

One-loop Feynman integrals with Carlson hypergeometric functions

Khiem Hong Phan^{1,*}

¹VNUHCM-University of Science, 227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Vietnam.

Abstract. In this paper, we present analytic results for scalar one-loop two-, three-, four-point Feynman integrals with complex internal masses. The calculations are considered in general space-time dimension D for two- and three-point functions and $D = 4$ for four-point functions. The analytic results are expressed in terms of the Carlson hypergeometric functions (\mathcal{R} -functions) and valid for both real and complex internal masses.

1 Introduction

In order to confront particle physics theory with high-precision of experimental data at future colliders, theoretical predictions including high-order corrections are required. In general framework for computing high-order corrections, detailed calculations for one-loop multi-leg and higher-loop are necessary for building blocks. When we compute scattering processes which Feynman diagrams involve internal unstable particles that can be on-shell, we have to resum Feynman propagators with a complex mass term in the denominator. In other words, one has to perform the perturbative renormalization in the Complex-Mass Scheme [1]. Therefore, the calculations for Feynman loop integrals with complex internal masses are of great interest. Furthermore, within the general framework for computing two-loop or higher-loop corrections scalar one-loop integrals in general space-time dimension play a crucial role for several reasons. Higher-terms in the ε -expansion from one-loop integrals are necessary for building blocks. In addition, one-loop integrals at higher space-time dimension $D > 4$ may be taken into account in the framework.

There have been available many calculations for scalar one-loop integrals in $D = 4 - 2\varepsilon$ dimensions at ε^0 -expansion [2–11]. Scalar one-loop integrals in general dimension D have performed in [12–16]. However, not all of these calculations cover general dimension D with a general ε -expansion at general scale and complex internal masses. In this paper, based on the method in [5–8], we present analytic results for scalar one-loop two-, three-, four-point Feynman integrals with complex internal masses. The calculations are considered in general space-time dimension D for two- and three-point functions and $D = 4$ for four-point functions. The analytic results are expressed in terms of the Carlson hypergeometric functions.

The layout of the paper is as follows: In section 2, we present in detail the method for evaluating scalar one-loop functions. In this section, analytic results for one-loop two-, three- and four-point functions are presented. Conclusions and outlooks are devoted in section 3. Several useful formulas used in this calculation can be found in the appendix.

*e-mail: phkhiem@hcmus.edu.vn.

2 The calculations

Based on the method introduced in Refs. [5–7], we present the calculations for scalar one-loop functions with complex internal masses. Scalar one-loop N -point functions are defined

$$J_N = \int d^D l \frac{1}{\mathcal{P}_1 \mathcal{P}_2 \cdots \mathcal{P}_N}. \quad (1)$$

Where inverse Feynman propagators are given

$$\mathcal{P}_k = (l + q_k)^2 - m_k^2 + i\rho, \quad \text{with } k = 1, 2, \dots, N. \quad (2)$$

The Feynman prescription is $i\rho$. We use momenta $q_k = \sum_{j=1}^k p_j$, p_j are external momenta and they are inward as shown in Fig. 1. The internal masses in the Complex-Mass scheme are taken the form of

$$m_k^2 = m_{0k}^2 - i m_{0k} \Gamma_k, \quad \text{for } \Gamma_k \geq 0. \quad (3)$$

The Γ_k are decay widths of unstable particles. The momenta q_k may take the following configuration

$$q_1 = q_1 (q_{10}, q_{11}, 0, \dots, 0, \vec{0}_{D-J}), \quad (4)$$

$$q_2 = q_2 (q_{20}, q_{21}, 0, \dots, 0, \vec{0}_{D-J}), \quad (5)$$

$$q_3 = q_3 (q_{10}, q_{31}, q_{32}, 0, \dots, 0, \vec{0}_{D-J}), \quad (6)$$

$$\dots = \dots,$$

$$q_{N-1} = q_{N-1} (q_{(N-1)0}, q_{(N-1)1}, \dots, q_{(N-1)(J-1)}, \vec{0}_{D-J}) \quad (7)$$

which have J non-zero components. Here, $q_{10} = 0$ for $q_1^2 < 0$ and $q_{11} = 0$ for $q_1^2 > 0$. As a result, scalar product of external and internal momenta are obtained

$$q_k^2 = q_{k0}^2 - q_{k1}^2 - \dots - q_{k(J-1)}^2, \quad (8)$$

$$l^2 = l_0^2 - l_1^2 - \dots - l_{J-1}^2 - l_\perp^2, \quad (9)$$

$$l \cdot q_k = l_0 \cdot q_{k0} - l_1 \cdot q_{k1} - \dots - l_{J-1} \cdot q_{k(J-1)}. \quad (10)$$

