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One-loop Feynman integrals with Carlson hypergeometric
functions
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Abstract. In this paper, we present analytic results for scalar one-loop two-,
three-, four-point Feynman integrals with complex internal masses. The calcu-
lations are considered in general space-time dimension D for two- and three-
point functions and D = 4 for four-point functions. The analytic results are
expressed in terms of the Carlson hypergeometric functions (R-functions) and
valid for both real and complex internal masses.

1 Introduction

In order to confront particle physics theory with high-precision of experimental data at future
colliders, theoretical predictions including high-order corrections are required. In general
framework for computing high-order corrections, detailed calculations for one-loop multi-leg
and higher-loop are necessary for building blocks. When we compute scattering processes
which Feynman diagrams involve internal unstable particles that can be on-shell, we have
to resume Feynman propagators with a complex mass term in the denominator. In other
words, one has to perform the perturbative renormalization in the Complex-Mass Scheme [1].
Therefore, the calculations for Feynman loop integrals with complex internal masses are of
great interest. Furthermore, within the general framework for computing two-loop or higher-
loop corrections scalar one-loop integrals in general space-time dimension play a crucial role
for several reasons. Higher-terms in the e-expansion from one-loop integrals are necessary
for building blocks. In additional, one-loop integrals at higher space-time dimension D > 4
may be taken into account in the framework.

There have been available many calculations for scalar one-loop integrals in D = 4 — 2¢
dimensions at £-expansion [2-11]. Scalar one-loop integrals in general dimension D have
performed in [12—-16]. However, not all of these calculations cover general dimension D with
a general e-expansion at general scale and complex internal masses. In this paper, based
on the method in [5-8], we present analytic results for scalar one-loop two-, three-, four-
point Feynman integrals with complex internal masses. The calculations are considered in
general space-time dimension D for two- and three-point functions and D = 4 for four-
point functions. The analytic results are expressed in terms of the Carlson hypergeometric
functions.

The layout of the paper is as follows: In section 2, we present in detail the method for
evaluating scalar one-loop functions. In this section, analytic results for one-loop two-, three-
and four-point functions are presented. Conclusions and outlooks are devoted in section 3.
Several useful formulas used in this calculation can be found in the appendix.
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2 The calculations

Based on the method introduced in Refs. [5-7], we present the calculations for scalar one-
loop functions with complex internal masses. Scalar one-loop N-point functions are defined

1
Iy = | dPlo——r. 1
v P (1)
Where inverse Feynman propagators are given
P = (+q) —-m+ip, with k=1,2,--- N 2)

The Feynman prescription is ip. We use momenta g; = Zﬁ:l D, pj are external momenta and
they are inward as shown in Fig. 1. The internal masses in the Complex-Mass scheme are
taken the form of

my; = m(z)k —imge I'y, for T7p >0. 3)

The I'y are decay widths of unstable particles. The momenta ¢, may take the following

configuration
—
q1 = q1 (q10,411,0,--- ,0, 0p_y), 4)
ﬁ
a2 = q2 (920, 421,0,---,0, 0p_y), (%)
—
93 = q3 (410,931,932, 0,- -+ ,0, 0 p_y), (6)
=, .
qn-1 = gn-1 (Gv-1)0> GN-D15> " ** » q-1)J-1)> O p=y) @)
which have J non-zero components. Here, ¢;o = 0 for qf < 0and gy =0 for q% > 0. Asa

result, scalar product of external and internal momenta are obtained

CI;% = Clio - ‘I/%] - qi(l—l)’ ®)
P = E-L-- -5, -0, )
g = lo-qo—1 g —1Li-1 - qru-1)- (10)

In parallel space which is the linear span of the external momenta and its orthogonal space
(POS) [5, 6], scalar one-loop N-point functions are taken the form of:

D-J

SR D-J-1
J dlodly - -dl;_ dl, —=— . 11
N DTf odl; Jlf PPy Py (1)
el 0

The propagators now become

P = lo+qu) = +qu) ==t + qru-n)* = L —mi +ip, (12)

for k = 1,2,---,N. The calculations can be summarized as follows. We first make the
partition for the integrand of Jy as

N
= D — (13)
T = e - P

k#l
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Figure 1. Generic Feynman diagrams at one-loop
with N external lines. All external momenta are
inward and follow momentum conservation

qn = Zi\/:] pj=0.

with
Pr—Pr = (o+qu0)* - o+ q0) + 0 +qn)* =i +qu)’
+oe ot (ot + quu-1)® = (ot + qra—n)* + mi —my (14)
= alkl() +blkl] +"‘+Clklj_] +Jy<. (15)

