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Abstract

We develop a formalism that allows the study of correlations in space and time in both the superfluid
and Mott insulating phases of the Bose—Hubbard Model. Specifically, we obtain a two particle irreducible
effective action within the contour-time formalism that allows for both equilibrium and out of equilibrium
phenomena. We derive equations of motion for both the superfluid order parameter and two-point correla-
tion functions. To assess the accuracy of this formalism, we study the equilibrium solution of the equations
of motion and compare our results to existing strong coupling methods as well as exact methods where
possible. We discuss applications of this formalism to out of equilibrium situations.

Crown Copyright © 2018 Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The out of equilibrium dynamics of cold atoms trapped in optical lattices has received con-
siderable attention in recent years [ 1-6]. The ability to tune experimental parameters over a wide
range of values in real time makes these systems very versatile and gives the opportunity to study
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quantum systems out of equilibrium in a controlled fashion. Quantum quenches, in which param-
eters in the Hamiltonian are varied in time faster than the system can respond adiabatically, e.g.
when a system is driven through a quantum critical point, are a protocol that is natural to study
in this context and have been studied intensely both theoretically and experimentally.

The Bose—Hubbard model (BHM) [7] has been shown to describe interacting ultracold bosons
in an optical lattice [8], allowing the opportunity for experiments to probe the out of equilibrium
dynamics of the model [8—25]. The BHM is a particularly convenient context for studying quan-
tum quenches as it displays a quantum phase transition between the superfluid and Mott-insulator
phases (or vice versa) as the ratio of intersite hopping J to the on-site repulsion U is varied, as
observed by Greiner et al. [9]. Theoretical studies of the BHM suggest that whether equilibra-
tion occurs or not after a quantum quench depends sensitively on the initial and final values of
J /U and the chemical potential [26-33]. In the case of quenches from superfluid (large J/U) to
Mott insulator (small J/U) there have been suggestions that there may be aging behaviour and
glassiness that might be experimentally observable in two time correlations or in violations of
the fluctuation dissipation theorem [6,26-28,31,33]. In the alternative quench from Mott insula-
tor to superfluid, it has been suggested that Kibble—Zurek [34-36] scaling of defects should be
observed [37,38], which has recently been tested experimentally [10].

In experiments, the combination of a harmonic trap and small J/U leads to a wedding
cake structure of the equilibrium density, with alternating Mott insulating and superfluid re-
gions [39,40]. The presence of Mott insulating regions has been predicted to retard relaxation to
equilibrium after a quench to small J/U by impeding mass transport of bosons through these
regions [41,42] which has also been observed experimentally [43]. This gives a picture in which
relaxation after a quench takes place in two steps — fast relaxation to local equilibrium followed
by slower relaxation via mass transport [41,44].

In addition to slow dynamics, several analytical and numerical studies have also shown a
Lieb—Robinson-like [45] bound of a maximal velocity which leads to a light-cone like spreading
of density correlations in one dimensional systems for quenches from the superfluid to Mott-
insulating regime as well as quenches within the superfluid [46] or Mott-insulating phases [29,
42,47,48]. The latter case was recently observed experimentally by Cheneau et al. [49]. Similar
predictions have been made for higher dimensional systems [46,50,51]. The results summarized
above motivate the study of the temporal and spatial correlations of the BHM after a quantum
quench in order to elucidate the dynamics observed after quenches.

A generic problem in the theoretical description of quantum quenches is that it is necessary
to have a formalism that is able to describe the physics in the phases on both sides of a quan-
tum critical point. In the case of the Bose Hubbard model, numerical approaches such as exact
diagonalization and the time-dependent density matrix renormalization group (t-DMRG) [24,
26,42,47,49,52,53] can be essentially exact in all parts of parameter space but are limited by
system size and usually are practical only in one dimension. For dimensions higher than one,
methods such as time-dependent Gutzwiller mean field theory [4,41,54,55] and dynamical mean
field theory [32] have been used which can capture the presence of a quantum phase transition,
but in their simplest form do not capture spatial correlations, although there has been work on
including perturbative corrections [50,56—-61]. An analytical approach based on using two Hub-
bard Stratonovich transformations to capture both weak-coupling and strong-coupling physics
in the same formalism was developed by Sengupta and Dupuis [62]. Within their effective the-
ory, they performed a mean-field calculation of the superfluid order parameter and a Bogoliubov
(1-loop) approximation to the two-point Green’s function to study the excitation spectrum. Their
work was generalized by one of us from an equilibrium theory to out of equilibrium by using the
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Schwinger—Keldysh formalism to obtain a one-particle irreducible (1PI) effective action which
was then used to study the superfluid order parameter after a quench [31].

Here, we extend the approach developed in Ref. [31] to obtain a two-particle irreducible (2PI)
effective action using the contour-time formalism, which is a generalisation of the Schwinger—
Keldysh formalism. In the 2PI approach, the evolution of the order parameter and the two-point
Green’s functions are treated on the same footing [63] which allows us to describe correlations
both in the broken symmetry (superfluid) phase and the Mott phase. Moreover, the method pro-
vides a systematic way to go beyond the mean-field or the 1-loop approximation. We obtain two
main results. First, we develop the 2PI strong coupling formalism for the BHM. Second, we de-
rive equations of motion within a Hartree—-Fock—Bogoliubov-Popov approximation suitable for
both equilibrium and out of equilibrium calculations. We obtain equilibrium solutions of these
equations that allow us to obtain phase boundaries and excitation spectra that we compare to
previous equilibrium results obtained in a 1-loop calculation [62] and numerically exact results
where possible.

This paper is structured as follows. In Section 2, we describe the model that we study and
derive the 2PI effective action for the BHM. In Section 3, we obtain the equations of motion for
both the order parameter and the two-particle Green’s function by taking appropriate variations
of the 2PI effective action. In Section 4, we study the equilibrium solution of the equations of
motion at the HFBP level. Finally in Section 5 we discuss our results and present our conclusions.

2. Model and formalism
In this section we introduce the Bose Hubbard model and discuss the generalization of the

1PI approach developed in Ref. [31] to a 2PI effective action within the Schwinger—Keldysh
formalism. The Hamiltonian for the BHM, allowing for a time dependent hopping term, is

Hguwm (1) = Hy (1) + Ho, (D
where
A ==Y Jrp 0 (a] 5, +aral ). @)
(F1,72)
ﬁo=ﬁu—ul\7=g Ay (Ar — 1) —p ) iy, 3)
2 = =
r r

with &; and dy annihilation and creation operators for bosons on lattice site 7 respectively, iy =

&; ay the number operator, U the interaction strength, and p the chemical potential. The notation
(r1, 72) indicates a sum over nearest neighbours only. We allow J;7, (¢), the hopping amplitude
between sites 7, and 77, to be time dependent.

2.1. Contour-time formalism

We use the contour-time formalism [64—69], which treats time as a complex variable lying
along a contour. For systems initially prepared in thermal states, which we consider here, one
can work with a contour C of the form illustrated in Fig. 1. One obtains the imaginary-time Mat-
subara formalism, which is restricted to equilibrium problems, by setting ¢y = #;. If one does not
work in the Matsubara formalism, 7, can be set to oo without loss of generality [70]. Further-
more, if one were to set instead t; — —o0, then one can obtain the real-time Schwinger—Keldysh
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Fig. 1. Contour for a system initially prepared at time #; in a thermal state with inverse temperature f. 7 is the maximum
real-time considered in the problem, which may be set to 7y — oo without loss of generality.

closed-time path, which is suitable for both equilibrium and out of equilibrium problems, as the
imaginary part of the contour would not contribute anything to the dynamics of the system. By
setting t; — —o0, one is effectively discarding transient effects. Since we are interested in study-
ing transient phenomena, we do not set #; — —oo and instead work with the general contour
illustrated in Fig. 1. A number of authors have applied contour-time approaches to the BHM [31,
63,71-79] — our work differs from previous approaches in that we apply a 2PI approach within
the contour formalism that is appropriate for strong coupling as well as weak coupling [63,76].

2.2. Green’s functions and the 1PI generating functionals

To characterize spatio-temporal correlations in the BHM we calculate contour-ordered
Green’s functions (COGFs). We generalize the work in Ref. [31] to include Green’s functions
with unequal numbers of annihilation and creation operators to allow for the study of broken
symmetry phases. We frequently use the compact notation a: for the bosonic fields, defined by

2

=al. )
We define the n-point COGF as [69]
G, = (0 T A Te [l (@ ad )

= (—i)n_1 (TC I:&gll (t1) - -&;’: (Tn)]>

az =ap, a

L (&)

bi

where p; is the state operator for a thermal state representing the initial state of our system
e B Heum (1)

' e fesmmio] ©

0

and &g () are the bosonic fields in the Heisenberg picture with respect to I:IBHM (7) [Eq. (D]
a¢ () =U" (r.1)alU (r. 1), (7)
U(r,7)=Tec [e—" Je(e) "’”HBHM(”)} : ()

Here we have introduced explicitly the complex contour time argument t, the sub-contour
C (r, 7/ ) which goes from 7 to 7’ along the contour C, and the contour time ordering operator
Tc, which orders strings of operators according to their position on the contour, with operators
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at earlier contour times placed to the right. Note that the presence of T¢ in Eq. (5) leads to

symmetry under permutations {py, ..., p,} of the sequence {1, ..., n}:
ay...ay _ Apy---App
Gy (T ) = G;le;pn (Tprseees Tpy) - 9)

At times it will be useful to express the contour time 7 in terms of a contour label « (commonly
called a Keldysh index) indicating a contour time located on C, and a positive real parameter s
such that

t; +s+i0t, ifa=+4,

T=(,8) =19t +s+i07, ifa=-—, (10)
ti—is+i07, ifa=T,
e.g. we can rewrite the bosonic fields &? (7) as

al () =as (v). (11)
and the COGFs in Eq. (5) as

aj...a, aj...a
Galin 1.y S) =G0 (11, ..., Tw)
rl...I'n

Flo n 0.0
= =iy M Te|ad, G0.a, o) (12)

P
In order for the Heisenberg fields a; () to be well-defined, we need to analytically continue the
BHM Hamiltonian [Eq. (1)]. For the contour considered in this paper, Hgpm (7) is analytically
continued as follows
Hgum (5),  ifa =+,
Hpum (1) = HpaM,« (5) = { Hpum (5),  ifa=—, (13)
Hppum (), ifa=T.
The COGFs above can be derived from a generating functional Z [ f] defined as

Zif1=Te[pTe [ et D i)

—1el e |:ei (Jey +Je_ +Joy )dr Xz J‘?(r)&?(r)] }
- 1

=Tr{/3iTc
<o (J5™ ds S5 S22 L )+ [ (—ds) X 12_(9)a¢_(5)+ [ (~ids) ¥z f,-‘fT(sm;{T(s))} }
( J .
=Tr4 p;Tc elfo 45 2.7 Yo )8 /) , (14)
where
1 0 0
#2=l0 -1 o |, (15)
0 0 —i

in the (4, —, 7)) basis,
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oo, fa=a =-+or—,
sly=1p ifa=a'=T. (16)
0, otherwise,

the f's are source currents, the overscored index in f;aa (s) is defined by

£ ) =0 2 (), 17)

and o; is the i th Pauli matrix, i.e. 1 =2 and 2 = 1. We use the Einstein summation convention for
both the Keldysh and Nambu indices, i.e. matching indices implies a summation over all possible
values of those indices. It is clear from the definition above that the generating functional is
normalized such that Z[f =0] = 1.

