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Abstract. In this paper, we present analytic results for scalar one-loop two-,

three-, four-point Feynman integrals with complex internal masses. The calcu-

lations are considered in general space-time dimension D for two- and three-

point functions and D = 4 for four-point functions. The analytic results are

expressed in terms of the Carlson hypergeometric functions (R-functions) and

valid for both real and complex internal masses.

1 Introduction

In order to confront particle physics theory with high-precision of experimental data at future

colliders, theoretical predictions including high-order corrections are required. In general

framework for computing high-order corrections, detailed calculations for one-loop multi-leg

and higher-loop are necessary for building blocks. When we compute scattering processes

which Feynman diagrams involve internal unstable particles that can be on-shell, we have

to resume Feynman propagators with a complex mass term in the denominator. In other

words, one has to perform the perturbative renormalization in the Complex-Mass Scheme [1].

Therefore, the calculations for Feynman loop integrals with complex internal masses are of

great interest. Furthermore, within the general framework for computing two-loop or higher-

loop corrections scalar one-loop integrals in general space-time dimension play a crucial role

for several reasons. Higher-terms in the ε-expansion from one-loop integrals are necessary

for building blocks. In additional, one-loop integrals at higher space-time dimension D > 4

may be taken into account in the framework.

There have been available many calculations for scalar one-loop integrals in D = 4 − 2ε

dimensions at ε0-expansion [2–11]. Scalar one-loop integrals in general dimension D have

performed in [12–16]. However, not all of these calculations cover general dimension D with

a general ε-expansion at general scale and complex internal masses. In this paper, based

on the method in [5–8], we present analytic results for scalar one-loop two-, three-, four-

point Feynman integrals with complex internal masses. The calculations are considered in

general space-time dimension D for two- and three-point functions and D = 4 for four-

point functions. The analytic results are expressed in terms of the Carlson hypergeometric

functions.

The layout of the paper is as follows: In section 2, we present in detail the method for

evaluating scalar one-loop functions. In this section, analytic results for one-loop two-, three-

and four-point functions are presented. Conclusions and outlooks are devoted in section 3.

Several useful formulas used in this calculation can be found in the appendix.
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2 The calculations

Based on the method introduced in Refs. [5–7], we present the calculations for scalar one-

loop functions with complex internal masses. Scalar one-loop N-point functions are defined

JN =

∫

dDl
1

P1P2 · · · PN

. (1)

Where inverse Feynman propagators are given

Pk = (l + qk)2
− m2

k + iρ, with k = 1, 2, · · · ,N. (2)

The Feynman prescription is iρ. We use momenta qk =
∑k

j=1 p j, p j are external momenta and

they are inward as shown in Fig. 1. The internal masses in the Complex-Mass scheme are

taken the form of

m2
k = m2

0k − im0k Γk, for Γk > 0. (3)

The Γk are decay widths of unstable particles. The momenta qk may take the following

configuration

q1 = q1 (q10, q11, 0, · · · , 0,
−→
0 D−J), (4)

q2 = q2 (q20, q21, 0, · · · , 0,
−→
0 D−J), (5)

q3 = q3 (q10, q31, q32, 0, · · · , 0,
−→
0 D−J), (6)

· · · = · · · ,

qN−1 = qN−1 (q(N−1)0, q(N−1)1, · · · , q(N−1)(J−1),
−→
0 D−J) (7)

which have J non-zero components. Here, q10 = 0 for q2
1
< 0 and q11 = 0 for q2

1
> 0. As a

result, scalar product of external and internal momenta are obtained

q2
k = q2

k0 − q2
k1 − · · · − q2

k(J−1), (8)

l2 = l20 − l21 − · · · − l2J−1 − l2⊥, (9)

l · qk = l0 · qk0 − l1 · qk1 · · · − lJ−1 · qk(J−1). (10)

In parallel space which is the linear span of the external momenta and its orthogonal space

