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ABSTRACT 

The Wick transformation in momentum space is modified to 

include all scattering energies by use of a coordinate surface 

which possesses limited detours into the complex relative energy 

plane. This device retains the simple form of the equation for the 

Bethe-Salpeter amplitude 4(&p,). It is shown that the transform- 

ation is valid if $(zp,) has the cut structure indicated by field 

theory, and this structure is shown to be consistent with the Bethe- 

Salpeter equation provided the interaction V (x ) satisfies a simple 

causality condition. It is further shownthat the cut structure of a solu- 

tion to the transformedequation canbe deduced from the causal structure 

of the interaction alone without reference to field theory. Basic 

properties of the transformed equation are derived and a numerical 

treatment for purely elastic scattering is presented. 
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I. INTRODUCTION 

This paper will be concerned with the Bethe-Salpeter equation1 for two non- 

identical spinless mesons (“a” and “by’ ) of equal mass, m, interacting in the lad- 

der diagram approximation via the field of a third spinless meson of mass p. 

Principal attention will be paid ‘to the scattering case in which E, the total center- 

of-mass frame energy is greater than 2 m. 

the center-f-mass frame the equation will 

HP) = co(P) - jj&) 

In relative momentum four-space in 

be taken as 

/ V(P - 77)zc1(17) d4? t 1, 1) 

where p = (&YP,)¶ 77 = (g,no), and with q2 = q2 - qi (5 = c = 1) 
w 

The function of D (p ) is 

D(p) = 
[ 

(p + E/2)2 + m2 IL (p - E/2)2 + m2 1 (1.2) 

= (p2 -k2) - E”P~ t (l-3) 

k2 = (E/2)2 -m2 , 

V(P - 77) =l2 
1 

7r (P W2+1L2 

and, for the scattering case, E > 2m, 

$J,(P) = d3(&-&) WPo) 

with incident center-f-mass momenta 

tib = (P&J - q-J 
In *in 

t l-4) 

t 1.5) 

t 1.6) 

t l-7) 

(1.8) r$ni = k 
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G(x), the configuration space amplitude, is to be related to I,$ (p ) by 

$0) = / e 
U&-Poxo) 

$(P ) d4P ( 1.9) 

and the Feynman convention m - m - i E , p ---j-1 -ie ’ is then understood as 

the proper way of handling singularities in l/ [D ( p )] and V (p - 7 ) . For the 

case of purely elastic scattering, 2m < E < 2m + ~1, Charles Schwartz and 

Charles Zemach’ have presented an analysis of the Bethe-Salpeter equation in 

the circumstance considered here and have produced numerical scattering results. 

Their approach is related to the previous work on the bound state case by 

G. C. Wick 
3 

in that, as Wick, they use the device of rotation to imaginary values 

of the relative time variable to produce a transformed integral equation with the 

standard Euclidean metric which is more susceptible to solution than the non- 

rotated equation with its Lorentz metric. 2a 

The treatment of Schwartz and Zemach for elastic scattering energies differs 

somewhat from the approach of Wick in that the former authors perform the 

sought-after rotation in configuration space, whereas the rotation of Wick for the 

bound state case (E < 2m, +o(p ) G 0 ) is performed primarily in momentum 

space, i. e. , - is primarily concerned with rotation of the variables p, and 

70 
in Eq. (1.1). For the scattering case the relationship between rotations 

in these two forms of the equation is not trivial, as is apparent whenever calcu- 

lations in momentum space become a practical necessity. Thus Schwartz and 

Zemach are forced to use a distorted contour in momentum space when evaluat- 

ing certain integrals needed to obtain their numerical results. 4 

We will present below a simple method for extending the Wick rotation in 

momentum space to scattering energies. In this modified procedure the neces- 

sary contour distortion presented by Schwartz and Zemach plays a fundamental 
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role. Many features of the Bethe-Salpeter equation can be easily demonstrated 

for the resulting momentum space representation. Also, a method of obtaining 

numerical results in the elastic energy range from the equation in this form will 

be discussed and some computed values presented which serve as a rough check 

on the Schwartz-Zemach procedure and other more recent calculations. 
2a 

II. TRANSFORMATION IN MOMENTUM SPACE 

As an initial step toward transformation of the Bethe-Salpeter equation in 

momentum space one can refer back to Wick’s analysis (based on the operators 

and states of field theory) of the structure of $(p-,p,) as a function of complex 

PO. 
For E > 2m, as for E < 2m , the Wick analysis states that z/k,po) is 

analytic in p, everywhere except along two cuts. One cut lies just below the 

real p, axis extending from w mjJPJ - i E to + 00 - ie , while the other lies 

just above the realaxis from w max($ ci.5 to --co + ie ,where (for the mass equal case), 

w mi&) = - w maxt$ = t#gf 

2 1/2 
cm) -E/2 . (2-l) 

Although this analysis depends on field theory it can be shown that the structure 

implied by Eq. ( 2.1) is consistent with the structure of the equation itself, as 

will be demonstrated later in this section. The location of the cuts in +($,,p,) 

is shown in Fig. 1. 

