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Abstract

This thesis presents a first search for the fully leptonic decay B+→ µ+µ−µ+ν in any

experiment. This search is performed using proton-proton collision data at LHCb

corresponding to an integrated luminosity of 4.7 fb−1. The search is carried out in the

region where the minimum of the two µ+µ− mass combinations is below 980MeV/c2.

The measurement of the branching fraction of this decay is even more interesting given

that the recent theoretical prediction [1] of the branching fraction for B+→ µ+µ−µ+ν of

1.3× 10−7 is high. Moreover, this decay is sensitive to the magnitude of the coupling

strength between b and u quarks, which is of great interest given that there are some

tensions in measurements of this magnitude.

The data are consistent with the background only hypothesis and a limit of 1.4×10−8

at 95% confidence level is set on the branching fraction in the stated kinematic region.

This is therefore not consistent with the theoretical prediction made in Ref. [1].

This thesis also presents a study of the response of the detector if three muons pass

through it. This study shows that correlations induced by a trimuon system in the

detector are substantial and they need to be addressed properly.
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Chapter 1

Introduction

The field of particle physics aims to describe the universe we see today by decomposing

everything into fundamental building blocks, which then exhibit certain behaviour

according to a given set of rules. So far, the best theoretical formulation that describes

the universe around us in form of these building blocks, the Standard Model (SM), was

conceived last century. Some achievements of the SM do really leave us breathless, with

agreement between theoretical and experimental results of ten parts in a billion.

This theory is, however, incomplete as it fails to address several issues. The theory

does not include any explanation for the nature of dark matter and it doesn’t make

any attempt to describe gravity in a quantum field theory framework. Furthermore,

fine-tuning of some parameters in the SM such as the Higgs mass, where parameters

get exactly the right value to produce required behaviour, beg questions if there is some

symmetry in the model building that is missing. Lastly, as with any model, the SM

operates with many free parameters that need to be plugged in so that predictions can

be made. So why are there exactly so many?

This thesis describes a search for a decay which can help to shine light on some of

these parameters and is organised as follows. In chapter 2 the SM of particle physics is

discussed together with the theoretical and experimental motivation for fully leptonic

decays, especially for the B+→ µ+µ−µ+ν decay. In chapter 3 the tool to search for

B+→ µ+µ−µ+ν decays, the LHCb detector, is detailed. Discussion about how a trimuon
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CHAPTER 1. INTRODUCTION

signature behaves in the detector is covered in chapter 4. The analysis of B+→ µ+µ−µ+ν,

the central theme for the thesis, is then described in three chapters: chapter 5, where

the selection for signal and normalisation are given; chapter 6, where backgrounds to

B+→ µ+µ−µ+ν are considered; and finally chapter 7, where the efficiencies and mass

fits are discussed. The result, along with its implications, will then close this thesis

in chapter 8.
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Chapter 2

Theory

The Standard Model is without question the most powerful and tested theory of particle

physics. It describes and predicts many phenomena very well even though as discussed in

the previous chapter it fails to address certain known issues. In this chapter, the theoretical

basis of the Standard Model is first laid out and then followed by the experimental and

theoretical considerations of fully leptonic decays. The introduction in this chapter is based

on Refs. [2], [3] and [4].

2.1 Review of the Standard Model

The SM of particle physics [5–12] is currently the most accurate model describing the

buildings blocks of matter, particles, and their interactions via forces. In particular the

SM describes all the fundamental forces but gravity. It is a quantum field theory (QFT)

whereby the dynamics of the system is captured by the most general renormalisable

Lagrangian density that is invariant under gauge symmetry. QFT considers particles to

be excited states of an underlying field, also known as quanta. In the SM, particles and

forces are the results of interactions between scalar, vector and spinor fields. In general

there are two sets of particles. The first set are force-carrying particles also known as

bosons, which have integer spin and are quanta of the scalar and vector fields. More

specifically, there is the Higgs boson, the only elementary scalar boson in the SM, and
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Generation Flavour Charge Quark Mass

1st up u +2/3 2.2+0.6
−0.4 MeV

1st down d -1/3 4.7+0.5
−0.4 MeV

2nd charm c +2/3 1.28± 0.03GeV

2nd strange s -1/3 96+8
−4 MeV

3rd top t +2/3 173.1± 0.6 GeV

3rd bottom b -1/3 4.18+0.4
−0.3GeV

Table 2.1: Quarks and their properties such as flavour, charge and mass. Flavour is a

property which distinguishes different species of quarks. Another property is the mass

of the quark. The masses are taken from [13].

vector bosons: gluons,W±, Z and γ . Secondly, there are the non-force carrying particles,

which are fermions, quanta of spinor fields. Unlike bosons they carry half-integer spin.

These can be further classified into two elementary families of particles: quarks, which

cannot be observed alone and leptons which can be detected on their own. Out of all of

these fundamental particles, those that have mass acquire it by the Higgs mechanism.

Quarks are affected by all three fundamental forces. They come in six different

flavours and they carry fractional charge as seen in Table 2.1.

There are also 12 leptons in total. Unlike quarks, they are not affected by the strong

force but also come along in three generations with increasing mass: electrons, muons

and taus. They all have their antiparticles and corresponding neutrinos. Much of this

thesis is dedicated to the study of the muons or antimuons and their neutrinos.

In the rest of the chapter, the SM formulation is introduced starting with the princi-

ple of local gauge invariance, an explained in section 2.2. The strong and electroweak

sectors are described in section 2.3 and section 2.4 and the necessary process of mass

generation in the SM, the Higgs mechanism, is covered in section 2.5. The effect of the

Higgs mechanism on the electroweak sector is then described in section 2.6 resulting in
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the quark mixing matrix detailed in section 2.7. The following sections then discuss

the theoretical and experimental status of fully leptonic decays, which are sensitive to

elements of the quark mixing matrix. Finally a discussion about the decay model used

for the search of B+→ µ+µ−µ+ν is covered in section 2.10.

2.2 The Principle of Standard Model Building

In more mathematical terminology, the SM is a theory that respects SU(3)⊗SU(2)⊗U(1)
symmetries. In this section, the form of the Lagrangian density of the SM is motivated.

Throughout the theory chapter it is assumed that ~ = 1, c = 1. The Dirac Lagrangian for

a spin-12 non-interacting or free field ψ (spinor field) for a particle with mass m can be

written as

L = iψγµ∂µψ −mψψ, (2.1)

where γµ are 4 × 4 Dirac matrices and µ ∈ {0,1,2,3}. By using the Euler-Lagrange

equation from the relativistic theory

∂µ

( ∂L
∂(∂µψi)

)

=
∂L
∂ψi

(2.2)

for ψ in Equation 2.2 the equation

iγµ∂µψ −mψ = 0 (2.3)

can be retrieved. This is the Dirac equation of motion.

The Dirac Lagrangian in Equation 2.2 stays the same under a global phase transfor-

mation: ψ→ eiφψ and ψ→ e−iφψ. However, under a local phase transformation, where

φ is a function of xµ, this is not the case any more. In this case

L→L− (∂µφ)ψγµψ. (2.4)

By requiring local gauge invariance for the Lagrangian, it is necessary to add a term

to counteract the left-over term in Equation 2.4. Let λ = −φ(x)q and let Aµ be some new

(vector) field which transforms as Aµ→ Aµ +∂µλ, then the following Lagrangian
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L = iψγµ∂µψ −mψψ − qψγµψAµ (2.5)

stays invariant under a local phase transformation. That is good, however, there is a

penalty for introducing a new vector field Aµ which interacts with the spinor field ψ

as can be seen in the last part of Equation 2.5. It is now necessary to also introduce a

non-interacting term for Aµ.

The Lagrangian for the non-interacting vector field for a particle with mass mA and

field strength Fµν = ∂uAν −∂νAu is

L = − 1

16π
FµνFµν +

1

8π
m2
AA

µAµ. (2.6)

In order not to spoil the local gauge invariance, it is required that mA = 0. Hence the

full Dirac Lagrangian with local phase invariance introduces a massless vector field Aµ

and is of the form

L = iψγµ∂µψ −mψψ − qψγµψAµ −
1

16π
FµνFµν , (2.7)

which can be recognized as the Lagrangian for quantum electrodynamics (QED),

whereby the electrons and positrons (quanta of spinor field) are interacting with pho-

tons (quanta of vector field). In other words, Aµ is the electromagnetic potential and

q = e, the current density is hence Jµ = eψγµψ. This represents the U(1)EM part of the

SM.

Upgrading from global invariance of the non-interacting Lagrangian in Equation 2.2

to local invariance in one step can be achieved by defining the covariant derivative

Dµ = ∂µ + iqAµ, (2.8)

where the secret ingredient is to transform the partial derivative in the same way as the

field itself.
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2.3 Quantum Chromodynamics

To require gauge invariance under a local transformation is a powerful tool and it is

used throughout the SM building. In this section the development of a Lagrangian for

Quantum chromodynamics (QCD) is explained. QCD describes strong interactions or

nuclear binding forces and makes use of quarks (q). They are observed to be bound

either in pairs - mesons (qq̄) - or triplets - baryons (qqq). The interactions between

quarks and gluons, quanta of the strong interaction, are described by the SU(3)C gauge

group. The conserving charge associated with the strong force is known as color, hence

the subscript C. It was experimentally established that there are 3 colors and borrowing

from color theory used by painters these colors are red, blue and green. The quark

carries color and antiquark anticolor making mesons and baryons colorless.

With these constraints, and by requiring the free Lagrangian to be invariant under

local SU(3) transformation similarly to the QED case, the covariant derivative

Dµ = ∂µ − igs
λa

2
Gaµ (2.9)

that respects SU(3) symmetry is obtained, with λa the Gell-Mann matrices, a ∈ {1..8} (8
possible gluons) and gs the strong coupling constant. The field strength for the gluon

field is defined as G
µν
a = ∂uGνa −∂νGua + gsf abcG

µ
bG

ν
c , where f abc are so-called structure

constants which satisfy the following commutation relation:

[λa

2
,
λb

2

]

= if abc
λc

2
. (2.10)

As compared to the QED field, there is an additional term involving gluon fields

themselves, causing cubic and quartic gluon interactions, which were not present

before.

Another interesting behaviour of the strong interaction is that the quarks are not

observed in isolation. This is due confinement which can be understood within the

framework of QFT theory by observing evolution of the coupling strength g as a

function of energy scale, also known as β function. The β-function for a coupling
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constant g in the SM takes the following form:

βg = µ
dg

dµ
=

1

16π2
β
(1)
g +

1

(16π2)2
β
(2)
g , (2.11)

where β
(1)
g , β

(2)
g denote the one-loop and two-loop contributions respectively, and µ

is the energy scale. For the strong interaction, unlike the electromagnetic and weak

interactions, βg is negative. For low energies as µ→ 0 the coupling is very high and

hence quarks cannot be observed on their own, confinement. On the other hand as

µ→∞, or at high energies, the coupling gets small, particles get decoupled, which is

known as asymptotic freedom.

The full Lagrangian density for the strong interaction is

LQCD = iψγµDµψ −mψψ −
1

4
G
µν
a G

a
µν = iψγ

µ∂µψ −mψψ + gsψγ
µλ

a

2
ψGaµ −

1

4
G
µν
a G

a
µν ,

(2.12)

where the interaction between quarks and gluons is encoded in the third term.

2.4 Electroweak Unification

The idea behind unification of the weak and electromagnetic interactions is very pow-

erful, as it has to accommodate forces that act with very different strengths with

force-carrying particles that are both massive (W±,Z) and massless (γ). Furthermore

W± bosons only couple to left-handed particles, whereas the Z0 boson couple to both

left and right-handed particles. To aid with the situation, the spinor field can be

decomposed into left-handed and right-handed (chiral) spinor components

ψ = ψL +ψR = PLψ +PRψ, (2.13)

where PL =
1−γ5

2 and PR =
1+γ5

2 are known as the projection operators. By calling these

operators left-handed and right-handed, there is a misconception that ψL is a helicity

eigenstate, but this is only true given the particle in question is massless. These spinors
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are known to have chirality - known as left or right-handedness. Helicity is rather the

projection of the spin on the direction of the momentum.

The spinor field decomposition has an impact on electromagnetic currents, weak

currents as well as the fermion mass terms. Firstly, the fermion mass term mixes both

left handed and right handed spinors as

mψψ =m(ψRψL +ψLψR). (2.14)

Secondly the electromagnetic current does not mix the left and right handed compo-

nents, since ψγµψ = ψRγ
µψR +ψLγ

µψL. Finally the weak charged current only acts on

left-handed fermions as 1
2ψγ

µ(1−γ5)ψ = ψLγ
µγL.

Another observation is that the charged weak interaction only couples leptons within

each of the three generations. This motivates left-handed isospin doublets where for

the first generation of fermions

QL =

(

uL
dL

)

, LL =

(

eL
νL

)

, (2.15)

and right-handed isospin singlets for up-type quarks, down-type quarks and charged

leptons:

uR = (uR, cR, tR), dR = (dR, sR, bR), lR = (eR,µR,τR). (2.16)

The simplest group with doublet representation is SU(2) and in combination with

the electromagnetic interaction forms SU(2)L ⊗ U(1)Y . The conserved charges are

inter-related

Q = I3 +
1

2
Y, (2.17)

where I refers to weak isospin, Y refers to weak hypercharge, and Q is electric charge.

Again by assuming gauge invariance under a local transformation the covariant

derivative of SU(2)L ⊗U(1)Y is
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Dµ = ∂µ + i
g

2
W i
µ
σ i

2
− i g

′

2
Bµ. (2.18)

Here σ i are the Pauli matrices, g,g ′ are the electroweak couplings and W i
µ where

i ∈ {1,2,3} and Bµ are the vector fields that should be corresponding toW±,Z0,γ . The

field strengths are defined as Bµν = ∂uBν −∂νBu andW i
µν = ∂

µW i
ν −∂νW i

µ + gǫ
ijkW

j
µW k

ν .

The real charged bosons corresponding to theW± arise as linear combinations of

W i
µ, for i ∈ {1,2} as

W±µ =
1√
2
(W 1

µ ∓ iW 2
µ ),

Wµ ≡W−µ ,

W †µ ≡W+
µ .

(2.19)

The neutral bosons are obtained usingW 3
µ and Bµ in a similar fashion as

Zµ = −Bµ sinθW +W 3
µ cosθW (2.20)

Aµ = Bµ cosθW +W 3
µ sinθW , (2.21)

where the angle θW angle is known as the weak mixing angle and can be determined

experimentally from the masses of the Z andW± bosons by the relation cosθW = MW
MZ

.

So far, however, there was no consideration of how bosons or fermions for that matter

become massive which will be covered in the next section.

The full Lagrangian of the electroweak theory then consists of the kinetic part

Lkin = −
1

4
BµνBµν −

1

4
W

µν
i W i

µν (2.22)

where forW
µν
i , like in QCD, there are cubic and quartic self interactions amongst the

gauge fields. Then there are interactions between the quark/lepton fields and the gauge

bosons where it is conventional to split these into two categories according to the charge

of the gauge bosons. This is what gives rise to charged and neutral currents for the

electroweak interactions. So employing the physical gauge boson representation, the
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charged current Lagrangian LCC and neutral current Lagrangian LNC for one family of

fermions read as

LCC = − g

2
√
2

[

W †µ
[

νγµ(1−γ5)l +uγµ(1−γ5)d
]

+ h.c
]

, (2.23)

LNC = −g sinθW (lγµl)Aµ −
g

2cosθW

∑

ψ=ν,l

ψiγ
µ(g iV − g iAγ5)ψiZµ. (2.24)

The first part of LNC can be recognized as the electromagnetic interaction realising that

e = g sinθW . New couplings of the Z to fermions can be seen where g iV = I i3−2Qi sin2θW
and g iA = I i3.

If the field is considered to be under U(1) charge then it was shown that this gauge

field was invariant in the QED case. However under SU(2), only left-handed fields

transform and hence for the fermionic mass term, which mixes right-handed and left-

handed terms as shown in Equation 2.14, gauge invariance is broken. For this very

reason and also to give mass to the gauge bosons the Higgs mechanism is introduced.

2.5 The Higgs Mechanism

The Higgs mechanism introduces a new scalar field with potential V into the model.

Through the process known as spontaneous symmetry breaking, it allows fermions and

gauge bosons to have a mass term in their Lagrangians while retaining gauge invariance.

Let φ be a doublet of complex scalar fields where

φ =

(

φ+

φ0

)

, (2.25)

where φ+ =
φ1+iφ2√

2
and φ0 =

φ3+iφ4√
2

so that φ†φ =
φ2
1+φ

2
2+φ

2
3+φ

2
4

2 . The Lagrangian for this

field is then

LHiggs = (Dµφ)
†(Dµφ) +V = (Dµφ)

†(Dµφ)−µ2φ†φ −λ(φ†φ)2, (2.26)
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where Dµ is given in Equation 2.18, and V is the famous Mexican hat potential where

the x-axis is φ1 and the y-axis is φ2. It is required that λ > 0 in order for it to be a

ground state.

By finding the ground state - or the stable minimum - of this potential with µ2 < 0,

one gets an infinite number of these minima such that

φφ† =
−µ2
2λ

=
v2

2
. (2.27)

This is the same as saying that the minimum is independent of direction as it lies on a

circle of minima. As the minimum is usually known as vacuum, v is called the vacuum

expectation value. By choosing a particular minimum, one fixes the direction, and the

symmetry of SU(2)⊗U(1) is spontaneously broken, meaning that the overall theory

is symmetrical but the ground state exhibits asymmetry. By convention, the direction

φ = 1√
2

(0
v

)

is chosen. Detailing both real and imaginary part of the fields, the direction

can be translated so that φ3 =
v
2 φ1 = φ2 = φ4 = 0. This allows for the generation of

three massive bosonsW± and Z0, and the massless γ of the electroweak theory. The

Higgs boson itself arises as an excited quantum around the minimum

φ =
1√
2

(

0

v +H

)

. (2.28)

2.6 Fermion Mass Generation

Moreover, introducing an additional scalar doublet into the model fixes the broken

gauge symmetry for fermionic mass mentioned in Equation 2.14 as it is possible to

construct the fermion-scalar interaction Lagrangian that is gauge invariant, usually

denoted as the Yukawa Lagrangian LY . It is made up of the leptonic part and the quark

part:

LY = LL +LQ. (2.29)
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The leptonic term for one family of leptons using the definitions in Equation 2.15

and Equation 2.16 is

LL = gl(LLφlR + lRφ†LL), (2.30)

With φc =
(φ0∗

φ−
)

, the full-three generation quark term is

LQ = yuijQ
i
Lφu

j
R + y

d
ijQ

i
Lφcd

j
R + h.c., (2.31)

where h.c stands for Hermitian conjugate, i, j are the generations, yq are 3 × 3 matri-

ces defining strengths between generations. After spontaneous symmetry breaking

(Equation 2.28), the leptonic interaction term becomes

LL =
glv√
2
(lLlR + lRlL) +

gl√
2
(lLlR + lRlL)H =ml(lLlR + lRlL)(1 +

H

v
), (2.32)

where the mass term is then defined as ml =
glv√
2
. In a similar way for quarks,

LQ =
v√
2
(ydiju

i
Lu

j
R + y

d
ijd

i
Ld

j
R + h.c)(1 +

H

v
). (2.33)

where the quark masses are grouped into 3 × 3 complex matrices of up-type quark

(down-type quark) Mu
ij =

v√
2
yuij (M

d
ij =

v√
2
ydij ). In conclusion, before the spontaneous

breakdown of the electroweak symmetry, all quarks and leptons were massless. Once

the Higgs scalar field acquires a vacuum expectation value implying a broken symmetry,

quarks and leptons acquire mass.

The mass matrices can be diagonalised by unitary transformations U{uL,uR} and

U{dL,dR} in the following way:

Mu =U
†
uLM

uUuR =Diag{mu ,mc,mt},

Md =U
†
dLM

dUdR =Diag{md ,ms,mb}.
(2.34)

This way of diagonalising mass matrices is the most general case of a weak basis

transformation which transforms a system to a different basis without altering the

physics. Such a transformation is equivalent to changing quark fields from the basis of

flavour eigenstates to that of mass eigenstates.
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This change into the mass eigenstate basis does not affect most of the Lagrangian.

More specifically, there will be no change to the LNC in Equation 2.24 when expressed

in mass eigenstates (hence at tree-level there are no flavour changing neutral-currents

in the SM), however, the charged current LCC in Equation 2.35 is affected. Due to the

diagonalisation of the mass matrices, LCC now includes non diagonal couplings for the

current as seen in the LCC for all three fermion generations:

LCC = − g

2
√
2

[

W †µ
[∑

l

νγµ(1−γ5)l +
∑

ij

uiγ
µ(1−γ5)Vijdj

]

+ h.c
]

. (2.35)

In this equation there is a new term Vij = VCKM = UuLU
†
dL which is the Cabibbo-

Kobayashi-Maskawa (CKM) [14] [15] mixing matrix. From Equation 2.34 it follows

that V †CKMVCKM = 1, or that CKM mixing matrix is unitary by assuming that only the

charged current viaW will lead to a transition from the up-quark to down-type quark

sector. Therefore the CKM matrix elements provide the probabilities of how a W±

bosons decay.

2.7 The Quark Mixing Matrix

As mentioned above, from the transformation of the mass matrix using two unitary

matrices one obtains the CKM matrix which exhibits a strong hierarchy in the size

of the matrix elements. From the previous discussion the quark mixing matrix is a

3 × 3 complex unitary matrix yielding 18 parameters to start with. Unitarity of the

CKM matrix implies that matrix elements are orthonormal, reducing the count of free

parameters to 9. Further, 5 out of 6 quark phases can be absorbed into the redefinition

of the quark field, cutting the number of parameters down to 4 parameters, three quark

mixing angles and one CP (charge-parity) violating phase. There are many different

parametrisations of the CKM matrix, but the standard parametrisation of the CKM

matrix [16] for flavour mixing is
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VCKM =


















Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


















(2.36)

=


















c12c13 s12c13 s13 exp(−iδ)
−s12c23 − c12s23s13 exp(iδ) c12c23 − s12s23s13 exp(iδ) s23c13

s12s23 − c12c23s13 exp(iδ) −c12s23 − s12c23s13 exp(iδ) c23c13


















, (2.37)

where sij = sin(θij ) and cij = cos(θij ), θ12 , θ23, θ13 are Euler angles and θ12 is also

known as the Cabibbo angle.

A parametrisation reflecting the hierarchical nature in flavour mixing, which is

an expansion in terms of the small parameter λ, was introduced by Wolfenstein [17].

The four Wolfenstein parameters are related to the standard parametrization via the

following expressions:

λ = s12,

Aλ2 = s23,

Aλ3(ρ − iη) = s13exp(−iδ),

(2.38)

VCKMWolfenstein
=




























































1−λ2/2 λ Aλ3(ρ − iη)

−λ 1−λ2/2 Aλ2

Aλ3(1− ρ − iη) −Aλ2 1




























































+O
(

λ4
)

. (2.39)

A geometrical interpretation of CP violation is offered by the concept of unitarity

triangles. Unitarity of the CKM matrix can be summarized by two sets of orthogonality
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relations:
∑

k |Vik |2 =
∑

i |Vik |2 = 1 for all i generations and
∑

kVikV
∗
jk = 0 for all i , j .

One of the unitary constraints of the CKM matrix explicitly states:

VudV
∗
ub +VcdV

∗
cb +VtdV

∗
tb = 0 . (2.40)

Dividing this constraint by VcdV
∗
cb

VudV
∗
ub

VcdV
∗
cb

+1+
VtdV

∗
tb

VcdV
∗
cb

= 0. (2.41)

Using the following relation

V ∗ub = Aλ
3ρ + iη =

Aλ3(ρ̄ + iη̄)
√
1−A2λ4

√
1−λ2[1−A2λ4(ρ̄ + iη̄)]

(2.42)

ensures that

ρ̄ + iη̄ = −
VudV

∗
ub

VcdV
∗
cb

. (2.43)

The constraint can be pictorially represented in the ρ̄ and η̄ plane as the triangle shown

in Figure 2.1. The area of the triangle is half of the Jarlskog invariant J, a quantifier

β = φ1γ = φ3

α = φ2

(0, 0) (1, 0)

(ρ̄, η̄)

|
VudV

∗
ub

VcdV
∗
cb
| |

VtdV
∗
tb

VcdV
∗
cb
|

Figure 2.1: Unitarity triangle in a complex plane.

of CP violation, which is defined as Im[VijVklV
∗
ilV
∗
kj] [18]. It is interesting to notice

that the SM with its parameters may or may not violate CP. Only after measuring J it

is possible to determine the CP non-conservation. J vanishes only if the mixing angle

θij = {0,π/2}; δ = {0,π}. So measurements of J allows to verify that the CKM matrix is

complex and hence different mixing for quarks and anti-quarks is obtained.
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The CKM matrix elements which comprise of magnitudes and phases can be deter-

mined in different ways but the most precise option employs a global fit to all available

measurements as shown in Figure 2.2. Hence, the most precise measurement of the

CKM matrix magnitudes to-date [13] is

|VCKM| =


















0.97434+0.00011
−0.00012 0.22506± 0.00050 0.00357± 0.00015

0.22492± 0.00050 0.97351± 0.00013 0.0411± 0.0013
0.00875 0.00032

−0.00033 0.0403± 0.0013 0.99915± 0.00005


















, (2.44)

with non-zero Jarlskog invariant J = (3.18±0.15)×10−5. Highlighted is the result for the

magnitude of the Vub matrix element, |Vub |, which is the element with the highest frac-

tional uncertainty on its value. Therefore precise measurement of this element is very

important and was the original motivation for the analysis of B+→ µ+µ−µ+ν. Moreover,

as displayed in Figure 2.2(a)(b), the measurement of |Vub | (orange circle)(green circle)

together with sin(2β) measurement (green band)(blue band) constrain the apex of the

triangle. This means that these two measurements together with other measurements

test the unitarity of the CKM matrix, one of the fundamental assumptions of the SM.
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Figure 2.2: Different experimental measurements that constrain the CKM matrix el-

ements together with the global fit results from two collaborations (a) UTFit and (b)

CKMFitter as of summer 2016. These figures are taken from Refs. [19] and [20]. There

is a good agreement for the results between the two different collaborations.