To derive the COGFs in Eq. (12) from Z [ f], we take appropriate functional derivatives with
respect to the sources and set the sources to zero afterwards

t t
ai...an i 1\n 3 3
Gr1 a0y (51, 8m) = (=) ([T ]mai [T ]awé)

. 1 " Z[f]
ZLF=018f51, (s1). 87", (sn) ;

(18)

2.3. Path integral form of Z [ f]

We cast the generating functional Z [ f] in the path integral form [67], which for the case of
the BHM is [31]

Zf]= / [’Da“] eiSBHM[a}H'Sf[a]’ 9)

where Spywm is the action for the BHM, and f [Da“] is the coherent-state measure. We absorb
overall constants into the measure as they will cancel out in the calculation of the COGFs due to
the factor of 1/Z[f = 0] in Eq. (18). Note that in the path-integral formalism arl o = 7o and

a;2 o = @* . In this formalism, we can rewrite averages of the form (7¢ [...]), as follows

(Te a1, onafry, () ={a,, o0oal, G0) 0)

SBHM
where contour ordering is now 1mpllclt in the path integral representation [80]. In addition to the
generating functional, we make extensive use of the generator of connected COGFs (CCOGFs)
defined by

WI[fl=—-ilnZ[f]. (21)
The n-point CCOGF Ga1 ra" ;1 «, (815 -+ 5y) can be obtained from W [f] by calculating
g]lm'%"”oflman (Sl v Sn)
i T "W
= (! ([ﬁ] [ ) _ )
ue D) S5l 1) By )|
— 1 ¢
= (=i a0, ) (22)
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where (...)¢ indicates that only connected diagrams are kept. Note that the CCOGFs satisfy the
same symmetry property as the COGFs

ai.. an

¢ _ %P1 pnsC
G iy S1o s Sn) = G;l’l'“;l?n’apl“'apn (SprseeesSp,)- (23)

2.4. Keldysh rotation

For the n-point CCOGF defined in Eq. (22) there are 3" Keldysh components. However, as a
consequence of causality, we can eliminate an_zlo ( ":l) of these components by performing the

following transformation on the bosonic fields [65]

ar () a0\ _[ar®
a_ @) | — | a@® |=L|a-@® |, 24)
ar (1) ar (1) ar (1)
with
R 1 1 -1 0
L=—1[1 1 01, (25)

V2\op o vz

where G, and a. are the quantum and classical components of the field respectively [74,81-83],
and a7 = ag. After the above basis transformation (+, —, 7) — (¢, ¢, T), the matrix 73 be-
comes

1 0
0o o0 |, (26)
0 0 —i

0
=11

the limits of integration become

oo, if {a,a'} € P({g.c}),
st =18, ifa=a' =T, @7
0, otherwise,

and P ({xm Jhe ) is the set of all permutations of the sequence {x;,}},_
ai.. an

After performing the above Keldysh transformation, any COGFs G (Sts---ySn)
with at least one quantum «-index and no classical a-indices will Vamsh To see thls con51der
the following COGF

“‘;1..‘76.%7_ Tq q(Sl,-nvsn)
Vi T o

mAems  p,_py terms

= 0" M Te (a8 7 0 g e g (o ]}

)" e
= Y=/ <TC [aFl,T (s51)... a" (Sm)

fazr men =@t e}l oo —ad (sn>}}>

Pi
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o (e [a o ,T(sm>]

2(n—m)/2
om0} {a @ —a_wol]) @8

i

x Tc [{ a"’ +(strl)

r+]

Following the argument given in Ref. [74], multiplying out the products in the second T¢[...]
yields 2"~ path-ordered terms. The key point to note is that within any one of these path-ordered
products the position of the field with the largest s does not depend on its Keldysh index. This
implies that for each path-ordered product there is another path-ordered product is which is
identical except with opposite sign. Therefore every term cancels out. It immediately follows
that the associated CCOGFs vanish as well:

Gin e S1,...,8,) =0, 0<m<n. 29
r1...rn,T...Tq...q(1 n) - (29)
———
MmAmS  p_py terms

Moreover, any permutation of the Keldysh indices in Eq. (29) will also yield a vanishing CCOGFE.
Since there are ( ) distinct permutations for fixed n and m, there are ) _ ( ) components
that will vanish in total. This completes the proof. Note that if we were workmg with a closed-
time path, where there is no imaginary appendix to the contour, we recover the special case where
only () = 1 Keldysh component vanishes, namely G“1 “n"qc (51, ...,8,) [65,74].

After performing the Keldysh transformation, the BHM action takes the form [31] (dropping
tildes)

S‘{wz
1 i
Ser = 5 / dsZ[agfal (s)<[r0]ala3r;m%‘“la> 2(s)}+SJ+SU, (30)
0 7
where
1 Sdflofz
S1=5 [ 45 X afl © (2rnthaol ) al,, ). G1)
0 (F172)
Soz]azo(;oq
g [ e X v al, 0, 06, 6, 6. (2)
O ?
10 0
%=l0 1 0|, (33)
00 —i
Céfféfﬁﬁi'&i = 2Ta apa30q 0 T PBN, 34

5. if femlh_; € P(g.c.c.chU P (c.q.q.9)).
Toyapasas = | —i, if {o[m}fn:1 ={T.7T.7.7T}, (35)
0, otherwise,

I, if {an}_ e P({1,1,2,2}),

0, otherwise,

aa1a2a3a4 — (36)
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' 00, if {amly—y € P (g, c,e,eDUP (e, q.9.9)),
SHrass =3B il = (T T, T, T,

0, otherwise.

In the (g, ¢, T) basis, the source term becomes

So/tclocz
Sp= / ds Y T oy Fy () al o (5),
0 7
and the CCOGFs are
a1 ,C
,11 a1l (S15---,580)

N ; § S"WIf]
=D 1([“](1.(11"'[[1]”"“5) i 6135l )| g

2.5. Effective theory for the Bose—Hubbard model

(37

(38)

(39)

In order to study quench dynamics in the BHM, we make use of an effective theory that can
describe both the weak and strong coupling limits of the model in the same formalism. Such an
approach was developed in imaginary time by Sengupta and Dupuis [62] by using two Hubbard-
Stratonovich transformations and generalized to real-time in Ref. [31]. A similar real-time theory
was also obtained based on a Ginzburg-Landau approach using the Schwinger—Keldysh tech-
nique [72-74]. A brief discussion of the derivation of the effective theory along with minor
corrections to several expressions presented in Ref. [31] is given in Appendix A. The effective
theory obtained in Ref. [31] for the z fields (which are obtained after two Hubbard Stratonovich

transformations and have the same correlations as the original a fields [62]) is

s, f '

Slzl= 1 / ( Olo/ds> Z Zr] o (S) G (S)] Ll (s)

0 (F172)

1 ¥

am ajaxazasg
T 41 Z l_[ f ( amo dsm) (Sm) M(Xiaéa'a’ (s1,52,53,54),

7 om=l 0

where (g")7l is the inverse of the two-point CCOGEF in the atomic limit (i.e. J = 0), u® is

Sron
4 Ym%m

!
1 N —17]4may,
gt onssso =TT [ (agass) [(©)7 77 Gnoss)

apa,
m=1 0

(e tsn) <25, o0 | [(@) ] 1.0

(40)
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ala2a3a4

xG % h (1,85, 85.84) . (41)

o o030y

and the inverse of an arbitrary two-point function X satisfies

f
Suza
ds E [ ] 1 (s1 S3)< Tl xBe (s sz))
3 F173,0103 ’ "‘W% ey FaF, ajery 3
= 3;1;250,10{25”1“25 (s1 —82). (42)

Both (g")_1 and u® are independent of site index 7, hence we write them without site labels.
However, throughout this paper we occasionally include the site labels when it serves to provide
more clarity to the reader. One would have to include the site labels if for instance one considers
the BHM with a harmonic potential as is realised experimentally.

Equation (40) is the key result from Ref. [31] that we use to develop the 2PI formalism in
Section 2.6. However, before applying the 2PI formalism to this action, we need to include an
additional correction term:

I

st
Am

Scorrection [2] = Z 1_[ / ( Toma dsm) Z* (Sm) u lrl ; (51,82), (43)

0

where #i® contains an infinite set of diagrams, although here we truncate it keeping only the
lowest order term:

1
jha 1 ayaraza azag,c
Uy (51,82) = —3 ( a;na;;dsm) Ug ornanoty (S15 52, 53, 54) [lgtfrf (83,S4)}-

m=3 0

(44)

This correction term ensures that our equations of motion are accurate to first order in G*-¢
(see Appendix A for further discussion). Moreover, it ensures that the equations of motion for
the two-point CCOGF we derive in Section 3 are exact in the atomic (J = 0) limit, which is
essential when considering quenches beginning in the atomic limit. This action also gives the ex-
act two-point CCOGF in the noninteracting (U = 0) limit [62]. These features make this theory
particularly appealing for the study of quench dynamics, since it gives the hope that one can ac-
curately describe the behaviour of the system in both the superfluid and Mott-insulating regimes
[6].