In parallel space which is the linear span of the external momenta and its orthogonal space (POS) [5, 6], scalar one-loop N -point functions are taken the form of:

$$J_N = \frac{2\pi^{\frac{D-J}{2}}}{\Gamma(\frac{D-J}{2})} \int_{-\infty}^{\infty} dl_0 dl_1 \cdots dl_{J-1} \int_0^{\infty} dl_\perp \frac{l_\perp^{D-J-1}}{\mathcal{P}_1 \mathcal{P}_2 \cdots \mathcal{P}_N}. \quad (11)$$

The propagators now become

$$\mathcal{P}_k = (l_0 + q_{k0})^2 - (l_1 + q_{k1})^2 - \dots - (l_{J-1} + q_{k(J-1)})^2 - l_\perp^2 - m_k^2 + i\rho, \quad (12)$$

for $k = 1, 2, \dots, N$. The calculations can be summarized as follows. We first make the partition for the integrand of J_N as

$$\frac{1}{\mathcal{P}_1 \mathcal{P}_2 \cdots \mathcal{P}_N} = \sum_{k=1}^N \frac{1}{\mathcal{P}_k \prod_{\substack{l=1 \\ k \neq l}}^N (\mathcal{P}_l - \mathcal{P}_k)}, \quad (13)$$

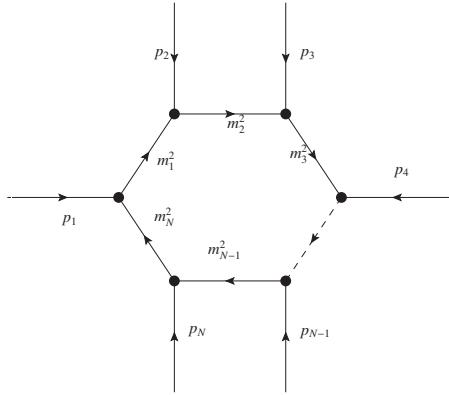


Figure 1. Generic Feynman diagrams at one-loop with N external lines. All external momenta are inward and follow momentum conservation $q_N = \sum_{j=1}^N p_j = 0$.

with

$$\mathcal{P}_l - \mathcal{P}_k = (l_0 + q_{l0})^2 - (l_0 + q_{k0})^2 + (l_1 + q_{l1})^2 - (l_1 + q_{k1})^2 + \cdots + (l_{J-1} + q_{l(J-1)})^2 - (l_{J-1} + q_{k(J-1)})^2 + m_k^2 - m_l^2 \quad (14)$$

$$= a_{lk}l_0 + b_{lk}l_1 + \cdots + c_{lk}l_{J-1} + \tilde{d}_{lk}. \quad (15)$$

Where we have introduced the following kinematic variables

$$a_{lk} = 2(q_{l0} - q_{k0}), \quad b_{lk} = -2(q_{l1} - q_{k1}), \quad \cdots, \quad (16)$$

$$c_{lk} = -2(q_{l(J-1)} - q_{k(J-1)}), \quad \tilde{d}_{lk} = q_l^2 - q_k^2 + m_k^2 - m_l^2. \quad (17)$$

Making a shift

$$l_0 \rightarrow l_0 + q_{k0}, \quad l_1 \rightarrow l_1 + q_{k1}, \cdots, \quad l_{J-1} \rightarrow l_{J-1} + q_{k(J-1)}, \quad (18)$$

we convert all \mathcal{P}_k in (13) to \mathcal{P}_N . As a matter of this fact, the l_\perp -integral then yields a simple form which can be taken easily as follows:

$$\begin{aligned} & \int_0^\infty dl_\perp \frac{l_\perp^{D-J-1}}{[l_0^2 - l_1^2 - \cdots - l_{J-1}^2 - l_\perp^2 - m_k^2 + i\rho]} = \\ & = -\frac{\Gamma\left(\frac{D-J}{2}\right)\Gamma\left(\frac{J+2-D}{2}\right)}{2} \left(-l_0^2 + l_1^2 + \cdots + l_{J-1}^2 + m_k^2 - i\rho\right)^{\frac{D-J-2}{2}}. \end{aligned} \quad (19)$$

We then arrive at the $(J-1)$ -fold integrals

$$\frac{J_N}{\Gamma\left(\frac{J+2-D}{2}\right)} = \pi^{\frac{D-J}{2}} \sum_{k=1}^N \int_{-\infty}^\infty dl_0 dl_1 \cdots dl_{J-1} \frac{\left(-l_0^2 + l_1^2 + \cdots + l_{J-1}^2 + m_k^2 - i\rho\right)^{\frac{D-J-2}{2}}}{\prod_{\substack{l=1 \\ k \neq l}}^N [a_{lk}l_0 + b_{lk}l_1 + \cdots + c_{lk}l_{J-1} + d_{lk}]} \quad (20)$$