For 2 > k2, ~~~(2 is positive so that there is a gap between the. two 

cuts and one can analytically continue $(%p,) counter clockwise from the real 

axis to the imaginary axis in complex p,, as is indicated in Fig. la. For p2 < k2 
WA-- 

the two cuts in $(&po) as a function of p, overlap since then amin(p ) is 
cyu\ . 

negative. Thus for p2 < k2 
yh- 

one can not analytically continue counter clockwise 

from the real p, axis to the imaginary p. axis without encountering singular - 

ities in $( p ,p,) , but one can continue from the real axis to a contour which 
*k 
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follows the imaginary axis except for two detours around those portions of the 

cuts which protrude below and above p, = 0, continuing to w m.m (g) - i E and 
.\ 

-W mjJ$,) + i E 3 respectively. The suggested contour for $a: 5 k2 is shown in 
.\ 

Fig. lb, and will be recognized as the contour that was introduced by Schwartz 

and Zemach. Since the suggested p, contour for consideration of the analytic 

continuation of $J(~JIP,) depends on pa2, it will be called 
iv*\ 

C 2. For ~ ,L>k’the 

contour C 
iP 

is just the imaginary axis (see Fig. la). (The pathology of p2 = k2 
Eh 

will be considered in more detail below. ) 

One now can convert Eq. (1.1) into an integral equation for the analytic con- 

tinuation of +( p ,p,) from real four-space to a new coordinate surface which con- 
.*. 

sists of all real values of g, but only those complex values of p, which lie on 

Cp2 * In order that this conversion be accomplished,one must analytically continue 

mcpo all terms on the right-hand side of Eq. (1. l), 

1 
$0 (,$kpo) - D(p) V(P- rl)Un)drlod3;?4, (2.2) 

from the real axis to C 
$7 

and also one must deform the q. contour in Eq. (2.2) 

from the real axis to the contour C n2 for every n . 

Consider the first term in Eq. (2.2), 

(2.3) 

To treat this term consistently one needs a representation of 6 (p,) which exhibits 

the singular structure indicated by the Wick analysis. Such a representation is 

readily achieved by writing 

where E is positive real and arbitrarily small. With 6 (p,) in this form, +. 

has singularities in p, at p, = f ie . But the points * ie fall in-the cut 
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region allowed by Eq. (2.1) for p2 5 k2, and hence are avoided by counter- 
.+?> 

clockwise continuation to C for p2 < k2. 
g *- 

Since the incident particles are 

strictly on the “mass shell” 8: = k2, #o($~~po) = 0 if 8: $ k2, and therefore 

the singularities in Ijo(&po) with 6 (p,) in form Eq. (2.4) conform to the Wick 
. . 

structure indicated by Eq. (2.1). 

Further, if one lets E have an infinitesimal positive imaginary part 

E --E 1 
+ ie 2 , then the points 5 i e 

p2 > k2 and all ambiguity in defining 
m 
With this convention for E , the poles 

side of the p, contour throughout and 

P 

are also avoided by the contour rotation 

C 2 for p2 near k2 is eliminated. 
R 

rr* 
in ‘Eq. (2.4) at +ie remain on the same 

the right-hand side of Eq. (2.4) satisfies 

J f(po). [R.H.S. of (2.4)] dpo - f(0) (2.5) 
C 

in the limit J E 1 - 0 whether C is the real axis or C 
2 

for any p (provided 
tvw 

f is analytic at p 
0 

= 0). Note (see Fig. 2) the convention E - E 1 + ie2 , 

ie -ie -e is a natural one for relocating poles relative to Cp2 . Thus 1 2 
rc* 

with Eq. (2.4) and E - E 1 + ie 2 , q. (&po) can be continued to C 2 for all 
n t% 

p and the formal identification +o(gpo) = “J(g-b) 6 (p,) can be retained 
e 
for the analytically continued Go . 

It remains to analytically continue 

GP) * s V(P - 7) q(n) dnod3& 

in PO from the real axis to C 
iif ’ 

Continuation of the factor 

where 

l/D (P) = 1 (P, - a)(~, + a)(~, - P)(P, + P) 1 
a(& = ($+m2) 

l/2 
- E/2-ie - 

-6- 
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m 
+ E/2 - ie ( 2.9) 

( - i E is assigned by the Feynman convention and E = E I + ie 2 is under- 

stood to be available if needed) is easy since the poles at + /3 (p) never obstruct 
k, 

continuation (note Im ( p) < 0, Re ( p) > 0 ) while Q! ($) and - Q (g! lie at 
*. 

w min(,$ -ic and - urnin@!+ ic , respectively, and hence are specifically 

avoided by C gt (see Fig. 1 b) . 

