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ABSTRACT

The Wick transformation in momentum space is modified to
include all scattering energies by use of a coordinate surface
which possesses limited detours into the complex relative energy
plane. This device retains the simple form of the equation for the
Bethe-Salpeter amplitude §( &,po). It is shown that the transform-
ation is valid if y( ,B\’po) has the cut structure indicated by field
theory, and this structure is shown to be consistent with the Bethe-
Salpeter equation provided the interaction V (x) satisfies a simple
causality condition. It is further shownthat the cut structure of a solu-
tion to the transformedequation canbe deduced fromthe causal structure
of the interaction alone without reference to field theory. Basic
properties of the transformed equation are derived and a numerical

treatment for purely elastic scattering is presented.
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I. INTRODUCTION

This paper will be concerned with the Bethe-Salpeter equa.tion1 for two non-
identical spinless mesons (''a' and 'b"') of equal mass, m, interacting in the lad-
der diagram approximation via the field of a third spinless meson of mass u.
Principal attention will be paid to the scattering case in which E, the total center-
of-mass frame energy is greater than 2m. In relative momentum four-space in

the center -of-mass frame the equation will be taken as

@) = 4 @) - 5oy S V- mum) dn (1.1)

. 2 2 2
where p = (p,p), n = (@.n,) and with g~ = 4 "9 (n = c = 1)

The function of D(p) is

D(p) = [(p + E/2)2‘+ mz] [(p - E/2)° + mz] (1.2)
2

= (* -k - B, (1.3)

kK% = (E/2)% -mZ , (1.4)

V(p - ) =5 . (1.5)

2 2
T (P -7) tH
and, for the scattering case, E > 2m,

4y (P) = 6°(p ~p, ) 6(p,) (1.6)

=k (1.8)



¥(x), the configuration space amplitude, is to be related to ¢ (p) by
ipx-p x )
0" 0 4
b(x) =fe 0 ey dp (1.9)

and the Feynman convention m —m -ie, p — u -ie' is then understood as
the proper way of handling ’si_ngularities in l/f_D(p )] and V(p - n). For the
case of purely elastic scattering, 2m < E < 2m +u, Charles Schwartz and
Charles Zemau:h2 have presented an analysis of the Bethe-Salpeter equation in
the circumstance considered here and have produced numerical scattering results.
Their approach is related to the previous work on the bound state case by

G. C. Wick3 in that, as Wick, they use the device of rotation to imaginary values
of the relative time variable to produce a transformed integral equation with the
standard Euclidean metric which is more susceptible to solution than the non-
rotated equation with its Lorentz metric. 2a

The treatment of Schwartz and Zemach for elastic scattering energies differs
somewhat from the approach of Wick in that the former authors perform the
sought-after rotation in configuration space, whereas the rotation of Wick for the
bound state case (E < 2m, zpo(p) = 0) is performed primarily in momentum
space, i.e., — is primarily concerned with rotation of the variables pO and
M, in Eg. (1.1). For the scattering case the relationship between rotations
in these two forms of the equation is not trivial, as is apparent whenever calcu-
Jations in momentum space become a practical necessity. Thus Schwartz and
Zemach are forced to use a distorted contour in momentum space when evaluat-
ing certain integrals needed to obtain their numerical resu.lts.4
We will present below a simple method for extending the Wick rotation in

momentum space to scattering energies. In this modified procedure the neces-

sary contour distortion presented by Schwartz and Zemach plays a fundamental
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role. Many features of the Bethe-Salpeter equation can be easily demonstrated
for the resulting momentum space representation. Also, a method of obtaining
numerical results in the elastic energy range from the equation in this form will
be discussed and some computed values presented which serve as a rough check

on the Schwartz-Zemach procedure and other more recent calculations. 22

II. TRANSFORMATION IN MOMENTUM SPACE

As an initial step toward transformation of the Be~the—Sa1peter equation in
momentum space one can refer back to Wick's analysis (based on the operators
and states of field theory) of the structure of zp&g,po) as a function of complex
P, For E > 2m, as for E < 2m, the Wick analysis states that zp(g'\,po) is
analytic in P, everywhere except along two cuts. One cut lies just below the

real P, axis extending from wmin(-g\) - i€ to + e -ie,while the other lies

just above the realaxis from wmax(p) +1i€ to -+ ie,where(for the mass equal case),
L4}
2 g V2
©om(B) = m@padp) = (pl+mT)  -E/2 . (2.1)