In this formula $a_{lk}, b_{lk}, \cdots, c_{lk} \in \mathbb{R}$ and $d_{lk} = (q_l - q_k)^2 - (m_l^2 - m_k^2) \in \mathbb{C}$ which is obtained from \tilde{d}_{lk} after applying the shift (18). The integrals in (20) can be carried out with the help of residue theorem. For that purpose, one first linearizes the l_0 for example, i.e $l'_1 = l_1 + l_0$. The result reads

$$\frac{J_N}{\Gamma\left(\frac{J+2-D}{2}\right)} = \pi^{\frac{D-J}{2}} \sum_{k=1}^N \int_{-\infty}^\infty dl_0 dl_1 \cdots dl_{J-1} \frac{\left(-2l_0l_1 + l_1^2 + \cdots + l_{J-1}^2 + m_k^2 - i\rho\right)^{\frac{D-J-2}{2}}}{\prod_{\substack{l=1 \\ k \neq l}}^N [AB_{lk}l_0 + b_{lk}l_1 + \cdots + c_{lk}l_{J-1} + d_{lk}]} \quad (21)$$

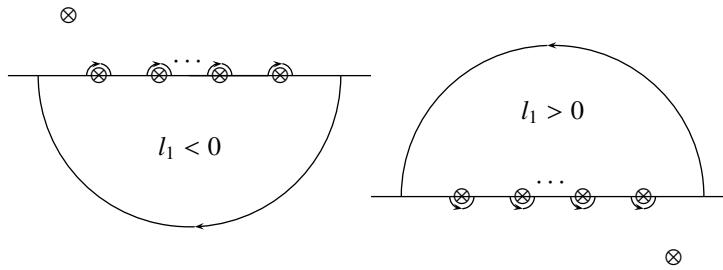


Figure 2. We close the contour integration for l_0 that the poles in (22) locate outside the contour.

with $AB_{lk} = a_{lk} - b_{lk}$. The singularity poles of the integrand in (21) are obtained:

$$l_0 = \frac{l_1^2 + \cdots + l_{J-1}^2 + m_k^2 - i\rho}{2l_1}, \quad \text{Im}(l_0) = -\frac{m_{0k}\Gamma_k + \rho}{2l_1}, \quad (22)$$

and

$$l_0^{(l)} = -\frac{b_{lk}l_1 + \cdots + c_{lk}l_{J-1} + d_{lk}}{AB_{lk}}, \quad \text{Im}[l_0^{(l)}] = \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right). \quad (23)$$

The pole l_0 in (22) locates upper (lower) in l_0 -complex plane if $l_1 < 0$ ($l_1 > 0$) respectively. We plan to close the contour integration for l_0 that l_0 -poles in (22) locate outside the contour, seen Fig. 2 for more detail. As a result, the poles in (23) are only taken into account to the residue contributions for l_0 -integration. The resulting reads

$$\begin{aligned} \frac{J_N}{\Gamma\left(\frac{J+2-D}{2}\right)} &= \pi^{\frac{D-J}{2}} \sum_{k=1}^N \sum_{\substack{l=1 \\ k \neq l}}^N \left\{ f_{lk}^+ \int_0^\infty dl_1 + f_{lk}^- \int_{-\infty}^0 dl_1 \right\} \cdots \int_{-\infty}^\infty dl_{J-1} [1 - \delta(AB_{lk})] \quad (24) \\ &\times \frac{\left[\left(1 - 2\frac{b_{lk}}{AB_{lk}}\right) l_1^2 + \cdots + l_{J-1}^2 - 2\frac{c_{lk}}{AB_{lk}}l_1l_{J-1} - 2\frac{d_{lk}}{AB_{lk}}l_1 + m_k^2 - i\rho \right]^{\frac{D-J-2}{2}}}{\prod_{\substack{m=1 \\ m \neq k \\ m \neq l}}^N [\tilde{A}_{mlk}l_1 + \cdots + \tilde{C}_{mlk}l_{J-1} + \tilde{F}_{mlk}]} \end{aligned}$$

Where the δ -function is defined as

$$\delta(x) = \begin{cases} 0, & \text{if } x \neq 0; \\ 1, & \text{if } x = 0. \end{cases} \quad (25)$$

New kinematic variables $\tilde{A}_{mlk}, \dots, \tilde{C}_{mlk} \in \mathbb{R}$ and $\tilde{F}_{mlk} \in \mathbb{C}$ are obtained from residue contributions of the poles in (23). The functions f_{lk}^\pm indicate the location of the poles in (23) in the l_0 complex plane:

$$f_{lk}^+ = \begin{cases} 0, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) < 0; \\ 1, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) = 0; \\ 2, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) > 0. \end{cases} \quad \text{and} \quad f_{lk}^- = \begin{cases} 0, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) > 0; \\ 1, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) = 0; \\ 2, & \text{if } \text{Im}\left(-\frac{d_{lk}}{AB_{lk}}\right) < 0. \end{cases} \quad (26)$$

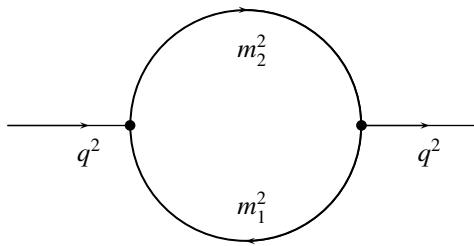


Figure 3. Bubble diagrams.

