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Correlations for computation and computation for
correlations
Bülent Demirel1,2, Weikai Weng1,2, Christopher Thalacker1,2, Matty Hoban3 and Stefanie Barz 1,2✉

Quantum correlations are central to the foundations of quantum physics and form the basis of quantum technologies. Here, our
goal is to connect quantum correlations and computation: using quantum correlations as a resource for computation—and vice
versa, using computation to test quantum correlations. We derive Bell-type inequalities that test the capacity of quantum states for
computing Boolean functions within a specific model of computation and experimentally investigate them using 4-photon
Greenberger–Horne–Zeilinger (GHZ) states. Furthermore, we show how the resource states can be used to specifically compute
Boolean functions—which can be used to test and verify the non-classicality of the underlying quantum states. The connection
between quantum correlation and computability shown here has applications in quantum technologies, and is important for
networked computing being performed by measurements on distributed multipartite quantum states.
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INTRODUCTION
Since the beginning of quantum theory, the puzzling and non-local
aspects of the theory have been a major topic of research in
theoretical1–4 and experimental physics5–8 with the demonstration of
loophole-free Bell tests being a key achievement9–12. Besides its
fundamental nature, entanglement is one of the key ingredients of
quantum technologies and forms the basis for quantum commu-
nication and quantum computing. In quantum communication, Bell
inequalities and testing correlations have practical applications and
ensure the security of protocols and devices13,14. Quantum comput-
ing shows speed-ups in certain computational tasks and it is believed
that it will have tremendous impact15. Although, an advantage of
quantum computers over classical computers has been shown
recently for the first time16,17, current quantum devices are not yet at
a stage where they can solve large-scale problems. However, beyond
full-power quantum computing, achieving an advantage in some
form of non-classical computation is highly desirable18. The main goal
of this work is to demonstrate a quantum advantage in computing
with simple quantum resources and to develop tools that quantify
the usefulness of the resources (see Fig. 1).
While the most common model of quantum computation is the

circuit model, measurement-based quantum computing15,19, is
computationally equivalent. Here, one first generates a universal
entangled quantum state and the computation is carried out by
successive, adaptive measurements on that state—measurement
results are processed by a classical control and determine the
settings of future measurements20. Crucially, the classical control
only needs computation with XOR and NOT gates, called linear
side-processing. In this setting, adaptivity of the measurements is
crucial: removing it disables determinism and makes universal
quantum computing impossible21.
However, it has been shown that non-adaptive measurements

on entangled states are a resource for universal classical
computation. For example, three-qubit GHZ states and linear
side processing (XOR and NOT gates alone) are sufficient to
implement (universal) NAND gates22. More generally, a linear
side processing combined with non-adaptive measurements on

entangled resources is sufficient to realize non-linear Boolean
functions and thus allows universal classical computation23,24.
This model is also referred to as NMQC⊕—non-adaptive
measurement-based quantum computing with linear side-
processing23. Another motivation for studying this model is
that it is experimentally challenging to maintain coherence, and
in a photonic setting, store resources for long enough to allow
for adaptive measurement. The setting of NMQC⊕ gives a formal
framework for studying resources for measurement-based
quantum computation in current and near-term experiments,
reducing the need for fully adaptive measurements. In the
setting of NMQC⊕, computing a Boolean function determinis-
tically requires a number of qubits that scales exponentially with
the length of the input bit string25. However, in the case of
probabilistic computation of Boolean functions there is an
advantage using even small-scale quantum resources.

Fig. 1 Duality. Illustration of the dual link between quantum states
and computing Boolean functions: We can derive Bell-like inequal-
ities to test whether certain quantum states can be used as a
resource for computation. Vice versa, we can use the computation of
Boolean functions as a test of quantum correlations.
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Here, we build on this advantage and show the computation of
non-linear Boolean functions with quantum resources (see Fig. 1)
in this specific setting of NMQC⊕. We link the violation of certain
Bell-like inequalities to the capacity of quantum states for being a
resource for computation. We experimentally generate GHZ states,
the optimal states for this task26,27, and demonstrate the violation
of different Bell inequalities that are related to computing certain
non-trivial Boolean functions.
The appearance of Bell inequalities in this work underlines the

deep connection between the measurement-based model of
quantum computation in this specific context and non-locality, or
non-classicality in general. Within this framework, the non-classical
nature of resources can be studied from a computational
perspective and be characterized by the computations that they
perform. This work demonstrates this connection with an
experimental demonstration of a quantum advantage.