Although this analysis depends on field theory it can be shown that the structure
implied by Eq. ( 2.1) is consistent with the structure of the equation itself, as
will be demonstrated later in this section. The location of the cuts in ( '}3 , pO)
is shown in Fig. 1.
For \R\Z > kz, wmm(ﬂ is positive so that there is a gap between the.two
cuts and one can analytically continue D: po) counter clockwise from the real
axis to the imaginary axis in complex P, as is indicated in Fig. la. For gf < k2
the two cuts in z/)(‘}:‘)",\po) as a function of P, overlap since then wmin(&) is
negative. Thus for '5‘2 < k2 one can not analytically continue counter clockwise
from the real P, axis to the imaginary P, axis without encountering singular-

ities in zp(p,po) , but one can continue from the real axis to a contour which
o
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follows the imaginary axis except for two detours around those portions of the
cuts which protrude below and above p = 0, continuingto « . (p)-ie and
0 min e
2
- w_. (p)+1ie, respectively. The suggested contour for p < k2 is shown in
min (51
Fig. 1b, and will be recognized as the contour that was introduced by Schwartz

and Zemach. Since the suggested P, contour for consideration of the analytic

continuation of yY(p,p ) depends on p2, it will be called C _o. For 7&2> k2 the
NN O AT21N &\ )

2

P - K2
el

contour sz is just the imaginary axis (see Fig. la). (The pathology of
will be cogidered in more detail below.)

One now can convert Eq. (1.1) into an integral equation for the analytic con-
tinuation of zp(, -R’po) from real four-space to a new coordinate surface which con-
sists of all real values of R but only those complex values of P, which lie on
sz . In order that this conversion be accomplished,one must analytically continue

for

in P, all terms on the right-hand side of Eq. (1.1),

3
b (B2 ~ 5 J fV e - m) win) dn, &n (2.2)

from the real axis to sz, and also one must deform the Mo contour in Eq. (2.2)
Faaet
from the real axis to the contour an for every n.

Consider the first term in Eq. (2.2),
( = 6°(p - p;,) (D) (2.3)
% J-E{po) (R, Rin Py) - :

To treat this term consistently one needs a representation of 6 (po) which exhibits
the singular structure indicated by the Wick analysis. Such a representation is

readily achieved by writing

1 1 1
6(p.) = - — - - (2.4)
o] 2mi <po ie P, + 1e>
where ¢ is positive real and arbitrarily small. With 6 (po) in this form, gbo

has singularities in P, at P, = +ie . But the points +ie fall in'the cut



region allowed by Eqg. (2.1) for 32 < k2 , and hence are avoided by counter-

clockwise continuation to C o for p2 < kz. Since the incident particles are

&\
. 2 2 2 2
tl 1 " — >
strictly on the 'mass shell D k™, zpo(g_\,po) = ( if p\ # k7, and therefore

A)

the singularities in zpo(&,po) with 6 (po) in form Eq. (2.4) conform to the Wick
structure indicated by Eq. (2.1).
Further, if one lets € haveaninfinitesimal positive imaginary part

€ — €, + iez , then the points + i€ are also avoided by the contour rotation

1

p2 > k2 and all ambiguity in defining C o for p2 near k2 is eliminated.
o D i

-~
With this convention for ¢ , the poles in Eq. (2.4)at *ie remain on the same

side of the P, contour throughout and the right-hand side of Eq.(2.4) satisfies

ff(po) -[R.H.8. of 2.4)] dp_ —~ £(0) (2.5)
C

in the limit | € | — 0 whether C is the real axis or Cp.z for any p (provided
"

e
f is analytic at P, = 0). Note (see Fig. 2) the convention € — €t i€2 )

ie — ie, - €
1 2

with Eq. (2.4) and € — €1+iez,

is a natural one for relocating poles relative to sz . Thus

N
¥ ( yo p,) can be continued to sz for all

LY

p and the formal identification ¢ (p,p.) = 63(p )8 (p_.) can be retained
O's O N (0]

PN “Rin

for the analytically continued zpo .

It remains to analytically continue

i 3
in p from the real axisto C .
0 2

Continuation of the factor

1/D(p) = 1/[<p0 - @) (py *+ )Ry - B) (B, + 6] (2.7)
where
g g2 .
@(p) = (&\-ﬁm ) - E/2 - i€ : . (2.8)
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9 9 1/2
= + m + E/2 - i€ 2.9
BLp) = (B ) / (2.9)
(- ie is assigned by the Feynman convention and € = €1 + iez is under-

stood to be available if needed) is easy since the poles at = f8 (E) never obstruct
continuation (note Im (B) < 0, Re (B) > 0) while a(g)) and - a(p) lieat
B L3S o
W i (‘}3’\) ~-ie and - @ in (R\) + ie , respectively, and hence are specifically
avoided by C , (see Fig. 1b).
\ .
Finally, as we shall now show, simultaneous continuation in P, and deform-

ation of the 7 = contour in the term

//V(p -n)¥(n,n,) dng d3&\

can be accomplished in the manner presented by Wick for the bound state case. 3

I

T (p) (2.10)

In order to simplify the discussion of this process one may consider transform-
ation of the uJ contour for the special value of P, = 0 which lies on both the

real axis and C_s. Subsequently one can consider analytic continuation of this
transformed integral to all p, on C o

