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1 Very Large Scale Structure and Gravity

The standard big bang model of the early universe is both simple and suc-
cessful. It assumes that at early times the universe was a homogeneous and
isotropic thermal bath of all the particle species see today. From this and
Einstein's equations it correctly predicts the Hubble expansion, microwave
background radistion and the abundances of the light elements (for a review,
see [1]).

Nevertheless it is obviously only s first spproximation - the universe is
very clearly not homogeneous and isotropic today and so there muat have
been some inhomogeneity at early times. In fact, as we shall see in this
section, a number of recent observations point to the existence of structure
in the universe on scales much lasger than the distances matter has moved
(under gravity) since the big bang. This is exciting - the new very large scale
observations are giving us & more or less direct ‘'window' on the primordial
fluctuations.

Where could the large scale structure in the universe have come from?

A beautiful ides has emerged from fundamental particle physics in the
last few years. It is based on the notion of spontaneous symmetry breaking,
which has emerged as fundamental in unified theories of particle interactions.
What could be simpler than that the mechanism which broke the symmetry
of particle interaétions also broke -__n, spatial symmetry of the universe?

This happens (hrough the dynamics of the symmetry breaking process,
as | shall discuss in section 2. At very high temperatures the symmetry is

unbroken but as the universe cools and expands a phase transition occurs,

forming defects as the universe goes out of thermal equlibrium which survive
to much later epochs and seed the formation of structure.

One particular class of defects shows particularly interesting behavior
in an expanding universe. Cosmic strings{2] are linelike defects formed in
symmetry breaking phase transitions, and have the property that they evolve
into & ‘scaling solution’, where the strings remain a fixed fraction of the total
density throughout the radiation dominated ers. This results in & highly
predictive theory of galaxy formation, an alternative to the more popular
theory based on quantum fluctuations produced during s period of inflation.
I will concentrate on cosmic strings here but will also compare and contrast
the two scenarios in section 2.

Of course we atill do not know what the right fundamental theory is.
Some grand unified theories predict strings and others do not. Over the last
few years there has been increased hope that superstring theories may offer
an ‘ultimate’ unified theory, including gravity. Some ‘supersiring-inspired’
models also predict cosmic strings, but so far these are so contrived that it
is hard to take them seriously. .

In the final section I will describe an interesting connection between cos-
mic strings and fundamental strings. The latter may be used as an approx-
imate description of the former, and for fundamental strings the statistical
mechanics is relatively straightforward. I bope to give & clear and simple
account of this in section 3, and discuss what insight this gives us into both

cosmic and fundamental strings in the early universe.
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same function (or all objects. This is consistent with the observational fact
that clusters poorer than Abell clusters {16}, the richer Abell clusters [13]
and even superclusters{15) have clustering apparently consistent with a sin-
gle scale invariant correlation function. In fact ¢ is approximately equal to
0.2(r/d)=?. Written the same way galaxies appear slightly more correlated:
&y = (r/d)~?[18], consistent with the view that gravity has enhanced the
cotrelations on small scales.

Statistics on these observations are still not good and the ideas for ex-
plaining them clearly preliminary, but the observations are improving all the
time and becoming increasingly constraining. Clearly data like this are going
to play & crucial role in deciding which theories of the origin of large scale
structure are viable.

The fact that the distribution of galaxies does not necessarily reflect the
distribution of the mass (and in particular the dark matter) in a simple way
represents a profound problem for matching cosmological theories to obser-
vation. Which is why recent determinations of the actual peculiar velocity
field (the velocities of galaxies relative to the overall Hubble flow) are of such
great .mn-von..!-nn. These seem to indicate a very lurge scale flow field centred
on a region (‘the great attractor’) 80A; Mpc from us with magnitude about
500kmas " at our galaxy [17]. T will discuss below how this velocity field is
related, in the linear regime, to the mass perturbation. If these observations
are correct, they practically rule out the ICDM model.

So what if there is large scale structure in the universe? The most striking
thing about it is that matter could not have moved these distances under

gravity since the big bang. In the linear regime (and on these scales the

structure is not yet nonlinear) there is a precise relation between the distance
a particle has moved relative to the Hubble flow since the big bang 6 and
its present peculiar velocity §v: §r = Hy 'Sv (see below). Now galaxics are
very rarely observed to have velocities of greater than 600kms—' = 2.10-%¢
relative to the observed structures. This means they can have moved no more
than 12h;)Mpc since the big bang. So when we see much larger structures
we are seeing the primordial density perturbation field itself! This is an
encouraging thought.

The second good reason for a growing interest in cosmology is that only
in the last few years have any well-defined ideas as to the origin of large scale
structure come forward. In particular cosmic strings and quantum fluctua-
tions in inflationary models are well defined theories with clear predictions.
For example, the quantum fluctuation scenario with hot dark matter is close
to being ruled out by its excessively large predicted anisotropy in the mi-

crowave background [19].

1.2 Dark Matter

The greatest single obstacle to the interpretation of the observations of large
scale structure is the by now firmly established fact that most of the 5-.:2.
in the universe is dark (For a nice review, see [8]). The shining matter -
sas and stars - is only the ‘tip of the iceberg’. The best evidence for dark
matter comes from observations of the rotation curves of spiral galaxies|20].
To keep a particle in orbit around & galaxy requires sn acceleration of vi/r
where v and r are the orbital velocity and radius. Assuming that this is

provided by the gravitational pull of the mass M., inside the orbit one finds



M., = *. Obscrvations indicate that v? remains constant with increasing
" r out (o distances several limes the optical radius of & galaxy. Thus most
of the mass is dark. Estimates of the mass of appareatly virialised clusters
of galaxies confirm this - and extrapolating the observed mass to light ratios
in clusters to the whole universe leads to an estimate of {1 typically between

0.1 and 0.3. This may well be an underestimate, pasticularly if galaxies form

preferentially in d regions like clusters, making the mass to light ratio
larger outside clusters.

Nucleosyathesis calculations{8] in fact indicate that even the baryons are
mostly datk! They yicld the bounds .04 < Sie,pemsdly < 0.14 whereas the
observed (liuminews i-¢. the density in stars and gas is less than 0.02. So we
can’t cven see the baryons!

However things are worse than this, according to most theorists. There
is & strong prejudice that §§ = 1. This is because in & matter or radiation
dominated universe f1 = 1 is an uastable fixed point of Einstein’s equation.
If 2 devistes from 1 then the deviation grows rapidly in time. Given that 2
is today fairly close to unity it would seem crasy that we should apparently
be here precisely around the time when it started to deviate from unity.
Inflation ‘solves’ this problem (called the flstness problem) - during a period
of inflation f1 = 1 becomes an sttractor in Einstein’s cquation so that in a
typical region of the universe which underwent inflation 2 would still be very

close to 1.

1.3 Newtonian Approximation

For many purposes the Newtonian approximation to Einstein's cquation is
entirely adequate. In particular it is & good approximation when dealing
with scales (a) far inside the horizon so velocities are small and (b) where
gravity is fuirly weak so the dimensionless gravitationul potential is inuch less
thao 1. It is also & lot simpler than full relativistic perturbation theory and
brings out the main points about the growth of density perturbations under
gravity.

So let us begin with Newton's equations. A particle at ‘physical’ coordi-
nate 7{t) obeys

F=-V,¢ )

where the Newtonian potential @ is given by

V¢ = 4xGp (2)

with p the density. Before discussing perturbations, let us describe the ho-
mogeneous matter dominated background solution to (1) and (2). We set
p = py, independent of 7, and find in spherical coordinates about some point
chosen as the origin (where r = & = 0),
2xGpyr?

