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Abstract

We develop a formalism that allows the study of correlations in space and time in both the superfluid 
and Mott insulating phases of the Bose–Hubbard Model. Specifically, we obtain a two particle irreducible 
effective action within the contour-time formalism that allows for both equilibrium and out of equilibrium 
phenomena. We derive equations of motion for both the superfluid order parameter and two-point correla-
tion functions. To assess the accuracy of this formalism, we study the equilibrium solution of the equations 
of motion and compare our results to existing strong coupling methods as well as exact methods where 
possible. We discuss applications of this formalism to out of equilibrium situations.
Crown Copyright © 2018 Published by Elsevier B.V. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The out of equilibrium dynamics of cold atoms trapped in optical lattices has received con-
siderable attention in recent years [1–6]. The ability to tune experimental parameters over a wide 
range of values in real time makes these systems very versatile and gives the opportunity to study 
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quantum systems out of equilibrium in a controlled fashion. Quantum quenches, in which param-
eters in the Hamiltonian are varied in time faster than the system can respond adiabatically, e.g. 
when a system is driven through a quantum critical point, are a protocol that is natural to study 
in this context and have been studied intensely both theoretically and experimentally.

The Bose–Hubbard model (BHM) [7] has been shown to describe interacting ultracold bosons 
in an optical lattice [8], allowing the opportunity for experiments to probe the out of equilibrium 
dynamics of the model [8–25]. The BHM is a particularly convenient context for studying quan-
tum quenches as it displays a quantum phase transition between the superfluid and Mott-insulator 
phases (or vice versa) as the ratio of intersite hopping J to the on-site repulsion U is varied, as 
observed by Greiner et al. [9]. Theoretical studies of the BHM suggest that whether equilibra-
tion occurs or not after a quantum quench depends sensitively on the initial and final values of 
J/U and the chemical potential [26–33]. In the case of quenches from superfluid (large J/U ) to 
Mott insulator (small J/U ) there have been suggestions that there may be aging behaviour and 
glassiness that might be experimentally observable in two time correlations or in violations of 
the fluctuation dissipation theorem [6,26–28,31,33]. In the alternative quench from Mott insula-
tor to superfluid, it has been suggested that Kibble–Zurek [34–36] scaling of defects should be 
observed [37,38], which has recently been tested experimentally [10].

In experiments, the combination of a harmonic trap and small J/U leads to a wedding 
cake structure of the equilibrium density, with alternating Mott insulating and superfluid re-
gions [39,40]. The presence of Mott insulating regions has been predicted to retard relaxation to 
equilibrium after a quench to small J/U by impeding mass transport of bosons through these 
regions [41,42] which has also been observed experimentally [43]. This gives a picture in which 
relaxation after a quench takes place in two steps – fast relaxation to local equilibrium followed 
by slower relaxation via mass transport [41,44].

In addition to slow dynamics, several analytical and numerical studies have also shown a 
Lieb–Robinson-like [45] bound of a maximal velocity which leads to a light-cone like spreading 
of density correlations in one dimensional systems for quenches from the superfluid to Mott-
insulating regime as well as quenches within the superfluid [46] or Mott-insulating phases [29,
42,47,48]. The latter case was recently observed experimentally by Cheneau et al. [49]. Similar 
predictions have been made for higher dimensional systems [46,50,51]. The results summarized 
above motivate the study of the temporal and spatial correlations of the BHM after a quantum 
quench in order to elucidate the dynamics observed after quenches.

A generic problem in the theoretical description of quantum quenches is that it is necessary 
to have a formalism that is able to describe the physics in the phases on both sides of a quan-
tum critical point. In the case of the Bose Hubbard model, numerical approaches such as exact 
diagonalization and the time-dependent density matrix renormalization group (t-DMRG) [24,
26,42,47,49,52,53] can be essentially exact in all parts of parameter space but are limited by 
system size and usually are practical only in one dimension. For dimensions higher than one, 
methods such as time-dependent Gutzwiller mean field theory [4,41,54,55] and dynamical mean 
field theory [32] have been used which can capture the presence of a quantum phase transition, 
but in their simplest form do not capture spatial correlations, although there has been work on 
including perturbative corrections [50,56–61]. An analytical approach based on using two Hub-
bard Stratonovich transformations to capture both weak-coupling and strong-coupling physics 
in the same formalism was developed by Sengupta and Dupuis [62]. Within their effective the-
ory, they performed a mean-field calculation of the superfluid order parameter and a Bogoliubov 
(1-loop) approximation to the two-point Green’s function to study the excitation spectrum. Their 
work was generalized by one of us from an equilibrium theory to out of equilibrium by using the 
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Schwinger–Keldysh formalism to obtain a one-particle irreducible (1PI) effective action which 
was then used to study the superfluid order parameter after a quench [31].

Here, we extend the approach developed in Ref. [31] to obtain a two-particle irreducible (2PI) 
effective action using the contour-time formalism, which is a generalisation of the Schwinger–
Keldysh formalism. In the 2PI approach, the evolution of the order parameter and the two-point 
Green’s functions are treated on the same footing [63] which allows us to describe correlations 
both in the broken symmetry (superfluid) phase and the Mott phase. Moreover, the method pro-
vides a systematic way to go beyond the mean-field or the 1-loop approximation. We obtain two 
main results. First, we develop the 2PI strong coupling formalism for the BHM. Second, we de-
rive equations of motion within a Hartree–Fock–Bogoliubov-Popov approximation suitable for 
both equilibrium and out of equilibrium calculations. We obtain equilibrium solutions of these 
equations that allow us to obtain phase boundaries and excitation spectra that we compare to 
previous equilibrium results obtained in a 1-loop calculation [62] and numerically exact results 
where possible.

This paper is structured as follows. In Section 2, we describe the model that we study and 
derive the 2PI effective action for the BHM. In Section 3, we obtain the equations of motion for 
both the order parameter and the two-particle Green’s function by taking appropriate variations 
of the 2PI effective action. In Section 4, we study the equilibrium solution of the equations of 
motion at the HFBP level. Finally in Section 5 we discuss our results and present our conclusions.

2. Model and formalism

In this section we introduce the Bose Hubbard model and discuss the generalization of the 
1PI approach developed in Ref. [31] to a 2PI effective action within the Schwinger–Keldysh 
formalism. The Hamiltonian for the BHM, allowing for a time dependent hopping term, is

ĤBHM (t) = ĤJ (t) + Ĥ0, (1)

where

ĤJ (t) = −
∑

〈�r1,�r2〉
J�r1�r2 (t)

(
â

†
�r1

â�r2 + â�r2 â
†
�r1

)
, (2)

Ĥ0 = ĤU − μN̂ = U

2

∑
�r

n̂�r
(
n̂�r − 1

)− μ
∑

�r
n̂�r , (3)

with â†
�r and â�r annihilation and creation operators for bosons on lattice site �r respectively, n̂�r ≡

â
†
�r â�r the number operator, U the interaction strength, and μ the chemical potential. The notation 

〈�r1, �r2〉 indicates a sum over nearest neighbours only. We allow J�r1�r2 (t), the hopping amplitude 
between sites �r1 and �r2, to be time dependent.

2.1. Contour-time formalism

We use the contour-time formalism [64–69], which treats time as a complex variable lying 
along a contour. For systems initially prepared in thermal states, which we consider here, one 
can work with a contour C of the form illustrated in Fig. 1. One obtains the imaginary-time Mat-
subara formalism, which is restricted to equilibrium problems, by setting tf = ti . If one does not 
work in the Matsubara formalism, tf can be set to ∞ without loss of generality [70]. Further-
more, if one were to set instead ti → −∞, then one can obtain the real-time Schwinger–Keldysh 
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Fig. 1. Contour for a system initially prepared at time ti in a thermal state with inverse temperature β . tf is the maximum 
real-time considered in the problem, which may be set to tf → ∞ without loss of generality.

closed-time path, which is suitable for both equilibrium and out of equilibrium problems, as the 
imaginary part of the contour would not contribute anything to the dynamics of the system. By 
setting ti → −∞, one is effectively discarding transient effects. Since we are interested in study-
ing transient phenomena, we do not set ti → −∞ and instead work with the general contour 
illustrated in Fig. 1. A number of authors have applied contour-time approaches to the BHM [31,
63,71–79] – our work differs from previous approaches in that we apply a 2PI approach within 
the contour formalism that is appropriate for strong coupling as well as weak coupling [63,76].

2.2. Green’s functions and the 1PI generating functionals

To characterize spatio-temporal correlations in the BHM we calculate contour-ordered 
Green’s functions (COGFs). We generalize the work in Ref. [31] to include Green’s functions 
with unequal numbers of annihilation and creation operators to allow for the study of broken 
symmetry phases. We frequently use the compact notation âa

�r for the bosonic fields, defined by

â1
�r ≡ â�r , â2

�r ≡ â
†
�r . (4)

We define the n-point COGF as [69]

G
a1...an

�r1...�rn (τ1, . . . , τn) ≡ (−i)n−1 Tr
{
ρ̂iTC

[
â

a1
�r1

(τ1) . . . â
an

�rn (τn)
]}

≡ (−i)n−1
〈
TC

[
â

a1
�r1

(τ1) . . . â
an

�rn (τn)
]〉

ρ̂i

, (5)

where ρ̂i is the state operator for a thermal state representing the initial state of our system

ρ̂i = e−βĤBHM(ti )

Tr
{
e−βĤBHM(ti )

} , (6)

and âa
�r (τ ) are the bosonic fields in the Heisenberg picture with respect to ĤBHM (τ ) [Eq. (1)]

âa
�r (τ ) = U† (τ, τi) âa

�r U (τ, τi) , (7)

U
(
τ, τ ′)= TC

[
e
−i
∫
C
(
τ,τ ′) dτ ′′ĤBHM

(
τ ′′)]

. (8)

Here we have introduced explicitly the complex contour time argument τ , the sub-contour 
C
(
τ, τ ′) which goes from τ to τ ′ along the contour C, and the contour time ordering operator 

TC , which orders strings of operators according to their position on the contour, with operators 



M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44 5
at earlier contour times placed to the right. Note that the presence of TC in Eq. (5) leads to 
symmetry under permutations {p1, . . . , pn} of the sequence {1, . . . , n}:

G
a1...an

�r1...�rn (τ1, . . . , τn) = G
ap1 ...apn

�rp1 ...�rpn

(
τp1, . . . , τpn

)
. (9)

At times it will be useful to express the contour time τ in terms of a contour label α (commonly 
called a Keldysh index) indicating a contour time located on Cα and a positive real parameter s
such that

τ = (α, s) =

⎧⎪⎨⎪⎩
ti + s + i0+, if α = +,

ti + s + i0−, if α = −,

ti − is + i0−, if α = T ,

(10)

e.g. we can rewrite the bosonic fields âa
�r (τ ) as

âa
�r,α (s) ≡ âa

�r (τ ) , (11)

and the COGFs in Eq. (5) as

G
a1...an

�r1...�rn,α1...αn
(s1, . . . , sn) ≡ G

a1...an

�r1...�rn (τ1, . . . , τn)

= (−i)n−1
〈
TC

[
â

a1
�r1,α1

(s1) . . . â
an

�rn,αn
(sn)

]〉
ρ̂i

. (12)

In order for the Heisenberg fields âa
�r (τ ) to be well-defined, we need to analytically continue the 

BHM Hamiltonian [Eq. (1)]. For the contour considered in this paper, ĤBHM (τ ) is analytically 
continued as follows

ĤBHM (τ ) = ĤBHM,α (s) ≡

⎧⎪⎨⎪⎩
ĤBHM (s) , if α = +,

ĤBHM (s) , if α = −,

ĤBHM (ti) , if α = T .

(13)

The COGFs above can be derived from a generating functional Z [f ] defined as

Z [f ] ≡ Tr
{
ρ̂iTC

[
ei
∫
C dτ

∑
�r f a

�r (τ )âa
�r (τ )
]}

= Tr

{
ρ̂iTC

[
e
i
(∫

C+ + ∫C− + ∫CT )dτ
∑

�r f a
�r (τ )âa

�r (τ )
]}

= Tr

{
ρ̂iTC

×
[
e
i
(∫∞

0 ds
∑

�r f a
�r,+(s)âa

�r,+(s)+∫∞
0 (−ds)

∑
�r f a

�r,−(s)âa
�r,−(s)+∫ β

0 (−ids)
∑

�r f a
�r,T (s)âa

�r,T (s)
)]}

= Tr

⎧⎨⎩ρ̂iTC

⎡⎣e
i
∫ s

f

αα′
0 ds

∑
�r τ 3

αα′f a
�r,α(s)âa

�r,α′ (s)

⎤⎦⎫⎬⎭ , (14)

where

τ̂ 3 =
⎛⎝ 1 0 0

0 −1 0
0 0 −i

⎞⎠ , (15)

in the (+,−,T ) basis,
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s
f

αα′ =

⎧⎪⎨⎪⎩
∞, if α = α′ = +or−,

β, if α = α′ = T ,

0, otherwise,

(16)

the f s are source currents, the overscored index in f a
�r,α (s) is defined by

f a
�r,α (s) = σaa′

1 f a′
�r,α (s) , (17)

and σi is the ith Pauli matrix, i.e. 1 = 2 and 2 = 1. We use the Einstein summation convention for 
both the Keldysh and Nambu indices, i.e. matching indices implies a summation over all possible 
values of those indices. It is clear from the definition above that the generating functional is 
normalized such that Z [f = 0] = 1.

To derive the COGFs in Eq. (12) from Z [f ], we take appropriate functional derivatives with 
respect to the sources and set the sources to zero afterwards

G
a1...an

�r1...�rn,α1...αn
(s1, . . . , sn) = i (−1)n

([
τ 3
]†

α1α
′
1

. . .
[
τ 3
]†

αnα′
n

)

× 1

Z [f = 0]

δnZ [f ]

δf
a1
�r1,α

′
1
(s1) . . . δf

an

�rn,α′
n
(sn)

∣∣∣∣∣∣
f =0

. (18)

2.3. Path integral form of Z [f ]

We cast the generating functional Z [f ] in the path integral form [67], which for the case of 
the BHM is [31]

Z [f ] =
∫ [

Daa
]
eiSBHM[a]+iSf [a], (19)

where SBHM is the action for the BHM, and 
∫ [

Daa
]

is the coherent-state measure. We absorb 
overall constants into the measure as they will cancel out in the calculation of the COGFs due to 
the factor of 1/Z [f = 0] in Eq. (18). Note that in the path-integral formalism a1

�r,α = a�r,α and 

a2
�r,α = a∗

�r,α . In this formalism, we can rewrite averages of the form 〈TC [. . .]〉ρ̂i
as follows〈

TC

[
â

a1
�r1,α1

(s1) . . . â
an

�rn,αn
(sn)

]〉
ρ̂i

≡
〈
a

a1
�r1,α1

(s1) . . . a
an

�rn,αn
(sn)

〉
SBHM

, (20)

where contour ordering is now implicit in the path integral representation [80]. In addition to the 
generating functional, we make extensive use of the generator of connected COGFs (CCOGFs) 
defined by

W [f ] ≡ −i lnZ [f ] . (21)

The n-point CCOGF Ga1...an,c

�r1...�rn,α1...αn
(s1, . . . , sn) can be obtained from W [f ] by calculating

G
a1...an,c

�r1...�rn,α1...αn
(s1, . . . , sn)

= (−1)n−1
([

τ 3
]†

α1α
′
1

. . .
[
τ 3
]†

αnα′
n

)
δnW [f ]

δf
a1
�r1,α

′
1
(s1) . . . δf

an

�rn,α′
n
(sn)

∣∣∣∣∣∣
f =0

≡ (−i)n−1
〈
a

a1
�r ,α

(s1) . . . a
an

�r ,α
(sn)

〉c
, (22)
1 1 n n SBHM
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where 〈. . .〉c indicates that only connected diagrams are kept. Note that the CCOGFs satisfy the 
same symmetry property as the COGFs

G
a1...an,c

�r1...�rn,α1...αn
(s1, . . . , sn) = G

ap1 ...apn ,c

�rp1 ...�rpn ,αp1 ...αpn

(
sp1 , . . . , spn

)
. (23)

2.4. Keldysh rotation

For the n-point CCOGF defined in Eq. (22) there are 3n Keldysh components. However, as a 
consequence of causality, we can eliminate 

∑n−1
m=0

( n
m

)
of these components by performing the 

following transformation on the bosonic fields [65]⎛⎝ a+ (t)

a− (t)

aT (t)

⎞⎠−→
⎛⎝ ãq (t)

ãc (t)

ãT (t)

⎞⎠= L̂

⎛⎝ a+ (t)

a− (t)

aT (t)

⎞⎠ , (24)

with

L̂ = 1√
2

⎛⎝ 1 −1 0
1 1 0
0 0

√
2

⎞⎠ , (25)

where ãq and ãc are the quantum and classical components of the field respectively [74,81–83], 
and ãT = aT . After the above basis transformation (+,−,T ) → (q, c,T ), the matrix τ 3 be-
comes

τ̂ 1 =
⎛⎝ 0 1 0

1 0 0
0 0 −i

⎞⎠ , (26)

the limits of integration become

s
f

αα′ =

⎧⎪⎨⎪⎩
∞, if

{
α,α′} ∈ P ({q, c}) ,

β, if α = α′ = T ,

0, otherwise,

(27)

and P
({xm}nm=1

)
is the set of all permutations of the sequence {xm}nm=1.