We continue to linearize l_1 in numerator of the integrand of (24) by applying a Euler shift $l_1 \rightarrow l_1 + \beta_{lk} l_2$. β_{lk} can be chosen in such a way of the disappearance of l_1^2 -term. The residue theorem is applied against for l_1 -integration. At the final stage, the resulting integrals can be expressed in terms of \mathcal{R} -functions [18] which is defined as

$$\begin{aligned} & \int_r^\infty (x-r)^{\alpha-1} \prod_{i=1}^k (z_i + w_i x)^{-b_i} dx \\ &= \mathcal{B}(\beta - \alpha, \alpha) \mathcal{R}_{\alpha-\beta} \left(b_1, \dots, b_k, r + \frac{z_1}{w_1}, \dots, r + \frac{z_k}{w_k} \right) \prod_{i=1}^k w_i^{-b_i}, \end{aligned} \quad (27)$$

with $\beta = \sum_{i=1}^k b_i$. In next subsections, we present analytic results for scalar one-loop two-, three- and four-point functions. Detailed calculations for these functions have published in Ref. [17].

2.1 One-loop two-point functions

In POS, J_2 takes the form of [5, 6]

$$J_2 = \frac{2\pi^{\frac{D-1}{2}}}{\Gamma\left(\frac{D-1}{2}\right)} \int_{-\infty}^\infty dl_0 \int_0^\infty dl_\perp \frac{l_\perp^{D-2}}{[(l_0 + q_{10})^2 - l_\perp^2 - m_1^2 + i\rho][l_0^2 - l_\perp^2 - m_2^2 + i\rho]}. \quad (28)$$

Here $q = q(q_{10}, \vec{0}_{D-1})$ for $q^2 > 0$. If $q^2 < 0$, we refer [17] for detailed evaluations. The results in [17] have shown that the below formulas for J_2 are valid for both above cases. The \mathcal{R} -function representation for two-point integrals is as follows [17]:

$$\begin{aligned} \frac{J_2}{\Gamma\left(3 - \frac{D}{2}\right)} &= \frac{\pi^{(D-1)/2} e^{i\pi(3-D)/2}}{2} \mathcal{B}\left(\frac{4-D}{2}, \frac{1}{2}\right) \\ &\times \left\{ \left(\frac{q^2 + m_1^2 - m_2^2}{2q^2} \right) \mathcal{R}_{\frac{D-4}{2}} \left(\frac{3-D}{2}, 1; -m_1^2 + i\rho, -\frac{(q^2 + m_1^2 - m_2^2)^2}{4q^2} \right) \right. \\ &\left. + \left(\frac{q^2 - m_1^2 + m_2^2}{2q^2} \right) \mathcal{R}_{\frac{D-4}{2}} \left(\frac{3-D}{2}, 1; -m_2^2 + i\rho, -\frac{(q^2 - m_1^2 + m_2^2)^2}{4q^2} \right) \right\}. \end{aligned} \quad (29)$$

We can derive other representations for J_2 by employing the transformations in appendix for \mathcal{R} -functions from (46) to (51). For example, using Euler's transformation (50) for \mathcal{R} -functions

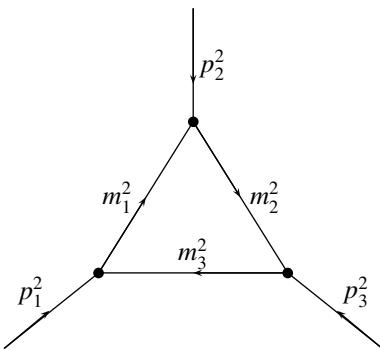


Figure 4. Triangle diagrams.

(50), Eq. (29) becomes

$$\begin{aligned} \frac{J_2}{\Gamma\left(3-\frac{D}{2}\right)} &= -\pi^{(D-1)/2} \mathcal{B}\left(\frac{4-D}{2}, \frac{1}{2}\right) \\ &\times \left\{ \frac{(m_1^2 - i\rho)^{\frac{D-3}{2}}}{q^2 + m_1^2 - m_2^2} \mathcal{R}_{-\frac{1}{2}}\left(\frac{5-D}{2}, 2; \frac{-1}{m_1^2 - i\rho}, \frac{-4q^2}{(q^2 + m_1^2 - m_2^2)^2}\right) \right. \\ &\left. + \frac{(m_2^2 - i\rho)^{\frac{D-3}{2}}}{q^2 - m_1^2 + m_2^2} \mathcal{R}_{-\frac{1}{2}}\left(\frac{5-D}{2}, 2; \frac{-1}{m_2^2 - i\rho}, \frac{-4q^2}{(q^2 - m_1^2 + m_2^2)^2}\right) \right\}. \end{aligned} \quad (30)$$

It can be seen that the right hand sides of Eqs. (29,30) are symmetric under the interchange of $m_1^2 \leftrightarrow m_2^2$. From Eqs. (29,30) we can take the limits of $m_1^2 = m_2^2 \rightarrow 0$ and $q^2 \rightarrow 0$ respectively, seen Ref. [17] for more detail.