Finally, as we shall now show, simultaneous continuation in p, and deform- 

ation of the n o contour in the term 

V(P - rl) $(n ,vo) dq, d3a z T (P) (2.10) 

can be accomplished in the manner presented by Wick for the bound state case. 
3 

In order to simplify the discussion of this process one may consider transform- 

ation of the q, contour for the special value of p, = 0 which lies on both the 

real axis and C 2. 
L 

Subsequently one can consider analytic continuation of this 

transformed integral to all p, on C 2. 
$h 

It is established by assumption of the Wick structure that singularities in 

+( n , q o) will not interfere with n, contour deformation from the real axis 
Ir’ 

l/2 
(counter clockwise) to C,2. That the poles in V (p - 7 ) at f [(~--r$~ + p2] 

e\ 
will not interfere with the desired rotation is illustrated in Fig. 3a. Hence the 

17 o contour change is valid for p, = 0. Now one wants to move p, from 

p, = 0 along Cp2, thus analytically continuing the transformed integral 
.F 

/ 
+(g?17;o) d9, 

C n2 (;, -iy!2 + (PO - ,1,?+p2 
\‘:* 

(2.11) 

to all p, on C 
& 

This process of analytic continuation can be taken trivially 

under the integral sign provided the poles at r* = p, f [Q- I$ 
2 _ 2]i’2 

+ 1-1 
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never cross the contour C 
a?’ 

The two paths followed by these poles as p, 

moves along C 2 
h 

are shown in Fig. 3a. Defining M (J?) to be the maximum 

real part extension of C 
g2 ’ 

M(z)= 0 if<>>’ 
. 

-2 l/2 
(2.12) 

M(g)= E/2- ( +m2) if p2 < k2 
iw- 

it will be seen from Fig. 3a that the poles in question.always stay on the same 

respective sides of C 2 (although they may come infinitesimally close to it) 
A 

provided 

[ ‘R-d +p2 
l/2 

I I > J$)- Mt$)\ (2.13 a) 

for all p and n. If p2 and 2 are greater than k2, Eq. (2.13a) holds trivially 
I*\ em. 

2 and rotation is possible as in the bound state case. Now consider L 2 c-p n2 < k2 
web 

(the case p2 < n2 p2 < k2 will be covered by symmetry). Then Eq. (2.13 a) 
‘* *‘VW 

becomes 

C (c-ti2 +P2 3 
l/2 

> E/2 - (i+ m2) 
l/2 

- W$) . (2.14) 

But M (p) > 0, so it suffices to show 
Hh- 

[ ‘LyQ2 +P2 1 m 
> E/2 - (%+ m2) 

l/2 
. (2.15) 

Sine e 

[ tg -a2 + p2 1 l/2 
LP (2.16) 

and($+m2) 
l/2 

2 m, it suffices that 

p > E/2 - m or E < 2m+2p . (2.17) 

Thus Eq. (2.13) is easily verifiable if E is less than the energy necessary to 

produce two real mesons of mass p by inelastic scattering. To show Eq. (2.14) 

holds for arbitrary E , note 

M(p2 ) 2 E/2 - t< +m2) 
l/2 

(2. 
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for all p so Eq. (2.14) follows if 
@.J 

l/2 
+iJ E/2 - ($ + m2) 

l/2 
E/2 - (gy + m2) (2.19a) 

i. e. , if 

c Q. -22 +p2 I 
l/2 

? (p2 + m2) 
l/2 l/2 

4. 
- (nn +m2) (2.19b) 

for all a2 < k2 and and Eq. (2.14) certainly follows if Eq. (2.19b) can 

while 

( p2 + m2) 
l/2 

- (< + m2) 
l/2 

5 (w2 +m2) I l/2 
- (e2 + m2) 

m 

I w2 - e2 I I w2 - e21 = = Iw-eJ 

(w2 + m2) 
l/2 

+ (e2 + m2) 
l/2 5 

w+e 

(2.20a) 

(2.20b) 

verifying Eq. (2.19b) . (Inequality Eq. (2.19b) has been fully considered in the 

general context of Fourier transforms and causality by Dyson.’ The relationship 

of causality to the Bethe-Salpeter equation will be emphasized below. ) 

In a manner analogous to Wick’s rotation, one can now continue T (p) in 

Eq. (2.10) to any p, which lies in the region swept by counter-clockwise contour 

deformation from the real p, axis to Cp2 : Call the partially deformed contour 
ur;‘- 

CA (as shown in Fig. 3b). For each n in Eq. (2.10) , deform the no contour 

fr:m the real axis to a contour Czorizontally displaced from Ci by 

Mn -M(R). 
w 

as shown in Fig. 3b. Finally Eq. (2.10) with this choice of no 

contours can be continued in p, along C’ 
P 

in the manner just considered for 

continuation Eq. (2.11) along C 
P2 * 

Thusyhe extension of the Wick rotation in 

momentum space to all values o? E greater than 2m is complete. 
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It is significant to note there are circumstances under which C-2 will 
23 

never come infinitesimally close to the poles in V ( p - 7 ) for p, on C- . 
P2 

As shown in Fig. 3c, such separation will occur if 

C ‘,p -gj2 +P2 1 i/2 
> M(,P+~) + W?a2) (2.13b) 

for all p, n, 
I+* 

and thus will occur if ~1 > (E/2 - m) + (E/2 - m) = E - 2m, 

or E < 2rnfl-l. This will be recognized as the energy restriction for purely 

elastic scattering and the momentum space transformation in this case corres- 

ponds to the transformation of Schwartz and Zemach in configuration space. 

