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Abstract. Sometimes, canonical quantization has difficulties that can be cured using a new
quantization procedure called affine quantization. After briefly introducing this new procedure,
we show that its approach to simple models ensures that a valid quantization can be obtained.
These valid procedures then are used to help fields and gravity.

1. Introduction
1.1. The highlights of canonical quantization
Canonical quantization (hereafter CQ) can be summarized briefly as follows. Classical variables,
−∞ < p & q < ∞ , and a Poisson bracket {q, p} = 1, may be promoted to the basic quantum
operators, p → P & q → Q, for which [Q,P ] = ih̄11. However, a valid quantization requires
that the classical variables are Cartesian, e.g., dσ2

CQ = ω−1 dp2 + ω dq2. In that case, a classical
Hamiltonian, H(p, q) = H(p, q) ⇒ H(P,Q), and the latter term is the quantum Hamiltonian,
which usually is a polynomial.

These important features have been developed using coherent states, e.g., |p, q〉 =
e−iqP/h̄ eipQ/h̄ |ω〉 with (Q+ iP/ω) |ω〉 = 0,

H(p, q) = 〈p, q|H(P,Q)|p, q〉 = 〈ω|H(P + p,Q+ q)|ω〉
= H(p, q) +O(h̄; p, q) , (1)

which in the limit h̄ → 0 leads to H(p, q) = H(p, q). To ensure valid results, CQ requires
Cartesian phase space variables. The desired Cartesian variables can be found from the Fubini-
Study metric to attain valid coordinates. In particular,

dσ2
CQ = 2h̄ [ || d|p, q〉||2 − |〈p, q| d|p, q〉|2 = ω−1 dp2 + ω dq2 , (2)

an expression designed to cancel any phase factor placed on the coherent states.
A common toy model is a harmonic oscillator, now with simple parameters, in which

H = (p2 + q2)/2 → H = (P 2 + Q2)/2. This models’s eigenfunctions and eigenvalues are well
known, and we note that, the ground-state eigenvalue is h̄/2, while the full set of eigenvalues
are En = h̄(n+ 1/2), where n = 0, 1, 2, 3, .... A special fetcher of this model is that it has equal
spacing of the eigenvalues, and in this case that spacing is h̄.
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It is important to examine different classical variables for the full-harmonic oscillator, such
as q = q̄3/3 and p = p̄/q̄2 so that the Poisson bracket is {q̄, p̄} = 1. So far, such new variables
may be promoted to new, and different, quantum operators, p̄ → P̄ & q̄ → Q̄. The new
variables can be used for the classical Hamiltonian, and the quantum Hamiltonian would become
H̄ = [P̄ (Q̄−4)P̄ + Q̄6/9]/2. Surely, this new quantum Hamiltonian does not have equally spaced
eigenvalues. This example emphasizes that the full set of CQ rules are needed to get valid results.
Choosing, and using, proper classical variables to promote to unique quantum operators will fully
ensure valid results. Suitable coherent states lead to proper classical variables, which then can
help lead to valid results [1].

Now we analyze our other quantization procedure.

1.2. The highlights of an affine quantization
Affine quantization (hereafter AQ) can be summarized briefly as follows. The primary feature
of AQ is that we can remove a single coordinate point, say q = 0. That automatically implies
that P † 6= P , i.e., those two operators are no longer equal. The remaining space includes
q > 0 and q < 0. We discard q < 0 and keep q > 0. To restore self-adjoint operators, we
introduce the dilation classical variable d = pq ⇒ D = [P †Q + QP ]/2 = D†. It now follows
that [Q,D] = ih̄ Q. Instead of Cartesian classical variables, AQ requires that they adopt a
different metric, dσ2

AQ = (βh̄)−1 q2 dp2 + (βh̄) q−2 dq2 , which is called a constant negative
curvature, here with the value −2/(βh̄). In that case, the classical primed-Hamiltonian function,
H ′(pq, q) = H′(pq, q)⇒ H′(D,Q), which is mow the quantum primed-Hamiltonian.

An uncommon toy model is the half-harmonic oscillator, using simple parameters again, for
which the classical Hamiltonian is still the same, i.e., H = (p2 + q2)/2, but now q > 0. As a
toy, it acts like a particle moving back and forth always bouncing off a wall at q = 0 where its
momentum instantly reverses direction.