48



CHAPTER 2. THEORY

2.8 Fully Leptonic P+
→ l+ν Decays

Purely leptonic decays that proceed via annihilation-type diagrams of pseudoscalar

mesons (P) are of great interest for flavour physicists because they allow one to make:

• either measurements of the CKM matrix elements,

• or measurements of leptonic decay constants,

• or measurements of new physics effects.

The first two types of measurement are possible because the decay rates of P+→ l+ν

decays are sensitive to the product of the appropriate CKMmatrix element (Vq1q2 where

q1 and q2 are the constituent quarks of the pseudoscalar meson) and decay constant

fP , a related parameter arising from the strong interaction. In more detail, the decay

width of a fully leptonic decay of a pseudoscalar meson in the SM to the lowest order

can expressed as

Γ(P+→ l+ν) =
G2
FmP+m2

l+

8π








1−

m2
l+

m2
P+









2

f 2P |Vq1q2 |
2, (2.45)

where GF is the Fermi constant, mP+ and ml+ are the pseudoscalar meson and lepton

masses, respectively. This decay width can be compared to that of τ→ lνν̄ [21]

Γ(τ→ lνν̄) =
G2
Fm

5
τ

192π3








1− f

(m2
l

m2
τ

)







, (2.46)

In this case f (x) = 18x − 8x3 + x4 +12x2log(x) represents a correction due to the mass

of the lepton in the final state. Corrections arising from theW propagator effects are

negligible for this decay and are not considered here and nor are radiative corrections so

that only the lowest order contributions are considered. As compared to Equation 2.45

the decay width is significantly higher.

So in order to measure the CKMmatrix amplitude, knowledge of fP must be inferred.

fP can be calculated using lattice QCD techniques and together with experimental

determination of the decay rates provide a way to determine the amplitude squared of
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the relevant CKM matrix element assuming there is no contribution from new physics.

More conventionally, CKMmagnitudes are determined from semileptonic decays, which

are experimentally more accessible but entail larger theoretical uncertainty.

Vice versa, assuming unitarity of the CKM triangle and experimental determination

of the relevant Vq1q2 one can obtain experimental determination of the decay constants

and compare it with theoretical prediction.

Last, but not least, is of course the measurement of presence of new physics in these

decays. Especially appealing is the presence of new particles which would manifest

themselves in the decay rates of heavier pseudoscalars (D(s) or B). Examples of such new

particles are charged Higgs bosons, H±, coming from so-called Type II Higgs-doublet

models [22] [23] [24] or leptoquarks [24]. In this case, considering B+→ l+ν decay, the

four-fermion interaction between theW± and H± bosons would modify the SM decay

width Equation 2.45 to

Γ(B+→ l+ν) =
G2
FmB+m

2
l+

8π








1−

m2
l+

m2
B+









2

f 2P |Vub |2 × rH , (2.47)

where

rH = [1− tan2β(m2
B+/m

2
H+)]2. (2.48)

Here tanβ = v2
v1
, where vi are the vacuum expectation values for the Higgs doublets. In

order to have an enhancing effect for the rate of the B+→ l+ν decay (to have rH > 1),

tanβ/mH± > 0.27GeV−1. The experimental limit presents already a strong lower bound

on the charged Higgs mass mH± > 600GeV [25]. This makes most of the parameter

space in tanβ and mH± satisfy the condition of tanβ/mH± > 0.27GeV−1.

The ratio of rates between P → τν, P → µν and P → eν decays could also be of an

interest. In the ratios the decay constant fP cancels out making such measurements a

good tool for lepton universality tests.

As seen in Equation 2.45, a purely leptonic final state going through P→W ∗→ lν

is suppressed by
m2
l

m2
p
, also known as helicity suppression. This suppression occurs as

a result of angular momentum conservation. In case of B+ → l+ν, the B+ is a spin-0
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particle and hence its decay products should have spin 0 combined, or in other words,

be anti-aligned. Neutrinos in the SM are always produced left-handed. As the spin

of the antilepton and the neutrino should be anti-aligned, the antilepton also needs

to be left-handed (to have negative helicity). However, the weak current only couples

to right-handed antiparticles. Therefore, the antilepton has to be boosted in order to

have different helicity. For massless particles such a helicity flip is not possible making

this decay impossible. The lighter the lepton, the larger the velocity and hence higher

boost is necessary, making decays to lighter leptons rarer even though they have bigger

kinematic phase space available.

Concentrating on the decays of B± mesons, the latest experimental measurements

for rates of B+ → l+ν decays have been performed by B factories, finding evidence

for B+ → τ+ν and a first sign of B+ → µ+ν as seen in Table 2.2. These results are to

be compared with the SM predictions B(B+ → τ+ν) = (0.82 + 0.03 − 0.02) × 10−4 [20]

and B(B+→ µ+ν) = (3.80± 0.31)× 10−7 [26], which are obtained by using a |Vub | value
resulting from other measurements and lattice calculations of fB.

With helicity suppressed rates and very limited signatures in the detector (one

charged track for muons and electrons, more charged tracks for taus, but also more

missing energy depending on the reconstruction channel) searching for such decays is

very challenging. In order to make measurements of the same kind (CKM precision

measurements, decay constants measurements, new physics searches), fully leptonic

decays with photons can be considered. This is because the rates for these processes are

higher due to no helicity suppression.
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Process Experiment Tag B Significance

[σ]

B+→ τ+ν Belle [27] Hadronic (0.72+0.27−0.25 ± 0.11)× 10−4 3.0

B+→ τ+ν Belle [28] Semileptonic (1.25± 0.28± 0.27)× 10−4 3.8

B+→ τ+ν Belle [28] Average (0.91± 0.22)× 10−4 4.6

B+→ τ+ν BaBar [29] Hadronic (1.83+0.53
−0.49 ± 0.24)× 10−4 3.8

B+→ τ+ν BaBar [30] Semileptonic (1.7± 0.8± 0.2)× 10−4 2.3

B+→ τ+ν BaBar [29] Average (1.79± 0.48)× 10−4 -

B+→ µ+ν Belle [26] Untagged (6.46± 2.22± 1.60)× 10−7 2.4

Table 2.2: Experimental summary of searches for B+→ l+ν that is inspired from [13].

Tag Hadronic/Semileptonic/Untagged refers to different way data is selected in Belle

and BaBar factories.

2.9 Fully Leptonic B+
→ l+νγ Decays

The helicity suppression of B+→ l+ν decays can be lifted by considering the decay with

an additional photon radiated from the B+ meson, at the cost of the electromagnetic

suppression with coupling constant αem. Consequently, the branching fraction for

radiative decays can be comparable or even larger than the corresponding fraction

for purely leptonic decays. It has been shown that R
µ
B =

Γ(B→µνγ)
Γ(B→µν) ≈ (1 − 20) making

B(B→ µνγ) ≈ (10−7 − 10−6) [31].
The differential decay width with 1

mb
and radiative corrections at next-to-leading

logarithmic order calculated in [32] is given by

dΓ

dEγ
=
αemG

2
F |Vub |2

48π2
m4
B(1− xγ )x3γ [F2A +F2V ], (2.49)

where xγ = 2Eγ /mB, FA is the axial form factor and FV is the vector form factor defined
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as

FV (Eγ ) =
QumBfB
2EγλB(µ)

R(Eγ ,µ) + [ξ(Eγ ) +
QumBfB
(2Eγ )2

+
QbmBfB
2Eγmb

], (2.50)

FA(Eγ ) =
QumBfB
2EγλB(µ)

R(Eγ ,µ) + [ξ(Eγ )−
QumBfB
(2Eγ )2

− QbmBfB
2Eγmb

+
QlfB
Eγ

]. (2.51)

Here Ql ,Qu ,Qb are the charges of the lepton, up quark, and bottom quark, respectively,

and R(Eγ ,µ) is a radiative correction calculated at the energy scale µ and mb is the mass

of the b quark.

The first term in Equation 2.50 and Equation 2.51 represents the leading-power

contribution in the heavy-quark expansion. Note that this term is the same for the

vector and axial form factor. The second terms are 1
mb

power corrections relative to the

leading term. Further corrections have been discussed in [33].

A recent measurement of the radiative B+ → l+νγ decay, where l+ is either e+ or

µ+ was performed by Belle using hadronic tagging on their full data sample [34]. The

search yielded B(B+→ µ+νγ) < 3.4× 10−6 and B(B+→ e+νγ) < 6.1× 10−6.

2.10 Fully Leptonic B+
→ l+l−l+ν Decays

In LHCb, the most optimal approach due to the detector capabilities is to measure this

kind of decay by converting the photon into a pair of muons, see Figure 2.3(a). If the

naive expectation of only taking into account photon conversion into two muons is

adopted, then the expected branching fraction for this analysis is B(B+→ µ+µ−µ+ν) ≈
1.0×10−8. However, such an estimate is not correct because there are other contributions

to the total decay rate as shown in the first theoretical prediction for B(B+→ µ+µ−µ+ν)

in [1] based on the Vector Meson Dominance (VMD) model. This theoretical prediction

yields B(B+→ µ+µ−µ+ν) ≈ 1.3× 10−7.
The VMD model was formulated to describe the interaction between photons and

hadrons before QCD was formulated. It is an approximative model where the photon

is treated being made of a purely electromagnetic component and a vector meson
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component. This idea originates in the fact that both photon and vector mesons have

the same quantum numbers JPC = 1− − and if two particles have the same quantum

numbers then they mix.

As mentioned previously, there are different contributions to the amplitude of

the B(B+ → µ+µ−µ+ν). Using the VMD model, it is not surprising that the biggest

contribution arises from photon emission from the valence u-quark of the B meson.

In this case, the contribution from the ρ(770) and ω(782) resonances are included in

the calculation. Secondly, the contribution of photon emission from the b-quark is

studied, effectively creating excited B+, B+∗ intermediate resonance state. Thirdly, the

photon can be emitted from the final-state lepton, a process known as Bremsstrahlung.

All these different contributions to the decay amplitude are shown in Figure 2.3. To

obtain the total amplitude, the sum of the matrix elements of the three contributions is

calculated in the limit where ml is set to zero.

In this publication the amplitude of B(B+→ µ+µ−µ+ν) is estimated by calculating

the B(B+ → µ+µ−e+ν) amplitude first and then adding a negative interference term

that arises due to the identical fermions in the final state doubling the number of

possible diagrams. The numerical calculation yields B(B+→ µ+µ−e+ν) ≈ 1.3× 10−7 and
B(B+→ µ+µ−µ+ν) ≈ 1.3× 10−7.
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Figure 2.3: Different contributions to the B+→ µ+µ−µ+ν decay. (a) Initial u-quark state

radiates off a virtual photon which decays into a pair of muons and theW+ decays into

a muon and muon neutrino. Most of the contribution to the rate comes from hadronic

contribution to the photon. (b) Photon emission from b-quark and (c) finally emission

from the final state muon.

2.11 The B+
→ µ+µ−µ+ν Decay Model

As the search for the B+→ µ+µ−µ+ν decay is the first of its kind, a simulation that

describes this type of decay was not available. There are, however, three types of decay

models for B+→ µ+µ−µ+ν which were adopted and used for different purpose. More

detail about their use is covered in section 5.4.

For any decay, it is possible to use a phase space model, PHSP, which only takes

into account the kinematic constraints of the decay without taking into account any

input from theoretical considerations as the matrix element is constant. This is not
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satisfactory for decays where there are intermediate virtual photons or vector meson

resonances.

The following decay model is developed to reflect the expected behaviour of decays

shown in Figure 2.3. The decay proceeds through a virtual W decaying to µ+ν and

a virtual photon decaying to a muon pair. This has similar structure to the B+ →
(K ∗+)µ+µ− decay, where the K ∗+ can take the role of the virtualW decay. By using the

BTOSLLBALL model [35], traditionally used for B+→ (K ∗+)l+l− decays, but modifying

the properties of the K ∗+ to those of a virtualW (having mass of 0.1 GeV/c2 and width

50 GeV), it is possible to obtain a good approximation to the correct features of the

decay. This is visible in Figure 2.4, where there is a characteristic photon pole for

low q(µ+,µ−), the invariant mass of the opposite muon pair, and flat distribution for

K ∗(µ+,ν), the invariant mass of the muon and neutrino pair. This decay model will be

further referred to asthe INSP model.
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Figure 2.4: Distributions for signal simulation. (a) K ∗(µ+,ν) (b) q(µ+,µ−) distributions

under different K ∗ mass hypotheses. The most flat distribution in K ∗(µ+,ν) is plotted in

yellow.

Finally, there is a decay model based on calculations from the VMD model, which
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was written by authors of [1]. This model is denoted as NIKI. The distribution for

q2(µ+,µ−) can be seen in Figure 2.5.
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Figure 2.5: q2(µ+,µ−) distribution using the VDMmodel. The contribution from photon

pole, ρ and ω can be seen. This Figure was produced by a collaborator.
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The LHCb Detector

In this section, an overview of the accelerator complex at CERN as well as the physics

motivation behind the LHCb detector and its design will be described.

CERN has built one of the most exciting laboratories to study elementary particle

interactions in the world. Its complex set of particle accelerators and detectors is shown

in Figure 3.1. The process of accelerating protons starts with the source of protons.

Protons are obtained from a hydrogen gas bottle by applying an electric field separating

hydrogen into protons and electrons. The first proton accelerator in the chain, Linac

2, accelerates the protons to the energy of 50 MeV. Linac 2 is a tank composed of

several chambers where the resonant cavities are tuned to a specific frequency creating

potential differences in them, which then make the protons accelerate. The protons are

then injected into the Proton Synchrotron Booster (PSB), where they are accelerated

further to 1.4 GeV. The next in line is the Proton Synchrotron (PS) reaching an energy of

25 GeV. Before either entering the Large Hadron Collider (LHC) or North Area (mainly

used as testing facility for experiment upgrades) the Super Proton Synchrotron (SPS) is

the last accelerator in the chain. Here proton acceleration to 450 GeV is achieved.

The LHC is a complex machine which accelerates beams of protons in opposite

directions in a ∼ 27km long circular tunnel. It is located 50-157m below ground

crossing the border between Switzerland and France. Once the desired energy is

achieved proton-proton (pp) or ion collisions happen at four distinct points, where
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Figure 3.1: Accelerator complex at CERN. The image is taken from [36].

different detectors with different physics focus are located. These are ATLAS, CMS,

ALICE and LHCb. The search for the decay B+→ µ+µ−µ+ν was performed using data

obtained at LHCb [37].

3.1 LHCb Layout

LHCb, seen in Figure 3.2, differs from the other general purpose detectors on the LHC

ring as its main aim is to study properties of heavy particles containing b or c quarks.

This is possible as this experiment was designed to have a geometrical acceptance and
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Figure 3.2: Schematic slice of LHCb detector in the y,z plane where z is defined to

be the direction parallel to beamline, and x,y define the plane perpendicular to the

beamline. θ, the opening polar in the y-z plane with θ = 0 along the z − axis. Figure
from [38].

unique vertex resolution, as well as excellent particle identification (PID), suitable for

beautiful and charming physics.

Studies of Bmesons can happen either at positron-electron colliders or at hadron

colliders. The advantage of positron-electron colliders is that the information about all

the event is known, as just two B mesons and nothing else is produced in the collisions.

This gives an overall constraint on collision information, unlike in the hadron collider

B factory, LHCb. Contrary to the two general purpose detectors at LHC, where the

collisions occur in the centre of the detector, LHCb’s collision point is located at one

end of the detector, hence its description as a forward single-arm spectrometer.

The disadvantage of not having an overall constraint on collision information is,
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Figure 3.3: (a) Probability of interaction per bunch crossing as a function of instan-

taneous luminosity. Figure from [39]. (b) Angular production and acceptance of the

b (x-axis) b̄ (y-axis) pair produced from a pp collision at the LHC. The acceptance of

the LHCb detector is the red box and the acceptance of the General Purpose Detector

is shown in the yellow box. LHCb covers the region with highest production cross-

section at 8 TeV. These plots were produced using a Pythia 8.1 [40] simulation. Figure

from [41].

however, compensated by the production mechanism of bb̄ and cc̄ in pp interactions,

which occurs predominantly via gluon-gluon fusion. In this process, each gluon will

carry part of proton’s momentum. If the two gluons from two protons carry significantly

different momenta, the bb̄ systemwill be boosted with respect to the pp rest frame, either

in the forward or backward cone close to the beamline, as can be seen in Figure 3.3(b).

The angular coverage of LHCb is formally defined using pseudorapidity η,

η = − ln
(

tan
θ

2

)

(3.1)

where θ is the polar angle measured from the beam axis. The LHCb detector was built

to cover the region 2 < η < 5. The production cross-section of the fundamental process
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of pp→ bb̄X was measured in this region yielding, σ(pp→ bb̄X)= 75.3±5.4±13.0 µb

at 7 TeV [42] and 144±1±21 µb at 13 TeV [43], which shows that the production cross-

sections scales roughly linearly with the centre-of-mass energy. Assuming the design

conditions of LHCb, listed in Table 3.1, 2 fb−1 of data (eqvivalent to the 2012 dataset)

would correspond to 1012 bb̄ pairs being produced in a full 4π region with 27% of these

bb̄ pairs produced in the LHCb acceptance. The summary of LHCb running conditions

is also provided in Table 3.1. The analysis of B+→ µ+µ−µ+ν is done with the Run I and

2016 dataset.

Despite the impressive statistics of bb̄ pairs available to LHCb, the bottleneck in

terms of data collection arises from the much more copious inelastic background. That

mostly originates from soft QCD processes which are related to the amount of pile-up,

the visible number of pp interactions in the visible events. By looking at the probability

of the number of pp interaction per bunch crossing as a function of luminosity, shown

in Figure 3.3(a), it can be noted that themaximumprobability for only one pp interaction

(and hence minimizing the background) is found to be at ∼ 2×1032cm−2s−1. This was

the reason behind the LHCb design luminosity. Subsequently it has been found that it

is more optimal to run at a higher luminosity of ∼ 4× 1032cm−2s−1 but then implement

a set of global event cuts (GEC). Only events with 600 (in 7,8 TeV) and 450 (in 13 TeV)

hits and less, corresponding to the track density in the particular part of the detector,

are allowed to be processed. As the majority of the branching fractions at LHCb are

measured with respect to other branching fractions, there is no bias introduced by the

GECs.

As LHCb requires much lower luminosity compared to other LHC detectors, there

is an LHCb-specific control of luminosity known as luminosity levelling, shown in Fig-

ure 3.4. This procedure achieves stable instantaneous luminosity by controlling that

the two beams do not collide straight head-on at collision point, but are moved with

respect to each other. It limits the effects of luminosity decay, which can lead to trigger

alterations during specific data taking run, resulting in systematic uncertainties.

In the following sections, a brief discussion of the different subdetectors, shown
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Year
√
s L Integrated Recorded Luminosity

[TeV ] [×1032cm−2s−1] [fb−1]

Design Up to 14 2 -

2011










Run I
7 ∼ 3.0-3.5 1.1

2012 8 ∼ 4.0 2.1

2015
















Run II

13 ∼ 0.5-4.5 0.3

2016 13 ∼ 4.0 1.7

2017 13 ∼4.0-6.0 1.7

Table 3.1: Running conditions of LHC and LHCb in different years of data-taking.

The statistics of LHCb’s instantaneous luminosity, L is extracted using run database

information. Run II data-taking finishes in 2018.

in Figure 3.2, is presented. The vertexing at LHCb is performed with the vertex

locator system, also known as the VELO, and is described in section 3.2. The tracking

system at LHCb consisting of trackers before the magnet (TT), and three tracking

stations behind the magnet (T1, T2, T3) is highlighted in section 3.3. The particle

identification is provided by two Ring Imaging Čerenkov counters (RICH1 and RICH2),

which are detailed in section 3.4. No particle physics experiment is complete without

a calorimeter system, discussed in section 3.6, which consists of a Scintillator Pad

Detector (SPD), Preshower (PS), an electromagnetic calorimeter (ECAL) and finally a

hadronic calorimeter (HCAL). The muon system positioned at the end of the detector,

consisting of five muon chambers is described in section 3.7. The trigger chain as well

as the simulation chain are discussed in section 3.8 and section 3.9. Particular emphasis

is given to the muon detectors and the simulation of LHCb.
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Figure 3.4: Development of the instantaneous luminosity for ATLAS, CMS and LHCb

during a random representative LHC fill. After ramping to the desired value of 4 ×
1032cm−2s−1 for LHCb, the luminosity is kept stable in a range of 5% for about 15 hours

by adjusting the transversal beam overlap. The difference in luminosity towards the

end of the fill between ATLAS, CMS and LHCb is due to the difference in the final

focusing at the collision points, commonly referred to as the beta function, β∗. This plot

was obtained from [44].

3.2 VErtex LOcator

The subdetector closest to the collision point is the VErtex LOcator (VELO). This

silicon-strip based detector, that extends 1 m along the beam axis, is primarily used

to distinguish signal-like events from prompt background. The typical property of a

b-hadron decay include large impact parameter (IP), the minimal distance between the

track and a primary vertex, in addition to significantly higher transverse momentum,

pT . Therefore, the main tasks of this subdetector are to find:

• primary vertices

• secondary vertices of short-lived particles (heavy quark hadrons)

• tracks that did NOT originate from the primary vertex
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.

Figure 3.5: Schematic plot of the VELO detector configuration along the beam pipe

showing the layout as well as positions while in stable beams (discs have slight overlap)

and injection. Figure from [37].

The detector consists of two sets of 21 silicon modules positioned around the beam

pipe, where each module has 2 types of half-moon-shaped discs as seen in Figure 3.5.

In the first type, the strips are arranged to provide radial information (R), whereas the

second type provides azimuthal (φ) information. As pp collisions bring a high dose

of radiation to this detector, the first sensitive strip starts at a distance of 8 mm once

stable beams are declared. Throughout the beam injection, when the beam radius may

be larger, the two sets are moved 3 cm away, perpendicular to the beam axis. For the R

sensor, the individual module’s strip pitch, the distance between two strips, varies from

38 µm to 102 µm away from the beam pipe, so that the hit occupancy is roughly even

as a function of distance away from the beam pipe. Each VELO half is kept within an

aluminium welded box causing material overlap once stable beams are declared. These

boxes form their own vacuum which is separated from the nominal LHC vacuum in
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order to protect the detector from any electromagnetic interference with the beam.

This setup brings outstanding hit resolution (4-40µm), which in turn allows for

very high IP and very good primary vertex (PV) resolution, as seen in Figure 3.6(a)(b).

This is indispensable not only in order to perform the precise measurements of B and

D lifetimes, but also to resolve oscillations caused by B0s − B̄0s mixing occurring at a 3

trillion Hz rate. As will be seen later, this excellent resolution is also very important for

the detection of decays with neutrinos in the final state.
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Figure 3.6: Two key variables which quantify performance of the VELO detector. (a) IP

resolution which is worse for low momentum tracks and (b) PV resolution dependent

on the number of tracks forming the primary vertex N . Figures from [45].

3.3 Tracking System

In addition to tracking information provided by the VELO, the trajectories of charged

particles are measured by a series of tracking subdetectors. The main task of these

tracking subdetectors is to provide efficient reconstruction and precise measurement

of a particle’s momentum. There are four tracking stations apart from VELO: Tracker

Turicensis (TT), positioned upstream from the magnet, and the T1, T2 and T3 tracking

stations on the other side of the magnet. The dipole magnet with ≈ 4 Tm integrated

field provides strength to bend charged particles in the horizontal plane.
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Two different detection technologies are used in these trackers reflecting the nature

of track occupancy as a function of polar angle. The parts at small polar angles,

TT station together with central region of T1, T2 and T3, also known as the Inner

Tracker (IT), expect higher occupancy and make use of the silicon microstrip detection

mechanism. The outer part of T1, T2 and T3 stations, also known as the Outer Tracker

(OT), is made of straw-tube detectors. Straw tubes measure the trajectory of the track by

measuring the drift-time of ionized electrons. Use of the two technologies is illustrated

in Figure 3.7(a).

3.3.1 Tracking Algorithms

Different types of particles will leave different footprints in the detector. Charged

particles will form tracks. Depending on the presence of hits in individual subdetectors,

they are grouped into several categories, visualized in Figure 3.7(b).

(a) (b)

Figure 3.7: (a) Visualisation of use of different technology with silicon technology in

violet and straw-tube technology in cyan. Figure from [37]. (b) Track types categorisa-

tion depending on which track stations provided hits. For the study of B+→ µ+µ−µ+ν

decays, only long tracks are considered as muons will travel to the end of the detector

leaving hits all along. Figure from [46].

Most of the physics analyses at LHCb, as it is the case for the search of B+→ µ+µ−µ+ν,

use only long tracks, tracks leaving hits in the VELO and T1, T2 and T3, as they give
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most precise momenta measurements. There are also other types of tracks as indicated

in Figure 3.7 but they are rarely used.

In general, the track reconstruction software starts with pattern recognition, where

several hits in one part of a tracking subdetector are identified and form track seeds,

which are then extrapolated and combined with hits in other tracking subdetectors. The

long track candidates are formed and fitted with a Kalman filter [47], where, because of

the material present in the detector, corrections for energy losses as well as multiple

scattering are incorporated.

In LHCb there are types of tracks which are not really the trajectories of charged

particles. Sometimes the pattern recognition may combine random hits into a track,

which is then known as a ghost track. On the other hand, it could also happen that

several tracks are sharing the same hits, known as clone tracks. The presence of these

types of tracks are suppressed through the use of a neural network based variable

(Pghost), which relies on the χ2 of the track fit, and information about missing hits along

the trajectory to calculate its value.

When searching for a b-hadron decay, the mass of a candidate can be calculated from

the 4-momenta of the decay products. Uncertainty on this mass is one of the crucial

parameters to minimize as it enables a better separation between the identified signal

and background. It strongly correlates with the momentum resolution that is obtained

using the tracking system. The resulting relative momentum uncertainty (0.5-1.1%) on

long tracks using J/ψ→ µ+µ− data can be seen in Figure 3.8. It varies logarithmically

with increasing momentum.
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Figure 3.8: Momentum resolution of long tracks measured at LHCb. The decay channel

J/ψ→ µ+µ− is analysed for this purpose. Figure from [44].

