describe NS
properties. The field equation of Serrano-LiSka [39] gravity
theory was derived using the thermodynamics of spacetime
formalism and taking into account the additional logarithmic
area term in Bekenstein entropy. The later modification is pre-
dicted by some quantum gravity approaches, including GUP
phenomenology. Furthermore, recently the same authors [40]
have also shown that the Hawking radiation in Schwarzchild
black hole agrees with the one obtained by other quantum
gravity approaches, both heuristic and rigorous, including
GUP phenomenology.

We organized this paper as follows: in Sect. 2, we briefly
discuss the GUP model used in this work, i.e., the KMM
model. In Sect. 3, we discuss the impact of GUP on the EoS
of nuclear and neutron star matter based on the RMF model.
In Sect. 4, we discuss the NS properties based on Serrano—
LiSka gravity theory. In Sect. 5, we discuss the results. Finally,
the conclusions of this work are given in Sect. 6.

2 Generalized uncertainty principle

This section will briefly discuss the generalized uncertainty
principle, which will be implemented in this work. To include
the effects of minimal length in quantum mechanics, one
must impose a deformation of the Heisenberg algebra into
quadratic functions of momentum operator [6]. The general
form of such deformation in n spatial dimension that satisfies
rotational and translational invariance is [14]

i ) =i [ £ (97) 85+ (52) Bis]. M

with f (p?) and g (p*) are some generic functions of total
momentum squared. In this paper, we will work within the
initial Kempf-Mangano—Mann model, in which the correc-
tion is coming from the leading quadratic term [6]. The func-
tions have the form of

F(#?) =1+80% g(p*)=0. @)
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This model commonly known as quadratic GUP, and the
Jacobi relation resulting non-commutative space coordinates
relation. Other model in [41] include linear term in addition
to quadratic term to ensures the fundamental commutative
relation [x;, x;] = [p;, p;j] = 0. Notice that the dimension
of B is inverse momentum square, so we define a dimen-
sionless GUP parameter aQ2 = (1/1p)*B, where [p is the
Planck length.

GUP is a good tool for analyzing quantum gravity correc-
tion at alow energy limit. One of its predictions was reproduc-
ing a general result in quantum gravity, namely logarithmic
correction to the Bekenstein—-Hawking relation. As shown in
[42—45] that GUP generated the same logarithmic correction
with B playing the role as the expansion coefficient. Heuris-
tically, when a black hole absorbs a particle with energy E
and size Ax, the area increases by

A Snl%EAx - 8nl%,Apr
- hic - h
with [, is the Planck length. [Please see Refs. [42,44] for
explaination on how Eq. (3) obtained from Eqgs. (1) and
(2).] The modification appears through Ap Ax and accord-
ingly, by setting the uncertainty of the position around the
Schwarzschild radius Ax ~ 2w Ry following Refs. [42,44],
the lower bound of the increasing area within the GUP model

then

3

hZ
AAmin & 4150 [1 + ﬁ} , 4

where A is proportionality constant to be determined later.
Since the minimum increasing of entropy is by one bit cor-
responding to ASpin = In2 and hence

dS  ASmin In2

= &)

dA - Adwin a1+ 2]

where by direct integration, one obtain

_ kpc? "B A

4Gh
where the proportional constant is obtained by demanding
the relation is reduced to the standard relation of Hawking-
Bekenstein.

It was also shown heuristically that the associated Hawk-
ing evaporation is halted at the Planckian scale due to the
modification of the Hawking temperature [9]. This modifi-
cation of black hole thermodynamics inspired the work in
[39] to construct the modified GR due to the presence of
minimal area and modified Hawking temperature by utiliz-
ing the maximal vacuum entanglement hypothesis (MVEH)
of Jacobson [46].

We can no longer introduce a plane-wave state by intro-
ducing deformation in the canonical commutation relation

since it provides a state with precise certainty of position.
However, one can still define a state which saturates the
uncertainty in position, known as the maximally localized
state [6]. By choosing the quadratic GUP, the corresponding
maximally localized state has the form of

w ([, X) — \/%ei(wptP(p).x)’ (7)

with N is a normalization factor, and the functions P(p) has
the following relation

\/%p tan~" (\/@) . ®)

The associated deformed completion relation reads

dp
/WU’) (pl =1 )

We observe that the deformation factor above suppressed
the high momentum region. This deformed measure leads
to non-local inner product of maximally localized state as
[15,47]

P(p) =

_ 1 U ig—xPp)
Wt = 35 [ T35

B sin((;;% )
83 amy (H )2

B~ \2nJB
=5(x—y). (10)

This expression yields in the modified Dirac delta functions
that show non-locality. In the limit of 8 — 0 the standard
Dirac delta will be recovered.

