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Recently, Hoshina, Fujii, and Kikukawa pointed out that the naive lattice gauge theory ac-
tion in the Minkowski signature does not result in a unitary theory in the continuum limit,
and Kanwar and Wagman proposed alternative lattice actions to the Wilson action with-
out divergences. We show here that the subtlety can be understood from the asymptotic
expansion of the modified Bessel function, which has been discussed for the path integral
of compact variables in nonrelativistic quantum mechanics. The essential ingredient for
defining the appropriate continuum theory is the ie prescription, and with the proper im-
plementation of this we show that the Wilson action can be used for real-time path integrals.
Itis important that ie should be implemented for both timelike and spacelike plaquettes. We
also suggest why ie is required for the Wilson action from the Hamiltonian formalism: it is
needed to manifestly suppress the contributions from singular paths, for which the Wilson
action can give different values from those of the actual continuum action.

Subject Index BO01, B38, B64

1. Introduction

The real-time path integral [1] has recently been revisited both analytically [2-4] and numer-
ically [5-12] for the study of real-time dynamics in quantum theories. On the numerical side
in particular, many developments have been made to tame the infamous sign problem (e.g.,
complex Langevin [5,6,13-16], contour deformation techniques including Lefschetz thimble
methods [2,3,7-9,11,17-30], and the tensor renormalization group [10,31-40]), which can en-
able us to investigate real-time quantum systems via numerical calculation. It is thus becoming
not only of theoretical interest but also of practical importance to establish an appropriate way
to calculate real-time path integrals. Recently, Hoshina, Fujii, and Kikukawa [41] pointed out
that the naive lattice gauge theory action in the Minkowski signature does not result in a uni-
tary theory in the continuum limit, and Kanwar and Wagman [30] proposed alternative lattice
actions to the Wilson action removing divergences to give a well-defined continuum limit.! In
this paper we point out that the subtlety can be understood from the asymptotic expansion of
the modified Bessel function, which has been discussed in nonrelativistic quantum mechanics

ISee also Ref. [42] for a discussion on the unitarity of the time evolution operator and the role of
imaginary time in theories with compact variables.
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of compact variables [43,44]. To get rid of the unwanted part of the asymptotic expansion,
we need to incorporate the ie prescription, i.e., an infinitesimal Wick rotation [45]. The first
point of this paper is that we can use the Wilson action for numerical studies, but with ie im-
plemented. It is also possible to expand the Boltzmann weight with the characters to define the
real-time action, in which case we express the characters not with the modified Bessel functions
themselves but with their asymptotic expansion in ¢ — +0. In the latter case, ic is already built
into the action, and thus, safely setting ¢ = 0, the theory has an appropriate continuum limit.

In the above two actions, the key ingredient is the ie prescription, which we know is essential
in the continuum theory to obtain the causal structure of the Green functions. However, it may
seem uncertain why such an ie is required without knowing the actual continuum quantum
theory. As the second point of this paper, starting from the Hamiltonian formalism, we suggest
why ie becomes required for the Wilson action. Note that the Wilson action is only guaran-
teed to reproduce the action values of the continuum action for smooth field configurations.
Here, ie is needed to manifestly suppress the contributions from these singular paths in the path
integral.?

As an illustrative example, we begin with a simple one-dimensional quantum mechanical
system in a periodic box [30]. We define the lattice action by discretizing time direction resulting
in a U(1) theory, and review the subtlety in defining the continuum limit of the real-time path
integral for this model [30,43.,44]. We explain in particular how the correct continuum limit
emerges with ie by analyzing the asymptotic expansion of the modified Bessel function [43]. We
then consider the meaning of ie by deriving the path integral from the Hamiltonian formalism.
This model gives the essential structure for the necessity for ie.

With the detailed picture in quantum mechanics, the lattice gauge field theory can be seen
in a straightforward manner. We first describe the subtlety of real-time path integrals in gauge
theories [30] with the modified Bessel function. The expansion of the Boltzmann weight with
characters shows that we need to incorporate ie for both timelike and spacelike plaquettes.
Next, we show that the Wilson action can be used with ie by using the two-dimensional SU(2)
and SU(3) theories. Lastly, we suggest the meaning of ie from the Hamiltonian formalism, in
particular considering the SU(2) Wilson theory [46].