N

It is established by assumption of the Wick structure that singularities in
w(‘r}.',no) will not interfere with To contour deformation from the real axisl/2
(counter clockwise) to C o. Thatthe poles in V(p -n)at + [(?.-.—11:1122 +M2]
will not interfere with the :iﬂésired rotation is illustrated in Fig. 3a. Hence the
U contour change is valid for p, = 0. Now one wants to move P, from

P, = 0 along sz , thus analytically continuing the transformed integral

P(Rsm ) dng 1
2 2 2 (2.11)
Coo (p-1)" +(p, ~ n )+ U

to all p, on C 5. This process of analytic continuation can be taken trivially
1 o 1/2
under the integral sign provided the poles at r, =p + [(p -n) +u ]
o A



never cross the contour C 9 - The two paths followed by these poles as P,

moves along sz are shown in Fig. 3a. Defining M(pﬂf) to be the maximum

o
real part extensionof C 5,
P
™ 2 2
M ( pz) = 0 if 2. > k
A N
_ (2.12)
2 2 2 1/2 2 2
M = E/2 - + if < k
(2) /2 = (p +m7) bo<

it will be seen from Fig. 3a that the poles in question always stay on the same

respective sides of C o (although they may come infinitesimally close to it)

provided
1/2
2 2} 2 2
-n) + > M - M(n 2,13a
[(g\ D)ty (25 @) ( )
forall p and n. I p2 and n:2 are greater than kz, Eq. (2.13a) holds trivially
- (LN (8 PN,
and rotation is possible as in the bound state case. Now consider n2 <.p2, n2 < k2
5 - 5 ) LT NN
(thecase p < n , p < k= will be covered by symmetry). Then Eq. (2.13a)
K ) W e
becomes
1/2 1/2
2 ?] 2 2 2
-n) + 2 - + - M 2.14
(-l me-glen®) Mg L 2
But M(p) > 0, so it suffices to show
N T
1/2 1/2
2 2 2 2
[(B\_v&z +p,] >E/2 -(n” +m") . (2.15)
Since [ , 2] 1/2
(p-Z) *+u > M (2.16)
9 5 1/2
and (n_ +m') > m, it suffices that
p>E/2-m or E<2m+2u . (2.17)

Thus Eq. (2.13) is easily verifiable if E is less than the energy necessary to
produce two real mesons of mass p by inelastic scattering. To show Eq. (2. 14)
holds for arbitrary E , note

1/2
M(}f)z E/2 - ('13&2 +m2) - (2.18)
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for all p, SO Eq. (2.14) follows if
wes

1/2 1/2 1/2
[ﬁf'n) +”2] ><E/Z“(&2.+m2) >‘<E/2'(gf+m2) > (2.19a)
i.e., if
1/2 1/2 1/2
[(B‘"Qz *“21 > (P, +m?) - (}}_;2 + mz) (2.19b)

for all &2 < k2 and &) > nz, and Eq. (2.14) certamly follows if Eq. (2.19b) can

be shown for arbitrary n, p. Setting w = lpl =in| , then
Moo iee "
1/2
[ —nl +p:| >|e—w| (2.20a)
while
9 1/2 5 1/2 /2, 1/2
(‘&+m) —(51*+m) -(e” +m")
_ | w? - e2| |w? - &2 |w—e‘ (2.20b)
9 1/2 5 21/2 ’
(W™ +m") +(e” +m") w+e

verifying Eq. (2.19b) . (Inequality Eq. (2.19b) has been fully considered in the
general context of Fourier transforms and causality by Dyson.5 The relationship
of causality to the Bethe-Salpeter equation will be emphasized below. )

In 2 manner analogous to Wick’s ‘rotation, one can now continue T (p) in
Eq. (2.10) to any P, which lies in the region swept by counter-clockwise contour

deformation from the real P, axis to sz : Call the partially deformed contour

1 L

Cp (as shown in Fig. 3b). For each n in Eq. (2.10), deform the U contour
-
from the real axis to a contour C'n horizontally displaced from CI') by

LY

M(‘I& - M(Rz as shown in Fig. 3b. Finally Eq. (2.10) with this choice of Mo

contours can be continued in P, along CI; in the manner just considered for

s
continuation Eq. (2.11) along sz . Thus the extension of the Wick rotation in

N
momentum space to all values of E greater than 2m is complete.
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It is significant to note there are circumstances under which C_o will

never come infinitesimally close to the poles in V(p - 5) for p, on Co.

As shown in Fig. 3¢, such separation will occur if |
1/2 5
[(p—g) +u] > M(p“)+ M(n) (2.13b)
» . ke Lo

for all p,n, and thus will occur if p > (E/2-m) + (E/2- m) = E - 2m,
[

or E < 2m +pu. This will be recognized as the energy restriction for purely
elastic scattering and the momentum space transformation in this case corres-
ponds to the transformation of Schwartz and Zemach in configuration space.

The transformed equation reads

3 3
$(D>Py) = 8@ Ry 0 ®y) ~ 5y Jf VO -m) v dn, n (2.21)
C 2
n

W
valid for all real P and all p, on sz for any value of E greater than 2m.