After performing the above Keldysh transformation, any COGFs G̃a1...an

�r1...�rn,α1...αn
(s1, . . . , sn)

with at least one quantum α-index and no classical α-indices will vanish. To see this, consider 
the following COGF

G̃
a1...an

�r1...�rn,T . . .T︸ ︷︷ ︸
m terms

q . . . q︸ ︷︷ ︸
n−m terms

(s1, . . . , sn)

= (−i)n−1
〈
TC

[ ˆ̃aa1
�r1,T (s1) . . . ˆ̃aam

�rm,T (sm) ˆ̃aam+1
�rm+1,q

(sm+1) . . . ˆ̃aan

�rn,q
(sn)

]〉
ρ̂i

= (−i)n−1

2(n−m)/2

〈
TC

[
â

a1
�r1,T (s1) . . . â

am

�rm,T (sm){
â

am+1
�rm+1,+ (sm+1) − â

am+1
�rm+1,− (sm+1)

}
. . .
{
â

an

�rn,+ (sn) − â
an

�rn,− (sn)
}]〉
ρ̂i
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= (−i)n−1

2(n−m)/2

〈
TC

[
â

a1
�r1,T (s1) . . . â

am

�rm,T (sm)
]

× TC

[{
â

am+1
�rm+1,+ (sm+1) − â

am+1
�rm+1,− (sm+1)

}
. . .
{
â

an

�rn,+ (sn) − â
an

�rn,− (sn)
}]〉

ρ̂i

. (28)

Following the argument given in Ref. [74], multiplying out the products in the second TC [. . .]
yields 2n−m path-ordered terms. The key point to note is that within any one of these path-ordered 
products the position of the field with the largest s does not depend on its Keldysh index. This 
implies that for each path-ordered product there is another path-ordered product is which is 
identical except with opposite sign. Therefore every term cancels out. It immediately follows 
that the associated CCOGFs vanish as well:

G̃
a1...an,c

�r1...�rn,T . . .T︸ ︷︷ ︸
m terms

q . . . q︸ ︷︷ ︸
n−m terms

(s1, . . . , sn) = 0, 0 ≤ m < n. (29)

Moreover, any permutation of the Keldysh indices in Eq. (29) will also yield a vanishing CCOGF. 
Since there are 

( n
m

)
distinct permutations for fixed n and m, there are 

∑n−1
m=0

( n
m

)
components 

that will vanish in total. This completes the proof. Note that if we were working with a closed-
time path, where there is no imaginary appendix to the contour, we recover the special case where 
only 

( n
0

)= 1 Keldysh component vanishes, namely G̃a1...an,c

�r1...�rn,q...q
(s1, . . . , sn) [65,74].

After performing the Keldysh transformation, the BHM action takes the form [31] (dropping 
tildes)

SBHM = 1

2

s
f
α1α2∫
0

ds
∑

�r

[
a

a1
�r,α1

(s)

([
τ 0
]†

α1α3
τ 1
α3α2

σ
a1a2
2 ∂s

)
a

a2
�r,α2

(s)

]
+ SJ + SU , (30)

where

SJ = 1

2

s
f
α1α2∫
0

ds
∑
〈�r1�r2〉

a
a1
�r1,α1

(s)
(

2J�r1�r2τ
1
α1α2

σ
a1a2
1

)
a

a2
�r2,α2

(s) , (31)

SU = 1

4!

s
f
α1α2α3α4∫

0

ds
∑

�r

(−Uζa1a2a3a4
α1α2α3α4

)
a

a1
�r,α1

(s) a
a2
�r,α2

(s) a
a3
�r,α3

(s) a
a4
�r,α4

(s) , (32)

τ̂ 0 =
⎛⎝ 1 0 0

0 1 0
0 0 −i

⎞⎠ , (33)

ζ a1a2a3a4
α1α2α3α4

= 2τα1α2α3α4σ
a1a2a3a4, (34)

τα1α2α3α4 =

⎧⎪⎨⎪⎩
1
2 , if {αm}4

m=1 ∈ P ({q, c, c, c})⋃P ({c, q, q, q}) ,

−i, if {αm}4
m=1 = {T ,T ,T ,T } ,

0, otherwise,

(35)

σa1a2a3a4 =
{

1, if {am}4
m=1 ∈ P ({1,1,2,2}) ,

0, otherwise,
(36)



M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44 9
sf
α1α2α3α4

=

⎧⎪⎨⎪⎩
∞, if {αm}4

m=1 ∈ P ({q, c, c, c})⋃P ({c, q, q, q}) ,

β, if {αm}4
m=1 = {T ,T ,T ,T } ,

0, otherwise.

(37)

In the (q, c,T ) basis, the source term becomes

Sf =
s
f
α1α2∫
0

ds
∑

�r
τ 1
α1α2

f a
�r,α1

(s) aa
�r,α2

(s) , (38)

and the CCOGFs are

G
a1...an,c

�r1...�rn,α1...αn
(s1, . . . , sn)

= (−1)n−1
([

τ 1
]†

α1α
′
1

. . .
[
τ 1
]†

αnα′
n

)
δnW [f ]

δf
a1
�r1,α

′
1
(s1) . . . δf

an

�rn,α′
n
(sn)

∣∣∣∣∣∣
f =0

. (39)

2.5. Effective theory for the Bose–Hubbard model

In order to study quench dynamics in the BHM, we make use of an effective theory that can 
describe both the weak and strong coupling limits of the model in the same formalism. Such an 
approach was developed in imaginary time by Sengupta and Dupuis [62] by using two Hubbard–
Stratonovich transformations and generalized to real-time in Ref. [31]. A similar real-time theory 
was also obtained based on a Ginzburg–Landau approach using the Schwinger–Keldysh tech-
nique [72–74]. A brief discussion of the derivation of the effective theory along with minor 
corrections to several expressions presented in Ref. [31] is given in Appendix A. The effective 
theory obtained in Ref. [31] for the z fields (which are obtained after two Hubbard Stratonovich 
transformations and have the same correlations as the original a fields [62]) is

S [z] = 1

2

s
f

αα′∫
0

(
τ 1
αα′ds

) ∑
〈�r1�r2〉

za
�r1,α

(s)
[
2J�r1�r2 (s)

]
za
�r2,α

′ (s)

+ 1

2

∑
�r

2∏
m=1

⎡⎢⎢⎢⎣
s
f

αmα′
m∫

0

(
τ 1
αmα′

m
dsm

)
z
am

�r,αm
(sm)

⎤⎥⎥⎥⎦[(Gc
)−1
]a1a2

α′
1α

′
2

(s1, s2)

+ 1

4!
∑

�r

4∏
m=1

⎡⎢⎢⎢⎣
s
f

αmα′
m∫

0

(
τ 1
αmα′

m
dsm

)
z
am

�r,αm
(sm)

⎤⎥⎥⎥⎦u
a1a2a3a4
α′

1α
′
2α

′
3α

′
4
(s1, s2, s3, s4) , (40)

where (Gc)−1 is the inverse of the two-point CCOGF in the atomic limit (i.e. J = 0), u(4) is

ua1a2a3a4
α1α2α3α4

(s1, s2, s3, s4) = −
4∏

m=1

⎡⎢⎢⎢⎣
s
f

α′
mα′′

m∫
0

(
τ 1
α′

mα′′
m
ds′

m

)[(
Gc
)−1
]ama′

m

αmα′
m

(
sm, s′

m

)
⎤⎥⎥⎥⎦
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× Ga′
1a

′
2a

′
3a

′
4,c

α′′
1 α′′

2 α′′
3 α′′

4

(
s′

1, s
′
2, s

′
3, s

′
4

)
, (41)

and the inverse of an arbitrary two-point function X satisfies

s
f

α3α′
3∫

0

ds3

∑
�r3

[
X−1

]a1a3

�r1�r3,α1α3
(s1, s3)

(
τ 1
α3α

′
3
τ 1
α2α

′
2
X

a3a2
�r3�r2,α

′
3α

′
2
(s3, s2)

)
≡ δ�r1�r2δα1α2δ

a1a2δ (s1 − s2) . (42)

Both (Gc)−1 and u(4) are independent of site index �r , hence we write them without site labels. 
However, throughout this paper we occasionally include the site labels when it serves to provide 
more clarity to the reader. One would have to include the site labels if for instance one considers 
the BHM with a harmonic potential as is realised experimentally.

Equation (40) is the key result from Ref. [31] that we use to develop the 2PI formalism in 
Section 2.6. However, before applying the 2PI formalism to this action, we need to include an 
additional correction term:

Scorrection [z] = 1

2

∑
�r

2∏
m=1

⎡⎢⎢⎢⎣
s
f

αmα′
m∫

0

(
τ 1
αmα′

m
dsm

)
z
am

�r,αm
(sm)

⎤⎥⎥⎥⎦ ũ
a1a2
α′

1α
′
2
(s1, s2) , (43)

where ũ(2) contains an infinite set of diagrams, although here we truncate it keeping only the 
lowest order term:

ũa1a2
α1α2

(s1, s2) = − 1

2!
4∏

m=3

⎡⎢⎢⎢⎣
s
f

α′
mα′′

m∫
0

(
τ 1
α′

mα′′
m
dsm

)⎤⎥⎥⎥⎦ua1a2a3a4
α1α2α3α4

(s1, s2, s3, s4)
{
iGa3a4,c

τ3τ4
(s3, s4)

}
.

(44)

This correction term ensures that our equations of motion are accurate to first order in G(4),c

(see Appendix A for further discussion). Moreover, it ensures that the equations of motion for 
the two-point CCOGF we derive in Section 3 are exact in the atomic (J = 0) limit, which is 
essential when considering quenches beginning in the atomic limit. This action also gives the ex-
act two-point CCOGF in the noninteracting (U = 0) limit [62]. These features make this theory 
particularly appealing for the study of quench dynamics, since it gives the hope that one can ac-
curately describe the behaviour of the system in both the superfluid and Mott-insulating regimes 
[6].

Using the symmetry relation in Eq. (23), we also note that (Gc)−1, ũ(2) and u(4) satisfy the 
following symmetry relations (correcting Ref. [31])[(

Gc
)−1
]a1a2

�r1�r2,α1α2
(s1, s2) =

[(
Gc
)−1
]ap1ap2

�rp1 �rp2 ,αp1αp2

(
sp1 , sp2

)
, (45)

ũa1a2
α1α2

(s1, s2) = ũ
ap1 ap2
αp1αp2

(
sp1 , sp2

)
, (46)

ua1a2a3a4
α1α2α3α4

(s1, s2, s3, s4) = u
ap1 ap2ap3ap4
αp1αp2 αp3αp4

(
sp1 , sp2 , sp3 , sp4

)
. (47)

Similar symmetry relations for four-point functions were noted in Refs. [6,73,74].
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2.6. 2PI formalism and the effective action

In order to obtain the full two-point CCOGF (the “full propagator” from now on), which 
encodes non-local spatial and temporal correlations, we adopt a 2PI approach. Unlike 1PI ap-
proaches [31,72–74], the 2PI formalism describes the evolution of the mean field (i.e. superfluid 
order parameter for the BHM) and the full propagator on equal footing [63]. Several authors [63,
75,76] have applied the 2PI formalism to the BHM to derive equations of motion for the mean 
field and the full propagator for weak interactions.

Here, we develop a real-time 2PI approach based on the strong-coupling theory of Sengupta 
and Dupuis [31,62] to capture behaviour of correlations across a quantum quench. We adopt a 
compact notation where we write an arbitrary function X as

X
a1...an

�r1...�rn,τ1...τn
≡ X

a1...an

�r1...�rn (τ1 . . . τn) = X
a1...an

�r1...�rn,α1...αn
(s1 . . . sn) . (48)

We extend the Einstein summation convention to the τ subindices such that for two arbitrary 
functions X and Y we have

∑
�r

Xa
�r,τ Y

a
�r,τ =

∑
�r

s
f

αα′∫
0

(
τ 1
αα′ds

)
Xa

�r,α (s)Y a
�r,α′ (s) . (49)

We can rewrite Eq. (40) (with the correction term [Eq. (43)] included) in the condensed nota-
tion as

S [z] = 1

2!
∑
�r1�r2

[
g−1

0

]a1a2

�r1�r2,τ1τ2
z
a1
�r1,τ1

z
a2
�r2,τ2

+ 1

4!u
a1a2a3a4
τ1τ2τ3τ4

∑
�r

z
a1
�r,τ1

z
a2
�r,τ2

z
a3
�r,τ3

z
a4
�r,τ4

, (50)

where we have introduced the generalized inverse bare propagator g−1
0[

g−1
0

]a1a2

�r1�r2,τ1τ2
=
[(
Gc
)−1
]a1a2

�r1�r2,τ1τ2
+ 2J

a1a2
�r1�r2,τ1τ2

− 1

2!δ�r1�r2u
a1a2a3a4
τ1τ2τ3τ4

(
iGa3a4,c

�r1�r1,τ3τ4

)
, (51)

with [(
Gc
)−1
]a1a2

�r1�r2,τ1τ2
= δ�r1�r2

[(
Gc
)−1
]a1a2

α1α2
(s1, s2) , (52)

J
a1a2
�r1�r2,τ1τ2

= J�r1�r2 (s1)
[
τ 1
]†

α1α2
σ

a1a2
1 δ (s1 − s2) . (53)

In the 2PI formalism [70,84], physical quantities are expressed in terms of the mean field φ
and the full propagator Gc

φ
a1
�r1,τ1

≡
〈
z
a1
�r1,τ1

〉
, (54)

iG
a1a2,c

�r1�r2,τ1τ2
=
〈
z
a1
�r1,τ1

z
a2
�r2,τ2

〉
−
〈
z
a1
�r1,τ1

〉 〈
z
a2
�r2,τ2

〉
. (55)

Note that Gc is symmetric: Ga1a2,c

�r1�r2,τ1τ2
= G

a2a1,c

�r2�r1,τ2τ1
. The equations of motion for φ and Gc are 

obtained by requiring the 2PI effective action � 
[
φ,Gc

]
be stationary with respect to variations 

of φ and Gc. This is similar to the 1PI case where the equations of motion for φ are obtained by 
requiring the 1PI effective action � [φ] to be stationary with respect to variations of φ. The full 
propagator from the 2PI effective action allows one to take into account broken symmetry states 
[70,84], which is necessary to describe quenches in the superfluid regime.
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To obtain the effective action we define the 2PI generating functional for Green’s functions 
Z [f,K]

Z [f,K] = eiW [f,K] =
∫ [

Dza
]
e
iS[z]+i

∑
�r1 f

a1
�r1,τ1

z
a1
�r1,τ1

+ i
2

∑
�r1�r2 K

a1a2
�r1�r2,τ1τ2

z
a1
�r1,τ1

z
a2
�r2,τ2 , (56)

where in addition to the single-particle source current f , we have included a (symmetric) two-
particle source current K . Note that φ and Gc are obtained by calculating the following functional 
derivatives of W [f,K]:

φ
a1
�r1,τ1

= δW [f,K]

δf
a1
�r1,τ1

,
1

2

(
φ

a1
�r1,τ1

φ
a2
�r2,τ2

+ iG
a1a2,c

�r1�r2,τ1τ2

)
= δW [f,K]

δK
a1a2
�r1�r2,τ1τ2

. (57)

These equations implicitly give f and K as functions of φ and Gc: f = f
[
φ,Gc

]
and 

K = K
[
φ,Gc

]
. The 2PI effective action � 

[
φ,Gc

]
is formally defined as the double Legendre 

transform of W [f,K]

� [φ,G] = W [f,K] −
∑
�r1

f
a1
�r1,τ1

φ
a1
�r1,τ1

− 1

2

∑
�r1�r2

K
a1a2
�r1�r2,τ1τ2

(
φ

a1
�r1,τ1

φ
a2
�r2,τ2

+ iG
a1a2,c

�r1�r2,τ1τ2

)
, (58)

where f and K should be understood as being expressed in terms of φ and Gc. The following 
identities can be derived [70,84] from Eq. (58)

δ�
[
φ,Gc

]
δφ

a1
�r1,τ1

= −f
a1
�r1,τ1

−
∑
�r1�r2

K
a1a2
�r1�r2,τ1τ2

φ
a2
�r2,τ2

, (59)

δ�
[
φ,Gc

]
δG

a1a2,c

�r1�r2,τ1τ2

= − i

2
K

a1a2
�r1�r2,τ1τ2

. (60)

Defining[
D−1

]a1a2

�r1�r2,τ1τ2
= δ2S [φ]

δφ
a1
�r1,τ1

δφ
a2
�r2,τ2

=
[
g−1

0

]a1a2

�r1�r2,τ1τ2
+ 1

2!δ�r1�r2u
a1a2a3a4
τ1τ2τ3τ4

φ
a3
�r1,τ3

φ
a4
�r1,τ4

, (61)

the effective action can be shown to take the form [70,84]

�
[
φ,Gc

]= S [φ] + i

2
Tr
{

ln
[(

Gc
)−1
]}

+ i

2

∑
�r1�r2

[
D−1

]a1a2

�r1�r2,τ1τ2
G

a2a1,c

�r2�r1,τ2τ1

+ �2
[
φ,Gc

]+ const, (62)

where �2
[
φ,Gc

]
is the sum of all 2PI connected vacuum diagrams in the theory with vertices 

determined by the action

Sint [ϕ;φ] = ua1a2a3a4
τ1τ2τ3τ4

∑
�r

{
1

3!ϕ
a1
�r,τ1

ϕ
a2
�r,τ2

ϕ
a3
�r,τ3

φ
a4
�r,τ4

+ 1

4!ϕ
a1
�r,τ1

ϕ
a2
�r,τ2

ϕ
a3
�r,τ3

ϕ
a4
�r,τ4

}
, (63)

and the propagator lines determined by Gc, i.e.
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Fig. 2. Diagrammatic expansion of �2 up to second-order in the four-point vertex u(4) (as shown as a solid dot), showing 
(a) the double-bubble diagram, (b) the setting sun diagram, and (c) the basketball diagram.