The remainder of this paper is organized as follows. In Sect. 2 we first review the subtlety
of the real-time path integral in the quantum mechanics on S'. We then suggest the meaning
of ie by deriving the path integral expression from the Hamiltonian formalism. In Sect. 3, we
move to the lattice gauge theory case. After describing the subtlety of the real-time path integral
similarly to Sect. 2, we demonstrate that the Wilson action can be used with ie. Lastly, we clarify
the meaning of ie in gauge theory from the Hamiltonian formalism. Section 4 is devoted to the
conclusion and outlook.

2. Quantum mechanics example
In this section we describe the subtlety in defining the real-time path integral of the quantum
mechanics on S'. The subtlety in this case is similar to lattice gauge theories [30].

>The author is sincerely grateful to Yoshio Kikukawa and the referee of Progress in Theoretical and
Experimental Physics for pointing out the misstatements in the first version of the manuscript that re-
sulted from not recognizing the well-defined distributional meaning of the Feynman kernel. Major parts
of Sect. 2.2 have been revised accordingly from the first version.

2/16

220z 189000 g | uo Jasn yayjol|qiqlenusz-AS3a Aq 0282599/£09€60/6/2202/ol0e/da)d/wod dno-olwapede//:sdyy Wwoij papeojumo(



PTEP 2022, 093B03 N. Matsumoto

2.1 Subtlety of real-time path integral in quantum mechanics on S’
We consider a one-dimensional quantum system with the action:

Sl1="2 / dt (09)’, (1)

where ¢(f) is the angular variable on S!. This model is equivalent to the ordinary one-
dimensional quantum mechanics in a periodic box (see, e.g., Refs. [47-53]) by the identification

x(t) = %qm), (2)

where L is the spatial extent of the system and j gives the particle mass, (277)>8/L>. We con-
centrate here on the free case for simplicity. The corresponding Hamiltonian of the system is

1

2[3p¢7 (3)

where p, 1s the conjugate momentum of ¢. In quantum mechanics, the plane waves
{exp(ing)},cz are the eigenfunctions of the momentum operator, which in this case diagonalize
the Hamiltonian with the energy levels:

En

1 2

To define the path integral, we discretize the time 7' = Na and introduce the U(1) variables
U, = ¢, where ¢, = ¢p(al) (¢ =0, ..., N). The transition amplitude from level n; to ny,

Apyn(T) = (nple™ T |ny), (5)

may be expressed on the lattice naively as

A1) =N [@) SOy, ©
where
Nod
@) =[av, = ) )
T

=0 =0

IB N- ,3 N—-1
SWU) = b Z |Ups1 — U = - Z Re(Up41U;") 4 const. (8)

=0 =0

The normalization factor A can be determined by demanding AS,I?t,)l (0) = 8-

To obtain an analytic expression for AS;‘}%I.(T ), we expand the exponential in terms of char-

acters:

—i(B/a)ReU _ I —_1,3 U" 9
¢ > (=)o ©)

nez

where I,(8) is the modified Bessel function of the first kind. The integration in Eq. (6) can be
performed analytically to give

a _i,B
left;:,(T) - N‘Snf nitng (7) . (10)
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AS?%(T) is an analytic function of the coupling 8 for finite a; however, it is not in the limit a

— 0. This can be seen in the asymptotic expansion of 7,(z) for |z| — oo [43]:

& Tn+k+1/2) (—1\F
m;k!F(n—k+ 1/2) (Z)

e Tn+k+1/2) (1}
a/_znzkz(;k!r‘(n—k—i-lﬂ) (Z) ‘

The plus signature applies for —7 /2 < argz < 37 /2, and the negative signature for —37 /2 <
argz < /2. For |argz| < 7 /2, including the imaginary-time case (argz = 0), the second term
will be completely irrelevant because of the exponential factor. However, at argz = —m /2,
which is the case for Eq. (10), the second term also contributes equally to the first term. There-
fore, the result will be different depending on how we approach the real-time continuum limit.
To get the correct continuum limit, one can modify the kinetic term [43,44] by introducing a
slight imaginary part,