RESULTS
The setting
The basic model of computing by non-adaptive measurements on
quantum resources (within the framework of NMQC⊕) is shown in
Fig. 2. Let x∈ {0, 1}n be the input, we aim to compute the Boolean
function f: {0, 1}n↦ {0, 1} (upper layer). Assume, the input x is
generated with probability p(x).
First, the input x is processed by a linear side processor only, as

in the middle layer. Here, the input bitstring x is transformed into
another bitstring s∈ {0, 1}l with l ≥ n and

sj ¼
Mn

k¼1

ajkxk (1)

for each jth bit of s, where ajk∈ {0, 1} and ⨁ is summation modulo
2. The values ajk can be seen as elements in an l-by-n binary matrix
A (see Fig. 2a) and we can write s= (Ax)⊕.
The jth bit sj now determines the settings for the measurement

Mj(sj) on the jth qubit of the physical resource (bottom layer).
For each measurement Mj(sj), we obtain a measurement
outcome mj ∈ {0, 1}, associated with the eigenvalues ð�1Þmj . All
outcomes mj are collected in an outcome bitstring m ∈ {0, 1}l.
Note that the number of bits in the input x is distinct from the
number of parties l in the physical resource. For example, in this

work, we will focus on the case of n= 3 inputs and l= 4 parties.
The reason we focus on this setting is because in the case of
n= 2, the set of non-linear functions one can consider is limited
to the NAND gate (up to additive terms modulo 2). The set of
non-linear functions for n= 3 is less limited, and as we will
demonstrate, allowing for a larger resource state (in this case
l= 4) boosts the probability for quantum resources to compute
a non-linear function.
We now ask ourselves how and when z :¼ Ll

j¼1mj , the parity of
all outcomes, is equal to f(x), the designated Boolean function. To
answer this question, as shown in Ref. 25, one can determine the
success probability for obtaining z= f(x) to be

pðz ¼ f ðxÞÞ ¼ 1
2
ð1þ βÞ: (2)

with

β ¼
X
x

pðxÞð�1Þf ðxÞEðxÞ (3)

being a weighted sum of expectation values E(x)≔ p(z= 0∣x)−
p(z= 1∣x). Therefore, if β= 1, then E(x)= (−1)f(x) for all x, and the
function f(x) can be computed deterministically.
From Eq. (3), we obtain a Bell-like inequality, where the upper

limit is determined by the physical resource:

β � c ; for classical resources

q ; for quantum resources

�
: (4)

Classical resources within this specific setting could simply be
arbitrary measurements on an n-partite separable quantum state,
where the statistics are convex mixtures of local probabilities.
Alternatively, we can assume a local hidden variable model22,25, or
a non-contextual hidden variable model23. These definitions of a
classical resource are motivated by the assumption that there is no
communication between the resources within this setting, and
operations are local or that local measurements on one qubit
commute with local measurements on another, respectively. The
crucial point here is that all of these definitions of classical
resources give rise to the same experimental predictions.
Equivalently, we can assume the classical outcomes mj are solely
determined by the choice sj and shared random variables
between the parties. If we call the (finite) set of possible shared
random variables Λ, which are distributed according to a

Fig. 2 NMQC and Boolean functions. a Concept of our setting to compute a Boolean function f(x) as described in the main text. The input x is
transformed into a bit string s which determines the measurement settings Mj(sj) on the physical resource. The outcomes of these
measurements mj determine the results of the computation: z :¼ Ll

j¼1mj is generated by the parity of the outcomes from the quantum
measurements. b Truth table for the three functions considered in this work with input string x= (x1, x2, x3) and the bit string s= (s1, s2, s3, s4)
(see main text for details).
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probability distribution p(λ) where λ∈ Λ, then the probability of
observing the string of outcomes m giving the choices s will be

pðmjsÞ ¼
X
λ2Λ

pðλÞ
Yl
j¼1

pðmjjsj; λÞ: (5)