3
|h‘°\v-ﬂ

3

mr’ = const (3)

-y
i

the last equation being matter conservation. lotegrating we find

sH _ 45Gpr?

2 3 = conat 1)



and choosing the constant to be gero (i.e. 11 to be 1) we find

1R.~

1
# = GeGB ©)

the standard Friedmann matter dominated universe. This solution is true for
every particle, snd we write it as 7 = a(¢)Z where a(t) is the scale factor. We
can choose a(t) equal to 1 initially in which case # is the initial coordinate of
the particle (the ‘comoving coordinate’). The Newtonian approximation gives
the correct result as a consequence of homogeneity and Birkhoff's theorem]6)
- it is only the contribution of the matter inside a spherical shell which is
important, and this shell may be choten small enough so that ficlds are weak
and velocities small so Newtons equations apply. By homogeneity the same

rate of expansion must apply on all scales.

1.4 Linear Perturbations in Cold Dark Matter

For cold dark matter we also have mass conservation in & comoving volume

\ PAY rnowing = comst (6)

Now imagine we give each particle a small perturbation at some eerly time
and follow it thereafter
7= at)(F + ¥(&,0) (™

¥ is called the comoving displac t. Mass c vation tells us the re-

-s_:.uﬂ density perturbation: if the initial unperturbed density is p; = pya*
then

= p(F)d¥ (8)

o0 the total density

PA
(7 D)

~ }A— - mnﬂﬂw A@v
where we expand the determinant to first order in the perturbation using
Det(1 + A) = 1 + Tr(A) + o(A?). Thus the fractional density perturbation
is given by

bp H = o) -m
P PN
= -V.¢ (10)
At this point it is convenient to Fourier transform y() and decompose it

into two pieces;

1]

W) = [eztas

V()R + a(F) an

¥ji (parallel to k) is the compressional piece and ¢, (perpendicular to k)

il

.

is the rotational piece. Now from (2) and (9) only the compressional piece
causes a perturbation in the potential §%. Fourier transforming and solving

(2) we find
Ve = ~4xGpravy (12)
where to lowest order we use ¥, = a-1¥,. Now (1) decomposes into
i+ Nm..w_. = 4xGa¥

w:.umwh =0 . (13)

10
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which of course grows just as (14). Thus linear theory has a wide range of

applicability.

1.6  Peculiar velocities

Lincar theory also gives information about peculiar velocities in & very direct
way - we see from ¢, = ag.w and (14) that peculiar velocities grow as t}in
the compressional mode. We also see using gﬂﬂ a in the growing mode that
Uy = ..—ﬂ = H&§7, the relation used in the introduction.

In particular geometries v, is related to 8p/p - using (17) we find that

defining the Hubble flow vg = Hr we get

i J S for planar collapse
v 4
= 18 for cylindrical collapse
2p
= .u—..mh!- for spherical collapse (18)

Observations of peculiar velocities such as those recently reported[17] thus
give 8 unique window on 8p/p. If they are correct, we are moving in part of
a very roughly spherical collapse pattern centred on the ‘great attractor’, 80
A;) Mpc away from us. Our velocity towards it is approximately 500kms .

This corresponds to a value of 8§p/p of approximately 0.4 on this scale.

1.7 Sources

As discussed sbove gravitational sources (like loops of cosmic string) add
an additional driving term to the right hand side of (13). It may then be

solved fairly simply with & Green's function[85],{70]. Since the equation is

13

completely local §p/p(z) simply evolves in proportion to 8ps (z), the source

_density. In linear theory therefore a point mass always remains a point mass

- its mass simply grows as a(t). [n the linear regime (13) with a source which

‘turns on’ in the matter era at ¢; is easily solved with a Green's function

5p/p(z,t)

G(t,¢)

]
dr'G(t, nJaﬂQ\.Am. t)
L3

m:..... — ') L))

Extended sources like large cosmic string loops trace out an extended ‘trum-
pet - shaped’ structure in comoving coordinates leading to a density con-
trast of the same pattern|70], quite similar to the giant ‘filament’ mentioned

sbove[3]!

1.8 Hot Dark Matter

If the dark matter particles have appreciable thermal velocities at ¢,,, when
perturbations start to grow, then the above approach must be modified - it is
hard to follow the particles! Instead one must follow the particle trajectories
in phase space and I will discuss this in the next section.

However the main effect is simple to understand. Roughly speaking,
particles move a distance d = ol in an expansion time. where v is their
velocity. Structure on smaller scales than this is washed out by particle
diffusion (‘free streaming’) while structure on larger scales evolves unaffected,
just as with cold dark matter. This length scale corresponds to a mass scale,
often called the ‘neutrino Jeans mase’. Since peculiar velocities are damped
as we discussed above, the thermal velocity v of the particles decays as a '

The comoving scale d, = dfa t} x ot corresponds to a mass scale

14



M; x a~}. With neutsinos for example, of mass 25 A2, ¢V such as would be
required to make 2 = 1 while respecting the nucleosyathesis bound, M; is
of order 10'* M, at matter-radiation cquality and about 10° Mo today.

1.9 Linearising Liouville

Clustering of hot dark matier can be treated quite precisely by linearising
the cquation for the phase space density, the Liouville equation. As before |
will remain strictly Newtoniaa.

The phase space density f is defined so that the number of particles in the
phase space volume &Fe®p at time ¢ is f(F,p,t)d>7@p. Thus the ordinary
density is given by p = m [&p f, where m is the mass of the pasticles.
Conservation of particle number yiclds the continuity equation

& 3 VU =0 (20)

where the divergence and velocity are in the full phase space: A .
# = (¥, 5). Recalling Liouvilles theorem that 9.5 = V,.#'+ QA!W v,9,
4‘!@.2 = 0 where the total Hamiltonian is H, we get

Vo),
H-

m.m+m.¢sue (21)

which is the statcment that the function f is constant along particle trajec-
tories. We will return to this in the next section. Next we use the fact that
(7,5) = (§/m, —mV, &) with # the Newtonian potential. It is convenient to
change coordinates to = 7/a,§ = ap— meF, comoving position and peculiar
momentum, and dr = dt/a, conformal time. This yields

YOf L 4 G.f— marV,f-mV.pV, =0 (22)

abr  ma’

15

(® is independent of §). Here @7 = m.“,mqa = ~V, 4% from Newton’s equations
for the background as discusaed above, where @, is the zeroth order part of

the potential. The homogencous, zeroth order solution 1o this is

2
f e 41
2mT?

m . 2 . ’
— pg = Mm\ﬂ-an-mu+—l g (23)

1 s the neutrino temperature, equal to (4/11)}

wheten; = 1.803 a0d T, x a
the temnperaturc of the microwave background radiation. We use the relativis:
tic phase ypace density of one species of neutrino (and antineutrino) when
they decoupled as initial conditions, and this is preserved as the universe
expands even as the neutrinos go out of thermal equilibrium and go nonrel-
ativistic, as we lcatn from (22). As an excerdisc the reader can calculate the
required mass of the ncutrino nceded to make 2 = 1, stated earlier.

1t is fairly straightforward to lineasise and solve (23) through Lhe matter-

radiation transition including sources just as for cold dark matter|24,25|. The

intercated reader may refer to [26] for a pedagogical account.