Fig. 3. Diagrammatic representation of u
a1a2a3a4
τ1τ2τ3τ4 , G

a1a2,c

�r1�r2,τ1τ2
, and φ

a1
�r1,τ1

.

�2
[
φ,Gc

]= −i ln

{(
det
{
iGc
})−1/2

×
∫

D [ϕ] e
i
2!
∑

�r1�r2
[
(Gc)−1

]a1a2

�r1�r2,τ1τ2
ϕ

a1
�r1,τ1

ϕ
a2
�r2,τ2 eiSint[ϕ;φ]

}2PI

. (64)

One can use Eq. (64) along with Wick’s theorem to generate all the diagrams in �2
[
φ,Gc

]
.

The diagrammatic expansion of �2
[
φ,Gc

]
is shown in Fig. 2 up to second-order in the four-

point vertex u(4). The solid dots represent the interaction vertices u(4), the solid lines represent 
Gc , and the dashed lines represent φ (as illustrated in Fig. 3). In this paper, we only consider 
the first diagram in Fig. 2, i.e. the double-bubble (D.B.) diagram, which was also considered 
(along with the remaining two diagrams) in Refs. [63,76] where the BHM was studied at weak 
coupling. However, there is an important distinction between the calculations here and those in 
Refs. [63,76], which is that the interaction vertices in Refs. [63,76] are local in both space and 
time, whereas the interaction vertices we consider are local in space but nonlocal in time – this 
leads to additional features in the equations of motion. The contribution from the D.B. diagram 
is

�
(D.B.)
2 = 1

8
ua1a2a3a4

τ1τ2τ3τ4

∑
�r

(
iG

a1a2,c

�r�r,τ1τ2

)(
iG

a3a4,c

�r�r,τ3τ4

)
. (65)
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3. Equations of motion

To calculate the equations of motion, first we use Eqs. (59) and (60) and set the sources to 
zero, giving

δS

δφ
a1
�r1,τ1

+ i

2

⎡⎣∑
�r2�r3

δ
[
D−1

]a2a3

�r2�r3,τ2τ3

δφ
a1
�r1,τ1

G
a3a2,c

�r3�r2,τ3τ2

⎤⎦+ δ�2

δφ
a1
�r1,τ1

= 0, (66)

and

i
[(

Gc
)−1
]a1a2

�r1�r2,τ1τ2
= i
[
D−1

]a1a2

�r1�r2,τ1τ2
− i
[

(2PI)

]a1a2

�r1�r2,τ1τ2
, (67)

where the second equation is Dyson’s equation with[

(2PI)

]a1a2

�r1�r2,τ1τ2
≡ 2i

δ�2

δG
a1a2,c

�r1�r2,τ1τ2

, (68)

the 2PI self energy.
Given the form of the bare propagator in our strong-coupling theory, the equations of motion 

Eq. (66) and (67) in their above formulations are not suitable for dynamical calculations. We 
begin by reformulating Eq. (66). First, we explicitly calculate the first term in Eq. (66)

δS

δφ
a1
�r1,τ1

=
∑
�r2

[(
Gc
)−1
]a1a2

�r1�r2,τ1τ2
φ

a2
�r2,τ2

+
∑
�r2

2J
a1a2
�r1�r2,τ1τ2

φ
a2
�r2,τ2

− 1

2!u
a1a2a3a4
τ1τ2τ3τ4

φ
a2
�r1,τ2

(
iGa3a4,c

�r1�r1,τ3τ4

)
+ 1

3!u
a1a2a3a4
τ1τ2τ3τ4

φ
a2
�r1,τ2

φ
a3
�r1,τ3

φ
a4
�r1,τ4

. (69)

The second term in Eq. (66) can be written as

i

2

⎡⎣∑
�r2�r3

δ
[
D−1

]a2a3

�r2�r3,τ2τ3

δφ
a1
�r1,τ1

G
a3a2,c

�r3�r2,τ3τ2

⎤⎦= 1

2!u
a1a2a3a4
τ1τ2τ3τ4

φ
a2
�r1,τ2

(
iG

a3a4,c

�r1�r1,τ3τ4

)
. (70)

We act on both sides of Eq. (66) with Gc from the left and rearrange terms to get

φ
a1
�r1,τ1

= Ga1a2,c

�r1�r2,τ1τ2
�

a2
�r1,τ2

, (71)

where we have introduced the quantity

�
a1
�r1,τ1

= −
∑
�r2

2J
a1a2
�r1�r2,τ1τ2

φ
a2
�r2,τ2

− 1

3!u
a1a2a3a4
τ1τ2τ3τ4

φ
a2
�r1,τ2

φ
a3
�r1,τ3

φ
a4
�r1,τ4

− 1

2!u
a1a2a3a4
τ1τ2τ3τ4

φ
a2
�r1,τ2

(
iG

a3a4,c

�r1�r1,τ3τ4
− iGa3a4,c

�r1�r1,τ3τ4

)
− δ�2

δφ
a1
�r1,τ1

. (72)

Eq. (71) is a much more suitable form for dynamical calculations.
Next we reformulate Eq. (67) into a more appropriate form. First, we separate 

[
D−1

]a1a2

�r1�r2,τ1τ2
as follows[

D−1
]a1a2

�r1�r2,τ1τ2
=
[(
Gc
)−1
]a1a2

�r1�r2,τ1τ2
−
[

(1)

]a1a2

�r1�r2,τ1τ2
, (73)

where
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[

(1)

]a1a2

�r1�r2,τ1τ2
= −2J

a1a2
�r1�r2,τ1τ2

+ 1

2!δ�r1�r2u
a1a2a3a4
τ1τ2τ3τ4

(
iGa3a4,c

�r1�r1,τ3τ4

)
− 1

2!δ�r1�r2u
a1a2a3a4
τ1τ2τ3τ4

φ
a3
�r1,τ3

φ
a4
�r1,τ4

, (74)

is the 1-loop contribution to the total self energy. If we define the full self energy as



a1a2
�r1�r2,τ1τ2

≡
[

(1)

]a1a2

�r1�r2,τ1τ2
+
[

(2PI)

]a1a2

�r1�r2,τ1τ2
, (75)

then Eq. (67) becomes

i
[(

Gc
)−1
]a1a2

�r1�r2,τ1τ2
= i
[(
Gc
)−1
]a1a2

�r1�r2,τ1τ2
− i


a1a2
�r1�r2,τ1τ2

. (76)

After rearranging a few terms, one obtains

G
a1a2,c

�r1�r2τ1τ2x2
= Ga1a2,c

�r1�r2,τ1τ2
+
∑
�r3�r4

Ga1a3,c

�r1�r3,τ1τ3



a3a4
�r3�r4,τ3τ4

G
a4a2,c

�r4�r2,τ4τ2
, (77)

which is a more suitable form for dynamical calculations. That being said, the form shown here is 
still not particularly amenable to solution. We now discuss simplifications that allow us to obtain 
equations of motion that are easier to solve.

3.1. Low-frequency approximation

Equations (71) and (77), whilst having a compact form in our notation, contain as many as 
four time-integrals, making it computationally expensive to solve the equations numerically. This 
suggests that some level of approximation is required in order to obtain more physical insight 
from the equations above. Following Refs. [31], we focus on the low frequency components 
of the equations of motion. In a quench protocol this would correspond to considering changes 
that are slow enough that the equations of motion are dominated by low frequency terms. The 
approximation also applies to equilibrium calculations where there is no quench at all.

The low-frequency approximation we consider involves taking the static-limit of the four-
point vertex u(4). If we only consider values of the chemical potential away from the degeneracy 
points between adjacent Mott lobes, i.e. μ 
≈ Ur , with r an integer, then the static limit of u(4)

can be expressed as [31,62,74]

ua1a2a3a4
τ1τ2τ3τ4

≈ −u1δ (s1 − s2) δ (s1 − s3) δ (s1 − s4) ζ a1a2a3a4
α1α2α3α4

+ iu2
2

[
δ (s1 − s2) δ (s3 − s4) ηa1a2a3a4

α1α2α3α4
+ {2 ↔ 3} + {2 ↔ 4}] , (78)

where u1 and u2
2 are defined in Appendix D, ζ a1a2a3a4

α1α2α3α4 is defined in Eq. (34) and

ηa1a2a3a4
α1α2α3α4

≡ σ
a1a2
1 σ

a3a4
1

{
τ 1
α1α2

τ 1
α3α4

if αm = q or c for m = 1, . . .4

0 otherwise
. (79)

Numerical evaluation of u1 and u2
2 for a homogeneous system, shown in Fig. 4 demonstrates 

that unless μ/U is close to an integer, the u1 terms will dominate the u2
2 terms. Moreover, for 

low temperatures, u2
2 becomes negligible and goes to zero as β → ∞. Hence, to simplify the 

equations of motion, we further assume that the temperature is sufficiently low such that u2
2 can 

be safely ignored. The end result is that the equations of motion contain single time-integrals 
only.
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Fig. 4. (Colour online.) (a) Plot of u1 and u2
2 as a function of μ/U for inverse temperature βU = 5.0; and (b) for 

βU = 10.0.

3.2. Keldysh structure of φ, Gc, �, 


Before presenting numerical results, it is worth discussing the explicit Keldysh structure of 
the mean field φ, full propagator Gc, and their respective interaction terms 
 and �. Starting 
with the mean field φ, we have

[φ] =
⎛⎝ 0√

2φ
a1
�r1

(s1)

φ
a1
�r1

(
s′ = 0

)
⎞⎠ , (80)

where φa1
�r1

(s1) is the superfluid order parameter

φ
a1
�r1

(s1) =
〈
â

a1
�r1

(ti + s1)
〉
ρ̂i

. (81)

Note that φ2
�r1

(s1) = [φ�r1 (s1)
]∗. Then, following Ref. [85], we can express Gc as follows

[
Gc
]=
⎛⎜⎜⎝

0 G
a1a2,(A)

�r1�r2
(s1, s2) 0

G
a1a2,(R)

�r1�r2
(s1, s2) G

a1a2,(K)

�r1�r2
(s1, s2)

√
2G

a1a2,(�)
�r1�r2

(s1, s2)

0
√

2G
a1a2,(�)
�r1�r2

(s1, s2) iG
a1a2,(M)

�r1�r2
(s1, s2)

⎞⎟⎟⎠ , (82)

with

G
a1a2,(R)

�r1�r2
(s1, s2) ≡ −i�(s1 − s2)

〈
â

a1
�r1

(ti + s1) â
a2
�r2

(ti + s2) − â
a2
�r2

(ti + s2) â
a1
�r1

(ti + s1)
〉c
ρ̂i

,

(83)

G
a1a2,(A)

�r1�r2
(s1, s2) ≡ i�(s2 − s1)

〈
â

a1
�r1

(ti + s1) â
a2
�r2

(ti + s2) − â
a2
�r2

(ti + s2) â
a1
�r1

(ti + s1)
〉c
ρ̂i

,

(84)

G
a1a2,(K)

�r1�r2
(s1, s2) ≡ −i

〈
â

a1
�r1

(ti + s1) â
a2
�r2

(ti + s2) + â
a2
�r2

(ti + s2) â
a1
�r1

(ti + s1)
〉c
ρ̂i

, (85)

G
a1a2,(�)
�r1�r2

(s1, s2) ≡ −i
〈
â

a1
�r1

(ti − is1) â
a2
�r2

(ti + s2)
〉c

, (86)

ρ̂i
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G
a1a2,(�)
�r1�r2

(s1, s2) ≡ −i
〈
â

a2
�r2

(ti − is2) â
a1
�r1

(ti + s1)
〉c
ρ̂i

, (87)

G
a1a2,(M)

�r1�r2
(s1, s2) ≡ −

(
�(s1 − s2)

〈
â

a1
�r1

(ti − is1) â
a2
�r2

(ti − is2)
〉c
ρ̂i

+ �(s2 − s1)
〈
â

a2
�r2

(ti − is2) â
a1
�r1

(ti − is1)
〉c
ρ̂i

)
, (88)

where G(R) and G(A) are the retarded and advanced Green’s functions respectively, G(K) is 
the Keldysh or Kinetic Green’s function, G(�) and G(�) are the left and right Green’s functions 
respectively, and G(M) is the Matsubara Green’s function.

Next we have �, which takes on the following Keldysh structure

[�] =
⎛⎜⎝ 0√

2�
a1
�r1

(s1)

�
a1
�r1

(
s′ = 0

)
⎞⎟⎠ , (89)

where to first order in u1 we have

�
a1
�r1

(s1) ≈ −
∑
�r2

2J�r1�r2 (ti + s1)φ
a1
�r2

(s1) + u1
∣∣φ�r1 (s1)

∣∣2 φ
a1
�r1

(s1)

+ u1

2
σa1a2a3a4φ

a2
�r1

(s1)
{
iG

a3a4,(K)

�r1�r1
(s1, s1) − iGa3a4,(K)

(
s′ = 0

)}
. (90)

The self energy 
 is similar in structure to G where we have

[
] =

⎛⎜⎜⎝
0 


a1a2,(A)

�r1�r2
(s1, s2) 0



a1a2,(R)

�r1�r2
(s1, s2) 


a1a2,(K)

�r1�r2
(s1, s2)

√
2


a1a2,(�)
�r1�r2

(s1, s2)

0
√

2

a1a2,(�)
�r1�r2

(s1, s2) i

a1a2,(M)

�r1�r2
(s1, s2)

⎞⎟⎟⎠ , (91)

where 
(R) and 
(A) have the same properties of causality as G(R) and G(A) respectively. To 
first order in u1, we have



a1a2,(R,A)

�r1�r2
(s1, s2)

≈ δ (s1 − s2)
(
−2σ

a1a2
1 J�r1�r2 (ti + s1) + u1δ�r1�r2σ

a1a2a3a4φ
a3
�r1

(s1)φ
a4
�r1

(s1)

+ u1

2
δ�r1�r2σ

a1a2a3a4
{
iG

a3a4,(K)

�r1�r1
(s1, s1) − iGa3a4,(K)

(
s′ = 0

)})
, (92)



a1a2,(M)

�r1�r2
(s1, s2)

≈ δ (s1 − s2)
(
−2σ

a1a2
1 J�r1�r2 (ti) + u1δ�r1�r2σ

a1a2a3a4φ
a3
�r1

(
s′ = 0

)
φ

a4
�r1

(
s′ = 0

)
+ u1

2
δ�r1�r2σ

a1a2a3a4
{
iG

a3a4,(K)

�r1�r1

(
s′ = 0, s′ = 0

)− iGa3a4,(K)
(
s′ = 0

)})
,

(93)

and



a1a2,(K,�,�)
�r1�r2

(s1, s2) ≈ 0. (94)

Lastly, we rewrite the equations of motion Eqs. (71) and (77) explicitly in terms of the various 
Keldysh components (i.e. R, A, K, �, �, M)
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φ
a1
�r1

(s1) =
∑
�r2

∞∫
0

ds2 Ga1a2,(R)

�r1�r2
(s1, s2)�

a2
�r2

(s2)

− i
∑
�r2

⎧⎨⎩
β∫

0

ds2 Ga1a2,(�)
�r1�r2

(s1, s2)

⎫⎬⎭�
a2
�r2

(
s′ = 0

)
, (95)

G
a1a2,(R)

�r1�r2
(s1, s2) = Ga1a2,(R)

�r1�r2
(s1, s2)

+
∑
�r3�r4

∞∫
0

∞∫
0

ds3ds4 Ga1a3,(R)

�r1�r3
(s1, s3)


a3a4,(R)

�r3�r4
(s3, s4)G

a4a2,(R)

�r4�r2
(s4, s2) ,

(96)

G
a1a2,(A)

�r1�r2
(s1, s2) = Ga1a2,(A)

�r1�r2
(s1, s2)

+
∑
�r3�r4

∞∫
0

∞∫
0

ds3ds4 Ga1a3,(A)

�r1�r3
(s1, s3)


a3a4,(A)

�r3�r4
(s3, s4)G

a4a2,(A)

�r4�r2
(s4, s2) ,

(97)

G
a1a2,(K)