The transformed equation reads 

#($‘Po) = ‘3$,-gin) SW,) -&// V(P -71) $(n)dq, d3s. (2.21) 

en2 
be. 

valid for all real & and all p, on Co2 for any value of E greater than 2m. 

A. Singularities in the Transformed Equation 

The advantage of transforming to the new coordinate surface is that the 

singularities in 1 D @) and V ( p - n ) which occur in Eq. ( 1.1) over an un- 

bounded region of real four space now are confined to a limited region on the 

new coordinate surface. Singularities in l/D (p) only occur when the contour Cp2 

touches one of the poles in l/D (p, p,) at 
rc 

m l/2 

PO 
- E/2 - i E +m2) 

But the latter set of poles are never touched by C 2 (see Fig. 1) , while the former 

are only touched for p2 < k2 
L 

yrc- 
by the “detour” segments of Cp2. Thus outside 

the limited region of detour on the transformed coordinate sur&e l/D (p) is free 

of singularity and vanished as l/p4 as p2 - 00 . 
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Now consider singularities in no in V (p - n ) for fixed p, on C 2 . As 

discussed above poles occur at r* = p, * f( p - n)2 + p 
& 

. In order for these 
m 

poles to touch Cn2 at some 77, it must be that Im(go) = Im(p,) = 0, i.e., p, 

must be zero (p 
z; 2 

> k ) or on a detour section of C 2 
42 

with p2 < k2 
be * and 7, 

n n 
must be similarly restricted. Now for p‘ > k‘ inequality Eq. (2. 13a) excludes 

the possibility of Cn2 touching a pole. By symmetry no poles can be touched if 

n2 > k2. 
a 

Thus singularities can only occur in V (p - n ), when p2 < k2, $ < k2 
N 

and p, and no are on the detour portions of C 
sz 

and C n2 ’ respectively. 

In the limit p2 - 00 outside the region of detour V (p - n ) vanishes as 

(h/r2) . l/p2 for any fixed 7. (It has already been commented that for E < 2m + p, 

V (p - n ) is completely free of singularity on the whole coordinate surface. ) The 

regularity of l/D ( p) and V (p’ - n ‘) away from 2 < k2, wPo) = Wrlo) = 0 

allows one to form an intuitive picture of the transformed equation. Asymptotically 

it is the same regular equation considered by Wick for E < 2m. 

Since for most of the coordinate surface p, and no are purely imaginary 

it is useful to write the transformed equation in terms of rotated coordinates 

Pi, =p,/i, p’ = (&P;) > Pf2 = 2 +PA2 (2.22) 

with analogous definitions for no , n ’ , n ,2 . Writing q’(p) = G/(p) and noting 

6 ( p,) = 6 (ipo) = - i 6 (p;) , Eq. (2.21) becomes 

$‘(P’) = ~3(p+-P&) 6 (PA, + 1 
D(P’) V(P’ - 77 ‘) $‘(77 ‘) dn; d3& 

C’ 
with n2 h 

D(p’) = (p12 - k2) 
2 

+ E 2 2 p; 

1 

V(P’ - 77 ‘) = Ah2 
(P’ - nY2 +/J2 _ 

(2.23) 

(2.24) 

(2.25) 
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Cl2 is C,2, 
s 

rotated clockwise by 90’. The complex p’ coordinate surface 

on which Er (2.23) applies can be sketched in terms of 1~1 , Re (p:) , and 

Im( p,‘) as shown in Fig. 4. 

B. The Wick Frequency Assumption - Causality 

It shoul!l be noted that the ability to make the contour transformations in 

complex p, , 77, demonstrated above only depends on the Wick frequency 

analysis (based on field theory) through the assumption that 4 (5 no) in Eq. (1.1) 

has the structure indicated by Eq. ( 2.1) . But the only assumption really needed 

is that $ (nd qo) be analytic in the region swept by counter-clockwise deformation 

of the no contour from the real axis to C 2 . 
k 

The demonstrated ability to con- 

tinue the right-hand side of Eq. (1.1) in complex p, throughout the region of 

contour distortion between the real axis and C 2 proves that this structure, 
J2L 

which was assumed for $ k no), although suggested by field theory, is funda- 

mentally consistent with the structure of Eq. (1.1) . 

One may go further and ask whether the full Wick structure implied by 

Eq. (2.1) can be shown consistent with the structure of Eq. (1.1) in this way . 

The above analysis has shown that $,(k p,) and l/D (p) are consistent with 

Eq. (2.1). It remains to show that 

T(P) =sJV(p - 77) +(V)d4n 1L 

can be continued throughout the complex p, plane up to the cuts described by 

Eq. (2. l), assuming that zJ(ano) has the cuts described by Eq. (2.1) in 

complex rj o. 