2.2 One-loop three-point functions

The momenta q_1, q_2 take the following configuration $q_1 = q_1(q_{10}, q_{11}, \vec{0}_{D-2})$, $q_2 = q_2(q_{20}, q_{21}, \vec{0}_{D-2})$. Here $q_{10} = 0$ for $q_1^2 < 0$ and $q_{11} = 0$ for $q_1^2 > 0$. The results for J_3 in this paper cover both the above cases. The integral J_3 in POS takes the form of [5, 6]

$$\begin{aligned} J_3 &= \frac{\pi^{\frac{D-2}{2}}}{\Gamma\left(\frac{D-2}{2}\right)} \int_{-\infty}^{\infty} dl_0 \int_{-\infty}^{\infty} dl_1 \int_{-\infty}^{\infty} l_{\perp}^{D-3} dl_{\perp} \frac{1}{[(l_0 + q_{10})^2 - (l_1 + q_{11})^2 - l_{\perp}^2 - m_1^2 + i\rho]} \\ &\times \frac{1}{[(l_0 + q_{20})^2 - (l_1 + q_{21})^2 - l_{\perp}^2 - m_2^2 + i\rho][(l_0^2 - l_1^2 - l_{\perp}^2 - m_3^2 + i\rho)].} \end{aligned} \quad (31)$$

Scalar one-loop three-point functions are also expressed in terms of \mathcal{R} -functions [18] as

follows [17]

$$\begin{aligned} \frac{J_3}{\Gamma\left(2 - \frac{D}{2}\right)} &= -\pi^{\frac{D}{2}} i \mathcal{B}(4 - D, 1) \sum_{k=1}^3 \sum_{\substack{l=1 \\ k \neq l}}^3 \frac{[1 - \delta(AB_{lk})]}{A_{mlk}} (\alpha_{lk} - i\rho)^{\frac{D-4}{2}} \\ &\times \left\{ \mathcal{S}_{lk}^+ f_{lk}^+ \mathcal{R}_{D-4} \left(\frac{4-D}{2}, \frac{4-D}{2}, 1; +Z_{lk}^{(1)}, +Z_{lk}^{(2)}, +F_{mlk} \right) \right. \\ &\left. + \mathcal{S}_{lk}^- f_{lk}^- \mathcal{R}_{D-4} \left(\frac{4-D}{2}, \frac{4-D}{2}, 1; -Z_{lk}^{(1)}, -Z_{lk}^{(2)}, -F_{mlk} \right) \right\}, \end{aligned} \quad (32)$$

for $m \neq l$. When all internal masses are real, $f_{lk}^+ = f_{lk}^- = 1$ and $\mathcal{S}_{lk}^\pm = 1$, Eq. (32) confirms the results of, for instance, J_3 in the Eq. (11) of [6]. We can derive other represents for J_3 by applying several transformations for \mathcal{R} -functions, as shown in appendix. For example, with the help of (50), one obtains

$$\begin{aligned} \frac{J_3}{\Gamma\left(2 - \frac{D}{2}\right)} &= -\pi^{\frac{D}{2}} i \mathcal{B}(4 - D, 1) \sum_{k=1}^3 \sum_{\substack{l=1 \\ k \neq l}}^3 \frac{[1 - \delta(AB_{lk})]}{C_{mlk}} (m_k^2)^{(D-4)/2} \\ &\times \left\{ f_{lk}^+ \mathcal{R}_{-1} \left(\frac{6-D}{2}, \frac{6-D}{2}, 2; +\frac{1}{Z_{lk}^{(1)}}, +\frac{1}{Z_{lk}^{(2)}}, +\frac{1}{F_{mlk}} \right) \right. \\ &\left. - f_{lk}^- \mathcal{R}_{-1} \left(\frac{6-D}{2}, \frac{6-D}{2}, 2; -\frac{1}{Z_{lk}^{(1)}}, -\frac{1}{Z_{lk}^{(2)}}, -\frac{1}{F_{mlk}} \right) \right\}, \end{aligned} \quad (33)$$

for $m \neq l$. The kinematic variables appear in subsection are listed:

$$\begin{aligned} a_{lk} &= 2(q_{l0} - q_{k0}), & b_{lk} &= -2(q_{l1} - q_{k1}), \\ AB_{lk} &= a_{lk} - b_{lk}, & c_{lk} &= (q_k - q_l)^2 + m_k^2 - m_l^2, \\ A_{mlk} &= -AB_{km} b_{lk} + AB_{lk} b_{km}, & C_{mlk} &= -AB_{km} c_{lk} + AB_{lk} c_{km}, \\ F_{mlk} &= C_{mlk}/A_{mlk}, & Z_{lk}^{(1,2)} &= \frac{c_{lk}}{a_{lk} + b_{lk}} \pm \sqrt{\left(\frac{c_{lk}}{a_{lk} + b_{lk}}\right)^2 - \frac{m_k^2 - i\rho}{a_{lk}}}. \end{aligned}$$