1.10 Phase Space Constraints for Hot Dark Matter

The fact that for neutrino (and more generally fermionic) dark matter the
initial phase space density (23) bas & maximum, namely } per neutrino or
antineutrino, has a nice conscquence first pointed out by Tremaine and Gunn
|27]. Because it is constant along pasticle trajectories, it cannol increase
beyond this maximum. This puts a strong constraint, valid cven in the
nonlinear regime, on the clustering of ncutrinos, relevant to the issue of

whether ncutrinos can form the dark matter in galactic halos.

16



Crudely, the phase space density corresponding to a virialised lump of
N neutrinos with volume r> and momentum p, is just Nr=3p; and by the
constraint, this cannot be larger one. However for a virialised lump we have
v? = GM/[r = GNm/r. Solving for N and substituting back into the previ-
ous formula we obtain m! > 1/(vr’G) ( 1 use units where A is 1). A more

detailed treatment|27] yields the bound

m, > 30ey (100 R 471y 13 kpey (o)

Te
assuming the collapsed object is an isothermal sphere with core radius r,

and one di ional velocity dispersion . Observations of dwarf galaxies

with derk matter halos can therefore put strong constraints on the neutrino

scepario.

1.11 Summary

In this section I have given a flavour of the new observations and what is
encouraging about them. 1 have also given a brief introduction to the kind of
calculation necessary to follow the gravitational clustering of matter around
primordial perturbations. In the next section I will give an sccount of one
theory as to where these perturbations came from, the theory of cosmic

strings.

17

2 Phase Transitions, Defects and Fluctua-
tions

In this section I will discuss the physics of symmetry breaking phase transi-

tions predicted to accur in grand unified theories in the very early universe(28,29,2].

The discussion will necessarily be qualitative and crude - it is difficult to do
precise calculations in this srea! Nevertheless according to our present view
the precise details are not crucial in most cases. This is because the .v__-ua
transitions concerned happened very early in the life of the universe, typically
at times of 10-3¢ geconds. Transitions producing domain walls or monopoles
would have been disastrous faicly quickly - the defects quickly coming to
dominate the universe. Those producing string however, which I shall con-
centrate on as the most interesting case, lead to a ‘scaling solution’ for the
string network, in which the strings remain a fixed fraction of the tota! energy
density in the universe. As I shall discuss, we have good reason to belicve
that the late time evolution of the scaling solution is rather insensitive to the
precise details of the initial conditions.

For the moment I will ignore the possibility that the phase transitions
were inflationary - indeed it is very difficult to arrange for inflation in a
gauge symmetry-breaking transition - but will return to the question of how

cosmic strings relate to inflation later on.

2.1  Physical picture of a phase transition

According to our current and successful understanding of high energy physics,

the underlying field theory describing nature has a high degree of symmetry
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but most of this symmetry is broken at low energy.
As the simplest example of how this works, consider the theory of & scalar
" ficld ¢ invariant under ¢ — —¢. If we give the ficld & potential V(¢) as in
Figure 2.1 then the potential shures this symmetry, so the classical ground
state of the theory is degenerate - in vacuo ¢ can sit at + or at —. The
chosen configuration breaks the symmetry®
At high tempcerature however the symmetry is ‘restored’ simply because
thermal excitations are encrgetic enough to ‘kick’ the field ¢ over the poten-
tial basricr. Any masses become irrelevant at high temperatures and so by
dimensions one must have < ¢ >3z T? . Thus ¢ explores 8 wide range of
the potentisl. As the system cools the ficld explores a smaller and smaller
range until at low temperatures it flops down into one of the two minima.
In some parts of space it chooses the + minimum and in other parts the -
winimum. Because of this defects ase incvitably formed - in going from a +
region (o 8 — region ¢ must cross over the poteatial barrier in V(¢). Whereiit
does so there is a localised lump of vo..o.—:-_— and gradicat cnergy - a domain
wall separating the + and — regions. It is important to realise that these

defects are, st low temperatures, & nonequilibrium phenomenon - they are

Boltamann supptessed. To understand them one needs to understand how
the fields go out of equilibrium as the universe expands.
According to the most naive picture, at high T the system is charac-

terised by thermal oscillations with &k = T. Shorter wavelength modes are

YThis ides is classical -guant hanically of course tunnclling can occur between
the + and — states. Thae true ground state isa oy ic combination of + and . In Reld
theory h , in pic vol the tunnelling rats is vary tiny so the classical

P is ble - there is simply » classioal probability of being in + or —.
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suppressed. Thus the crudest picture of the ¢ field is that it is smooth on a
scale of the thermal wavelength. On might therefore expect that the size of
the + and — domains would, as long as one stayed in cquilibrium, be just
this. However what is really relevant is not the shortest wavelength modes -
thesc oscillate vigorously and simply average out to zero as the system cools.
Rather it is the long wavelength modes, with their more sluggish oscillations,

which determine how the system goes out of equilibrium.

2.2 Gaussian Approximation

Let us try to understand this in a little more detail. To begin with assumc

that ¢ has a long wavelength comp t & which we shall initially treut as

constant. We write & = $+§9 where §9 is the short wavelength component.
1 will be more precisc about the division into short and long wavelengths
later. We then calculate the partition function for ¢ by firsl summing over
the Auctuations 5% about & in the Gaussian approximation (i.c. keeping
oaly quadratic terms in 69 in the cnergy).

The small Auctustions are just massive ficlds whose mass is determined
by the value of &. For V(®) = }(#? — »*)? (shown in Figure 2.1) the mass
squared of 5% is m? = V*(#) = 2(38? - p?). In general if ® is a Higgs ficld
it gives a mass to other ficlds as well - in particilar fermion and gauge fields.
Their contribution may be included in exactly the same way.

Now recall that a massive boson field has a partition function

Z

Tr(e™?9)

M e Pk
{ng}
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[

1
= ﬁqii.?a (25)

where K labels each momentum mode and n; are the occupation numbers for

cach mode. w, is just (m- + m?, and A = 1/T. For fermions one has instead

zy = [J(1+e™) (26)

The free energy contributed by a massive field is (recall Z = ¢-7F)

R = M\unti_ ~ e

T m7? m
~ V(-S4 St § <<t (27)

at high temperature. A Dirac fermion contributes

F, = .W\%!..:f-r.v
=T miT* m
= V(- TR 12 +..) T <<t (28)

similarly. Here V is the volume : we replace Tz by V f#*k = V [ &k /(2x).
The high T expansion is obtained by scaling out the T dependence and Taylor
expanding the integrand in m/T about m/T = 0.

It is essily scen that (27) and (28) are dominated by modes with k = T,
just as we onvon..n.._. above. Thus for m/T << 1 we can regard (27) and (28)
as the neuplvszoh to the full partition function of only summing over the
high & modes, leaving the low k modes (i.e. k << T) not summed over. We

then have an effective theory for the low & modés with s potential energy
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given by adding the contributions of (27) and (28) to the zero temperature
potential for $
; ™
Vur(3) ~ V(@) +m'($)50
~ W*. _ W:-*n + m\.’w#u.ﬂ-
= 2@ -,y (29)

ignoring & independent terms. Here

Q«H
2’1 - ]

T. = 29 (30)

2
Tets

To repeat, the extra temperature dependent terms come from summing over
the short wavelength fluctuations about the long wavelength ‘background’.
This has » very important effect - at high temperature it changes the sign of
the 3? term and pushes the minimum to $ = 0, the ‘unbroken’ phase. The
transition occurs when the & field becomes effectively massiess, at 7 = T, =
27, called the critical temperature. This is shown in Figure 2.2. If the & field
couples to other ficlds then it also gives them & mass and their contributinn
may be included in V;, similarly. For example & generally gives gauge ficlds
& mass squared = g?#? giving a correction term in (29) of = g?$T? and we
find T. = \/A/g™y.