Using the symmetry relation in Eq. (23), we also note that (G¢) ™!, #® and u® satisfy the
following symmetry relations (correcting Ref. [31])

[(G“)fl]flaaz (s1,82) = [(Gc)fl]fplilpz (Sp1+Sp) s (45)

rry.a1e Tp1Tp2-Qp1®py
~dp d;
a1a2 P17r2
g2 (s1,52) =iig o (Sp1>Spa) (46)
Adp Ap,dp,d
ajazazag P1%P2%P3%r4 ( )
ua1“2a30‘4 (sl )52 53, S4) uam"‘ﬁzo‘mo‘m Sp1>Spas Sp3»Sps) - (47)

Similar symmetry relations for four-point functions were noted in Refs. [6,73,74].
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2.6. 2PI formalism and the effective action

In order to obtain the full two-point CCOGF (the “full propagator” from now on), which
encodes non-local spatial and temporal correlations, we adopt a 2PI approach. Unlike 1PI ap-
proaches [31,72—74], the 2PI formalism describes the evolution of the mean field (i.e. superfluid
order parameter for the BHM) and the full propagator on equal footing [63]. Several authors [63,
75,76] have applied the 2PI formalism to the BHM to derive equations of motion for the mean
field and the full propagator for weak interactions.

Here, we develop a real-time 2PI approach based on the strong-coupling theory of Sengupta
and Dupuis [31,62] to capture behaviour of correlations across a quantum quench. We adopt a
compact notation where we write an arbitrary function X as

ai...ay a...an
Fl-u;nafln-fn - Xrl (Tl

STp) = Xa (S1...5,). (48)

Flowdn, @1 ...0p
We extend the Einstein summation convention to the t subindices such that for two arbitrary
functions X and Y we have

!
S

ZX”Y” 3 / (awds) X2 () YE, (). (49)
70

We can rewrite Eq. (40) (with the correction term [Eq. (43)] included) in the condensed nota-
tion as

1 ajay — =
— E -1 ap a 41920344 E 4
S [Z] - 21 [gO :|~ - Z?],t] Z?z,rz 41 r1 727374 Zr 7] r fz V f% V ™’ (50)

S > rir2,Tn
rira

where we have introduced the generalized inverse bare propagator g, !

[ —1:|a|a2 _ I:(gc)—l:lalaz +2ja|a2 18* L 01424304 (l-gm,c ) (51)
8o Pt PRt BRI Y filr iy, FirLTT )
with
—17]41a2 1a2
[(gc) ] 8717, [(gc) ] (s1,52), (52)
VIVZaTlTZ ajoy
T
Tisinm = Jiia (01 [’1]ma2 o1 = 5. (53)

In the 2PI formalism [70,84], physical quantities are expressed in terms of the mean field ¢
and the full propagator G¢

a _ [ a
LT <Z71,T1>’ (54)
ajaz,c [ a1 _ax \ _ [ a a
G;I;ZJI 2 <Z71,T1Z72,T2> <ZV|,11><Z72,T2>' (55)
Note that G¢ is symmetric: G2'¢2¢ = G22¢""°  The equations of motion for ¢ and G are

rr,Tn rry, T
obtained by requiring the 2PI effective action I’ [d), GC] be stationary with respect to variations
of ¢ and G°. This is similar to the 1PI case where the equations of motion for ¢ are obtained by
requiring the 1PI effective action I" [¢] to be stationary with respect to variations of ¢. The full
propagator from the 2PI effective action allows one to take into account broken symmetry states
[70,84], which is necessary to describe quenches in the superfluid regime.
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To obtain the effective action we define the 2PI generating functional for Green’s functions

ZIf. K]
; iSlzl+i Y7, fi) 2 T opiy o gAe A6
Z[f’ K] — e’W[sz] — / [’Dza] Fl.71 rl T 2 &ry ) BF LT TV LT rz o, (56)
where in addition to the single-particle source current f, we have included a (symmetric) two-

particle source current K . Note that ¢ and G¢ are obtained by calculating the following functional
derivatives of W[ f, K1]:

¢a1 _ SWIf K] (¢a1 ¢ Gha2c ) SWIf, K (57)
T T s ;a_l ’ F1,T1 7 P2, fz rlrz 582) sKO@
1,71 F172,T1T

These equations implicitly give f and K as functions of ¢ and G f = f [¢, GC] and
K=K [¢, GC]. The 2PI effective action I" [¢, GC] is formally defined as the double Legendre
transform of W [ f, K]

I'l¢, Gl=WIL[f K]- Z fr‘?f] ¢f11 1 9 Z :llerZJ] 2] (d);lll 7 ¢72 12) T Glflllfzzfclfz) . (58)

r]”2

where f and K should be understood as being expressed in terms of ¢ and G¢. The following
identities can be derived [70,84] from Eq. (58)

ST [¢, G°] a P
(]5?_' = _f71,f1 - Z K7172,f1f2¢72,12’ (59)
7.1 172
J [¢’ GC] i ayay
aim.c _§K7172,nf2' (60)
F172,T1 T2
Defining
828
[D—l]‘”“z _ [#]

FIr2,T1 T2 8¢r1 . qb

2,7

_ —1]4%2 1 = 01024304 as

- [go ]71?2,r1rz + 2! 8r|r2 0B P, r3¢r1 ™’ (61)
the effective action can be shown to take the form [70,84]

r[¢.G]=S[g]+ %Tr fin] ()]} + ’5 > [p7']" G

rr2,nn
rra

+ T2 [¢, G| + const, (62)

where I"» [q’), Gc] is the sum of all 2PI connected vacuum diagrams in the theory with vertices
determined by the action

1 & 1
Sint [¢3 @1 = u(;lltflzzng‘zt4 Z { 3‘(pflr1 (Pf ¥, rqujmm + m(pr 7 §0r rz(pr nwr r4} ©

7

and the propagator lines determined by G¢, i.e
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r, = + -- __

C

Fig. 2. Diagrammatic expansion of I'; up to second-order in the four-point vertex u™ (as shown as a solid dot), showing
(a) the double-bubble diagram, (b) the setting sun diagram, and (c) the basketball diagram.

(71,71, 01) (73,73, a3)

ajaa3ayq .«
uT1TQTsT4 - ’
(T, T2, az) (T4, T4, a4)
aias,Cc _
172,T1Ty (71, 71,a1) G
¢a1 *—  ammsmsmssa=s
LT (77177'1411)

ajapasa, ajap,c a
1a2d3zaq 142 andd)'

Fig. 3. Diagrammatic representation of uz; )73z, » Py Ty’ E

Iy [¢.G]= —iln{ (det{iG)})~""?
i o-1]1%2 a7 @ 2P
% /D[(p]e? L, [(G ) 1];]?21,12‘”71111 %2212 eiSim[w;dﬂ} ) (64)

One can use Eq. (64) along with Wick’s theorem to generate all the diagrams in ', [¢, GC].

The diagrammatic expansion of I'» [¢, G”] is shown in Fig. 2 up to second-order in the four-
point vertex u®. The solid dots represent the interaction vertices u®, the solid lines represent
G°¢, and the dashed lines represent ¢ (as illustrated in Fig. 3). In this paper, we only consider
the first diagram in Fig. 2, i.e. the double-bubble (D.B.) diagram, which was also considered
(along with the remaining two diagrams) in Refs. [63,76] where the BHM was studied at weak
coupling. However, there is an important distinction between the calculations here and those in
Refs. [63,76], which is that the interaction vertices in Refs. [63,76] are local in both space and
time, whereas the interaction vertices we consider are local in space but nonlocal in time — this
leads to additional features in the equations of motion. The contribution from the D.B. diagram
is

(D»B»)_l alaza3a42 P (;8102,¢ | G4394-¢
Fz = Surlrzr3r4 lGF?,rlrz lG?F,r3r4 . (65)

P
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3. Equations of motion

To calculate the equations of motion, first we use Egs. (59) and (60) and set the sources to
zero, giving

. 119243
N + l_ Z 8[ ]7273,‘[2‘[3 G@,c 8 -0 (66)
ar ar F3F2,T3T2 a7
ha Zlhm 5. 8%, 4
and
—174142 ayaz ayaz
i[(GC) 1]” —i [D‘l]“ i [E(ZPD]H : (67)
rir2,Tmn rr2, Tt rr2, Tt
where the second equation is Dyson’s equation with
ajay o
[2<2PD] o 22 (68)
FIF2,TIT2 §G4192:¢

F172,T1T
the 2PI self energy.

Given the form of the bare propagator in our strong-coupling theory, the equations of motion
Eq. (66) and (67) in their above formulations are not suitable for dynamical calculations. We
begin by reformulating Eq. (66). First, we explicitly calculate the first term in Eq. (66)

-l T, e S
ar Vz 1%} Fi72,T1T2 rz ™

¢ Fi72, 71T
r1,7T]
_ lualazaym ay iga3a4,c + l ajazazag az ¢a3 ¢ (69)
21 TIT2T3T4 7'r1,T2 rry,T3T4 3! TITZTST4 ERIAGR R
The second term in Eq. (66) can be written as

_11%2a3

] Lo N 1 o

- I3, 7273 ~azaz,c __ _ aiaxazag ;a2 . 51394,() (70)

2 z : ar 13T | T 217 TIR2T3T4 71,72 FI71,T374

- P!
nr3 r,T]

We act on both sides of Eq. (66) with G¢ from the left and rearrange terms to get

ay  _ pajax,c ay
¢71,T1 - g?172J|T2S2?1Jz’ (71)
where we have introduced the quantity
_ E alaz _ 1 ua1a2a3a4 ¢a3 ¢
rl 1'1 - r1r2 172 rz (%) 3y TIT2T3T4 rl 'r,n3Tr, T4
ayarazas 4@ [GOaC _ joa3dac _ 8T (72)
2! TG P, FIF1,T37T4 FIF1,73T4 :

97
Eq. (71) is a much more suitable form for dynamical calculations.

Next we reformulate Eq. (67) into a more appropriate form. First, we separate [D‘l]
as follows

Lol S [ K 0 o

rr2,Tnn rir,tun rir2, Tt

aya;
F172,T1T2

where
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(D) 414 aya . ~d3d4,C
b =2 JHR 3; 5 u192a3a4 (; Ga3da,
12,71 T R T 2172 T T3 FIT1,T3T4

. a1a2a3a4 az
2,5r1r2 TIT2T3T4 ¢r1 'L’gd)rl 74° (74)

is the 1-loop contribution to the total self energy. If we define the full self energy as

ajay ayay
spe =[] =] : 75
Fir2,T1T2 Pl 11T + FI72, 71T "
then Eq. (67) becomes
N 17312 —174192
T (Ge ] _ [ c ] —ixae 76
l[( ) FiF,TiT l (g ) P12, 11T R e

After rearranging a few terms, one obtains

Ga1a2 c alaz c + Z ga1a3 ,C u3£z4 Gcf4§2,c (77)

r1r271'52x2 rlr2s7172 rir3, T3 rzr4,r3r4 T4r2, 412’
7 31‘ 4
which is a more suitable form for dynamical calculations. That being said, the form shown here is
still not particularly amenable to solution. We now discuss simplifications that allow us to obtain
equations of motion that are easier to solve.