YA

A. Singularities in the Transformed Equation

The advantage of transforming to the new coordinate surface is that the
singularities in 1 D(p) and V(p - n) which occur in Eqg. (1.1)over an un-
bounded region of real four space now are confined to a limited region on the

new coordinate surface. Singularities in 1/D (p) only occur when the contour sz

touches one of the poles in 1/D(p, p,) at
[ a4

1/2

1/2 +E/2—ie).

po=i<v(“1‘)h2+m2) —E/2—ie> and pozi<(ﬁ +m2)

But the latter set of poles are never touched by sz (see Fig. 1), while the former
ooy
are only touched for p2 < k2 by the "detour' segments of sz. Thus outside
-~
Yo
the limited region of detour on the transformed coordinate surface 1/D(p) is free

of singularity and vanished as l/p4 as p'2 — o .,
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Now consider singularities in uR in V(p - n) for fixed p, on C o . As
: ( 2 . 2\1/2
discussed above poles occur at r, =P, = {(p -n) +pu . In order for these
Y
poles to touch ng at some o it must be that Im(no) = Im(po) =0, i.e., P,
must be zero (p > k2) or on a detour section of sz with &2 < k2 and Mo
[N

o

must be similarly restrictéd. Now for p2 > k2 inequality Eq. (2. 13a) excludes
(PN

the possibility of an touching a pole. By symmetry no poles can be touched if
2 .2 e : 2 .2 2 .2
n~ > k", Thus singularities can only occur in V(p - ), when p~ <k”, o <k
-~ pon
and P, and n, areon the detour portions of sz and an , respectively.
In the limit p2 — o outside the region of detour V(p - n) vanishes as
(7\/7r2) . l/p2 for any fixed 7. (It has already been commented that for E < 2m +p,
VP -n) is completely free of singularity on the whole coordinate surface.) The
regularity of 1/D(p) and V(p' - ') away from p2 < kz, Im(po) = Im(no) =0
et
allows one to form an intuitive picture of the transformed equation. Asymptotically
it is the same regular equation considered by Wick for E < 2m.

Since for most of the coordinate surface P, and n, are purely imaginary

it is useful to write the transformed equation in terms of rotated coordinates

2 = pZypi? (2.22)
N

p o

|- : | — 1
o = Py/is P' = (p,p))s P

with analogous definitions for no' > n' s om 2 . Writing ¢'(p) = i¥(p) and noting

6(p,) 6(ip)) = - 16(p}y) » Eq. (2.21) becomes

3 3
V1) = 7R - pi) © @) + Jf voor-anvmydany o (229)
with nZ
2
D(p) = (p° -k + EZp?

1

(2.24)

V(p'- 1) = Ar

3 (2.25)
(' - n") +p
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Clg 1is an rotated clockwise by 90°. The complex p' coordinate surface
b

on which Eq. (2.23) applies can be sketched in terms of [ p|, Re (pc')) , and
Ao

Im(p(‘)) as shown in Fig. 4.

B. The Wick Frequency Assumption — Causality

It should be noted that the ébility to make the contour transformations in
complex I demonstrated above only depends on the Wick frequency
analysis (based on field theory) through the assumption that ¥ ( n, no) in Eq.(1.1)
has the structure indicated by Eq. (2.1). But the only assumption really needed
is that ¥ (IAlFL no) be analytic in the region swept by counter -clockwise deformation
of the n, contour from the real axis to C_o. The demonstrated ability to con-
tinue the right-hand side of Eq. (1.1) in complex P, throughout the region of
contour distortion between the real axis and C 33 proves that this structure,
which was assumed for ¥ an,\ no), although suggested by field theory, is funda-
mentally consistent with the structure of Eq. (1.1).

One may go further and ask whether the full Wick structure implied by
Eqg. (2.1) can be shown consistent with the structure of Eq. (1.1) in this way .
The above analysis has shown that ¥y (B': po) and 1/D(p) are consistent with

Eq. (2.1). It remains to show that

o) = ffve-mry, dtn

can be continued throughout the complex P plane up to the cuts described by
Eqg. (2.1), assuming that zp(n“\no) has the cuts described by Eq. (2.1) in
complex Mo