What is the cause of this ‘restoration’ of symmetry? In the partition
function we are really finding the most likely configuration for the system
plus heat bath (see Lecture 3). In this context this amounts to minimising
the free energy with respect to . The most important effect of & being
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nongero and giving the other modes a mass is to cut down the number of
states available (at given T) to that mode. This is an entropy effect, und at
high T as we have scen it tends to favour & = 0.

One other point must be made. In the Gaussian approximation the exact
expressions in (27) and (28) do not make sense for all &: for $2 < 4?/3
we bave m? = $(34? — p?) < 0. This mcans that w, and hence F are not
even real! This is cleatly a problem with the approximation. Nevertheless
the qualitative behaviour cxhibited by the small m/T expansion is quite
belicvable.

The function V. ,(®) is oftcn called the finite temperature effective po-

tential. In quantum hanics, by iderations similar 10 those | explained

in the context of symmetry .rnnrrm.-n. this should never have two minima -
& can tunnel through from one minimum to another. However we are inter-
ested in an evolving macroscopic system, and we arc approximating it as &
classical # plus a quantum fluctuation. Ignoring quantum tunnelling should
be reasonable and so V,)/(#) is the relevant quantity. However as far as [ am
aware none of this has becn made rigourous and I would certainly encourage

those of you feeling queasy with it to try and do better yourselves[30}!

2.3 Spatial Distribution of the Fields near T,

The interpretation of V,pp(#) as an effective potential for the long wavelength
modes means that we can usc it to discuss their distribution at high 7.
Cleasly # will not be spatially constant st finite T. To understand its spatial
distribution consider a massive field in cquilibrium. As we approach T from

above # looks like a massive field with m decreasing lo zero. For T below

3

T., in the neighbouthood of the minima & = L.y, of Vo7, (%), ® luoks like &
massive field with mass squared m2,, = V4 (&) = Anl;, = An(1 - (T/7.)*).
Now in thermal equilibrium & massive field has apatial correlation function

N.A.v?.fxsn,utv
Tr(e-5H)

The trace over all states is conveniently calculated in an occupation nuinber

< $(r)8(0) >=

(31)

basis just as the partition function in (25) was. With the mode expansion

for ¢ onc finda

<ng| &(r)8(0) |n;> = mn.ﬁ\»nam +1) (32)
and so summing over all states
o I
< 8(r)e(0) > = ﬂ,..gﬂ.r..n, 5ty (33)

the sccond piece being the usual vacuum picce. Forr >> m™* >> T ! the
integral in (33) is dominaled by long wavclength modes and gives

T
< #(r)¥(0)> = Mﬂn-..: (34)

This tells us that & is uncorrelated oo scales larger than § := 5;_\. which
in called the correlation leagth. If we defined &5 as the average of & over &
region of size R >> § then it is straightforward to check that (34) implics
the same result for < % > as that obtained if #5 were the result of averag-

ing over (R/¢)® volumes within which & took on a randomly chusen velues

»\»:.2%. This scrves as a rough picture of the distribution of #. Near the
transition point the magnitude of the fluctuation, \/m ;T is much lcss than
T but the range, :-xs.f is much greater than T-!. The energy in a typical

fluctuation = potential x volume = m}, , #%6* =~ T, as cxpected.
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In fact if the system remains in equilibrium the correlation length goes to
infinity at T, when m,;; = 0. 1o any real system with a finite rate of cooling,
this never occurs. Instead the maximum correlation length is determined by
the rate of cooling. [ leave it as an exercise to find the maximum value of ¢
by using the equilibrium value, with T o a~! and demanding that its rate of

increase {/¢ not exceed the Hubble expansion rate é/a.

2.4 Out of Equilibrium: Defect Formation

As the universe cools below a symmetry bresking phase transition, even
though V,;, has the symmetry breaking form thermal fluctuations are ini-
tially still large enough to erase whole domains - in the example above 2
whole + domain may be ‘Ripped’ to & — domain. Domains are really ‘frozen
in’ very soon after the tempersture falls below the energy required to kick
them over the potential barrier. This is because below this temperature
‘flipping’ becomes exponentially (Boltzmann) suppressed, and the finite ex-
pansion rate of the universe means that it rapidly becomes negligible. The

temperature at which domains are still frequently ‘Sipped’ in given by
A
T=AVy=~¢ 3t (35)

being the energy required to take a domain ¢° over the potential barrier
scpurating the two minima of V,y;. Using the equilibrium expressions right

down to this temperature we find

3

T

n T.,
W) »Claw.l.:_
o [T

SRR C 23>

25

= T (36)

for small A\. This temperature, the temperature of domains freezing in, is
called the Ginzburg temperature Tg. Below this temperature the domains
and defects rapidly go out of thermal equilibrium|2].

At Tg we bave ¢ = m;}, = 97,/v/A = 1/(8T.}) which for A not too small
and T, = mgu << Mpigns is smaller than the horison scale at this time.
For very small A the assumption of thermal equilibrium would be dubious.
However A must be quite small for the small m/T expansion to be reasonable.

I have given s very simplistic account of what is a very complex subject.

For one tecent attempt to do better see [31).

2.5 Defects and Topology

In the previous section we discussed the simplest example of a symmetry,
the discrete Z; symmetry # — —&. In unified theories we are interested in
more complicated symmetries including continuous symmetries. Nevertheless
defect formation can be understood in & simple and general way.

Say we have a theory invariant under a symmetry group G which is spon-
tancously broken by a Higgs field & to a subgroup H, defined as H = {9 €
G : g% = &}. Now the whole theory ud in particular the Imma- potential
—A.: is invariant under  — g&. Thus if we have one point  on the mini-
mum V,;, of V we can obtain a whole set of values of # degenerate in energy
by applying clements of G to 5. In fact if there is no ‘accidental’ degeneracy
in the theory the resulting set will be the entire space V.. V... is not
however equal to G because if we apply two different grroup elements ¢ and

¢’ we may obtain the same point on V,,;,. This liappens if g& = ¢'® which
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perconducting strings form in theories where ® couples to another electrically
chasged field ) in such a way as to force x to be nonzero on the string. These
strings may carry a net electric charge or current|[41]. With the assumption
of a primordial magnetic ficld ( which is bard to justify) these strings arc
the basis for the OTW acenario of explosive galaxy formation|42}. I will not

discuss this scenario in these lectures.

2.8 Simulating String Formation

Cosmic string formation was originally understood aumerically by simply
thsowing down values for the Higgs field on Viuin at random on a attice of
domains of sise §, with a prescription for smoothly varying the Higgs ficld
phase in going from one domain to the next. This is of course a crude model
and iganores any intersctions. The scale § is the correlation length at the
Gingburg temperature as discussed in section 2.4.

ln more detail, for U(1) strings V... is approximated by three points
sssigned the values 0,1 or 2. For & cubic lattice of domains, any edge is
surrounded by four domains. The rule for going from one domain to the
next is that @ takes the shortest path along Vaia. This is illustrated in
Figure 2.6. The reader can easily check that at any vertex on the lattice the
same number of strings leave as enter. With periodic or seflecting boundary
conditions this means that the strings have no ends - they are all in the form
of closed loops.