To describe nuclear matter, we have to provide how the
GUP formalism is implemented on the fermionic matter.
Since the momentum operator is modified here as p; —
ﬁ,- (p) as in Eq. (8), then the modified Dirac equations has
the form of

(7B =m) v () =0, (11)

whereby using the maximally localized state (7), we obtain
the modified dispersion relation as

a)f, = P>+ m?
1 2
=3 [tan—l\/ﬁp] +m?. (12)

From this analysis, by following the standard procedures of
second quantization, we expand the field operator in terms of
maximally localized state and also use the deformed measure
as

. d3 .
¥ (x.1) =Z/ﬁ[b(p,awx(r>u(p,a>

+d" () ¥ () v (p )], (13)
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where we have chosen the normalization condition of the
form

2
Yout @) =2,
a=1
2 . 2m
Zu' (pv a)u(pva) = (14)
w

a=I p

and the anti-commutation of the annihilation and creation
operator reads

{b(p,a),b" (q, 8)) = {b(p, ), b" (q, B)}
= (27) 648 (P —q) . (15)

From the corresponding field operator expansion, normal-
ization condition, and the anticommutation relation, we
obtained the modified equal time anticommutation field oper-
ator relation as

W, (x, 1), &, (y,0)) = 6apd (x —y). (16)

So the relation is modified by replacing the standard Dirac
delta with the deformed function. The above construction can
be reduced to the standard results by taking the limit of 8 —
0. The following sections will implement this construction
for nuclear matter and neutron star matter within the RMF
models.

3 GUP in nuclear and neutron star matters

Nuclear matter and finite nuclei can be described by RMF
models. The Lagrangian density of RMF models is defined
as [32-36]

L=LNn+Ly+Lin, (17)

which contain the contribution of free nucleons, mesons and
interactions term. The free nucleons in finite nuclei has form

Ly =Y Uy (ivud" — My)vw. (18)

N=n,p

Here the sum is taken over all nucleons N in nuclei. Nuclear
matter is a thermodynamic limit of finite nuclei. Therefore, in
this limit, N — oo and volume goes to infinity, but the den-
sities are finite. Therefore, in this limit, we replace ) y with
f d>k. Note that the interactions between nucleons are medi-
ated by the exchange of scalar-isoscalar o, vector-isoscalar w,
and vector-isovector p, mesons, respectively. Furthermore,
the corresponding mesons have self-interactions. The inter-
action Lagrange density for finite nuclei taken following form
[48]:

Lini= ) 2O0UNUN— Y 8Vu¥NY"UN

N=p.n N=p,n

@ Springer

— 1 1
- E gobu I nvHTyn — §b203 — Zb3a4
N=p,n

1 1
+703 (Vu Vi + 44 (VuV*) (b7 - by)

1
+dyo (Vi VH) + fro (b* - by) + 5d302 (VuVH).

(19)
For free mesons, the Lagrangian density is as follows
['M = £a + Ea) + £p, (20)
where the explicit form of each term is
Lo =2 (a,00" 2 21
J_g(uaa U—maa), (21)
1/1 v ) u
Ly = —5 ( 7ome™ = myV, V¥ ), (22)
1 /1 e ) °
Ep:—z SPuv P —mpby - b ). (23)

Within the mean field approximation, o, V#(Vy,0), and
b*(bo, 0) are o, w, and p fields, respectively, and w,,, and
P, are the anti-symmetric tensor fields of @ and p meson.
Note that for the case NS matter, the S-stability condition
should be satisfied. Therefore, the electrons and muons (lep-
tons) should be exist in the NS matter. The contribution of
non-interacting leptons to the total Lagrangian density is as
follows

Lo=Y Uy (ivade—me) . (24)
L=e,n

In the following, we will discuss the impact of the phase
space deformation due to GUP on the nuclear matter and NS.
Using the RMF calculation procedure [49], we obtained the
modified nucleon number densities for nuclear matter due to
phase space deformation caused by GUP as

piﬁijkmﬁ N=p,n. (25)
@ry Jo (14 pk2)> ’

Similarly, scalar number densities for protons and neutrons
are expressed as follows