3.1. Low-frequency approximation

Equations (71) and (77), whilst having a compact form in our notation, contain as many as
four time-integrals, making it computationally expensive to solve the equations numerically. This
suggests that some level of approximation is required in order to obtain more physical insight
from the equations above. Following Refs. [31], we focus on the low frequency components
of the equations of motion. In a quench protocol this would correspond to considering changes
that are slow enough that the equations of motion are dominated by low frequency terms. The
approximation also applies to equilibrium calculations where there is no quench at all.

The low-frequency approximation we consider involves taking the static-limit of the four-
point vertex u® . If we only consider values of the chemical potential away from the degeneracy
points between adjacent Mott lobes, i.e. u % Ur, with r an integer, then the static limit of u®
can be expressed as [31,62,74]

WA 1§ (51— $2) 8 (51— $3) 8 (51— 84) Laleaends

iuz [8(s1 —52) 8 (53 — s4) NELBU + (2 <3} + (2 < 4}], (78)

where u and u3 are defined in Appendix D, ¢glarasa; is defined in Eq. (34) and

1 1 : _ _
aimazay _ jaia asas Toyon Tazey L Om=gqorcform=1,...4 (79)
nﬂtlazﬁt%m 1 . .
0 otherwise

Numerical evaluation of u; and u% for a homogeneous system, shown in Fig. 4 demonstrates
that unless /U is close to an integer, the x| terms will dominate the u% terms. Moreover, for
low temperatures, u% becomes negligible and goes to zero as § — oo. Hence, to simplify the
equations of motion, we further assume that the temperature is sufficiently low such that u% can
be safely ignored. The end result is that the equations of motion contain single time-integrals
only.
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Fig. 4. (Colour online.) (a) Plot of u and u% as a function of p/U for inverse temperature SU = 5.0; and (b) for
BU =10.0.

3.2. Keldysh structure of ¢, G¢, Q, X

Before presenting numerical results, it is worth discussing the explicit Keldysh structure of
the mean field ¢, full propagator G, and their respective interaction terms X and 2. Starting
with the mean field ¢, we have

0
[pl=| V205 1) |, (80)
o (' =0)
where ¢>§1‘ (s1) is the superfluid order parameter
aj — (a1 ¢ 81
0 = (@) ) 81)

Note that q&;zl (s1) = [¢7 (s1)]". Then, following Ref. [85], we can express G¢ as follows

ayaz,(A)
0 G220 (s1,82) 0
[6]=| G2 ® 51,50 GEE B (s1.59) V262DV (51,52 |, (82)
(D (M)
0 V2G5 (51,2 iGEE T (51, 92)
with
GEE2 ™ (51, 59) = =i© (1 — ) (aF (1 + 1) 42 (15 4 52) — &2 (1 + 52) &2 (1 + 50,
8
Gyl M (51,52) =10 (52— s1)<a— (ti +s1) @z} (4 +52) — 4z} (4 +52) az' (8 +Sl)>
(84)
c
G 8 (51, 52) = i (%0 (6 + 1) G2 1+ 52) + 82 (1 + 5288 (1 + sl))% .8
G0 (51, 52) = =i (%t (1 — is1) a2 (lz+52)>p (86)
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.
4 1,52 = =i (a2 (1 — i) @ (1) (87)
c
e (1, 50) = — (@ (1 = s2) (a8 (@ — is) a2 (1 - iS2)>ﬁ_
C
+ 0 (52— s % (6 — i52) a2 (5 — is) ) : (88)
2 n bi

where G® and G are the retarded and advanced Green’s functions respectively, G is
the Keldysh or Kinetic Green’s function, G and GI are the left and right Green’s functions
respectively, and G™) is the Matsubara Green’s function.

Next we have €2, which takes on the following Keldysh structure

0
1= V22 6 |, (89)
(s’ =0)

where to first order in u; we have

2
QL (1)~ =Y 257, (1 450 95 (1) 4 ui [¢r, (5] BE! (51)
2]
+ Sroannsgl () {iGEE ) s1,51) —ig™HE (s =0) | 90)

rry

The self energy X is similar in structure to G where we have

0 2?1];22“) (51, 52) 0
(R (K s
(Z1=| 5@ s me® sy V2EEED (1,5) |, O1)
, . (M
0 V25 D (s1.52) ixgI M (51,52)

where £® and £ have the same properties of causality as G® and G4 respectively. To
first order in u;, we have
(R.A
s D (51, 59)
~ 8 (s1—52) (—201“‘“2 Tz, (i 51) +u187,7,0 12B4GE (51) ¢ (51)
Uy

+ 7871;20141&2113@ {iG%’(K) (s1,51) — igm,(K) (S/ — 0)}) , (92)

(M
2?1'522( ) (51.52)

~ 8 (51 = 92) (=201 T, (1) + 187,70 2049 (57 = 0) 77 (s =0)

+ u—218;l;20“‘”2"3“4 IiG%’(K) (s’ =0,s5 = O) — §G®a4,(K) (s’ = O)]) ,
(93)

and

J(KLT,
s ®ID (51 ) ~ 0. (94)
Lastly, we rewrite the equations of motion Egs. (71) and (77) explicitly in terms of the various

Keldysh components (i.e. R, A, K, [,], M)
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o0
(R az
20 =3 [ dngie® o1 9F 6

B
_; Z /dsz ggllgz.ﬂ) (51.52) Qg (s'=0), (95)
?2 0
(R (R
G (51, 59) = G2 B (51, 52)

o 0
J(R azas,(R J(R
+y f f ds3dsa G (51, 53) TR (53,59) G (54, 59)
EER

(96)

ayaz,(A) araz,(A)
Gzlzl " (s1,52) =G5> (s1,52)

o0 00
J(A azag, (A J(A
+3 / / ds3dsa Gole> ™ (s1,53) TEEE Y (53,50) Gt ™ (su,2),
O7)

ayaz,(K) ajay,(K)
Galzl" (s1,52) =G (s1,52)

o0 o0
(R (R (K
+Zf/d53dS4Q?11;i3( ) (51, 53) =B )(S3,S4)G(;lj§l22( ) (54, 52)

r3rg
73 7‘4 00

o0 o0
+ / f ds3dsa Gy (51,53 Zig Y (3050 G (su.2)

rr3 rarg r4r
BB
, : @z, (M :
—2y" f / ds3dsy G2 (s1,53) B0 (53, 59) G2 D (54, 59),
(98)
ajaz, () _ cma2,(N
Grr G182 =G0 (s1,52)
B B
(M azag,(M ,
+3 f f ds3dss GEE M (1, 53) TR (53, 54) G D (54, 52)
o0 00
: @ag. (A (A
—IrZ://€1S361'S4g§1'§;3 (51,53 TP (53, 54) GHD (54,52,
3740 0
99)
ayaz, (M) _ c91a2,(M)
P17 (s1,52) —g;1;2 (s1,52)

r3rg rqrp

BB
+ f f ds3dss G ™ (51, s T (53,50 G M (54,52,
30 0

(100)
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where the various Keldysh components of G¢ can be found in Appendix C. Equations (95)—(100),
along with Egs. (92)-(94) and Eq. (90) together form one of the main results of this paper. These
can be readily used to study out of equilibrium dynamics for strongly interacting systems. By
considering only terms up to first order in u1, our approximation can be thought of in some
sense as a Hartree—-Fock—Bogoliubov (HFB) approximation in the strong-coupling regime. In
future works we will study these equations of motion for various nonequilibrium scenarios. In
the remainder of this paper however, we study the equilibrium solutions to the equations of
motion above, going beyond the work in Ref. [62] in which only the equilibrium solutions at the
one-loop level in the imaginary-time formalism were studied.

4. Equilibrium solution

In studying the equilibrium solution to the equations of motion derived in the previous section
we consider a homogeneous system at zero temperature. As a result, it is easier to work in k-space
rather than real space. In equilibrium, the mean field equation of motion Eq. (95) reduces to [85]

$ =G0 (o —0) 2 (s’ =0), (1on

where we used the fact that the superfluid order parameter is constant in time, ¢! (s1) = ¢.
Expressions for G'>® () and G1%® (a)’ = 0) are given by Eqgs. (C.8) and (D.2) respectively.
We also have that in equilibrium all the various real-time Green’s functions may be expressed in
terms of the spectral function G»)

G @) =-21m [ @)]. (102)

One can calculate G5 from G via the fluctuation dissipation theorem (FDT) [70,85], which
at zero temperature is

Géz,(K) () = _l-G}CZ,(P) (w) sgn (), (103)

hence one need only focus on the G® equation of motion directly. In equilibrium, it is easier to
work in frequency space, hence we may rewrite the G® equation of motion as [85]

Gzlaz,(R) (w) = G192 B (o) 1 Z G193 (R) () EZ}T‘“(R)GZMZ’(R) (w), (104)
aszas
where

2]1;2,(R) _ Z}%L(R) e {|¢|z e —no)}, (105)
1 2

2:]1;1,(13):?{1{2@)1) —i—iG;/l:(lg) (s’:O)}, (106)
1 2

0= 2w {2(¢2) +iGa s (s/=0)}, (107)

d

eg=—2J Zcos (kia), (108)
i=0

and n and n are the average particle densities for J # 0 and J = 0 respectively. Note that

no=Tu/UJ. (109)
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With a bit of algebra, one can show that

]

G () =

[{QZI B (@)} il <R>] [{glz,(R) (@) = 2]‘;2’(’”] ‘222 <R>‘
(110)
22.(R)
GEZ,(R) (@)= 2R (a1 =] 2L (R) fz R (1] s 12.(R) 2,R) |2
[l @) =5 [{gr2® ) - 2 O] - 5
(111)

From here, the next step is to simplify G;(»Z’(R) (w) by starting from Eq. (110) and then apply-

ing Eq. (102) to obtain an expression for Gllzz’(p ) (w). One can then express Gllzz‘(p ) (w) in the
Lehmann representation

12,(p) _ (s,+) B (s, )Y\ _ G,-) (s,—)
G1 (w)—ZnZizlz 5(w AE! ) i 8<a)+AEE )] (112)
N

where s is the branch number, AE ]g’ﬂ and AE ]g’_) are the particle and hole excitation energies

respectively, and zg’i) are the corresponding spectral weights. Once written in this form, we

can simply read off the expressions for the desired quantities. We do this in the following by
considering the Mott insulator and superfluid cases separately.