As illustrated in Fig. 3d, the required continuation, accompanied by the 

appropriate ?j o contour distortion, can be accomplished if 

C 
l/2 

(p2 +m2) - ($+m2) 
l/2 

I , 
w 

(2.19c) 
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for all g: ,nY (One first chooses the path of p, continuation C’ , then deforms 
8% 

the q, path of integration to C’ 
WY& 

for each E, and finally continues p, along 

C’ .) 
LL 

But this inequality is equivalent to inequality Eq. (2.19b). Thus , not sur- 

prisingly, ability to perform the p,, 7, contour transformations in Eq. (1. 1) 

for arbitrary E follows from the consistence of Eq. (1.1) with the structural 

requirements of Eq. (2.1) for all p. It is significant to note that in the above 
1clc 

proof of this consistency, as indicated by Eq. (2.20a), it suffices that V 

satisfy a simple condition: V (q , qJ can only have singularities in q. which 
w 

are at (r - ie) and/or -(r -. 1~ ‘) where r is real and r. zjq~ . In configur- 

ation space r > _ %, implies that V bxo) for x0 > 0 and x0 < 0 is a super- 

position of waves which move with a velocity less than or equal to 1, the velocity 

of light. This inequality places a very strong restriction on V since it must 

be satisfied for all q. On the other hand, as indicated by Eq. ( 2.16), for the 
w 

restricted range E < 2m + & the contour transformation to Cp2 proposed 
WFI 

here only requires r 1 ,u , i.e. , that V (2 x0) have x0 frequencies greater 

than p for x0 > 0, and less than q for x0 < 0 (“causality” need only be 

obeyed for 1~1 5 p ) . 

One naturally asks whether the cut structure of $ can be deduced from the 

Bethe-Salpeter equation alone without reference to field theory. Toward this 

end note that if $ is a solution to the transformed Eq. (2.21), then the known 

separation of the poles in V(p-7) from no on C,2, indicates that T& p,) = 
* 

V(p-77) q(q) d4v appearing in Eq. (2.21) will be an analytic function 

of p, at least within a strip about C 2 (see Fig. 3e) of half width 

A = Min 
P ;?h ([t$-~2+~2]1’2 - I&$ - Wc)(j 

2 Min 

g2< k2 , p2<k2 

($-I$~ + p2i’T 1 (2+m2)1’2 - (<+m2) 1’21)=A > 0. 

i 
A closer*inspection shows that A = k2+ (m+p)2 

l/2 
- (k2 + m2) 

l/2 
- . 
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But noting the analytic structure of l/D ( 
P 

, p,) , Eq. (2.21) shows that $Q,p,) 

can be continued in p, (for any a to the right in the upper half plane (and/or 

left in the lower half) through a distance A from C to “C -t A”, where A 
he ti 

is independent of p. Then putting p. 
*q- 

on C 2 + A, and noting that the transformed 

equation indicates $ (k p,)-0 (l/pi) 
E+. 

as PO/i-+ co on C 2, one can deform all 
ii 

the 7, contours in Eq. (2.21) from C,2 to C,2 + -A. Now one can repeat the 
-.w MY 

argument and continue $ ($po) to Cp2 + 2 A, 
cP2 

+3A, etc. 

If, however, one applies this przdure to thebyeft in both upper and lower half 

planes (see Fig. 3f), one can not continue $ (gp,) through the poles in l/D @, p,). 

For any p2 such that these poles are encountered, the shifted contour must detour 
w- 

around them. One thus “discovers” the Wick cuts in $(& p,). 

As one shifts successively to the left, adding detours at each step (Fig. 3f), 

the length hi through which one can move the non-obstructed parts of all the p, 

contours in the ith shift decreases as i increases. After i-l shifts the p, 

contours in the upper half plane must detour whenever p2 < p2 where 
w-. d-1’ . 

/ i-l \2 

Ai = Min Y2 I - (p,2+ m2) 1’2 - 
w 

0 
<A <...<A 

i-l 1 = A. More specifically Ai = 
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m 0) However, since Ai is bounded 

i-l 

away from zero for any possible bound on 
x A., J 

the process of continuation 

j=l 

illustrated in Fig. 3f can be extended throughout the left half plane (and similarly 

throughout the right one) despite the decreases in Ai. Thus any solution of 

the transformed equation which has the asymptotic behavior indicated by the 

equation itself, must have the analytic structure indicated by field theory. 

One notes again that the full Wick cut structure only results if V possesses 

the complete causal structure indicated by Eq. (2.19c). 