Given this notion of classical resource, it has been shown that the
only functions f(x) that can be computed deterministically by
classical resources are linear Boolean functions23,25. In this way,
classical resources have the same computational power as the
linear side processor. As mentioned, quantum resources can have
an advantage when the function f(x) is non-linear.
One can show that the maximal quantum bound q is achieved

by GHZ states GHZðlÞ
�� � ¼ ð 0j i�l þ 1j i�lÞ= ffiffiffi

2
p

and measurement
of observables in the X-Y plane of the Bloch sphere MjðsjÞ ¼
cosðsjϕjÞX þ sinðsjϕjÞY for appropriately chosen angles26. More
details on the derivation of the equations above is given in
the SI.

Inequalities for computation
We consider several functions, which are listed in Fig. 2b. These
functions were chosen because they are examples of functions of
different degree, i.e. h3(x) is a degree-two function, where OR3(x)
and OR3(x)⊕ x1x3 are both degree-three functions, thus allowing
for different forms of non-linear function. We choose one function
and show how to derive the corresponding inequality in detail;
and we list the results for the other functions.
Let us start with the function:

h3ðxÞ ¼ x1ðx2 � x3 � 1Þ � x2ðx3 � 1Þ � x3; (6)

which leads us to the truth table shown in Fig. 2b and which is
closely related to the pairwise AND function in Ref. 25. First, the
input bit string x is transformed by a linear side processor into
measurement instructions s

s1 ¼ x1; s2 ¼ x2; s3 ¼ x3; and s4 ¼ x1 � x2 � x3: (7)

We will use this pre-processing for all examples of 3-bit Boolean
functions in this work.
Now, our aim is to derive an inequality that tells us whether a

certain physical resource is suitable for computing h3(x). In order
to do this, we make use of Eq. (3) and choose the uniform
distribution p(x)= 1/8:

βh3ðxÞ ¼
1
8

X
x1¼x2¼x3

EðxÞ �
X

xnðx1¼x2¼x3Þ
EðxÞ

0
@

1
A � c

q

�
; (8)

with (−1)f(x) according to the truth table in Fig. 2b. The maximal
value of c can be obtained by maximizing Eq. (8) with E(x)= E(x1)E
(x2)E(x3) and enforcing that E(xi)= ±1 for i= 1, 2, 3.
For the quantum case measurements are made on a four-qubit

GHZ state. We have that for sj equal to 0 or 1 the corresponding
observables are given by the Pauli operators X or Y respectively,
meaning that e.g. (s1, s2, s3, s4)= (0, 0, 1, 1) corresponds to a
measurement of XXYY and we obtain the inequality shown in
Fig. 4a. We obtain the classical and quantum bounds:

βh3ðxÞ � 1=2 vs: 1 ðc vs: qÞ: (9)

This means that if a physical resource violates the classical
bound of this inequality, it is better suited for computing the
function h3(x) than classical resources, meaning it has a higher
success probability to obtain the correct result. Quantum
resources can deterministically compute this function if they
have at least four qubits; for three qubits or less l= n= 3, the
bound q is equal to 1=

ffiffiffi
2

p
25.

Another function we consider is the three-bit OR function

OR3ðxÞ ¼ x1 _ x2 _ x3 (10)

which is only 0 for x1= x2= x3= 0 and 1 otherwise. With the
distribution p(x= (0, 0, 0))= 3/10 and p(x ≠ (0, 0, 0))= 1/10, and
measurement bases X/Y as above, we obtain:

βOR3ðxÞ � 4=10 vs: 8=10 ðc vs: qÞ ; (11)

where the value for q has been calculated according to Fig. 4a.
A similar example is the function

OR3ðxÞ � x1x3; (12)

for which we obtain

βOR3ðxÞ�x1x3 � 9=16 vs: 14=16 ðc vs: qÞ; (13)

with a distribution p(x)∈ {1/16, 3/16} (see Fig. 4a), and again,
measurement observables X and Y.
Finally, we aim at computing the two-bit AND function