The factor \mathcal{S}_{lk}^\pm is given

$$\begin{aligned} \mathcal{S}_{lk}^\pm &= \text{Exp} \left[\pi i \theta(-\alpha_{lk}) \theta[\mp \text{Im}(Z_{lk}^{(1)})] \theta[\mp \text{Im}(Z_{lk}^{(2)})] (D-4) \right] \\ &\times \text{Exp} \left[-\pi i \theta(\alpha_{lk}) \theta[\pm \text{Im}(Z_{lk}^{(1)})] \theta[\pm \text{Im}(Z_{lk}^{(2)})] (D-4) \right]. \end{aligned} \quad (34)$$

We turn our attention into the analytic results for scalar one-loop four-point functions in next subsection.

2.3 One-loop four-point functions

At present, the calculations for four-point functions are performed in $D = 4$. We set configuration of external momenta as follows $q_1 = (q_{10}, q_{11}, 0, 0)$, $q_2 = (q_{20}, q_{21}, 0, 0)$, $q_3 = (q_{30}, q_{31}, q_{32}, 0)$. Where $q_{10} = 0$ for $q_1^2 < 0$ and $q_{11} = 0$ for $q_1^2 > 0$. Our result presented in this paper cover all the above cases. In POS, J_4 takes the form of

$$J_4 = 2 \int_{-\infty}^{\infty} dl_0 dl_1 dl_2 \int_0^{\infty} dl_4 \frac{1}{\mathcal{P}_1 \mathcal{P}_2 \mathcal{P}_3 \mathcal{P}_4}, \quad (35)$$

with $\mathcal{P}_k = (l + q_k)^2 - m_k^2 + i\rho$ for $k = 1, 2, \dots, 4$. Scalar one-loop four-point functions are

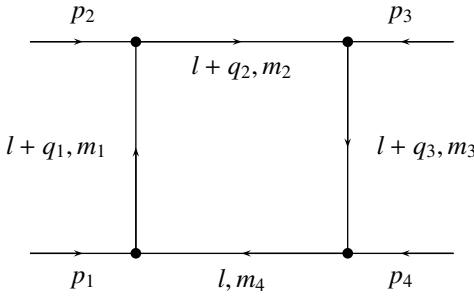


Figure 5. Box diagrams.

written as one-fold integrals [17] as follows

$$\begin{aligned}
 \frac{J_4}{i\pi^2} = & \sum_{k=1}^4 \sum_{\substack{l=1 \\ k \neq l}}^4 \sum_{\substack{m=1 \\ m \neq l \\ m \neq k}}^4 \frac{(1 - \delta(AC_{lk}))(1 - \delta(B_{mlk}))}{AC_{lk}(B_{mlk}A_{nlk} - B_{nlk}A_{mlk})} \times \\
 & \times \left\{ \int_0^\infty dz G(z) \left[(f_{lk}^+ g_{mlk}^+ + f_{lk}^- g_{mlk}^+) \ln \left(\frac{F_{nmlk}}{\beta_{mlk}} \right) - f_{lk}^+ g_{mlk}^+ \ln \left(\frac{z + F_{nmlk}}{\beta_{mlk}} \right) \right. \right. \\
 & \quad \left. - f_{lk}^+ g_{mlk}^- \ln \left(-\frac{z + F_{nmlk}}{\beta_{mlk}} \right) - (f_{lk}^- g_{mlk}^+ + f_{lk}^+ g_{mlk}^+) \ln \left(\frac{S(\sigma_{mlk}, z)}{P_{mlk}z + Q_{mlk}} \right) \right. \\
 & \quad \left. + f_{lk}^+ g_{mlk}^+ \ln \left(\frac{S(\sigma_{mlk} = 0, z)}{P_{mlk}z + Q_{mlk}} \right) + f_{lk}^+ g_{mlk}^- \ln \left(-\frac{S(\sigma_{mlk} = 0, z)}{P_{mlk}z + Q_{mlk}} \right) \right] \\
 & + \int_{-\infty}^0 dz G(z) \left[-f_{lk}^+ g_{mlk}^- \ln \left(-\frac{F_{nmlk}}{\beta_{mlk}} \right) + (f_{lk}^- g_{mlk}^- + f_{lk}^- g_{mlk}^+) \ln \left(\frac{z + F_{nmlk}}{\beta_{mlk}} \right) \right. \\
 & \quad \left. - f_{lk}^- g_{mlk}^- \ln \left(\frac{F_{nmlk}}{\beta_{mlk}} \right) - (f_{lk}^- g_{mlk}^+ + f_{lk}^- g_{mlk}^-) \ln \left(\frac{S(\sigma_{mlk} = 0, z)}{P_{mlk}z + Q_{mlk}} \right) \right. \\
 & \quad \left. + f_{lk}^- g_{mlk}^- \ln \left(\frac{S(\sigma_{mlk}, z)}{P_{mlk}z + Q_{mlk}} \right) + f_{lk}^+ g_{mlk}^- \ln \left(-\frac{S(\sigma_{mlk}, z)}{P_{mlk}z + Q_{mlk}} \right) \right] \right\} \quad (36)
 \end{aligned}$$