C. Properties of l/D (p’) - Relationship to Non-relativistic Theory 

As in the case of the non-relativistic scattering equation, many important 

features if Eq. (2.23) are determined by properties of the factor l/D (p’) 

(see Eqs. (2. 7) - (2.9)) which can be written 

1 1 
-= 
D @‘) 

4E @,” f m2) 
l/2 

1 

PI, + iP(&) 

1 
1 1 

x- - 

1 
-1 
Q(P) 

* 
pi, - iQ(z P1, + io! (a )J 

(2.27) 

This expression corresponds to the non-relativistic term l/(p2 - k2), and 
M 

noting that 

(2.28) 

one can write Eq. (2.27) in analogy to the non-relativistic factor. 
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1 1 
-= 
D(P’) (p2 

4 
-k2) 

where, with w (g) = (L 2 l/2 
-t-m) , 

(2.29) 

1 
\ 

P; + iP (PJ 

1 

1 

. (2.30) 
PA + iQ (j?)., 

Now note that at p2 = k2, #wL the following hold: w = E/2, a! p) = - ic - 0 , 
L 

p(q&= E - ic - E, and thus 

2 
d(k 

1 1 1 1 
- _- (2.31a) 

pA - i.c p’ -tie 
0 P:, - E PO + E 

. 1 1 
---+ -eE -- 

i 
. (2.31b) 

p; - E PI, + E 

Setting E = E 1 f ic 2 , E 1 - 0, and taking CL2 as the real axis (see Fig. 2), 

d(k2,p;) - - & 
1 1 

, (2.32) 
- ic p’ + ic 

2 0 2 

so that, with arbitrarily small 1 E 1 understood, 

(2.33) 

(2.34) 

d(k2,po) = ; 6 (PA) p 

Now using the familiar formula 

1 

a2 - k2 
=@ l 

p2 - k2 
+ in 6 (p2 - k2) 

bw 
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one has 

1 1 . 2 
- = lP 
D (P’) g” - k2 

d @I$ P;) + + S(P2 - k2) 6 (P;) (2.35) 

It is easy to check that d (R” , p,) is a real factor in the sense that integrals 

of the sort SC ‘2 
a% 

U(PA) d($, PA) dPb will be real if v*(poj = U(po*) and 

U is analytic on C ’ 
P2 * 

Thus Eq. (2.35) effectively splits l/D (p’) into real 
ri 

and imaginary parts in analogy to Eq. (2.34) for the non-relativistic case. 

Equations (2.29) and (2.30) can be used to obtain the non-relativistic limit 

of l/D (p’). Note one can consider the non-relativistic limit to correspond to the 

limit m ---t E/2 + 00 for fixed k, since this implies mc >> mv, i. e. , c >> v 

where v is the incident particle velocity. But then for any finite ,l:, 

Q $1 = :(E/2)2 + g- k2)l 
l/2 

- E/2-+ 2 -k2)/E--+0, QJ +2m-+E, 
, k c 

w(p)-+ m- E/2, so that, very much in the manner just considered, 

(2.36) 

in thelimit E+ 03, k fixed. Note that although a(p becomes a negative 
J .\ 

infinitesimal for p2 < k2 , the contour C’ 
* &? 

specifically detours for p2 < k2 

so that the poles in Eq. (2.36) at + icr(p) stay on the same side of C’ for 
- p2 

2 2 
E-4 

<k as for p2 
+4 

> k2 when “(3) > 0. Thus in Eq. (2.36)) cu(p;c‘can be 
w 

treated as a positive (real) infinitesimal for all finite p2, giving 
‘WV* 

(2.37) 

and 

1 
l/D ( p’ )+ n/E 

p2 -k2 
W$)) 

bA 
in the non-relativistic limit E --) m, k fixed. 7 
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Having analyzed the location of the poles in d (g2, p,) in detail, note that 

Eq. (2.35) and Eq. (2.38) can be derived simply by writing 

1 
l/D(@) = 

_ (PI2 - k2) 
P (PT2. PO) 

where, 

2 1 
P(P IPo)=x 

rp2 

2nd p (P’~, PA) - n/E S(P;) for P f2 _ k2 = E 2 -W 0, or E -+ CO by inspection. 

Finally, Eqs. (1. l), (2.29) and (2.33) yield a simple derivation of the scatter- 

ing amplitude. Setting 

z)(x) = /eik&-‘oxo) z/(p) d4p 

and using Eq. (1.1) 

‘in”- Qyj= e i jei8’L[kj /v,, - 77) d4ndpod3s: (2.39) 

Rotating contours in the manner introduced above, using $’ (7 ‘) = iq(n) and 

inserting Eq. (2.29) for 1/D (p’) 

X 
$k,o) = el& "+ eik5. 