Where we have introduced the following kinematic variables

ar = 2(qo—qr0), b =-2(qn—qn), -, (16)

e = ~2Aqu-n - qo-1)s  dix=q; —q; +m; —my. (17
Making a shift

lo—=lo+qw, L —=>h+aqgu,-, L= L+ qu-n, (18)

we convert all £ in (13) to Py. As a matter of this fact, the /, -integral then yields a simple
form which can be taken easily as follows:

P (D=1

dl = 19
f BB =B~ —m+ip] a9
0

D-J J+2-D
= _W(_%*_ﬁ-‘-'“*_li—l +m,%—lp)

We then arrive at the (J — 1)-fold integrals

JN D-J al
T

D-J-2
2

D-J-2
2

-1 . (20)
[alklo +byly + -+ cplyoq + dlk]

r P+P+-+ B +m’—ip
fdlodl]-~-dl, (64 o i~ )
2 0o

»
l‘
|
=

In this formula ay, by, - -+ ,c € R and dy = (g; — q;{)2 - (ml2 - mi) € C which is obtained
from dj after applying the shift (18). The integrals in (20) can be carried out with the help of
residue theorem. For that purpose, one first linearizes the [y for example, .i.e [; = [; + lp. The
result reads

D-J-2
N ) 2 2 2 : 2
7 . 2+ L+ +_ +m;—ip

— = a7 fdlodll'-dl]_]( 1 b+ =)
r(]+2—D) ~ N
> k=17, I1 [AB,klo +byly + -+ ol + dlk]

=1
k#l

3y
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Figure 2. We close the contour integration for /, that the poles in (22) locate outside the contour.

with ABj, = ay. — by.. The singularity poles of the integrand in (21) are obtained:

Pt +B  +m>—ip moTs +
h = - LT T Im(l) = - ER 22
g 5 m(lo) = "3 (22)
and
byly +---+cplj—1 +d d
o= 2 AT m[] = Im (-~ ). (23)
ABy ABy

The pole [y in (22) locates upper (lower) in ly-complex plane if I; < 0 (I; > 0) respectively.
We plan to close the contour integration for /y that /p-poles in (22) locate outside the contour,
seen Fig. 2 for more detail. As a result, the poles in (23) are only taken into account to the
residue contributions for /p-integration. The resulting reads

N N * 0 ©
JIn D-J _
F(J+2—D) = Z T fdll + fi fdll "'fdll—l [1-0(AB)] (24)
2 k=1 =] 0 oo et

D-J-2
2

b - d
=2 yv B =2 2 w2 —ip
ABy,

ABy ABy
X
N . - -
I1 [Amlkll +oo+ Coplyor + lek]
i
m#l

Where the d-function is defined as

0, if x+#0;
o(x) = 25
) {1, if x=0. 25
New kinematic variables A, - - - , Couie € R and Fy € C are obtained from residue contri-

butions of the poles in (23). The functions f;; indicate the location of the poles in (23) in the
lp complex plane:

. dlk . dlk
0, if Im|—-—— 0; 0, if Im|—-—— 0;
Al AR
) di ) _ . di
+={1, if Im[-——|=0; and ={1, if Im|-——|=0; (26)
Ji ABy T ABy.
2, if Im(—ﬂ) > 0. 2, if Im(—ﬂ) <0.
AB[k ABlk
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Figure 3. Bubble diagrams.

We continue to linearize /; in numerator of the integrand of (24) by applying a Euler shift
Iy = I} + Bil». Bi can be chosen in such a way of the disappearance of lf—term. The residue
theorem is applied against for /,-integration. At the final stage, the resulting integrals can be
expressed in terms of R-functions [18] which is defined as

o k
f(x — ! n(zi + wix) bidx
J i=1

k
=B<B—a,a>7ea_ﬁ(b1,~- b r =t Z—k)[_[ wi, 27)

w1 Wk iet
with 8 = fo:] b;. In next subsections, we present analytic results for scalar one-loop two-,

three- and four-point functions. Detailed calculations for these functions have published in
Ref. [17].