The quantum properties of this models’s eigenfunctions and eigenvalues are recently well
known, and we note that the eigenvalues are En = 2h̄(n+ 1), where, as before, n = 0, 1, 2, 3, ...
[2]. Again, we find that a special fetcher of this model is that it also has equal spacing of the
eigenvalues, and in this case, the spacing is 2h̄. In addition the ground state eigenvalue has
become 2h̄. It is indisputable that the half-harmonic oscillator has a valid solution, and, thanks
to the equal spacing and its values, that evidently points to a valid quantization of this model
using AQ.

While CQ leads to valid results for the harmonic oscillator, it follows that models like
H = p2/2 + V (q) ⇒ H = P 2/2 + V (Q), provided that −∞ < V (q) < ∞, and this
example will also lead to valid results. A similar comment holds for AQ, where q > 0,
and using valid results for the half-harmonic oscillator, it follows that other models, like
H ′ = (d2/q2)/2 + V (q)⇒ H′ = D (Q−2)D/2 + V (Q) = [P 2 + (3/4)h̄2/Q2]/2 + V (Q), provided
that −∞ < V (q) <∞. Such models will also lead to valid results.1

We note that the previous paragraph shows how to create valid quantum Hamiltonians by
first ensuring that their kinetic factors are well chosen.

1 A natural variation of the half-harmonic oscillator uses 0 < q + b <∞, in which 0 ≤ b <∞, only changes the
h̄ term from (3/4)h̄2/Q2 to (3/4)h̄2/(Q + b)2. This model also has a continuously equally spaced eigenvalues for
all b, which run from 2h̄, for b = 0, down to h̄, as b→∞. An excellent graph of several eigenvalues, expressed as
a function of b, may be seen in [3], page 36.
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2. The Quantization of Field Theories
2.1. Examining the territory
A common model, using the momentum field, π(x), and its field, ϕ(x), has the classical
Hamiltonian

H =
∫
{1

2 [π(x)2 + (
−→∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p} dsx . (3)

Let us suppose that ϕ(x) represents some feature of nature, e.g., a tiny particle named z1
to distinguish it from particle z2. Note that if ϕ(x) = 0, that value could not distinguish the
z1 particle from that of the z2 particle, or any other particle as well. Stated briefly, nothing is
lost if we remove points where ϕ(x) = 0. In two or more spatial dimensions, paths can pass by
any points where ϕ(x) = 0. Moreover, the integral in (3) is completely unchanged if we remove
points where ϕ(x) = 0.

A new topic points to possibilities that π(x) = ±∞, and also possibly ϕ(x) = ±∞, which
can lead to H(x) =∞ at some points, but still find that H =

∫
H(x) dsx <∞. Such an example

could be H(x) = 1/(x2
1 + ...+x2

s)
s/2 integrated over (x2

1 + ...+x2
s) < 1. Path integration involves

that and similar functions. Integrable infinities are acceptable in mathematics, but any field
representing nature should never reach infinity.

A way to eliminate infinity expressions is to adopt affine variables, such as κ(x) = π(x)ϕ(x)
as the dilation field. Here we remove points where ϕ(x) = 0, and also limit all three terms from
infinity, specifically such as 0 < |ϕ(x)| < ∞, while 0 ≤ |π(x)| & |κ(x)| < ∞. Such limitations
ensure correct values for all three functions.

This story leads to an infinity-absent, classical Hamiltonian, using affine variables, and which
it is given by

H ′ =
∫
{1

2 [κ(x)2/ϕ(x)2 + (
−→∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p} dsx . (4)

It is noteworthy that the kinetic term already demands that 0 < |ϕ(x)| <∞ and 0 ≤ |κ(x)| <∞
so they can represent π(x) correctly. Moreover, it follows that 0 < |ϕ(x)|p <∞.

2.2. An affine quantization of field theories
We start with traditional CQ field operators, π̂(x) and ϕ̂(x). Removing ϕ̂(x) = 0 leads to
the fact that now π̂(x)† 6= π̂(x). We follow the affine procedures and introduce the dilation
quantum field, κ̂(x) = [π̂(x)† ϕ̂(x) + ϕ̂(x) π̂(x)]/2 = κ̂(x)†. Like the single particles, we find that
[ϕ̂(x), κ̂(y)] = ih̄δ(x − y) ϕ̂(x). Just like CQ, the AQ operators need scaling and regularization
to get around the facts like [ϕ̂(x), π̂(x)] = ih̄ 11∞ and [ϕ̂(x), κ̂(x)] = ih̄ ϕ̂(x)∞. In this paper
we develop expressions that are implicit and accepted as formal expressions. Using formal
expressions still requires that their formulation be on the road toward valid results, and not on
any other, eventually incorrect, type of road.