As illustrated in Fig. 3d, the required continuation, accompanied by the

appropriate m, contour distortion, can be accomplished if

1/2 1/2 1/2
{(&—3}2+u2] > ('}?:+m2) -(ﬁ+m2) , T (2.19c)
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for all p.n. (One first chooses the path of P, continuation CI') , then deforms
the Mg path of integration to CI'l for each p, and finally con't'i‘;mes P, along
CI') .} But this inequality is equiv';lent to inequality Eq. (2.19b). Thus, not sur-
p;-singly, ability to perform the P, 7, contour transformations in Eq. (1.1)
for arbitrary E follows from the consistence of Eq. (1. 1) with the structural
requirements of Eq. (2.1) for all L It is significant to note that in the above
proof of this consistency, as indicated by Eq. (2.20a), it suffices that V
satisfy a simple condition: V( & , qo) can only have singularities in q, which
areat (r ~ie) and/or - (r -ie')where r is real and r z]m . In configur-
ation space T > & implies that VQ“(‘{'XO) for X, > 0 and X, < 0 is a super-
position of waves which move with a velocity less than or equal to 1, the velocity
of light. This inequality places a very strong restriction on V since it must
be satisfied for all 2-\ On the other hand, as indicated by Eq. (2.16), for the
restricted range E < 2m + 2u the contour transformation to sz proposed
here only requires r > p, i.e., that V (3(-& XO) have X, frez?lencies greater
than p for X > 0, and less than -u for X, < 0 (" causality' need only be
obeyed for |q| < u).
wA

One naturally asks whether the cut structure of ¥ can be deduced from the
Bethe-Salpeter equation alone without reference to field theory. Toward this
end note that if ¥ is a solution to the transformed Eq. (2.21), then the known
separation of the poles in V(p-n) from N, O C 2, indicates that T&& p =
/L 5 Vi{p-7n) ¥(n) d n appearing in Eq. (2. 21) will be an analytic function

of P, at least within a strip about C_2 (see Fig. 3e) of half width
1/2
. 2 2 2 2
A = M - o+ - -
o = Min ([Em +e") - |MEd - mad])

n
[T

1/2 1/2 1/2
. 2 2 2, 2 2, 2
> ) len ) ([(}3-5‘1) +u ] - ,(B» +m”) - (p‘ +m ) ')EA > 0.
9 \ 3
B <k’ p<k ) V2 1/2
(A closer inspection shows that A =<k + (mp) ) - (k7 + mz) - >
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But noting the analytic structure of 1/D SR, po) » Eq. (2.21) shows that zpm, po)

can be continued in Py (for any ,;’)2 to the right in the upper half plane (and/or

left in the lower half) through a distance A from sz to "sz + A", where A
) . N

is independent of p. Then putting p, on sz + A, and noting that the transformed
IS

. m\
equation indicates ¥ (p, p.)~O (1/p 6 as p/i—towonC_o, one can deform all
B2 o o) 25 P, 02
Ne

the Mo contours in Eq. (2.21) from an to Cn2+ A. Now one can repeat the
AR A
argument and continue ¥(p,p )to C 2+ 2 A, C o9+3A, etc.
. O P p

e (2
If, however, one applies this procedure to the left in both upper and lower half

planes (see Fig. 3f), one can not continue zp(& po) through the poles in VD&R’ po).
For any wpf such that these poles are encountered, the shifted contour must detour
around them. One thus "discovers'" the Wick cuts in z/)@\, po).

As one shifts successively to the left, adding detours at each step (Fig. 3f),
the length Ai through which one can move the non-obstructed parts of all the P,

contours in the ith shift decreases as i increases. After i-1 shifts the Py

contours in the upper half plane must detour whenever p2 < gj 10 where

VN
i-1 2

2 _ 2 2 2 2 .
. - E 2 + . - >O * o =
Qi-1 ( / E A3> m® > pi, >p, = k" Thus
=1

a = Min <[(p-n)2+ u? ] - |7+ m 172

22 2 2
<Ri-1’P<Pig

2 2. 1/2
(&+m) / ,><Ai_1<- .. <A1 = A. (More specifically Ai =
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2 9)\1/2 2 2 1/2 | . .
Qi—1+ (m+p) ) - Qi_1+ m ./ However, since Ai is bounded
i-1
away from zero for any possible bound on 2 Aj’ the process of continuation
=1

illustrated in Fig. 3f can be extended throughout the left half plane (and similarly
throughout the right one) despite the decreases in Ai' Thus any solution of
the transformed equation which has the asymptotic behavior indicated by the
equation itself, must have the analytic structure indicated by field theory.

One notes again that the full Wick cut structure only results if V possesses

the complete causal structure indicated by Eq. (2.19c).

C. Properties of 1/D(p') — Relationship to Non-relativistic Theory

As in the case of the non-relativistic scattering equation, many important
features if Eq. (2.23) are determined by properties of the factor 1/D(p")

(see Egs. (2.7) — (2. 9)) which can be written

N i - _—
PBY  retemd | B@  \py -8R By *isR)
[ 8

1 < 1 ! > (2.27)
- 1 ) -— ' ]
agp  \py-ia(e) Byt i(R)

" 2
This expression corresponds to the non-relativistic term 1/ (p2 -k™), and
WA

noting that

a(p) - B(p) = pz—k2 (2.28)
" -~ ~~

one can write Eq. (2.27) in analogy to the non-relativistic factor.
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1 1