4.1. Mott insulator phase

In the Mott insulator phase, ¢ = ‘222 (R, A)‘

=0 and Eq. (110) reduces to

G2 B () = ! . 113
k (w) [{ng,(R) (a))}_l B Eii»z’(R) (a))] (113)

One can rewrite Eq. (113) as

12.(R) ) 1 /O 1
G (w)=z , (114)
k ML"( — MBS )+ jor MU (0+AES):) +io+
MLk
where
2
TB: +./(B;)” —4Cy
AEI(VZE)I‘{’: k (21() k7 (115)
BE:_{Agw)_MH} _Z]%MR), (116)
-1
C;z—(U—l—M){Z%Z‘(R)— [>® (o =0)] } (117)
@)
@ U+np £ AEM”;

L= , (118)

Z
MI,k +) =)
AEMI k + AEMI k
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and AE™) are the excitation energies in the atomic limit (i.e J = 0)
AED = Eno+1 — Eny,
Ag(i) =Cnp—1— 5n07
U
&= En(n— 1) —nu.

Using Eq. (102) along with the Sokhotski-Plemelj theorem
1
——— =Find PlL-1,
xtiof T )+ (x)
we obtain for the spectral function

12,(p) _ (+) + ) _ =) =)
GIZ (w) =27 [ S(a) AEMIk) ZMIkS <w+AEMIk>]

21

(119)
(120)

(121)

(122)

(123)

By comparing Eq. (123) to Eq. (112), it is clear that AEl(vi)E and Zl(v[I) j are the excitation energies

and spectral weights respectively.

4.1.1. Calculating ny and n

At the HFB level, one needs to calculate AE &) and ). in a self-consistent way since there

MI, k MLk

is no closed-form expression for the self energy Za 2(®) This becomes evident when one notes

that E~2 (R) depends on n, which in turn depends on n; through

n-
(27.[)51' k
IStB.Z.

which in turn depends on G12 K (5 = 0) through

ng= % {i 1%2’(1() (s/=0) — 1},

in the Mott insulator phase. Using Eq. (103) we obtain for G

2K ) Y\, O )
G2 () = 2nl{M1Z3(a) AE! )+ZMI£8<w+AEMIk)},

2(K)( )

and therefore

1 do _a1a5,(K)
I’lk = E l / 27[ Gk ( )
—0Q
_1 (z(ﬂ 4O 1)
2 UMk T mrk ‘

Hence the self-consistent solution can be formulated as follows:

1. Make an initial guess for n.
2. Use n to calculate 211;2’(1?) via Eq. (105).

3. Use E%Z’(R) to calculate AESEI)]; via Egs. (115)~(117).

(124)

(125)

(126)

(127)
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(i)

4. Use AE i to calculate zf\f} via Eq. (118).

5. Use Zl(vl) to calculate ny via Eq. (127).

6. Use ng to recalculate n via Eq. (124).
7. Repeat steps 2 to 6 until self-consistency is reached.

In Fig. 5, we compare the 1-loop and HFB equilibrium solutions in the Mott-insulating phase by

calculating the excitation energies AE (i)a the spectral weights z( )a and the quasi-momentum

distribution ny for a square lattice system with /U =042, J /U 0.04, and BU = o0. The
1-loop solution, which was studied in Ref. [62], amounts to approximating the self-energy by

2.8 = ¢;, in the Mott-insulating phase. From Fig. 5 we see that there is little qualitative change
in the excitation energies between the two approximations. The same can be said for the spectral
weights for values of k well away from zero, however there are appreciable differences in the
long-wavelength limit. These differences can be more clearly visualised in the quasi-momentum
distribution where we see that the k = 0 peak is sharper in the 1-loop approximation than the
HFB approximation.

One way to account for the differences in the spectral weights is to consider how well each so-
lution scheme approximates the phase boundary between Mott insulating and superfluid phases.
In Fig. 6 we compare the mean-field (MF) and HFB approximations of the phase boundary along
with the exact calculation. Fig. 6 clearly shows that there is significant quantitative improvement
in the phase boundary calculation when going from the MF level to the HFB level. Moreover,
in 1 dimension, where the MF approximation is expected to be poor, we have a clear qualita-
tive improvement in the phase boundary calculation where we capture the concave shape of the
phase boundary rather than the convex shape found in mean field theory. This behaviour has also
been captured in similar strong-coupling expansions [86]. The closer to the phase boundary (in
the Mott-insulator phase), the sharper the k = 0 peak is in n;. Since the MF approximation al-
ways underestimates the location of the phase boundary more than the HFB approximation, the
1-loop approximation — which uses the MF approximation of ¢ — will wrongly predict a sharper
peak as compared to that in the HFB case. Equivalently, the 1-loop approximation will always
overestimate the values of the spectral weights in the neighbourhood of k = 0.

Another way to assess the accuracy of the two approximation schemes in the Mott-insulating
phase is to look at the average particle density n [Eq. (124)]. In the Mott-insulating phase, n =
[/ U7. For the same parameter values mentioned above, we have

n~1.22, (1-loop), (128)
n~1.08, (HFB), (129)
n=1.00, (exact), (130)

where we see that the HFB approximation yields a significant improvement as compared to the
1-loop approximation.

4.2. Superfluid phase

In the superfluid phase, ¢ and 222 R4 are non-zero, hence we must use the full form of

Eq. (110). We begin by calculatmg ¢ from Eqgs. (101) and (90). Without loss of generality,

we can assume that ¢ is real which further implies that the quantities 1G11 (K)( =O) and
22,(K)

="o (' =0) are real. Based on these assumptions we obtain
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Fig. 5. (Colour online.) Comparisons between the 1-loop and the HFB equilibrium solution in the Mott-insulating phase.
The parameters used were d =2, Ny = 10002, n/U =042, J/U =0.04, BU = oo. (a) The particle excitation energy

AE (+)-, (b) the hole excitation energy AE (7)~, (c) the particle spectral weight z(+)~, (d) the hole spectral weight
MLk MLk MLk
zl(v;I)E’ (e) the quasi-momentum distribution nj; in the 1-loop approximation, (f) nj; in the HFB approximation. Note that

= (0,0), M = (m,7), and X = (7, 0).

12.(R) (¢ = 0)} !
b= 9 (@ uO)} +2dJ —2(n—n0)—%{iG§i(§K) (s/=0)}. (131)
1

As is clear from Eq. (131) the mean field ¢ needs to be solved self-consistently along with the
full propagator G. We now calculate G®. Starting from Eq. (110), one can show that
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Fig. 6. (Colour online.) Comparisons between the MF and the HFB approximations of the phase boundary along with the
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Fig. 1 in Ref. [88] for d = 2, and Fig. 3 in Ref. [89] for d = 3.

+ +) + _ (=) +
(or + AEL) (0 = AEG)) (0 +1U + )

6" @ = N TRy TRy ERY oy 132
(a) —AESFJ.(.) (w —i—AESFJ-{.) (a) —AESFJ—(.) (a) +AESFk>
where
~ s ~\2 -
AEY . = D (B];) a 133
SEk 2 ’ (133)
2 2
‘222 (R)‘ (AE(+)];) —(AE(_)];) , (134)
= (A ) A () 2.(R)
Ck_<AE QAEM”) U+ w? ‘2 ( (135)

In a moment we will show that the AE ;SF)/E are the excitation energies in the SF phase. Before

B

doing so, it is worth commenting on our approximation for the self energy in the superfluid phase.
In Appendix E we show that in the full HFB approximation the excitation spectrum is not gapless,
violating Goldstone’s Theorem, whereas if we ignore contributions from the anomalous Keldysh
Green’s function zG22 éK) ( O) there is a gapless spectrum. The latter scheme is called the

HFB-Popov (HFBP) approx1mat10n [90]. Thus in the HFBP approximation we have
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22,(R)
k

=u; (9)°, (136)
. _\/{ng) (@ =0))"+2d4J

—2(n - np). (137)

u1
The HFBP approximation is most accurate for values of the chemical potential away from integer

values which is evident from the fact that G~2 (R (w) (and hence G22 (K) ( O)) is proportional

to 222 (R) , which in turn is proportional to u, which is small for values of the chemical poten-

tial away from integer values. Therefore zG22 (K (

particle density n by a factor of u.
For the remainder of this section, we apply the HFBP approximation. Since the energy spec-

s 0) ought to be smaller than the average

trum is gapless in this approximation, i.e. AE — 0, care must be taken in calculating the

F,k—0
spectral function from the retarded Green’s functlon Hence we will break the calculations up

into two cases: the general case k # 0 and the special case k = 0. We start with the general case.

42.1. k#0
When k # 0, we can derive the spectral function from the retarded Green’s function as we did
above in Sec. 4.1 using the Sokhotski-Plemelj formula as we did in the MI case [Eq. (122)]

GP ) @) =2m {05 (0 — AEL) ) — 2l )S(w—i—AE(l))

SF,k SF.k SF k SF.k
2,+) (@) -) (@)
+257 5(0) AESFk> & 8(w+AESFk>} (138)
where
() Cp) (©) =) (©)
265 — (—1)**! (AESFk + AEMI k) (AESFE + AE ) ({U ot AESF k) (139)
i 28ES) | (AEY ) ~ (aEY )2 |
SF.k SF.k SF.k
It is clear from Eq. (138) that AE (Y) : and z2) are the excitation energies and spectral weights

SF,k
respectively. Moreover, for each branch the partlcle excitation energy is equal to the hole excita-

tion energy. Using Eq. (103) we have for the Keldysh Green’s function

12,(K) N RCIS P (1.5 M
G2 (@)= 2m{ZSF];8(w AESFk>+SFk8<a}+AESFk)

2,+) 2 ) 2)
+207 5<w AESFk)+zSFk8<w+AESFk>} (140)
422 k=0

In the zero-quasi-momentum case, G~2 (K) (w) becomes

+ (+) (=) +
(a) +AEML];:0>< — AE() 0) (0 + (U + 1))

+ (e8] )( + (D ) +\2
(w AE i o)\@T+AEL: (@)

Gli(()R) () = (141)

One cannot use the same Sokhotski-Plemelj formula as we did above in deriving the spectral
function, instead one must used a generalized version of the formula

J(x) Jf ) }

_— —_— 142
(X + loi _ XO)H (x _ xO)n ( )

=Finf"V (x0) 8 (x —x0) + T (n) P {
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Doing so yields the following spectral function

12,(p) _
GE:O (w) =27

where

lim |z
k—0

[0 o (0-aEQ )~ 25 od (0 +AES )

SF,k=0 SF,k=0 SF,k=0 SF,k=0
. 2,+)
+ ,%l_r)% [ZSF,IQ SF k ] 8 (w)} (143)

(+) =) (+) =)
. (U+“)( EMIk =0 AEMIk o) AEMIk OAEMIJE:O

. (144)

In both k cases, G;Cz’(p ) (w) is both properly normalized and signed [62].