I(z) ~

+ ie:l:znn

(11)

B — B (e > 0). (12)
We first take the ¢ — 0 limit, keeping ¢ finite, and then take the ¢ — +0 limit. In fact, for
|argz| < /2,

2

W/~ 1= 24 (13)

which in our case gives

e _ i ,le N n? Na—) s
[ln< . ﬂ>/10< G ﬂ)] N[l_ie_le%%+,..] _gexp[_ie—w’;_g] (14)

Therefore,

A% (7) 255, exp[—ie B, T] 25 6, exp [~iE,, T], (15)

ny,n;
which is the desired real-time amplitude.

Note that we will not obtain the correct continuum amplitude if we take ¢ — 0 exactly on e =
0[30]. In this case, the amplitude AS;“}L(T ) becomes a singular function with a highly oscillatory

behavior because of the second term in Eq. (11).

2.2 g in the derivation of the path integral

Although the argument in Sect. 2.1 is mathematically correct, it is uncertain why such an ie
becomes required to obtain the correct continuum theory for the discretized action in Eq. (8).
In this subsection we argue that, starting from the Hamiltonian formalism, we can understand
the role of ie as manifestly suppressing the contributions from singular paths, for which the
discretized action can give different values from those of the actual continuum action.3

We consider the Feynman kernel for an infinitesimal time increment « ,
('l u), (16)

where | U) is the eigenstate of the unitary operator U, U|U) = U|U), that satisfies the commu-
tation relation

[U, ps]l=TU. (17)

3The relation between the path integral and the Hamiltonian formalism for a compact variable was
considered in Ref. [43], but was not used to explain the meaning of the is.
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By inserting the momentum eigenstates |n),
(Uln) = U" (ne2), (18)

we have

(U'lem*U) = Zexp[—n + in(@' — ¢)]

neZ

) B} ’_ +2 2
_ /4 /_LfZexp[i'B(d) ia JTW)]’

(19)

weZ

where we write U = exp (i¢), U' = exp(i¢’) with ¢, ¢’ € [, ), and we have used the Poisson
summation formula to obtain the second line. Although the kernel in Eq. (19) is not well defined
as an ordinary function because the theta function

v, 1) = Z i’ pminy (20)

neZ

is only analytic for Im 7 > 0, the kernel has a definite meaning as a distribution. To see this,
it should be sufficient to check the Fourier integral in which the kernel is multiplied by the
plane waves because all the state vectors can be expressed as a linear combination of these
basis vectors. For the kernel in Eq. (19), we trivially obtain

/dU/(U’*)" U'le"H Uy = (U*)'e 5" 1)

which is a well-defined number for given » and U, and thus establishes the definite meaning of
the kernel as a distribution.

We can now understand the need for ie discussed in Sect. 2.1 with distributional terms. In
fact, the naive real-time path integral in Sect. 2.1 amounts to replacing the kernel in Eq. (19)

by the expression
g . 2 ]
(U'le ™ |Uy — ™14 | znp exp [f [l —Re (UU’*)]} . (22)
—a a

This replacement cannot be justified as a distributional relation because, as in Sect. 2.1, the
Fourier integral gives

/dU’(U’*)”ei”/4,/ 2irf ex [ i [1- Re(UU’*)]]
— ein/4 / ,3 —m¢ tﬁ/al ( 113>
—da

~ e~ [6’%("2 —i(— l)nezilﬂezﬂ;3 o _%)] ) (23)

where the second term is dependent on n and ¢. However, the first term has the correct n and
¢ dependence, and the second term can be removed by the ie. We thus have the distributional
identity after correcting the shift of the zero-point energy:*

. 7y —ia . 2 ie T *
({U'|e Uy = liIEOeseTﬂe’”/“ ”eaﬂ exp[’ea’3 [ —Re(UU’ )]] (24)

This justifies the use of the discretized action in Eq. (8) under the is. The rest of this section is
devoted to systematically deriving this distributional equality.