1 
- 

p2 - k2 V 
T’(~F:P;) dp; d3g (2.40) 

* c’2 
with $ 
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Now it is well known from studies of non-relativistic scattering that in the 

limit Isi - 00 

J 

.igx, ’ 
Q(P) d3p -. fW$ e p2 _ k2 w 1Eh 

fkR/R (2.42) 

wk. 

where R = 1~1 , f refers-to the xW direction, and f ( 52f, = 2~2 Q (p ) 
wf 

with 

PC = k% But the second term on the right of Eq. (2.40) is precisely of the 
he&l 

form of the term on the left in Eq. (2.42), so that the usual non-relativistic 

analysis yields8 for x0 = 0, IXJ -h w 

2)&,0)--t e 
igm. & 

+ f ( !Jf) eikR/R (2.43) 

where 

fuy = J W2, P;) ‘I”(%, ~1,) dp:, 

$2 

2713 3 
=- 

E T’ (sf, o ) = q T’tpf) - 
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III. A METHOD OF APPROXIMATE SOLUTION 

Since the method to be presented here does not produce highly precise results 

but does serve as a rough check on other methods the following discussion will be 

brief. ’ Outside the restricted region of detours in the coordinate surface Eq. (2.23) 

indicates that 1 $‘(p’) 1 will vanish rapidly as p’ + m. Specifically, l/D (p’) will 

vanish as 1 p’ 11 I 
4 while 

should vanish l/i p’ I2 (assuming the integral over n ’ is amply convergent). Thus 

in the limit 1 p’l + m one expects 1 211’ (p’) 1 to vanish as l/ 1 p’ 16, (reinforcing the 

assumption that the integral for T* is amply convergent). This fact suggests that 

one can obtain good approximations to $’ (p, pb) by solving a cut-off version of 
M 

Eq. (2.23), i.e., by considering the restriction of Eq. (2.23) to a large sphere 

of radius A : k in p’, 7’ four-space. For E < 2m + ~1 it has been commented that 

V(p’- 7’) is never singular for p’ and 77’ on the coordinate surface. Then for 

p’ and q ’ within a finite cut-off sphere, V(p’-n ‘) can be well approximated by a 

finite sum of separable potentials. Thus in the elastic scattering range one can 

take 

(3.1) 

where 4 ij are real and gi are real for real p’ and analytic on the whole 

coordinate surface. But with the right hand side of (3.1) substituted for V in 
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Eq. (2.23), the new equation is as easy to solve as the non-relativistic equa- 

tion with a finite sum of (three dim. ) separable potentials. Using matrix algebra 

analogous to the non-relativistic case, setting 

Wf) = c fQ 3 t&) 9 

f _ 2Q + 1 isQ Q - - e k 
sin 6 

Q 

and with Eq. (2. 35) for Im [l/D (p’)l one finds 

tan dQ = 27r3k 
(28 + l)E- G; +(I -UQv”)-’ GQ (3.2) 

(with all factors real so elastic unitarity is valid) where matrix notation is used, 

G is a column matrix 

tGQjj, 1 = j gQ (k, 0) , I.. = 6.. , and 
1J 11 

pz(s) gfi(s’) &(q’) 
d4q’ . (3.3) 

Dtq’) 

The range of q’ integration in Eq. (3.3) is limited to the interior of the cut-off 

sphere of radius A. 

One method of getting an approximation to V of form Eq. (3.1) inside a 

sphere of radius of is to take a least square polynomial fit to l/ [ 1 + x2] on the 

interval - 2~~ I x I 2hf, i.e., 

1/[1+ x2] z$ ci * (x2)i 

i =0 

Then in units such that p = 1, 

V(p’ - 77’) 1 aC ‘i [(P’ -0’)il’ 
i=O 

(3.4) 

for p’ , q’ inside a sphere of radius hf . 
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Now one can expand 

i 
(p’ _ $)2i = 

c 
* . . ,$J&' c Aj y,s,T,q p”)‘ip:)” (,i;zj4 (T12jT 

j=O Y,S, T,q (3 * 5) 

s; cl = 0, 1, * . . [i2 jl 

7; T = 0, 1, . . . , i-j-2s; i-j-29 

and since j j 
c ‘jQ ‘Q (‘1 - c ajQ Q ++M ’ ($)pQ@ 2 
Q=O Q=O 

one has 

NM-Q NM-Q 
V s ~ PQ(~) ~ PQ($) ~~ C C 4ij gi (Pi , Pi) gi(“J ‘2 , ?ld2) t 3.6) 

Q=o i=l j=l 

where gy (cl belong to the set of functions ( qv2)’ ( G2 ) t for 7 = O,l, 0.. , 

[(M -Q)/2] and s = O,l, . . . , M - Q - 2 T. The dimension of VQ is NM-Q 

where N 
cl 

= [q/2] + 1’ q+l- 
( ,( h/21) ’ 

The constants VQ ij can be expressed in terms of the constants Ci, AJ 
Y,s,r,q’ 

and a jQ by simple arithmetic. The required operations for evaluating ?Q ‘c . . 
11 

canbe carried out rapidly by machine. Also, the integrals d ij can be done in 

closed form and expression Eq. (3.2) for tan 6Q evaluated by machine. 
9 

To investigate convergence as a function of the cut-off A , the fit to V was 

kept fixed with hf = 4.0 and polynomial degree M = 10. The resulting tan 6Q 

was evaluated for several values of A up to and including nf. Convergence as 

a function of M was investigated by setting A = Af = Amin and varying M 

up to 10. To standardize this procedure, Amm was chosen to satisfy 
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Amm - k2j2 = ~~~~ 
min ’ since then I p’ j = Amm roughly marks the begin- 

ning of the asymptotic region of l/D (p’) . 