In the case where k = 0, one needs to be careful when calculating Glz’(K) (w) as the FDT
[Eq. (103)] is ill-defined for w = 0. Fortunately, Ga2 (&) (w) =0 (see Appendlx F for a proof).

Therefore we have for Ga2 (K) (w)
G2 w=0)=0, (145)
12,(K) _ L+ M 1,- 1)
G0 w#0)= 2m[ 8(a) AESFk)—i— Sy S(a)—l—AESFk)] (146)
4.2.3. Calculating nj; and n
One can calculate ny from
1 /
np=5(iGF ( =0)+2{@m 5o} 1012 - 1), (147)
where
(1,+) (2 +) 2,=) 7
- ~12,(K) (1 SFk’+ZSFk’+ SFk’+ZSFk’ lfk?éo
iG- (t = O) i Lo . (148)
k ( +) 4z =) ifk=0
SF k SF k

And lastly, the average particle density n is calculated using Eq. (124). Therefore, at the HFBP
level, the system can be solved self-consistently as follows:

© NN UL A W~

. Make an initial guess for n.
. Use n to calculate ¢ via Eq. (131).
. Use n and ¢ to calculate 212 ® and 222 B via Egs. (105) and (136).

Use 2‘2 ‘(B 14 calculate AE‘” via Eqs (115)=(117) and (133)=(135).
. Use AE( )~ to calculate z 7 ) via Egs. (139) and (144).

. Use Zs to calculate ny via Eqs (147) and (148).

. Use ny to recalculate n via Eq. (124).
. Repeat steps 2 to 7 until self-consistency is reached.

In Fig. 7, we compare the 1-loop and HFBP equilibrium solutions in the superfluid phase by
calculating the excitation energies AE s )~ and the spectral weights z F ) for a square lattice
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Fig. 7. (Colour online.) Comparisons between the 1-loop and the HFBP equilibrium solution in the superfluid phase. The
parameters used were d =2, Ny = 10002, n/U =0.36, J/U =0.07, BU = oo. (a) The first particle/hole excitation
energy branch AE;IF)E’ (b) the second particle/hole excitation energy branch AE;ZF)E, (c) the particle spectral weight

1.+ : ( 2,
ZSF,E for the first branch, (d) the hole spectral weight Zg SF.
(o

the second branch, (f) the hole spectral weight zSF’ ]-()for the second branch. Note that I' = (0,0), M = (7, 7), and
X = (7, 0). ’

lF’i)for the first branch, (e) the particle spectral weight z E)for

system with /U = 0.36, J/U = 0.07, and BU = oo. The 1-loop solution amounts to approxi-
mating the self-energy by E%Z’(R) = €5+ 2u; |¢|* and Z%Z’(R) =u (¢)? in the superfluid phase.

We see that there is little qualitative change in the excitation energies between the two approx-
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imations. Moreover, the spectral weights in the second branch s = 2 change very little as well.
We do observe appreciable differences in the spectral weights for the first branch s = 1 in the
long-wavelength limit, similar to the Mott-insulator case. As was argued for in the Mott-insulator
case, since the HFBP calculation yields a more accurate phase boundary, we believe this method

will also yield a more accurate result for zélF’j]-{:.) in the long-wavelength limit as compared to the

1-loop result.
4.3. Phase boundary

To calculate the phase boundary, we make a slight modification to our solution scheme for
the MI phase. The modification comes from the extra step of calculating the critical hopping J...

Consider again the ¢-equation Eq. (131). At the boundary, ¢ = 622 (K) ( 0) 0. Solving for
J we get

1 —1
Jo= 2d{2u1(n—n0) {g>® (o =0)] } (149)

With this established, we can outline the phase boundary solution as follows

Use nj; to recalculate n via Eq. (124).
Repeat steps 2 to 7 until self-consistency is reached.

1. Make an initial guess for the average particle density n

2. Use n to calculate the hopping J., see Eq. (149)

3. Use n and J, to calculate the self-energy 2%2’(1?) , see Eq. (105)
4. Use 212’(R) to calculate AE&)~ via Egs. (115)—(117).

5. Use AE( )~ to calculate 2 )- via Eq. (118).

6. Use ZI(VI )~ to calculate ny via Eq (127).

7.

8.

This calculation ends up reproducing the phase boundary found from the Mott insulating side
since the anomalous Green’s functions vanish at the phase boundary.

5. Discussion and conclusions

The ability to address single sites in cold atom experiments [11] has allowed for experimental
exploration of spatio-temporal correlations in the BHM [49]. This has led to theoretical investiga-
tions of these correlations in both one [48] and higher dimensions [46,51,59,61] in the presence
of a quench. In dimensions higher than one, where numerical approaches are limited, a theoreti-
cal challenge has been to develop a framework which can treat correlations in both the superfluid
and Mott insulating phases over the course of a quench. An important result in this paper is that
we have developed a formalism that allows for the description of the space and time dependence
of correlations in both phases during a quench. The specific approach we took was to derive a
2PI effective action for the BHM using the contour-time technique building on the 1PI real-time
strong-coupling theory developed in Ref. [31] which generalized the imaginary-time theory de-
veloped in Ref. [62]. From this 2PI effective action we were able to derive equations of motion
that treat the superfluid order parameter and the full two-point Green’s functions on equal foot-
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ing. We emphasise that our formalism is applicable even in the limit of low occupation number
per site.

Even at the level of the 1PI real-time theory, the quartic coupling becomes non-local in time,
which in the 2PI theory leads to complicated expressions in the equations of motion, involving up
to four time integrals, even at the first order in the interaction vertices. We showed that by taking
a low frequency approximation, this complexity can be reduced to at most a single time integral.
The equations of motion obtained at this point are somewhat similar to previous 2PI studies of
the out of equilibrium dynamics of interacting bosons [63,75,91-94]. However, in contrast to
these previous studies, the equations of motion we obtain are a series of integral equations rather
than integro-differential equations.

We showed that taking a HFB(P) approximation of the 2PI effective action yields significant
improvements to the calculation of the particle density and phase boundary when compared to
the 1-loop approximation considered in Ref. [62]. Our results also suggest that the HFB(P) ap-
proximation gives a better account of the spectral weights in the long-wavelength limit. These
improvements in the equilibrium case suggest that our formalism should be suitable for accu-
rately describing spatio-temporal correlations in nonequilibrium scenarios.

The space and time dependence of correlations after a quantum quench give insight into the
propagation of excitations generated by that quench, and hence we hope that the formalism we
have developed here will allow further theoretical investigation of the excitations after quenches
in the BHM, to complement experimental efforts in the same direction. In future work we plan to
investigate a broad range of quench protocols, including quenches in the Mott phase where one
can study the light-cone-like spreading of single-particle correlations. Other quench protocols of
interests are those beginning in the superfluid phase and then ending in the Mott phase. In such
scenarios, one may be interested in studying for example the possibility of aging-like phenomena.
Lastly, we plan to investigate generalizations such as the inclusion of a harmonic trap, coupling
to a bath [71,95] or a multicomponent BHM.
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Appendix A. Deriving the strong-coupling effective theory

In this appendix, we briefly review the derivation of the effective theory for the BHM
[Eq. (40)] and make note of some minor mistakes in Ref. [31] (all of these mistakes relate to
mislabelling of Keldysh indices — numerical results in Ref. [31] are unaffected). The deriva-
tion given in Ref. [31] was for the case of the Schwinger—Keldysh contour, here we extend the
derivation to the more general contour illustrated in Fig. 1. We make use of the compact notation
introduced in Section 2.6 when it is helpful.

We start with the generating functional Z [ f]

Ly (20812 )i g2 gy iSs
Z[fl1= / [Da®]e? 22 <21’1’21f1f2>”’11f1a’2~fz+150[”]+15f[a], (A1)

where J&12 , is defined in Eq. (53), Sy [a] is defined in Eq. (38), and

rir,TT
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)
Sap o
1 f
So=5 / s [";‘m (s) <[10L1m fc}aazozamas) a®, (s):| + Sy [al, (A2)
0 r )
is the atomic part of the BHM action. Next we introduce an auxiliary field ¢ via a complex
Hubbard—Stratonovich transformation [31,62] so the generating functional Z [ f] takes the form

i 1 _119192 a ay . . .
z [f] — / [Dwa] / [Daa] 6_2_! Zﬁ;z(f[‘] 1];1';21112)11/;11.11 WFZ-TZ _IS\[/[a]+lSO[a]+le[a]’ (A3)
where

Sylal=Y v& at . (A4)

We can eliminate the iS¢ term in Eq. (A.3) by making a field substitution, ¥ = — —v% +
fi ., which gives

Z[f]Z/['Dw“]e21‘!2?172(;[11]‘;11?221112)(‘//;11-11f?all,fl)(w:zz,fzf?azz-rz)JriWOW]’ (A.5)
where
. 1 . .
iWolyl — _— al ,iSolal+iSylal
e N.O/[Da ]e , (A.6)
No = f [Da®] e folel, (A7)

In obtaining Eq. (A.5) we absorbed a factor of A into the y-measure [ [Dy“]. Comparing
Eq. (A.6) with Eq. (19), we see that Wy [¢] is the generator of atomic CCOGFs G¢ for the
bosonic field a. The CCOGFs considered explicitly by the authors in Ref. [31] were

g;’:;] ), (sl, ey Su, si R s,;)

nterms n terms

1...12...2
— oo PEVIN o / /
= g}_" . .7,a|...ano¢§‘..a{1 (Sl’ e Sns Sy S”)
———
2n terms
T T T T
=(-1 <|:‘L'1:| ...[rl] [rl] ...[rl] >
oo ape! aqey’ alal!
8% Wo [¥/]
X * * / /
8f7,a/l/ (s1)... aff,a;'/ (Sn) SfF,a;” (sl) e sf?,ot,/{’ (Sn) y=0
c
=i (1) (7.0, (51) -G, ) (51) - (57)) (A8)
" 0

Note that Eq. (A.8) corrects Eq. (6) in Ref. [31]. Moreover, note that for the uniform BHM as
considered here, the atomic CCOGFs are independent of site index, and so we drop these indices
when they do not affect the clarity of the exposition in this paper.