4The zero-point energy was absorbed in the normalization factor A in Sect. 2.1.
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We begin with introducing the ie and regarding the original kernel in Eq. (19) as the ¢ — +0
limit:
(25)

1 —iald S B 1 —iaH
(e Uy = lim ('l U],

The expression inside the limit now becomes a well-defined function, and has a sharp peak
around U = U’ for an infinitesimal a. This allows us to rewrite the expression as

- | 2weis ole
(U'le ™ U) | poseiep = 7/ Laﬁe ( ﬁkﬁ d)J) (26)

where the function |- ]| returns the value in [—7, 7)) modulo 2. The relation in Eq. (26) becomes
a distributional equality for an infinitesimal a because the contributions with nontrivial winding
are exponentially suppressed thanks to ¢ > 0.

On the other hand, the kernel

exp[ ie’p [1 —Re (UU’*)]] = exp[ <P [1 —cos(¢p — ¢ )]:| (27)

has a similar functional dependence to Eq. (26); the function in Eq. (27) has a sharp peak
around U = U’ for an infinitesimal @, which allows us to expand the cosine in powers of |¢ —
¢’] and convert the Fourier integral to a Gaussian integral:

T de' e exp [ﬂ [1 - cos(¢ — W)]}

gz 27
T dé ]
=/ 2;¢’e—m¢ [ ﬁqu ¢')7 = ﬂms Al }
. 2m
~ oM o /oo do” exp [@qﬁ//z} < — 1618,3¢,/4 +- ) (28)
oo 2T 2a

We see the desired n and ¢ dependence in front of the Gaussian integral. The remaining integral
only gives an overall constant that includes the shift of the zero-point energy:

< de¢" ie*B ., ze’g,B ” ia —a
er 1 ; ;
|5 exp[ 2 }( 2 ? ) ( "ot ) dmic

ia —a
~ . — 29
exp ( 8ee ) 2mie’ B @9

Correcting this constant gives the distributional relation in Eq. (24).

Note the ordering of the limit. The distributional relation in Eq. (24) is for an infinitesimal a
and for ¢ > 0, and thus we first take the @ — 0 limit keeping ¢ > 0. Correspondingly, we take ¢
— +0 outside the path integral once we adopt the discretized action in Eq. (8):

n/ W (T) = N lim lim [(dU)e —i(e*Bla) Y15, Re(Uz+1U*)(U* Y (Up ). (30)

e—+0 a—+
This establishes the necessity of ie in the real-time path integral discussed in Sect. 2.1.

From the above derivation, we can understand the role of ie for the discretized action in Eq.
(19) as follows. Firstly, as expected, large fluctuations basically do not contribute to the ampli-
tude in the original theory, which can be seen from the facts that the kernel in Eq. (19) becomes
the periodic delta function at ¢ = 0 and that we are able to safely introduce ie in Eq. (25). On
the other hand, the discretized action in Eq. (8) is designed in such a way that it reproduces
the continuum action for smooth fields but not necessarily for these large fluctuations. As we
have discussed, this difference in fact changes the distributional property of the kernel, and we
thus need to suppress the contributions from singular paths in advance with ie when using the
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action in Eq. (8). As shown in Eq. (28), the nonlinearity of the cosine function only affects the
overall constant.

3. Gauge theory case

In this section we consider the gauge theory. The structure is basically the same as in the quan-
tum mechanical system discussed in Sect. 2.

3.1 Necessity of ie in lattice gauge theories
The lattice Yang—Mills action for the SU(N,.) gauge group in four-dimensional Minkowski
spacetime can be given by [5,54]:

am_@ZZi——mmwmwmwwﬂ

_ﬁSZZ[ __Retr[UJ\lUY+l]UV+]1U;]]] (31)
X i<j
where
a 2N,
B==2, (32)
ap &g
ap 2N,
b= — 5, (33)
a g

with the spatial lattice spacing a and the time increment ay. We take the normalization of the
generators as tr 7°7T? = (1/2)8%. The local Boltzmann factor can be expanded with the char-
acters x g as