�r1�r2
(s1, s2) = Ga1a2,(K)

�r1�r2
(s1, s2)

+
∑
�r3�r4

∞∫
0

∞∫
0

ds3ds4 Ga1a3,(R)

�r1�r3
(s1, s3)


a3a4,(R)

�r3�r4
(s3, s4)G

a4a2,(K)

�r4�r2
(s4, s2)

+
∑
�r3�r4

∞∫
0

∞∫
0

ds3ds4 Ga1a3,(K)

�r1�r3
(s1, s3)


a3a4,(A)

�r3�r4
(s3, s4)G

a4a2,(A)

�r4�r2
(s4, s2)

− 2i
∑
�r3�r4

β∫
0

β∫
0

ds3ds4 Ga1a3,(�)
�r1�r3

(s1, s3)

a3a4,(M)

�r3�r4
(s3, s4)G

a4a2,(�)
�r4�r2

(s4, s2),

(98)

G
a1a2,(�)
�r1�r2

(s1, s2) = Ga1a2,(�)
�r1�r2

(s1, s2)

+
∑
�r3�r4

β∫
0

β∫
0

ds3ds4 Ga1a3,(M)

�r1�r3
(s1, s3)


a3a4,(M)

�r3�r4
(s3, s4)G

a4a2,(�)
�r4�r2

(s4, s2)

+
∑
�r3�r4

∞∫
0

∞∫
0

ds3ds4 Ga1a3,(�)
�r1�r3

(s1, s3)

a3a4,(A)

�r3�r4
(s3, s4)G

a4a2,(A)

�r4�r2
(s4, s2) ,

(99)

G
a1a2,(M)

�r1�r2
(s1, s2) = Ga1a2,(M)

�r1�r2
(s1, s2)

+
∑
�r3�r4

β∫
0

β∫
0

ds3ds4 Ga1a3,(M)

�r1�r3
(s1, s3)


a3a4,(M)

�r3�r4
(s3, s4)G

a4a2,(M)

�r4�r2
(s4, s2),

(100)
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where the various Keldysh components of Gc can be found in Appendix C. Equations (95)–(100), 
along with Eqs. (92)–(94) and Eq. (90) together form one of the main results of this paper. These 
can be readily used to study out of equilibrium dynamics for strongly interacting systems. By 
considering only terms up to first order in u1, our approximation can be thought of in some 
sense as a Hartree–Fock–Bogoliubov (HFB) approximation in the strong-coupling regime. In 
future works we will study these equations of motion for various nonequilibrium scenarios. In 
the remainder of this paper however, we study the equilibrium solutions to the equations of 
motion above, going beyond the work in Ref. [62] in which only the equilibrium solutions at the 
one-loop level in the imaginary-time formalism were studied.

4. Equilibrium solution

In studying the equilibrium solution to the equations of motion derived in the previous section 
we consider a homogeneous system at zero temperature. As a result, it is easier to work in �k-space 
rather than real space. In equilibrium, the mean field equation of motion Eq. (95) reduces to [85]

φ = G12,(R)
(
ω′ = 0

)
�2 (s′ = 0

)
, (101)

where we used the fact that the superfluid order parameter is constant in time, φ1 (s1) = φ. 
Expressions for G12,(R) (ω) and G12,(R)

(
ω′ = 0

)
are given by Eqs. (C.8) and (D.2) respectively. 

We also have that in equilibrium all the various real-time Green’s functions may be expressed in 
terms of the spectral function G(ρ)

G
12,(ρ)

�k (ω) = −2 Im
[
G

12,(R)

�k (ω)
]
. (102)

One can calculate G(K) from G(ρ) via the fluctuation dissipation theorem (FDT) [70,85], which 
at zero temperature is

G
12,(K)

�k (ω) = −iG
12,(ρ)

�k (ω) sgn (ω) , (103)

hence one need only focus on the G(R) equation of motion directly. In equilibrium, it is easier to 
work in frequency space, hence we may rewrite the G(R) equation of motion as [85]

G
a1a2,(R)

�k (ω) = Ga1a2,(R) (ω) +
∑
a3a4

Ga1a3,(R) (ω)

a3a4,(R)

�k G
a4a2,(R)

�k (ω) , (104)

where



12,(R)

�k = 

21,(R)

�k = ε�k + 2u1

{
|φ|2 + (n − n0)

}
, (105)



11,(R)

�k = 1

2
u1

{
2
(
φ1
)2 + iG

11(K)

�r ′=0

(
s′ = 0

)}
, (106)



22,(R)

�k = 1

2
u1

{
2
(
φ2
)2 + iG

22(K)

�r ′=0

(
s′ = 0

)}
, (107)

ε�k = −2J

d∑
i=0

cos (kia) , (108)

and n and n0 are the average particle densities for J 
= 0 and J = 0 respectively. Note that

n0 = �μ/U� . (109)
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With a bit of algebra, one can show that

G
12,(R)

�k (ω) =

[{
G21,(R)

�k (ω)
}−1 − 


21,(R)

�k

]
[{
G21,(R) (ω)

}−1 − 

21,(R)

�k
][{

G12,(R) (ω)
}−1 − 


12,(R)

�k
]
−
∣∣∣
22,(R)

�k
∣∣∣2 ,

(110)

G
22,(R)

�k (ω) =



22,(R)

�k[{
G21,(R,) (ω)

}−1 − 

21,(R)

�k
][{

G12,(R) (ω)
}−1 − 


12,(R)

�k
]
−
∣∣∣
22,(R)

�k
∣∣∣2 .

(111)

From here, the next step is to simplify G12,(R)

�k (ω) by starting from Eq. (110) and then apply-

ing Eq. (102) to obtain an expression for G12,(ρ)

�k (ω). One can then express G12,(ρ)

�k (ω) in the 
Lehmann representation

G
12,(ρ)

�k (ω) = 2π
∑

s

{
z
(s,+)

�k δ
(
ω − �E

(s,+)

�k
)

− z
(s,−)

�k δ
(
ω + �E

(s,−)

�k
)}

, (112)

where s is the branch number, �E
(s,+)

�k and �E
(s,−)

�k are the particle and hole excitation energies 

respectively, and z(s,±)

�k are the corresponding spectral weights. Once written in this form, we 
can simply read off the expressions for the desired quantities. We do this in the following by 
considering the Mott insulator and superfluid cases separately.

4.1. Mott insulator phase

In the Mott insulator phase, φ =
∣∣∣
22,(R,A)

�k
∣∣∣2 = 0 and Eq. (110) reduces to

G
12,(R)

�k (ω) = 1[{
G12,(R) (ω)

}−1 − 

12,(R)

�k (ω)
] . (113)

One can rewrite Eq. (113) as

G
12,(R)

�k (ω) = z
(+)

MI,�k
1(

ω − �E
(+)

MI,�k
)

+ i0+
− z

(−)

MI,�k
1(

ω + �E
(−)

MI,�k
)

+ i0+
, (114)

where

�E
(±)

MI,�k = ∓B�k +
√(

B�k
)2 − 4C�k

2
, (115)

B�k = −
{
�E (+) − �E (−)

}
− 


12,(R)

�k , (116)

C�k = − (U + μ)

{



12,(R)

�k −
{
G12,(R)

(
ω′ = 0

)}−1
}

, (117)

z
(±)

MI,�k =
(U + μ) ± �E

(±)

MI,�k
�E

(+) + �E
(−)

, (118)
MI,�k MI,�k
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and �E (±) are the excitation energies in the atomic limit (i.e J = 0)

�E (+) ≡ En0+1 − En0 , (119)

�E (−) ≡ En0−1 − En0 , (120)

En ≡ U

2
n (n − 1) − nμ. (121)

Using Eq. (102) along with the Sokhotski-Plemelj theorem

1

x + i0± = ∓iπδ (x) +P
(

1

x

)
, (122)

we obtain for the spectral function

G
12,(ρ)

�k (ω) = 2π
{
z
(+)

MI,�kδ
(
ω − �E

(+)

MI,�k
)

− z
(−)

MI,�kδ
(
ω + �E

(−)

MI,�k
)}

. (123)

By comparing Eq. (123) to Eq. (112), it is clear that �E
(±)

MI,�k and z(±)

MI,�k are the excitation energies 
and spectral weights respectively.

4.1.1. Calculating n�k and n

At the HFB level, one needs to calculate �E
(±)

MI,�k and z(±)

MI,�k in a self-consistent way since there 

is no closed-form expression for the self energy 
12,(R)

�k . This becomes evident when one notes 

that 
12,(R)

�k depends on n, which in turn depends on n�k through

n =
∫

1stB.Z.

d�k
(2π)d

n�k, (124)

which in turn depends on G12,(K)

�k
(
s′ = 0

)
through

n�k = 1

2

{
iG

12,(K)

�k
(
s′ = 0

)− 1
}

, (125)

in the Mott insulator phase. Using Eq. (103) we obtain for G12,(K)

�k (ω)

G
12,(K)

�k (ω) = −2πi
{
z
(+)

MI,�kδ
(
ω − �E

(+)

MI,�k
)

+ z
(−)

MI,�kδ
(
ω + �E

(−)

MI,�k
)}

, (126)

and therefore

n�k = 1

2

⎧⎨⎩i

∞∫
−∞

dω

2π
G

a1a2,(K)

�k (ω) − 1

⎫⎬⎭
= 1

2

(
z
(+)

MI,�k + z
(−)

MI,�k − 1
)

. (127)

Hence the self-consistent solution can be formulated as follows:

1. Make an initial guess for n.
2. Use n to calculate 
12,(R)

�k via Eq. (105).

3. Use 
12,(R) to calculate �E
(±) via Eqs. (115)–(117).
�k MI,�k
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4. Use �E
(±)

MI,�k to calculate z(±)

MI,�k via Eq. (118).

5. Use z(±)

MI,�k to calculate nk via Eq. (127).

6. Use n�k to recalculate n via Eq. (124).
7. Repeat steps 2 to 6 until self-consistency is reached.

In Fig. 5, we compare the 1-loop and HFB equilibrium solutions in the Mott-insulating phase by 
calculating the excitation energies �E

(±)

MI,�k , the spectral weights z(±)

MI,�k , and the quasi-momentum 
distribution n�k for a square lattice system with μ/U = 0.42, J/U = 0.04, and βU = ∞. The 
1-loop solution, which was studied in Ref. [62], amounts to approximating the self-energy by 



12,(R)

�k = ε�k in the Mott-insulating phase. From Fig. 5 we see that there is little qualitative change 
in the excitation energies between the two approximations. The same can be said for the spectral 
weights for values of �k well away from zero, however there are appreciable differences in the 
long-wavelength limit. These differences can be more clearly visualised in the quasi-momentum 
distribution where we see that the �k = 0 peak is sharper in the 1-loop approximation than the 
HFB approximation.

One way to account for the differences in the spectral weights is to consider how well each so-
lution scheme approximates the phase boundary between Mott insulating and superfluid phases. 
In Fig. 6 we compare the mean-field (MF) and HFB approximations of the phase boundary along 
with the exact calculation. Fig. 6 clearly shows that there is significant quantitative improvement 
in the phase boundary calculation when going from the MF level to the HFB level. Moreover, 
in 1 dimension, where the MF approximation is expected to be poor, we have a clear qualita-
tive improvement in the phase boundary calculation where we capture the concave shape of the 
phase boundary rather than the convex shape found in mean field theory. This behaviour has also 
been captured in similar strong-coupling expansions [86]. The closer to the phase boundary (in 
the Mott-insulator phase), the sharper the �k = 0 peak is in n�k . Since the MF approximation al-
ways underestimates the location of the phase boundary more than the HFB approximation, the 
1-loop approximation – which uses the MF approximation of φ – will wrongly predict a sharper 
peak as compared to that in the HFB case. Equivalently, the 1-loop approximation will always 
overestimate the values of the spectral weights in the neighbourhood of �k = 0.

Another way to assess the accuracy of the two approximation schemes in the Mott-insulating 
phase is to look at the average particle density n [Eq. (124)]. In the Mott-insulating phase, n =
�μ/U�. For the same parameter values mentioned above, we have

n ≈ 1.22, (1-loop), (128)

n ≈ 1.08, (HFB), (129)

n = 1.00, (exact), (130)

where we see that the HFB approximation yields a significant improvement as compared to the 
1-loop approximation.

4.2. Superfluid phase

In the superfluid phase, φ and 
22,(R,A)

�k are non-zero, hence we must use the full form of 
Eq. (110). We begin by calculating φ from Eqs. (101) and (90). Without loss of generality, 
we can assume that φ is real which further implies that the quantities iG11,(K)

�r=0

(
s′ = 0

)
and 

iG
22,(K) (

s′ = 0
)

are real. Based on these assumptions we obtain
�r=0
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Fig. 5. (Colour online.) Comparisons between the 1-loop and the HFB equilibrium solution in the Mott-insulating phase. 
The parameters used were d = 2, Ns = 10002, μ/U = 0.42, J/U = 0.04, βU = ∞. (a) The particle excitation energy 
�E

(+)

MI,�k , (b) the hole excitation energy �E
(−)

MI,�k , (c) the particle spectral weight z(+)

MI,�k , (d) the hole spectral weight 

z
(−)

MI,�k , (e) the quasi-momentum distribution n�k in the 1-loop approximation, (f) n�k in the HFB approximation. Note that 
� = (0,0), M = (π,π), and X = (π,0).

φ =
√{

G12,(R) (ω′ = 0)
}−1 + 2dJ

u1
− 2 (n − n0) − 1

2

{
iG

22,(K)

�r=0 (s′ = 0)
}
. (131)

As is clear from Eq. (131) the mean field φ needs to be solved self-consistently along with the 
full propagator G. We now calculate G(R). Starting from Eq. (110), one can show that
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Fig. 6. (Colour online.) Comparisons between the MF and the HFB approximations of the phase boundary along with the 
exact solution for βU = ∞: (a) d = 1, (b) d = 2, (c) d = 3. The exact data was taken from Fig. 3 in Ref. [87] for d = 1, 
Fig. 1 in Ref. [88] for d = 2, and Fig. 3 in Ref. [89] for d = 3.

G
12,(R)

�k (ω) =
(
ω+ + �E

(+)

MI,�k
)(

ω+ − �E
(−)

MI,�k
)(

ω+ + {U + μ})(
ω+ − �E

(1)

SF,�k
)(

ω+ + �E
(1)

SF,�k
)(

ω+ − �E
(2)

SF,�k
)(

ω+ + �E
(2)

SF,�k
) , (132)

where

�E
(s)

SF,�k =

√√√√√−B̃�k − (−1)s

√(
B̃�k
)2 − 4C̃�k

2
, (133)

B̃�k =
∣∣∣
22,(R)

�k
∣∣∣2 −

(
�E

(+)

MI,�k
)2 −

(
�E

(−)

MI,�k
)2

, (134)

C̃�k =
(
�E

(+)

MI,�k�E
(−)

MI,�k
)2 − (U + μ)2

∣∣∣
22,(R)

�k
∣∣∣2 . (135)

In a moment we will show that the �E
(s)

SF,�k are the excitation energies in the SF phase. Before 
doing so, it is worth commenting on our approximation for the self energy in the superfluid phase. 
In Appendix E we show that in the full HFB approximation the excitation spectrum is not gapless, 
violating Goldstone’s Theorem, whereas if we ignore contributions from the anomalous Keldysh 
Green’s function iG22,(K)

�r=0

(
s′ = 0

)
there is a gapless spectrum. The latter scheme is called the 

HFB-Popov (HFBP) approximation [90]. Thus in the HFBP approximation we have
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22,(R)

�k = u1 (φ)2 , (136)

φ =
√{

G12,(R) (ω′ = 0)
}−1 + 2dJ

u1
− 2 (n − n0). (137)

The HFBP approximation is most accurate for values of the chemical potential away from integer 
values which is evident from the fact that G22,(R)

�k (ω) (and hence G22,(K)

�r=0

(
s′ = 0

)
) is proportional 

to 
22,(R)

�k , which in turn is proportional to u1, which is small for values of the chemical poten-

tial away from integer values. Therefore iG22,(K)

�r=0

(
s′ = 0

)
ought to be smaller than the average 

particle density n by a factor of u1.
For the remainder of this section, we apply the HFBP approximation. Since the energy spec-

trum is gapless in this approximation, i.e. �E
(2)

SF,�k→0
→ 0, care must be taken in calculating the 

spectral function from the retarded Green’s function. Hence we will break the calculations up 
into two cases: the general case �k 
= 0 and the special case �k = 0. We start with the general case.