3.4 Ring Imaging Čerenkov Detectors

Particle identification, PID, at LHCb relies heavily on two dedicated Ring Imaging

Čerenkov subdetectors, RICH. These detectors take advantage of the emission of

Čerenkov light, which happens when a charged particle travels through a medium

at a speed faster than the phase velocity of light in that medium. This cone of light

is emitted at an angle θ with respect to the charged particle’s trajectory. Using the

knowledge of the refractive index of the medium, n, and momentum p that is measured

using the tracking system, the mass m of the particle can be obtained through:

cosθc =

√

m2 + p2

pn
. (3.2)

As the momentum is not an intrinsic property of a passing particle, the momentum

identification range is limited by the choice of medium, also known as radiator. For

very low-momentum particle, as cosθc→ 1 (p =
√

m2

n2−1 ), the particle is not producing

any Čerenkov light cone. At very high momentum, as cosθc→ 1/n, there is a saturation

point as all species of particle will emit light at the same Čerenkov angle, hence all the

discriminating power will be lost.
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Low momentum (2-60 GeV) particles are identified in the upstream RICH1 detector

and high momentum particles (15-100) GeV are analyzed downstream in RICH2.

RICH1 covers an angular acceptance of 25-300 mrad using C4F10 (n = 1.0014) as the

radiator. RICH2 has a more limited acceptance of 15-120 mrad and uses CF4 as the

radiator, with lower n = 1.0005. The discrimination power between different particles

can be seen in Figure 3.9(a).

Both RICH1 and RICH2 use a set of spherical primary mirrors to guide the photons

onto the flat secondary mirrors which are then further focused into Čerenkov rings on

the surface of a plane of Hybrid Photon Multipliers, (HPD). The schematic view of a

particle passing through RICH1 can be seen in Figure 3.9(b).
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Figure 3.9: (a) Separation power for different species of particles in the momentum-

Čerenkov angle plane for the C4F10 radiator. Figure from [48]. (b) Schematic diagram

of RICH1 layout. Figure from [37].
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3.5 RICH Reconstruction and Performance

In order to correctly associate species of particles to a given track, the Čerenkov angle

is combined with the track momentum measured by tracking. In practice, however, as

RICH detectors operate in high track density environment, many Čerenkov rings will

be overlapping and hence a complex pattern recognition algorithm is deployed [49].

For each event, the RICH computes a full event likelihood that is consistent with

assigning a pion mass hypothesis to all tracks given the observed hit distribution read

out by the HPDs. The algorithm then iterates through all other possible particle species,

(e,µ,π,K, proton, deuteron), assigning a new full event likelihood for a given track, with

all other hypotheses fixed. The mass hypothesis with the highest full event likelihood is

assigned to the track and this process is repeated for all the tracks in the event, until no

improvement is found.

Results of this algorithm provide likelihood variables, DLLx, that quantify the

strength of the chosen species hypothesis against the pion hypothesis,

DLLx = log(L)x − log(L)π x ∈ e,µ,K,proton,deuteron. (3.3)

By calculating DLLx1 −DLLx2, one can obtain discriminative strength between any

two species.

3.5.1 RICH Performance

In order to measure the performance of the PID computed by a RICH, populous cal-

ibration samples with very little background contamination are required. In order

not to bias results, these samples have no PID constraints themselves and are recon-

structed solely using kinematic information. For studies of pion/kaon efficiencies,

D∗+→ D0(K−π+)π+ backround-substracted samples are used, whereby the daughter

tracks of the D0 become proxies for the evaluation. The invariant mass for the D0

candidates can be seen in Figure 3.10(a). The probability of correctly identifying a

kaon given a certain constraint on DLLK, the identification efficiency (ID), and the
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probability of mistakenly swapping pion identification, the misidentification efficiency

(misID), are summarized in Figure 3.10(b). Identification probabilities of ≈ 85% with a

misID rate of ≈ 3% provide invaluable discriminating separation between kaons and

pions.
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Figure 3.10: (a) Invariant mass distribution of D0 data sample (in black) overlaid with

fit to both background and signal (in blue). (b) An example of kaon ID (red) and misID

(black) efficiency as a function of momentum under two PID hypotheses, DLLK > 0

(empty) and DLLK > 5 (filled). Both Figures from [48].

3.6 Calorimetry

As many other particle physics detectors, LHCb is equipped with series of subdetectors

providing separation between electrons, pions and photons. This separation is achieved

because different particles interact differently with the material, producing differently

shaped showers. This part of the detector is not only integral to the way the LHCb

trigger system works but it also provides a measurement of the energies of these objects.

All the subcomponents discussed here operate on the same principle. Particles passing

through the material emit light. The light from the scintillating material, which is

created by absorbing the energy of the particle and re-emitted it in the form of light, is

guided to photomultiplier tubes by wavelength shifting fibres.
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Electrons, pions and photons firstly encounter two planes of scintillating tiles: the

Scintillating Pad Detector (SPD), and the Preshower Detector (PRS) intersected by a

wall of lead. The SPD senses the passage of charged particles as they emit light whereas

neutral particles do not, making this subdetector able to distinguish between electrons

and photons. The wall of lead initiates the electromagnetic shower, where photons are

converted into electron-positron pairs, depositing sizable energy in the PRS allowing

electron/pion separation.

The Electromagnetic Calorimeter (ECAL) in LHCb is based on a sampling shashlik-

type technology, where scintillating tiles are alternated with lead plates measuring the

energy deposit of electromagnetic showers. As the best energy resolution requires full

energy deposit of energetic photons along the ECAL, the thickness is equivalent to 25

radiation lengths. The resulting resolution of the ECAL is σE
E = 10%√

E
⊕ 1%, where E is in

GeV.

On the other hand, the Hadronic Calorimeter HCAL sandwiches iron instead of lead

as the absorber with a thickness of 5.6 interaction length only, achieving a resolution of

σE
E = 70%√

E
⊕ 10% in beam tests. This poorer resolution however fulfils the requirements

necessary for the main purpose of this detector, which is the hadron trigger. Away from

the beampipe the granularity of cells is coarser to mirror the track occupancy as seen

in Figure 3.11(a)(b).
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Figure 3.11: Granularity of (a) ECAL and (b) HCAL detectors. This is just a quarter

view and that the black region is where the beam pipe is located. Figure from [37].
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3.7 Muon Stations

Muons are considered to be of fundamental importance to many flagship analyses by

LHCb, such as the search for the rare B0s → µ+µ− decay [50]. Analysis of B+→ µ+µ−µ+ν

of course relies heavily on a good performance of this part of the detector. Muon

stations are positioned at the end of the detector, taking advantage of the fact that

muons penetrate material better than any other particle type.

LHCb’s five rectangular muon stations M1-M5 are positioned before and after the

calorimetry system, with the first station M1 upstream of the SPD, and four stations

(M2-M5) downstream of HCAL as shown in Figure 3.12. The M1 station consists of

12 sets of three gas electron multiplier foils (triple-GEMs) in the region closest to the

beam pipe, resisting the highest dose of radiation due to the highest particle flux. Its

main use lies in improving the measurement of pT in the hardware trigger. The M2-M5

stations each consist of 276 multi-wire proportional chambers (MWPCs) filled with

an Ar,CO2,CF4 gas mixture. They are interlayered with 0.8m iron walls, to provide

a stopping target for all particles, other than muons with momentum higher than 6

GeV/c.

Each half of a muon station is segmented into four increasingly larger regions away

from the beam, R1 to R4. All the regions were constructed to cover the same acceptance,

keeping the track occupancy constant across the station. The granularity of the readout

is higher in the horizontal plane to take advantage of the magnet’s horizontal bending

plane.

Both GEM and MWPCs operate on the same principle. In each station, the position

in the x − y plane is determined by ionizing electrons that come from muons passing

through the detector, which are then attracted either to the closest anode mesh or

wire mesh. The trigger is fired if the corresponding rectangular region in each station

registered a positive binary decision. This means the efficiency of each station must be

≥99% to give an overall 95% trigger efficiency.
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Figure 3.12: (a) Layout of the muon detector x-z plane and (b) x-y plane. Figure

from [51].

3.7.1 Muon Identification

Apart from triggering events with high enough pT muons, the muon stations provide

necessary PID information for muon analyses. Offline variables mostly used for muon

ID by analysts are

• IsMuon: Boolean decision of muon candidates with momentum-dependent cate-

gorisation. Long tracks with p > 3GeV/c are extrapolated to muon stations yield-

ing x − y coordinates in M2-M5, considering only tracks within the acceptance.

For each station, a search for hit information within an elliptical area defined

by momentum, a field of interest (FOI), is performed. The hit requirements are

summarized in Table 3.2.

• muDLL: Difference in log likelihoods computed using a muon and non-muon

hypothesis. These hypotheses are based on the prox imity/distance, D2, of the

track extrapolation into the muon stations and corresponding closest sensed hits
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in those stations. Muon-like particles will tend to have a sharper distribution in

D2 as compared to other species. Protons were chosen to be the other species for

the calibration purposes. They give a broader distribution as they originate either

as punch-through protons (protons coming from showers not fully contained in

the HCAL), protons having the same hit position as true muon, or random hits.

• DLLmu: For each track the same global likelihood is produced, by combining

the muon and non-muon likelihoods from muDLL, with the RICH different mass

hypothesis likelihoods, and the calorimetry likelihood exploiting information

about the energy deposits. Like in the RICH likelihoods, the default hypothesis

corresponds to separation between the muon and pion hypotheses.

In the B+→ µ+µ−µ+ν analysis the variables IsMuon and DLLmu are used to identify

muons. In addition, other variables that are used for muon identification in the search

for B+→ µ+µ−µ+ν, are described in section 4.1. The use of several variables for muon

identification is done as they are mostly complimentary, exploiting different information

from different parts of the detector.

Particle Momentum p Hits in Muon Stations

3 GeV/c <p<6 GeV/c M1 & M2

6 GeV/c <p<10 GeV/c M1 & M2 & (M3 ||M4)

10 GeV/c <p M1, M2, M3 and M4

Table 3.2: Momentum-dependent definition IsMuon variable.

3.7.2 Muon Identification Performance

As for hadron performance measurements, the muon ID performance is determined

using the high statistics decay channel J/ψ→ µ+µ− with a tag and probe method. MisID

rates for kaons and pions are computed using the same decay channels, which were
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used for the identification of hadrons, D∗+→ D0(K−π+)π+. The summary of IsMuon

ID and misID rates are presented in Figure 3.13. A very high ID rate (above 90%) for

relatively low misID probability (below 10%) is key to analyses with muons in the final

state. The identification rate for the low pT muons suffers because these muons can end

up outside of the LHCb acceptance. MisID rates for kaon and pions are significantly

higher in the low momenta region as the dominant process for this occurence is muons

from decay-in-flight.
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Figure 3.13: (a) Probability of correctly identifying muons as a function of momentum

in bins of pT for J/ψ→ µ+µ− with an IsMuon constraint. (c) Probability of incorrectly

identifying a pion (b) proton and (d) kaon as a muon with IsMuon. This figure is taken

from [52].

3.8 Trigger

Big-data physics experiments have to make decisions on what kind of data they want to

keep. The choice of interesting events is performed by a series of decisions, which is

known as the trigger. The LHCb trigger system was build around constraints posed by
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the run conditions, read-out capabilities and available disk space. In Run I and Run II

LHCb has at its disposal the multistage trigger consisting of a hardware-based level 0

trigger (L0) and a software-based high level trigger (HLT).

In the end, selected events have their trigger decisions categorized. An event where

the signal candidate caused the trigger to fire is known as Trigger on Signal (TOS).

An event where it is a non-signal like particle causing the trigger decision to occur is

labelled as Trigger Independent of Signal (TIS). Finally, if only a combination of signal

particle(s) together with other particles in the event produces an affirmative decision,

then these events are categorized as TIS & TOS = TISTOS.

L0 reduces the rate of data from 40 MHz to 1 MHz by employing five trigger

decisions, also known as lines. The first three lines make a decision using calorimeter

information about the transverse energy, ET , and whether it is a photon, electron or

hadron causing the shower energy deposit. Two other lines read out information from

the muon system by looking for pT , of muon and dimuon (two muon tracks) objects.

The efficiencies of the L0 muon triggers are evaluated using B+ → (J/ψ → µ+µ−)K+

decays and can be seen in Figure 3.14(a). The hadron trigger efficiency in different

decay channels can be seen in Figure 3.14(b).
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Figure 3.14: (a) TOS efficiency as a function of pT for muon-based decisions. (b) TOS

efficiency for different decays using L0 hadron trigger lines. Figures from [53].

The software-based HLT then further reduces the rate from 1 MHz down to 5
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kHz which can be recorded to long-term storage. The first stage of the HLT, (HLT1),

performs limited track reconstruction and hence makes a decision based on the presence

of charged particles in the event. HLT1 uses VELO hits to reconstruct PVs and VELO

tracks by using 3D pattern recognition. As LHCb’s primary mission is to study decays

of hadrons containing b and c quark, HLT1 will make a decision based on the track

being displaced (having a high IP) with respect to the PV. For events selected by the

L0Muon, an attempt is made to match the VELO tracks to hits observed in the vertical

plane in the muon chambers, where the magnetic field of the dipole will not make them

bend. By computing the track χ2, the potential muon track candidates are selected.

Finally, the VELO tracks and muon tracks are extrapolated into the OT or IT trackers,

allowing for so called forward tracking, whereby p and pT requirements are imposed to

reduce processing time. Each track is then fitted with a fast Kalman filter providing

the χ2 of the fit. The corresponding performance of the HLT1 trigger lines are shown

in Figure 3.15(a)(b).
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Figure 3.15: HLT1 efficiencies of the corresponding triggers using the same proxy as

in Figure 3.14. Figures from [53].

The second stage HLT2 reduces the rate to 5 kHz that can be safely written to disk.

HLT2 consists of a series of decisions based on a full reconstruction of either groups

of decays or specific decay modes. Topological triggers exploit the vertex and track

information (topology) of b-hadron decays. By employing multivariate techniques 2-,3-

80



CHAPTER 3. THE LHCB DETECTOR

or 4-body decays that are well separated from the PV are reconstructed. To account for

decays where a final state particle is not fully reconstructed, the corrected mass (will be

defined in Equation 5.1) serves as an input variable in the the BDT. Dedicated lines are

also written to reconstruct muon and dimuon channels allowing for both prompt J/ψ

and B→ J/ψX studies. Finally there are Exclusive triggers concentrating on selecting

events with D mesons. They perform a selection which is very similar to the offline

selection but without PID cuts.

Between the Run I and Run II period there has been a change in how the software

trigger operates, which can be seen in Figure 3.16. As more computing resources were

introduced for both HLT1 and HLT2, LHCb took advantage in upgrading the trigger sys-

tem by introducing an update of the calibration and alignment constants of the relevant

subdetectors before the data is sent to permanent disk. Online reconstruction, defined

as being produced at the trigger farm, became the same as the offline reconstruction,

defined as reconstruction made when data reached the permanent disk. Hence, there is

an enhancement of the available information, such as the PID in the HLT, which can

then be used at the trigger level.
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Figure 3.16: Trigger scheme differences between Run I and Run II. Figures from [54].

3.9 Simulation

In order to optimise the event selections, determine efficiencies and model the back-

grounds, a full Monte Carlo Simulation MC can be produced starting from simulation of

the pp collision to detector readout of the decay of interest produced. The pp collisions

within the LHCb configuration [55] are simulated with Pythia 6.4 [56] and Pythia

8.1 [40]. LHCb specific settings are mostly related to running conditions: luminosity,

number of collisions per bunch crossing as well as contamination from other bunches,

spill-over.

In the pp collision, the b and c production mechanisms are simulated and then the

following bb̄ or cc̄ pair is hadronized into hadrons of interest. In this thesis and the
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analysis presented, the B+ meson is the hadron of interest. Hadrons are then further

decayed using EVTGEN [57] into the chosen decay products. At this stage, different

physics models or inputs from theory can be configured. In order to account for the

effects of QED radiative corrections, the PHOTOS [58] algorithm can be used. All of

this combined establishes the generator-level simulation of LHCb.

In the next phase, detector simulation, the interactions of all the particles with the

detector, transport, as well as detector’s response are simulated using the C++ GEANT4

toolkit [59], [60]. LHCb’s interface to GEANT4 is detailed in Ref [61].

3.9.1 Differences in Simulation and Data

Despite the complexity and best intention of the LHCb simulation, there are several

shortcomings that require corrections. The most affected variables necessary for physics

analyses that one needs to consider are IP resolution, track reconstruction efficiencies,

PID variables and track occupancy.

The IP resolution shows a better trend in the simulation then in the data due

to the mismodelling of the material description in the VELO simulation. As shown

in Figure 3.17(a)(b) the IP resolution does greatly differ depending on the variation of

material density of VELO. Around φ = ±π/2, where the two VELO parts overlap, the

material difference causes the discrepancy. It can be corrected either by reweighting to

data or by smearing the resolution with a Gaussian distribution.

Track reconstruction efficiency is also not reproduced very well in certain kinematic

bins, again due to modelling of scattering interactions.

The most critical problem that needs to be addressed in the presented analysis is

the inaccuracies of the PID variables, which are mismodelled in the simulation. This

problem arises as a consequence of the much lower estimate of low momentum tracks

in the detector, making the photoelectron background underestimated. This results in

better separation in simulation and is corrected using a data calibration.

Therefore the PID efficiency is usually obtained from the data. More specifically, this
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Figure 3.17: (a) IP resolution in the x-direction comparing the data and simulation for

the 2012 data-taking period. (b) IP resolution in the x-direction comparing the data and

simulation for the 2011 data-taking period as a function of angle, φ. Figures from [45].

is done by using high-yield and relatively background-free calibration channels, where

the species of the particle can be deduced from kinematics of the decay. A standard set

of these channels are "housed" in a PIDCalib package [62]. With this package, the PID

efficiency can be computed in a given kinematic region of interest.
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Chapter 4

Handling of Trimuon Correlations at

LHCb

This chapter discuss issues associated with three muons passing through the detector. Two

collimated muons may traverse through the same parts of the detector if they have the same

charge, causing problems in resolving their individual tracks. Therefore, ghosts and clones

are much more likely to occur. In LHCb, a plethora of muon PID variables are used to

suppress these types of spurious tracks. However, the usage of PID variables in an analysis in

LHCb brings its own challenges. As the simulation is not able to estimate PID efficiencies

correctly, most of the PID efficiencies are taken from control samples. New control samples

for B+→ µ+µ−µ+ν are considered as the PID efficiencies depend strongly on the number of

muons in the detector and in the standard misID control samples there is just a single muon

in each event.

4.1 Muon PID Variables

In addition to the muon identification variables mentioned in subsection 3.7.1, there is

a further set of criteria for selecting muons. In this section a summary of the variables

used in the B+→ µ+µ−µ+ν analysis is discussed.
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4.1.1 Binary Muon PID Variables

Similar to isMuon shown in Table 3.2, there are more binary variables, such as isMuon-

Tight, that can help with the classification of muons. As its name suggests, isMuon-

Tight has stronger conditions to satisfy as compared to isMuon.

In each muon station (M1-M5) a field of interest, FOI is defined as

FOIx,y = ρ
0
x,y + ρ

1
x,y · exp









ρ2x,y · p
GeV/c








, (4.1)

where x,y are the dimensions perpendicular to the direction of the beam, p is the

momentum of the muon, ρix,y are three dimensional parameters tuned to give the best

performance, by maximizing efficiency versus misID rate. This FOI can be thought of

as a cone whose radius depends on the p.

When a muon passes through the detector, it leaves hits (hx,y coordinate) in a pad

with size padx,y of each muon station. From the tracks formed in the tracking part of

the detector, coordinates Ex,y are obtained by extrapolated the tracks into the muon

stations. The hits are considered to be within the FOI if they satisfy the condition that

||hd −Ed || < FOId · padd for both d=x,y.

The detector information is read out in the x and y direction separately. The pad

slicing according to this read-out scheme is known as physical slicing of pads. However,

as seen in Figure 4.2, the overlapping x and y physical pads can be grouped into logical

pads, which give information about x and y simultaneously. This leads to two groups of

hits according to pad type: uncrossed hits - registered within physical pads only, and

crossed hits - given by logical pads. Whereas isMuon only requires a positive decision

from uncrossed hits, isMuonTight requires a positive decision based on crossed hits.

4.1.2 Muon PID Variables Based on Sharing Hits

Another way of identifying muon tracks is based on the variable, nShared, which

identifies the number of tracks with shared hits in the muon stations. For each hit

within the FOI of an extrapolated track, the nShared algorithm will check whether
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BEAM PIPE
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3
.2

0
 m

Figure 4.1: Schematic view of the muon station slicing into x-y pads. This is the left

quadrant of the M1 station, showing decreasing granularity of the muon stations away

from the beam pipe. This figure has been taken from [51]. M1R1 is the innermost

region and M1R4 is the outermost region of the M1 station.

Figure 4.2: Difference between crossed and uncrossed hits. A hit in a muon station is

considered a crossed hit if it is registered both by a horizontal and a corresponding

vertical strip. If a hit is only seen by either, it is considered uncrossed. This figure has

been taken from [63].
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any other track was built using the given hit. In this case, the nShared variable of the

muon track which has the bigger distance between the extrapolation coordinates and

the hit coordinates is increased by 1. Hence this integer PID variable helps suppressing

ghost tracks and clones if no tracks have hits in common with the owner of the track

(nShared=0).

The muon identification software algorithms evolved significantly between the

processing of Run I and Run II data. This included bug fixes, improvements and the

introduction of new bugs. In the B+→ µ+µ−µ+ν analysis, this has to be taken into

account.

The first feature that is different between Run I and Run II arises from the calculation

of the distance between the extrapolation and the hit in the nShared algorithm. In

Stripping 21 (where stripping is a preselection) used for 2012 and 21r1 used for 2011

data, it was discovered that the distance between an extrapolated track and a hit was

wrongly calculated. This mistake was corrected before Stripping 23, used for analysing

2015 data.

Secondly, information from the M1 station was used to calculate distances, even

though M1 information is not usually used for the Muon ID algorithms. For analysts,

this feature was present across all reconstruction software, meaning that simulation

and data is affected in the same way.

In Stripping 23, the Muon ID algorithm was rewritten to adapt to the parallelisation

that needs to be done in order to meet the criteria for the upgrade of LHCb. There

were two mistakes introduced prior to 2015 data taking. Firstly, an array was defined

with 4-elements [0,3] to store information about the x and y coordinates of the hits.

However, an iteration occurred by filling elements 1 to 4 of the array (M2-M5) resulting

in a 5-element array where the 0-th element was not filled. Despite this, it turns out to

be well-behaved and has no impact on physics. There was no significant implication for

any analysis arising from this mistake.

Further in the process, however, this information is used to calculate the sum and

average of distances per station between the hits and extrapolations. This algorithm
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again iterates over [0,3] arrays, meaning that no information is used from the M5 muon

station. This obviously has an effect, but again it is consistent across the versions of the

reconstruction software used for the processing of Run II data.

The interplay between all these features for B+→ (J/ψ → µ+µ−)K+ decays can be

seen in Figure 4.3, which sees a shift in distribution of nShared for 2016 data taking,

making the muons less isolated.
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Figure 4.3: (a) nShared variable distribution for the positive muon in B+→ (J/ψ →
µ+µ−)K+ decays in (a) simulation and (b) data. Different stripping versions correspond-

ing to 2012 (Stripping 21), 2011 (Stripping 21r1), 2016 (Stripping 26) data-taking are

shown. The distributions are normalised to have the same area. There is a shift of

distribution in Stripping 26 towards less isolated tracks. The proportion of muon tracks

that share no other hits with other tracks is smaller, whereas the proportion of the

tracks sharing hits with other muon track is increased.

Using the same calibration channels as in subsection 3.7.2, misID and ID rates can

be seen in Figure 4.4. As the tracks tend to be less isolated in Stripping 26 used for 2016

data, typical of non-signal like events, the misID rate is expected to be higher for the

same working point (ID efficiency). While the issues highlighted here can be fixed with

a reprocessing of the data, this is not expected to happen before 2019 or 2020.
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Figure 4.4: ID and misID probabilities from standard calibration datasets from 2012

(Stripping 21) and 2016 (Stripping 26), binned using the default 2-dimensional binning

scheme in momentum p and pseudorapidity η. In this plot, ID and misID rates in the

central bin of η, 2.375<η<3.25, and the first and second bin in p are compared. This

demonstrates that for the same pion ID efficiency, the misID rate is significantly higher

in 2016 data.

4.1.3 Muon PID Variables Based on Regression Techniques

Similar to the DLLmu variable in subsection 3.7.1, which combines all the information

from the detector into a global likelihood, it is possible to feed all the different variables

to a neural network, which can then produce an output corresponding to the probability

of a particle to be of a certain species. Probnnx, where x is the species of interest, is

calculated and can be used also for muon identification. Compared to DLLx variables,

Probnnx variables tend to have smaller correlation with the kinematics of the particle,

and hence are more useful with decays where particles are soft, such as B+→ µ+µ−µ+ν.

As with any machine learning algorithm, the selection of both the training sample

and the input variables are important. In Run I, there were two tunings (trainings)

introduced V2 and V3, with more input variables in V2. Depending on the species of
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particle, V2 or V3 performed better. In the analysis of B+→ µ+µ−µ+ν, Probnnx_V2 is

used.

4.2 Clones

When analysing decays with two muons of opposite charge, one can rely on the fact

that LHCb magnet bends these two muons in two opposite directions. With two muons

of the same sign, the muons will instead bend in the same direction and can stay close

together in both the tracking system and the muon detectors. This is a problem for the

tracking algorithm as it distinguishes these two tracks less well. It is even possible that

these two same sign muon tracks are not genuine tracks, but rather subtracks or a copy

of another track, clone tracks. Two tracks are clones if they share at least 70% of the hits

in the VELO and at least 70% of the hits in the other T-stations. Of course, once it is

established that two tracks share this percentage of hits, it has to be established which

track is the clone track. This decision is based on the total number of hits and the track

χ2 per number of degrees of freedom of the fit (ndof) (track χ2/ndof) comparison of

the two tracks.
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Figure 4.5: (a) Visible and (b) corrected mass of B+→ µ+µ−µ+ν candidates in 2012

data where all the muons have the same charge. Clear fake peaks, arising from the

correlation of several effects in the detector can be seen.
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In the search for B+→ µ+µ−µ+ν, two muons have the same charge, and hence are

affected by the clones, which needs to be understood. In a control sample from data

corresponding to the 2012 data-taking period, which has three muon candidates of the

same charge, the effect is even more prominent and can create potentially fake peaks in

the visible mass spectrum. Clones peak at a well defined visible mass

MB =
√

(3×Mµ)2 ≈ 318MeV/c2 (4.2)

Once translated into corrected mass (will be defined in Equation 5.1), these fake peaks

are smeared and look like genuine resonances with a resolution as seen in Figure 4.5.