2 (kvMy o &Pk
W/o on (14 pk2)*

Py = (26)

where wy = \/% (tan_l[\/ﬁk])2 + MK,Z and My, = My +
g0 0. The nucleon contributions in energy density are as fol-

lows
2 [ d’k
ey = 3 / ON———. (27)
@) Jo (1+ BK?)
The explicit expressions for P is
2 (v kr dk
N = — / — . (28)
e’ o ov (14 p2)
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Due to the physical fact that 8 should be a small number,
we can expand the number density in Eq. (25), the scalar
density in Eq. (26), the energy density in Eq. (27) and the
radial pressure in Eq. (28) in respect to 8. If we take only
up to the first order of 8, we can obtain simple analytical
expressions. The pj; can be approximated as

Py = PN + B Apn, (29)
where
L5
PN = wkﬂv,
~ 2 5
Apy ~ =53 kpx (30)

while oY ,, now becomes

Pin=ps N+ B Aps N, (31)

with

*

Ps N = o 2 ka\/ka My
2
P [ka + Ky + My ]}

—My In

(32)

and the GUP correction on p ,, can be approximated as

w ([ =106 + KMy + 3k |
A:Os N~

2472 [12 2
ka—i—M;'{,
ka+,/k2 + ME

_amE ln|: : SN TN ]} 33)

My

Similarly for e},, we have
ex = €n + BAey, (34)

with

1 2[00
EN = . 2{ka,/ka+M* |:2k N+M i|
krn + ,/k%N + M;’;,2i|} a5)

My

—M;‘C,4ln|:

and the GUP correction on the GUP correction on ej‘{, is

1 [ 2
AEN%+144 Z{ka ka-i-M*

2 4
X [—561«;‘%, — 2kG N My + 3M3, }
2 2
.6 ka~|—,/ka—|—M;/
~3MESIn A : (36)
For the radial pressure of nucleon P, we have
Ply = PN+ BAPN, 37)

with

1
Piv = o Z{ka\/ka +M*2(2ka —3Mz*v2>
ka+,/ka2+M]’C,2]}

M*

+3M5* In [ (38)

and the corresponding GUP correction in P, is as follows

/ 2
APy ~ 4 15M%%1n o Ko + M3
"N T 14472 N M7,
+ Z(N, M})}, (39)
with

Z(N, M}) = [—40k}N 2K M3 + 5Ky M

%6 2 #2 —1/2
+15kaMN]{ka+MN} T

Note, for leptons, the expressions are similar to those of
nucleons. However, in lepton cases p; = py(N —
L, M* — mp), € = ej{,(N — L,My, — mp), and
P = PX(N — L, My — mp),withL=e, u.

In this way, we have the total number density p in NS
matter as

Z oy + Z e (41)
N =n,p L=en
and scalar density pj is
Z Py + Z PiL 42)
=n,p =e,lu

The total energy density € can be expressed as follows

I
€= ). Nttt gl tU+ Y e

N =n,p L=e,n
(43)
where the meson contribution still takes following form
1 2 5 1 1
1 1
3 4 2v/2
+5b20‘ + Zb30 — ZCl VO - §d4bOV0
1
—dyo Vi — frobf — Edganoz. (44)
The total radial pressure P, is
1 1
Pr= ) Pi-U+ Y 3P (45)
M =n,p L=en

Based on these pressures and energy densities, and assuming
we know the Fermi momentum of each constituent, we can
calculate the EoSs of each corresponding type of matter. Note
that, for PNM, we only required & 7, to determine the EoS,
whereas for SNM, we need kr, = k) as input to calculate

@ Springer
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the EoS. In addition, we need to note that the most crucial
SNM parameter is the binding energy at the saturation density
of SNM (E/N). Other nuclear-matter isoscalar properties at
saturation density can be derived from the binding energy
E(p) using following expressions

d’E/N(p)
Ko =9p 2T|P=Pov

(40)
while in the isovector sector of nuclear matter, the symmetry
energy at the saturation density J plays a role similar to
that of the binding energy isoscalar sector. Other nuclear-
matter isovector properties at saturation density of SNM can
be derived from J (p) and are given by the following relations

dJ(p)
L =3p0——p=py>

(47)

For the EoS of the NS core, we need to apply g stability and
the neutrality conditions to determine the Fermi momentum
of each constituent. In the following, we will discuss how to
obtain the Fermi momentum of each constitient in NS The
chemical potential of each constitient u} = =p,

n, e, and p, can be approximated as u’ ~ jui; + ﬂAu, The
explicit expressions are