The numerical simulations first done by Vachaspati and Vilenkin [56] huve
been checked by many people on a variety of lattices and are in good agree-
ment [49,46,52]. Most (sbout 80%) of the string ia in strings as large as the

£}

box in which the simulation is performed ( ‘infinite’ strings). ‘The remainder
is in the form of closed loops. These have a scale invariant distribution - the
number of loops of size (& course mcasure like r.m.s. radius) greater than
per unit volume, n,(R) o« R-3. The term scale invariant simply meaus that
the result depeuds only on R and ot on the domasin size §. Dimensional
anulysis then determines the power law. Both the ‘infigite’ strings and the
loops are in the form of Brownian random walks. Recently David Mitchell
and myself have shown how these results may be obtained by counting states
in the quantised closed bosonic string, an intriguing connection I shall explain
in Lecture 3.

A picture of Lhe string nctwork at formation is shown in Figure 2.7.

2.9 Evolution of Strings

After the strings form we have to cvolve them. At first sight this appears
horribly complicated - they are inherently nonlincar entities. However two
cffects straighten out the strings very rapidly. In the carly stages (until
the temperature falls to = Aﬂtv—aelv the strings are heavily damped by

collisions with particles{35]. Sccoadly the expaasion of the universe stretches

‘the string out. The typical radius of curvature of the string increases rapidly
while the width of the string remains fixed.

Quite quickly it becomes a very good approximation to treat the strings
as infinitely thin relativistic lines or ‘Nambu’ strings, the action for which is

simply the area of the two dimensional worldsheet they sweep out in space-
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where g.i(z) is the metric of the background spacetime. z*(c) are the four
spacetime coordinates of the string worldsheet which is parametrised by the
two worldsheet coordinates o* = (r,0). The atring wotldsheet has one space-
like coordinate o and one timelike coordinate r.

Let me explain how (41) arises. For a U(1) theory producing strings the

action is

&)

[ Eva(Dey - vi#) - P
A 3 ]
zU8P )
D& = (B, +igA,)®

i

v(®)

Fo.

A, - 8.4, (42)

We seek an approximate classical solution to the full field theory equations in
the form of a curved and moving string. Locally it should look like a Lorentz
boosted version of the static cylindrically symmetric solutions obtained by
minimising the eneegy functional (40). It should also be built around a curved
wotldsheet z*(o).

First we imagine such s worldsheet is given and construct two normal
vectors to it, n§(4), A = 1,2. These obey ngz%, = 0 and are orthonormal
n4nhgu = —bu. Now for any point in space y* closer to the string than its

radius of curvature R we can associate two worldsheet coordinates o* and
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two radial coordinates p* uniquely
y* = =*(0) + pn3(e) (13)

This is illustrated in Figure 2.8. We will use this relation to change variables
from the four y* coordinates to the four {* = (o*,p?) coordinates. Our
ansatz for the field configuration corresponding to this worldsheet is the
#(y) = &,(p) and A%(y) = n%(0)A%(p) whete the subscript s refers to the
static cylindrically symmetric solution. The reader can check that this ansatz
gives the exact solution for a straight moving string (i.e. just the Lorentz
boosted version of the static straight solution). We expect that it will provide
us with an approximate solution if the radius of curvature of the atring R is
much greater than its width W. Now we simply change coordinates in the

action (42) from y*® to £*. The Jacobian is most eaily calculated by noting

that
8y Byt
,\ale_nxulv = L:G..mmn mmmv (49)
and
Oy (3
= diag(Vu,—b48) + o(p/R) (45)

where worldsheet derivatives of z* are down by order p/R. Thus detM =
dety to order p/R. We also have to the same order (D#)? = M*2D,3Dp% =
—~(Da®,)? and F? = F? so when the &p integral is performed the Lagrangian
reduces to minus the energy per unit length, u. The terms of order p are down

by W/R after integrating p across the string profile, where W is the string

. 34
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varying (41) one finds in this gauge the equations{47|

il

w+~mx_,m,

1, &
M Qaﬂv

(49)

where dots refer to r derivatives and primes to o derivatives. The quantity ¢
has a simple meaning - the string energy per parameter o length (see Section
2.14 below) is given by pa(n)e. The numerator in € is just the comoving
length of the string per unit o, corresponding to & potential energy p times
(physical length). The denominator contributes the kinetic energy of the
string.

In (49) there are two competing forces. On the left hand side is a damping
term due to the expansion of the universe. On the right band side is the
curvature term which accelerates the string. The result of the competition
bet ween these terms is that for curvature scales R on the string much smaller
than the Hubble radius Ry = H' = n\sHu the curvature wins and the string

evolves as in flat spacetime. One finds in the case [47]
~const +pxa’ R<<Ram (50)

Highly curved strings behave like matter. For curvature scales much greater
than the Hubble radius the damping term wins so £ = 0 and the string is
conformally stretched, its shape remuining fixed but its length growing like
a. Thus

Exa—pxa? R>>Ry (51)

7

FEither of these two behaviours would be cosmologically disastrous - the string
would quickly come to dominate the radiation background ( for which p o
a~'}. However this is not the end of the story. Loops smaller than the Hubble
radius are not a problem because they slowly radiate themselves away into
gravity waves for which p ox a=¢. As we shall see the long strings which
would cause problems if there were no string-string interactions gradually

chop themselves up into loops which then radiate themselves away. .

2.11  Inside the horizon: Free Strings in Flat Space-
time

In flat spacetime the string equations are particularly simple and can be

solved analytically as follows [105,48]. From (49) we have ¢ = 0. If we

initially parametrise the string so that ¢(c) is equal to 1 along the string

then it will remain so for all time. We then have

K

LG
il

EF =0 F4+=1 (52)

The general solution is given by

L1
]

3@o + 1) + Ho — 7))
@ o= = (53)

Here & and ¥ are arbitrary curves on the suface of a unit sphere. For a closed
loop in its centre of mass frame & and ¥ are in addition constrained to have
Jdod = fdob = 0. Some simple nonintersecting Fourier mode solutions

[55] are shown on Figure 2.10 (courtesy A.Stebbins).
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It is easy to check that a closed loop has period L/2 where L is the
parameter length in this gauge. Some of the trajectories in Figure 2.10 have
‘cusps’ - points where | # |= 0 and the string reverses back on itseli. From

(52) these points have | Fi |= 1 - they arc instantancously moving at the speed

of light![$5). Gravitational radiation is ‘beamed’ out from these points{55,58|.

2.12 Interacting String networks in an Expanding Uni-
verse: the Scaling Solution

Now we procced to the full problem of the evolution of an interacting string
network in an expanding background. We simply take the initial configura-
tion as shown in Figure 2.7 and evolve it with the equations (48) and the
tule for interactions that whenever two strings cross we reconnect them the
other way as in Figure 2.9,

A. Albrecht and myself have been developing a numerical code to do this
for several years (49]. We bave recently made qualitative improvements over
our early code and brought the results to what (for us!) is a rather convincing
state. Bennett and Bouchet [52] have also developed a code and our latest
code agrees at |cast in part with theirs.

A picture of part of one of our simulations is shown in Figurc 2.11 . We
begin with initial conditions as in Figure 2.7 in » 24* or 30 box, with 10
points on the string for every initial ‘correlation length’ §{. We then evolve
(49) numesically. The oanly parameter to vary in the simulation is the ratio
of ¢ to the Hubble radius Ry = o/ » = 2¢t. The initial string density is
approximately g, = u/€®, so starting at large or small By /¢ corresponds to
stasting st high or low string density relative to the background radiation

k1)

density (g = prodasion = 3/(322Gt?) = 3/(8xGRY) ).

It ia useful to separate the strings into ‘long string’ , strings longer thau
the Hubble radius, and ‘loops’, strings shorter than the Hubble radius. The
precise dividing line is not very important.