The procedure which results in creating fake peaks from clones is described below

illustrated with Figures Figure 4.5– Figure 4.9, where 2012 data control samples are

plotted.

The shape emulating a genuine resonance arises as a collective effect from vertexing,

tracking and trigger selection. As there are three parallel tracks, the vertex of the system

is not well defined. However, the vertex fitting of the PV and secondary (decay) vertex

(SV) is functional and vertex χ2/ndof (the χ2 of the vertex per degree of freedom in a

vertex fit) is good as these tracks are subtracks of each other. The distance between the

PV and the SV is defined as the flight distance (FD). However, clones can be differentiated

by the position of the decay vertex of the B, Figure 4.6 as well as by the transverse

position of the track in the tracking, OT as seen in Figure 4.7.

With this typical path for the clones there is a fixed angle of the clones through the

detector (the angle between the muon momentum and the z-axis), which is calculated

using information from OT as

arctan(θ) = arctan
( FD radius

FD distance along z

)

= arctan
(
200 mm (Figure 4.7)

8500 mm

)

= 0.023rad.

(4.3)

With the L0Muon pT threshold of 1.76 GeV/c for 2012 [53], a typical momentum

from about 75 to 120 GeV/c results because
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Figure 4.6: (a) Clone and (b) no clones B candidate flight distance properties. It can be

seen that clone tracks have their decay vertex placed at the end of the detector, whereas

regular good tracks will decay within the VELO.
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Figure 4.7: Transverse position in the OT detector for (a) clones and (b) real tracks at

the distance 9450 mm along LHCb. Clones are concentrated along the inner edge of the

OT. Good muon tracks will cover most of the OT evenly.

p = 1.76GeV/c/ sin

(

arctan
(
200 mm

8500 mm

))

. (4.4)

The angle between the B flight direction and trimuon momentum vector, cos(θB),

will also be fixed and has a typical value of 0.7 mrad as seen in Figure 4.8.

Hence, the missing pT in the direction of the flight can be calculated using cos(θB)
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Figure 4.8: (a) Peaking clone distribution is visible as all of clone tracks are collinear

compared to (b) smooth no clone distribution for cos(θB).

and typical p,

pT = 100GeV/c × sin(0.0007) = 0.7GeV/c. (4.5)

Finally, corrected massMcorr =
√

M2 + |p2T |+ |pT | = 4.2GeV/c2 is calculated using missing

pT from Equation 4.5 and visible massM of clones from Equation 4.2 and was shown

in Figure 4.5(b).

In order to suppress these tracks in analysing B+→ µ+µ−µ+ν, where two muons have

the same sign, any of the distinguishing features mentioned could be used. But the

most powerful PID-wise is requiring nShared=0 in Run I, as this requirement removes

all of the clones, as seen in Figure 4.9. For Run II, due to the bugs introduced, such

a strong requirement would harm the signal efficiency too much so a combination of

nShared<2 and isMuonTight=1 is applied instead.
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Figure 4.9: (a) Clone and (b) no clone distribution for sum of all muon nShared. Since

in this case the clones are of each other, for the clones there is clear peak at three.

4.3 Probability of K/π→ µMisidentification at LHCb

Usually, in order to estimate the background coming from misidentification of particles

as muons in the detector, data samples with particles of known (non-muon) type are

identified from the kinematics of the decay chains. From these samples, probabilities of

mis-identification are derived as discussed in subsection 3.5.1. However, the three muon

signature will induce problems for PID variables that are correlated with the number of

muons in the detector and specific data samples that incorporate this correlation have

to be used for measuring the mis-identification probability.

4.3.1 Specific Control Sample for K/π→ µMisID Rates

A platform that LHCb analysts usually use to obtain the misID and ID efficiencies, as de-

scribed in subsection 3.5.1, is known as the PIDCalib package [62]. It contains samples

where the identity of the particle is known purely from kinematics. In this PIDCalib

package, such a control same for K/π is obtained from D∗+(→D0(→ K+π−)π+) decays.

These statistically populated background-free sWeighted samples [64], for which it is

possible to extract misID and ID rates as a function of kinematics given certain PID

criteria, do not have other muons in the final state.
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More specifically, the topology of the misID background component, which is two

real muon tracks with an additional fake muon track is very different to the PIDCalib

sample D∗+(→D0(→ K+π−)π+).

For this reason, B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−) is used instead. While not as com-

mon as D∗+(→D0(→ K+π−)π+) decay, it still has high statistics and can be isolated with

little background. It mimics the two real muons plus fake muon correctly and will be

used to obtain pion and kaon misID probabilities.

4.3.2 Selection for B0
→ J/ψ(→ µ+µ−)K∗

Data samples for each year of data taking were obtained from the stripping line (set of

preselection cuts) dedicated to look for this type of decay. The sample can be used for

misID studies of the hadrons as no particle identification is applied on them. Some

initial selection was applied together with the more stringent B+→ µ+µ−µ+ν selection.

The trigger criteria were applied on the J/ψ candidate rather than on the B candidate.

The full additional selection summarized in Table 4.1 is used.

Idea Cut

ID K ∗ |M(Kπ) - MPDG(K0) | < 100 MeV/c2

Muon swap veto |M((h→ µ )µ) - MPDG(J/ψ)| > 60 MeV/c2

Veto B+→ K+µ+µ− max(M(K+µ+µ−)), M((π+→ K+)µ+µ−)) < 5100 MeV/c2

Veto B0s → φµ+µ− M(K(π→ K)) > 1040 MeV/c2

ID muons Probnnmu>0.5

For kaon misID rates:

ID pion DLLK < 0 DLLp < 0 and IsMuon==0

For pion misID rates:

ID kaon DLLK > 0 and DLLK-DLLp > 0 and IsMuon==0

Table 4.1: Offline selection for B0→ J/ψ(→ µ+µ−)K ∗ decay.
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4.3.3 Fitting Strategy for B0
→ J/ψ(→ µ+µ−)K∗

In order to obtain misID and ID rates using the B0 → J/ψ(→ µ+µ−)K ∗ channel, the

number of signal events N needs to be obtained. The shape for the signal component,

B0→ J/ψK ∗, is obtained by fixing the shape from simulation apart from the mean µ and

the width σ . It is fitted with a double-sided Ipatia function [65] (more in section A.1).

In addition, the residual background after selection needs to be modelled.

Background that peaks in the upper mass sideband, coming from heavier B0s , B̄
0
s →

J/ψ(→ µ+µ−)K ∗(→ K+π−) is also modelled using simulation, using the same function as

signal but with µ offset by the difference between the known B0s and B
0 masses.

It is also possible that kaons and pions are swapped between themselves. Back-

ground coming from K ↔ π swaps is modelled from simulation where the mass hy-

potheses were swapped. Its distribution is fitted with a double sided Crystal Ball

function [66] (more in section A.2).

Misidentified background comes from the decay Λb→ K−pµ+µ− where the proton is

misidentified as a pion. This background is modelled from simulation and fitted with a

RooKeys probability density function (PDF) (more in section A.3).

Finally a combinatorial component is modelled by an exponential function.

The mass of the J/ψ was constrained to its nominal mass, a procedure also known as

a mass constraint. It yields new estimates for track parameters of the final state particles,

from which a new kinematic refit is done.

In order to obtain K/π misID probabilities an unbinned maximum likelihood fit

to the µ+µ−π+K− mass between 5150 - 5450 MeV/c2 was performed. This fit, with

parameters listed in Table 4.2, save the yield of all the components.
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Fit Parameter Status

Yields

NB0→J/ψK ∗ (Signal) Free

NKπswaps Free

NΛb→J/ψK−p Free

NBs→J/ψK ∗ Free

NCombinatorial Free

Signal Shape Parameters

µB0→J/ψK ∗ Constrained from signal MC

σB0→J/ψK ∗ Constrained from signal MC

Others Fixed from MC

K π swaps Shape Parameters Fixed from MC

Λb→ J/ψK−p Shape Parameters Fixed from MC

Bs→ J/ψK ∗ Shape Parameters

µBs→J/ψK ∗ Offset by µB0→J/ψK ∗

Others Fixed from signal MC

Combinatorial Shape Parameters

exponential par. Free

Table 4.2: Summary of the fit parameters and individual component constraints for the

B0→ J/ψK ∗ fit.

The actual determination of the misID rate was obtained using a statistical method of

background subtraction, known as the sPlot technique [64], as the samples are not fully

background-free. The same method is also used in the PIDCalib package. In the sPlot

method, the invariant mass distribution is fitted with no PID applied and each event is

assigned sWeights, probabilities that a given event is signal-like or a background-like.

Then, through the sPlot technique, background is subtracted. The signal component

can then be calculated by summing all the sWeights for all the candidates. The misID
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probabilities are finally obtained by dividing signal component sum of sWeights with

PID applied and by the sum with no PID applied. This misID probabilities are then

considered within some kinematic partitioning, bins of p,η.

The misID rate was also cross-checked with another method, the fit twice method.

This is because the sPlot technique relies on the fact that there is no correlation between

the control variables (p, η) and the discriminating variable (invariant mass) for both

signal and background. This assumption may not be true, especially for background,

and it can introduce biases.

The fit twice method consists of fitting B0→ J/ψ(→ µ+µ−)K ∗ before and after the PID

requirement in a given kinematic (p, η) bin separately. MisID probabilities are then

obtained as the ratio of signal yields arising from these two fits.

It was shown that these two methods yield very similar results, hence, for purposes

of the B+→ µ+µ−µ+ν analysis the sWeight values will be used. Fits to Run I and 2016

data for both kaon and pion misID studies can be seen in Figure 4.10.
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Figure 4.10: Fit to constrained J/ψ(→ µ+µ−)K ∗(→ π+K−) mass with all the components

for (a)(b) 2011, (c)(d) 2012, (e)(f) 2016. On the left, fit to data with pion ID (giving kaon

misID probabilities), on right data with kaon ID (pion misID rates).
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4.3.4 Results of B0
→ J/ψ(→ µ+µ−)K∗ Control Sample for K/π → µ

MisID Rates

Using the sWeight method, misID rates for kaons and pions can be obtained. Two

control samples that are analysed and compared are D∗+(→ D0(→ K+π−)π+) events

(standard PIDCalib sample), where there are no other muons in the decay, and B0→
J/ψ(→ µ+µ−)K ∗(→ K+π−) events, where there are two real muons along with kaons or

pions. Selecting only tracks that are within the muon fiducial region for both pions and

kaons allows to perform study of the misID probabilities within the two calibration

samples. In Figure 4.11(a), the π→ µmisID probability for different PID hypotheses

from the B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−) sample is studied. As it can be noticed, the

more stringent the muon selection on the pion track, the lower the probability of

misidentification.

In general the agreement between the two samples is good in the low momentum

regions as shown in Figure 4.11(b). These pions are softer and hence they will spread

out more in the magnetic field, causing less interference with two other real muons in

decay. However, in the high momentum region, the pion will follow a path through

the muon system that is more similar to the path of the muon of the same charge in

the B0→ J/ψ(→ µ+µ−)K ∗ decay. The influence of the two other real muons in a high

momenta region will lead to bigger disagreement as these two real muons leave hits in

the muon chambers close to the collimated pion track, making the rate of IsMuon==1.0

(pink) higher.

This disagreement is decreased by requiring nShared==0.0 (blue), as having two

other collimated muons to share hits will be more likely. The effect of other PID

variables can also be seen, but it is harder to interpret as these depend on several

variables.

Even though this disagreement is decreased, for the high momenta region the π→ µ

( Figure 4.11) and K → µ ( Figure 4.12) rates are 2 to 3 times higher with an additional

two real muon tracks. Such disagreement is significant and if the misID rates from the
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(b)

Pi_isMuon==1.0

Pi_isMuon==1.0 && Pi_nShared==0

Pi_isMuon==1.0 && Pi_DLLmu>0 && Pi_DLLmu-Pi_DLLK>0 && Pi_nShared==0

Pi_isMuon==1.0 && Pi_DLLmu>0 && Pi_DLLmu-Pi_DLLK>0 && Pi_nShared==0 && Pi_ProbNNmu>0.3

Figure 4.11: (a) π→ µ misID probabibility for different PID requirements obtained us-

ing B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−) for 2012 data. (b) This is compared to the standard

PIDCalib D∗+(→D0(→ K+π−)π+) sample. The errors shown are statistical.

standard control samples were used to estimate the misID background, there would be

an underestimate the misID component by the same factor.

In conclusion, it was shown that the standard misID samples are not good proxies

for estimating the misID probabilities as there is interference from the two other

muons in the event. Instead, the misID probabilities that are used in calculations for the

misID background for B+→ µ+µ−µ+ν are obtained from Sweighted B0→ J/ψ(→ µ+µ−)K ∗

events. This means only Figure 4.12(a)– Figure 4.14(a) are used for calculating the

misID contamination, which is discussed in detail in section 6.2. Remaining effects of

taking this sample for calibration are considered as a systematic uncertainty, with more

details in section 7.3.3.

Due to the different PID definitions of nShared between Run I and 2016, differ-

ent PID requirements are tested. Results for π → µ and K → µ are summarized

in Figure 4.13 and Figure 4.14. The misID probabilities in 2016 also show the same

momentum dependent trend as in 2012.
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(b)

K_isMuon==1.0

K_isMuon==1.0 && K_nShared==0

K_isMuon==1.0 && K_DLLmu>0 && (K_DLLmu-K_DLLK)>0 && K_nShared==0

K_isMuon==1.0 && K_DLLmu>0 && (K_DLLmu-K_DLLK)>0 && K_nShared==0 && K_ProbNNmu>0.3

Figure 4.12: (a) K → µ misID probabibility for different PID requirements obtained us-

ing B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−) for 2012 data. (b) This is compared to the standard

PIDCalib D∗+(→ D0(→ K+π−)π+) sample. The errors shown are statistical. In the (b)

plot, there is a big uncertainty associated with some of the bins. This is due to the lack

of the statistics in PIDCalib samples. This is of no concern as the misID rates used in

the analysis are coming only from (a).
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(b)

Pi_isMuon==1.0

Pi_isMuon==1.0 && Pi_isMuonTight==1.0

Pi_isMuon==1.0 && Pi_isMuonTight==1.0 && Pi_MuonNShared<2

Pi_isMuon==1.0 && Pi_DLLmu>0 && Pi_DLLmu-Pi_DLLK>0 && Pi_isMuonTight==1.0 && Pi_MuonNShared<2

Figure 4.13: (a) π→ µ misID probabibility for different PID requirements obtained us-

ing B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−) for 2016 data. (b) This is compared to the standard

PIDCalib D∗+(→D0(→ K+π−)π+) sample. The errors shown are statistical.
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(b)

K_isMuon==1.0

K_isMuon==1.0 && K_isMuonTight==1.0

K_isMuon==1.0 && K_isMuonTight==1.0 && K_MuonNShared<2

K_isMuon==1.0 && K_DLLmu>0 && (K_DLLmu-K_DLLK)>0 && K_isMuonTight==1.0 && K_MuonNShared<2

Figure 4.14: (a) K → µ misID probability for different PID requirements obtained using

B0 → J/ψ(→ µ+µ−)K ∗(→ K+π−) for 2016 data. (b) This is compared to the standard

PIDCalib D∗+(→D0(→ K+π−)π+) sample. The errors shown are statistical.
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Chapter 5

Looking for B+
→ µ+µ−µ+ν Decays at

LHCb

In this chapter, the selection for the search for B+→ µ+µ−µ+ν decays at LHCb is presented.

This search is challenging because of the rareness of its occurrence as well as the different back-

grounds that can mimic its signature in the detector. Moreover, the presence of the invisible

neutrino in the decay induces uncertainties into the reconstruction. This chapter concentrates

on the data selection which reduces background contamination. The normalisation channel

along with its selection is also discussed. In the end, a method to improve the sensitivity is

introduced.

5.1 Analysis Strategy

The analysis of the B+→ µ+µ−µ+ν decay is divided into several different parts; signal

selection, optimisation, normalisation, fitting and limit setting. Throughout this doc-

ument, charge conjugates of the decays are assumed unless stated otherwise. Results

presented are based on the analysis of the full 3 fb−1 Run I dataset as well ≈ 1.7 fb−1

Run II data from 2016. Data from 2015 is not used due to the very high pT threshold for

the muon triggers used during that year, resulting in a very low signal efficiency. Addi-

tionally the search will be conducted in a particular minq =
√

min(q2(µ+1 ,µ
−), q2(µ−,µ+2 ))
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region, described in section 5.7.

To perform the search for B+→ µ+µ−µ+ν, a specific preselection was applied to form

potential signal candidates as described in section 5.5. A simulation sample that mimics

the decay of the B+→ µ+µ−µ+ν was created, as mentioned in section 2.11. This simula-

tion together with the background proxies discussed in chapter 6 are used to further

develop a discriminating selection that would maximise the separation between signal

and background. Most of the rest of this chapter is dedicated to this discriminating

selection. For more details about the signal simulation samples see section 5.4.

After the selection, the B+→ µ+µ−µ+ν decays are normalised to the B+→ (J/ψ →
µ+µ−)K+ decays, where the selection for the normalisation channel, detailed in sec-

tion 5.9, is kept as similar as possible to that of the signal channel to minimize the

amount of systematics on the resulting relative efficiencies between these two channels.

The relative efficencies are computed in section 7.1. The fit to B+→ (J/ψ→ µ+µ−)K+ data

is described in subsection 7.3.2. The relative efficiencies, results of the normalisation

channel fit and the branching fraction of B+→ (J/ψ→ µ+µ−)K+ are used to parametrise

the expected signal yield, as described in subsection 7.3.3.

Throughout the analysis there was a blinding procedure put in place for this search

in order not to bias the result. The corrected mass of the B± (MBcorr
), detailed in Equa-

tion 5.1, is the fit variable for this search. The signal region 4500MeV/c2 < MBcorr
<

5500MeV/c2 was blinded until the full strategy and sensitivity was evaluated. The

signal dataset corresponding to this selection is known as blinded signal dataset. After

unblinding, data with the full mass spectrum was obtained and is known as full signal

dataset.

In subsection 7.3.4, two fitting strategies for the signal data are described. One is

more sensitive than the other, where the fitting strategy that provides the best sensitivity

makes use of simultaneous fits to two bins of resolution, increasing signal separation

from background. More information about this split can be found in section 5.10.

Both fitting strategies were applied on blinded signal datasets in order to compute

the expected exclusion limit on the branching fraction, shown in subsection 7.3.7. In
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both cases, the branching fraction of B+→ µ+µ−µ+ν decay, the quantity of interest, is

directly fitted for. Systematic uncertainties that affect this measurement are presented

in subsection 7.3.5.

Upon unblinding, no significant signal was observed and a stringent limit B(B+→
µ+µ−µ+ν) < 1.4 × 10−8 at 95% confidence level was set using the CLs method with a

simultaneous fit. All information about the result as well as the implication can be

found in chapter 8.

5.2 Topology of the B+
→ µ+µ−µ+ν Decay at LHCb

Upon hadronisation from a bb̄ pair, a B± particle will travel around a centimetre in the

laboratory frame of reference before it decays. This allows reconstruction of a primary

vertex PV and its decay vertex SV. By joining these vertices, the direction as well as

flight distance FD, can be established. In order to infer information about the kinematic

properties of the B± meson, the decay products are studied. All three muons are used

to reconstruct the visible four-momentum. By conservation of momentum, the neutrino

is assigned all missing momentum transverse to the direction of the flight of the B±

meson. A schematic diagram of the decay topology can be seen in Figure 5.1.

Combining all information allows for reconstruction of the corrected mass that plays

a similar role to invariant mass in fully reconstructed decays. It is defined as

Mcorr =

√

M2 + |p2T |+ |pT |, (5.1)

where theM2 is the invariant visible mass squared and p2T is the missing momentum

squared transverse to the direction of the B+ meson flight. It is defined in Equation 5.2.

The corrected mass of the B± meson will be denoted asMBcorr
. Mcorr is equal to the true

mass if the missing part of the decay has zero mass and has no momentum along the B±

flight direction. Otherwise,Mcorr is below the B± mass.

Mcorr can be thought of as the minimal correction to the visible mass to account for

the missing neutrino information. The resolution on the corrected mass (the uncertainty

107



CHAPTER 5. LOOKING FOR B+
→ µ+µ−µ+ν DECAYS AT LHCB

PV
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pT

µ+µ−µ+

ν

µ+

µ−

µ+

B+

Figure 5.1: Schematic view of the B+→ µ+µ−µ+ν decay in 2D. All charged particle

tracks (in solid-blue) are combined into a four-vector representing the visible part of the

decay (dashed-blue). Information about the invisible neutrino (dashed-red) is deduced

from the conservation of momentum with respect to the direction of the flight of the B±

meson.

of this quantity) hence becomes a critical quantity that needs to be understood. As the

method of reconstruction of corrected mass relies heavily on the knowledge of the B±

meson flight direction, the resolution of PV position and SV vertex is crucial. Let ~xPV =

{xPV , yPV , zPV }, ~xSV = {xSV , ySV , zSV } be PV and SV vertex position and ~p = {px,py ,pz}
be the visible trimuon momentum. Then the missing transverse momentum to the

direction of the flight pT (momentum of the neutrino) as shown in [67] is

p2T =
∣
∣
∣
∣~p − (~xSV − ~xPV )

~p · (~xSV − ~xPV )
|(~xSV − ~xPV )|2

∣
∣
∣
∣

2
. (5.2)

In general, in order to propagate the error on f (x,y,z), where x,y,z are independent

variables, the variance of f (x,y,z) is given as

〈f 2 − 〈f 〉2〉 = 〈f (x + δx,y + δy,z + δz)2 − f (〈x〉,〈y〉,〈z〉)2〉. (5.3)

Using a first order Taylor expansion of variance and rewriting it into matrix form gives
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


(5.4)

In this formalism f is the corrected mass and x,y,z are variables on which the corrected

mass depends. Using Equation 5.1, these independent variables are visible mass four-

vector, p3µ = {E,px,py ,pz}, and missing pT (defined in Equation 5.2), which in turn

depends on ~p, ~xPV and ~xSV .

With x = ~xPV , y = ~xSV , z = p3µ and COV being the covariance matrix, the error

(square root of variance) on the corrected mass, δcorr is

δcorr =
√

〈f 2 − 〈f 〉2〉 =
√

∇TxPVCOVxPV∇xPV +∇TxSVCOVxSV∇xSV +∇Tp3µCOVp3µ∇p3µ . (5.5)

It was shown in [67] that δcorr is mostly dominated by the vertex position terms ~xPV

and ~xSV .

5.3 Sources of Backgrounds

The largest background that looks similar to signal comes from cascade decays, where the

semileptonic b→ c→ s or b̄→ c̄→ s̄ transitions occur. A typical example of this type

of background in hadronic terms is B+→ (D̄0→ (K+µ−ν) µ+ν), where the K+ meson

is subsequently misidentified as a muon. Because the K+ meson is misidentified as a

muon, this type of background is denoted as misID background.

All background sources that contain at least one misidentified particle are cate-

gorized as misID. If the sign of the misidentified particle agrees with the sign of the

mother B±, it belongs to the same sign misID background (SS misID) background. In the

event where a particle with the opposite sign to the mother B± meson is misidentified,

this background will be referred to as (OS misID) background. OS misID background is

expected to have a smaller rate as the misidentified particle would have to proceed via

decays with additional particles.
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As the hadronisation of a bb̄ pair leads to the creation of two b hadrons, each with

their own decay chain, it is possible to mix up the decay products of the two to create

a single fake signal candidate. This type of background is known as combinatorial

background.

The presence of a neutrino in a final state introduces uncertainty regarding the

information of the fourth decay product. If some of the tracks of the decays are

not reconstructed, either because they are neutral, or they are charged but with too

low momentum to be found by the tracking algorithm, it means that the missing

information may be attributed to the neutrino. Missing tracks will hence create partially

reconstructed background. Some of the most dangerous are B+→Dµ+ν type partially

reconstructed backgrounds, where D0→ K−π+µ+µ−.

Decays that proceed via hadronic resonances such as B+ → ρ/ωµ+ν, followed by

ρ/ω→ µ+µ− are part of the signal as mentioned in section 2.10 and thus not a back-

ground.

Detailed information concerning these types of backgrounds are discussed in chap-

ter 6.

5.4 Signal Simulation Samples

For signal simulation three different decay models are used for different purposes as

summarized in Table 5.1. The physics rationale behind these models was discussed

in section 2.11.

The INSP model is used as the default model for mass fit shapes and efficiency

calculations. PHSP decay model is used for alternative efficiency calculations. Finally

the NIKI model is used for validation purposes.
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Channel Year Pythia EVTGEN Size Stage

Simulation used for fitting mass shapes

B+→ µ+µ−µ+ν 2012 Pythia 6.4 [56] PHSP 0.5M generator-level+detector

B+→ µ+µ−µ+ν 2012 Pythia 8.1 [40] PHSP 0.5M generator-level+detector

B+→ µ+µ−µ+ν 2012 Pythia 6.4 [56] INSP 0.5M generator-level+detector

B+→ µ+µ−µ+ν 2012 Pythia 8.1 [40] INSP 0.5M generator-level+detector

B+→ µ+µ−µ+ν 2016 Pythia 8.1 [40] INSP 1.0M generator-level+detector

Simulation used for evaluating generator-level efficiencies

B+→ µ+µ−µ+ν 2012 Pythia 6.4 [56] PHSP 25000 generator-level

B+→ µ+µ−µ+ν 2012 Pythia 6.4 [56] INSP 25000 generator-level

B+→ µ+µ−µ+ν 2012 Pythia 8.1 [40] INSP 25000 generator-level

Simulation used for cross-checking of minq selection

B+→ µ+µ−µ+ν 2012 Pythia 6.4 [56] NIKI 25000 generator-level

Table 5.1: Summary of signal simulation samples used in this analysis with different

decay models. In all cases, the daughters of the B± meson are required to be within the

LHCb acceptance. All of these samples are a mixture under the two magnetic polarity

conditions.