VBRI = N g cr(i(=1) B xr(U), (34)
Rirrep
where r = ¢, s labels the timelike and spacelike directions, (—1)" = —1, (=1)* = +1, and dy is
the dimension of the irreducible representation R. The functions cg are given by [55,56]
S I o
er(i(=1Ypr) = 7 ZZ Aot Tt (= 1Y Br/NC), (35)

where £ (€1 > €y > --- > €y _1 > £y = 0)is the number of boxes in the kth row of the Young
diagram representing the irreducible representation R of SU(N,.). Since B8, — oo in the con-
tinuum limit of asymptotically free theories, we again confront the subtlety coming from the
asymptotic expansion of the modified Bessel function. To obtain the continuum limit, we in-
troduce slight imaginary parts:

B — eig,gt, (36)

By — ¢ " Bs. (37)
It is noteworthy that we should also give the infinitesimal imaginary part for the spacelike
plaquettes.’ The sign of the imaginary part for the timelike plaquettes can be justified by the
argument in Sect. 3.3. To explain the sign for the spacelike plaquettes, one can use the sym-
metry argument that, since the continuum theory should be Lorentz invariant, the asymptotic
formula should be the same for the timelike and spatial plaquettes. The signs agree with those
given by the ordinary ie in the continuum theory.

SThis point was not mentioned in Ref. [30].
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— £=0.1
281 —.- £=02 021 . ¢-02
—me £=0.3

| = £=0.3

261 __ ._oa 004" c—oa

244 -+= €=05 —0.24 - €=05
o character replaced - character replaced

3224 === £- +0 limit 2 _0.44 --- £- +0limit
< .

Fig. 1. The expectation value of the Wilson loop (W) with the area 4 = 1/g” evaluated with the analytic
formula in Eq. (39) for SU(2). The values of ¢ are ¢ = 0.1, ..., 0.5. The cyan dotted line shows the ¢ =0
values with the modified Bessel function replaced by the asymptotic expansion, dropping the unwanted
part, which is drawn in the region where the asymptotic expansion gives sufficient convergence up to the
machine precision. The black dashed line shows the a — 0, ¢ — 40 value, Eq. (40).

3.2 Convergence properties of the Wilson action
To confirm the convergence properties related to ie, we consider the SU(N,.) Wilson theory in
two-dimensional spacetime with N, = 2, 3. We only have the timelike plaquettes in this case,

and we set
2N,

IBI:@’

(3%)

treating spacetime uniformly.
The expectation value of the £ x t Wilson loop with the physical area 4 = £ta®, W, can be
expressed by the characters of the trivial and fundamental representations [56,57],

. e 124
(W) = N, (M) , (39)
Ctriv(_le ,Bt)
for which the continuum limit is known from the analysis of the heat-kernel action [30,58]:
lim lim (W) = N /411N g4, (40)

e—=>+0a—0
Since g is dimensionful, we fix g = 1 in the following.
We begin with SU(2). The character expansion coefficients in Eq. (35) have the well-known
form for the spin-j representation (d; = 2j + 1),

2b 4 1(—ie* By)

(—ic®B,) = _ , 41
eid ) = = @41)
with which we can confirm the ¢ — 0, ¢ — +0 limit in Eq. (40) from Eq. (39):
2
3ie it @\ as0e .
(W) ~ 2 (1 - = g ) DD 2emiOEA, 42)

Figure 1 shows the expectation value (1 4) with the area 4 = 1, where the results are calculated
directly using the modified Bessel function for various . We see that, for relatively large a, the
unwanted part of the asymptotic expansion in Eq. (11) contributes to give oscillatory behavior.
This shows that in practice, for a given a, we need to prepare ¢ large enough that the unwanted
part can be neglected. On the other hand, instead of implementing ie, we can expand the action
in terms of the characters and replace the modified Bessel function with its asymptotic expan-
sion, dropping the unwanted part in advance. The corresponding result with ¢ = 0 is shown
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1851 . e cubic fit
—0.550 1
—-—- exact € +0 value
1.80 —0.575 1 —#— extrapolated a - 0 values
—0.600 1
=~ 1.75 —
S © -0.625 A
2 <
@ 1701 E —0.650
—0.675 4
1.65 1
----- cubic fit —0.700 1
1604 777 exact € » + 0 value
' - extrapolated a -0 values -07254 .
T T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
€ €

Fig. 2. The extrapolated a — 0 values of (W) ,,2) with various & for SU(2). The @ — 0 values are then
fitted to obtain the final ¢ — 40 result. The exact ¢ — +0 value in Eq. (40) is shown with the black
dashed line for comparison.