- . 2
(p. -k)
A
. R 2.1/2
where, with w(p) = (08\+ ) ,
L
1 1
2 1 AN
gny = | B (- : >
s , .
e \Py = 18(p)  p,* 1B(P)
1 1
- gizgl) i/ - > (2.30)
M \py -ia(p) py +ia(p)
2 .2 . ~ .
Now note that atkgb = k~, the following hold: w = E/2, aw = -ie — 0,
Bg{(p) = E ~ ie — E, and thus
‘i
. 1 1 1 1
2 _ 1]-ie . :
d(l«:,p(‘))—4E EZI(,_i - '+1>_21<'— - +>(2.31a)
Po € Po 1€ Po 7€ PByTE
i 1 1
— - 55 - . (2.31b)
P~ € Py te€

Setting e = € + ic—:2 y €4 0, and taking Cl’{z as the real axis (see Fig. 2),

2 i ! !
d(k™,p)) =~ - 3% <p' — - 2> , (2.32)

1 .
- 1ie + ie
0 2 po

so that, with arbitrarily small Iel understood,

a(,p) = & 6(0)) - (2.33)

Now using the familiar formula

5 = Py o - ) (2.34)



one has

1 _ @ 1 2 2 2 .

- 9 2 d(p ’p0)+ E 6(p 'k)é(po) (2'35)
D(p" R - k bt fow~

It is easy to check that d Qf R po) is a real factor in the sense that integrals
of the sort JS°C' U(p")d(p2 p') dp' will be real if U"(p') = U(p'*) and
“}3&2 o) "N’ Fo’ Fo 0 0
U is analytic on C}')z . Thus Eq. (2.35) effectively splits 1/D(p') into real
e .
and imaginary parts in analogy to Eq. (2. 34) for the non-relativistic case.
Equations (2.29) and (2. 30) can be used to obtain the non-relativistic limit
of 1/D(p'). Note one can consider the non-relativistic limit to correspond to the
limit m-— E/2 —+ « for fixed k, since this implies mc >> mv, i.e., ¢ >> Vv
where v is the incident partlcle velocity. But then for any finite p ,
a(p)— [(E/2)% +(p -k )] —E/Z—-»(g‘ “K%)/E — 0, B(p) ~ 2m — E,

w (p)-—-» m—» E/2, so that, very much in the manner just considered,

X 1 1

p, ~ia(p)  p, * ia®)

in the limit E— «, k fixed. Note that although o( ';‘)) becomes a negative

infinitesimal for p2 < kz, the contour C'z specifically detours for p2 < kz
Wi
e
so that the poles in Eq (2.36) at =+ 1a(p) stay on the same side of sz for
p2 < k2 as for p > k when a(p)> 0. Thus in Eq (2.36), oz(p) can be
L

et

treated as a positive (real)infinitesimal for all finite p , giving
ey

-

d/(gf, py)— T/E 5(p) (2.37)
and
1
1/D(p')— #/E T‘;’z’ é(p(')) (2.38)
2 -

in the non-relativistic limit E— «, k fixed. '

- 17 -



Having analyzed the location of the poles in d (.R\Z, po) in detail, note that
Eq. (2.35)and Eq. (2.38) can be derived simply by writing

1

2
—5—5 PO, D)

1/D(p") =
(p" - k) ©

where,

2

(p" - k2)/E

[(p -k*)/E] + p)°

1
' - =
o) E

and p (P'Z’p(',)“’ m/E 6(p.) for p’z— K% = €y—> 0, 0 E—s o by inspection.
Finally, Egs. (1.1), (2.29) and (2.33) yield a simple derivation of the scatter-
ing amplitude. Setting
ux) = [ BEPT) yp) ap

and using Eq. (1.1)

ip. -x .
¥(x, 0) = e“g1n - i/ela'}éx/—]—)-(lg) [V(p - n)d4ndpod3£.. (2. 39)

Rotating contours in the manner introduced above, using ¥'(n') = ig(n) and

inserting Eq. (2.29) for 1/D(p")

-k
e C

ip. X . 1
_ eain W ip. x i -2 Lot ' t ] 43
¥(x,0) = e +/€£~v~p2 5 <f d(p”, py) - T(D,Py) de> d’p  (2.40)

1
p2

with -
3
T'(p') =// V(p'-n"y'(n") dnldm = T(p) (2.41)
C1'12

- 18 -



Now it is well known from studies of non-relativistic scattering that in the

limit |x]—
ey

I\ S Q(p) a°p — £(Q) 5B /R (2.42)
2 _ké ™% WA f

. _ . .2 .
where R = lal , £ vrefers to the J‘chdlrectmn, and f(Qf) = 27 Q(gf) with
p. = k X. But the second term on the right of Eq. (2.40) is precisely of the
il

form of the term on the left in Eq. (2.42), so that the usual non-relativistic

analysis yields8 for X, = 0, |§l—> o0
1 X .
¥ (X, 0) = eBmM*‘ t(Q,) e“B/R (2.43)
f
where
F(9,.) = dx%, pH) T' 'y dp!
(£2¢) (7, py) TH(Res P ) APy
'
Ckz
. T« ' ' ] ]
- [ E O(pO) T(”sz’po)dpo (2’44)
Cf
k2
27 2r°