(POS) [5, 6], scalar one-loop N-point functions are taken the form of:

JN =
2π

D−J
2

Γ( D−J
2

)

∞
∫

−∞

dl0dl1 · · ·dlJ−1

∞
∫

0

dl⊥
lD−J−1
⊥

P1P2 · · · PN

. (11)

The propagators now become

Pk = (l0 + qk0)2
− (l1 + qk1)2

− · · · − (lJ−1 + qk(J−1))
2
− l2⊥ − m2

k + iρ, (12)

for k = 1, 2, · · · ,N. The calculations can be summarized as follows. We first make the

partition for the integrand of JN as

1

P1P2 · · · PN

=

N
∑

k=1

1

Pk

N
∏

l=1
k,l

(Pl − Pk)

, (13)
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Figure 1. Generic Feynman diagrams at one-loop

with N external lines. All external momenta are

inward and follow momentum conservation

qN =
∑N

j=1 p j = 0.

with

Pl − Pk = (l0 + ql0)2
− (l0 + qk0)2

+ (l1 + ql1)2
− (l1 + qk1)2

+ · · · + (lJ−1 + ql(J−1))
2
− (lJ−1 + qk(J−1))

2
+ m2

k − m2
l (14)

= alkl0 + blkl1 + · · · + clklJ−1 + d̃lk. (15)

Where we have introduced the following kinematic variables

alk = 2(ql0 − qk0), blk = −2(ql1 − qk1), · · · , (16)

clk = −2(ql(J−1) − qk(J−1)), d̃lk = q2
l − q2

k + m2
k − m2

l . (17)

Making a shift

l0 → l0 + qk0, l1 → l1 + qk1, · · · , lJ−1 → lJ−1 + qk(J−1), (18)

we convert all Pk in (13) to PN . As a matter of this fact, the l⊥-integral then yields a simple

form which can be taken easily as follows:

∞
∫

0

dl⊥
lD−J−1
⊥

[l2
0
− l2

1
− · · · − l2

J−1
− l2⊥ − m2

k
+ iρ]

= (19)

= −
Γ

(

D−J
2

)

Γ

(

J+2−D
2

)

2

(

−l20 + l21 + · · · + l2J−1 + m2
k − iρ

)
D−J−2

2
.

We then arrive at the (J − 1)-fold integrals

JN

Γ

(

J+2−D
2

) = π
D−J

2

N
∑

k=1

∞
∫

−∞

dl0dl1 · · ·dlJ−1

(

−l2
0
+ l2

1
+ · · · + l2

J−1
+ m2

k
− iρ

)
D−J−2

2

N
∏

l=1
k,l

[

alkl0 + blkl1 + · · · + clklJ−1 + dlk

]

. (20)

In this formula alk, blk, · · · , clk ∈ R and dlk = (ql − qk)2 − (m2
l
− m2

k
) ∈ C which is obtained

from d̃lk after applying the shift (18). The integrals in (20) can be carried out with the help of

residue theorem. For that purpose, one first linearizes the l0 for example, .i.e l′
1
= l1 + l0. The

result reads

JN

Γ

(

J+2−D
2

) = π
D−J

2

N
∑

k=1

∞
∫

−∞

dl0dl1 · · · dlJ−1

(

−2l0l1 + l2
1
+ · · · + l2

J−1
+ m2

k
− iρ

)
D−J−2

2

N
∏

l=1
k,l

[

ABlkl0 + blkl1 + · · · + clklJ−1 + dlk

]

(21)

3
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Figure 2. We close the contour integration for l0 that the poles in (22) locate outside the contour.

with ABlk = alk − blk. The singularity poles of the integrand in (21) are obtained:

l0 =
l2
1
+ · · · + l2

J−1
+ m2

k
− iρ

2l1
, Im(l0) = −

m0kΓk + ρ

2l1
, (22)

and

l
(l)

0
= −

blkl1 + · · · + clklJ−1 + dlk

ABlk

, Im[l
(l)

0
] = Im

(

−
dlk

ABlk

)

. (23)

The pole l0 in (22) locates upper (lower) in l0-complex plane if l1 < 0 (l1 > 0) respectively.