5.5 Preselection

In order to fit within the LHCb computing model, an initial set of selection criteria is

applied during the data processing known as stripping. Each of the criteria are discussed

below and a summary can be found in Table 5.2.

Firstly, all three muon tracks are required to have a significant IP with respect to

the primary vertex. Minimum Impact Parameter χ2, min IPχ2, gives the minimum χ2

distance of a particle’s trajectory to any primary vertex. Hence requiring min IPχ2> 9

for muons is consistent with the hypothesis that the muon is 3σ away from any primary
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vertex and hence can be well differentiated. In addition, the change in the χ2 if the

PV and SV vertices are fitted separately as opposed to a common vertex fit, FD χ2,

suppresses prompt backgrounds.

Each muon track is required to have good track χ2/ndof, as well as low Pghost . This

removes spurious tracks as well as tracks with low quality.

Each muon candidate is also identified with initial basic PID variables. Firstly muons

are chosen due to their signature in the muon stations with the binary isMuon decision.

Secondly, muon candidate is chosen such that it is more likely that the candidate is a

muon than a pion or kaon using global DLLmu variables defined in subsection 3.7.1.

This reduces the background from misidentified muons.

In order to only select events which are compatible with the three muons originating

from the same point in space, vertex χ2/ndof, the χ2 of the trimuon vertex per degree

of freedom fit is required to be small. This decreases the contamination from cascade

decays where the particle with the c quark content from b→ c→ s, such as D, would

have non-negligible lifetime leading to higher vertex χ2/ndof.

A requirement that B+ direction points in the same direction as the line from PV

to SV is done by making sure that cos(θB), angle between the two vectors, is close to

unity. This translates into a well reconstructed event, which minimizes combinatorial

background, where a random track makes this pointing worse. Putting bounds on

the mass window, whether it is visible or corrected mass (defined in Equation 5.1), also

suppresses combinatorial events.
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Candidate Stripping Selection

muon min IPχ2 > 9
















trackmuon track χ2/ndof< 3

muon DLLmu > 0
















PIDmuon DLLmu−DLLK > 0

muon isMuon==true

combination cos(θB) > 0.999

combination pT > 2000 MeV

combination FD χ2 > 50

combination vertex χ2/ndof < 4

combination 0 MeV/c2 < MB < 7500 MeV/c2

combination 2500 MeV/c2 < MBcorr
< 10000 MeV/c2

Table 5.2: Selection of events based on the muon and the B+ candidate requirements.

Stripping selection for the signal decay B+→ µ+µ−µ+νµ is the same for both Run I and

2016 data.

5.6 Trigger Selection

In order to obtain triggered data, B+ → µ+µ−µ+νµ candidates are required to pass a

certain set of trigger decisions at L0, HLT1 and HLT2 as summarized in Table 5.3. It

can be noted that the decision is applied at the mother B± level. In particular, a positive

Bplus_L0MuonDecision_TOS decision means that one of the muons from the B± in an

event triggered L0Muon.

As discussed in section 3.8 L0MuonDecision decides on whether an event is accepted

depending on the pT of a muon and the number of hits in the SPD. Run I can be split

into 2011 and 2012 conditions where, in 2011 the most used thresholds for positive

decisions are 1.48 GeV/c [68] and 1.76 GeV/c [53]. Run I SPD rate only accepts events
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Trigger Selection

Bplus_L0MuonDecision_TOS

Bplus_Hlt1TrackMuonDecision_TOS

Bplus_Hlt2TopoMu2BodyBBDTDecision_TOS






















OR
Bplus_Hlt2TopoMu3BodyBBDTDecision_TOS

Bplus_Hlt2DiMuonDetachedDecision_TOS

Bplus_Hlt2DiMuonDetachedHeavyDecision_TOS

Table 5.3: Trigger selection applied on both signal and normalisation samples.

below 600 hits. In 2016, the trigger thresholds varied more but the most representative

acceptance for muon pT was above 1.85 GeV/c with SPD multiplicity below 450 hits.

Hlt1TrackMuonDecision accepts events where at least one identified muon has to

pass thresholds on IPχ2, pT and p. This favours muons arising from b- and c-hadron

decays. There has to be at least one muon (isMuon==true) with certain kinematic

thresholds on p and pT . For example, in 2011 the identified muons that triggered a

positive decision had to have p above 8 GeV/c [68].

At HLT2 level, the candidates are required to pass through at least one of

the four following decisions. The Hlt2TopoMu[2,3]BodyBBDTDecision belongs

to the topological triggers category with an extra requirement of a particle be-

ing identified by the isMuon decision. The Hlt2DiMuonDetachedDecision and

Hlt2DiMuonDetachedHeavyDecision reconstruct decays with two muons in the fi-

nal state. The two lines differ in that they are optimised for heavy and light

dimuon pairs respectively. For example, Hlt2DiMuonDetachedDecision accepts

events with a dimuon pT above 1.5 GeV/c and with mass above 1 GeV/c2, whereas

Hlt2DiMuonDetachedHeavyDecision accepts dimuon pairs with any pT but above 2.95

GeV/c2 in mass. The reason why these lines are called detached are because individual

muons are required to have high IPχ2.
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5.7 q2 Selection

In the B+ → µ+µ−µ+ν decay, two pairs of opposite sign muons can be formed,

namely q2(µ1,µ2) and q2(µ2,µ3) where µ1 = µ+,µ2 = µ−,µ3 = µ+. From the two in-

variant mass squared pairs one can define, minq2 = min[q2(µ1,µ2), q
2(µ2,µ3)] and

maxq2 = max[q2(µ1,µ2), q
2(µ2,µ3)]. This measurement is made in a region where

minq =
√

minq2 < 980 MeV/c2 for few reasons: most of the contributions to the ampli-

tude of the decay are below this value, combinatorial background is greatly reduced if

minq < 1GeV/c2, see Figure 5.2. The choice of 980MeV/c2 was made in order to avoid

possible backgrounds from φ→ µ+µ−.

In order to remove backgrounds that proceed via resonant J/ψ andΨ(2S) contribu-

tions, vetoes in invariant mass are placed on the corresponding regions, see Table 5.4

for more details.
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Figure 5.2: (a) Signal simulation sample distribution inminq andmaxq variables. Values

below 980 MeV/c2 (red line) are accepted. (b) Combinatorial data sample after stripping

selection with no other cuts shows clearly the J/ψ (green) andΨ(2S) (blue) resonances

which are vetoed and the measurement region (red).
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Veto q [MeV/c2 ]

J/ψ !(2946.0 < q < 3176.0)

Ψ(2S) !(3586.0 < q < 3766.0)

Table 5.4: Vetoes for J/ψ and Ψ(2S) resonances. As minq < 980MeV/c2, these vetoes

apply to the maxq combination only.

5.8 Further Selection

Further selection is performed with the executive summary in Table 5.5. This selection

aims to further suppress backgrounds with different treatment in Run I and 2016 due to

the different definitions of variables, as shown in subsection 4.1.2. The sections below

comment on the more exact features of this further selection.

5.8.1 General Features of Multivariate Selections

All the multivariate classifiers in the search for the B+→ µ+µ−µ+ν decay use TMVA’s [69]

implementation of Boosted Decision Tree (BDT) with the AdaBoost algorithm. The

multivariate selections used in the search for the B+→ µ+µ−µ+ν decay are the isolation

BDT detailed in subsection 5.8.2, the combinatorial BDT detailed in subsection 5.8.3

and the misid BDT detailed in subsection 5.8.4.

The background characterisation study of inclusive bb̄ simulation shows that there

are two dominant backgrounds, the combinatorial background and misID background.

In order to reduce these backgrounds, two consecutive multivariate classifiers are

used. The first multivariate classifier is developed to remove efficiently combinatorial

background and a second multivariate classifier will help to control the contamination

frommisID decays. One of the key variables that provides the greatest separation power

in these two multivariate classifiers is another BDT output, the isolation BDT.

Cross-validation is one of the useful methods used within MVAs which improves

116



CHAPTER 5. LOOKING FOR B+
→ µ+µ−µ+ν DECAYS AT LHCB

Idea Object Run I Selection 2016 Selection

Clean Muon - IsMuonTight==1.0

Clone and ghost Muon Nshared==0 Nshared<2

in subsection 4.1.2

Fit Region B 4000 <MBcorr
< 7000MeV/c2 Same as Run I

in subsection 5.8.5

Bkg Removal event Combinatorial BDT Combinatorial BDT

selection selection

in subsection 5.8.3

Bkg Removal event Misid BDT Misid BDT

selection selection

in subsection 5.8.4

Optimize FOM Muon Probnnmu>0.35 Same as Run I

in subsection 5.8.6

Table 5.5: Offline selection performed after stripping. Differences can be seen between

Run I and 2016 datasets. FOM is defined int Equation 5.6.

the chance of good performance of the predictive model on an independent dataset. In

this way, biases due to a naive sample split into training and testing subsample, could

be overcome. In general, it helps also with overfitting when the model of the classifier

is sensitive to fluctuations. The cross-validation method used in both the combinatorial

BDT and misid BDT is known as the k-folding technique [70].

In particular, both background and signal samples are randomly split into k similar

size subsamples. Then the BDT is trained on the k − 1 signal/background subsamples,

which are subsequently tested on the remaining last subsample. This process is repeated

k-times for all possible combinations, hence the name of the cross-validation. In the last

step, the results for all the samples are produced by assigning the BDT values obtained
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from the tested k subsamples. In the combinatorial and misid BDT, there are 10 folds

used. Both of the BDT classifiers use the same set of variables listed in Table 5.6.

B+p min IPχ2 of all three muons cos(θB)

B+ pT pT of all three muons B+ FD χ2

B+ vertex χ2/ndof min IPχ2 of all three muons Isolation variable

B+ lifetime ( subsection 5.8.2)

Table 5.6: Variables used in both the combinatorial and misID BDTs in Run I and 2016

BDTs.

5.8.2 The Isolation Boosted Decision Tree

PV

SV

µ+µ−µ+

µ+

µ−

µ+

B+

D0

(a)
PV

SV

µ+µ−µ+

µ+µ−

µ+

B+

(b)

Figure 5.3: An example of decay topology for (a) background and (b) signal.

The vast majority of the backgrounds that share the possibility of contaminating B+→
µ+µ−µ+ν signal have one property in common: they have more tracks associated with

the decay. It is hence possible to use multivariate analysis (MVA) techniques to establish

how isolated the signal trimuon vertex is as compared to a background trimuon vertex

as seen in Figure 5.3.

The isolation quality of the vertex is determined with a BDT. This regression al-

gorithm classifies the event to be more signal-like or background-like according to

different track and vertex properties, the isolation variables. The isolation variables

include track pT , the opening angle between a track’s momentum and momentum of
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the combined visible system, the track χ2/ndof, the ghost probability of the track Pghost ,

IPχ2 of the track with respect to the SV and PV.

The signal proxy for the isolation BDT was trained and tested with a Λ0
b → pµ−ν̄

simulation sample, where all tracks apart from the pµ− signal tracks are taken into

account. The background sample consists of tracks from a Λc vertex from Λ0
b → (Λc→

pX)µ−ν̄ decays, disregarding the pµ− tracks (i.e the X). The isolation BDT is based on

the weights obtained from these samples, which are computed in [71]. These weights

are applied to the B+→ µ+µ−µ+ν signal and background proxies, as they share similar

topology with respect to isolation properties.

The Isolation BDT response peaks between -1 and 0 for isolated tracks (signal-like)

and between 0 and 1 for non-isolated tracks (background-like). An event is considered

signal-like if all other tracks apart from the pµ− tracks in the event are isolated from the

pµ− vertex. The output of this BDT for both types is shown in Figure 5.4. Backgrounds

shown include combinatorial background and misID type background. In the analysis,

there is no explicit selection on this variable, but it is used as one of the input variables

for the combinatorial and misid BDTs.
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Figure 5.4: Isolation score for signal and backgrounds using (a) Run I (b) 2016 samples.

If isolation fails to find any other track than pµ− tracks in the event, by default it gives

the value -2.
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5.8.3 The Combinatorial Boosted Decision Tree

One of the most prominent backgrounds is the combinatorial background and to reduce

its contamination while keeping the signal efficiency as high as possible, a combinatorial

BDT is trained. To obtain the combinatorial BDT discriminant, a simulated sample for

signal and the upper mass sideband data sample (MBcorr
> 5.5 GeV/c2) for background

are used. These samples passed through the preselection, trigger, q2 selection stages.

The input variables mentioned in Table 5.6 are used.

As the branching fraction and hence the number of signal events is unknown, the

metric known as the Punzi figure of merit (FOM) [72], is used to find an optimal working

point. It is defined as

FOM =
εS√

B+n/2
, (5.6)

where εS is the signal efficiency of the selection, B refers to the number of background

candidates and n is the significance that the analysis aims to minimally achieve. In

this case, the significance 3σ is used, but it was checked that there is no change to the

optimal working point if it is varied to 5σ , as seen in Figure 5.5.

The FOM is computed in the blinded mass region, 4.5GeV/c2 < MBcorr
< 5.5 GeV/c2

as this region is most sensitive to the signal. From Equation 5.6 it is necessary to

compute the signal efficiency and number of background candidates. To estimate

the number of background candidates in the blinded region, the final fit strategy

described in subsection 7.3.4 is used to fit the data. This yields around 10000 and 9000

combinatorial candidates in Run I and 2016. The yields are extracted from blinded

fits to data by integrating the combinatorial part of the total background PDF in the

blinded region.

In order to accommodate different selections between Run I and 2016, separate

BDTs are trained for these periods. Combined training of all of the datasets was also

performed but it does not lead to any improvement in background rejection. Results

of the comparison between separate and combined training can be seen in Figure 5.6.
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Figure 5.5: Punzi FOM shows the optimum working point at 0.47 for Run I and 0.54

for 2016 as seen in both figures with a violet line for n = 3 and n = 5. This FOM is for

Combinatorial BDTs.

Different intrinsic properties (such as the number of trees used) and variables (such as

two-particle vertices) have been explored but no improvement in discrimination of the

BDT was achieved.

In both Combinatorial BDTs, the most discriminating variables are the isolation

variable (described in subsection 5.8.2), B+ vertex χ2/ndof, min IPχ2 of the muons and

pT of the B+ meson. A Combinatorial muon comes more from somewhere else in the

event and hence the min IPχ2 is worse as compared to the signal, making the B+ vertex

χ2/ndof worse. Moreover, as this combinatorial muon comes from somewhere else,

other tracks may accompany it making the isolation variable a good discriminant. The

combinatorial muon also tends to have higher momentum and hence pT of the B+ is

higher. Distributions for these different variables can be seen in Figure 5.7.

It is also important that there is no skewing of the mass distribution for the back-

ground as this could lead later to modelling issues with these different background

components. This was checked by looking at the behaviour of the BDT output in

different bins of MBcorr
. If the BDT value stays flat then the background will not be
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Figure 5.6: Comparison of separate and combined training samples and performance

on different datasets. Two vertical violet lines represent optimal points in the signal

efficiency, for Run I (0.47) and for 2016 (0.34) where the working point of the two

BDTs are chosen. Separate training provides greater rejection power in 2016. In Run I

training on both datasets provides comparable performance for a given optimal signal

efficiency. Taking into the account the fact that selection slightly differs for 2016, it is

advantageous to keep the BDTs separate.

skewed, which is the case for 2016 as seen in Figure 5.8. This is also the case for Run I.

5.8.4 The Misid Boosted Decision Tree

In the same way, the classifier that distinguishes between signal and misID background

was developed. The misID sample, that is used for training and testing, was obtained

the same way as the signal but with one of the muons not identified as the muon. Rather,

this third particle will be identified either as a proton, pion or kaon. More about the

parametrisation of this background can be found in section 6.2. These samples went

through all the previous selection including the application of Combinatorial BDTs.

As before, Run I and 2016 are trained and used separately on the relevant datasets, as

shown in Figure 5.9.
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Figure 5.7: The variables with the most discriminative power for both Run I and 2016

Combinatorial BDTs. In these plots µ1 is one of the muons with a charge that agrees

with the mother B, so if the mother is B+ then µ1 is one of the positively charged muons

(µ+).

The optimisation metric for this classifier was again the Punzi FOM in a blinded

region. The Punzi FOM for Run I and 2016 as a function of BDT cut can be seen

in Figure 5.10 for both significances of n = {3,5}.
To obtain the number of background events, the default fitting strategy for misID

is used in section 7.3.3, where the total yield need to be multiplied by 100 in order

to counter balance the prescale used at the pre-selection stage. To obtain the yield,
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Figure 5.8: Study of linear correlation between BDT output andMBcorr
and BDT value

for each bin of MBcorr
in 2016 shows that the Combinatorial BDT is relatively flat as

a functionMBcorr
. The right plot shows the mean and uncertainty on the mean of the

2016 Combinatorial BDT in bins of theMBcorr
. The full correlation matrix with all other

variables is listed in Figure B.1.

a binned χ2 fit is performed. The binned χ2 fits to the misID templates are shown

in Figure 5.11 yielding 2400 unparametrized misID candidates in Run I polluting the

signal window in the prescaled sample, and 2200 in 2016.

The misID background can proceed also through combination with a random muon

and hence by applying the combinatorial BDTs on the misID samples, this "combinato-

rial" component in the misID samples should be reduced and misID samples that are

left should consist of true cascade decays. This can be seen in Figure 5.12.

The most powerful variables that distinguish the signal from misID background

are the kinematic properties of the misidentified muon, namely pT , p and min IPχ2.

Misidentified muons tend to be softer than for the signal as they come from cascades

via D0 decays and its excited states. The min IPχ2 distribution is also different as

the misidentified muon can proceed from D0 decays, whereas the signal muon comes

directly from the B meson. The kinematic distributions are also different for the two

real muons between signal and misID background samples. The real muon that has

124



CHAPTER 5. LOOKING FOR B+
→ µ+µ−µ+ν DECAYS AT LHCB

Signal Efficiency
0 0.2 0.4 0.6 0.8 1

B
ac

k
g
ro

u
n
d
 R

ej
ec

ti
o
n

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Run I (trained on Run I)

Run I (trained on Run I + 2016)

2016 (trained on 2016)

2016 (trained on Run I + 2016)

Figure 5.9: Comparison of separate and combined training samples and performance

on different datasets. The optimal working point is chosen, see Figure 5.10 and its

corresponding signal efficiency in Run I is 0.44 and for 2016 0.37 denoted with a violet

line. As the performance is better for 2016 when the training is performed separately,

the training is kept separate also to be consistent with the previous methodology.

the same charge as the Bmeson tends to be softer for the signal case whereas the real

muon that has opposite charge proceeding via the D meson will be harder, as seen

in Figure 5.13.

5.8.5 Fitting Region Selection

Because the signal mass distribution is expected to be in a more narrow window around

the B+ peak in corrected mass and the exponential description of the combinatorial

background is not correct below 4000 MeV/c2, as will be shown in section 6.1, the

region in which the measurement will be made is selected as 4000 MeV/c2 < MBcorr
<

7000 MeV/c2.
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Figure 5.10: Punzi FOM have the optimum working point at 0.21 for Run I and 0.27 for

2016 as seen in both figures with a violet line for n = 3 and n = 5. These FOM values are

for misid BDTs.
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Figure 5.11: (a) Run I (b) 2016 binned χ2 fit to misID sample yielding estimates for the

number of background events.

5.8.6 Further PID Selection

After classifiers to reduce combinatorial andmisID backgrounds are trained and applied

and the fitting region is defined, further PID selection is performed. This can be done

as the preselection had relatively loose DLL requirements and hence it is possible to
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Figure 5.12: (a) The efficiency of applying 2016 combinatorial BDT at the optimal

working point on the 2016 SS misID sample. It can be seen in (b) that the combinatorial

component of the misID sample has been significantly reduced, where the red curve is

the distribution after applying the cut.

improve the performance by using cuts on additional PID variables. In the optimisation

procedure, different hypotheses were tested, such as cuts on Probnnmu, Probnnpi, and

ProbnnK variables and their combinations. The optimisation was performed in such a

way as to optimize the Punzi FOM with n = 3 in a blinded signal region, by performing

the full blinded data fit (more information will be given in subsection 7.3.6), but with

fits to Run I and 2016 data separately.

For each PID hypothesis, the Punzi FOM was calculated. In both cases, in Run I and

2016 Probnnmu > 0.35 yielded the highest Punzi FOM. This is the final step in selection.

The overall selection results in 1198 candidates when the signal region is blinded.

There are no events with multiple candidates. The total efficiency for selecting the

signal is about 0.1%. The blinded data can be seen in Figure 5.14.
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Figure 5.13: The variables with the most discriminative power for both misid Run I

and 2016 BDTs. In these plots, for signal samples µ1 and µ3 are the muons with the

charge that agrees with the mother B, so if the mother is B+ then µ1 and µ3 are the

positively charged muons (µ+), and µ2 is negatively charged muon (µ−). For misID data

samples, µ1 is a true muon with the charge that agrees with the charge of the mother B,

µ2 is a true muon with the charge that does not agree with the charge of the mother B

and finally µ3 is the misidentified particle whose charge agrees with the charge of the

mother B.
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Figure 5.14: The blinded dataset after full selection.
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5.9 Normalisation Channel

The normalisation channel used in this analysis is B+→ (J/ψ→ µ+µ−)K+ as it is a clean,

well understood, and well-populated channel that is similar to the signal. This means

that many systematic uncertainties will cancel. Normalising the signal decay to this

decay also means that absolute efficiencies, luminosity, the b-quark cross-section and

fragmentation fractions will cancel. With the same number of tracks, it will also give a

reduced uncertainty from the tracking efficiency. There are, however, a few differences

in the selection that need to be underlined.

Firstly, the preselection stream from which this sample is taken has different re-

quirements as seen in Table 5.7. As compared to the preselection of the signal channel

shown in Table 5.2, this preselection is less tight. To unify and impose the same kind

of preselection so that the tracks chosen are of a good quality and away from PV, the

preselection for the signal channel (listed in Table 5.2) is applied on the top of the

original preselection.

Secondly, all the offline signal selection cuts listed in Table 5.5 are also applied apart

from a few exceptions. As this decay proceeds via the J/ψ resonance and hence the q2

veto for J/ψ and Ψ(2S), listed in Table 5.4, is not applied but rather reversed as seen

in Table 5.7. As the third particle is a kaon rather than a muon, there is no explicit

choice of minq region.

And finally, the kaon candidates are required to have PID criteria consistent with

being kaons. In addition to the preselection already imposing DLLK > 0, DLLp −
DLLK < 5 is required to make a distinction with protons. To assure that the kaon is not

confused with the muon, IsMuon==0.0 is imposed. However, only kaon tracks within

the geometrical muon acceptance, InMuonAcc==1.0, are considered.
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Candidate Stripping Selection

muon pT > 500 MeV

muon DLLmu> 0
}

PID

kaon PT > 500 MeV

kaon track χ2/ndof< 5

kaon DLLK > 0
}

PID

dimuon vertex χ2/ndof < 16

dimuon |M(µ+,µ−) − MPDG(J/ψ)| < 80 MeV/c2

combination vertex χ2/ndof < 10

combination 5150 MeV/c2 < MB < 5450 MeV/c2

combination B lifetime > 0.2 ps

Table 5.7: Original preselection of events for normalisation channel for B+→ (J/ψ→
µ+µ−)K+ for Run I and 2016.

5.10 Fractional Corrected Mass Error (FCME) Window

Split

In order to increase sensitivity, but not to decrease statistics as all the previous selection

leads to a low-statistics regime, it was decided that the fitting procedure for the final fit

will be in two bins of the estimated fractional corrected mass error (FCME), defined as

σ{lowFCME,highFCME} =
δcorr
MBcorr

, (5.7)

where δcorr is the estimate of the corrected mass error. Because the corrected mass

error has a clear dependence on resolution (see Figure 5.15), this split will divide the

data into two bins of resolution increasing the sensitivity for observation as shown

in Figure 5.16.
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Figure 5.15: (a) The resolution of 2012 signal simulation in bins of the estimated

corrected mass error δcorr. (b) The resolution of 2016 signal simulation in bins of

corrected mass error δcorr.

The split boundary was chosen in such a way as to keep ∼ 50% of the signal in

σlowFCME and ∼ 50% of the signal in high σhighFCME. Numerically this corresponds to

σ{lowFCME,highFCME} =















σlowFCME if
δcorr
MBcorr

< 0.0225,

σhighFCME if
δcorr
MBcorr

> 0.0225.
(5.8)
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Figure 5.16: Templates for signal and misidentified background shapes in high and

low fractional corrected mass uncertainty. It can be seen how a low uncertainty on

the corrected mass corresponds to data with better mass resolution. The shape of the

misidentification template is obtained from a control sample while the signal template

is obtained from simulation. These templates are constructed after the full selection

was applied.

However, in order to look at the consistency of this two bin strategy fits will also be

performed with no binning in the fractional corrected mass error. These are denoted as

σNOFCME.
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Chapter 6

Background Studies

In this chapter a summary of the backgrounds is provided with the combinatorial background

described in section 6.1, misidentified background in section 6.2, different classes of par-

tially reconstructed background in section 6.3 and finally rare and resonant backgrounds

in section 6.4.

6.1 Combinatorial Background

The combinatorial background is when a random combination of tracks from different b-

decay chains fakes the signal. The usual method at LHCb of estimating the amount and

the shape of this background include extrapolation from the upper mass data sideband

to the signal region. In this case, the upper mass sideband is defined as MBcorr
>

5500MeV/c2 and the signal region is defined to be 4500MeV/c2 <MBcorr
< 5500MeV/c2.

This background can be described by an exponential function in a certain range, where

this range is the primary discussion of this section. Since the tight selection results in

small data samples, the extrapolation from the upper mass sideband introduces a large

uncertainty on the exponential constant and cannot be used to estimate the correct

shape and yield of this background. What can be done, however, is to assume the

exponential shape for the combinatorial component and let the exponential constant be

a floating parameter in the data fit. This method for estimation of the combinatorial
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component will be mentioned in the signal data mass fits, in subsection 7.3.3.

Apart from the nominal upper mass data sideband sample, two other samples are

analysed as proxies for this type of background. Despite the fact that these samples are

also scarcely populated, they are studied altogether to determine in which mass regions

the combinatorial background can be considered exponential. Firstly, the same sign

data sample was studied (the same sample as in section 4.2). This sample consists of

µ+µ+µ+ν events passing all selections up to the MVA selection to be of sufficient size.