2 %2 1 k;‘”n 1
My &k, + M f‘3—2 +ng0—§gpbo,
[kG, + M
1 K 1
iy~ \JKG, + M — B g Vo o+ 3 8,0,
*
\/kfp +Mp
1k
wo ~ k%e-i—mg—ﬂ——fe ,
32 4 m2
v Fe T Me
k4

(48)

To this end, by substituting all of the densities and chemical
potentials to the conditions of § stability and neutrality i.e.,

oy =p;+ 0y

Ky = By + s

Wy = Mg

PB = Py, + Py, (49)

and the approximate form of Fermi momentum is
(1/3) 6
ki ~ G2 + 8 <§n2pi*>, (50)

@ Springer

*
we obtain the electron fraction Y, = 5—; and proton fraction

p*
——'i
as ¥, = 7= as

1 2 2 3/2
= 3z [0 = mD (L B —md)] L 6D
and
2 2 8 %2 2.\ 13/2
32
o [0 (1 p kol )T (52)

. .. . 2,
while the explicit expression of p is

2/3
16211 —2Y, 105

He " P m2 +2f0 + g30° + g4} p 1578
2/3 2/3
N R R A . S C L N
X, X, ’
(53)

with X, = \/(37‘[2[1 -Y ])2/3 pz/% and

X, (32Y )3 + 2/3 Equatlons (51-53) are solved

self-consistently to obtaln Y and Y. Thenwealsohave ¥,, =
1—Y,, and by using Eq. (50) and uﬂ = p} condition, we can
obtain Fermi momentum of each particle in NS matter. We
need to note that due to Eq. (41), the total chemical potential
is

B = D wn+ Y, K
N=n,p L=e,n
=u(p=0)+pAu. 64

According to first law of thermodynamic, the total chemical
potensial should be satisfied the following relation

€+ P,
P

It is well known for standard RMF model where here, it is
equal to B=0 case, Eq. (55) is satisfied. However, we have
found in the case B #0, this relation is not satisfied fully due
to the fact that

w(B)p(B) —e(B) — Pr(B)
~=Blp(B=0)Au+u(B =0Ap — Ae — AP]
£ 0. (56)

n= (55)

We can resolve this issue by assuming that the pressure of NS
matter is slightly anisotropic due to GUP; namely, the radial
pressure is not equal to tangential pressure. In general, the
average pressure can be defined as P = 3 [P + 2P, Where
Py is tangential pressure. If o = P, — Py, then P = P, — 30
In order to satisfy the first law of thermodynamics, we should
have
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nB)p(B) —e(B) — P(B) =0 (57)

Note for isotropic case P = P, the relation back to Egs. (56)
and (57) can be written as

2
wB)p(B) —€(B) = Pr(p) + 30 =0. (58)

Itis obvious the impact of anisotropic is encoded in o . There-
fore, if we choose

3
0 =—3BLp(B =0)Au+u(B=0)4p - Ac — AP].
(59)

the fundamental first law of thermodynamics is satisfied, even
for the case of nonzero 8 value. We have found that by intro-
ducing GUP makes the relation between chemical potential
as a function of energy density, pressure, and number density
due to the consequence of the universal second law of ther-
modynamics is no longer fulfilled. This fact indicates that
the corresponding EoS is no longer obey the second law of
thermodynamics. One possible way that we know to restore
the fulfilment the universal thermodynamics law is only by
introducing ad hoc anisotropic pressure in matter. However,
it seems that the solution of this issue needs more detailed
investigation that could be beyond the scope of present work.
Therefore, we will address this issue for future work. Note
that the explicit expressions of each contribution in o are

3

K3 k
N L
p(B=0)= § 7f2+ § 7'/{2’
3 3
N=pn L=e,u

2
pB=0= Y Ky +My +280V

N =p,n
+ ) K+ mi
L=e,u '
4 4
1 Ken 1 kiL
=y ¥ oy
3 2 3 2 2
Ky + My, =pn KL tm
263 23
N L
dp=— ) fz -2 fz’ (60)
S S5t
N = p,n L=e,u
and
Ae = +