We plan to close the contour integration for l0 that l0-poles in (22) locate outside the contour,

seen Fig. 2 for more detail. As a result, the poles in (23) are only taken into account to the

residue contributions for l0-integration. The resulting reads

JN

Γ

(

J+2−D
2

) = π
D−J

2

N
∑

k=1

N
∑

l=1
k,l























f +lk

∞
∫

0

dl1 + f −lk

0
∫

−∞

dl1























· · ·

∞
∫

−∞

dlJ−1 [1 − δ(ABlk)] (24)

×

[(

1 − 2
blk

ABlk

)

l2
1
+ · · · + l2

J−1
− 2

clk

ABlk

l1lJ−1 − 2
dlk

ABlk

l1 + m2
k
− iρ

]
D−J−2

2

N
∏

m=1
m,k
m,l

[

Ãmlkl1 + · · · + C̃mlklJ−1 + F̃mlk

]

.

Where the δ-function is defined as

δ(x) =















0, if x , 0;

1, if x = 0.
(25)

New kinematic variables Ãmlk, · · · , C̃mlk ∈ R and F̃mlk ∈ C are obtained from residue contri-

butions of the poles in (23). The functions f ±
lk

indicate the location of the poles in (23) in the

l0 complex plane:

f +lk =



















































0, if Im

(

−
dlk

ABlk

)

< 0;

1, if Im

(

−
dlk

ABlk

)

= 0;

2, if Im

(

−
dlk

ABlk

)

> 0.

and f −lk =



















































0, if Im

(

−
dlk

ABlk

)

> 0;

1, if Im

(

−
dlk

ABlk

)

= 0;

2, if Im

(

−
dlk

ABlk

)

< 0.

(26)
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We continue to linearize l1 in numerator of the integrand of (24) by applying a Euler shift

l1 → l1 + βlkl2. βlk can be chosen in such a way of the disappearance of l2
1
-term. The residue

theorem is applied against for l1-integration. At the final stage, the resulting integrals can be

expressed in terms of R-functions [18] which is defined as

∞
∫

r

(x − r)α−1

k
∏

i=1

(zi + wix)−bi dx

= B(β − α, α)Rα−β

(

b1, · · · , bk, r +
z1

w1

, · · · , r +
zk

wk

) k
∏

i=1

w
−bi

i
, (27)

with β =
∑k

i=1 bi. In next subsections, we present analytic results for scalar one-loop two-,

three- and four-point functions. Detailed calculations for these functions have published in

Ref. [17].

2.1 One-loop two-point functions

In POS, J2 takes the form of [5, 6]

J2 =
2π

D−1
2

Γ

(

D−1
2

)

∞
∫

−∞

dl0

∞
∫

0

dl⊥
lD−2
⊥

[(l0 + q10)2 − l2
⊥
− m2

1
+ iρ][l2

0
− l2
⊥
− m2

2
+ iρ]

. (28)

Here q = q(q10,
−→
0 D−1) for q2 > 0. If q2 < 0, we refer [17] for detailed evaluations. The

results in [17] have shown that the below formulas for J2 are valid for both above cases. The

R-function representation for two-point integrals is as follows [17]:

J2

Γ

(

3 − D
2

) =
π(D−1)/2eiπ(3−D)/2

2
B

(

4 − D

2
,

1

2

)

(29)

×

{












q2
+ m2

1
− m2

2

2q2













R D−4
2













3 − D

2
, 1;−m2

1 + iρ,−
(q2
+ m2

1
− m2

2
)2

4q2













+













q2 − m2
1
+ m2

2

2q2













R D−4
2













3 − D

2
, 1;−m2

2 + iρ,−
(q2 − m2

1
+ m2

2
)2

4q2













}

.