Secondly an inclusive bb̄ simulation sample consisting of events where two muons with

p > 3 GeV/c are required to be present alongside a third muon. On top, these events

have to satisfy all the stripping criteria outlined in Table 5.2.

As seen in Figure 6.1(b)(c), the exponential shape is only valid for MBcorr
>

4000MeV/c2. Hence the choice of fitting region 4000MeV/c2 <MBcorr
< 7000MeV/c2.
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Figure 6.1: (a) Fit to upper mass side band just before application of MVA selection. (b)

Fit to µ+µ+µ+ν same sign sample. (c) Fit to bb̄ sample with exponential function. In (b)

and (c), an exponential description is not correct below 4000MeV/c2.
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6.2 MisID Type Background

The misID background is one of the most prominent backgrounds that is expected to

be present. This type of background proceeds mostly via cascade decays, where B+→
(D̄0→ hXµ−ν)µ+ν and then h ∈ [K+,π+] are misidentified as muons. The contributions

from decays where two muons are correctly identified as muons and a third track is

consistent with a proton passing all the selection criteria is also considered, however,

this contribution is very limited.

As discussed in section 5.3 there are two possibilities for the charge for the misiden-

tified background. In one case the sign of the misidentified particle agrees with the

sign of the mother B, SS misID background. The opposite case, denoted as OS misID

decays, arises less often as it requires decays with more additional particles. These two

types of background are studied using the data-driven method described below. Finally,

also double misID background was studied employing the same data-driven methods.

The contribution from these events with two hadrons misidentified as muons proved

insignificant.

To determine the amount and the shape of the misID background, a data sample with

the same selection as for the signal sample is obtained with one marginal difference

- no PID cut on one muon, either positive or negative. As the muon misID rate is

different for pions and kaons [52], the species of the hadron, h must be determined

first. The strategy for this purpose is to isolate the hadron into separate hadron PID

regions, and to determine the cross-feed of one region into the other. For this, an

iterative procedure as shown in Figure 6.2 is applied, ignoring the insignificant proton

cross-feed. This iterative procedure splits the misidentified data sample into PID

regions, where the hadron candidate is consistent with the kaon, pion and proton

hypotheses. For this procedure, probabilities of identifying a given species with a

given PID requirement are taken from dedicated control samples in the PIDCalib

package [62] as discussed in subsection 4.3.1. The PID performance is highly dependant

on the kinematic properties of the misidentified particle and hence the estimation is
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performed in bins of momentum p and pseudorapidity η. At the beginning of the

procedure, the number of misidentified events of a given species is assumed to be

zero, and the cross-feed between regions is calculated assuming that the pion, kaon

and protons regions are pure pions, kaons and protons. The procedure then corrects

the distributions by taking into the account this initial cross-contamination. This

procedure is repeated until the number of total misidentified particles does not change

significantly from one iteration to another.

K → π misid

π → K misid

Repeat until convergence

Total misid :

K → µ

π → µ

First iteration

Kaonlike PID region

Initial distribution

Kaonlike PID region Pionlike PID region

Initial distribution

Pionlike PID region

First iteration

Figure 6.2: Diagram of the iterative procedure to establish contamination from decays

where pions and kaons are misidentified as muons.

Once the cross-feed between the different hadron species has been taken into account,

the final step is to calculate the probability for a specific hadron to pass the stringent

muon PID requirements applied in the analysis. The presence of the two real muons

in the µ+µ−hX background increases the probability to misidentify the hadron as a

muon, mainly due to sharing of hits in the muon stations. Therefore the hadron

misID probability is obtained from a dedicated control sample designed to emulate the

topology of the mis-identified background, B0→ J/ψ(→ µ+µ−)K ∗(→ K+π−), as shown

in subsection 4.3.4.
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This process can be summarized mathematically in the following way:

• The proton-, pion- and kaon-like regions are defined in Table 6.1.

Region PID cuts

Proton-like DLLp > 5, DLLp - DLLK > 5

Kaon-like DLLK > 0, DLLp - DLLK < 5

Pion-like DLLK < 0, DLLp < 5

Table 6.1: Species region definitions.

• ID efficiencies are obtained from PIDCalib in bins of p, η for all three regions.

• MisID efficiencies are obtained from the specific calibration sample with two other

muons in the sample in bins of p, η.

• In order to account for cross-contamination between the kaon and pions species

the following procedure is applied:

– The data in each region is binned to obtain two dimensional N (p,η) distri-

butions. The true kinematic distributions for kaons and pions are given

by

n(p,η)0π/K =
N (p,η)π/K
ǫ(p,η)π/K

. (6.1)

where ǫ(p,η)π/K are efficiencies obtained from PIDCalib tables.

– To correct for the cross-feed between the pion and kaon regions, the following

algorithm which corrects the original distribution is applied:

n(p,η)i+1π =
N (p,η)π −M(p,η)K→πn(p,η)

i
K

ǫ(p,η)π
, (6.2)

n(p,η)i+1K =
N (p,η)K −M(p,η)π→Kn(p,η)

i
π

ǫ(p,η)K
. (6.3)
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Here, n(p,η)iπ n(p,η)
i
K together with the misID binned efficienciesM(p,η)K→π

andM(p,η)π→K are estimating the-cross contamination between two regions.

These K → π and π→ K misID efficiencies are taken from PIDCalib.

– At each iteration, the total number of misID particles of the type π→ µ and

K → µ are given by
∑

p,η

n(p,η)iπM(p,η)π→µ (6.4)

∑

p,η

n(p,η)iKM(p,η)K→µ (6.5)

– This procedure is repeated until the change in total misID between iterations

is less than 0.1%. The typical number of iterations depends on the size of

the sample. For big samples the convergence is achieved after two or three

iterations. For small samples this is achieved after six iterations on average.

– For each event in both the pion-like and the kaon-like sample, wcross−f eed

= probability of a particle being misidentified including the cross-

contamination correction, is calculated as

wπcross−f eed =
n(p,η)

f inal
π ×M(p,η)π→µ

N (p,η)0π
, (6.6)

wKcross−f eed =
n(p,η)

f inal
K ×M(p,η)K→µ

N (p,η)0K
. (6.7)

• The number of misidentified events and the shape are obtained by reweighting

the pion-like and kaon-like datasets by wcross−f eed .

Examples of misID distributions with unweighted, weighted by probability with no

cross-feed correction, and weighted with cross-feed correction can be seen in Figure 6.3

for the SS misID and Figure 6.4 for the OS misID. These are the misID distributions

before misid BDTs are applied, which minimize the contamination of this background

as discussed in subsection 5.8.4.
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Figure 6.3: Examples of the data distributions where the misID procedure is applied

to obtain yields and shapes for Run I. On the left, unweighted misID distributions

(black), weighted with no cross-feed misID distributions (blue) and weighted misID

distributions with cross-feed (red) for (a) kaon SS (c) pion SS . On the right, only

weighted misID distributions for Run I (b) kaon SS (d) pion SS are shown together with

the yield estimates. These shapes are obtained after the combinatorial BDT was applied,

but before the misid BDT was applied. Total yields need to be multiplied by 100 to

counteract the prescale that was applied on this data.

This parametrisation of the misID background is crucial for the final fit model

described in section 7.3.3.
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Figure 6.4: Examples of data distributions where the misID procedure is applied

to obtain yields and shapes for Run I. On the left, unweighted misID distributions

(black), weighted with no cross-feed misID distributions (blue) and weighted misID

distributions with cross-feed (red) for (a) kaon OS (c) pion OS. On the right, only

weighted misID distributions for Run I (b) kaon OS (d) pion 0S are shown together with

the yield estimates. These shapes are obtained after the combinatorial BDT was applied,

but before the misid BDT was applied. Total yields need to be multiplied by 100 to

counteract the prescale that was applied on this data.

6.3 Partially Reconstructed Background

Partially reconstructed background can occur by missing or misidentifying one or more

particle tracks in the decay. The common feature for this type of background is that the
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corrected or reconstructed mass of the B will be lower than in the signal case.

In order to estimate both the shape and the size of the partially reconstructed back-

ground, one of the most dangerous examples is studied: B+ → (D0 → K−π+µ+µ−)µν.

The expected B(B+ → (D0 → K+π−µ+µ−)µ+ν) is obtained by multiplying B(D0 →
K+π−µ+µ−) = (4.17±0.12±0.40)×10−6 [73] and B(B+→Dl+νX) = (9.8±0.7)×10−2 [13]
yielding B(B+→ (D0→ K+π−µ+µ−)µ+ν) ≈ (4.1± 0.5)× 10−7.

The shape of this background is investigated with inclusive simulation samples

containing also higher excited resonances D∗0,D∗02 , and so on. As this sample was

simulated for a different analysis, it has one imperfection: it has two charged pions

rather than muons coming from the D0 decay, which are reconstructed as signal. In this

study the effect of missing particles on the corrected mass shape is investigated hence

these two pions become good proxies for the muons given the muon and pion have very

similar mass. The only problem that could arise is if the selection efficiency was not

constant as a function of the dipion mass,M(π+π−), as this would lead to shaping of

the background, potentially underestimating the contributions from the resonant ω

and ρ region, which are present with the two muons.

For this reason all muon cuts from the selection apart from the PID are also applied

to the pions. Relative efficiency ratios including all the efficiencies after the MVA stage

are obtained, where for signal the total selection efficiency is εtotalB+→µ+µ−µ+ν = (2.63 ±
0.03) × 10−3 and for the partially reconstructed background εtotal

B+→(D0→K+π−µ+µ−)µ+ν =

(6.82± 0.07)× 10−4. Assuming the branching fractions for B(B+→ µ+µ−µ+ν) = 1× 10−8

and for B(B+→ (D0→ K+π−µ+µ−)µ+ν) = (4.1± 0.5)× 10−7, the relative contamination

between signal and partially reconstructed background results in Figure 6.5(a).

To check the fact that there is no dangerous shaping of the background using this

particular proxy simulation sample, the full selection efficiency in bins of dipion mass

is plotted. The flat efficiency shown in Figure 6.5(b) means that this selection does not

have model dependence and hence it is safe to use for shape estimates for the partially

reconstructed backgrounds.
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Figure 6.5: (a) Signal and partially reconstructed background distributions scaled to

their expected ratio after the full MVA selection assuming the following branching

fractions: B(B+→ µ+µ−µ+ν) = 1×10−8 and B(B+→ (D0→ K+π−µ+µ−)µ+ν) = (4.1±0.5)×
10−7. (b) Full selection efficiency as a function of invariant mass of the proxy pions is

constant.

The most powerful part of the selection that eliminates this background is isolation

as partially reconstructed background decays usually have more tracks. In order to

estimate the contamination in the final fit, normalisation with respect to B+→ (J/ψ→
µ+µ−)K+ is used as shown in section 7.3.3.

6.3.1 Partially Reconstructed Backgrounds, where D0
→ η/η ′X , and

η/η ′→ µµγ

In the previous partially reconstructed sample, the background that proceeds via

η/η ′ from a D decay is not considered, as it is not part of the inclusive simulation.

The selection efficiency of such decays is expected to be very similar to the partially

reconstructed sample proxy, because the reconstructed particles are the same.

In this section, the total estimate for the branching fraction of the partially re-
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constructed backgrounds proceeding via η/η ′ from D decays is computed. The full

inclusive rate B(D0→ η/η ′X) is ∼ 10%). However, the most relevant decay chains are

the ones where the mass of the missed particle(s) is small. This is because if only a light

particle is missed, the shape of the corrected mass of partially reconstructed background

comes closest to the signal region. Such decay chains are considered in Table 6.2.

It can be seen that the total cumulative contribution is much smaller then the

one considered with D0→ K+π−µ+µ−, where B(D0→ Kπ+µ+µ−) = (4.17± 0.12(stat)±
0.40(syst))×10−6 [73]. No further consideration hence is necessary for this type of decay.

Process B Contribution to B(D0→ (η/η ′→ µµγ)X)

B(η→ µµγ) (3.10± 0.40)× 10−4 -

B(η ′→ µµγ) (1.08± 0.27)× 10−4 -

B(D0→ η ′π0) (9.10± 1.40)× 10−4 (9.80± 2.90)× 10−8

B(D0→ η ′π+π−) (4.50± 1.70)× 10−4 (4.90± 2.20)× 10−8

B(D0→ 2η) (1.70± 0.02)× 10−3 (5.30± 0.70)× 10−7

B(D0→ 2η) (1.70± 0.02)× 10−3 (5.30± 0.70)× 10−7

B(D0→ ηη ′) (1.06± 0.27)× 10−3 (3.30± 0.90)× 10−7

B(D0→ ηη ′) (1.06± 0.27)× 10−3 (1.10± 0.40)× 10−7

B(D0→ ηφ) (1.40± 0.50)× 10−4 (4.30± 1.60)× 10−8

Total - (1.69± 0.15)× 10−6

Table 6.2: Contribution to total D0 → (η/η ′ → µµγ)X rate made from all the decays

considered above. In total, this cumulative contribution is approximately three times

smaller than D0→ K+π−µ+µ−. All the branching fractions are obtained from [13].

6.3.2 Partially Reconstructed B→ η(′)V Backgrounds

The backgrounds with η(′) resonances from partially reconstructed decays that proceed

via D decays were considered in subsection 6.3.1. In this section backgrounds with η(′)
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along with vector resonances ω/ρ coming directly from the B are estimated. The total

branching fractions for these processes are listed in Table 6.3 and since they are very

small this type of background is discarded and will not be considered further.

Process B

B(B0→ ωη ′) (1.00± 0.50)× 10−6

B(B0→ ρη ′) <5× 10−7

B(B0→ ωη) (9.00± 4.00)× 10−7

B(B0→ ρη) < 5× 10−7

B(η→ µµγ) (3.10± 0.40)× 10−4

B(η ′→ µµγ) (1.08± 0.27)× 10−4

B(ρ→ µµ) (4.55± 0.28)× 10−5

B(ω→ µµ) (9.00± 3.10)× 10−5

Process Contribution to B0→ (η(′)→ µµγ)(ρ(ω)→ µµ)

B(B0→ (ω→ µµ)(η→ µµγ)) (7.10± 1.00)× 10−15

B(B0→ (ω→ µµ)(η ′→ µµγ)) (2.50± 0.60)× 10−15

B(B0→ (ρ→ µµ)(η→ µµγ)) <(2.50± 1.40)× 10−14

B(B0→ (ρ→ µµ)(η ′→ µµγ)) <(1.00± 0.60)× 10−14

Total < (4.50± 1.60)× 10−14

Table 6.3: Different and total contribution to B0→ η(′)ρ(ω). All the branching fractions

are obtained from [13].

6.4 Rare and Resonant B+
→ π+/K+µ−µ+ Backgrounds

The resonant backgrounds arising through B+→ (J/ψ→ µ−µ+)X+ and B+→ (ψ(2S)→
µ−µ+)X+ decay chains are eliminated because of the cc̄ veto as discussed in section 5.7.

It is, however, necessary to evaluate the impact of the rare equivalent of this back-
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ground, namely B+→ µ+µ−π+ decays, where the π+ is misidentified as muon. The

B(B+→ µ+µ−π+) = 1.79± 0.23× 10−8 [13]. The contribution of this background is ac-

counted for in section 6.2, but it is crosschecked as this particular background peaks

just under the corrected mass of the B. For the same rare decay but with a kaon instead,

B+→ µ+µ−K+ , the mass is expected to be shifted away from this peak because of the

higher kaon mass.

In order to establish the severity of this background, the B+→ µ+µ−π+ simulation

for Run I and 2016 is reconstructed where the muon mass hypothesis is used for the

pion track candidate. Afterwards the same selection as in the signal case is applied.

The expected number of B+→ µ+µ−π+ decays after the full selection in a given Run

can be calculated by normalising to B+→ (J/ψ → µ+µ−)K+ decays. In the end 0.06

(0.03) B+→ µ+µ−π+ events are expected in Run I (2016) which is negligible given that

there are ∼ 17 expected signal events with B(B+→ µ+µ−µ+ν) = 1 × 10−8. Hence no

further specific action for this background is taken, however, its contribution is directly

accounted for in section 6.2.

6.5 Summary

In conclusion, different backgrounds that can mimic the signal were studied. From

all backgrounds considered only the combinatorial, misID and partially reconstructed

backgrounds have considerable contribution after all the selections and hence need to

be modelled. The exact contribution of these three backgrounds is discussed in subsec-

tion 7.3.3.
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Mass Fits and Efficiencies

To be able to obtain a signal branching fraction estimate, the normalisation channel of

B+→ (J/ψ → µ+µ−)K+ is used. Both, for signal and normalisation channel, the absolute

efficiencies, luminosity, the b-quark cross-section and fragmentation fractions will cancel.

There are, however, efficiencies that will not cancel and will be necessary in the final limit

setting procedure. In this section, methods of obtaining efficiencies of the selection for the

normalisation and signal channel are described. Later, the fitting procedure is outlined.

7.1 Efficiency Ratio

As this measurement is performed in a particular minq region, discussed in section 5.7,

all signal efficiencies are calculated with the minq selection imposed. The overall

selection efficiency for signal, εs, and normalisation, εn, include contributions from the

detector acceptance efficiency labelled (GEN); the reconstruction selection efficiency

(REC); the offline selection efficiency comprising of trigger (TRG), J/ψ and Ψ(2S)

veto (OFF), MVA based selection efficiency (CombiBDT and MisidBDT); fitting region

selection efficiency (FR); and the efficiency of the PID requirement (PID). A summary

of the method used to extract the signal efficiency is shown in Table 7.1. For the

normalisation channel, there is no minq region selection and hence the full (generator-

level+detector) simulation is used everywhere apart from the εGEN , generator-level.
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Component Method

εGEN , εREC I

εTRG, εOFF , εBDTs, εFR II

εPID III

Table 7.1: Method of obtaining efficiencies. Most of these efficiencies are evaluated

using simulation. However, the TRG and PID efficiencies are evaluated using data

and/or simulation techniques.

Three methods for signal efficiency determination are required for different parts of

the selection chain.

• Method I - The first two efficiencies, εGEN , εREC , for the signal are obtained using

privately generated simulation from Table 5.1 using

εGEN,minq × εREC,minq =
Nin_acc,minq
Ngenerated,minq

×
NREC,minq
Nin_acc,minq

, (7.1)

Nin_acc,minq =Nin_acc × εminq. (7.2)

In Equation 7.2, εminq is obtained by dividing the number of generated events

in the generator-level simulation (mentioned in Table 5.1) with the minq condi-

tion imposed, Ngenerated,minq, by the total number of generated events, Ngenerated .

Nin_acc is the number of events in the generator-level+detector simulation before

reconstruction, NREC,minq is the number of events after reconstruction with the

minq condition.

• Method II - Divide the number of events that passed the selection by the total

number of events prior to this particular selection step.

• Method III - The data-driven approach using PIDCalib package explained in sec-

tion 3.9 of determining the PID efficiency is used.
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All of these efficiencies will have a systematic uncertainty associated with them.

These systematic uncertainties are combined into one cumulative systematic which is

taken into account in subsection 7.3.5 in the Signal Decay Model section.

Having all the individual efficiencies the relative efficiency with no FCME split,

R
{21,26}
NOFCME(ε), can be calculated as

R
{21,26}
NOFCME(ε) =

εs

εn
=
εsGEN
εnGEN

×
εsREC
εnREC

×
εsTRG
εnTRG

×
εsOFF
εnOFF

×
εsCombiBDT
εnCombiBDT

×
εsMisidBDT
εnMisidBDT

×
εsFR
εnFR
×
εsPID
εnPID

,

(7.3)

where 21, 26 denote the stripping version for Run I and 2016. With the FCME split this

efficiency ratio becomes

R
{21,26}
{lowFCME,highFCME}(ε) = R

{21,26}
NOFCME(ε)×

ε
{lowFCME,highFCME}
s

ε
{lowFCME,highFCME}
n

. (7.4)

7.2 Summary of Efficiencies

The summary of individual efficiencies together with the total efficiency for σNOFCME,

which is calculated for signal using the numerator of Equation 7.3 and for normalisation

the denominator of Equation 7.3, is given in Table 7.2.

149



CHAPTER 7. MASS FITS AND EFFICIENCIES

B+→ µ+µ−µ+ν B+→ (J/ψ→ µ+µ−)K+

Efficiency 2012 2016 2012 2016

εGEN 18.56± 0.11 19.59± 0.07 16.22± 0.02 17.39± 0.02
εREC 10.84± 0.03 12.40± 0.01 17.74± 0.01 20.03± 0.00
εTRG 74.22± 0.13 74.83± 0.05 77.79± 0.03 79.12± 0.01
εOFF 88.20± 0.11 88.30± 0.05 100.00± 0.00 100.00± 0.00
εCombiBDT 47.25± 0.18 34.28± 0.07 50.89± 0.05 39.73± 0.02
εMisidBDT 43.58± 0.26 36.80± 0.12 51.12± 0.07 44.64± 0.02
εFR 92.30± 0.21 93.77± 0.10 99.59± 0.01 99.91± 0.00
εPID 63.15± 0.50 62.27± 0.27 68.53± 0.11 65.63± 0.04

εtotal 0.1581± 0.0020 0.1182± 0.0008 0.3974± 0.0011 0.3203± 0.0005

Table 7.2: Summary of individual simulation and/or data efficiencies in % for the

relative efficiency between the signal and normalisation channel. Efficiency values

for 2016 are TCK-weighted averaged efficiencies, see subsection 7.2.3. The errors

considered are of statistical nature, computed using binomial errors.

Hence resulting values for the relative no fractional corrected mass split efficiency

ratios defined in Equation 7.3 are

R21
NOFCME(ε) =

(1.58± 0.02)× 10−3
(3.97± 0.01)× 10−3 = 0.398± 0.005,

R26
NOFCME(ε) =

(1.18± 0.01)× 10−3
(3.20± 0.00)× 10−3 = 0.369± 0.003.

(7.5)

Upon obtaining the efficiencies with the fractional corrected mass split, which defined

in Equation 7.4, the efficiency ratios are
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R21
lowFCME(ε) =

(7.44± 0.12)× 10−4
(2.33± 0.01)× 10−3 = 0.320± 0.005,

R21
highFCME(ε) =

(8.37± 0.13)× 10−4
(1.65± 0.01)× 10−3 = 0.509± 0.008,

R26
lowFCME(ε) =

(6.51± 0.05)× 10−4
(2.15± 0.00)× 10−3 = 0.303± 0.002,

R26
highFCME(ε) =

(5.33± 0.05)× 10−4
(1.05± 0.00)× 10−3 = 0.506± 0.004.

(7.6)

As it can be noticed, different selections that were optimised for Run I and 2016

yield different overall as well as individual efficiencies. This results in small differences

in sensitivity between Run I and 2016. To better understand where this difference comes

from, the ratios of individual relative efficiencies as a function of stripping version are

plotted in Figure 7.1. The difference can be attributed to different BDTs.
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Figure 7.1: Summary of ratio of efficiencies between 2012 simulation and 2016 sim-

ulation with no FCME split. Efficiency values for 2016 are TCK-weighted averaged

efficiencies.
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7.2.1 Detector Acceptance Efficiency (GEN)

For charged particles, the detector acceptance efficiency describes the fraction of decays

contained in the polar angle region of [10, 400] mrad. For the 2012 and 2016 simulation

samples, the overall detector acceptance efficiency will be the average of two possible

magnetic polarity conditions. For 2012 this will be also averaged with two different

simulation versions: Pythia 6.4 [56] and Pythia 8.1 [40].

The hierarchy of generator level efficiencies εsGEN > ε
n
GEN is expected as the muon

is lighter than kaon, making the kaon more likely to be softer and at larger angle,

therefore outside of the acceptance.

7.2.2 Reconstruction Efficiency (REC)

The reconstruction efficiency is calculated on simulated events which have passed

the detector acceptance. For the signal, this efficiency consists of reconstruction and

stripping, detailed in Table 5.2. For the normalisation it consists of reconstruction,

stripping, and on top the signal stripping is applied. This is done so that the selections

in the normalisation and signal channels are kept as similar as possible and the fact

that the signal selection has tighter cuts as explained in section 5.9. However, it should

be noted that the reconstruction efficiency reflects the stripping selection without the

PID cuts for both signal and normalisation. This is because PID is badly modelled in

simulation and hence will be accounted for separately and at the end of the selection

chain.

The hierarchy of reconstruction level efficiencies εsREC < ε
n
REC is also expected as

many variables in the signal stripping are based on alignment of the mother B with

its daughters. For fully reconstructed normalisation channel this is expected to be the

case, whereas for not fully reconstructed decays the alignment requirement make the

selection tighter.
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7.2.3 Trigger Efficiency (TRG)

The trigger efficiency is calculated on top of the (GEN) and (REC) efficiencies. In order

to extract the trigger efficiency, full simulation for both signal and normalisation is used.

It should be noted though that at LHCb, full simulation is produced based on a certain

trigger configuration. The trigger configuration key, TCK, represents a unique code

for exact conditions the data have been triggered with at L0, HLT1 and HLT2, notably

thresholds of certain quantities such as p and pT .

Therefore, if the default TCK for simulation is representative for the whole consid-

ered dataset, then the efficiency can be extracted directly from the simulation produced,

which is the case for the Run I data.

However in 2016, the trigger thresholds have been changing often resulting in 16

different TCKs with very different p and pT thresholds, see Table 7.3 for full details.

In the second column, the luminosity proportion for 2016 is given. It can be seen that

the default simulation in 2016 (corresponding to TCK decimal key 288888335) only

represents around 35% of the data. For this reason, the trigger efficiencies for 2016 data

have been obtained by emulation of the trigger on simulation for L0 and HLT1 level for

each individual TCK, creating 16 TCK-based simulations. This trigger emulation to

extract efficiencies was tested with the default trigger configuration (TCK 288888335)

to validate the emulation and the correct efficiencies have been recovered. It should be

noted that small differences arise from difference between offline and HLT1 container

for PVs. This is because the PV finding-algorithm is different hence the containers store

different min IPχ2 but this has negligible effect.

In order to obtain the average efficiency for 2016, the 16 TCK efficiencies are

weighted by the proportion of the integrated luminosity taken with the given TCK

setting.

The full trigger efficiency for 2016 is calculated by averaging the luminosity-

weighted efficiencies, as seen in Table 7.4. This TCK-dependant luminosity-weighted

average efficiency is going to be given as a final efficiency for 2016 from now on for all
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subsequent efficiencies unless stated otherwise.