NAND2ðxÞ ¼ x1x2 � 1: (14)

Choosing s1= x1, s2= x2, s3= x1⊕ x2⊕ 1 and s4= 1 and a uniform
distribution p(x), we obtain the bounds

βNAND2ðxÞ � 1=2 vs: 1 ðc vs: qÞ: (15)

This computation is equivalent to the computation of a NAND
using a three-qubit GHZ state is shown in Ref. 22. All these
inequalities show that a quantum resource can violate the classical
bounds for all Boolean functions considered here (see also Fig. 4).
This means that the probability to compute the correct result is
higher than with classical resources according to Eq. (2). For details
on the derivations, see SI.

Computation for testing correlations
In the previous section, we used Bell-like inequalities to test
whether certain physical resources are suitable for computing
certain Boolean functions. Now, we would like to use computa-
tion to probe the non-classicality of the resource state. In other
words, we perform computation in our model (see Fig. 1) and if
we obtain the correct result with a certain probability, given by
the inequalities above, we know our resource has to be non-
classical in a particular, formal way.
Using Eq. (2) we can convert the classical and quantum bounds

above into success probabilities

h3ðxÞ : 0:750 vs: 1:000 (16)

OR3ðxÞ : 0:700 vs: 0:900 (17)

OR3ðxÞ � x1x3 : 0:813 vs: 0:938 (18)

NAND2ðxÞ : 0:750 vs: 1:000: (19)

Here, the first value in each row indicates the maximum
probability to obtain the correct results when the function is
computed using classical resources, the second value indicates the
probability for computing with quantum resources.

Experiment
For exploring relation between computation and Bell inequalities
experimentally, we generate four-photon GHZ states using an all-
optical setup that is shown and described in Fig. 3. The state we
obtain in our experiment is

GHZ 0j i ¼ H; V ; V ;Hj i � V ;H;H; Vj ið Þ=
ffiffiffi
2

p
(20)

with Hj i b¼ 0j i and Vj i b¼ 1j i denoting horizontal and vertical
polarization. Note that the state GHZ 0j i is related to state
GHZð4Þ
�� �

by local unitary transformations, e.g. GHZð4Þ
�� � ¼

1XXZ GHZ 0j i. We verify the state obtained in the experiment
through quantum state tomography28. The reconstructed density
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matrix ρexp shows a fidelity F ¼ GHZ0jρexpjGHZ 0� �
of F= 0.82 ±

0.01 (see SI).
The values of βexp we obtain for the individual Boolean

functions are listed in Fig. 4b, together with the classical and
quantum bounds. All values are clearly above the classical limit by
more than at least 17 standard deviations.
If we in turn use the GHZ state generated in the experiment to

perform computation, we can quantify the probability to get the
correct output. The corresponding probabilities are shown in
Fig. 4c. This confirms that, for all probabilities, we lie above the
classical values, which verifies that our physical resource must be
quantum. In addition the grey dashed line in Fig. 4 highlights the
limits of the computation on 3 qubits.
The discrepancy to the quantum bounds arises due to

experimental imperfections. First of all, our resource state is not

perfect. The quality of the 4-photon entanglement is limited by
purity of the generated two-photon entangled states (two-photon
fidelity F≅ 0.96) as well as by the interference of the photons in
modes 2 and 3 where we measured a Hong-Ou-Mandel dip
visibility of V= 0.80 ± 0.02. In addition, imperfections in the
polarization states, polarization drifts, and higher-order emissions
(about 8% of the fourfold coincidences) reduce the quality of the
generated GHZ state.