Where the related kinematic variables are given:

$$\begin{aligned}
 a_{lk} &= 2(q_{l0} - q_{k0}), & b_{lk} &= -2(q_{l1} - q_{k1}), \\
 c_{lk} &= -2(q_{l2} - q_{k2}), & d_{lk} &= (q_l - q_k)^2 - (m_l^2 - m_k^2), \\
 AC_{lk} &= a_{lk} + c_{lk}, & \alpha_{lk} &= b_{lk}/AC_{lk}, \\
 A_{mlk} &= a_{mk} - \frac{a_{lk}}{AC_{lk}} AC_{mk}, & B_{mlk} &= b_{mk} - \frac{b_{lk}}{AC_{lk}} AC_{mk}, \\
 C_{mlk} &= d_{mk} - \frac{d_{lk}}{AC_{lk}} AC_{mk}, & D_{mlk} &= -4(q_l - q_k)^2/AC_{lk}^2, \\
 F_{nmlk} &= \frac{C_{nlk}B_{mlk} - B_{nlk}C_{mlk}}{A_{nlk}B_{mlk} - B_{nlk}A_{mk}} \pm i\rho', & \beta_{mlk}^{(1,2)} &= \frac{\left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk} \right) \pm \sqrt{\left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk} \right)^2 - D_{mlk}}}{D_{mlk}}, \\
 Q_{mlk} &= -2 \left(\frac{C_{mlk}}{B_{mlk}} \right) - 2 \left(\frac{d_{lk}}{AC_{lk}} \right) \beta_{mlk}, & P_{mlk} &= -2 \left(\frac{A_{mlk}}{B_{mlk}} - \alpha_{lk} - \beta_{mlk} D_{mlk} \right), \\
 E_{mlk} &= -2d_{lk}/AC_{lk}, & S_{mlk}^{(\sigma)} &= D_{mlk} + P_{mlk}\sigma_{mlk},
 \end{aligned}$$

with $\sigma_{mlk} = 0, -11/\beta_{mlk}$. The $S(\sigma_{mlk}, z)$ and $G(z)$ are obtained:

$$S(\sigma_{mlk}, z) = S_{mlk}^{(\sigma)} z^2 + (E_{mlk} + Q_{mlk} \sigma_{mlk}) z - m_k^2 + i\rho, \quad (37)$$

$$G^{-1}(z) = Z_{mlk} z^2 + K_{mlk} z - \beta_{mlk} (m_k^2 - i\rho) - F_{nmlk} Q_{mlk}, \quad (38)$$

with $Z_{mlk} = D_{mlk} \beta_{mlk} - P_{mlk}$ and $K_{mlk} = E_{mlk} \beta_{mlk} - Q_{mlk} - P_{mlk} F_{nmlk}$. The functions f_{lk}^\pm (and g_{mlk}^\pm) are defined as in (26) with replacing c_{lk}/AB_{lk} by d_{lk}/AC_{lk} (and C_{mlk}/B_{mlk}) respectively. The J_4 in (36) is decomposed into two basic integrals as follows:

$$\mathcal{I}_1 = \int_0^\infty \frac{1}{(z+T_1)(z+T_2)} dz = \mathcal{R}_{-1}(1, 1; T_1, T_2), \quad (39)$$

$$\mathcal{I}_2 = \int_0^\infty \frac{\ln(1+z/T_3)}{(z+T_1)(z+T_2)} dz = \quad (40)$$

$$= \lim_{\omega \rightarrow 0} \frac{1}{\omega} \left\{ \int_0^\infty \frac{1}{(z+T_1)(z+T_2)} dz - \int_0^\infty \frac{(1+z/T_3)^{-\omega}}{(z+T_1)(z+T_2)} dz \right\} \quad (41)$$

$$= \lim_{\omega \rightarrow 0} \frac{1}{\omega} \left\{ \mathcal{R}_{-1}(1, 1; T_1, T_2) - \frac{\mathcal{B}(1+\omega, 1)}{T_3^{-\omega}} \mathcal{R}_{-1-\omega}(1, 1, \omega; T_1, T_2, T_3) \right\}. \quad (42)$$

The ϵ -expansions for all \mathcal{R} -functions appear in this paper have devoted in Ref. [17]. The numerical checks for all analytic formulas in this paper and applications of this work to compute Feynman diagrams in real scattering processes have shown in [17].