=== a-0 limit R
—— ag=0.1 ’
1 --- ag=03 7 5
——- ag=0.4 )
1 == ag=0.42 g i

=0.1
0.1

) w
’:( =
s s
- =
« £ == a-0 limit "
-6 — ag=0.1 '\‘
- ag=03 “'\‘
——- ag=0.4 ‘\_.
=109 -..-. ag=0.42 \'\, _
T T T T T T T T T T T T T T
2.5 5.0 7.5 10.0 12.5 15.0 17.5 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Ag? Ag?

Fig. 3. The area A4 dependence of (W) evaluated with various « keeping ¢ = 0.1 fixed (N, = 2).

with the cyan dotted line in Fig. 1 for the region where the asymptotic expansion gives suffi-
cient convergence up to the machine precision. The continuum value in Eq. (40) is shown with
the black dashed line for comparison. For completeness, we perform the ¢ — 40 extrapolation
of the ¢ — 0 limits. To obtain the @ — 0 values for each ¢, we fit five points ¢ = 0.1, 0.15, ..., 0.3
with the linear function of @?. The systematic error is calculated from the estimated variance of
the fitting parameter. The obtained values for the 4 = 1 case are shown in Fig. 2. We fit these
values with quadratic and cubic functions of ¢ to give the final ¢ — +0 value. We use the cubic
result for the central value, and take the difference from the quadratic value as the estimate of
the systematic error. The chi-squared for the cubic fits are xy2/DOF = 3.3 and 1.4, respectively,
for the real and imaginary parts. The obtained estimate lim, _, ¢, . - +0(W.4=1) = 1.86146(93)
— 0.7331(36)i agrees with the analytical value lim, _, ¢ . - yo(W4=1) = 1.8610 — 0.7325i within
the estimated systematic error. To see how the finite a or ¢ effect depends on A4, we also plot
(W) with various a for ¢ = 0.1 (Fig. 3) and the a — 0 values with various ¢ (Fig. 4). We sce
that the effect of finite a or ¢ becomes larger as we increase A.

For SU(3), we show in Fig. 5 the expectation value (W) with the area 4 = 1, and in Fig. 6
the extrapolation of the a — 0 values to the ¢ — 40 limit. The extrapolations are performed
similarly to the SU(2) case, where we replace the range of a with a = 0.1, 0.125, ..., 0.2. The
obtained estimate lim, _, o o - yo(W4=1) =~ 2.359(22) — 1.854(19)i agrees with the analytical
value lim, , o » - yo(W4=1) = 2.358 — 1.855i within the error. The chi-squared for the cubic
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Fig. 4. The areca A dependence of lim, . o(W,) evaluated with various ¢ (N, = 2).
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Fig. 5. The expectation value of the Wilson loop (W) with the area 4 = 1/g° evaluated with the analytic
formula in Eq. (39) for SU(3). The values of ¢ are ¢ = 0.1, ..., 0.5. The plots are truncated before the
curves become highly oscillatory. The black dashed line shows the « — 0, ¢ — 40 value, Eq. (40).
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Fig. 6. The extrapolated @ — 0 values of (W) ,,) with various & for SU(3). The @ — 0 values are then
fitted to obtain the final ¢ — 40 result. The exact ¢ — 40 value in Eq. (40) is shown with the black
dashed line for comparison.

fits are x2/DOF = 3.3 and 6.7, respectively, for the real and imaginary parts. The above inves-
tigations show that the Wilson action with ie correctly reproduces the appropriate continuum
limit.®