2.1 One-loop two-point functions

In POS, J, takes the form of [5, 6]

dly | ai s . 28
DT [ °Of 1o + q100? — B —m2 + ipll2 = B — m + ip] 29

Here ¢ = q(qlo,T))D_l) for q2 > 0. If q2 < 0, we refer [17] for detailed evaluations. The
results in [17] have shown that the below formulas for J, are valid for both above cases. The
R-function representation for two-point integrals is as follows [17]:

J (D-1/2,ix3-D))2 (4 _ D 1
—=2 __ - s (29)
_g 2 2 2
q +m1—m2 3-D ) , . (q2+m%—m§)2
{( )R%( 5 ,1,—ml+lp,—4—q2
q* —m1+m2 3-D ., . (qz—m%+m%)2

We can derive other representations for J, by employing the transformations in appendix for
R-functions from (46) to (51). For example, using Euler’s transformation (50) for R-functions
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Figure 4. Triangle diagrams.

(50), Eq. (29) becomes

b o 1),221;(4 D’l) 0
6-1) T
X{(m%—ipﬁﬂ I(S—D ] 4 )
G+mi-mi 2 2 T m—ip (¢ +m - md)?
. D3
+(;n§—;p)227€_%(5—21)’2; 2_1.’ 2 _tqz 22]}'
q* — my +m; m5 —ip (g* — my +m5)

It can be seen that the right hand sides of Egs. (29,30) are symmetric under the interchange
of m} & mj. From Eqs. (29,30) we can take the limits of m? = m3 — 0 and ¢* — 0

respectively, seen Ref. [17] for more detail.

2.2 One-loop three-point functions

The momenta ¢, g, take the following configuration ¢; = ql(qlo,qll,ﬁ[)_z), g =

6]2(420,6121,—0)1)_2). Here g;p = 0 for q% < 0 and ¢g;; = O for q% > (. The results for J3
in this paper cover both the above cases. The integral /3 in POS takes the form of [5, 6]

) 00 o 1
J3 fdlofdllf P-3 41 |
DT B s (10""1‘0)2_(11+6111)2—[i—m%+1p]

X - —. (€1))
[(lo + q20)*> = (I + q21)* — li —mj +ipllly — 1] = T —m3 +ip]

Scalar one-loop three-point functions are also expressed in terms of R-functions [18] as
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follows [17]
3 3
J - - O0(AB —
B = tisa-n Yy B
r2-2) =y

4 — D4 D
{SlkukRD4( 2

2
4 — D 4-D
+Sy fie Ro- 4( > T -2, Z;Z),— mlk)},

3 +Z0,+Z2, +F,,,,k) (32)

for m # [. When all internal masses are real, JT/; = f}; =1and S;{ = 1, Eq. (32) confirms
the results of, for instance, J3 in the Eq. (11) of [6]. We can derive other represents for J3 by
applying several transformations for R-functions, as shown in appendix. For example, with
the help of (50), one obtains

B L %isa-p) ZZ 7[1 0ABWI 2)(D=72 (33)
F(2— %) = Chuik

6-D 6-D 1 1 1
X3fr R | ———5— Z+=5. 4=+
i (1525552 )

- 6-D 6-D 1 1 1
—fi R (T, T,z,—@,—@,—m]},

for m # [. The kinematic variables appear in subsection are listed:

ajk = 2(q10 — C]kO)’ blk = —2(6111 - C]kl)’

2
ABy ag — by, Cik

(qx — q)* + m? —m?,

Apk = —ABpy by + ABy by, Cox - = —ABuw cix + ABj Com,
_ (1,2) _ cn cn 2 m2 —ip
Foik = lek/Amlk’ Zlk - a;kﬁbm e (azkﬁbzk) :YIA
The factor Sj; is given
Si = Exp|nif (~ay) O[FIm(Zy ) OFIM(Z)] (D - 4)
XExp | ~if () O[£Im(Z{ NO[£Im(Z)] (D - 4)]. (34)

We turn our attention into the analytic results for scalar one-loop four-point functions in next
subsection.

2.3 One-loop four-point functions

At present, the calculations for four-point functions are performed in D = 4. We set
configuration of external momenta as follows q; = (q10,911,0,0), g2 = (g20,421,0,0),

= (430,931,932, 0). Where g9 = 0 for g7 < 0 and ¢;; = 0 for ¢} > 0. Our result
presented in this paper cover all the above cases. In POS, J,4 takes the form of

00

r I

Jy=2 | dlpdhdly | dl} ———, 35

4 f odldl> AP PrPPs (35
—co 0

with P, = (I + qk)2 - m,% +ip fork = 1,2,---,4. Scalar one-loop four-point functions are
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P2 p3
I+ q2,my
I+q1,m 1+ q3,m3 Figure 5. Box diagrams.
P1 [, my P4

written as one-fold integrals [17] as follows

I & & (1-aacw)(1 - 6Buw)
in? ,Zf ; mz1 ACy(BmiAnik = BuieAmir) (36)
ktl ml
m#k

Ik 2+ Fopik
= ) fzigfnzkln( - )