Using AQ rules for a formal quantum Hamiltonian of the field models, and using Scrödinger’s
representation, leads to

H′ =
∫
{1

2 [κ̂(x)(ϕ(x)−2)κ̂(x) + (
−→∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p} dsx . (5)

It is noteworthy that there have been several Monte Carlo (MC) versions of path integration,
in which scaling and regularizing have still retained AQ validity possibility, which has to be
a useful, and CQ-like, behavior in which the quantum Hamiltonian, again using Schrödinger’s
representation, becomes2

H′′ =
∫
{1

2 [π̂(x)2 + 2h̄2/ϕ(x)2 + (
−→∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p} dsx . (6)

2 The 2h̄2 numerator term has been recently promoted from (3/4)h̄2 after further analysis. Clearly, this change
boosts the contribution of the h̄-term to the final result.
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Observe, that while π̂(x)† 6= π̂(x), and thanks to the h̄− term, it ensures that in this equation
both π̂(x)† and (π̂(x)†)2 act like π̂(x) and π̂(x)2. That property can aid commutation efforts.

The present MC studies for the model ϕ4
4 using CQ, and with no extra h̄-term, have provided

‘free results’, as if the interaction term was absent when in fact it was present, which is
unacceptable. Other MC studies of the same model, now using AQ, which means that the
h̄-term is present, has led to ‘non-free results’, just as they should be, which is acceptable. That
may not be the final story yet, but, at least, AQ is clearly closer to valid results than CQ is.

3. The Quantization of Einstein’s Gravity
3.1. Examining the territory
Guided by introducing dilation variables and the several examples that appear, we are led
to what will be called the gravity dilation field, namely πab (x) = πac(x) gbc(x), with a new
feature in which there is a sum over c. As required by physics, gab(x) > 0, meaning that
ds(x)2 = gab(x) dxa dxb > 0, provided that Σ3

a=1 (dxa)2 > 0.
Now, the classical ADM Hamiltonian [4], expressed in affine classical variables, uses the

metric gab(x) > 0, g(x) = det[gab(x)] > 0, and πab (x) = πac(x) gbc(x), which leads to

HAQ−ADM =
∫
{g(x)−1/2[πab (x)πba(x)− 1

2 π
a
a(x)πbb(x)]

+g(x)1/2 (3)R(x)} d3x , (7)

where (3)R(x) is the Ricci scalar for 3 spatial dimensions.
Since the customary classical variables are the momentum field, πab(x) and the metric field,

gab(x) > 0, if follows that while the quantum metric is self-adjoint, i.e., ĝab(x)† = ĝab(x), the
quantum momentum is not self-adjoint, i.e., π̂ab(x)† 6= π̂ab(x). Following previous procedures,
we introduce the quantum dilation field, π̂ab (x) = [π̂ac(x)† ĝbc(x) + ĝbc(x) π̂ac(x)]/2 = π̂ab (x)†. It
follows that the quantum Hamiltonian, in Schrödinger’s representation, becomes

HAQ−ADM =
∫
{[π̂ab (x) g(x)−1/2π̂ba(x)− 1

2 π̂
a
a(x) g(x)−1/2π̂bb(x)]

+g(x)1/2 (3)R(x)} d3x , (8)

A special feature is that π̂ab (x) g(x)−1/2 = 0. It is as if π̂ab (x) g(y)−1/2 = 0, where x 6= y. That
fact simplifies the gravity kinetic factor greatly.

The quantum gravity Hamiltonian is the center piece of a complex analysis, and it is ripe for
solution. A valid quantization of the classical Hamiltonian is required to lead the constraints
further toward a potentially valid quantization of gravity. A procedure to include constraints
and their role in quantum gravity has been presented in [5].

4. Summary
This paper has stressed that a new quantum procedure, i.e., AQ, is prepared to find valid
quantizations for problems with incomplete coordinate spaces. The results of the full- and half-
harmonic oscillators separately confirmed that they performed valid quantization for CQ and
AQ. Applying AQ to field theories and to gravity, exploited the use of appropriate dilation and
coordinate variables. It was found that there was no longer any integrable infinities, as nature
requires. While both quantum fields and quantum gravity using CQ, have been well examined,
they have not as yet been able to claim either one of them as satisfactory valid quantizations.
Quite possibly, these problems may be closer to validity using AQ, as this paper has implied.
Several articles have already aimed at finding better field theories and gravity results; see [5 -
18].
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