For the range of B, studied here, the asymptotic expansion does not converge up to machine precision
in the calculation of the character coefficients in the SU(3) case. The corresponding plot is therefore not
shown in Fig. 5.
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3.3 ig in the derivation of the path integral

In this subsection we suggest why we need ie for the Wilson action from the Hamiltonian for-
malism. For this, we use the SU(2) Wilson action as an example, and follow the conventional
Hamiltonian formalism of the Wilson action [46,59]. To get rid of the complication related to
the gauge symmetry, we take the temporal gauge, U, , = 1. We keep the spatial lattice spacing a
finite in this subsection. Then, at time slice 7, the degrees of freedom of the system are the spa-
tial link variables Uy ;. To describe fluctuations around Uy ;, we introduce the local coordinates
b5 by

i Uy ;. (43)
In particular, we can track the infinitesimal time evolution in terms of 6y ;. With the conjugate
momentum
a .
Pi,i = _29;:,1" (44)
g
we can write down the Hamiltonian [46],
g >
H=—"— ¢ V(U), 45
5 ;(px,,) + V() (45)
where we defined the potential
2N, 1
_ ¢ T T
V) =— > (1 - ERe tr [Uy iUxs ,AUH_].,,.UX,_,.]) . (46)

X,i<j
We now derive the amplitude in path integral form for the SU(2) Wilson theory. The canonical

operators Ux, i» Py,; satisfy the commutation relation

[Ox.i P = TOxi (47)
The configuration basis consists of the tensor product states
Uy =[]0 (48)
X,i
where
UxilUs.i) = Uil Ux,)- (49)
It is convenient to introduce another basis [60],
i i 0 1) = [ ] i i ), (50)
X,
where
(Uxilj.m,m'y = D), (Uy,), (51)

with the matrix elements Diz’m,(U ) of the SU(2) matrix U in the spin j representation. From the
Peter—Weyl theorem, the basis |{ jx i, mx.i, 11, ;}) satisfies the completeness relation,

1= ) (H(zjx,i + 1)) Ucis i 1 D L i 10 - (52)

{jx.is’nx,isni;_i} X, I

Furthermore, for finite ng ;,
ind A . crl a a . .
(U ile P o, ') = (Te b RPN ) 1, m,

— [Tei fol ds )7;:_1-7)(’(5'77)(,[)Dj(Ux’l.)] , (53)

m,m’
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where T denotes the ordered product of the matrices, and P%(0) are the differential operators
expressed in terms of the local coordinates on each link, 6¢ [46,58—60]. In particular, —(P“(6))>
is the Laplacian on 3, and (P%(0))> = (i~'94.)>. Thus,

<Ux,i|(f7x 1)2|]’ n, m = [(Pa(o))zD](Ux mm = = j(j+ l)Dm . (Ux,i)- (54)
We now calculate the amplitude from state ; to ¥
Ay, (T) = (Wyle™ T y). (55)

We discretize T'= Nay and ignore higher-order terms of ay. Note that

(U'e Uy = (U/|e—i% Lil#hi gmiaV (O 17

- l_[ 2(2]’” + I)XJXL(U)ZzUy:rl)e i 2 oGt e iV (U) (56)
X, | i
By diagonalizing
U): IU;LI ~ diag(eiérpxj’ e—i&i)x.i) (8¢x,i c [_7.[’ JT)), (57)

we can write the expression in the bracket appearing in Eq. (56) as (we drop the subscripts x, i

temporarily for notational simplicity)

> o@j+1 w 9 (1)
sin 8¢

I 1 aogz d ng s
—_ et i 2 tinsg —i— N > —inde
2sin8¢ ds¢ ; [e te i|

(38)

11 l.«osgzdﬁ(éai aogz)