For the HLT2 level, there were no significant changes of thresholds and hence ef-

ficiencies are obtained from full simulation regardless. The systematic effect of this

assumption will be listed in subsection 7.3.5.
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B+→ µ+µ−µ+ν B+→ (J/ψ→ µ+µ−)K+

TCK εL0 εHLT1 εHLT2 εL0 εHLT1 εHLT2

287905280 0.921 0.999 0.831 0.891 0.997 0.943

287905283 0.905 0.999 0.845 0.878 0.998 0.953

287905284 0.894 0.999 0.855 0.867 0.998 0.962

287905285 0.88 0.999 0.868 0.854 0.998 0.973

288495113 0.894 0.999 0.855 0.867 0.998 0.962

288626185 0.894 0.999 0.855 0.867 0.998 0.962

288691721 0.894 0.957 0.873 0.867 0.94 0.965

288757257 0.894 0.957 0.873 0.867 0.94 0.965

288822793 0.894 0.957 0.873 0.867 0.94 0.965

288822798 0.88 0.957 0.886 0.854 0.941 0.976

288888329 0.894 0.957 0.873 0.867 0.94 0.965

288888334 0.88 0.957 0.886 0.854 0.941 0.976

288888335 0.848 0.958 0.911 0.821 0.941 0.999

288888337 0.88 0.957 0.886 0.854 0.941 0.976

288888338 0.871 0.957 0.895 0.844 0.941 0.984

288888339 0.89 0.957 0.877 0.864 0.94 0.968

Weighted efficiency 0.876 0.967 0.884 0.849 0.953 0.978

Table 7.4: Efficiencies of 2016 trigger emulation on simulation. Depending on the TCK

setting, the efficiencies vary up 10% for L0 level for the signal simulation and up to 5%

for normalisation. This is important as the single event sensitivity is sensitive to the ratio

of these two efficiencies. The default configuration describes correctly 35% of the data.

Run I trigger efficiency is determined directly by looking at default TCK as it is

representative of the whole dataset.
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7.2.4 Offline Selection (OFF)

In this section offline efficiencies are discussed. These include the J/ψ andΨ(2S) veto

signal efficiency that were mentioned in Table 5.4, where 2946.0MeV/c2 < |M(µ+ µ−) | <
3176.0MeV/c2 and 3586.0MeV/c2 < |M(µ+ µ−) | < 3766.0MeV/c2. For the normalisation

channel this is not applicable as the normalisation decay proceeds via the J/ψ resonance.

7.2.5 Combinatorial BDT and Misid BDT Efficiency

Efficiencies of the MVA selection are evaluated on simulation samples. These efficiencies

are obtained using samples that passed (GEN), (REC), (TRG) and (OFF) cuts. The

specific MVA for combinatorial background suppression (see subsection 5.8.3) and

misID background suppression (see subsection 5.8.4) are applied to the simulation

samples. As the optimisation led to different BDTs depending on the data-taking period,

these are then applied parametrically to the relevant simulation samples. The efficiency

results are listed in Table 7.2.

For the Misid and Combinatorial BDT selection, the normalisation B+→ (J/ψ →
µ+µ−)K+ channel retains more signal than the B+→ µ+µ−µ+ν channel. This is due to

the kaon/muon p and pT kinematic differences as seen in Figure 7.2 and Figure 7.3,

where the kaon track is generally harder than the muon track. The kaon reconstruction

efficiency is worse than the muon reconstruction efficiency because about 11% of

the kaons cannot be reconstructed due to hadronic interactions that occur before the

last T station [46], implying that the pT of the B meson is on average harder for the

normalisation channel. As these two quantities are high in the BDT importance ranking,

as mentioned in subsection 5.8.3, this makes the normalisation simulation more efficient.

In the Misid BDT selection, again the kinematics of the Bmeson and the min IPχ2 of

the oppositely charged muon to the mother B has a better separation from background

than the signal.
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Figure 7.2: (a) Combinatorial BDT response for signal simulation and upper mass side-

band as well as for the normalisation channel simulation for Stripping 21 and Stripping

26. The most discriminating variables are (b) pT of the B meson, (c) muon/kaon pT and

(d) muon/kaon p.
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Figure 7.3: (a) Misid BDT response for signal simulation and upper mass sideband as

well as for the normalisation channel simulation for Stripping 21 and Stripping 26. The

most discriminating variables are (b) pT of B, (c) muon IP χ2 and (d) muon/kaon p.

Misid BDT responses are plotted with combinatorial BDT already applied.

7.2.6 Fitting Range Efficiency (FR)

As discussed in subsection 5.8.5 and in section 6.1, the fitting region was chosen in

order to avoid modelling a drop in the low corrected mass region for the combinatorial

background (exclusion below 4000 MeV/c2) and secondly in order to not include a

region where there are very few/no events (exclusion above 7000 MeV/c2) in corrected

mass. As seen in Table 7.2 and in Figure 7.4 the normalisation channel does not loose

many candidates compared to the signal channel.
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Figure 7.4: (a) Visible mass of normalisation and signal simulation. It can be seen that

normalisation’s previous preselection has a sharp cut around the visible B mass leading

to much higher fitting efficiency. (b) The corresponding logarithmic version of plot (a).

7.2.7 PID Efficiencies (PID)

As PID variables are not correctly modelled in the simulation, mentioned in section 3.9,

a data-driven approach of extracting the PID efficiency is taken. To avoid the introduc-

tion of any biases in the previous steps, especially in the multivariate selection, the PID

efficiencies are evaluated at the end of the selection chain with the PIDCalib package

data samples.

The PID efficiency is higher for the normalisation channel with all PID requirements

given in Table 7.6 compared to the signal provided in Table 7.5 due to the weaker PID

requirement on the kaon as compared to the muons.
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Species 2012 PID Simulation 2016 PID Simulation

muon DLLmu > 0 DLLmu > 0

muon (DLLmu - DLLK) > 0 (DLLmu - DLLK) > 0

muon - IsMuonTight==1.0

muon Nshared==0 Nshared<2

muon Probnnmu> 0.35 Probnnmu> 0.35

εPID 0.631± 0.005 0.623±0.006

Table 7.5: Signal simulation efficiency using PIDCalib efficiencies.

Species 2012 PID Simulation 2016 PID Simulation

muon DLLmu > 0 DLLmu > 0

muon (DLLmu - DLLK) > 0 (DLLmu - DLLK) > 0

muon - IsMuonTight==1.0

muon Nshared==0 Nshared<2

muon Probnnmu> 0.35 Probnnmu> 0.35

kaon DLLK > 0 DLLK > 0

kaon (DLLp - DLLK) < 5 (DLLp - DLLK) < 5

εPID 0.685± 0.001 0.656±0.001

Table 7.6: Normalisation simulation efficiency using PIDCalib efficiencies.
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HLT1TrackMuon L0Muon

TCK dec %L L Pghost pµ pT (µ) min IPχ2 SPD pT (µ)

% pb−1 [MeV ] [MeV ] [MeV ]

2016 MD 0.86fb−1

287905280 0.8 12.7 − 6.0 0.91 10 450 14

287905283 2.1 35.0 − 6.0 0.91 10 450 23

287905284 1.5 24.8 − 6.0 0.91 10 450 27

287905285 4.7 78.4 − 6.0 0.91 10 450 31

288822793 4.4 72.1 0.2 6.0 1.1 35 450 27

288822798 1.4 22.8 0.2 6.0 1.1 35 450 27

288888329 0.4 6.9 0.2 6.0 1.1 35 450 31

288888334 2.0 31.7 0.2 6.0 1.1 35 450 31

288888335 34.7 575.3 0.2 6.0 1.1 35 450 37

2016 MU 0.80fb−1

288495113 6.5 107.0 − 6.0 0.91 10 450 27

288626185 7.1 118.1 − 6.0 0.91 10 450 27

288691721 1.4 23.5 0.2 6.0 1.1 35 450 27

288757257 25.0 414.6 0.2 6.0 1.1 35 450 27

288888337 2.7 44.1 0.2 6.0 1.1 35 450 31

288888338 5.4 89.8 0.2 6.0 1.1 35 450 33

288888339 0.1 1.1 0.2 6.0 1.1 35 450 27

Default Simulation

1362630159 − − 0.2 6.0 1.1 35 450 37

Table 7.3: Summary of 16 different TCKs listing properties of candidates necessary to

pass L0 and HLT1 selection in 2016. In the final row, the default configuration for 2016

is shown and it corresponds to 288888335 TCK.
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7.3 Mass Fits

In this section, firstly the parametrisation of the normalisation channel is shown in sub-

section 7.3.1. The fit to the normalisation channel using the full fit model is described

in subsection 7.3.2. This is followed by the signal fit parametrisation in subsection 7.3.3,

resulting in the blinded and non-blinded data fits described in subsection 7.3.4.

7.3.1 Normalisation Channel Parametrisation

To obtain the B+→ (J/ψ → µ+µ−)K+ yield in Run I and 2016, an unbinned extended

maximum likelihood fit to the invariant µ+µ−K+ data distribution in each respective

Run dataset is performed. In this section contributions to the normalisation fit model

are considered.

Signal

The first component is the signal itself, which is modelled with PID-weighted simulation

and can be best described by a double-sided Ipatia function, detailed in section A.1,

where all the parameters apart from the mean µIP and width σ IP are fixed from the

signal simulations. These simulations pass through the same selection process as the

corresponding B+→ (J/ψ→ µ+µ−)K+ data, described in section 5.9, with one exception.

Instead of directly cutting on PID variables, the simulations are reweighted with the

relevant PID weights, because of the known mismatch between simulation and data.

More on this will be covered in subsection 7.2.7.

B+
→ (J/ψ→ µ+µ−)π+ Background

Since the PID requirements on the kaon are very loose, there will be a background

contribution from B+→ (J/ψ→ µ+µ−)π+. This contribution is modelled by a double-

sided Crystal Ball function to B+→ (J/ψ→ µ+µ−)π+ simulation, where the pion track

is given the kaon mass hypothesis. Again, all the parameters apart from mean µCB

and width σCB are fixed from the fit to this simulation. In Figure 7.5, fits to the
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B+→ (J/ψ→ µ+µ−)K+ simulation and B+→ (J/ψ→ µ+µ−)π+ simulation from Stripping

21 are showed using different scales. For signal, Run I Stripping 21 sample is used and

for 2016 the Stripping 26 - TCK 288888335 sample is used. For the B+→ (J/ψ→ µ+µ−)π+

the Stripping 21 sample is used for both Run I and 2016.
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Figure 7.5: Fit to 2012 (a) B+→ (J/ψ → µ+µ−)K+ simulation and (c) B+→ (J/ψ →
µ+µ−)π+ simulation under the kaon mass hypothesis. On right, the same plots but with

logarithmic scale instead.

Combinatorial Background

Lastly, the combinatorial background is modelled by an exponential function, where

the exponential constant is left free.
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7.3.2 Normalisation Fit

The full fit model for the normalisation data fit containing the description of the

individual components as well as their constraints is given in Table 7.7.

Fit Parameter Status

Yields

NB+→(J/ψ→µ+µ−)K+ (Signal) Free

NB+→(J/ψ→µ+µ−)π+ Free

NCombinatorial Free

Signal Shape Parameters (double-sided Ipatia)

µIPB+→(J/ψ→µ+µ−)K+ Constrained from signal simulation

σ IPB+→(J/ψ→µ+µ−)K+ Constrained from signal simulation

Others Fixed from simulation

B+→ (J/ψ→ µ+µ−)π+ Shape Parameters (double-sided Crystal Ball)

µCBB+→(J/ψ→µ+µ−)π+ Constrained from signal simulation

σCBB+→(J/ψ→µ+µ−)π+ Constrained from signal simulation

Others Fixed from simulation

Combinatorial Shape Parameters

exponential par. Free

Table 7.7: Summary of the fit parameters and individual component constraints for the

fit to the B+→ (J/ψ→ µ+µ−)K+ decays.

The B+ → (J/ψ → µ+µ−)K+ signal yield is extracted by performing an unbinned

extended maximum likelihood fit with the full fit model to the invariant µ+µ−K+

distribution in the range 5150MeV/c2 < MB+ < 5450MeV/c2. Fits to the B+→ (J/ψ →
µ+µ−)K+ for Run I and 2016 are shown in Figure 7.6. Yields from the fit to B+→ (J/ψ→
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µ+µ−)K+ are obtained and summarized in Table 7.8.
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Figure 7.6: Fit results in logarithmic scale to (a) Run I (b) 2016 µ+µ−K+ mass spectrum

with no fractional corrected mass split, (c)(d) low FCME bin, (e)(f)high FCME bin.
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Sample Stripping Split Yields

NB+→J/ψK+ Run I σNOFCME 173422±446
NB+→J/ψK+ 2016 σNOFCME 94491±313

NB+→J/ψK+ Run I σlowFCME 109224±337
NB+→J/ψK+ 2016 σlowFCME 64723±259

NB+→J/ψK+ Run I σhighFCME 64078±257
NB+→J/ψK+ 2016 σhighFCME 29760±176

Table 7.8: B+→ (J/ψ → µ+µ−)K+ signal yield obtained from fits to the µ+µ−K+ mass

spectrum shown in Figure 7.6.

7.3.3 Signal Channel Parametrisation

To fit the signal data, the default fitting strategy is to use a simultaneous unbinned

maximum likelihood fit to the µ+µ−µ+ corrected mass spectrum for the Run I and 2016

dataset after the full selection in two bins of fractional corrected mass error, which is

denoted as the simultaneous fit. In this fit, the branching fraction for B+→ µ+µ−µ+ν

is directly fitted as the parameter of interest. As a cross-check a non-simultaneous fit,

where no splitting in bins of corrected mass is done, is denoted as the non-simultaneous

fit. The parametrisation of all the components for the full signal model fit is described

below.

Signal

The full fit to Run I and 2016 data requires the knowledge of the signal shape for the

combined dataset. This is obtained from a Run I and 2016 signal simulation cocktail.

The cocktail is created after full selection by assigning event-by-event weights, wi ,

which capture the differences between the Run I and 2016 simulation, that were not
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considered by the full selection.

Firstly, weights that reflect the expected difference due to the increased luminosity

are computed. DefiningL2012,L2016 to be the integrated luminosities and σ2012
pp→bb,σ

2016
pp→bb

to be the cross-sections in a given year the following definitions are provided

n2012 = L2012 ×σ2012
pp→bb, (7.7)

n2016 = L2016 ×σ2016
pp→bb. (7.8)

The signal weights can be obtained by solving the following system of two equations

w2012 ×N2012 +w2016 ×N2016 =N2012 +N2016, (7.9)

w2012 ×N2012

w2016 ×N2016
=
n2012

n2016
. (7.10)

where N2012,N2016 are the number of events at generator level. N2012,N2016 number of

events at generator level is obtained by dividing the number of reconstructed events

NREC by the reconstruction efficiency εREC (see Table 7.2). Values for these variables

are summarized in Table 7.9.

These constraints yield the following value for event-by-event (or rather yearly)

weights

w2012 =
N2012 +N2016

N2012 × (1.0+ n2016

n2012
)
= 0.931 (7.11)

w2016 =
N2016 +N2012

N2016 × (1.0+ n2012

n2016
)
= 1.073, (7.12)

Secondly, an event-by-event weight which differs between Run I and 2016 that needs

to be accounted for is the PID efficiency εPID (see Table 7.2), which depends on the

kinematics of the final state particles. It is denoted as w
i∈{2012,2016}
εiPID

.

The final weight of an event depending on Run I and 2016 is calculated a
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Summary 2012 Simulation 2016 Simulation

NREC 1114130 1107715

L 2968 pb−1 1612 pb−1

σpp→bb 1 2

Table 7.9: Signal simulation weights used to create a cocktail of mixed Run I (2012) and

2016 events. The cross-sections listed here are not absolute numbers, but rather relative

as only their ratio matters.

w
i∈{2012,2016}
total = wi∈{2012,2016} ×wi∈{2012,2016}

εiPID
. (7.13)

After obtaining a combined Run I and 2016 signal cocktail, a fit to this weighted

simulation is done with the shape in the corrected mass modelled by a double-sided

Crystal Ball function section A.2. The fit and its parameters can be seen in Figure 7.7.

The function describing this shape is denoted as f sig and hence is a function of 6

parameters for the non-simultaneous fit and 12 parameters for the simultaneous fit.
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Figure 7.7: Fit to the weighted combined signal cocktail for (a) NO FCME (b) Low FCME

and (c) High FCME split.

The signal yield, N sig =N (B+→ µ+µ−µ+ν), is calculated using several parameters.

More specifically, it is related to the branching fraction using the normalisation channel

in the following way:

B(B+→ µ+µ−µ+ν) = α ×N (B+→ µ+µ−µ+ν)

=
B(B+→ (J/ψ→ µ+µ−)K+)× εB+→(J/ψ→µ+µ−)K+

N (B+→ (J/ψ→ µ+µ−)K+)× εB+→µ+µ−µ+ν
︸                                                    ︷︷                                                    ︸

α

×N (B+→ µ+µ−µ+ν),

=
B(B+→ (J/ψ→ µ+µ−)K+)

N (B+→ (J/ψ→ µ+µ−)K+)×RFCME
︸                                       ︷︷                                       ︸

α

×N (B+→ µ+µ−µ+ν),

(7.14)
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where εx is the total selection efficiency for the channel x, Nx is the number of x decays,

B(x) is the branching fraction of decay x, RFCME is the relevant efficiency ratio between

the two decays detailed in section 7.2 and finally α is the single event sensitivity, a vari-

able which describes the sensitivity for the search. Hence, for Run I and 2016 the non-

simultaneous fit N sig is a function of six parameters N sig(R21
FCME,R

26
FCME),N

Run I(B+→
(J/ψ → µ+µ−)K+),N2016(B+ → (J/ψ → µ+µ−)K+),B(B+ → (J/ψ → µ+µ−)K+),B(B+ →
µ+µ−µ+ν)). In the simultaneous case R21

FCME,R
26
FCME, N

Run I(B+→ (J/ψ→ µ+µ−)K+) and

N2016(B+→ (J/ψ → µ+µ−)K+)K+) are further split into σlowFCME and σhighFCME bins,

resulting in 10 parameters for N sig in the fit, as shown for the non-simultanenous

fit parameter summary in Table 7.14. Again, the parameter of interest in the end is

B(B+→ µ+µ−µ+ν) which is directly fitted for so N(B+→ µ+µ−µ+ν) is given here just to

be able to translate the B(B+→ µ+µ−µ+ν) into N(B+→ µ+µ−µ+ν).

Partially Reconstructed Background

Partially reconstructed backgrounds are still non-negligible after the full selection

chain. The simulation sample for the partially reconstructed background that originates

throughD0 decays ( section 6.3) is used for both the yield estimate and shape modelling.

In order to get an estimate for the yield of these partially reconstructed decays,

NPR, B+→ (J/ψ→ µ+µ−)K+ decays are again used as normalisation. Normalising to the

B+→ (J/ψ→ µ+µ−)K+ decay channel, the following relationship must hold:

NB+→(D0→K+π−µ+µ−)µ+ν

NB+→(J/ψ→µ+µ−)K+
=
B(B+→ (D0→ K+π−µ+µ−)µ+ν)

B(B+→ (J/ψ→ µ+µ−)K+)
× ε

B+→(D0→K+π−µ+µ−)µ+ν

εB
+→(J/ψ→µ+µ−)K+

=
B(B+→ (D0→ K+π−µ+µ−)µ+ν)

B(B+→ (J/ψ→ µ+µ−)K+)
×RFCME,

(7.15)

where εx is the total selection efficiency for the channel x and RFCME is hence the

efficiency ratio between the two channels, Nx is the number of x decays and B(x) is the
branching fraction of decay x. The quantity of the interest, NB+→(D0→K+π−µ+µ−)µ+ν , can
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therefore be calculated given knowledge of all other terms. NB+→(J/ψ→µ+µ−)K+ is obtained

from Table 7.8. B(B+→ (D0→ K+π−µ+µ−)µ+ν) is obtained by multiplying B(D0 →
K+π−µ+µ−) = (4.17±0.12±0.40)×10−6 [73] and B(B+→Dl+νX) = (9.8±0.7)×10−2 [13]
yielding B(B+→ (D0→ K+π−µ+µ−)µ+ν) ≈ (4.1±0.5)×10−7. The B+→ (J/ψ→ µ+µ−)K+

branching fraction is obtained with the same approach: multiplying B(B+→ J/ψK+) =

(1.026±0.031)× 10−3 [13] and B(J/ψ→ µ−µ+) = (5.961 ±0.0033)× 10−2 [13] yielding

B(B+→ (J/ψ→ µ+µ−)K+) = (6.12± 0.19)× 10−5. (7.16)

All the relevant total selection efficiencies are obtained from the full simulation

sample and are shown in Table 7.10. Due to the usage of a proxy simulation for these

partially reconstructed decays (using a pion rather than a muon in one case), as dis-

cussed in section 6.3, the trigger efficiency εTRG cannot be obtained from simulation,

because the HLT2 trigger (see Table 5.3) would make a positive decision only either

because of finding dimuon pair or two or three-body decays, hence the trigger ratio

ε
B+→(D0→K+π−µ+µ−)µ+ν
TRG

ε
B+→(J/ψ→µ+µ−)K+
TRG

is assumed to be 1, which is rather a conservative estimate (overes-

timate) but makes sure that other partially reconstructed backgrounds are accounted

for. Another efficiency that was not accounted for because of the same reason is PID

efficiency, εPID. Moreover as this proxy simulation was not accessible for 2016, the

same ratio of efficiencies as in Run I is used.

The summary of the expected yield is summarized in Table 7.10. For the

non-simultaneous final fit there are hence 5 parameters NPR(R21
FCME(B

+ → (D0 →
K+π−µ+µ−)µ+ν),NRun I(B+→ (J/ψ → µ+µ−)K+),N2016(B+→ (J/ψ → µ+µ−)K+),B(B+→
(J/ψ→ µ+µ−)K+),B(B+→ (D0→ K+π−µ+µ−)µ+ν)) and for the simultaneous data fit with

FCME splitting 8 parameters. The total yield expected for this type of background is

very low compared to the other expected backgrounds.

The shape for partially reconstructed backgrounds, f PR, is also obtained from the

simulation proxy after all the selections. The shape is best described with the sum

of two Crystal Ball functions, more in section A.2, with free means µ1,µ2 and widths
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Properties Run I 2016

B(B+→ (D0→ K+π−µ+µ−)µ+ν) (4.1± 0.5)× 10−7 (4.1± 0.5)× 10−7

B(B+→ (J/ψ→ µ+µ−)K+) (6.12± 0.19)× 10−5 (6.12± 0.19)× 10−5

ε
B+→(D0→K+π−µ+µ−)µ+ν
total (1.87± 0.04)× 10−4 Using 2012

ε
B+→(J/ψ→µ+µ−)K+

total (5.80± 0.01)× 10−3 Using 2012

R21
FCME(B

+→ (D0→ K+π−µ+µ−)µ+ν) (3.22± 0.07)× 10−2 Using 2012

σlowFCME

NB+→(D0→K+π−µ+µ−)µ+ν 19.8± 2.6 11.7± 1.5

σhighFCME

NB+→(D0→K+π−µ+µ−)µ+ν 17.0± 2.2 7.9± 1.0

σNOFCME

NB+→(D0→K+π−µ+µ−)µ+ν 37.3± 4.8 20.3± 2.6

Table 7.10: Summary of number of events that come from partially reconstructed

backgrounds in different bins of FCME, assuming 2012 efficiencies but extrapolating to

all samples.

σ1,σ2 as seen in Figure 7.8. Because the shape of this background suggests that the

majority of the contamination is below 5000MeV/c2, it is one of the least dangerous

backgrounds. In the non-simultaneous fit, f PR is a function of 9 parameters and for the

simultaneous fit 18 parameters coming from the sum of two Crystal Ball functions.
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Figure 7.8: Fit to weighted combined partially reconstructed background simulation

proxy for (a) NO FCME (b) Low FCME and (c) High FCME split.

MisID background

The level and the shape of misID background is determined by fitting the misID data

samples obtained using the method described in section 6.2. A binned χ2 fit is used to

extract the shape and yields parameters. The reason for usage of the binned χ2 fit is that

the misID samples are little populated weighted samples and the shape and yield needs

to be propagated to the final data fit while preserving the fit parameter correlations.

Since there is a prescale factor of 1% at stripping level, to obtain the correct yield, the

final number needs to be multiplied by 100 to counteract the prescale.

The misID weights obtained from kinematically binned B0→ (J/ψ → µ+µ−)(K ∗→
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π+K−) samples (see subsection 4.3.1) have uncertainties associated with them as shown

in Figures 4.11(a), 4.12(a), 4.13(a), 4.14(a). These uncertainties are accounted for in the

fit by Gaussian variation of the weights within the uncertainty in a given kinematic bin

of p,η for each particle species and then folded in to the misID calculation. In this case

100 variations were used. Each variation results in a different template for the misID

shape. This misID template is then subsequently binned in 15 bins of corrected mass.

From each corrected mass bin, mean µvar and error σvar from gaussianly distributed

number of misID events is obtained.

The total uncertainty due to the weight w, σtot , for a given bin of corrected mass is

calculated using

√

σ2
var +

√
∑

w2
i

2

, where σpar =
√

∑

w2
i is the associated error per bin

and σvar is the standard deviation obtained from the variation of misID weights ((see

subsection 4.3.1) in Figures 4.11(a), 4.12(a), 4.13(a), 4.14(a)). Finally, the binned χ2 fit

is made to the misID samples with the total uncertainty. The number of misID events,

NMisID , for different species-regions after all selections are seen in Table 7.11. Hence

for the non-simultaneous fit this just adds 1 parameter and for the simultaneous fit

there will be two parameters describing the total misID yield.

Also it can be seen in Table 7.11, the cross-feed weight is only considered for kaon-

like and pion-like SS misID samples. This arises as a consequence of two characteristics

of the misID crossfeedweight procedure. First the convergence criteria makes unbal-

anced samples (one sample very high in misID events and other sample very small in

number of misID events) hard to satisfy (case for most of OS misID samples). Secondly,

proton-like region samples are very sparse and hence it is not necessary to account for

crossfeed.