Figure 2.12 shows how the density in long string (defined as loops fur
whom E/u is greater than 2Ry) behaves for differing initial string densities.
A good way to think of this is that if there is & fixed number of long strings
of length =~ Ry per Hubble volume R} thea the long string density scules
with time as km. so the ratio p,/p, is constant. As can be seen this ratio
does indeed appear to spproach a constant and p, = 200/ R}, .

Why is this? The main ides of the ‘scaling solution’ [49,50,51] is that one
should defiue o length scale § by

o= w (54)
where py is the density in long strings. As loug as reconnection keeps the
oetwork ‘random’ then § should also be the typical curvature scale on the
string. Now as long as ¢ << Ry, the strings should cvolve as in flat space so
that the encrgy in the long strings (ignoring chopping off loops) scales like
maticr. Also, the timescale for the long strings to chop off a fraction of their
length into loops is simply ¢ (recall the characteristic velocity of waves un
the string is just the speed of light which we set equal to 1). Thus ignoring
reconnections of loops we find

pL= numE. 3 (55)

with ¢ a constant (here dot refers to m aot Mv The first term is simply a

result of the expansion, the second the loss of cacrgy into loops. lgnoring
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reconnections is reasonable in the light of the results of the next lecture,
where | will show that in flat space chopping off is heavily favoured by phase
space over reconnection .

Equation (53) has a simple solution: for a radiation dominated back-

ground a o t} it is given by

__B B
Pe = SR, ~ A2ty

(56)

This is called the scaling solution.
In fact the scaling solution is a stable fixed point of (55) as may be seen

by defining y = (pr/p..) and calculating

i= zh._: - Vi) (57)

Il y is greater than unity then it decreases, but if it is less than unity it
increases. Thus y = 1 is a stable fixed point. Taking the initial scale factor
a; to be unity (57) may be solved for an initial value y; to yield

y= WV
(1 - yi(l - va))

Thus y approaches unity rather slowly.

(58)

The dashed lines on Figure 2.12 show the predicted approach to scaling
from (58) with y; chosen soon after the initial time (there is a short initial
transient due to the fact that we start our strings off stationary in comoving
coordinates). As can be seen the results fit (58) rather well. Figure 2.11 shows
the string configuration in a carved out Hubble volume (actually (Rp/2)°)

in the scaling solution.
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2.13 Loops

The distribution of loops produced in the scaling solution plays a very impaor-
tant role in the cosmic string theory of large scale structure formation. The
importance of loops was first emphasised in [53] by Vilenkin, and the simple
identification of one Joop with one object today proposed in [54,64,66).

The energy lost from long strings in (55) goes into loops. Defining pi(e) to

be the density contributed by loops of energy e to e + de we have an equation

a 1 ,
. _ _a% 3
le) = =350+ 2 (o) (59)
which defines the di ionleas loop production function f. In the scaling

solution there is only one length and time scale in the problem, the Hubble
radius Ry = 2t in the radiation era. Thus f being dimensionless can only be
& function of e/(sRg). Some of the loops produced will further selfintersect.
I will ignore this complication here by regarding f ss the loop production
function for non-self-intersecting loops. Integrating {59) we find
AE yAde

e ' R}
37 destste) (60)

pi(e)de

A

for loops with e/(pRg) << 1 and we define f(z) tobe zerofor 2 > zc ~ 1 -
such loops are simply part of the long string. Similarly the number of loops
pet unit volume with energy e to e + de is

Ade
vy (61)

mfe)e = (£52))

Our original simulations found A = v(28)! (in the old notation; see [66])
approximately equal to 0.8. The results of our latest simulations will shortly
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smoothed out and the object become more and more spherical. The shape

teaced out by a loop is in fact like a ‘trumpet’ {70]. This is seen as follows.

The peculiar velocity of a loop vy, = a?vw decays® as a~. This means that,

in the matter dominated era, the comoving distance & loop moves is given by
. . )

bz = [T d =360 - (M (10)

where v; is the initial velocity, at scale factor o, sad time ¢;. Thus & loop slows

down and stops in ing coordinates in the matter era (in the radiation

era Az increases logarithmically with time). However the radius of the loop
in comoving coordinates r. shrinks (the physical radius is approximately

constant, ignoring oscillations) so

re=riz (7))

So defining the distance from where the loop ends up as 2 = Juit, — Az we

see that the shape traced out by the loop is
r, o 2? (72)

the surface of revolution of a parabols - & ‘trumpet’ shape. As stated above,
nonlincarity smcars this out, making the accreted lump in the end rather
spherical [65]). For galaxies this would be the casc todsy. However larger
clusters should still exhibit this shape - in fact the Perseus- Pisces filament
{3} does look rather ‘trumpet’ like! Bingelli has made an attempt to messure
the eccentricity for Abell clusters - this will serve as an interesting test in the

future{10].

I More precisely the t .—.L\-m decays as &~ ! as can be scen from (49), but if
ite velocity is substantislly Jess than | and it is well inside the horison then the encrgy is
soughly constant. '
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2.16 Loops as seeds for galaxies and clusters

The string plus cold durk matter (SCDM) scenario is the easiest to under-
stand. It is clear from Section 1 that the total mass accreted by & loop around
at t,q is today roughly Miwy(l + Z.,). Ia fact a precise calculution in the

spherical collapse model yiclds |67
Mol + Z¢g) = mznmv— (13)

where M is the mass of the accreted object, p/ps is the overdensity today
and § is » ‘loss of growth' factor, equal to 1 for loops laid down well before
L., cqual to 4 for loops laid down at ¢,, and grester for loops laid down still
later.

It is now simple to calculate the required string tension. First we pick
a class of objects, for example Abell clusters. Their number density ia
1/(110h;8 Mpc)®. Let me assume that the loops seeding them are all pro-
duced in the radiation era for simplicity (they are actually produced at or
just after the matter-radiation transition according to our latest simulations).
Now we take the loop distribution, given in cquation (62), and evolve it
through the matter - radiation transition to the present day. We then ask
for what cutoff in energy will the integrated number density be equal to
1/(110h;) Mpc)®. Doing this|88,67], one finds that the length of loops pro-
ducing clusters is L = ¢/p =~ 20kpc. We can then demand that loops of
this size are massive enough to accrete clusters by today, from (73) and the

obscrved mass and overdensities of clusters [67]. One finds
Gu = 21078 ohdiin 1, (74)
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(to which there are other solutions [74,75,78]). For the reasons I have given,
this does not bother me too much.

If you want to use inflation to solve the monopole problem, but have
cosmic strings provide the fluctuations later on, you have to ‘stand on your
head’. You must first form the monopoles, inflate them away and then reheat
to a temperature high enough to form strings but too low to form monopoles.
This is tricky - in most inflationary models the universe heats up to tempera-
tures well below the 10'® GeV scale typically needed to form strings. However
in cosmic strings the mass per unit length s = n? is only weakly dependent
on couplings whereas the phase transition temperature T, = \mwﬂq can be
made much lower by decreasing A or imposing discrete symmetries which
only allow high powers of ® in the Higgs potential which effectively docs the
same thing [77].

Just as none of the models for inflation alone is compelling, none of the

models for inflation plus strings is particularly inspiring. In fact they are

quite ugly [81,80].

2.19 Cosmic String versus Inflation

Let me now turn to comparing the predictions of cosmic strings with those
of ‘inflation’. By inflation I mean the simplest prediction of quantum fluctu-
stions from inflation - the scale-free Harrison- Zel'dovich spectrum|{84,85,86].