4.2.1. �k 
= 0
When �k 
= 0, we can derive the spectral function from the retarded Green’s function as we did 

above in Sec. 4.1 using the Sokhotski-Plemelj formula as we did in the MI case [Eq. (122)]

G
12,(ρ)

�k (ω) = 2π
{
z
(1,+)

SF,�k δ
(
ω − �E

(1)

SF,�k
)

− z
(1,−)

SF,�k δ
(
ω + �E

(1)

SF,�k
)

+ z
(2,+)

SF,�k δ
(
ω − �E

(2)

SF,�k
)

− z
(2,−)

SF,�k δ
(
ω + �E

(2)

SF,�k
)}

, (138)

where

z
(s,±)

SF,�k = (−1)s+1

(
�E

(s)

SF,�k ± �E
(+)

MI,�k
)(

�E
(s)

SF,�k ∓ �E
(−)

MI,�k
)(

{U + μ} ± �E
(s)

SF,�k
)

2�E
(s)

SF,�k

[(
�E

(1)

SF,�k
)2 −

(
�E

(2)

SF,�k
)2
] . (139)

It is clear from Eq. (138) that �E
(s)

SF,�k and z(s,±)

SF,�k are the excitation energies and spectral weights 
respectively. Moreover, for each branch the particle excitation energy is equal to the hole excita-
tion energy. Using Eq. (103) we have for the Keldysh Green’s function

G
12,(K)

�k (ω) = −2πi
{
z
(1,+)

SF,�k δ
(
ω − �E

(1)

SF,�k
)

+ z
(1,−)

SF,�k δ
(
ω + �E

(1)

SF,�k
)

+ z
(2,+)

SF,�k δ
(
ω − �E

(2)

SF,�k
)

+ z
(2,−)

SF,�k δ
(
ω + �E

(2)

SF,�k
)}

. (140)

4.2.2. �k = 0
In the zero-quasi-momentum case, G12,(K)

�k (ω) becomes

G
12,(R)

�k=0
(ω) =

(
ω+ + �E

(+)

MI,�k=0

)(
ω+ − �E

(−)

MI,�k=0

)(
ω+ + {U + μ})(

ω+ − �E
(1)

SF,�k=0

)(
ω+ + �E

(1)

SF,�k=0

)(
ω+)2 . (141)

One cannot use the same Sokhotski-Plemelj formula as we did above in deriving the spectral 
function, instead one must used a generalized version of the formula

f (x)(
x + i0± − x

)n = ∓iπf (n−1) (x0) δ (x − x0) + �(n)P
{

f (x)

(x − x )n

}
. (142)
0 0
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Doing so yields the following spectral function

G
12,(ρ)

�k=0
(ω) = 2π

{
z
(1,+)

SF,�k=0
δ
(
ω − �E

(1)

SF,�k=0

)
− z

(1,−)

SF,�k=0
δ
(
ω + �E

(1)

SF,�k=0

)
+ lim

�k→0

[
z
(2,+)

SF,�k − z
(2,−)

SF,�k
]
δ (ω)

}
, (143)

where

lim
�k→0

[
z
(2,+)

SF,�k − z
(2,−)

SF,�k
]

=
(U + μ)

(
�E

(+)

MI,�k=0
− �E

(−)

MI,�k=0

)
− �E

(+)

MI,�k=0
�E

(−)

MI,�k=0(
�E

(1)

SF,�k=0

)2 . (144)

In both �k cases, G12,(ρ)

�k (ω) is both properly normalized and signed [62].

In the case where �k = 0, one needs to be careful when calculating G12,(K)

�k=0
(ω) as the FDT 

[Eq. (103)] is ill-defined for ω = 0. Fortunately, G12,(K)

�k (ω) = 0 (see Appendix F for a proof). 

Therefore we have for G12,(K)

�k=0
(ω)

G
12,(K)

�k=0
(ω = 0) = 0, (145)

G
12,(K)

�k=0
(ω 
= 0) = −2πi

{
z
(1,+)

SF,�k δ
(
ω − �E

(1)

SF,�k
)

+ z
(1,−)

SF,�k δ
(
ω + �E

(1)

SF,�k
)}

. (146)

4.2.3. Calculating n�k and n
One can calculate n�k from

n�k = 1

2

〈
iG

12,(K)

�k
(
s′ = 0

)+ 2
{
(2π)d δ�k,0

}
|φ|2 − 1

〉
, (147)

where

iG
12,(K)

�k
(
t ′ = 0

)= {z
(1,+)

SF,�k′ + z
(1,−)

SF,�k′ + z
(2,+)

SF,�k′ + z
(2,−)

SF,�k′ if �k 
= 0

z
(1,+)

SF,�k + z
(1,−)

SF,�k if �k = 0
. (148)

And lastly, the average particle density n is calculated using Eq. (124). Therefore, at the HFBP 
level, the system can be solved self-consistently as follows:

1. Make an initial guess for n.
2. Use n to calculate φ via Eq. (131).
3. Use n and φ to calculate 
12,(R)

�k and 
22,(R)

�k via Eqs. (105) and (136).

4. Use 
12,(R)

�k to calculate �E
(s)

SF,�k via Eqs. (115)–(117) and (133)–(135).

5. Use �E
(s)

SF,�k to calculate z(s,±)

SF,�k via Eqs. (139) and (144).

6. Use z(s,±)

SF,�k to calculate nk via Eqs. (147) and (148).

7. Use n�k to recalculate n via Eq. (124).
8. Repeat steps 2 to 7 until self-consistency is reached.

In Fig. 7, we compare the 1-loop and HFBP equilibrium solutions in the superfluid phase by 
calculating the excitation energies �E

(s) and the spectral weights z(s,±) for a square lattice 

SF,�k SF,�k
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Fig. 7. (Colour online.) Comparisons between the 1-loop and the HFBP equilibrium solution in the superfluid phase. The 
parameters used were d = 2, Ns = 10002, μ/U = 0.36, J/U = 0.07, βU = ∞. (a) The first particle/hole excitation 
energy branch �E

(1)

SF,�k , (b) the second particle/hole excitation energy branch �E
(2)

SF,�k , (c) the particle spectral weight 

z
(1,+)

SF,�k for the first branch, (d) the hole spectral weight z(1,−)

SF,�k for the first branch, (e) the particle spectral weight z(2,+)

SF,�k for 

the second branch, (f) the hole spectral weight z(2,−)

SF,�k for the second branch. Note that � = (0,0), M = (π,π), and 
X = (π,0).

system with μ/U = 0.36, J/U = 0.07, and βU = ∞. The 1-loop solution amounts to approxi-
mating the self-energy by 
12,(R)

�k = ε�k + 2u1 |φ|2 and 
22,(R)

�k = u1 (φ)2 in the superfluid phase. 
We see that there is little qualitative change in the excitation energies between the two approx-



28 M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44
imations. Moreover, the spectral weights in the second branch s = 2 change very little as well. 
We do observe appreciable differences in the spectral weights for the first branch s = 1 in the 
long-wavelength limit, similar to the Mott-insulator case. As was argued for in the Mott-insulator 
case, since the HFBP calculation yields a more accurate phase boundary, we believe this method 
will also yield a more accurate result for z(1,±)

SF,�k in the long-wavelength limit as compared to the 
1-loop result.

4.3. Phase boundary

To calculate the phase boundary, we make a slight modification to our solution scheme for 
the MI phase. The modification comes from the extra step of calculating the critical hopping Jc. 
Consider again the φ-equation Eq. (131). At the boundary, φ = G

22,(K)

�r=0

(
s′ = 0

)= 0. Solving for 
J we get

Jc = 1

2d

{
2u1 (n − n0) −

{
G12,(R)

(
ω′ = 0

)}−1
}

. (149)

With this established, we can outline the phase boundary solution as follows

1. Make an initial guess for the average particle density n
2. Use n to calculate the hopping Jc, see Eq. (149)
3. Use n and Jc to calculate the self-energy 
12,(R)

�k , see Eq. (105)

4. Use 
12,(R)

�k to calculate �E
(±)

MI,�k via Eqs. (115)–(117).

5. Use �E
(±)

MI,�k to calculate z(±)

MI,�k via Eq. (118).

6. Use z(±)

MI,�k to calculate nk via Eq. (127).

7. Use n�k to recalculate n via Eq. (124).
8. Repeat steps 2 to 7 until self-consistency is reached.

This calculation ends up reproducing the phase boundary found from the Mott insulating side 
since the anomalous Green’s functions vanish at the phase boundary.

5. Discussion and conclusions

The ability to address single sites in cold atom experiments [11] has allowed for experimental 
exploration of spatio-temporal correlations in the BHM [49]. This has led to theoretical investiga-
tions of these correlations in both one [48] and higher dimensions [46,51,59,61] in the presence 
of a quench. In dimensions higher than one, where numerical approaches are limited, a theoreti-
cal challenge has been to develop a framework which can treat correlations in both the superfluid 
and Mott insulating phases over the course of a quench. An important result in this paper is that 
we have developed a formalism that allows for the description of the space and time dependence 
of correlations in both phases during a quench. The specific approach we took was to derive a 
2PI effective action for the BHM using the contour-time technique building on the 1PI real-time 
strong-coupling theory developed in Ref. [31] which generalized the imaginary-time theory de-
veloped in Ref. [62]. From this 2PI effective action we were able to derive equations of motion 
that treat the superfluid order parameter and the full two-point Green’s functions on equal foot-
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ing. We emphasise that our formalism is applicable even in the limit of low occupation number 
per site.

Even at the level of the 1PI real-time theory, the quartic coupling becomes non-local in time, 
which in the 2PI theory leads to complicated expressions in the equations of motion, involving up 
to four time integrals, even at the first order in the interaction vertices. We showed that by taking 
a low frequency approximation, this complexity can be reduced to at most a single time integral. 
The equations of motion obtained at this point are somewhat similar to previous 2PI studies of 
the out of equilibrium dynamics of interacting bosons [63,75,91–94]. However, in contrast to 
these previous studies, the equations of motion we obtain are a series of integral equations rather 
than integro-differential equations.

We showed that taking a HFB(P) approximation of the 2PI effective action yields significant 
improvements to the calculation of the particle density and phase boundary when compared to 
the 1-loop approximation considered in Ref. [62]. Our results also suggest that the HFB(P) ap-
proximation gives a better account of the spectral weights in the long-wavelength limit. These 
improvements in the equilibrium case suggest that our formalism should be suitable for accu-
rately describing spatio-temporal correlations in nonequilibrium scenarios.

The space and time dependence of correlations after a quantum quench give insight into the 
propagation of excitations generated by that quench, and hence we hope that the formalism we 
have developed here will allow further theoretical investigation of the excitations after quenches 
in the BHM, to complement experimental efforts in the same direction. In future work we plan to 
investigate a broad range of quench protocols, including quenches in the Mott phase where one 
can study the light-cone-like spreading of single-particle correlations. Other quench protocols of 
interests are those beginning in the superfluid phase and then ending in the Mott phase. In such 
scenarios, one may be interested in studying for example the possibility of aging-like phenomena. 
Lastly, we plan to investigate generalizations such as the inclusion of a harmonic trap, coupling 
to a bath [71,95] or a multicomponent BHM.

Acknowledgements

The authors thank N. Dupuis, T. Gasenzer, A.M. Rey, and A. Pelster for helpful discussions 
and communications. This work was supported by NSERC.

Appendix A. Deriving the strong-coupling effective theory

In this appendix, we briefly review the derivation of the effective theory for the BHM 
[Eq. (40)] and make note of some minor mistakes in Ref. [31] (all of these mistakes relate to 
mislabelling of Keldysh indices – numerical results in Ref. [31] are unaffected). The deriva-
tion given in Ref. [31] was for the case of the Schwinger–Keldysh contour, here we extend the 
derivation to the more general contour illustrated in Fig. 1. We make use of the compact notation 
introduced in Section 2.6 when it is helpful.

We start with the generating functional Z [f ]

Z [f ] =
∫ [

Daa
]
e

i
2!
∑

�r1�r2
(

2J
a1a2
�r1�r2,τ1τ2

)
a

a1
�r1,τ1

a
a2
�r2,τ2

+iS0[a]+iSf [a]
, (A.1)

where J a1a2 is defined in Eq. (53), Sf [a] is defined in Eq. (38), and
�r1�r2,τ1τ2
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S0 = 1

2

s
f
α1α2∫
0

ds
∑

�r

[
a

a1
�r,α1

(s)

([
τ 0
]†

α1α3
τ 1
α3α2

σ
a1a2
2 ∂s

)
a

a2
�r,α2

(s)

]
+ SU [a] , (A.2)

is the atomic part of the BHM action. Next we introduce an auxiliary field ψ via a complex 
Hubbard–Stratonovich transformation [31,62] so the generating functional Z [f ] takes the form

Z [f ] =
∫ [

Dψa
] ∫ [

Daa
]
e
− i

2!
∑

�r1�r2
(

1
2

[
J−1]a1a2

�r1�r2,τ1τ2

)
ψ

a1
�r1,τ1

ψ
a2
�r2,τ2

−iSψ [a]+iS0[a]+iSf [a]
, (A.3)

where

Sψ [a] =
∑

�r
ψa

�r,τ a
a
�r,τ . (A.4)

We can eliminate the iSf term in Eq. (A.3) by making a field substitution, ψa
�r,τ → −ψa

�r,τ +
f a

�r,τ , which gives

Z [f ] =
∫ [

Dψa
]
e
− i

2!
∑

�r1�r2
(

1
2

[
J−1]a1a2

�r1�r2,τ1τ2

)(
ψ

a1
�r1,τ1

−f
a1
�r1,τ1

)(
ψ

a2
�r2,τ2

−f
a2
�r2,τ2

)
+iW0[ψ]

, (A.5)

where

eiW0[ψ] = 1

N0

∫ [
Daa

]
eiS0[a]+iSψ [a], (A.6)

N0 =
∫ [

Daa
]
eiS0[a]. (A.7)

In obtaining Eq. (A.5) we absorbed a factor of N0 into the ψ -measure 
∫ [

Dψa
]
. Comparing 

Eq. (A.6) with Eq. (19), we see that W0 [ψ] is the generator of atomic CCOGFs Gc for the 
bosonic field a. The CCOGFs considered explicitly by the authors in Ref. [31] were
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∣∣∣∣∣∣
ψ=0

= i (−1)n
〈
a�r,α1 (s1) . . . a�r,αn

(sn) a∗
�r,α′

1

(
s′

1

)
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(
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. (A.8)

Note that Eq. (A.8) corrects Eq. (6) in Ref. [31]. Moreover, note that for the uniform BHM as 
considered here, the atomic CCOGFs are independent of site index, and so we drop these indices 
when they do not affect the clarity of the exposition in this paper.

Inverting Eq. (22), with Gc → Gc, we may rewrite W0 as

W0 [ψ] = −
∑ ∞∑ 1

(2n)!G
a1...a2n,c
τ1...τ2n

ψ
a1
�r,τ1

. . .ψ
a2n

�r,τ2n
, (A.9)
�r n=1
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which corrects Eq. (7) in Ref. [31] by a factor of − (−1)n, and so

eiW0[ψ] = ei
∑∞

n=1 Sn
int[ψ], (A.10)

where

Sn
int [ψ] = −

∑
�r

1

(2n)!G
a1...a2n,c
τ1...τ2n

ψ
a1
�r,τ1

. . .ψ
a2n

�r,τ2n
, (A.11)

which corrects Eq. (8) in Ref. [31] by the same factor of − (−1)n.
Truncating W0 [ψ] to quartic order in the ψ fields and setting the source currents f to zero in 

Eq. (A.5), the action from Eq. (A.5) is found to be

Seff [ψ] = − 1

2!
∑
�r1�r2

(
1

2

[
J−1

]a1a2

�r1�r2,τ1τ2
+ Ga1a2,c
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ψ
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ψ
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�r2,τ2

− 1
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∑
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τ1τ2τ3τ4
ψ
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�r,τ1

ψ
a2
�r,τ2

ψ
a3
�r,τ3

ψ
a4
�r,τ4

. (A.12)

As pointed out in Ref. [62], the quadratic terms in the equilibrium action of the form in 
Eq. (A.12) allow one to calculate the mean-field phase boundary, however it yields an unphysi-
cal excitation spectrum in the superfluid regime [96]. Similar problems also occur in analogous 
expansions for fermionic systems [97,98]. This issue is circumvented by performing a second 
Hubbard–Stratonovich transformation [31,62]. Starting from Eq. (A.5) (keeping the source cur-
rents f this time), we introduce a second field z such that

Z [f ] =
∫ [

Dza
]
e

i
2!
∑

�r1�r2
(

2J
a1a2
�r1�r2,τ1τ2

)
z
a1
�r1,τ1

z
a2
�r2,τ2

+iW̃ [z]+iSf [z]
, (A.13)

where

Sf [z] =
∑

�r
f a

�r,τ z
a
�r,τ , (A.14)

eiW̃ [z] = 1

Nψ

∫ [
Dψa

]
eiW0[a]+iSz[ψ], (A.15)

Nψ =
∫ [

Dψa
]
eiS1

int[ψ], (A.16)

Sz [ψ] =
∑

�r
za
�r,τψ

a
�r,τ . (A.17)

By comparing Eq. (A.13) to Eq. (19), we can see that the COGFs of the z field generated by Z [f ]
are identical to those of the bosonic field a. The last step is to perform a cumulant expansion of 
W̃ [z] [31,62,99]. Upon doing this, we can write the generating functional Z [f ] as

Z [f ] =
∫ [

Dza
]
eiSBHM[z]+iSf [z], (A.18)

where SBHM [z] is given by

SBHM [z] = 1

2!
∑
�r1�r2

(
2J

a1a2
�r1�r2,τ1τ2

+
[
G−1

]a1a2,c

�r1�r2,τ1τ2
+ δ�r1�r2 ũ

a1a2
τ1τ2

)
z
a1
�r1,τ1

z
a2
�r2,τ2

+
∑ ∞∑ 1

(2n)!
(
ua1...a2n

τ1...τ2n
+ ũa1...a2n

τ1...τ2n

)
z
a1
�r,τ1

. . . z
a2n

�r,τ2n
, (A.19)
�r n=2
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with

ua1...a2n
τ1...τ2n

= −
n∏

m=1

([
G−1

]a2m−1a
′
2m−1,c

τ2m−1τ
′
2m−1

[
G−1

]a2ma′
2m,c

τ2mτ ′
2m

)
Ga1...a2n,c

τ1...τ2n
, (A.20)

and the ũ vertices contain an infinite set of “anomalous” diagrams, i.e. diagrams that contain 
internal inverse bare propagator lines. Such diagrams have no physical meaning and should not 
contribute to the physical quantities [99]. It should be noted that in addition to the physical 
diagrams, the u vertices also generate “anomalous” terms. In Appendix B, we show that these 
anomalous terms cancel one another out when calculating the superfluid order parameter φ and 
the full two-point CCOGF. That being said, the action in Eq. (A.19) contains an infinite sum, 
therefore one will eventually have to truncate said action which will ultimately lead to only 
certain subclasses of “anomalous” terms cancelling out.