The binned χ2 fits using a Crystal Ball function to different bins of FCME is per-

formed as seen in Figure 7.9. This means that the shape of this background, f MisID , is

a function of 4 parameters in the non-simultaneous case and a function of 8 parameters

in the simultaneous case. Both full weight error σtot and partial weight error σpar are

plotted. The difference between the two is the error due to uncertainty on the weight

σvar . Results of the fits are propagated into the signal data fits preserving correlations
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between parameters, which are hence a set if multidimensional gaussian constraints

in the signal data fits. This means that all uncertainties due to misID will be directly

accounted for in the signal data fits.

Sample Region PID weight misID count

Run I SS misID Kaon-region Run I PID crossfeedweight 198

Run I SS misID Pion-region crossfeedweight 103

Run I SS misID Proton-region no-crossfeedweight 6

Run I OS misID Kaon-region no-crossfeedweight 3

Run I OS misID Pion-region no-crossfeedweight 42

Run I OS misID Proton-region no-crossfeedweight 1

2016 SS misID Kaon-region 2016 PID crossfeedweight 136

2016 SS misID Pion-region crossfeedweight 76

2016 SS misID Proton-region no-crossfeedweight 0

2016 OS misID Kaon-region no-crossfeedweight 8

2016 OS misID Pion-region no-crossfeedweight 45

2016 OS misID Proton-region no-crossfeedweight 1

Sum 619

Table 7.11: The final misID template is constructed by summing the contribution

from Run I and 2016 kaon, pion and proton-like regions for both SS and OS misID

contributions.
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Figure 7.9: Binned χ2 fit to the misID templates with no FCME split (b) Low FCME (c)

High FCME. In high FCME case, the distribution of misID pollutes the signal window

more than in the low FCME case. Both the full weight error σtot and the partial weight

error σpar can be seen.

Combinatorial Background

The signal data fit so far includes components for the signal, the partially reconstructed

background, and the misID background component. The only component left to

estimate is the combinatorial background. To model the combinatorial component, the

exponential function is left floating and fit to data, as motivated in section 6.1. Hence

the shape, f Combi , has one(two) parameter(s) for the non-simultaneous (simultaneous)

fit, which is the exponential constant. The yield, NCombi , is also parametrised with just
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one (two) parameter(s) for the non-simultaneous (simultaneous) fit.

Altogether all the parameters for the non-simultanenous fit are summarized in Ta-

ble 7.14.

7.3.4 Signal Data Fits

Signal fit models

The full signal fit model consists of all the mentioned components. As mentioned in sub-

section 7.3.3 there are two fit models that are used to fit data: the non-simultaneous,

f NS (x,yi), and the simultaneous fit models, f S (x,zk), where the latter is the one which

is used for the limit setting. In this case x is the corrected mass, and yi(zk) are all the

parameters for the non-simultaneous (simultaneous) fit. The total fit models hence can

be written

f NS (x,yi) =N sig × f sig +NMisID × f MisID +NPR × f PR +NCombi × f Combi , (7.17)

f S (x,yk) =
∑

j∈σ
(N

sig
j × f

sig
j +NMisID

j × f MisIDj +NPartReco
j × f PartRecoj +NCombi

j × f Combij ),

(7.18)

where σ is the bin of fractional corrected mass. The shared parameters in the two bins

of fractional corrected mass error for the simultaneous fit are the branching fractions

B(B+→ µ+µ−µ+ν), B(B+→ (D0→ K+π−µ+µ−)µ+ν), and B(B+→ (J/ψ→ µ+µ−)K+).

Signal fit model hypotheses

As the strength of the signal is not a priori known, there are two types of hypotheses

that are established: one where there is the presence of signal, also known as the

signal+background hypothesis which takes exactly the form of Equation 7.17 and then

a background only hypothesis, where B(B+→ µ+µ−µ+ν) = 0→N sig = 0.
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Signal data types

There are two types of signal datasets as mentioned in section 5.1. Firstly, there is

the blinded signal data to which the simultaneous and non-simultaneous fits are

performed in order to evaluate the expected sensitivity. Since these datasets are blinded

only the mass regions 4000MeV/c2 < MBcorr
< 4500MeV/c2 and 5500MeV/c2 < MBcorr

<

7000MeV/c2 are used in the fits. These fits are shown in subsection 7.3.6. Secondly fits

to the full signal data are performed and these are used in order to set the limit on the

B(B+→ µ+µ−µ+ν). In these fits the full mass spectrum is used.

7.3.5 Signal Fit Systematics

Systematics studies are performed in order to account for possible shortcomings of

the methods used in order to measure B(B+→ µ+µ−µ+ν). The summary of systematic

uncertainties is provided in Table 7.12. Most of these systematic uncertainties directly

affect the efficiency ratio between the signal and normalisation channels. In that

case, fits account for this uncertainty directly by incorporating the uncertainty into

the efficiency ratios by adding them in quadrature to the statistical error. For the

simultaneous fit these uncertainties are assumed to be 100% correlated between the

FCME bins.
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Systematic source Run I/% 2016/% Error Overall

B(J/ψ→ µ+µ−) 0.6 0.6 0.6

B(B+→ J/ψK+) 3.0 3.0 3.0

Signal Decay Model 4.6 4.6 4.6

Trigger Data/Sim 5.1 1.3 3.2

Trigger HLT2 - 1.5 1.5

Kaon interaction probability 2.0 2.0 2.0

Kinematic Reweighting 1.0 2.0 1.5

Simulation Statistics 1.3 0.7 0.8

Fit bias 1.0 1.0 1.0

Total 8.0 6.6 7.1

Statistical source Run 1/% 2016/% Error Overall

Error on B+→ J/ψK+ yield 0.3 0.3 0.2

Table 7.12: Summary of systematic uncertainties.

Signal Decay Model

The largest systematic uncertainty arises due to the choice of decay model for the signal

channel. The nominal signal model creates a photon pole, increasing the branching

fraction in the low invariant dimuon mass region. The associated systematic uncertainty

is estimated by replacing this decay model with one determined purely by phase-space

and by comparing the selection efficiencies, resulting in a 4.6% total systematic uncer-

tainty on the efficiency ratio. This cumulatively incorporates systematic uncertainties

on individual efficiencies εGEN , εREC , εTRG, εOFF , εBDTs and εFR.

Trigger

The second most important systematic effect is due to incorrect modelling of the trigger

in the simulation. This can be split into two effects: the efficiency difference between
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the simulation and data and the incorrect emulation of HLT2 in the simulation in 2016

as only one TCK was considered for this trigger selection. This uncertainty is assigned by

comparing the difference between the trigger efficiency of B+→ (J/ψ→ µ+µ−)K+ decays

in simulation and data using the TISTOS method.

The TISTOS method allows measuring the trigger efficiency, whereby the events that

are TIS and TOS are assumed to be independent. Hence, the efficiency for selection of

TOS candidates can be calculated by

εTOS =
NT IS&TOS
NT IS

. (7.19)

In Equation 7.19 NT IS&TOS is the number of TIS and TOS events passing the trigger

requirement and NT IS is the number of TIS events passing the trigger requirement.

The efficiency difference of the full trigger chain between B+→ J/ψK+ decays in

simulation and Sweighted data is 3.2%. Incorrect emulation of HLT2, which is calculated

by comparing HLT2 trigger efficiency of the chosen TCK simulation and all the Sweighted

data, yields 1.5%. Altogether the incorrect modelling of the trigger in simulation results

in a 3.5% systematic uncertainty.

Kaon Interaction Probability

One difference between the signal and the normalisation channels that can have an

effect on the efficiencies is that the kaon in the decay B+→ (J/ψ→ µ+µ−)K+ can interact

with the detector at a probability proportional to the amount of material traversed. The

uncertainty on this amount of material leads to a 2% systematic uncertainty, derived

following the procedure outlined in Ref. [46].

Kinematic Reweighting

Another source of systematic uncertainty is caused by differences in the B+ production

kinematics in the simulation. Corrected variables are momentum, p, transverse mo-

mentum pT and vertex χ2 of the B. The kinematic weights in a given kinematic bin are
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calculated using normalised histograms of B+→ (J/ψ→ µ+µ−)K+ data, and normalized

B+→ (J/ψ→ µ+µ−)K+ simulation in a following way

w(bin) =
wB+→(J/ψ→µ+µ−)K+data,bin

wB+→(J/ψ→µ+µ−)K+simulation,bin
. (7.20)

The correction weights obtained are then applied to correct both the B+→ (J/ψ →
µ+µ−)K+ and B+→ µ+µ−µ+ν simulation. The difference between uncorrected and

kinematically corrected efficiency ratios is assigned as a systematic uncertainty yielding

1.5% systematic uncertainty on the efficiency ratios.

Signal Fit Bias and Coverage

In this section, the systematic uncertainty due to signal bias is evaluated. The pull is

calculated using pseudo-experiments where the data is generated for a signal branching

fraction B = 1.0 × 10−8 corresponding to ≈ 17 signal events for Run I and 2016 data.

These pseudo-datasets are then re-fitted with floating B and the corresponding number

of fitted signal events is obtained. The pull is defined as the difference between number

of fitted signal events and the number of events that the pseudo-experiment was created

with, divided by the error on the number of signal events given by the fit:

N
orig
sig −N

f it
sig

σ f it
. (7.21)

The pull distributions can be fitted with a gaussian function and the fit bias is

calculated as a shift of the mean from 0. The pull distribution quality of the fits is

established by shift of the standard deviation of the gaussian function from 1.

For this study 10000 pseudo-experiments were created testing the bias of both the

extended non-simultaneous fit and extended simultaneous fit. The pull distributions

for the non-simultaneous fit can be seen in Figure 7.10.
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Figure 7.10: Non-simultaneous fit pulls from 10000 pseudo-experiments.

As it can be seen, for the non-simultaneous fit the pull distribution follows Gaussian

distribution with the value of the standard deviation of 0.961±0.007 which is reasonably

good but not perfect. But since the statistical error is of the order of 100% this is not so

significant. The bias shows 8% preference for lower signal yields, and hence this will be

added as a systematic uncertainty. The same process was repeated for the simultaneous

fit and results can be seen in Table 7.13.

Fit B Statistical Error Distribution Quality Bias

Non-simultaneous 1.0× 10−8 ≈ 100% 4% 8%

Simultaneous 1.0× 10−8 ≈ 100% 6% 1%

Table 7.13: Signal bias estimate from 10 000 pseudo-experiments for both the simulta-

neous and non-simultaneous fit.

183



CHAPTER 7. MASS FITS AND EFFICIENCIES

Others

Other smaller systematic uncertainties are assigned due to the finite size of the simula-

tion and the branching fraction of the decay J/ψ → µ+µ− and B+→ J/ψK+ .

7.3.6 Blinded Data Fits

In order to be able to get the expected sensitivity for this search a simultaneous unbinned

maximum likelihood extended fit to the blinded data of corrected mass after the full

selection in two bins of FCME is performed. As a crosscheck, also the non-simultaneous

fit with no FCME split is done. The summary of all the components adding to the

total PDF for the blinded signal data fit, their modelling and constraints are shown

in Table 7.14.

Most of the parameters in these fits are fixed and if they are not fixed they are con-

strained with their range allowed to be within ±5σ of the constraint. Error propagation

from the parametrisations of different components is dealt with by using two types of

constraints: gaussian constraints and multivariate gaussian constraints. The gaussian

constraint, gaussian, when imposed has a central value of the fitted parameter and as

width the error of the fitted parameter. Multivariate gaussian constraint, mvg_gaussian,

is a generalisation of the gaussian constraint to higher dimensions and is used for misID

parametrisation as the correlations between different parameters need to be propagated

to the signal fit.

The maximum unbinned likelihood fit to blinded signal data after all selection is

shown in Figure 7.11 for all categories of FCME. As the signal region is blinded in this

case the fit model uses the background-only hypothesis. The total number of expected

background events, Nb, can be then obtained by integrating the total PDF in the signal

region.
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Figure 7.11: (a) Unbinned maximum likelihood fit to the blinded data in one bin

of FCME. Simultaneous unbinned maximum likelihood fit to blinded data after full

selection chain in two bins of FCME, with (b) fit to σlowFCME bin, (c) σhighFCME bin.

185



CHAPTER 7. MASS FITS AND EFFICIENCIES

Fit Parameter Status Constraint Obtained in

N sig





































B(B+→ µ+µ−µ+ν) Free - This Fit

B(B+→ (J/ψ→ µ+µ−)K+) Cnstr. gaus. Equation 7.16

R21
FCME(B

+→ µ+µ−µ+ν) Cnstr. gaus. Equation 7.5

R26
FCME(B

+→ µ+µ−µ+ν) Cnstr. gaus. Equation 7.5

N (B+→ (J/ψ→ µ+µ−)K+)RunIFCME Cnstr. gaus. Table 7.8

N (B+→ (J/ψ→ µ+µ−)K+)2016FCME Cnstr. gaus. Table 7.8

NPR































B(B+→ (D0→ K+π−µ+µ−)µ+ν) Cnstr. gaus. Table 7.10

B(B+→ (J/ψ→ µ+µ−)K+) Cnstr. gaus. Equation 7.16

R21
FCME(B

+→ (D0→ K+π−µ+µ−)µ+ν) Cnstr. gaus. Table 7.10

N (B+→ (J/ψ→ µ+µ−)K+)RunIFCME Cnstr. gaus. Table 7.8

N (B+→ (J/ψ→ µ+µ−)K+)2016FCME Cnstr. gaus. Table 7.8

NMisid Cnstr. mvg_gaus. Figure 7.9

NCombi Free - This fit

MisID Shape Parameters (Crystal Ball function)

µmisid Cnstr. mvg_gaus. Figure 7.9

σmisid Cnstr. mvg_gaus. Figure 7.9

Others Fixed Figure 7.9

PartReco Shape Parameters (sum of two Crystal Ball functions)

All Fixed Figure 7.8

Signal Shape Parameters (Double-sided Crystal Ball function)

All Fixed Figure 7.7

Combinatorial Shape Parameters (exponential function)

β Free - This fit

Table 7.14: For all constrained variables the range is set to be within ±5σ . Cnstr. stands
for constrained variables, gaus. for gaussian constraint and mvg_gaus. multivariate

gaussian constraint. 186
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7.3.7 Expected Sensitivity

The CLs method [74] is used to produce an expected upper limits from the blinded

data fits. This is possible thanks to the fact that this method is based on generation

of pseudo-datasets with different signal hypotheses. Therefore, it only requires the

resulting PDFs of the blinded fits (simultaneous and non-simultaneous) with which

pseudo-datasets can be produced.

Systematic uncertainties directly influence the relative efficiencies between signal

and normalisation channel. They can therefore be added as gaussian constraints on

the relevant efficiency ratio. The expected exclusion limits are then computed and

summarized in Table 7.15. Partial systematics only include systematics related to

branching fractions, whereas full systematics include all the effects from Table 7.12. In

the simultaneous fit these effects are assumed to be 100% correlated between the two

bins of fractional corrected mass, but uncorrelated between themselves. As expected,

the limit weakens with the addition of systematics. On the other hand there is an

improvement in expected limit by 20% obtained with the use of the simultaneous fit

compared to the non-simultaneous fit with the full systematics included. Addition of

2016 data also improved the expected sensitivity of the search.

Confidence Data Systematics Fit Type Value

Interval

Expected 95% CL Run I Partial Simultaneous 3.3× 10−8

Expected 95% CL Run I Full Simultaneous 3.5× 10−8

Expected 95% CL Run I and 2016 Partial Non-simultaneous 3.0× 10−8

Expected 95% CL Run I and 2016 Full Non-simultaneous 3.3× 10−8

Expected 95% CL Run I and 2016 Partial Simultaneous 2.5× 10−8

Expected 95% CL Run I and 2016 Full Simultaneous 2.8× 10−8

Table 7.15: Resulting expected exclusion limits with both non-simultaneous and simul-

taneous fits. CL stands for confidence level.
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7.3.8 Unblinded Data Fits

After the full analysis strategy was reviewed the signal datasets were unblinded, observ-

ing no significant signal. The simultaneous unbinned extended maximum likelihood fit

to all the data was performed. As expected with no excess signal, the background-only

hypothesis fit described the data very well, which can be seen in Figure 7.12.
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Figure 7.12: Simultaneous unbinned extended maximum likelihood fit to unblinded

data after full selection chain in two bins of FCME and with B = 0, with (b) fit to

σlowFCME bin, (c) σhighFCME bin.

In order to perform the fit with signal and background hypotheses a good range

for B needs to be established in order to aid the fit convergence. This is done the

maximizing the log likelihood values for different values of B, also known as profiling

B. The results of the profiling can be seen in Figure 7.13. This shows that the minimum

is at B ∼ −2.0× 10−8, hence the fit prefers a negative value of B.
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Figure 7.13: Minimized -log likelihood value at different B.

The simultaneous unbinned extended maximum likelihood fit to all the data with

signal+background hypothesis is given in Figure 7.14, converging at value of B =

−1.8× 10−8. This hence represents a negative yield fluctuation. The full list of all free

and constrained parameter values obtained in this fit is shown in Table 7.16. This

fit result then can be translated into yields in all the fitting range and specifically

the blinded region by integrating the resulting PDF in a relevant region as shown

in Table 7.17.
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Figure 7.14: Simultaneous unbinned maximum likelihood fit to unblinded data after

full selection chain in two bins of FCME, with (b) fit to σlowFCME bin, (c) σhighFCME bin.

The signal component is visible as negative fluctuation.
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Fit Parameter Constraint Fitted Value Pull

B(B+→ µ+µ−µ+ν) free −1.8± 0.9× 10−8 -

B(B+→ (J/ψ→ µ+µ−)K+) (6.12± 0.188)× 10−5 (6.11± 0.185)× 10−5 0.1σ

B(B+→ (D0→ K+π−µ+µ−)µ+ν) (4.09± 0.5)× 10−7 (4.12± 0.5)× 10−7 −0.1σ

µmisIDhighFCME
4090± 143 4100± 123 −0.1σ

µmisIDlowFCME
4240± 75 4330± 56 −1.6σ

σmisIDhighFCME
637± 62 619± 56 0.3σ

σmisIDlowFCME
447± 35.9 401± 29.9 0.5σ

R26
highFCME(B

+→ µ+µ−µ+ν) 1.98± 0.0189 1.97± 0.0788 0.1σ

R26
lowFCME(B

+→ µ+µ−µ+ν) 3.30± 0.0 3.31± 0.1 −0.1σ

R21
highFCME(B

+→ (D0→ K+π−µ+µ−)µ+ν) 0.0397± 0.00118 0.0397± 0.00116 0.0σ

R21
lowFCME(B

+→ (D0→ K+π−µ+µ−)µ+ν) 0.0271± 0.000809 0.0271± 0.000794 0.0σ

R21
highFCME(B

+→ µ+µ−µ+ν) 1.97± 0.0305 1.96± 0.131 0.1σ

R21
lowFCME(B

+→ µ+µ−µ+ν) 3.13± 0.0498 3.15± 0.233 −0.1σ

N (B+→ (J/ψ→ µ+µ−)K+)2016highFCME 29800± 176 29800± 173 0.0σ

N (B+→ (J/ψ→ µ+µ−)K+)2016lowFCME 64700± 259 64700± 254 0.0σ

N (B+→ (J/ψ→ µ+µ−)K+)Run I
highFCME 64100± 257 64100± 253 0.0σ

N (B+→ (J/ψ→ µ+µ−)K+)Run I
lowFCME 109000± 337 109000± 331 0.0σ

N scaled
misIDhighFCME

277± 15.5 278± 15.2 −0.1σ

N scaled
misIDlowFCME

322± 16.9 331± 16.3 −0.6σ

βhighFCME free −0.00183± 9.19× 10−5 -

βlowFCME free −0.00226± 0.000129 -

NcombihighFCME
free 620± 34.3 -

NcombilowFCME
free 531± 35.4 -

Table 7.16: Fit results for all floating (free and constrained) variables in the unblinded

data fit. The B(B+→ µ+µ−µ+ν) = −1.8 × 10−8. Variables RSK are the efficiency ratios

obtained by normalising the decays to B+→ (J/ψ→ µ+µ−)K+ decays where S stands for

stripping and K for the FCME. N scaled
misIDK

is the number of misID events, NcombiK is the

number of combinatorial events, βK is the exponential constant, µmisIDK and σmisIDK are

the mean and the σ of the CB function.
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Component All (4− 7GeV/c2) Signal region (4.5− 5.5GeV/c2)

NmisIDlowFCME
331 139

NsiglowFCME
-15.8 -14.4

NcombilowFCME
531 154

NpartrecolowFCME
31.8 6.39

NmisIDhighFCME
279 122

NsighighFCME
-14.0 -11.0

NcombihighFCME
620 209

NpartrecohighFCME
25.1 5.17

Table 7.17: Resulting yields for different components from the corrected mass fit with

B(B+→ µ+µ−µ+ν) = −1.8× 10−8.
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Chapter 8

Result and Conclusion

8.1 Limit Setting

As no significant signal is observed, a limit for B(B+→ µ+µ−µ+ν) is set. This is achieved

by using the CLs method described in subsection 7.3.7 and the CLs p values are shown in

Figure 8.1 together with both expected and observed curves. In order to incorporate the

systematics uncertainties in the limit setting they are added as 1D Gaussian constraints

on the relevant efficiency ratios when calculating the limit. They are assumed to be

100% correlated between the bins of fractional corrected mass error but uncorrelated

between the different effects. This gives the following limits summarised in Table 8.1,

setting the limit B(B+→ µ+µ−µ+ν) < 1.1(1.4)× 10−8 at 90%(95%) confidence level. As it

can be seen, the observed limit is better than expected limit resulting from a downward

fluctuation of around 1σ compared to the expected sensitivity.
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Figure 8.1: Expected and observed 90% (blue horizontal line) 95% (red horizontal line)

CL exclusion limits for full Run I and 2016 simultaneous data fit accounting for all

systematics with (a) normal and (b) logarithmic y-axis.

Expected/Observed Confidence Value

Interval

Expected 90% CL 1.9× 10−8

Observed 90% CL 1.1× 10−8

Expected 95% CL 2.3× 10−8

Observed 95% CL 1.4× 10−8

Table 8.1: Resulting exclusion limits with simultaneous fit. The differences in the

expected limits compared to those shown in Table 7.15 are due to the increase in data

stastistics as well as different fit parameter values.

8.2 Conclusion

In conclusionmost of this thesis was dedicated to the search for the decay B+→ µ+µ−µ+ν.

This search was performed using 4.7 fb−1 of proton-proton collision data collected by

the LHCb experiment. No significant signal was observed for B+→ µ+µ−µ+ν and an
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Figure 8.2: Corrected mass distribution of all selected B+→ µ+µ−µ+ν candidates with

the fit overlaid. Samples with low and high corrected mass uncertainty are fitted as

individual samples but are merged in the figure. As the signal yield is negative the total

fit in red shows a downward fluctuation. The dashed line represents the fit result if the

signal had the branching fraction predicted in [1].

upper limit of < 1.4× 10−8 at 95% confidence level was set for the branching fraction,

where the minimum of the two µ+µ− mass combinations is below 980MeV/c2. This

limit disagrees with a recent theoretical calculation based on the vector dominance

model [1], where the B(B+→ µ+µ−µ+ν) = 1.3× 10−7. In order to visualize the fit with

this branching fraction hypothesis, the fit is plotted in Figure 8.2. It can be seen that

this signal would have been clearly visible if it was there. Under the assumption that

the decay is dominated by intermediate vector mesons, the limit for the full kinematic

region stays the same.

This thesis also presented PID work that concentrated on the correlation induced by

having more than one muon in a final state.
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8.3 Outlook

Despite the fact that no signal was observed, a stringent limit on the B(B+→ µ+µ−µ+ν)

was set with direct impact on the prediction given by [1]. As mentioned in section 2.10,

the naive estimate of B(B+→ µ+µ−µ+ν) = 1.0×10−8 is therefore not too far from the limit

set. At the moment of the writing of this thesis LHCb collected 8 fb−1 of data, which

means that the dataset for the analysis doubled. So assuming that the dataset doubles

with the same ratio between the background and signal the limit would improve by a

factor of 1/
√
2. This would therefore allow one to reach the naive branching fraction

estimate.
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Appendix A

Fitting functions

A.1 Double-sided Ipatia Function

Generalisation of (double-sided) Crystal Ball function where per-event uncertainty is

taken into account, known as (double-sided) Ipatia function, [65]. Hence it has the

same number of parameters and is usually denoted as I(m,µIP ,σIP ,λ,ζ,β,a1,n1, a2,n2).

A.2 Crystal Ball Function

Crystal Ball (CB) function [66] is usually used for fitting of signal mass peaks in the

invariant mass distributions. The CB function consists of Gaussian function (which

usually describes mass peak) with a power-law tail below a certain threshold. Its PDF is

defined as

f (x;α,n,µ,σ) =N ·















e
− (x−µ)2

2σ2 , if
(x −µ)
σ

> α

A ·
(

B− (x −µ)
σ

)−n
, otherwise

(A.1)

where A,B and N are all constants that depend on α,n,µ,σ ensuring correct normalisa-

tion and continuity of the first derivative. Thus, if α is positive, the tail, A ·
(

B− (x−µ)
2σ

)−n
,

will start below the mean, usually arising from the photon-radiating decay products

(left tail) and vice versa for the case where α is negative, arising from non-Gaussian
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resolution effects (right tail).

If one has to deal with different per-event uncertainties on the mass, one way is to

model this by a sum of two Crystal Ball functions, where then each uncertainty on the

event, would correspond to sum of two delta functions. Hence, double-sided Crystall

Ball is defined as a linear combination of f (x;α,n,µ,σ):

g(x;α,n,µ,σ, fcb) = fcb · f (x;α,n,µ,σ) + (1− fcb) · f (x;α,n,µ,σ). (A.2)

A.3 Rookeys Function from ROOFIT Package

A non-parametric function that is composed of superposition of Gaussians with equal

surface, but with different widths σ , which are established by data at a given point.
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Appendix B

Correlation Matrices

B.1 Correlation Matrices for backgrounds in BDTs
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Figure B.1: Correlation matrix for all input variables, corrected mass as well resulting

BDT variable for both (a) Run I Combinatorial BDT (b) 2016 Combinatorial BDT for

background sample.
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Figure B.2: Correlation matrix for all input variables, corrected mass as well resulting

BDT variable for both (a) Run I Misid BDT (b) 2016 Misid BDT for background sample.
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