The theories are really very different. In the case of inflation it makes

sense to think of the density perturbation field as a linear superposition of
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plane waves with random phases

QEAHIV ” Muahn.ﬁi Aqmv
s i

with the probability distribution for each §; being a Gaussian : if §; = r e’
then each mode is independent (except for the reality condition which forces

8 ; = 87) with probability measure

K
405 drgrs - ok (76)
i 2r B
This is a result of the inflaton field being essentially a free massless field
during inflation. The power spectrum Py, =<| §; |*> completely defines the
theory. The fact that the different & modes are decoupled means that any

quantity like the excess mass in a ball of radius R
&M = 4 §p(7) 77
\c répl7 ")

is also Gaussian distributed, by the central limit theorem. This makes large
flucluations away from the ‘typical’ fluctuations very rare.
With strings the situation is quite different, and
()= Y b(?) (78)
loops Jongetringe

is often the simplest way to look st the density perturbations. Many different
k modes are correlated in a loop for example. The probability distribution is
nonGaussian as can be seen from (62) - in & volume V (ignoring correlations)

the number of loops expected with mass M to M + dM is
N(M)IM « M-YdM (79)
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strings relatively more important. The detailed calculation of farge scale
structure produced by long strings is underway. This will also be important

in accurately normalising the theory.

2.20 Other Observational Tests for Cosmic Strings

Cosmic strings have several fairly direct observational consequences which
give us some confidence that if they exist, and were massive enough to seed
the observed large scale structure, they should be observable faitly soon.
The most clear-cut effect, as with other theories, is the predicted anisotropy
of the microwave background. Observations of intrinsic anisotropies would
be a major advance in cosmology - the statistics of the fluctustions would
tell us a lot about the kind of processes that could have caused them.
" With cosmic strings the effect is quite dramatic. Moving strings lead
to linear discontinuity across the sky in the temperature of the microwave
background{B8]. This is a result of the conical metric discussed in Section
2.14. In the string’s restframe the there is a difference of 8xGu in the angle
at which light from the same point on the last scattering surface of the
microwave radiation is recieved by the observer. The observer thus appears
to have a small component 8xGuv, towards the last scattering surface behind
the string, where v, is the string's velacity perpendicular to the line of sight.

This results in a Doppler shift of the radiation temperature observed of

T
. T= 8xGpuv, (80}

of the order 10-* if Gu = 10-%. This is not far below present sensitivities.

The difficulty is that strings are actually quite rare on the last scattering
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surface, so one has to cover quite a large angle in order to be likely to see one
at all. Recently Bouchet et al. have calculated the expected pattern from a
string simulation [89] - they deduce the limit

Gp<5x107® (81)

from the experiment of Melchiorri et. al. [90].
Another unique signature of cosmic strings is their gravitational lensing
effect. The conical metric leads, in the case of a straight string, to two

identical images for objects behind the string with angular separation

50 = ?n..alm.l.__: : (82)

where d, and d, > d, are the distances from us to the string and the object.
This is of the order of a few arc seconds if Gu = 10-®. What is unique is
that a string would produce a line of double images. In fact a candidate
event involving four double galaxies was reported recently by Cowie and Hu
(91]. Deeper observations in the same area of the sky to sce whether galaxies
behind the putative string connecting the objects are also lensed are currently
underway.

A less ditect but still powerful test of the cosmic string theory comes
from the gravitational radiation produced by the strings during the ..-.:-:.c:
dominated ers. The fact that the millisecond pulsar is so ‘quiet’ imposes
strong limits on the level of gravitational background that can be around
today. The expected contribution to Ngw today from cosmic strings with

periods of the order of a year or so ( the millisecond pulsar observations put
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string is {avoured over reconnection, which was very important in leading
to the scaling solution (55). Our understanding of this below will lead to
s simple argument that the string network cannot come to ._“::m_..w..o the
universe and that the scaling solution is, barring very long time transients,
more or less inevitable.

Of course we will only obtain precise results for strings in equilibrium
in Minkowski space. These will nevertheless be relevant to stringe in an
expanding background in the limiting regime where £ is much smaller than

the Hubble radius.

3.1 Counting String States : the Quantised String

In studying string statistical mechanics we are simply interested in finding
the configurations which maximise the number of states available to a certain
length® of string in a box. Assuming ergodicity, the system will end up in
these, the moat probable configurations. This is the idea behind the micro-

canonical ensemble and is completely independent of notions of temperature,

heat baths and so on.

But how do we count states for the strings? Classically, a short string has
just as many configurations as a long string. Thus one might imagine that
the greatest number of states would be obfained by putting the string into
the smallest possible loops. However this argument is incorrect - in counting

states one has to fut a measure on configuration space, and this brings in a

51 shall use _n-anrM wnd evergy £ interchangeably for strings, since E = p [doin the
gauge ¢ = L. [do can he taken as the definition of the length, related to the naive one
Ly = [do | i | by the factor | & |. Since <| & |'>= § for  closed loop by aa argument
snalogous to (69) the two definitions are quite similar.
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length scale, roughly the size of the smallest wiggles allowed on the string. A
good way to do this is actually to quantise the strings - then the states form
a well defined discrete set and the scale of the wiggles is given in terms of the
string tension. In fact the number of states for a large string is exponentially
greater than that for a small string as we shall see.

The frec quantised string is a beautiful example of a nonlinear but exactly
solvable quantum theory. For a thorough review see {102]. Here I will only
summarise the main formulae we need.

We only wish to count the physical degrees of freedom of the strings so we
use the ‘light-cone’ gauge of [105]. In this gauge the transverse coordinates

of the quantised string (i= 2,3..d-1 in d spacetime dimensions) obey

s..?.l ¢+

+ ulu...&qlﬁw + m-.N|u..=T|=~ AQMV
n

H al,
xp 2.5 ..Mm,. "
Mﬂ".-. ﬂ.w..u = :&3*33&& Aamv

and similarly for the a oscilators. The string bas been parametrised so that

o runs from 0 to x. In addition we have the rest mass formula and constraints

m? dxu(N + N -~ 2)
N = N
N = Yo (87)

n>e

and similarly for N. Here N and N are the level number operators for the
left and right moving oscillators respectively.
I shall ignore the tachyon altogether in what follows. This is the state

with N = N = 0 and has negative mass squared. For cosmic strings, we shall

82



1]
‘s01ejas0 Sutrom

W Su ayy 10} shem “p sawny s107eiRs0 Futaou 3Ja] 23 10f shzm “p - (g6) Jo

arenbs ayy Ajduns o1 u Pa3] v £oesuafop [e10) 34 “weEuCd ¥ ) UM

(r6) 1“)-»1?1:0 ~ “p
{es'cot}

sopoepard a1 #2418 voryRNO[ED papinyap 20w y Inolavgaq Furpws| sy e

(z6) 2o~ up

e-rhet

ureygo 0y [niaug yutod ppes uwissnen ay) mIoj3ad vyt Ip
(16) _.....*w..u
FUIRE T e IR’ T

= e T et T en - = (0

il

‘1 =2 rweu (2)g

2ymnapes am juiod apppes aqy puy o] ‘yutod S[ppes 3y 1340 unz o3 (gg) W

INO0d ) 1I0IBIP 210J313Y) I | WoIj Aemw 53wea1dap 7 v dn smolq 7

Ajas13An02 pur [ sagovordde z sw dn smojq (z)g wonounj Y3 z [vas 10§ - sxw

221 2y U | uwyy 93] 1e0f 7 10) Jutod I[ppes ¥ Iawy 0} Uz L1eea 81 puwrSuy

a1 mop -aueyd 2z xajdwiod 3y ur mBuo Iy puUNOIY sUNI INOCITOI IYY AIIYM
ez

(n6) (2)dw? = = %

vp 10] (g8) 112AUL 3m mON
‘1 [9A3] 1w 297)8 L1942 J0] 2 WD} Ju0 sppv (gg) Ut avwx) Yy