In this paper, we truncate the action to quartic order in the z fields

SBHM [z] = 1

2!
∑
�r1�r2

(
2J

a1a2
�r1�r2,τ1τ2

+
[
G−1

]a1a2,c

�r1�r2,τ1τ2
+ δ�r1�r2 ũ

a1a2
τ1τ2

)
z
a1
�r1,τ1

z
a2
�r2,τ2

+
∑

�r

1

4!
(
ua1a2a3a4

τ1τ2τ3τ4
+ ũa1a2a3a4

τ1τ2τ3τ4

)
z
a1
�r,τ1

z
a2
�r,τ2

z
a3
�r,τ3

z
a4
�r,τ4

, (A.21)

where we approximate ũ(2) by

ũa1a2
τ1τ2

= − 1

2!u
a1a2a3a4,c
τ1τ2τ3τ4

(
iGa3a4,c

τ3τ4

)
, (A.22)

and neglect any contributions from ũ(4). In Refs. [31,62], all ũ terms were neglected. By includ-
ing the ũ term given in Eq. (A.22), one obtains equations of motion which are accurate to first 
order in G(4),c , which is not the case in Refs. [31,62]. Lastly, we stress that this approach leads 
to a strong-coupling theory that is not simply an expansion order by order in J/U .

Appendix B. Cancellation of anomalous diagrams

In this appendix, we show that the anomalous terms introduced in Appendix A do not con-
tribute when calculating the mean field φ and the two-point CCOGF Gc of the original field a. 
For the sake of economy in writing, we adopt the notation introduced in Section 2.6 and condense 
it even further such that

Xx1...xn ≡ X
a1...an

�r1...�rn,τ1...τn
, (B.1)

XxYx =
∑

�r
Xa

�r,τ Y
a
�r,τ . (B.2)

We start with Eq. (A.3)

Z [f ] =
∫ [

Dψa
] ∫ [

Daa
]
e
− i

2!
(

1
2

[
J−1

]
x1x2

)
ψx1ψx2 −iSψ [a]+iS0[a]+iSf [a]

=
∫ [

Dψa
] ∫ [

Daa
]
e

i
2!
(
− 1

2

[
J−1

]
x1x2

)
ψx1ψx2

〈
ei
(
Sψ [a]+Sf [a]

)〉
S0

, (B.3)

where we performed the field substitution ψx → −ψx . We first establish a relationship between 
the expectation values of the a-field, φx , and of the ψ -field, Vx . To do this, we start by calculating 
φx = 〈ax

〉
as follows
1 1
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φx1 = 〈ax1

〉
= −i lim

f →0

1

Z [f ]

δZ [f ]

δfx1

= −i lim
f →0

1

Z [f ]

∫ [
Dψa

]
e

i
2!
(
− 1

2

[
J−1]

x2x3

)
ψx2 ψx3

δ

δfx1

{〈
ei
(
Sψ [a]+Sf [a]

)〉
S0

}
= −i lim

f →0

1

Z [f ]

∫ [
Dψa

]
e

i
2!
(
− 1

2

[
J−1

]
x2x3

)
ψx2 ψx3

δ

δψx1

{〈
ei
(
Sψ [a]+Sf [a]

)〉
S0

}
, (B.4)

and then integrate by parts to get

= i lim
f →0

1

Z [f ]

∫ [
Dψa

] δ

δψx1

{
e

i
2!
(
− 1

2

[
J−1]

x2x3

)
ψx2ψx3

}〈
ei
(
Sψ [a]+Sf [a]

)〉
S0

= 1

2

[
J−1

]
x1x2

(
lim
f →0

1

Z [f ]

∫ [
Dψa

]
ψx2e

i
2!
(
− 1

2

[
J−1

]
x3x4

)
ψx3 ψx4 +iW0[ψ+f ]

)
= 1

2

[
J−1

]
x1x2

Vx2 , (B.5)

which establishes a relation between φx and Vx . Note that

δ

δ�x

(. . .) ≡ δ

δ�a
�r,τ

(. . .) , (B.6)

where � is some arbitrary field. By similar calculation, one can show that

Gc
x1x2

= 1

2

[
J−1

]
x1x2

+
(

1

2

[
J−1

]
x1x3

)(
1

2

[
J−1

]
x2x4

)
Vc

x3x4
, (B.7)

where Vc
x1x2

is the two-point CCGOF for the field ψ . Taking the inverses of the above relations 
yields

Vx1 = (2Jx1x2

)
φx2 , (B.8)

Vc
x1x2

= − (2Jx1x2

)+ (2Jx1x3

) (
2Jx2x4

)
Gc

x3x4
. (B.9)

We now use the ψ theory to calculate the 2PI equations of motion for Vx1 and Vc
x1x2

. The 
action Saux [ψ] for the auxiliary field ψ can be expressed as

Saux [ψ] = 1

2!
(

−1

2

[
J−1

]
x1x2

)
ψx1ψx2 −

∞∑
n=1

1

(2n)!G
c
x1...x2n

ψx1 . . .ψx2n
, (B.10)

and hence using this action in Eqs. (66) and (67) and rearranging terms, we obtain the following 
relations

Vx1 = − (2Jx1x2

)
Gc

x2x3
Vx3

− (2Jx1x2

) ∞∑
n=2

1

(2n − 3)!G
c
x2x3x4x5...x2n+1

×
{

1

(2n − 1) (2n − 2)
Vx3Vx4 + 1

2

(
iVc

x3x4

)}
Vx5 . . .Vx2n+1

+ (2Jx1x2

)
�x2

[
G(2n),c,V(1),V(2),c

]
, (B.11)
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Vc
x1x2

= − (2Jx1x2

)− (2Jx1x3

)
Gc

x3x4
Vc

x4x2

− (2Jx1x3

){ ∞∑
n=2

1

(2n − 2)!G
c
x3x4x5...x2n+2

Vx5 . . .Vx2n+2

}
Vc

x4x2

− (2Jx1x3

)

aux

x3x4

[
G(2n),c,V(1),V(2),c

]
Vc

x4x2
, (B.12)

where � and 
 are obtained from the corresponding �2. Next, we apply Eqs. (B.8) and (B.9) to 
obtain recursive expressions for φ and Gc

φx1 = −Gc
x1x2

(
2Jx2x

′
2

)
φx′

2

−
∞∑

n=2

1

(2n − 3)!G
c
x1x2x3x4...x2n

{
1

(2n − 1) (2n − 2)

(
2Jx2x

′
2

)(
2Jx3x

′
3

)
φx′

2
φx′

3

+ i

2

[
− (2Jx2x3

)+ (2Jx2x
′
2

)(
2Jx3x

′
3

)
Gc

x′
2x

′
3

]}

×
(

2Jx4x
′
4

)
. . .
(

2Jx2nx′
2n

)
φx′

4
. . . φx′

2n

+ �x1

[
G(2n),c, (2Jxx′)φx′ ,− (2Jxy

)+ (2Jxx′)
(
2Jyy′

)
Gc

x′y′
]
, (B.13)

Gc
x1x2

=
{
Gc

x1x3
+

∞∑
n=2

1

(2n − 2)!G
c
x1x3x4...x2n+1

(
2Jx4x

′
4
φx′

4

)
. . .
(

2Jx2n+1x
′
2n+1

φx′
2n+1

)
+ 
aux

x1x3

[
G(2n),c, (2Jxx′)φx′ ,− (2Jxy

)+ (2Jxx′)
(
2Jyy′

)
Gc

x′y′
]}

×
{
δx3x2 −

(
2Jx3x

′
3

)
Gc

x′
3x2

}
. (B.14)

We now derive recursive relations for φ and Gc by an alternative approach: we apply the 2PI 
approach to the theory of the z-fields, allowing for anomalous terms, which is given by Eq. (A.19)
and written again here in compact form

SBHM = 1

2!
([

G−1
]c
x1x2

+ ũx1x2

)
zx1zx2 + 1

2!
(
2Jx1x2

)
zx1zx2

+
∞∑

n=2

1

(2n)!
(
ux1...x2n

+ ũx1...x2n

)
zx1 . . . zx2n

. (B.15)

As noted in Appendix A, the Green’s functions for the z-fields are the same as those for the 
a-fields. Similarly to the calculations leading to the recursive relations Vx1 and Vc

x1x2
, we calcu-

late the following recursive 2PI relations for φ and Gc

φx1 = −Gc
x1x2

(
2Jx2x3

)
φx3 − Gc

x1x2
ũx2x3φx3

− Gc
x1x2

∞∑
n=2

1

(2n − 3)!
{
ux2x3x4x5...x2n+1 + ũx2x3x4x5...x2n+1

}
×
{

1

(2n − 1) (2n − 2)
φx3φx4 + i

2
Gc

x3x4

}
φx5 . . . φx2n+1
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− Gc
x1x2

�x2

[
−u(2n) − ũ(2n), φ,Gc

]
, (B.16)

Gc
x1x2

= Gc
x1x2

− Gc
x1x3

(
2Jx3x4

)
Gc

x4x2
− Gc

x1x3
ũx3x4G

c
x4x2

− Gc
x1x3

( ∞∑
n=2

1

(2n − 2)!
{
ux3x4x5...x2n+2 + ũx3x4x5...x2n+2

}
φx5 . . . φx2n+2

)
Gc

x4x2

+ Gc
x1x3


aux
x3x4

[
−u(2n) − ũ(2n), φ,Gc

]
Gc

x4x2
. (B.17)

We momentarily drop the terms containing ũ and focus on the remaining terms in the recursive 
expressions

φx1 = −Gc
x1x2

(
2Jx2x3

)
φx3

− Gc
x1x2

∞∑
n=2

1

(2n − 3)!ux2x3x4x5...x2n+1

×
{

1

(2n − 1) (2n − 2)
φx3φx4 + 1

2

(
iGc

x3x4

)}
φx5 . . . φx2n+1

− Gc
x1x2

�x2

[
−u(2n), φ,Gc

]
+ . . . , (B.18)

Gx1x2 = Gc
x1x2

− Gc
x1x3

(
2Jx3x4

)
Gc

x4x2

− Gc
x1x3

( ∞∑
n=2

1

(2n − 2)!ux3x4x5...x2n+2φx5 . . . φx2n+2

)
Gc

x4x2

+ Gc
x1x3


aux
x3x4

[
−u(2n), φ,Gc

]
Gc

x4x2
+ . . . . (B.19)

We now iterate the recursive expressions: for every additive term in Eqs. (B.18) and (B.19) that 
contains at least one u vertex, we apply the recursion relations to each φ and Gc, and keep 
explicitly the following (infinite) subsets of terms respectively

φx1 → −Gc
x1x2

(
2Jx2x3

)
φx3 , (B.20)

Gc
x1x2

→ −Gc
x1x3

(
2Jx3x

′
3

)
Gc

x′
3x2

+ Gc
x1x3

(
2Jx3x4

)
Gc

x4x
′
4

(
2Jx′

4x
′
3

)
Gc

x′
3x2

(internal lines),

(B.21)

Gc
x1x2

→ Gc
x1x2

− Gc
x1x3

(
2Jx3x

′
3

)
Gc

x′
3x2

(external lines), (B.22)

which yields

φx1 = −Gc
x1x2

(
2Jx2x

′
2

)
φx′

2

−
∞∑

n=2

1

(2n − 3)!G
c
x1x2x3x4...x2n

{
1

(2n − 1) (2n − 2)

(
2Jx2x

′
2

)(
2Jx3x

′
3

)
φx′

2
φx′

3

+ i

2

[
− (2Jx2x3

)+ (2Jx2x
′
2

)(
2Jx3x

′
3

)
Gc

x′
2x

′
3

]}

×
(

2Jx4x
′
4

)
. . .
(

2Jx2nx′
2n

)
φx′

4
. . . φx′

2n
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+ �x1

[
G(2n),c, (2Jxx′)φx′ ,− (2Jxy

)+ (2Jxx′)
(
2Jyy′

)
Gc

x′y′
]
+ Fφ

[(
Gc
)−1
]
,

(B.23)

Gc
x1x2

=
{
Gc

x1x3
+

∞∑
n=2

1

(2n − 2)!G
c
x1x3x4...x2n+1

(
2Jx4x

′
4

)
. . .
(

2Jx2n+1x
′
2n+1

)
φx′

4
. . . φx′

2n+1

+ 
aux
x1x3

[
G(2n),c, (2Jxx′)φx′ ,− (2Jxy

)+ (2Jxx′)
(
2Jyy′

)
Gc

x′y′
]}

×
{
δx3x2 −

(
2Jx3x

′
3

)
Gc

x′
3x2

}
+ FGc

[(
Gc
)−1
]
, (B.24)

where the Fφ,Gc
[
(Gc)−1

]
terms contain an (infinite) set of terms with internal inverse atomic 

propagator lines (Gc)−1. These are the anomalous terms we made reference to in Appendix A. 
Note that in obtaining Eqs. (B.23) and (B.24) we made use of the following facts

�x1

[
G(2n),c,−A,B

]
= −�x1

[
G(2n),c,A,B

]
, (B.25)


aux
x1x2

[
G(2n),c,−A,B

]
= 
aux

x1x2

[
G(2n),c,A,B

]
. (B.26)

Equations (B.25) and (B.26) can be proven straightforwardly. First, note that diagrammatically, 
�x1

[
G(2n),c,A,B

]
and 
aux

x1x2

[
G(2n),c,A,B

]
are represented by infinite sums of diagrams, where 

each diagram is made up of vertices G(2n),c , each of which contain an even number of state-labels. 
Therefore, the total number of vertex state-labels for each diagram is an even number. Each 
state-label will either contract with a one-point propagator A, contract with a two-point propaga-
tor B (along with another state-label), or represent an external state-label. Keeping in mind that 
each internal line B contracts with two vertex state-labels, we must have that each diagram in 
�x1

[
G(2n),c,A,B

]
and 
aux

x1x2

[
G(2n),c,A,B

]
contain an odd and even number of A factors re-

spectively, since the former contains an odd number of external vertex state-labels and the latter 
contains an even number. Eqs. (B.25) and (B.26) immediately follow from this observation.

Comparing Eqs. (B.23) and (B.24) to Eqs. (B.13) and (B.14), we see that these are only 

consistent if all anomalous terms i.e. ũ and Fφ,Gc
[
(Gc)−1

]
terms are omitted from the 2PI 

equations of motion. This completes the proof that the anomalous terms cancel one another out 
when calculating φ and Gc.