Inverting Eq. (22), with G — G¢, we may rewrite W as

00
1 Aay...az, ,C n
Woly]=— Z Z (2n)! g?ll::?;nnvc Fa,]rl te g,zrzn’ (A.9)
7 on=1 ’
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which corrects Eq. (7) in Ref. [31] by a factor of — (—1)", and so

A Wol¥] — i 202 Siulv], (A.10)
where
1 -
Sin V1= Z GiTn Vil Vi (A1)

which corrects Eq. (8) in Ref. [31] by the same factor of — (—1)".
Truncating Wy [] to quartic order in the i fields and setting the source currents f to zero in
Eq. (A.5), the action from Eq. (A.5) is found to be
1 L. _ @@= G c a
Ser 1= 53 (5 e T

rr,Tmn
rra

1
- E g;lll‘i'lzz‘gzl'léll4 Cw;l ]1'1 wr (5 wra 313 I/Ir 14" (A 12)
z

As pointed out in Ref. [62], the quadratic terms in the equilibrium action of the form in
Eq. (A.12) allow one to calculate the mean-field phase boundary, however it yields an unphysi-
cal excitation spectrum in the superfluid regime [96]. Similar problems also occur in analogous
expansions for fermionic systems [97,98]. This issue is circumvented by performing a second
Hubbard—Stratonovich transformation [31,62]. Starting from Eq. (A.5) (keeping the source cur-

rents f this time), we introduce a second field z such that

27— f [Dz4] ¥ Trn(hin e ) 5y H WIS ] (A.13)
where

Sylzl= Zf” 2., (A.14)

. 1 . .
W] - / [Dy“] o Molaisety], (A.15)
Ny = / [Dy4] e Shl¥], (A.16)
=3yl (A.17)

F

By comparing Eq. (A.13) to Eq. (19), we can see that the COGFs of the z field generated by Z [ f]
are identical to those of the bosonic field a. The last step is to perform a cumulant expansion of
W [z] [31,62,99]. Upon doing this, we can write the generating functional Z [ f] as

Zif1= / [Dz] ¢! SommlaIiSy ], (A.18)

where Spym [z] is given by

1 oy aiaz,c
1a2 -1 . a1a2 ai a
Spam [2] = 20 Z 2‘17172,T1T2 + [g :|~ 7 + Ol G RAGR

> rnr2,nn
P17

o0
1 ~ azp
+ 20 Gy (L ) e (A19)
r n=
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with

LAt o1, _.C [ _l]azmaém,L') T T
ull- ]_[ ([ ]szrz,mil G )G (A.20)
and the u vertices contain an infinite set of “anomalous” diagrams, i.e. diagrams that contain
internal inverse bare propagator lines. Such diagrams have no physical meaning and should not
contribute to the physical quantities [99]. It should be noted that in addition to the physical
diagrams, the u vertices also generate “anomalous” terms. In Appendix B, we show that these
anomalous terms cancel one another out when calculating the superfluid order parameter ¢ and
the full two-point CCOGF. That being said, the action in Eq. (A.19) contains an infinite sum,
therefore one will eventually have to truncate said action which will ultimately lead to only
certain subclasses of “anomalous” terms cancelling out.
In this paper, we truncate the action to quartic order in the z fields
JE— ayaz,c
Serm 2] = 21' Z (2‘];1172?”’2 + I:g_l]*l*z + Oy ll 6;11?22) Zfll 7 Zf;n

ryr,Tn
r1r2

0 ajazaszay ~a1dazaq a as asq
+ Z 4! ( TIT27T374 +u TITZTST4 ) Zr 7] Zr rzzr T3Zr T4’ (Azl)

where we approximate ii®) by

e _lualazasamc ( G®3a4. C) , (A.22)

772 2, TIT2T3T4 374

and neglect any contributions from #®. In Refs. [31,62], all i terms were neglected. By includ-
ing the u term given in Eq. (A.22), one obtains equations of motion which are accurate to first
order in G®-¢, which is not the case in Refs. [31,62]. Lastly, we stress that this approach leads
to a strong-coupling theory that is not simply an expansion order by order in J/U.

Appendix B. Cancellation of anomalous diagrams

In this appendix, we show that the anomalous terms introduced in Appendix A do not con-
tribute when calculating the mean field ¢ and the two-point CCOGF G°¢ of the original field a.
For the sake of economy in writing, we adopt the notation introduced in Section 2.6 and condense
it even further such that

Xy = XG0 (B.1)
X, YX_ZX”Y” (B.2)

We start with Eq. (A.3)
2= [ vl | [Da]eH (U TV vaiSylaislalissto

Z/[Dwa]/[paa]e%(_%w Lm)‘pﬂ‘/’)‘2< i(Sw[aHS/[a])) , (B.3)

So
where we performed the field substitution ¥, — —/. We first establish a relationship between
the expectation values of the a-field, ¢, and of the ¥ -field, V,. To do this, we start by calculating
dx, = (ax, ) as follows
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¢x1 =<am)
1 $Z[f]

—i lim
f—>OZ[f] 8fx1

_ / 4] 7( LITAR N IO {(ei(Sv,lal+S/-lal)> }
f 0 Z [f] fol So
— i T 1 a L<*l[ e )% Vi 8 i(Sylal+S¢lal)
- l}anoZ[f] [Dya]e? (2 ax3) V2 S <e y 1 >So . (B4

and then integrate by parts to get

Z ¥ f[Dwa] 8 {e%(_%“'];@a)w‘zwﬂ}( (Sw[a]+5f[a])>

=i lim
f—0 wal So
[ ] / Ty o (B g s ey i WLy 71
o I ZT7T "
Ir _
=5 [J 1]mz Va,. (B.5)
which establishes a relation between ¢, and ),. Note that
° =0 (-9 (B.6)
5P, st

where @ is some arbitrary field. By similar calculation, one can show that

1 1 1
G¢ = [J*l] - [rl] - [J’l] Ve, B.7
xix T 2 X1X2 + 2 X1X3 2 X2X4 *3X4 ( )

where VY | is the two-point CCGOF for the field . Taking the inverses of the above relations
yields

Vi, = (2Jx1x,) - (B.8)
Vém == (20xm) + (2Jn1x) (2002x) G- (B.9)
We now use the i theory to calculate the 2PI equations of motion for Vy, and V{ , . The

action Syux [¥] for the auxiliary field i can be expressed as

1/ 17 _ N T
Saux [W] = 5 <_§ [J 1]x1x2) le 1pxz - Z (zn)!gxl...xzn wxl t ¢x2n’ (B.IO)
n=1

and hence using this action in Egs. (66) and (67) and rearranging terms, we obtain the following
relations

VXI == (ZJX1X2) g;2x3 VX3

]

1 .
- (ZJXIXZ) Z mgffzmxusmnnﬂ
n=2 :

1 C
X {WVMVM—F (le3x4)}Vx5...Vx2n+l

+ (2Jx13) Exy [QQ”)*C, v, V(z)’c] : (B.11)
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V)cc‘lxz (ZJXIXZ) - (ZJXI)G) g;3X4V)(c:4X2

o0

1
- (2Jx1x3) {Z mg§3x4xs-.-)€2n+2v"5 T Vx2n+2 } Vﬁuz
n=2

= (2010) E, [0 VO VO e (B.12)

where 2 and ¥ are obtained from the corresponding I';. Next, we apply Egs. (B.8) and (B.9) to
obtain recursive expressions for ¢ and G°¢

¢x1 = _gf;m ( xpx) >¢x

_ ’; _(2n 1_ 3)!g;1x2x3x4...xzn {m <2Jx2x§) ( X3x3) ¢x2¢x3

i

@ () () 5]

<2Jx4x).. ( ik )¢x4 2

B[00 Q) by = (20) + Q1) (200) Gy |, (B.13)

o
1
Glm = {g§1X3 + Z mg;mmu.mw ( Txix; ®x, ) <2szn+1xzn+1¢x§n+1>
n=2

+ Eil]l?c% I:g(Zn),c’ Q) by — (2JXY) + 2Jx) (2Jyy’) G;/y/]}

x {8 = (241) 65, |- (B.14)

We now derive recursive relations for ¢ and G¢ by an alternative approach: we apply the 2PI
approach to the theory of the z-fields, allowing for anomalous terms, which is given by Eq. (A.19)
and written again here in compact form

1 1€ 5 1
SBHM = 2‘ ([g 1] + Mx1x2> Zx 1 Zxy + 5 (2Jx1x2) 2x1%x;

X1x2
o0

1 3
+ 112:; a0 (txy o+l ) Zoy -+ Zny - (B.15)

As noted in Appendix A, the Green’s functions for the z-fields are the same as those for the
a-fields. Similarly to the calculations leading to the recursive relations Vy, and Vy, ., we calcu-
late the following recursive 2PI relations for ¢ and G¢

¢x1 = _g§1x2 (2JxZX3) ¢X3 - g;1x2 ﬁxz)q ¢X3

o]

1
c -
- gx1x2 E : (2n —3)! {”X2X3X4X5mx2n+1 F U x3x4x5.. X241 }
n=2 :

1 .
X { m‘ﬁxafpm Glaxy } Brs - Doy
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— G B [_u(zn) _a@ 4 Gc] ’ (B.16)
G)ccm gﬁm g;wm (2JX3x4) GX4xz g;mﬂme;m

o0
-5 Z—l {u +il Vs - b | GS
X1X3 (2}’1 _ 2)' X3X4X5...X2n 42 X3X4X5... X202 X5 0t X242 X4X2
n=2

. 2 ~ 2 . .
+Q§m2§1‘§§4[ u® — it "),qb,G‘]G;m. (B.17)

We momentarily drop the terms containing # and focus on the remaining terms in the recursive
expressions

¢x1 = _g;IXZ (2])62)(3) ¢x3

o]

1
- g;m Z ﬁ”stx‘m Xont
1 1,
X mfbm b, + (l Gipxy) [ Brs -+ Bros
— Gty By [, 9,6 | + (B.18)
X1xp SX2 ,Q, ceey .