We can derive other representations for J2 by employing the transformations in appendix for

R-functions from (46) to (51). For example, using Euler’s transformation (50) forR-functions
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Figure 4. Triangle diagrams.

(50), Eq. (29) becomes

J2

Γ

(

3 − D
2

) = −π(D−1)/2
B

(

4 − D

2
,

1

2

)

(30)

×

{

(m2
1
− iρ)

D−3
2

q2 + m2
1
− m2

2

R− 1
2













5 − D

2
, 2;

−1

m2
1
− iρ
,

−4q2

(q2 + m2
1
− m2

2
)2













+
(m2

2
− iρ)

D−3
2

q2 − m2
1
+ m2

2

R
−

1
2













5 − D

2
, 2;

−1

m2
2
− iρ
,

−4q2

(q2 − m2
1
+ m2

2
)2













}

.

It can be seen that the right hand sides of Eqs. (29,30) are symmetric under the interchange

of m2
1
↔ m2

2
. From Eqs. (29,30) we can take the limits of m2

1
= m2

2
→ 0 and q2 → 0

respectively, seen Ref. [17] for more detail.

2.2 One-loop three-point functions

The momenta q1, q2 take the following configuration q1 = q1(q10, q11,
−→
0 D−2), q2 =

q2(q20, q21,
−→
0 D−2). Here q10 = 0 for q2

1
< 0 and q11 = 0 for q2

1
> 0. The results for J3

in this paper cover both the above cases. The integral J3 in POS takes the form of [5, 6]

J3 =
π

D−2
2

Γ

(

D−2
2

)

∞
∫

−∞

dl0

∞
∫

−∞

dl1

∞
∫

−∞

lD−3
⊥ dl⊥

1

[(l0 + q10)2 − (l1 + q11)2 − l2
⊥
− m2

1
+ iρ]

×
1

[(l0 + q20)2 − (l1 + q21)2 − l2⊥ − m2
2
+ iρ][l2

0
− l2

1
− l2⊥ − m2

3
+ iρ]

. (31)

Scalar one-loop three-point functions are also expressed in terms of R-functions [18] as

6
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follows [17]

J3

Γ

(

2 − D
2

) = −π
D
2 i B(4 − D, 1)

3
∑

k=1

3
∑

l=1
k,l

[1 − δ(ABlk)]

Amlk

(αlk − iρ)
D−4

2

×

{

S
+

lk f +lk RD−4

(

4 − D

2
,

4 − D

2
, 1;+Z

(1)

lk
,+Z

(2)

lk
,+Fmlk

)

(32)

+S
−

lk f −lk RD−4

(

4 − D

2
,

4 − D

2
, 1;−Z

(1)

lk
,−Z

(2)

lk
,−Fmlk

)}

,

for m , l. When all internal masses are real, f +
lk
= f −

lk
= 1 and S±

lk
= 1, Eq. (32) confirms

the results of, for instance, J3 in the Eq. (11) of [6]. We can derive other represents for J3 by

applying several transformations for R-functions, as shown in appendix. For example, with

the help of (50), one obtains

J3

Γ

(

2 − D
2

) = −π
D
2 i B(4 − D, 1)

3
∑

k=1

3
∑

l=1
k,l

[1 − δ(ABlk)]

Cmlk

(m2
k)(D−4)/2 (33)

×















f +lk R−1















6 − D

2
,

6 − D

2
, 2;+

1

Z
(1)

lk

,+
1

Z
(2)

lk

,+
1

Fmlk















− f −lk R−1















6 − D

2
,

6 − D

2
, 2;−

1

Z
(1)

lk

,−
1

Z
(2)

lk

,−
1

Fmlk





























,

for m , l. The kinematic variables appear in subsection are listed:

alk = 2(ql0 − qk0), blk = −2(ql1 − qk1),

ABlk = alk − blk, clk = (qk − ql)
2
+ m2

k
− m2

l
,

Amlk = −ABkm blk + ABlk bkm, Cmlk = −ABkm clk + ABlk ckm,

Fmlk = Cmlk/Amlk, Z
(1,2)

lk
=

clk

alk+blk
±

√

(

clk

alk+blk

)2
−

m2
k
−iρ

αlk
.