1 / 2
2
e 2 {ka K+ My
N

=p,n
2 4
X [—56k;‘w — 2k5 N My + 3M3, }

kin =+ Ky + M2
—3M7§,6ln|: s “

My

1
2 2
+ LZ {ka,/ka +m3

=enu

x [—56k;tL — 245 m” + 3mL4i|

ko + k7L +mL2“

mp,

—3mL61n|:
1
+80(App + Apn) + zgp(App — Apy), (61)

with Ap; = —(2/5n2)k§.i (i = N, L), while

1
AP =t LZ {Z(L,mL)

=e,ll
. krr —i—Jk%-L +myp?
—15 1 .
+ mp, n|: . ]}
+ ! Z(N, M)
14472 TN
N=p,n
/1,2 * 2
+ — 15M%°%1n Kty My (62)
N M;} N

We will used P,, € and o of EoS of NS to calculate the
properties of NS. Note that there are many RMF parameter
sets proposed to explain the finite nuclei and nuclear matter
properties. See Refs. [32-36] for details. However, here we
use the BSP parameter set because the predictions of this
parameter set are relatively compatible with the experimental
data of finite nuclei and nuclear matter.

4 Neutron stars within Serrano-LiSka gravity theory

The field equation of Serrano—Liska [39] gravity theory takes
a modified unimodular gravity structure as follow

~ c ¢ cd

Sab — CSacSy + ZScdS 8ab = KNlab, (63)
where Sop = Rap — (1/D)gab R, tap = Top — (1/4)gan T,
R = Rupg™, T = T,g°", and ky = 87 G. Note that the
natural units c = i = 1 are used. The third term with constant
¢ = DIIZ, where D a dimensionless constant, is related to the
logartithmic term in entropy correction. Note that ¢ has a
physical units of m?. This equation has another constraint
such that the energy—momentum tensor 7,; conservation is
satisfied, i.e.

1
¢ (Scas) (64)
4\ b’

where the semi-colon symbol denotes covariant derivative
and the comma symbol denotes partial derivative.
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Because we want to study spherically symmetric NS, the
Schwarzchild metric is used i.e.,

ds? = —*0dr? + eV dr? 4+ r*d 22, (65)

where df2 the infinitesimal element of a 2-sphere. To
describe the NS interior, the ideal fluid anisotropic energy—
momentum tensor as follow is used

rarb), (66)

T = puub + Provb + (P — o) (g% + u“u® —

where we denote that u¢ = 58(—g00)’1/2 and r¢ =
8¢ (gr-)~ /2. Therefore, we can obtain the non-zero compo-
nents of 7, as

00 = ~3Gp +3P ~20)g00, (67)

fry = j—‘(p + P +20)g, (63)

top = ‘1—‘(0 + P —20)gos, (69)

oy = tgg S22 (70)
800

Furthermore, by asumming that ¢ is small, we can also
obtain the aprroximate forms of g5, R, and T in first order
of Taylor expansion in ¢ as

1
gab = 8% + 28}, (71)
R =RO 4 ¢RM, (72)
T=T794erW, (73)

Hence S, = S(O)—l-cS( ) and tap = t +ct(1) Substituting
these expressions into Eq (64), we obtam

RO 44 yT© = 0. (74)
and

1
SR+

H (0) ac ¢(0) 0) ac ¢(0)
: T <S S+ 50 s,

0) ¢(0) cd
~ (scd SO . (75)

for the O(1) and O(c¢) terms, respectively.

Therefore by using the explicit expression of metric com-
ponents, we can have the following non-zero components of
the Ricci tensor as

2

Roo = e2@=) [O/’ +a? -V + —Ol':| , (76)
r

" 2 ’.7 2 /
R, =—|a" +a“—av — =V, 77
r
Rog = e 2 [r(v —a) — 1] + 1, (78)
Ryy = Rop sin® 6, (79)

where the prime symbol denotes differentiation with respect
tor. These first order approximations make S, = Oifa # b.

@ Springer

Now, since the O(1) terms in Eq. (63) 1s just the usual uni-
modular gravity equation S, b) = KNl‘ab , then we substitute
this into Eq. (75), which becomes

(R(l) +KNT(1)) = —K

+ ik Z t(o)“”tlgg);a

a
0
— ik Y2 (18910) . (80)
c,d ’

Note that here for the tensor term with repeated (dummy)
index, we do not sum to all components like the usual Einstein
summation convention. Using b = r and employing the fact
that the NS EoS p satisfies p = p(P) relation, we obtain

2 _(0)bb(0) (0)
7g© T, 1

R 4 4nyTD = kn?A@r), (81)

with A(r) satisfies an equation of motion from Eq. (80)
namely

dp.

dpP

+8Tg(p+P —0)+20'(p + P). (82)

A’EP’(p+P—2a)<

Here prime denotes differentiation with respect to 7. Then we
can obtain the r component from the Bianchi identity namely

P , 20
=—a(p+P)— - (83)

The components of Eq. (63) can then be also rewritten as
~ 2

K
4 gaaA(r) = CKN(taa)zgaa

Gaa —kNTyq +
~ 2
CK .