DISCUSSION
In this work, we link a deeply fundamental question—the violation
of a Bell inequality—to computing classical functions within a
specific computational setting. We investigate this connection
from two angles: verifying correlations through Bell tests

Fig. 3 Experimental setup. A fs-pulsed Ti:sapphire laser at 780 nm is first frequency doubled and then passes through two non-linear
β-barium-borate (BBO) crystals, each of which produces spatially separated single photons by type-II spontaneous parametric down-
conversion (SPDC) in states: ψ�j i ¼ H; Vj i � V ;Hj ið Þ= ffiffiffi

2
p

. Half-wave plates (HWP) and additional BBO crystals compensate walk-off effects and
allow to adjust the relative phase. The photons in modes 2 and 3 of the two states ψ�

12

�� �
ψ�
34

�� �
are sent to a polarizing beam splitter (PBS). Upon

post-selection to one photon in each of the output port, we obtain the state GHZ 0j i ¼ H; V ; V ;Hj i � V ;H;H; Vj ið Þ= ffiffiffi
2

p
.

Fig. 4 Results of computation. a. Overview of the tested multipartite Bell inequalities with their corresponding Boolean functions.
b–c. Classical, quantum, and experimentally obtained bounds for computing Boolean functions shown in the panels below. For both the
bounds in Fig. 4b. and the probabilities Fig. 4c. the grey area of the bars indicate the regions completely obtainable with linear operations on
classical resources. The coloured regions with the measurement points (error bars indicate the standard deviation) on top demonstrate that
these limits have been surpassed in each case by βh3ðxÞ : 29σ, βOR3ðxÞ : 19σ, βOR3ðxÞ�x1x3 : 17σ and, βNAND2ðxÞ : 21σ; showing that the correct
computation of the non-linear Boolean function is more probable with quantum resources. The underlying white bars indicate the optimal
quantum limits for 4 qubit measurements, while the grey dashed lines mark the quantum bound for three qubits, hence we see that with
increased entangled resources the limit moves away form the classical bound unless it is already deterministic.
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quantifies the ability of a certain physical resource for computa-
tion. Furthermore, doing computation can be used as a tool to test
non-classicality itself. We demonstrate this connection in a
quantum optics experiment and show that already a four-qubit
quantum state can provide an advantage.
The beauty of this connection between classicality and linear

Boolean functions is that no matter how large the classical
resource, its computational power does not change. However,
as we increase the number of qubits in a quantum resource the
computational power increases. Furthermore, as the number of
qubits can be increased, it is possible to consider other families
of non-linear Boolean functions as the input string to the
computation could get larger. An interesting family is that of
the Bent functions, which in the study of Boolean functions,
are those that are, in some sense, the furthest away from the
linear functions and exist only for an even number of bitstring
inputs (cf.23).
An interesting question is to study further types of classical

resources in our setting. We could, for example, allow commu-
nication between measurement sites, as in study of multipartite
non-locality29,30. The computed Boolean functions have various
implications on the amount of non-classicality of the resources.
For one thing, these extra resources could enable the computation
of non-linear Boolean functions, but perhaps not all functions. The
amount of non-linearity needed could be a measure of how non-
classical quantum resources can be. Given these or other
additional powers, the central technical question is how the
success probabilities of the enhanced classical resources compare
to quantum resources. Some initial results in this direction were
obtained in Ref. 31.
The relation between non-classicality and computing investi-

gated here is related to the connection of Bell inequalities and
quantum games32. It is also related to work on contextuality and
the use of single-qubit operations for classical computation33–36.
Even, if no fully fledged quantum computer is available, our

work demonstrates the advantages of quantum resources for
computation. In particular, our work has implications for
quantum networks. Although, our approach here has been
computational and not cryptographic, the quantum advantage
in our work can be applied to a cryptographic setting if the
shared resource state is distributed among agents in a network.
For example, our methods could be directly used to self-test
GHZ states37 and generate randomness38, both in a device-
independent manner. Furthermore our quantum advantages for
computation can be turned into an advantage for communica-
tion complexity39. Thus, our work is a further example how the
power of modern quantum technologies lies in fundamental
quantum physics.

METHODS
In the following sections we give some more details on the derivation of
the different multipartite Bell inequalities presented in the main manu-
script and show a more detailed data analysis. For a more general
discussion of the theory we refer to Ref. 25. First we outline what we mean
by classical resources.