lex2 = g;pcz g;1x3 (2Jx3x4) G)C4x2

o0
1
- g;1x3 (Z 2n—2)! y Uxzxgxs.. Foni2Pos - - ¢xzn+z> G,mez

2
+ G Ty [ u®. ¢, GC] Gyt (B.19)

We now iterate the recursive expressions: for every additive term in Eqgs. (B.18) and (B.19) that
contains at least one u vertex, we apply the recursion relations to each ¢ and G¢, and keep
explicitly the following (infinite) subsets of terms respectively

bxy = =G50y (200003) B3 (B.20)
GSix, = =953 <2me3> gx 12 + G ( X3X4) G; %, (2]x4x3) gchz (internal lines),
(B.21)
G oy = G, —g;m( xm) Gt,,, (extemal lines), (B.22)
which yields

b1 =G5, 2oy ) b1,
Z (2n 1 —3)yg;1x2x3x4 X2 {m ( xzxz) ( x;xg) ¢x2¢x3

[ = @) + (201) (2001) G ]}

(2Jx4x) ( i, >¢x4 28

+

N~
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+ 8, [99, @I o, = (20) + Qo) (2yy) G5, |+ F2 (697
(B.23)

o0
) ) 1 .
Gf‘TIXZ = {g)cfl)@ + Z mg;wammmnﬂ (2‘19(4’&") e (21x2n+1xén+1> ¢le& T '¢x§n+1
n=2
+ 3% [GO0, Q) e — (20) + @) (21) G5, ]
. c N —1
T ]

where the F¢-6° [(g”)fl] terms contain an (infinite) set of terms with internal inverse atomic

propagator lines (G%)~!. These are the anomalous terms we made reference to in Appendix A.
Note that in obtaining Eqgs. (B.23) and (B.24) we made use of the following facts

EX] I:g(Zn),c’ _A’ B] — _EXI I:g(Zn),c’ A, B] , (B25)
z, [600e, ~a.B] =z, [67<. 4. B]. (B.26)

Equations (B.25) and (B.26) can be proven straightforwardly. First, note that diagrammatically,
8y, [G®¢, A, B] and T [G?m-¢, A, B] are represented by infinite sums of diagrams, where
each diagram is made up of vertices G®")-¢, each of which contain an even number of state-labels.
Therefore, the total number of vertex state-labels for each diagram is an even number. Each
state-label will either contract with a one-point propagator A, contract with a two-point propaga-
tor B (along with another state-label), or represent an external state-label. Keeping in mind that
each internal line B contracts with two vertex state-labels, we must have that each diagram in
8y, [G®¢, A, B] and wa [G@m-¢, A, B] contain an odd and even number of A factors re-
spectively, since the former contains an odd number of external vertex state-labels and the latter
contains an even number. Egs. (B.25) and (B.26) immediately follow from this observation.
Comparing Eqs. (B.23) and (B.24) to Eqgs. (B.13) and (B.14), we see that these are only

consistent if all anomalous terms i.e. i and F%G° (g")_l terms are omitted from the 2PI

equations of motion. This completes the proof that the anomalous terms cancel one another out
when calculating ¢ and G°.

Appendix C. Keldysh components of G¢

The Keldysh components of the atomic Green’s function G¢ can be expressed as follows

. o
ng,(R) (Sls SZ) — _Zl_o@(sl _ 52) Ze—ﬂ(gn—gno) {(}’l 4 l)efi(g,w]fgn)(slfsz)
n=0

N nei(g,,_.—sn)m—sz)} , (C.1)
. (0.¢]
G122 (51, 57) = l_® (s2 — 51) Ze_ﬁ(&;—gno) {(n + 1) o1 (Ent1=En)(51-52)
ZO n=0

_ nei(s,,,l—s,,)m—sﬁ} , (C2)
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. oo
g2 (SI’SQ)Z_ZLO Ze*ﬂ(&f*‘gﬂo) i(n+l)e—i(&Hl—S,,)(sl—sz)
n=0

i nei(ﬁnfl—é'n)(n—n)} , (C.3)
G"> D (s, 50) =—— Z (n+ 1) e PEn=Eng) i (Ens1=En)s2 o= (Envi1=En)s1 (C4)
n 0
G120 ( _ b —B(En—Eng) pi (En—1=En)s1 ;= (En-1=En)s2
S1,82) = Zo Zne e ) (C.5)
G120 (51, 55) = —— Ze‘ﬂ €] {o (51 = 52) (1 + 1) e~ (Emn1=E) 1=
n=0
+ 0O (s2 —51) ne(g""_g”)(sl_m} , (C.6)
where Z is the atomic partition function
o
Zo= Ze_ﬁ(gn_€"°)’ (C.7)
n=0

and ng and &, are given by Eqgs. (109) and (121) respectively.
Given that the Fourier transforms G!>®-X) () are used throughout this paper, it is worth
explicitly writing out the expressions for these particular Keldysh components

o0

1 n+1)
12,(R) _ —B(En—Eng)
g @) 2 Z ' { (a) - [gn+l - gn]) +i0t

n=0
_ " } (©8)
(@+ [Emt — &) +i0 | '
G12.(K) (w)z_zzloi e BlEn— ){(n+1)8( [5n+1 —5,,])
n=0

+n8 (w+ [Eaz1 — &n])}- (C.9)

Appendix D. Low frequency approximation to four-point vertex u®

To calculate the low frequency approximation to the four-point vertex uglﬁzz'@% (s1, 52, 53, 54),
we begin with Eq. (41). We make use of the time-translational invariance of the atomic two-point
Green’s function and take the low-frequency approximation, which gives (noting that there is
no contribution from the Keldysh Green’s function except at points where the Mott lobes are
degenerate) [31]

ajazazag
Uganasay (515525 53, 54)

4
{g]2 (R) ] 1_[ /dwm —iWmSm

m=1
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ajaazag,c .
Gaiarayay (@1, 02, w3, w4), ifay=qorcform=1,...4,

x orif {an)t _ ={T.7.7.T}, (D.1)

0, otherwise,

where G'%(®) (a)’ = O) is easily determined from Eq. (C.8) to be

—B(En—Eng) (nt1) n D2
¢ ’ {gn+1_gn+gn—l_gn ) ( )

(e 9]

1
A

G2 (o =0) =
n=0

Explicit calculation of Gl orahay (@1, @2, w3, wa) followed by taking the low frequency limit

leads to the two constants introduced in Eq. (78):

2{g"2® (' =0)} ™

up = Z
y ie_ﬁ(gn_gm) { +D+2) no-h
= Ent2—En) Ens1 —E)® (Enca— E) Enct — En)
(n+1)2 n?
G =&)Y (G — &)
nn+1) nn+1)
G = E) Gt —E)F (Ept — EF Enct — En) } ’

(D.3)

and

) —4
u%: {ng,(R) (a) :0)} ie_ﬂ(g”_g"()) ( n—+1 " n )2
A =0 5n+] - gn 5n71 5n

B (12 (»f :0)}—4 i i B HEE)) ( n+1 n )

Zg 5n+1 - gn * gn—l - gn

/ 1 /
w2+t " ) . (D.4)
gn/-‘rl — & Ev_1—Ep

n=0n'=0

Note that u; corresponds to the coefficient u introduced in Ref. [31], but u% is a coefficient that
did not enter in that work, but is required to describe correlation function dynamics. Note also
that in the limit BU — oo, u3 — 0.

Appendix E. Gapless spectrum in the HFBP approximation

In this appendix we show that in the full HFB approximation the excitation spectrum is not
gapless in the SF phase. We then show that the HFBP approximation yields a gapless spectrum.
In the SF phase, in order for the excitation spectrum to be gapless, we require that

Ci_o=0, (E.1)

where (?,—(* was defined in Eq. (135). To show this, first we substitute Eq. (115) into Eq. (135) to
get
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2,(R)|?

Ci=(C)* - W+ )2’2 : (E.2)

where C; was defined in Eq. (117). In the full HFB approximation, the self-energy is given by

Egs. (105) and (107). Using Eq. (131) one can rewrite 212 ® in the HFB approximation as

z}f(’” (2dJ +€;) + {912’(R)(w/=0)}_1—%m{l 20 (s = 0)}+“1¢ (E.3)

where we assumed without loss of generality that ¢ is real, which implies that 1G22 (K ( = 0)
is real as well. Substituting Eq. (E.3) into Eq. (117) for k=0 yields

1 .
CE=0=—§u1(U+pL){2¢>2—{zG%iéK) +'=0)}}. (E4)
Lastly, we substitute Egs. (E.4) and (107) into Eq. (E.2) to get
Crop=—23 W +?¢* [iGZ{0 (' =0) . (E.5)

As we can see, Eq. (E.1) is not satisfied in the full HFB approximation. However, in the HFBP
approximation — which is equivalent to setting 1G~1 (K) (s =0)=i 52 (K) (s'=0)=0-we
clearly have a gapless spectrum.

Appendix F. Static limit of GX)

In this appendix, we show that
69> ® (@=0)=0, (E.1)
for equilibrium systems. We start with Eq. (98), which for equilibrium systems reduces to [85]
G%laz,(K) (@) = G192 K) ()
ajaz,(R) azag,(R) ~asaz,(K)
+> 6 (@) =2 GH T ()

azay

i Z G (K) (4 E%W,(A)Gng,m) (). (F.2)

azas

From Eq. (C.9), we have

g1 (»=0) =0, (F3)
which implies that
G%mz,(m (=0=Y guu® () 223_“4'(R)GZ4”2’(K ) (). (F4)
azayg

The G'%(K) equation yields
G~2 (K)( 0) = g12 (R)( )212 (R)G12 (K)( )+g12 (R)( )le (R) 52 2(K)( ), (F.5)

whereas the G?>(K) equation can be rearranged as follows
22,(R)
G%z,uo (0=0)= k G} K =0). (F.6)

{6120 (=0} - z®
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Substituting Eq. (F.6) back into Eq. (F.5) yields
_[1 2w, _ 12,(R)
0_[1 G'>®) (=0 %}

2
22,(R)
hz )

G (w=0). (E7)

-G (=0
12,R) (1 — 1 ~) _ s12.(R) k
{g (0= 0)} p

Since in general the expression inside the square brackets is not zero, it must be the case that
G%Z’(K) (w = 0) is zero, which also implies that Gzz’(K) (w = 0) is zero.
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