- 19 -



IOI. A METHOD OF APPROXIMATE SOLUTION

Since the method to be presented here does not produce highly precise results
but does serve as a rough check on other methods the following discussion will be
brief. 9 Outside the restricted region of detours in the coordinate surface Eq. (2.23)
indicates that | P'(p")| will vanish rapidly as p' — «. Specifically, 1/D (p') will
vanish as il/p'l4 while

A 4
lT'(p')l = / —5 7 P'(n')d 'y’
cr o (P

h

should vanish 1/,|p'[2 (assuming the integral over n' is amply convergent). Thus

in the limit | p'|-» = one expects | 4" (p'")| to vanish as 1/| p'l6- (reinforcing the
assumption that the integral for T is amply convergent). This fact suggests that

one can obtain good approximations to ' (& pg) by solving a cut-off version of
Eq. (2.23), i.e., by considering the restriction of Eq. (2.23) to a large sphere
of radius A > k in p', n' four-space. For E < 2m + p it has been commented that
V(p'-n") is never singular for p' and n' on the coordinate surface. Then for
p' and 7' within a finite cut-off sphere, V(p'-n') can be well approximated by a

finite sum of separable potentials. Thus in the elastic scattering range one can

take
NQ NQ
ot - Q Q [} ,Q 1 al N\
V(p'-n'") = 2 : ﬁ; , § : Vij € (Rl v g (nl 0P (B) B, (@),
¢ 1 =1

(3.1)

where ij are real and g; are real for real p' and analytic on the whole

coordinate surface. But with the right hand side of (3.1) substituted for V in

- 90 -



Eq. (2.23), the new equation is as easy to solve as the non-relativistic equa-
tion with a finite sum of (three dim. ) separable potentials. Using matrix algebra

analogous to the non-relativistic case, setting

ié
_ A 20+ 1 . .
f(Qf) = E ; fgpg('gf) , f!l == e sin &

and with Eq. (2.35) for Im [1/D(p')] one finds

3 -1
27k t {
tan (SQ = m“ C':r2 VQ(I -U Va) Grﬂ (3.2)

(with all factors real so elastic unitarity is valid) where matrix notation is used,

G is a column matrix

2 J/
(q)g{z(q')g.(q')
2 _ _ ] ! 1 ] 4,
= g k,0) , Iij = éij , and U’izj-—ﬂ)’/? d*q' . (3.3)

G
R D(q')

The range of q' integration in Eq. (3.3) is limited to the interior of the cut-off
sphere of radius A.

One method of getting an approximation to V of form Eq. (3. 1) inside a
sphere of radius Ag is to take a least square polyﬁomial fit to 1/ [1 + x2] on the

interval —ZAf <x < 2Af’ i.e.,
M .
24 ~ 2.1
1/[1+x]=§ C, - (X)) (3.4)
i=0
Then in units such that ¢ = 1,

V(p'-n") =

]
=1NI >
V)=
Q
"
1
—
Pcﬂ
i
3
—
o

for p', n' Iinside a sphere of radius Af .



Now one can expand

2i i3] i 2 2\ q 2\ T
- S idi j ,2>7<.>S ' <)
(p =1 Rz E [ A%S,T,q<p P, (710 )" (n
J:O Y8, 7,4 (3_5)
5;49 = 09 1’ L L&%—ll
Yy T = O’ 1, . ’ 1_j"2s, I—J—ZS
and since

£=0 £=
one has
1 2 2 Qs NM—QVQ 2 2 9 2
= a N\ 1 1 1 1 )
\Y% Z Py(p) D Py(n) o 1_‘; ij 81 (po » Py ) gi(n > Mo (3.6)
2=0 i=1  j=1

. s t
where £, (q‘2, q(’)z) belong to the set of functions (q'z) (qc')z) for T=0,1, ...,

[(M-2)/2) and s = 0,1,...,M-L~2r Thedimensionof V' is N,

where Nq = ([q/Z] + 1) (q+1— [q/2]) .

Y:8,7,Q

and aj 0 by simple arithmetic. The required operations for evaluating Vrz ij

canbe carried out rapidly by machine. Also, the integrals Ugj can be done in

The constants Viﬂj can he expressed in terms of the constants Ci’ Al R

closed form and expression Eq. (3.2) for tan §, evaluated by machine. ?

[
To investigate convergence as a function of the cut-off A , the fitto V was

kept fixed with Ap = 4,0 andpolynomial degree M = 10. The resulting tan 6!&

was evaluated for several values of A up to and including Ag- Convergence as

a function of M was investigated by setting A = A = Ain and varying M

up to 10. To standardize this procedure, Amin was chosen to satisfy

- 292 -



2 2)2 2 92
. - k pudd H i ! = i -
<Am1n E°A . , since then Ip’'| Apin roughly marks the begin
ning of the asymptotic region of 1/D(p').