Definition of classical resources
A classical resource means that the probabilities (correlations) p(m∣s) of
getting outcomes m: (m1, . . . ,ml) given measurement choices s can be
written as

pðmjsÞ ¼
X
λ

pðλÞ
Yl
j¼1

δmj ;μðsj ;λÞ; (21)

where {λ} is a set of shared random variables with probability distribution
{p(λ)}λ and μ(sj, λ)∈ {0, 1} is a map from the measurement choice sj and λ to
a bit-value. Equation 21 is arrived at from Eq. 5 by replacing the

probabilities pðmj jsj ; λÞ with indicator functions δmj ;μðsj ;λÞ; this can be done
by appealing to convexity of the probabilities in Eq. 5.
As already established, the measurement settings s are linear

functions of the input bit-string x, and the outcome bit-value z is a
linear function of the outcomes m. Thus from the statistics p(m|s) we
obtain the probability p(z|x): the probability of getting bit-value z given
input x. Furthermore given the form of the probabilities p(m|s) in Eq. 21,
it can be derived that p(z|x) will only be a mixture of delta functions.
Since the string s and bit-value z result from linear computation on x and
m respectively, it can be seen that p(z∣x) will only be a mixture of delta
functions δz,g(x), where g(x) is a linear Boolean function in x. When we
wish to find the optimal classical bound of the inequalites below, by
convexity, we only need to consider these delta functions δz;gðxÞ . More
formally, the set of classical correlations is a convex set and the optimal
value of an inequality will be given by extreme points of the set. These
extreme points are the deterministic correlations.
Such a classical model as above can be motivated in many ways: since,

in the quantum case, there is no communication between the resources,
and operations are local, a local hidden variable model is the natural
classical analogue25; since a local measurement on one qubit commutes
with a local measurement on another, this motivates a non-contextual
hidden variable model23. Furthermore, if we associate a classical resource
state with a separable quantum state, then the statistics will be convex
mixtures of local probabilities.

Derivation of the inequalities
In the following, we show in detail how to derive the Bell inequalities for
the Boolean functions f: xn↦ x given in the main manuscript:

β ¼
X
x

βðxÞEðxÞ ¼
X
x

pðxÞð�1Þf ðxÞEðxÞ � c ; classic

q ; quantum

�
: (22)

The function f(x)= h3(x): The first example is the function h3(x)= x1(x2⊕
x3⊕ 1)⊕ x2(x3⊕ 1)⊕ x3 and all input strings x are uniformly distributed
p(x)= 2−3. The function satisfies f(0, 0, 0)= f(1, 1, 1)= 0, else it will yield the
result 1 as shown in the table of Fig. 2 of the main section. Accordingly,
from Eq. (22) we get the relation

β ¼ 1
8 Eð0; 0; 0Þ � Eð0; 0; 1Þ � Eð0; 1; 0Þ � Eð0; 1; 1Þð
� Eð1; 0; 0Þ � Eð1; 0; 1Þ � Eð1; 1; 0Þ þ Eð1; 1; 1ÞÞ: (23)

For computing the largest classical bound, we maximize the sum in Eq. (23)
over all possible values with E(x1, x2, x3)= E(x1)E(x2)E(x3) and the expecta-
tion values confined to E(xi)= (±1) for i∈ {1, 2, 3}. In Eq. (23) we obtain a
maximal classical value of 1

2.
The value for the quantum bound depends on the number of sites l≥n.

In our measurements we have l= 4 and the measurement choices are
encoded by the following linear map

s1
s2
s3
s4

0
BBB@

1
CCCA ¼

1 0 0

0 1 0

0 0 1

1 1 1

0
BBB@

1
CCCA

x1
x2
x3

0
B@

1
CA

�

: (24)

Therefore, choosing for s= 0 observable X and for s= 1 observable Y the
inequality Eq. (23) becomes

1
8
hXXXX � XXYY � XYXY � XYYX � YXXY � YXYX � YYXX þ YYYYi � 1 :

(25)

The maximum in Eq. (25) is obtained exactly by GHZð4Þ
�� � ¼

ð 0; 0; 0; 0j i þ 1; 1; 1; 1j iÞ= ffiffiffi
2

p
, naturally the values of all other states will

be within the region bounded by this GHZ state. Note that this value of 1
for the quantum bound is the maximum allowed algebraically.
The function f(x)=OR3(x): The second example is the OR function.