_TNgaa ;(gcctcc)zs (84)
Here, G4p = Rup—(1/2)gap R. Setting a = 0 and by assum-
ing 2P =(1— 2Gm(r)/r)_1 , wWe can obtain
m' = 4wr?p, (85)
with

_ +T{A(r)——(p+P) +2c7(,0+P)} (36)

Note that the correction appears in the second term. Setting
a = r, we also obtain

., Gm 4rrd - 2Gm(r)\ !
r m r
with
P=p— V(4011 2
I (r)+§(p+P) —20(p+P).) (83)

We numerically integrate Eqgs. (82), (83), and Egs. (85)-
(87), from the center of NS r = r. ~ 0 to its surface »r = R.
The boundary conditions at the center are P(r.) = P, p. =
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p(Pe),0(re) =0,m(r.) =me = (4/3)7[/007'37 and A(rp) =
Ac, with A, arbitrary.

The boundary conditions at the surface are P(r) =
0,m(R)=M,a(R)=(1/2)In(1 —2GM/R), and A(0) =
0. The pressure at the center P, is chosen arbitrarily. Both
a(ry) and A(r.) canbe determined from the shooting method,
i.e.,, by taking an arbitrary value of a(r.) = oc0a and
A(r.) = A, at the center and we iterate the calculation with
following relations

Qc.new = %cold — [@(R) — (1/2) In(1 — 2GIW/R)] , (89)
Ac,new = Ac,old - A(R)’ (90)

and follow by recalculating the equations again from the
center. The looping stops when |t¢ new — Q¢ o1d] < €4 and
[Acnew — Ac.otd| < €4, With g > 0 and €4 > 0 are both
arbitrarily small.

Itis interesting to note that in the limit of ¢ — 0, Egs. (83),
(85), and (87) become the standard TOV equations within
GR.

5 Results and discussions

In this section, we discuss the binding energy of SNM and
PNM as well as the EoS of SNM, PNM, and NS matter pre-
dicted by standard RMF model with BSP parameter set [32—
36] by taking into account the GUP correction within KMM
model. We have found that the binding energy of SNM at
low densities is sensitive to the change of GUP free param-
eter. We also study the impact of GUP through ¢ parameter
of SL model on mass—radius of NS. We also investigate in
this section the sensitivity of recent mass—radius constraints
from NICER to constraint GUP free parameter. For brevity,
we do not show the units of either § or ¢ in the figures. There
we implicitly states that the units of 8 and ¢ is, respectively,
MeV~2 and m?. One of the relations discussed in Refs. [40]
is A = 4wap?, where ag isrelated to B by B = ap?(Ip/h)?
and A is related to the modified entropy formula for black
hole from causal diamonds method

Smod = (kpA/41%) — (274/28)kp 102(A/ Amin)- 91)

The causal diamond method is discussed in Ref. [39] as the
basis to obtain the field equation of Serrano-Liska gravity
theory, whose entropy formula is given by

Ssi. = (kg A/41%) + kpClog(A/Amin), (92)

where C is related to ¢ by ¢ = Cl%/ 187. Therefore,
from comparing both entropy formula above, we have C =
—(27/28) A, which implies the connection between 8 and ¢
as

&= —(3/14)h*B. (93)

It means negative value of ¢ microcanonical corrections
[39,44,50-53]. Note that the positive value obtained from
canonical corrections due to thermal fluctuation [39,44,51—
53]. Therefore, from phenomenological view the sign of ¢ is
determined by combining both corrections.