From the results with variable A and fixed M an estimate was made of 

the error incurred by cutting off the equation at A = Amin . The results with 

A=A min and variable M were used to estimate the precise cut-off result at 

A=A min’ Finally the estimated result at A = Amin was combined with the 

estimated error due to cut-off to give an estimate of the non-approximated result. 

This scheme was only carried out fully for m = ~1 = 1, Q = 0. The results for 

A = 1,k2 = .4 are listed in Table I. The estimated value of E/2k tan 6, for 

Eq. (2.21) cut-off at A = Amm = 2.52 is 3.4 f .2 . The estimated error 

due to this cut -off is - .2. Thus, with generous allowance for possible error, 

one can set E/2k tan 6. = 3.6 + .4 . Schwartz and Zemach find for this same 

case E/2k tan go = 3.5640 h .0002. 

The principal difficulty in the approach used here in that polynomial fits to 

I/[1 +x21 are difficult to handle numerically. Thus the degree of convergence 

was not great, and in some cases it was non-existent. The method worked best 

at k2 = 0 where for the least positive bound state h it yielded .765 * .021, 

whereas Schwartz and Zemach find a value of .76222. 
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IV. CONCLUSION 

The principal advantage of viewing the Bethe-Salpeter equation in momentum 

space is that l/D(p) and V (p - 7 ) have a simple algebriac form, in sharp 

contrast to the form of their transforms in configuration space. The only difficulty 

with these functions in momentum space is the abundance of poles they possess 

due to the Lorentz metric. By making the modified Wick rotation suggested here 

one does not eliminate these singularities, but one does restrict their occurrence 

in the equation to a bounded region. All remaining singularities must be con- 

sidered carefully in order to arrive at meaningful results. This has only been 

attempted here for purely elastic scattering E < 2m + p where only singular- 

ities in l/D(p) must be considered. For higher values of E the task of analy- 

sis is more complex. However, the technique of modified rotation, in that it 

minimizes the added complexity., and emphasiaes the simple analytic structure 

of the equation for all values of E, should provide a useful point of view for 

further analysis. 
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TABLE I 

Computed Values of (E/2k) tan do 

atk2=.4, h=l,-m=p=l. 

A. Values for variable A with M = 10 

A (E/2k) tan 6, 

A min = 2.52 
3.0 

3.133 
3.219 

3.5 3.266 
3.75 3.280 
4.0 3.290 

Limit 3.32& .03 

B. Values for variable M at A= Amin 

M (E/2k) tan do 

7 3.149 
8 3.208 
9 3.268 

10 3.312 

Limit 3.4 f .2 
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FIGURE CAPTIONS 

la* Cuts in q($: P,) for p2 > k2 (cuts start at * c!(p) = + Wmin(zl- i e ; y2. h’. ( ) 
arrows indicate continuation in p,). 

lb. Cuts in $(p, p,) for p% k2. 
iVJ* +i\ 

2. Location of poles in l/~(p) relative to cp2 (arrows indicate relocation of 
veh 

poles under E = el+el + ie2). 

3a. Continuation of T(k p,) by moving p, from p, = 0 along Cp2. All ‘1, 
w’s 

contours have previously been deformed to Cn2 after using ~1-t~ - i E’ 
wml* 

to locate poles in V(p-Q). 

3b. C.ontinuation along C’ . 
P 

Arrows are of length M(n2)- M(p2). (In the lower 
w 

half plane the arrows-could point in the opposite direction.) 

3c. Separation between q. on C,2 and poles in V for E < 2m + ~1. Arrow 

is of length ([(g-a2+i2]“- M(~z?) -M(L~$. 

3d. Continuation of T(J&-~~) up to the Wick cuts in $(p, p,). Arrow length is M(c)-M(L). 
t- 

3e. Shifting the p. contour for a specific E, 2 < k2, in steps of size A 

through the first and third quadrants. Shaded area indicates initial strip 

of analyticity in TQpo) for this p k*; (The validity of the procedure shown 

here is generally independent of small details in contour shape. However, 

two criteria must be satisfied: 1. The maximum horizontal separation 

between any two of the original or shifted contours, e.g., Cp2 and C,2, 
#fc-- be. 

must be given by the difference between their maximum real part 

extensions, 
I M($ - M(g) . 2. In shifting horizontally from C p2 to 

C 2 + A, some points on Cp2 may be displaced less than A but %ne 
& h.-~ 

may be displaced more than A. These criteria are easy to meet, as the 

above choice of linearly segmented contours demonstrates =) 



3f. Shifting the, po contour for a specific ,p,, 9; > p2 > ni = k2, in steps of L-r. 

size hi through the left half plane. Shading indicates initial strip of 

analyticity in T(p, p 
w&o 

). (The criteria mentioned under Fig. 3e are again 

observed. ) 

4. Transformed coordinate surface. 
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