From the results with variable A and fixed M an estimate was made of

the error incurred by cutting off the equationat A = Amin . The results with
A = Apin and variable M were used to estimate the precise cut-off result at
A = Amin' Finally the estimated resultat A = Amin was combined with the

estimated error due to cut-off to give an estimate of the non-approximated result.

This scheme was only carried out fully for m = u = 1, £ = 0. The results for

A =1, k2 = .4 are listed in Table I. The estimated value of E/2k tan N for
Eq. (2.21) cut-offat A = Apin = 2.52 1is 3.4 £ .2, The estimated error
due to this cut-off is - .2. Thus, with generous allowance for possible error,

one can set E/2k tan 60 = 3.6 = .4 . Schwartz and Zemach find for this same
case E/2k tan 6, = 3.5640 + .0002.

The principal difficulty in the approach used here in that polynomial fits to
1/ [1 + x2] are difficult to handle numerically. Thus the degree of convergence
was not great, and in some cases it was non-existent. The method worked best
at k2 = 0 where for the least positive bound state A it yielded .765 = .021,

whereas Schwartz and Zemach find a value of .76222.
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IV. CONCLUSION

The principal advantage of viewing the Bethe-Salpeter equation in momentum
space is that 1/D(p) and V(p - n) have a simple algebriac form, in sharp
contrast to the form of their transforms in configuration space. The only difficulty
with these functions in momentum space is the abundance of poles they possess
due to the Lorentz metric. By making the modified Wick rotation suggested here
one does not eliminate these singularities, but one does restrict their occurrence
in the equation to a bounded region. All remaining singularities must be con-
sidered carefully in order to arrive at meaningful results. This has only been
attempted here for purely elastic scattering E < 2m +p where only singular-
ities in 1/D(p) must be considered. For higher values of E the task of analy-
sis is more complex. However, the technique of modified rotation, in that it
minimizes the added complexity, and emphasizes the simple analytic structure
of the equation for all values of E, should provide a useful point of view for

further analysis.
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TABLE I

Computed Values of (E/2k) tan 4
at k2 = A, a=1, m=u=1.

A. Values for variable A with M = 10

A (E/2k) tan 6

. 133
. 219
. 266
. 280
. 290

min

W W W N
O -1 U1 O Lt
LW Wwww

Limit 3.32+ .03

B. Values for variable M at A= A__.
min

M (E/2k) tan S
7 3.149
8 3.208
9 3. 268
10 3.312
Limit 3.4 +.2
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1a.

1b.

3a.

3b.

3c.

3d.

3e.

FIGURE CAPTIONS

Cuts in ¥(p, p ) for p2 > K2 (cuts start at + a(p) = =* (w . (p) —16) ;
2N 7 Yois Yeu'y min Wi

arrows indicate continuation in po).
Cuts in ¥(p, p ) for p2-$ k2.
P O L 1N

Location of poles in 1/D(p) relative to sz (arrows indicate relocation of

wi
poles under € = €—>€t 162).

Continuation of T(g’,‘ po) by moving P, from P, = 0 along Cplz. All o
he's
contours have previously been deformed to an after using p—pu -i€’
.

to locate poles in V(p-n).
Continuation along CF') . Arrows are of length M(n%2 )- M(pz). (In the lower
W
e~
half plane the arrows would point in the opposite direction.)
Separation between 1, on C,2 andpoles in V for E< 2m + pu. Arrow
N
. 2. 211/2 N
is of length <[(g '1’12 +u ] M(B‘\) MR-
Continuation of T(p, p ) up to the Wick cuts in ¥(p, p ). Arrow length is M(nz)—M(p'z).
e O weer O Land [ ot
Shifting the p, contour for a specific p, p2< k2, in steps of size A
[od -
through the first and third quadrants. Shaded area indicates initial strip
of analyticity in T@Ap ) for this p. (The validity of the procedure shown
(0] [

here is generally independent of small details in contour shape. However,
two criteria must be satisfied: 1. The maximum horizontal separation
between any two of the original or shifted contours, e.g., Cp o and Cn2,

w-e A
must be given by the difference between their maximum real part
extensions, M(pz) - M(ﬁ) . 2. In shifting horizontally from Cp 9 to

ST
[NES
sz + A, some points on sz may be displaced less than A but none
-~ i

may be displaced more than A. These criteria are easy to meet, as the

above choice of linearly segmented contours demonstrates.)



3f.

Shifting the p, contour for a specific p, pf> p2> p2 = k2, in steps of
i [Friagre o 5.0
size A through the left half plane. Shading indicates initial strip of
analyticity in T(p, po). (The criteria mentioned under Fig. 3e are again
e

observed.)

Transformed coordinate surface.
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f+ [(p-n)2+p2] 2

.

\~\\§
=~
\
/
-~ ~— -® K
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FIG. 3d
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