3 Conclusions

We have presented the analytic results for scalar one-loop two-, three-, four-point Feynman integrals with complex internal masses. The analytic results in this paper are valid for both real and complex internal masses. The calculations have carried out in general space-time dimension for two- and three-point functions. At present work, the four-point functions have performed in $D = 4$. The analytic formulas have expressed in terms of the \mathcal{R} -functions. In future work, we will extend this work to tensor one-loop integrals (to be published).

Acknowledgment: This work is funded by Vietnam's National Foundation for Science and Technology Development (NAFOSTED) under the grant number 103.01-2016.33. The author is grateful to the organizers of ISMD 2018 for the invitation and for financial support.

Appendix: Useful relations for \mathcal{R} -functions

Useful relations for \mathcal{R} -functions are also listed in this appendix. The formulas shown here are collected from Ref. [18]. We denote that b , z and e_i are k -tuple

$$b = (b_1, b_2, \dots, b_k), \quad (43)$$

$$z = (z_1, z_2, \dots, z_k), \quad (44)$$

$$e_i = (0, 0, \dots, 1, 0, \dots, 0) \quad \text{where the 1 is located at the } i\text{th entry.} \quad (45)$$

The relations are presented as follows

$$\mathcal{R}_t(b, z) = \sum_{i=1}^k \frac{b_i}{\beta} \mathcal{R}_t(b + e_i, z), \quad (46)$$

$$\mathcal{R}_{t+1}(b, z) = \sum_{i=1}^k \frac{b_i}{\beta} z_i \mathcal{R}_t(b + e_i, z), \quad (47)$$

$$\beta \mathcal{R}_t(b, z) = (\beta + t) \mathcal{R}_t(b + e_i, z) - t z_i \mathcal{R}_{t-1}(b + e_i, z), \quad (48)$$

$$\partial_{z_i} \mathcal{R}_t(b, z) = \frac{b_i}{\beta} t \mathcal{R}_{t-1}(b + e_i, z), \quad (49)$$

$$\mathcal{R}_t(b, z) = \prod_{i=1}^k z_i^{-b_i} \mathcal{R}_{-\beta-t}(b + e_i, z^{-1}), \quad \text{Euler's transformation} \quad (50)$$

$$\mathcal{R}_t(b, \lambda z) = \lambda^t \mathcal{R}_t(b, z) \quad \text{scaling law.} \quad (51)$$

References

- [1] A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Nucl. Phys. B **724** (2005) 247.
- [2] G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B **153** (1979) 365.
- [3] D. T. Nhungh and L. D. Ninh, Comput. Phys. Commun. **180** (2009) 2258.
- [4] A. Denner and S. Dittmaier, Nucl. Phys. B **844** (2011) 199.
- [5] D. Kreimer, Z. Phys. C **54** (1992) 667.
- [6] D. Kreimer, Int. J. Mod. Phys. A **8** (1993) 1797.
- [7] J. Franzkowski, *Dissertation*, Mainz 1997.
- [8] K. H. Phan, PTEP **2017** (2017) no.6, 063B06.
- [9] G. Cullen, J. P. Guillet, G. Heinrich, T. Kleinschmidt, E. Pilon, T. Reiter and M. Rodgers, Comput. Phys. Commun. **182** (2011) 2276
- [10] Z. Bern, L. J. Dixon and D. A. Kosower, Phys. Lett. B **302** (1993) 299.
- [11] G. Ossola, C. G. Papadopoulos and R. Pittau, JHEP **0803** (2008) 042.
- [12] E. E. Boos and A. I. Davydychev, Theor. Math. Phys. **89** (1991) 1052 [Teor. Mat. Fiz. **89** (1991) 56].
- [13] A. I. Davydychev, J. Math. Phys. **33** (1992) 358.
- [14] A. I. Davydychev and R. Delbourgo, J. Math. Phys. **39** (1998) 4299
- [15] J. Fleischer, F. Jegerlehner and O. V. Tarasov, Nucl. Phys. B **672** (2003) 303
- [16] J. Blümlein, K. H. Phan and T. Riemann, Acta Phys. Polon. B **48** (2017) 2313.
- [17] Khiem Hong Phan and Thinh Nguyen Hoang Pham, arXiv:1710.11358 [hep-ph].
- [18] B. C. Carlson, *Special Functions of Applied Mathematics*. New York: Academic Press, 1977.