The factor S±
lk

is given

S
±

lk = Exp
[

πiθ (−αlk) θ[∓Im(Z
(1)

lk
)]θ[∓Im(Z

(2)

lk
)] (D − 4)

]

×Exp
[

−πiθ (αlk) θ[±Im(Z
(1)

lk
)]θ[±Im(Z

(2)

lk
)] (D − 4)

]

. (34)

We turn our attention into the analytic results for scalar one-loop four-point functions in next

subsection.

2.3 One-loop four-point functions

At present, the calculations for four-point functions are performed in D = 4. We set

configuration of external momenta as follows q1 = (q10, q11, 0, 0), q2 = (q20, q21, 0, 0),

q3 = (q30, q31, q32, 0). Where q10 = 0 for q2
1
< 0 and q11 = 0 for q2

1
> 0. Our result

presented in this paper cover all the above cases. In POS, J4 takes the form of

J4 = 2

∞
∫

−∞

dl0dl1dl2

∞
∫

0

dl⊥
1

P1P2P3P4

, (35)

with Pk = (l + qk)2 − m2
k
+ iρ for k = 1, 2, · · · , 4. Scalar one-loop four-point functions are

7
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Figure 5. Box diagrams.

written as one-fold integrals [17] as follows

J4

iπ2
=

4
∑

k=1

4
∑

l=1
k,l

4
∑

m=1
m,l
m,k

(

1 − δ(AClk)
)(

1 − δ(Bmlk)
)

AClk(BmlkAnlk − BnlkAmlk)
× (36)

×



















∞
∫

0

dz G(z)

[

( f +lkg
+

mlk + f −lkg
+

mlk) ln

(

Fnmlk

βmlk

)

− f +lkg
+

mlk ln

(

z + Fnmlk

βmlk

)

− f +lkg
−

mlk ln

(

−
z + Fnmlk

βmlk

)

− ( f −lkg
+

mlk + f +lkg
+

mlk) ln

(

S (σmlk, z)

Pmlkz + Qmlk

)

+ f +lkg
+

mlk ln

(

S (σmlk = 0, z)

Pmlkz + Qmlk

)

+ f +lkg
−

mlk ln

(

−
S (σmlk = 0, z)

Pmlkz + Qmlk

) ]

+

0
∫

−∞

dz G(z)

[

− f +lkg
−

mlk ln

(

−
Fnmlk

βmlk

)

+ ( f −lkg
−

mlk + f −lkg
+

mlk) ln

(

z + Fnmlk

βmlk

)

− f −lkg
−

mlk ln

(

Fnmlk

βmlk

)

− ( f −lkg
+

mlk + f −lkg
−

mlk) ln

(

S (σmlk = 0, z)

Pmlkz + Qmlk

)

+ f −lkg
−

mlk ln

(

S (σmlk, z)

Pmlkz + Qmlk

)

+ f +lkg
−

mlk ln

(

−
S (σmlk, z)

Pmlkz + Qmlk

) ] }

Where the related kinematic variables are given:

alk = 2(ql0 − qk0), blk = −2(ql1 − qk1),

clk = −2(ql2 − qk2), dlk = (ql − qk)2 − (m2
l
− m2

k
),

AClk = alk + clk, αlk = blk/AClk,

Amlk = amk −
alk

AClk
ACmk, Bmlk = bmk −

blk

AClk
ACmk,

Cmlk = dmk −
dlk

AClk
ACmk, Dmlk = −4(ql − qk)2/AC2

lk
,

Fnmlk =
Cnlk Bmlk−BnlkCmlk

Anlk Bmlk−BnlkAmlk
± iρ′, β

(1,2)

mlk
=

(

Amlk
Bmlk
−αlk

)