Appendix C. Keldysh components of Gc

The Keldysh components of the atomic Green’s function Gc can be expressed as follows

G12,(R) (s1, s2) = − i

Z0
�(s1 − s2)

∞∑
n=0

e−β
(
En−En0

) {
(n + 1) e−i

(
En+1−En

)
(s1−s2)

− nei
(
En−1−En

)
(s1−s2)

}
, (C.1)

G12,(A) (s1, s2) = i

Z0
�(s2 − s1)

∞∑
n=0

e−β
(
En−En0

) {
(n + 1) e−i

(
En+1−En

)
(s1−s2)

− nei
(
En−1−En

)
(s1−s2)

}
, (C.2)
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G12,(K) (s1, s2) = − i

Z0

∞∑
n=0

e−β
(
En−En0

) {
(n + 1) e−i

(
En+1−En

)
(s1−s2)

+ nei
(
En−1−En

)
(s1−s2)

}
, (C.3)

G12,(�) (s1, s2) = − i

Z0

∞∑
n=0

(n + 1) e−β
(
En−En0

)
ei
(
En+1−En

)
s2e−(En+1−En

)
s1, (C.4)

G12,(�) (s1, s2) = − i

Z0

∞∑
n=0

ne−β
(
En−En0

)
ei
(
En−1−En

)
s1e−(En−1−En

)
s2, (C.5)

G12,(M) (s1, s2) = − 1

Z0

∞∑
n=0

e−β
(
En−En0

) {
�(s1 − s2) (n + 1) e−(En+1−En

)
(s1−s2)

+ �(s2 − s1) ne
(
En−1−En

)
(s1−s2)

}
, (C.6)

where Z0 is the atomic partition function

Z0 ≡
∞∑

n=0

e−β
(
En−En0

)
, (C.7)

and n0 and En are given by Eqs. (109) and (121) respectively.
Given that the Fourier transforms G12,(R,K) (ω) are used throughout this paper, it is worth 

explicitly writing out the expressions for these particular Keldysh components

G12,(R) (ω) = 1

Z0

∞∑
n=0

e−β
(
En−En0

){ (n + 1)(
ω − [En+1 − En

])+ i0+

− n(
ω + [En−1 − En

])+ i0+

}
, (C.8)

G12,(K) (ω) = −2πi

Z0

∞∑
n=0

e−β
(
En−En0

){
(n + 1) δ

(
ω − [En+1 − En

])
+ nδ

(
ω + [En−1 − En

])}
. (C.9)

Appendix D. Low frequency approximation to four-point vertex u(4)

To calculate the low frequency approximation to the four-point vertex ua1a2a3a4
α1α2α3α4 (s1, s2, s3, s4), 

we begin with Eq. (41). We make use of the time-translational invariance of the atomic two-point 
Green’s function and take the low-frequency approximation, which gives (noting that there is 
no contribution from the Keldysh Green’s function except at points where the Mott lobes are 
degenerate) [31]

ua1a2a3a4
α1α2α3α4

(s1, s2, s3, s4)

= −
{
G12,(R)

(
ω′ = 0

)}−4 4∏
m=1

⎛⎝ ∞∫
dωm

2π
e−iωmsm

⎞⎠

−∞
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×

⎧⎪⎨⎪⎩
Ga1a2a3a4,c

α1α2α3α4 (ω1,ω2,ω3,ω4) , if αm = q or c for m = 1, . . .4,

or if {αm}4
m=1 = {T ,T ,T ,T } ,

0, otherwise,

(D.1)

where G12,(R)
(
ω′ = 0

)
is easily determined from Eq. (C.8) to be

G12,(R)
(
ω′ = 0

)= − 1

Z0

∞∑
n=0

e−β
(
En−En0

) { (n + 1)

En+1 − En

+ n

En−1 − En

}
. (D.2)

Explicit calculation of Ga1a2a3a4,c
α1α2α3α4 (ω1,ω2,ω3,ω4) followed by taking the low frequency limit 

leads to the two constants introduced in Eq. (78):

u1 = −2
{
G12,(R)

(
ω′ = 0

)}−4

Z0

×
∞∑

n=0

e−β
(
En−En0

) { (n + 1) (n + 2)

(En+2 − En) (En+1 − En)
2 + n (n − 1)

(En−2 − En) (En−1 − En)
2

− (n + 1)2

(En+1 − En)
3 − n2

(En−1 − En)
3

− n (n + 1)

(En+1 − En) (En−1 − En)
2 − n (n + 1)

(En+1 − En)
2 (En−1 − En)

}
,

(D.3)

and

u2
2 =

{
G12,(R)

(
ω′ = 0

)}−4

Z0

∞∑
n=0

e−β
(
En−En0

) ( n + 1

En+1 − En

+ n

En−1 − En

)2

−
{
G12,(R)

(
ω′ = 0

)}−4

Z2
0

∞∑
n=0

∞∑
n′=0

e−β
{(
En−En0

)+(En′−En0

)} ( n + 1

En+1 − En

+ n

En−1 − En

)

×
(

n′ + 1

En′+1 − En′
+ n′

En′−1 − En′

)
. (D.4)

Note that u1 corresponds to the coefficient u introduced in Ref. [31], but u2
2 is a coefficient that 

did not enter in that work, but is required to describe correlation function dynamics. Note also 
that in the limit βU → ∞, u2

2 → 0.

Appendix E. Gapless spectrum in the HFBP approximation

In this appendix we show that in the full HFB approximation the excitation spectrum is not 
gapless in the SF phase. We then show that the HFBP approximation yields a gapless spectrum. 
In the SF phase, in order for the excitation spectrum to be gapless, we require that

C̃�k=0 = 0, (E.1)

where C̃�k was defined in Eq. (135). To show this, first we substitute Eq. (115) into Eq. (135) to 
get
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C̃�k = (C�k
)2 − (U + μ)2

∣∣∣
22,(R)

�k
∣∣∣2 , (E.2)

where C�k was defined in Eq. (117). In the full HFB approximation, the self-energy is given by 

Eqs. (105) and (107). Using Eq. (131) one can rewrite 
12,(R)

�k in the HFB approximation as



12,(R)

�k = (2dJ + ε�k
)+ {G12,(R)

(
ω′ = 0

)}−1 − 1

2
u1

{
iG

22,(K)

�r=0

(
s′ = 0

)}+ u1φ
2, (E.3)

where we assumed without loss of generality that φ is real, which implies that iG22,(K)

�r=0

(
s′ = 0

)
is real as well. Substituting Eq. (E.3) into Eq. (117) for �k = 0 yields

C�k=0 = −1

2
u1 (U + μ)

{
2φ2 −

{
iG

22,(K)

�r=0

(
s′ = 0

)}}
. (E.4)

Lastly, we substitute Eqs. (E.4) and (107) into Eq. (E.2) to get

C̃�k=0 = −2u2
1 (U + μ)2 φ2

{
iG

22,(K)

�r=0

(
s′ = 0

)}
. (E.5)

As we can see, Eq. (E.1) is not satisfied in the full HFB approximation. However, in the HFBP 
approximation – which is equivalent to setting iG11,(K)

�r=0

(
s′ = 0

) = iG
22,(K)

�r=0

(
s′ = 0

) = 0 – we 
clearly have a gapless spectrum.

Appendix F. Static limit of G(K)

In this appendix, we show that

G
a1a2,(K)

�k (ω = 0) = 0, (F.1)

for equilibrium systems. We start with Eq. (98), which for equilibrium systems reduces to [85]

G
a1a2,(K)

�k (ω) = Ga1a2,(K) (ω)

+
∑
a3a4

Ga1a3,(R) (ω)

a3a4,(R)

�k G
a4a2,(K)

�k (ω)

+
∑
a3a4

Ga1a3,(K) (ω)

a3a4,(A)

�k G
a4a2,(A)

�k (ω) . (F.2)

From Eq. (C.9), we have

Ga1a2,(K) (ω = 0) = 0, (F.3)

which implies that

G
a1a2,(K)

�k (ω = 0) =
∑
a3a4

Ga1a3,(R) (ω)

a3a4,(R)

�k G
a4a2,(K)

�k (ω) . (F.4)

The G12,(K) equation yields

G
12,(K)

�k (ω = 0) = G12,(R) (ω)

12,(R)

�k G
12,(K)

�k (ω) + G12,(R) (ω)

11,(R)

�k G
22,(K)

�k (ω) , (F.5)

whereas the G22,(K) equation can be rearranged as follows

G
22,(K)

�k (ω = 0) =



22,(R)

�k{
G12,(R) (ω = 0)

}−1 − 

12,(R)

G
12,(K)

�k (ω = 0) . (F.6)

�k
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Substituting Eq. (F.6) back into Eq. (F.5) yields

0 =
[
1 − G12,(R) (ω = 0)


12,(R)

�k

− G12,(R) (ω = 0)

∣∣∣
22,(R)

�k
∣∣∣2{

G12,(R) (ω = 0)
}−1 − 


12,(R)

�k

⎤⎥⎦G
12,(K)

�k (ω = 0) . (F.7)

Since in general the expression inside the square brackets is not zero, it must be the case that 
G

12,(K)

�k (ω = 0) is zero, which also implies that G22,(K)

�k (ω = 0) is zero.

References

[1] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1 (2005) 23–30, https://doi .org /10 .1038 /nphys138.
[2] D. Jaksch, P. Zoller, The cold atom Hubbard toolbox, Ann. Phys. 315 (2005) 52–79, https://doi .org /10 .1016 /j .aop .

2004 .09 .010, arXiv :cond -mat /0410614.
[3] O. Morsch, M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (2006) 

179–215, https://doi .org /10 .1103 /RevModPhys .78 .179.
[4] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, U. Sen, Ultracold atomic gases in optical lat-

tices: mimicking condensed matter physics and beyond, Adv. Phys. 56 (2007) 243–379, https://doi .org /10 .1080 /
00018730701223200, arXiv :cond -mat /0606771.

[5] I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80 (2008) 885–964, 
https://doi .org /10 .1103 /RevModPhys .80 .885, arXiv :0704 .3011.

[6] M.P. Kennett, Out-of-equilibrium dynamics of the Bose–Hubbard model, ISRN Condens. Matter Phys. 2013 (2013) 
393616, https://doi .org /10 .1155 /2013 /393616.

[7] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Boson localization and the superfluid-insulator transition, 
Phys. Rev. B 40 (1989) 546–570, https://doi .org /10 .1103 /PhysRevB .40 .546.

[8] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices, Phys. Rev. Lett. 81 
(1998) 3108–3111, https://doi .org /10 .1103 /PhysRevLett .81 .3108, arXiv :cond -mat /9805329.

[9] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott 
insulator in a gas of ultracold atoms, Nature 415 (2002) 39–44, https://doi .org /10 .1038 /415039a.

[10] D. Chen, M. White, C. Borries, B. Demarco, Quantum quench of an atomic Mott insulator, Phys. Rev. Lett. 106 (23) 
(2011) 235304, https://doi .org /10 .1103 /PhysRevLett .106 .235304, arXiv :1103 .4662.

[11] W.S. Bakr, A. Peng, M.E. Tai, R. Ma, J. Simon, J.I. Gillen, S. Fölling, L. Pollet, M. Greiner, Probing the superfluid-
to-Mott insulator transition at the single-atom level, Science 329 (2010) 547, https://doi .org /10 .1126 /science .
1192368, arXiv :1006 .0754.

[12] K. Jiménez-García, R.L. Compton, Y.-J. Lin, W.D. Phillips, J.V. Porto, I.B. Spielman, Phases of a two-dimensional 
Bose gas in an optical lattice, Phys. Rev. Lett. 105 (11) (2010) 110401, https://doi .org /10 .1103 /PhysRevLett .105 .
110401, arXiv :1003 .1541.

[13] I.B. Spielman, W.D. Phillips, J.V. Porto, Mott-insulator transition in a two-dimensional atomic Bose gas, Phys. Rev. 
Lett. 98 (8) (2007) 080404, https://doi .org /10 .1103 /PhysRevLett .98 .080404, arXiv :cond -mat /0606216.

[14] J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Single-atom-resolved fluorescence imaging 
of an atomic Mott insulator, Nature 467 (2010) 68–72, https://doi .org /10 .1038 /nature09378, arXiv :1006 .3799.

[15] T. Stöferle, H. Moritz, C. Schori, M. Köhl, T. Esslinger, Transition from a strongly interacting 1D superfluid to 
a Mott insulator, Phys. Rev. Lett. 92 (13) (2004) 130403, https://doi .org /10 .1103 /PhysRevLett .92 .130403, arXiv :
cond -mat /0312440.

[16] M. Köhl, H. Moritz, T. Stöferle, C. Schori, T. Esslinger, Superfluid to Mott insulator transition in one, two, and 
three dimensions, J. Low Temp. Phys. 138 (2005) 635–644, https://doi .org /10 .1007 /s10909 -005 -2273 -4, arXiv :
cond -mat /0404338.

[17] C. Schori, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Excitations of a superfluid in a three-dimensional optical 
lattice, Phys. Rev. Lett. 93 (24) (2004) 240402, https://doi .org /10 .1103 /PhysRevLett .93 .240402, arXiv :cond -mat /
0408449.

[18] M. Greiner, O. Mandel, T.W. Hänsch, I. Bloch, Collapse and revival of the matter wave field of a Bose–Einstein 
condensate, Nature 419 (2002) 51–54, https://doi .org /10 .1038 /nature00968, arXiv :cond -mat /0207196.

https://doi.org/10.1038/nphys138
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1103/RevModPhys.78.179
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1155/2013/393616
https://doi.org/10.1103/PhysRevB.40.546
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1038/415039a
https://doi.org/10.1103/PhysRevLett.106.235304
https://doi.org/10.1126/science.1192368
https://doi.org/10.1103/PhysRevLett.105.110401
https://doi.org/10.1103/PhysRevLett.98.080404
https://doi.org/10.1038/nature09378
https://doi.org/10.1103/PhysRevLett.92.130403
https://doi.org/10.1007/s10909-005-2273-4
https://doi.org/10.1103/PhysRevLett.93.240402
https://doi.org/10.1038/nature00968
https://doi.org/10.1016/j.aop.2004.09.010
https://doi.org/10.1080/00018730701223200
https://doi.org/10.1126/science.1192368
https://doi.org/10.1103/PhysRevLett.105.110401


M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44 41
[19] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, I. Bloch, Interference pattern and visibility of a Mott insu-
lator, Phys. Rev. A 72 (5) (2005) 053606, https://doi .org /10 .1103 /PhysRevA .72 .053606, arXiv :cond -mat /0507087.

[20] F. Gerbier, A. Widera, S. Fölling, O. Mandel, T. Gericke, I. Bloch, Phase coherence of an atomic Mott insulator, 
Phys. Rev. Lett. 95 (5) (2005) 050404, https://doi .org /10 .1103 /PhysRevLett .95 .050404, arXiv :cond -mat /0503452.

[21] S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Time-resolved observation of co-
herent multi-body interactions in quantum phase revivals, Nature 465 (2010) 197–201, https://doi .org /10 .1038 /
nature09036.

[22] S. Trotzky, L. Pollet, F. Gerbier, U. Schnorrberger, I. Bloch, N.V. Prokof’Ev, B. Svistunov, M. Troyer, Suppression 
of the critical temperature for superfluidity near the Mott transition, Nat. Phys. 6 (2010) 998–1004, https://doi .org /
10 .1038 /nphys1799, arXiv :0905 .4882.

[23] I.B. Spielman, W.D. Phillips, J.V. Porto, Condensate fraction in a 2D Bose gas measured across the Mott-insulator 
transition, Phys. Rev. Lett. 100 (12) (2008) 120402, https://doi .org /10 .1103 /PhysRevLett .100 .120402, arXiv :0803 .
3797.

[24] S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Probing the relaxation towards 
equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nat. Phys. 8 (2012) 325–330, https://
doi .org /10 .1038 /nphys2232, arXiv :1101 .2659.

[25] K.W. Mahmud, L. Jiang, P.R. Johnson, E. Tiesinga, Collapse and revivals for systems of short-range phase coher-
ence, New J. Phys. 16 (10) (2014) 103009, https://doi .org /10 .1088 /1367 -2630 /16 /10 /103009, arXiv :1401 .6648.

[26] C. Kollath, A.M. Läuchli, E. Altman, Quench dynamics and nonequilibrium phase diagram of the Bose–Hubbard 
model, Phys. Rev. Lett. 98 (18) (2007) 180601, https://doi .org /10 .1103 /PhysRevLett .98 .180601, arXiv :cond -mat /
0607235.

[27] B. Sciolla, G. Biroli, Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional 
Bose–Hubbard model, Phys. Rev. Lett. 105 (22) (2010) 220401, https://doi .org /10 .1103 /PhysRevLett .105 .220401, 
arXiv :1007 .5238.

[28] B. Sciolla, G. Biroli, Dynamical transitions and quantum quenches in mean-field models, J. Stat. Mech. 11 (2011) 
11003, https://doi .org /10 .1088 /1742 -5468 /2011 /11 /P11003, arXiv :1108 .5068.

[29] U.R. Fischer, R. Schützhold, M. Uhlmann, Bogoliubov theory of quantum correlations in the time-dependent 
Bose–Hubbard model, Phys. Rev. A 77 (4) (2008) 043615, https://doi .org /10 .1103 /PhysRevA .77 .043615, arXiv :
0711 .4729.

[30] U.R. Fischer, R. Schützhold, Tunneling-induced damping of phase coherence revivals in deep optical lattices, Phys. 
Rev. A 78 (6) (2008) 061603, https://doi .org /10 .1103 /PhysRevA .78 .061603, arXiv :0807 .3627.

[31] M.P. Kennett, D. Dalidovich, Schwinger–Keldysh approach to out-of-equilibrium dynamics of the Bose–Hubbard 
model with time-varying hopping, Phys. Rev. A 84 (3) (2011) 033620, https://doi .org /10 .1103 /PhysRevA .84 .
033620, arXiv :1106 .1673.

[32] H.U.R. Strand, M. Eckstein, P. Werner, Nonequilibrium dynamical mean-field theory for bosonic lattice models, 
Phys. Rev. X 5 (1) (2015) 011038, https://doi .org /10 .1103 /PhysRevX .5 .011038, arXiv :1405 .6941.

[33] I.S. Landea, N. Nessi, Prethermalization and glassiness in the bosonic Hubbard model, Phys. Rev. A 91 (6) (2015) 
063601, https://doi .org /10 .1103 /PhysRevA .91 .063601.

[34] T.W.B. Kibble, Topology of cosmic domains and strings, J. Phys. A 9 (1976) 1387–1398, https://doi .org /10 .1088 /
0305 -4470 /9 /8 /029.