In Figs. 1 and 2, we show the impact of B variation on
the SNM and PNM binding energies and EoSs. However, we
have found that only for 8 < 2.8 x 1077 MeV~2, our cal-
culation does converge up to very low densities. The reason
is if we include too large value of 8 value (8 > 2.8 x 10~/
MeV~2) we can obtain the self-consistent solution of all
meson equations only for relative moderate densities. Fur-
thermore, for 8 > 5 x 10~7 MeV~2, the calculation can
be done only for the nuclear matter density larger than the
saturation density. Note that the shaded regions in the fig-
ures are extracted from experimental data. The EOS of PNM
and SNM results, are relatively in agreement with these data,
except for the binding energy in the case of SNM, shown in
the lower panel of Fig. 1 is quite sensitive to B value variation,
specially in low density regions (densities less than satura-
tion density of SNM). For 8 > 3.0 x 107" MeV 2, the SNM
saturation density is already out of box of the SNM binding
energy constraint from Bethe-Weizacker mass formula. Even
not too significant, the 8 has also effect in relative high den-
sities regions. Increasing f value leads to relative softer EoS
in SNM and PNS as shown in top panels of Figs. 1 and 2.

In Table 1, we have shown the impact of 8 on SNM prop-
erties at saturation density. It can be observed that the Ky and
Kgym are sensitive to B values. Even for Kgyy change sign
for B > 2.0 x 1077 MeV~2 and K|, value is already out side
the constraint from heavy ion collision data [59] i.e. 230140
MeV. Therefore, we conclude that nuclear matter properties
could constrain the 8 value i.e., § < 2.0 x 1077 MeV—2,

InFig. 3, we show the EoS of NS matter and the anisotropy
factor o of NS pressure. In the upper panel, the NS EoS
consists of the crust EoS from Miyatsu et al. [70] and the
core EoS is calculated using the standard RMF model. The
analytical expression of all quantities to calculate NS core
EoSisdiscussed in quite a detail in Sec. 3. We have found that
o profiles are increasing function, and its value is relatively
large at high densities. This behavior could lead to instability
in the center (r — 0) of the star for the cases with a g
value relative large [72-75]. Therefore, to satisfy stability
conditionin NS center, o (P;) ~ 0 = o,, we should adjust the
anisotropy by ¢ — fo by introducing phenomenologically
cut-off function f = exp[—(P /P, —0.5)2°/(0.4)%°] to force
the o, = 0 in the center, as is shown in panel (b) of Fig. 3.
Note that if we use the original anisotropy without any cut-
off function, we could not have the numerical solution. It is
evident that for 8 = 2 x 10~7 MeV 2, the anisotropy factor
becomes significantly increased (o ~ 0.1P.). Furthermore,
it is evident from the panel (a) of Fig. 3 that the discrepancy
in the EoS is not significant after introducing this cut-off.

@ Springer
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Table 1 Nuclear-matter B 107 2x1077  3x107  4x 107  Constraints Refs
properties at the saturation
density po predicted by BSP E/N MeV) —1598 —16.11 — 1623  —1666  —159+04 [55]
with various values for 8. The
Fermi momentum k., binding Ko (MeV) 25470  379.35 428.99 530.81 230 & 40 [59]
energy E /N, incompressibility J (MeV) 29.01 30.12 30.93 32.23 31.7+32 [60,61]
coefficient for SNM Ko, L (MeV) 52.65 59.64 63.30 69.59 58.7 +28.1 [60,61]
symmetry energy J, L and Ksym
ate defined in Eqs. (46) and (47 Koym (MeV)  6.29 — 489 — 11.09 —27.43 — 400 < Kgym <100 [62-64]

—— SNM basic e Ptrlr\g};asic ' g '
- gzglo'7 --- E;z)doj Ny
— B=3x1077 g 4
200 = 200 L = — B=4x10 /]
o~ o~ and
| ! S
£ 150 E 10r i fad
> > ,’/ .
] [ S
= 100 = 100 - / i
& & / e
50 50 | |
0 ! I |
0 1 2 3 4 5
PN/Po
0 30
24 |
=5
~ < 1 |
2 Z o
= -10 %
Z < L
< n
-15 6L
-20 ! ! 0L I I L |
o1 0 03 04 0 0.05 0.1 0.15 02 025

PN (fm_3)

Fig. 1 (Top) our calculation results for EoS match the data from FOPI.
But the results for the binding energy calculation are not trivial. (Bot-
tom) binding energy as a function of nucleon density, the grey shaded
area is experimental data from FOPI [54], the dashed box is the allowed
binding energy at nuclear saturation density from Bethe—Weizacker
mass formula. We also show the result from [55] as the red dot with
the error bar. The minimum value of the binding energy are also shown
with box-shaped dots to show whose value is still inside the dashed box
[56]

The reasons we do not have a TOV solution for g > 107°
MeV~2 (large B) are twofold. First, the mesons equations
in EoS are not convergent at low densities, and the o is too
large in the regions near the center. This infers a constraint
B <2x107"MeV—2oragp? < 10%7 could be taken as the 8
constraint from NS. Note that on2 = (1/1p)*B. To this end,
it is worthy to note that the constraint obtained in this work

@ Springer

PN (fm_3)

Fig. 2 Similar to Fig. 1, the results of varying § in the case of pure
neutron matter (PNM). (Top) the dark and light grey shaded area is a
heavy-ion experiment from [56]. (Bottom) the yellow shaded area is the
theoretical binding energy from chiral effective field theory [57,58]

is in agreement with a constraint from 8’Rb cold-atom-recoil
experiment [20].