±

√

(

Amlk
Bmlk
−αlk

)2

−Dmlk

Dmlk
,

Qmlk = −2
(

Cmlk

Bmlk

)

− 2
(

dlk

AClk

)

βmlk, Pmlk = −2
(

Amlk

Bmlk
− αlk − βmlkDmlk

)

,

Emlk = −2dlk/AClk, S
(σ)

mlk
= Dmlk + Pmlkσmlk,
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with σmlk = 0,−11/βmlk. The S (σmlk, z) and G(z) are obtained:

S (σmlk, z) = S
(σ)

mlk
z2
+ (Emlk + Qmlkσmlk)z − m2

k + iρ, (37)

G−1(z) = Zmlk z2
+ Kmlkz − βmlk(m2

k − iρ) − FnmlkQmlk, (38)

with Zmlk = Dmlkβmlk − Pmlk and Kmlk = Emlkβmlk − Qmlk − PmlkFnmlk. The functions f ±
lk

(and

g±
mlk

) are defined as in (26) with replacing clk/ABlk by dlk/AClk (and Cmlk/Bmlk) respectively.

The J4 in (36) is decomposed into two basic integrals as follows:

I1 =

∞
∫

0

1

(z + T1)(z + T2)
dz = R−1(1, 1; T1, T2), (39)

I2 =

∞
∫

0

ln(1 + z/T3)

(z + T1)(z + T2)
dz = (40)

= lim
ω→0

1

ω



















∞
∫

0

1

(z + T1)(z + T2)
dz −

∞
∫

0

(1 + z/T3)−ω

(z + T1)(z + T2)
dz



















(41)

= lim
ω→0

1

ω

{

R−1(1, 1; T1, T2) −
B(1 + ω, 1)

T−ω
3

R−1−ω(1, 1, ω; T1, T2, T3)

}

. (42)

The ε-expansions for all R-functions appear in this paper have devoted in Ref. [17]. The

numerical checks for all analytic formulas in this paper and applications of this work to

compute Feynman diagrams in real scattering processes have shown in [17].

3 Conclusions

We have presented the analytic results for scalar one-loop two-, three-, four-point Feynman

integrals with complex internal masses. The analytic results in this paper are valid for both

real and complex internal masses. The calculations have carried out in general space-time

dimension for two- and three-point functions. At present work, the four-point functions have

performed in D = 4. The analytic formulas have expressed in terms of the R-functions. In

future work, we will extend this work to tensor one-loop integrals (to be published).
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Technology Development (NAFOSTED) under the grant number 103.01-2016.33. The au-

thor is grateful to the organizers of ISMD 2018 for the invitation and for financial support.

Appendix: Useful relations for R-functions

Useful relations for R-functions are also listed in this appendix. The formulas shown here are

collected from Ref. [18]. We denote that b, z and ei are k-tuple

b = (b1, b2, · · · , bk), (43)

z = (z1, z2, · · · , zk), (44)

ei = (0, 0, · · · , 1, 0, · · · , 0) where the 1 is located at the ith entry. (45)
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The relations are presented as follows

Rt(b, z) =

k
∑

i=1

bi

β
Rt(b + ei, z), (46)

Rt+1(b, z) =

k
∑

i=1

bi

β
zi Rt(b + ei, z), (47)

βRt(b, z) = (β + t)Rt(b + ei, z) − tziRt−1(b + ei, z), (48)

∂zi
Rt(b, z) =

bi

β
tRt−1(b + ei, z), (49)

Rt(b, z) =

k
∏

i=1

z
−bi

i
R−β−t(b + ei, z

−1), Euler’s transformation (50)

Rt(b, λz) = λt
Rt(b, z) scaling law. (51)
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