X bfdz G(Z) [(ﬁk Imik + f}k gmlk) ln( Bm ﬁmlk

—fit G 10 (_

+ o+
+ /i G 10 (

— Sk G 10 (

+ ik G 10 (

Z+ anlk

Bk

S(omn =

Bk

S (ks 2)

0,2)
Pz + Omik

0 o -
+fdz G(2) [—f,kgm,kln(

Bunik

Pz + Qumik

.
kD mik

Where the related kinematic variables are given:

Ak

Clk
ACy

Ak
Coulk

F nmlk

lek
Enik

2(qi0 — qi0)s
—2(gn — gx2),
Qi + Cik,

Amk — Aa_C,kAka»
dmk - ACM Acmk»

Cotk Btk =B Conik +ip
Ak Bintk—BnikAmik ’

-2 (%ﬁf) 2 (AdC,k )ﬁmlk,
—2dy [ACy,

(1,2)
ﬂ mlk
Pk

(o)
S mlk

) ~ (S + S Goi) ln(

) + fi Ik ln(

nmlk

) + Gt + S ln(

Frmik - - -
L) ~ (F Gt + S i) 1“(

(-

S (O ik, 2) )
Pz + Omik

S(om =0 Z)) :|
Pz + Omik
Z+ anlk)
Bmlk

S (O-rnlk = O» Z))
Pz + Omik
S (ks 2)

Pz + lek) ] }

-2(qn = gr1)»

(q1 — qi)* — (m] —m3),
b/k/ACIk,

bmk ACzk Aka:

~4(q1 — q)*/ACy,,

2
ik ik
F —a, = —ay | =D,
( Bk M) ( ik ”‘) ik

D ’

Ay
-2 (B_,if — —,Bmszmlk) ;

Dy + PO imiks
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with o = 0, —11/Bmlk. The S (o, z) and G(z) are obtained:

S(Omis2) = SO+ (Eyik + Quikomin)z — M7 + ip, (37)
G '@ = Zuk 7+ Kz = Bk (1 = i0) = Fromix Qi (38)

with Z,x = DpiBmik — Ptk and Ky = EpiBmik — Qmik — P Frmir- The functions f;° (and
g;fqlk) are defined as in (26) with replacing cj /ABy by dix /ACy (and Cyi/ Boir) respectively.
The J4 in (36) is decomposed into two basic integrals as follows:

r 1
I - Ofmdz‘““”"m (39)

In(1 + z/T3)

I B ST 40
2 Gt T+ T “0)
0
1 r 1 C (1+2/Ts)
= lim — dz - d 41
J%w{fmm(zwz) ¢ f(Z+T1)(Z+T2) Z} “1)
0 0
~ lim & {Rla, L7y - 20O De LT T, m}. 42)
w—0 W T3w

The e-expansions for all R-functions appear in this paper have devoted in Ref. [17]. The
numerical checks for all analytic formulas in this paper and applications of this work to
compute Feynman diagrams in real scattering processes have shown in [17].

3 Conclusions

We have presented the analytic results for scalar one-loop two-, three-, four-point Feynman
integrals with complex internal masses. The analytic results in this paper are valid for both
real and complex internal masses. The calculations have carried out in general space-time
dimension for two- and three-point functions. At present work, the four-point functions have
performed in D = 4. The analytic formulas have expressed in terms of the R-functions. In
future work, we will extend this work to tensor one-loop integrals (to be published).
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Appendix: Useful relations for R-functions

Useful relations for R-functions are also listed in this appendix. The formulas shown here are
collected from Ref. [18]. We denote that b, z and e; are k-tuple

b = (b1,ba,---,bp), (43)
2 = (2,2, %), (44)
e, = (0,0,---,1,0,---,0) where the 1 is located at the ith entry. 45)
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The relations are presented as follows

k

b;
Rib,2) = —R(b + e, 2), (46)
1 ; ﬂ 1
Kb
Ris1(b,2) = =z R(b + e, 2), 47
t+1 ; ,8 t
ﬁRl(b» Z) = (ﬂ + I)Rl(b + ei» Z) - tZiRI—] (b + ei7 Z)» (48)
b;
0, Ri(b,2) = Emz—l (b +ei,2), (49)
k
Ri(b,z) = 1_[ zi_b" R_p-i(b + e, z"), Euler’s transformation (50)
i=1
Ri(b,Az7) = ARi(b,7) scaling law. 51
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