At this point it is also worthwhile to rewrite the function in algebraic
normal form (ANF) so it can obviously be seen as non-linear:

OR3ðxÞ ¼ x1x2x3 � x1x2 � x1x3 � x2x3 � x1 � x2 � x3: (26)

The distribution for this function is chosen as pðxÞ ¼ 1
10, except for

pð0; 0; 0Þ ¼ 3
10. We thus obtain the inequality

β ¼ 3
10

Eð0; 0; 0Þ � 1
10

X
x≠ð0;0;0Þ

EðxÞ: (27)
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In the same way as above we can compute the classical bound to be 4
10 and

the quantum bound

3
10

hXXXXi � 1
10

hXXYY þ XYXY þ XYYX þ YXXY þ YXYX þ YYXX þ YYYYi � 8
10

:

(28)

This bound can be readily confirmed to be the maximum allowed for all
possible quantum resources (both states and measurements) using the
methods described by Werner, Wolf, Żukowski and Brukner26,27.
The function f(x)=OR3(x)⊕ x1x3: The third example is f(x)=OR3(x)⊕

x1x3 and the distribution pð0; 0; 0Þ ¼ pð0; 0; 1Þ ¼ pð1; 0; 1Þ ¼ pð1; 1; 1Þ ¼ 1
16

and pð0; 1; 0Þ ¼ pð0; 1; 1Þ ¼ pð1; 0; 0Þ ¼ pð1; 1; 0Þ ¼ 3
16. It should be noted

that this function is still clearly non-linear after converting it into ANF using

the identity described above. The correct signs can be read off from the
truth table and we get

β ¼ 1
16 Eð0; 0; 0Þ � Eð0; 0; 1Þ þ Eð1; 0; 1Þ þ Eð1; 1; 1Þð Þ
� 3

16 Eð0; 1; 0Þ þ Eð0; 1; 1Þ þ Eð1; 0; 0Þ þ Eð1; 1; 0Þð Þ (29)

with a classical bound of 9
16

1
16

hXXXX � XXYY þ YXYX þ YYYYi � 3
16

hXYXY þ XYYX þ YXXY þ YYXXi � 14
16

:

(30)

Again, this bound can be readily confirmed to be the maximum for all
quantum resources (both states and measurements) using the methods
described by Werner, Wolf, Żukowski and Brukner26,27.

Fig. 5 Tomography and expectation value. Panels a–d. show the measured real and imaginary part of the quantum state ρexp calculated by a
maximum likelihood estimation from the measured 4-fold coincidence counts as well as their ideal cases. e. Calculated expected values obtained
by the probability measurements of 42= 16 combinations to measure H or V polarized photons. The data was measured at 100mW pump power.
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The function f(x) = NAND2(x): In the work of Anders and Browne22, it was
demonstrated that a three-qubit GHZ state can be used to compute the
NAND function of two bits, which we can write as NAND2(x)= x1x2⊕ 1.
Since this is just a function on two bits, things will be somewhat simplified.
The distribution over these two bits is 2−2 for all values of x≔ (x1, x2). The
inequality can be written as:

β ¼ 1
4

�Eð0; 0Þ � Eð0; 1Þ � Eð1; 0Þ þ Eð1; 1Þð Þ : (31)

The classical bound for this inequality is 1/2. In our setting for l= 4 parties
we can also compute the function NAND2(x) with the following linear map
to generate the four inputs to the parties:

s1
s2
s3
s4

0
BBB@

1
CCCA ¼

1 0

0 1

1 1

0 0

0
BBB@

1
CCCA x1

x2

� �
�
: (32)

Now we can modify the setup so that the third and fourth parties measure
Y for sj= 0, and X for sj= 1. Equivalently, we could have applied a NOT to
the values of sj. Thus the inequality in Eq. (31) can be rewritten as:

1
4
h�XXYY � XYXY � YXXY þ YYYYi � 1 (33)

The bound on the right-hand-side is attained with the GHZ state
ð 0; 0; 0; 0j i þ 1; 1; 1; 1j iÞ= ffiffiffi