2sinog’  dsg. \2x'  8ra
where we defined n = 2j 4+ 1 in the second line. In order to further rewrite the expression, we
introduce an infinitesimal imaginary part,
b} .
= (—¢, —e—w@) . (59)

o (80 _ag
27 8ma 21 8ra

The resulting function has a sharp peak around ¢ = 0, and thus

L

 2sin 8¢e dés¢  \2r’ 8ma

= const -

3¢ e 24 2

- e — (6 , 60
s O [ze el (60)
where in the second line we dropped the contributions with nontrivial winding that will be
exponentially suppressed in the @y — 0 limit. A finite contribution comes from the fluctuations
of order ¢ = O(ay). With a similar argument as for Eq. (29), we can rewrite Eq. (60) up to an
overall constant as

const -

) 2
— exp [ie’SKZz(&p)z] = const’ - exp [—ie’sétr[U/UT]} . (61)
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The amplitude is thus rewritten with the plaquette action in the desired path integral form with
ie:

N N-1
. 2a
~ ART . i gt
A (T) = N 51530 (eZOdUg) exp|:z E {_es_aogz EX,- t[Ue+1x,:Upy ]

=0

+ % > tr[UpxiUsxs, jUZH_,-,,-UZX,_,-]J}w}(UN)wi(Uo), (62)
X,i<j
where N’ is a normalization constant.

Despite the complications related to the field theory, the basic structure is the same as the
quantum mechanical model in Sect. 2. The Wilson action is only guaranteed to reproduce the
continuum action for smooth fields, and we need to suppress the contributions from singular
paths in advance with ie. The ie should thus be regarded as part of the definition of the real-time
path integral when using the Wilson action.

Note also that, since we have only considered the formal ¢y — 0 limit, the ie in the spatial
plaquettes has not appeared in the discussion. In fact, in this treatment, the characters for
the spatial plaquettes can be expressed in terms of the modified Bessel function of the form
1,(2iay/(ag?)) [see Eq. (35)], for which we can apply the expansion of 1,(z) around zero:

Z\" (z/2)%*

e = () ;m (63)
The characters coming from the spatial plaquettes are thus analytic in the limit ¢y — 0 for
a fixed a, giving no complication. The subtlety for the spatial plaquettes arises when we take
the continuum limit, taking @y — 0 and @ — 0 at the same time, making g> run according
to the renormalization group equation. In the latter treatment, which is required in extracting
the continuum physics, we also need to incorporate ie for the spatial plaquettes as argued in
Sect. 3.1.

4. Summary and outlook
We have discussed that ic is an essential ingredient in defining the real-time path integral for the
Wilson action, and showed how its necessity can be explained from the Hamiltonian formalism.
In numerical calculations, one needs to take ie into account for both timelike and spacelike
plaquettes, and this can be done by calculating the continuum limit with several £ and taking the
& — 40 limit, or rewriting the Boltzmann weight in terms of characters, dropping the unwanted
part of the asymptotic expansion of the modified Bessel function for the character coefficients.
We demonstrated in particular that, with ie, the Wilson action gives the correct continuum
limit using the two-dimensional theory as an example. We believe that this clarification of the
subtlety will help us investigate more involved cases such as full quantum chromodynamics.
As we commented in Sect. 3.2, we need to choose ¢ large enough for a given lattice spacing to
avoid the oscillation coming from the unwanted part of the asymptotic expansion. For the stud-
ied range of lattice spacings, this is satisfied numerically in two dimensions at 8;sine > 4.5 for
SU(2) and B;sine 2 15 for SU(3). Since the characters are expressed with 8, in Eq. (35), these
values should also give a rough estimate of the required ¢ in higher dimensions. The rather large
bounds are, however, unpleasant for the four-dimensional application because of the existence
of the critical slowing down at large §8,. A similar situation occurs for the action expressed with
the characters in which the modified Bessel function is replaced by its asymptotic expansion,
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dropping the unwanted part. This is because the asymptotic expansion itself is divergent, and
thus we need to choose the order to truncate the expansion. For large enough 8,, the summand
becomes smaller than the machine precision at some order, and thus we can truncate the ex-
pansion there. However, a comparably large j, is required for such convergence, especially in
the SU(3) case. Therefore, though our method gives a way to obtain the appropriate contin-
uum prediction, it is desirable to circumvent the critical slowing down (see, e.g., Refs. [61-72])
or develop an action that is convergent at small 8, by, e.g., contour deformation [30]. Studies
along these lines are in progress and will be reported elsewhere.
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