[35] W.H. Zurek, Cosmological experiments in superfluid helium?, Nature 317 (1985) 505–508, https://doi .org /10 .1038 /
317505a0.

[36] W.H. Zurek, U. Dorner, P. Zoller, Dynamics of a quantum phase transition, Phys. Rev. Lett. 95 (10) (2005) 105701, 
https://doi .org /10 .1103 /PhysRevLett .95 .105701, arXiv :cond -mat /0503511.

[37] A. Polkovnikov, Universal adiabatic dynamics in the vicinity of a quantum critical point, Phys. Rev. B 72 (16) 
(2005) 161201, https://doi .org /10 .1103 /PhysRevB .72 .161201, arXiv :cond -mat /0312144.

[38] L. Carr, Understanding Quantum Phase Transitions, CRC Press, Boca Raton, FL, 2010.
[39] B. Demarco, C. Lannert, S. Vishveshwara, T.-C. Wei, Structure and stability of Mott-insulator shells of bosons 

trapped in an optical lattice, Phys. Rev. A 71 (6) (2005) 063601, https://doi .org /10 .1103 /PhysRevA .71 .063601, 
arXiv :cond -mat /0501718.

[40] G.G. Batrouni, V. Rousseau, R.T. Scalettar, M. Rigol, A. Muramatsu, P.J. Denteneer, M. Troyer, Mott domains of 
bosons confined on optical lattices, Phys. Rev. Lett. 89 (11) (2002) 117203, https://doi .org /10 .1103 /PhysRevLett .
89 .117203, arXiv :cond -mat /0203082.

[41] S.S. Natu, K.R.A. Hazzard, E.J. Mueller, Local versus global equilibration near the bosonic Mott-insulator-
superfluid transition, Phys. Rev. Lett. 106 (12) (2011) 125301, https://doi .org /10 .1103 /PhysRevLett .106 .125301, 
arXiv :1009 .5728.

https://doi.org/10.1103/PhysRevA.72.053606
https://doi.org/10.1103/PhysRevLett.95.050404
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nphys1799
https://doi.org/10.1103/PhysRevLett.100.120402
https://doi.org/10.1038/nphys2232
https://doi.org/10.1088/1367-2630/16/10/103009
https://doi.org/10.1103/PhysRevLett.98.180601
https://doi.org/10.1103/PhysRevLett.105.220401
https://doi.org/10.1088/1742-5468/2011/11/P11003
https://doi.org/10.1103/PhysRevA.77.043615
https://doi.org/10.1103/PhysRevA.78.061603
https://doi.org/10.1103/PhysRevA.84.033620
https://doi.org/10.1103/PhysRevX.5.011038
https://doi.org/10.1103/PhysRevA.91.063601
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1103/PhysRevLett.95.105701
https://doi.org/10.1103/PhysRevB.72.161201
http://refhub.elsevier.com/S0550-3213(18)30066-X/bib47726974736576s1
https://doi.org/10.1103/PhysRevA.71.063601
https://doi.org/10.1103/PhysRevLett.89.117203
https://doi.org/10.1103/PhysRevLett.106.125301
https://doi.org/10.1038/nature09036
https://doi.org/10.1038/nphys1799
https://doi.org/10.1038/nphys2232
https://doi.org/10.1103/PhysRevA.84.033620
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1038/317505a0
https://doi.org/10.1103/PhysRevLett.89.117203


42 M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44
[42] J.-S. Bernier, G. Roux, C. Kollath, Slow quench dynamics of a one-dimensional Bose gas confined to an optical lat-
tice, Phys. Rev. Lett. 106 (20) (2011) 200601, https://doi .org /10 .1103 /PhysRevLett .106 .200601, arXiv :1010 .5251.

[43] C.-L. Hung, X. Zhang, N. Gemelke, C. Chin, Slow mass transport and statistical evolution of an atomic gas 
across the superfluid-Mott-insulator transition, Phys. Rev. Lett. 104 (16) (2010) 160403, https://doi .org /10 .1103 /
PhysRevLett .104 .160403, arXiv :0910 .1382.

[44] A. Dutta, R. Sensarma, K. Sengupta, Role of trap-induced scales in non-equilibrium dynamics of strongly interacting 
trapped bosons, J. Phys. Condens. Matter 28 (2016) 30LT01, https://doi .org /10 .1088 /0953 -8984 /28 /30 /30LT01.

[45] E.H. Lieb, D.W. Robinson, The finite group velocity of quantum spin systems, Commun. Math. Phys. 28 (1972) 
251–257, https://doi .org /10 .1007 /BF01645779.

[46] G. Carleo, F. Becca, L. Sanchez-Palencia, S. Sorella, M. Fabrizio, Light-cone effect and supersonic correlations 
in one- and two-dimensional bosonic superfluids, Phys. Rev. A 89 (3) (2014) 031602, https://doi .org /10 .1103 /
PhysRevA .89 .031602, arXiv :1310 .2246.

[47] A.M. Läuchli, C. Kollath, Spreading of correlations and entanglement after a quench in the one-dimensional Bose 
Hubbard model, J. Stat. Mech. 5 (2008) 05018, https://doi .org /10 .1088 /1742 -5468 /2008 /05 /P05018, arXiv :0803 .
2947.

[48] P. Barmettler, D. Poletti, M. Cheneau, C. Kollath, Propagation front of correlations in an interacting Bose gas, Phys. 
Rev. A 85 (5) (2012) 053625, https://doi .org /10 .1103 /PhysRevA .85 .053625.

[49] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, S. Kuhr, 
Light-cone-like spreading of correlations in a quantum many-body system, Nature 481 (2012) 484–487, https://
doi .org /10 .1038 /nature10748, arXiv :1111 .0776.

[50] P. Navez, R. Schützhold, Emergence of coherence in the Mott-insulator-superfluid quench of the Bose–Hubbard 
model, Phys. Rev. A 82 (6) (2010) 063603, https://doi .org /10 .1103 /PhysRevA .82 .063603, arXiv :1008 .1548.

[51] S.S. Natu, E.J. Mueller, Dynamics of correlations in shallow optical lattices, Phys. Rev. A 87 (6) (2013) 063616, 
https://doi .org /10 .1103 /PhysRevA .87 .063616, arXiv :1201 .6674.

[52] J.-S. Bernier, D. Poletti, P. Barmettler, G. Roux, C. Kollath, Slow quench dynamics of Mott-insulating regions 
in a trapped Bose gas, Phys. Rev. A 85 (3) (2012) 033641, https://doi .org /10 .1103 /PhysRevA .85 .033641, arXiv :
1111 .4214.

[53] S.R. Clark, D. Jaksch, Dynamics of the superfluid to Mott-insulator transition in one dimension, Phys. Rev. A 70 (4) 
(2004) 043612, https://doi .org /10 .1103 /PhysRevA .70 .043612, arXiv :cond -mat /0405580.

[54] J. Zakrzewski, Mean-field dynamics of the superfluid-insulator phase transition in a gas of ultracold atoms, Phys. 
Rev. A 71 (4) (2005) 043601, https://doi .org /10 .1103 /PhysRevA .71 .043601, arXiv :cond -mat /0406186.

[55] L. Amico, V. Penna, Time-dependent mean-field theory of the superfluid-insulator phase transition, Phys. Rev. B 62 
(2000) 1224–1237, https://doi .org /10 .1103 /PhysRevB .62 .1224, arXiv :cond -mat /9908050.

[56] C. Trefzger, K. Sengupta, Nonequilibrium dynamics of the Bose–Hubbard model: a projection-operator approach, 
Phys. Rev. Lett. 106 (9) (2011) 095702, https://doi .org /10 .1103 /PhysRevLett .106 .095702, arXiv :1008 .1285.

[57] A. Dutta, C. Trefzger, K. Sengupta, Projection operator approach to the Bose–Hubbard model, Phys. Rev. B 86 (8) 
(2012) 085140, https://doi .org /10 .1103 /PhysRevB .86 .085140, arXiv :1111 .5085.

[58] C. Schroll, F. Marquardt, C. Bruder, Perturbative corrections to the Gutzwiller mean-field solution of the Mott-
Hubbard model, Phys. Rev. A 70 (5) (2004) 053609, https://doi .org /10 .1103 /PhysRevA .70 .053609, arXiv :cond -
mat /0404576.

[59] Y. Yanay, E.J. Mueller, Evolution of coherence during ramps across the Mott-insulator-superfluid phase boundary, 
Phys. Rev. A 93 (1) (2016) 013622, https://doi .org /10 .1103 /PhysRevA .93 .013622, arXiv :1508 .03018.

[60] F. Queisser, K.V. Krutitsky, P. Navez, R. Schützhold, Equilibration and prethermalization in the Bose–Hubbard 
and Fermi–Hubbard models, Phys. Rev. A 89 (3) (2014) 033616, https://doi .org /10 .1103 /PhysRevA .89 .033616, 
arXiv :1311 .2212.

[61] K.V. Krutitsky, P. Navez, F. Queisser, R. Schützhold, Propagation of quantum correlations after a quench in the 
Mott-insulator regime of the Bose–Hubbard model, Eur. Phys. J. Quantum Technol. 1 (2014) 12, https://doi .org /10 .
1140 /epjqt12, arXiv :1405 .1312.

[62] K. Sengupta, N. Dupuis, Mott-insulator-to-superfluid transition in the Bose–Hubbard model: a strong-coupling 
approach, Phys. Rev. A 71 (3) (2005) 033629, https://doi .org /10 .1103 /PhysRevA .71 .033629, arXiv :cond -mat /
0412204.

[63] A.M. Rey, B.L. Hu, E. Calzetta, A. Roura, C.W. Clark, Nonequilibrium dynamics of optical-lattice-loaded Bose–
Einstein-condensate atoms: beyond the Hartree–Fock–Bogoliubov approximation, Phys. Rev. A 69 (3) (2004) 
033610, https://doi .org /10 .1103 /PhysRevA .69 .033610, arXiv :cond -mat /0308305.

[64] J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (3) (1961) 407–432, https://doi .org /10 .
1063 /1 .1703727.

https://doi.org/10.1103/PhysRevLett.106.200601
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1088/0953-8984/28/30/30LT01
https://doi.org/10.1007/BF01645779
https://doi.org/10.1103/PhysRevA.89.031602
https://doi.org/10.1088/1742-5468/2008/05/P05018
https://doi.org/10.1103/PhysRevA.85.053625
https://doi.org/10.1038/nature10748
https://doi.org/10.1103/PhysRevA.82.063603
https://doi.org/10.1103/PhysRevA.87.063616
https://doi.org/10.1103/PhysRevA.85.033641
https://doi.org/10.1103/PhysRevA.70.043612
https://doi.org/10.1103/PhysRevA.71.043601
https://doi.org/10.1103/PhysRevB.62.1224
https://doi.org/10.1103/PhysRevLett.106.095702
https://doi.org/10.1103/PhysRevB.86.085140
https://doi.org/10.1103/PhysRevA.70.053609
https://doi.org/10.1103/PhysRevA.93.013622
https://doi.org/10.1103/PhysRevA.89.033616
https://doi.org/10.1140/epjqt12
https://doi.org/10.1103/PhysRevA.71.033629
https://doi.org/10.1103/PhysRevA.69.033610
https://doi.org/10.1063/1.1703727
https://doi.org/10.1103/PhysRevLett.104.160403
https://doi.org/10.1103/PhysRevA.89.031602
https://doi.org/10.1038/nature10748
https://doi.org/10.1140/epjqt12
https://doi.org/10.1063/1.1703727


M.R.C. Fitzpatrick, M.P. Kennett / Nuclear Physics B 930 (2018) 1–44 43
[65] L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 20 (1964) 1515–1527, Sov. 
Phys. JETP 20 (1965) 1018.

[66] J. Rammer, H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys. 58 (1986) 
323–359, https://doi .org /10 .1103 /RevModPhys .58 .323.

[67] A.J. Niemi, G.W. Semenoff, Finite-temperature quantum field theory in Minkowski space, Ann. Phys. 152 (1984) 
105–129, https://doi .org /10 .1016 /0003 -4916(84 )90082 -4.

[68] N.P. Landsman, C.G. van Weert, Real- and imaginary-time field theory at finite temperature and density, Phys. Rep. 
145 (1987) 141–249, https://doi .org /10 .1016 /0370 -1573(87 )90121 -9.

[69] K.-c. Chou, Z.-b. Su, B.-l. Hao, L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep. 118 
(1985) 1–131, https://doi .org /10 .1016 /0370 -1573(85 )90136 -X.

[70] J. Rammer, Quantum Field Theory of Non-equilibrium States, Cambridge University Press, New York, NY, 2007.
[71] A. Robertson, V.M. Galitski, G. Refael, Dynamic stimulation of quantum coherence in systems of lattice bosons, 

Phys. Rev. Lett. 106 (16) (2011) 165701, https://doi .org /10 .1103 /PhysRevLett .106 .165701, arXiv :1011 .2208.
[72] T.D. Graß, F.E.A. dos Santos, A. Pelster, Real-time Ginzburg–Landau theory for bosons in optical lattices, Laser 

Phys. 21 (2011) 1459–1463, https://doi .org /10 .1134 /S1054660X11150096, arXiv :1003 .4197.
[73] T.D. Graß, F.E.A. Dos Santos, A. Pelster, Excitation spectra of bosons in optical lattices from the Schwinger–

Keldysh calculation, Phys. Rev. A 84 (1) (2011) 013613, https://doi .org /10 .1103 /PhysRevA .84 .013613, arXiv :
1011 .5639.

[74] T.D. Graß, Real-Time Ginzburg–Landau Theory for Bosonic Gases in Optical Lattices, Master’s thesis, Freie Uni-
versität, Berlin, Nov. 2009.

[75] A.M. Rey, B.L. Hu, E. Calzetta, C.W. Clark, Quantum kinetic theory of a Bose–Einstein gas confined in a lattice, 
Phys. Rev. A 72 (2) (2005) 023604, https://doi .org /10 .1103 /PhysRevA .72 .023604, arXiv :cond -mat /0412066.

[76] K. Temme, T. Gasenzer, Nonequilibrium dynamics of condensates in a lattice with the two-particle-irreducible 
effective action in the 1/N expansion, Phys. Rev. A 74 (5) (2006) 053603, https://doi .org /10 .1103 /PhysRevA .74 .
053603, arXiv :cond -mat /0607116.

[77] E. Calzetta, B.L. Hu, A.M. Rey, Bose–Einstein-condensate superfluid-Mott-insulator transition in an optical lattice, 
Phys. Rev. A 73 (2) (2006) 023610, https://doi .org /10 .1103 /PhysRevA .73 .023610, arXiv :cond -mat /0507256.

[78] A. Polkovnikov, Quantum corrections to the dynamics of interacting bosons: beyond the truncated Wigner ap-
proximation, Phys. Rev. A 68 (5) (2003) 053604, https://doi .org /10 .1103 /PhysRevA .68 .053604, arXiv :cond -mat /
0303628.

[79] N. Lo Gullo, L. Dell’Anna, Self-consistent Keldysh approach to quenches in the weakly interacting Bose–Hubbard 
model, Phys. Rev. B 94 (18) (2016) 184308, https://doi .org /10 .1103 /PhysRevB .94 .184308, arXiv :1607 .03016.

[80] J.W. Negele, H. Orland, Quantum Many Particle Systems, Addison-Wesley, Reading, MA, 1998.
[81] M.A. van Eijck, R. Kobes, C.G. van Weert, Transformations of real-time finite-temperature Feynman rules, Phys. 

Rev. D 50 (1994) 4097–4109, https://doi .org /10 .1103 /PhysRevD .50 .4097, arXiv :hep -ph /9406214.
[82] L.F. Cugliandolo, G. Lozano, Real-time nonequilibrium dynamics of quantum glassy systems, Phys. Rev. B 59 

(1999) 915–942, https://doi .org /10 .1103 /PhysRevB .59 .915, arXiv :cond -mat /9807138.
[83] M.P. Kennett, C. Chamon, J. Ye, Aging dynamics of quantum spin glasses of rotors, Phys. Rev. B 64 (22) (2001) 

224408, https://doi .org /10 .1103 /PhysRevB .64 .224408, arXiv :cond -mat /0103428.
[84] J.M. Cornwall, R. Jackiw, E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (1974) 

2428–2445, https://doi .org /10 .1103 /PhysRevD .10 .2428.
[85] G. Stefanucci, R. van Leeuwen, Nonequilibrium Many-Body Theory of Quantum Systems, Cambridge University 

Press, New York, NY, 2013.
[86] J.K. Freericks, H. Monien, Strong-coupling expansions for the pure and disordered Bose–Hubbard model, Phys. 

Rev. B 53 (1996) 2691–2700, https://doi .org /10 .1103 /PhysRevB .53 .2691, arXiv :cond -mat /9508101.
[87] T.D. Kühner, H. Monien, Phases of the one-dimensional Bose–Hubbard model, Phys. Rev. B 58 (1998) 

R14741–R14744, https://doi .org /10 .1103 /PhysRevB .58 .R14741, arXiv :cond -mat /9712307.
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