2
p

, as above; this bound is also the maximum
allowed algebraically.
Bounds on three-qubit entanglement: Here we derive bounds on the

inequalities above when the four parties are limited to sharing tripartite
quantum resources. In this case three of the four parties can share a
quantum state and the fourth party’s outcome is local, i.e. determined by
the measurement choice sj and shared randomness between the parties.
Therefore, for each inequality, we can choose the party whose outcome mj

will be a deterministic function ð�1Þrj sj , where rj∈ {0, 1}. Then we can
optimize over all measurements and states for the other three parties with
the same pre-processing as outlined above for each function.
To summarize, for all the functions above, and pre-processing outlined

above, we can limit one of the four parties to having a deterministic
outcome in the inequalities. In addition to this, we can adapt the numerical
techniques in Refs. 26,27, to find the optimal violation for the remaining
three parties. The optimal violation for the remaining three parties will be
attained by a three-qubit GHZ state. This optimization can be done for
each choice of the party that does not share quantum resources with the
other three.
For the function f(x)= x1(x2⊕ x3⊕ 1)⊕ x2(x3⊕ 1)⊕ x3, the bound on

β for the inequality Eq. (23) for tripartite quantum resources is β � 1=
ffiffiffi
2

p
.

Notably this bound relates to the maximal quantum violation of the
Svetlichny inequality40, as discussed in Ref. 25. For the function OR3(x), the
bound on β for Eq. (27) for tripartite quantum resources is β ≤ 2/3. For
inequality Eq. (29), the bound β ≤ 0.70235 holds. For the function
NAND2(x), the function can be computed deterministically by three qubits,
as shown in Ref. 22.

Further experimental details and data analysis
For the experiment as illustrated in Fig. 3a 4 W fs-pulsed Ti:sapphire laser at
780 nm is first frequency doubled and then directed onto a non-linear
β-barium-borate (BBO) crystal which produces spatially separated single
photons by type-II spontaneous parametric down-conversion (SPDC).
The two BBO crystals produce a polarization entangled state

jψðφÞi ¼ H; Vj i þ eiφ V;Hj i	 

=

ffiffiffi
2

p
: (34)

After the entangled photon pairs are emitted in conic sections the photons
in each spatial mode pass a combination of half-wave plate (HWP) and
another BBO-crystal which compensate previously induced walk-off effects
and allow to adjust the relative angle φ in Eq. (34). By fixing φ= π, a
product of two Bell-states ψ�

12

�� �
ψ�
34

�� �
is obtained. Interference of modes 2

and 3 via a polarizing beam splitter (PBS) becomes

PBS23 ψ�
12

�� �
ψ�
34

�� � ¼ 1ffiffiffi
2

p GHZ 0j i þ χj ið Þ : (35)

The final state is thus a superposition of GHZ 0j i ¼ H; V; V;Hj i�ð
V;H;H; Vj iÞ= ffiffiffi

2
p

, a four-photon GHZ state and χj i ¼ i H;HV; 0;Hj iþð
V; 0;HV; Vj iÞ= ffiffiffi

2
p

. Any 4-fold coincidence measured at the 8 avalanche
photodiodes (APDs) is thus only obtained by the GHZ state.

To check the quality of the experimental state ρexp we conducted a
regular quantum state tomography by recording the 34 combinations of
the expected values Tr(O1O2O3O4ρexp), Oi= {Xi, Yi, Zi} being the Pauli
operators. To calculate a state fidelity we first get an estimation of the
distribution ρexp from the measured data by maximizing a likelihood
function and then compare to the optimal state F ¼ GHZ0jρexpjGHZ 0� �28.
The tomography data was obtained at 500mW pump power with a
maximal 4-fold coincidence rate of ca. 1 Hz. We obtained a value of F=
0.824 ± 0.014; the corresponding density matrix is shown in Fig. 5. The
error has been estimated from a Monte Carlo simulation, i.e. random
sampling from a Poisson distribution and iterating the fidelity calculation
100 times. The expectation values E(x) that were recorded for the violation
of the respective inequalities are exhibited in Fig. 5e.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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