In Figs. 4 and 5, we show the results of applying the EoS
into the SL model. The former and the latter shows the varia-
tion of B and ¢, respectively. Increasing 8 value will decrease
both the radius and mass, especially in the “tail” region when
P, smaller than the value to obtain maximum mass. Increas-
ing ¢ value will increase the maximum mass. In our calcu-
lation, we found that the numerical results behaves badly
when either 8 > 107 MeV—2 or ¢ > 107 m?. The reason
for former case is due to |o| ~ P. and for the latter is due to
|P| > |P|.
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Fig. 3 The EoS of NS shown in panel (a) and the anisotropy fac-
tor o, shown in panel (b), is adjusted by multiplying o with f =
exp[—(P/P. — 0.5)20/(0.4)20] (shown in the inset)

Thus in this paper we have found a constraint for each
parameter, i.e. B < 2 x 1077 MeV~2 and ¢ < 107 m?, if we
consider bith parameters are independent. The former can
be readjusted to be ap? = (/1p)*p < 10°7, which is is
still in agreement to the 8’Rb cold-atom-recoil experiment
constraint. However latter gives a very large ¢ value, which
conflicts with the fact that ¢ should be came from additional
logarithmic term in the BH entropy.

It should be mentioned that ¢ and 8 are related [40]. The
relation can be seen from the modified entropy from both
GUP and minimal area modification (see Egs. (7) and (34)
in Ref. [40]). Since our results that yields a reasonably small
anisotropy o should satisfy 8 < 2 x 10~7 MeV 2, we obtain
¢ > —16 x 1073* m? from (93). From our numerical results,
we predict that using negative ¢ will lower the maximum mass
in the mass—radius curve. However, according to our results
which we use ¢ positive, ¢ < 107 m? yields no significant
shift in the mass—radius curve compared to the TOV GR
result. Therefore, GUP modification on the matter leads to a
much larger shift than SL modification on the geometry. This
result is unsurprising because of two reasons: (1) ¢ should be

9.6 11.2 12.8 14.4 16.0
R(km)

Fig. 4 The mass-radius relation when B value is varied. The data
shape, which are NICER data of PSR J0030+0451 (M ~ 1.4Mg)
[65,66] and PSR J0740+6620 (M ~ 2.1Mg) [67,68], are taken from
Ref. [69]

in the order of / 120 and (2) if we assume that the effect of the
SL model is as significant as the effect of the GUP model,
then Refs. [18-20,71] have shown that the upper bound for
the GUP coupling constant value tends to be higher if the
estimation is discussed in the case of gravity.

6 Conclusions

We have shown that the upper bound for the GUP param-
eter, which modifies the nuclear matter properties and the
NS matter, is 8 = 2 x 10~8 MeV 2 and the upper bound for
the SL parameter, which modifies the Einstein field equation,
is ¢ = 107 m?. By employing 8 = 2 x 10~7 MeV~2 and
¢ = 107 m?, we obtain the mass—radius relation that satis-
fies NICER data for both PSR J0740+6620 (M ~ 2.1Mg)
and PSR J0030+0451 (M ~ 1.4Mg). Our GUP parameter
upper bound agrees with the 8’Rb cold-atom-recoil experi-
ment constraint. If we identify the entropy from both GUP
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Fig. 5 The mass—radius relation when ¢ value is varied. The data shape,
which are NICER data of PSR J0030+0451 (M ~ 1.4M) [65,66] and
PSR J0740+6620 (M ~ 2.1M) [67,68], are taken from Ref. [69]

and SL model and use our GUP parameter upper bound,
we obtain that the resulting SL parameter lower bound is
¢ > —16x 1073* m?. This lower bound is 10~*° smaller than
the SL parameter upper bound by considering both parame-
ters are independent, which is unsurprising because the upper
bound for the GUP parameter tends to increase as we go from
the quantum regime to the gravity regime.
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