2snw1aq u PAI] 1¥ s10Ye[s0 Futaom 3] 3Y) Joj LowiauaBap ayy s Vp 2134m
H=v

{68) Pl =

11

T.LTn-..~ .—MV = (2)d

199} vy KPyeredas 10%[|DYO
73 30} 820%13 Jo 1anpoad ayy oyut s2su0y>v) pue (s10yvisc Fatrow 1)1 3

Aus) sz07e(j1o80 Jo 198 auo jo Iouds YOO IINUS Y JIAC §1 IIEN} IY) M

(88)  epl (4 Dpp(+ 48+ + ) p(" 4+ 247+ 1)

(y2)o = (2)d

uo1ss2:dx2 3y $12PIETOD FUQ "IMO[I0) FE 1 poOYPW 3],
‘[901]u 231wq 10} 31 2y*m3[ed 0y Kem sjduits w 81 2197y vy weinovmey puw
Aprey suwpuvmayivw oy Aq pastyeas yeay sem 31 pue ‘wonouny wonyred
3y pared st sy wnendqvm up ce1a83yup sAnmwod Ifewis Jo wWne v v
u Surjum jo skem JusISPP Jo saquinu oYy jenl (s30tpul IersAsTRI} 3Y) puw
£>w1208p 1Fu-1jo oY) o1y 1rede) $3A[0AUL U [342] 1¥ $I)¥3E JO IIGqUWINT I
myp, -(ynea1 sures aqy A ynuw (4g) won ru_._lv s10)¥[|P¥0 © 30 © IY) Jo
nidudegns ayy Surppe Aq pautesqo 81 19qUNT PA3] Yy [wI2uad u] "vo of pue
= qim ‘< 1 .nx..u.:..u $3)918 108U3) ) FARY IM [ [PAI] IV “Eg- = W
q1im ‘uokowy Iy u>.d_— am @ 1oqunu Pa3) v ydurexs 104 [zo1] wnwIOW
sswm Jo 211095 31y £q PAPQE] 9t YINM ‘WnndwA 3Y) 0y s101wazdo vonwasd? Lo

a) Suikjdde Aq paureiqo » Sumys 3(8uw » 10) 133w1e Jo 138 Aajdwod ¥
‘SUOINIUOT Ul 3} 133 10U 0P
—:.n, premiojiySrezys a1 asoyy Surpnpoui - sapowr s2qumu Jurpuim Jo druormid)
asoudt fipidws 30 ospe (M | “AemAuw suoAqdwy ou 31w 219y sBuinuadne
10 sSuus 511019394 104 ‘sdoo] feurs 10} prRA jou Bt uonyewmrosdde nqurepy

a7y 33mis 921918 srRm J5IMO] Y ©) umop 4B wnayoads Snuys oqy yenI) You



Using the mass formula m? = 8xun we find for the number of states for

a string of mass m to m + dm

p(m)dm = em 4e™dm

w(d-2)

b = —— 94
™ (94)

Thus as stated above the number of states available to & string grows expo-
nentially with its mass. c is a constant depending on p with dimensions of

inverse volume. .

3.2 The Fractal Dimension of Big Strings

As we have scen there is an exponentially lazge number of states available
to a string of mass m. What do these states look like? This is surprisingly
casy to answer[99]. Consider the posilion operator (85) at r = 0. Using it

we can construct the operator which measures the average squared radius of

the string
A trc\anh?.f&.uwaa+w+~mw
. M..u_mh.....nl.. (95)

where i is not summed over - a single transverse index is used and the an-
swer obtained by isotropy. The last term is a logarithmic divergence oblained
by ‘normal ordering’ the oscillators. For cosmic string there in a cutoff cor-
responding to modes whose wavelength is of order the string width - for

fundamental string this is a delicate issue but 1 will take the view that there
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should also always be an ultraviolet cutofl in any ‘measurement’ of the size
of the string (short wavelength modes diffract light more for example). With
any reasonable cutoff the logarithm will turn out to be negligible compared
to the first two terms.

Ignoring it, we find for example for the two extreme states at level n
Arf(al )" 10> o« n{a,)"|0>
Ar'a_,|0> x nla_,|0> -+ (96)

The first set of states may be thought of as a long and ‘straight’ loops with
a size Ar propottional to their length m/u. The second set of states are
increasingly tightly wound loops whose size actually decreases with increasing
m.

Now we wish to calculate the average of Ar? for all states at level n - this
will tell us what typical string configurations look like. It is easily seen that

this is obtained by

e = 41 g
.3MI;A$_D* > = pr &uﬂ.ln V™) ly=tlosats of ==
d-1 1
T 73 PENn(P(2)) lmers or o= (97)

mﬁ._...-:...u the right hand side by & contour integral just as we did for 4., in
the previous section, and dividing the answer by d.,, the degeneracy of level
n, we find

d-1 n
Tax V8- 1)
Since the mass m is proportional to the length, this means that the typical

Ar? = xm (98)

string trajeclory has a fractal dimension of 2, the same as & Brownjan random

walk. This also applies to the point-to-point separation on a string [99].
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equilibrium value E
A(E) o e} SIENE-BP+.. )

The integrand has in this approximation a Gaussian peak with width §E? =
- wuu o ﬂ..% = T?cy where cv is the specific heat. Thus the frac-
tional energy Auctuation is §E?/E? = oy T*/E® o V-! for normal systems,
where the specific heat is positive and proportional to the volume. Thus as
we take the volume to infinity the energy fluctuations go to zero.

1 have reviewed these busic assumptions because strings will turn ouit to

violate them. The cause of this violation is very simple. We saw in Section

3.1 that the number of states available to a string grows ezponentially with
energy ( we can put all the energy into the rest mass). Thus the integrand in
(99) contains the term e**-PF. For @ < b the integral diverges: this happens

for

T > Ta=b'= ateu 5 (101)

Thus canonical thermodynamics simply does not make sense at tempera-

tures above the Hagedorn temperature Ty. As I will emphasise this is not

a fund tal 3 2ot

y in any sense but simply means that the usual

assumptions involved in the canonical approach break down.

3.4 Superstrings: Z=oco for T > Ty

Surprisingly this simple fact has been ignored in some of the recent super-
string literature on strings at high temperature. For example it has been

claimed[110] that for heterotic strings there is a'‘duality’ relation Z(8) =

Z(x/Bp) which is cleatly inconsistent with Z being finite below Ty and
infinite above it. What has gone wrong is that some of the resummations
involved in the ‘proofs’ of this formula are illegitimate. The far-reaching con-
clusions drawn from this work by Atick and Witten[111] for example seem
to me to be on very shaky ground. Let me give a briefl and rigorous proof
that Z is indeed infinite for superstrings above Ty.

Just as in field theory we can calculate the partition function for a gas of
free strings, as in Section 2.2. ‘—.rn.o-._w difference is that there is n.: extra

sum over the interna) mass levels for the strings;
b4 R

—-BF

i

[

W &:_\\1-_21?2 —e ) L in(1 + e %)) (102)

where d,, is the degeneracy of the mth mass level and the two terms come
from bosons and fermions. Supersymmetry of course gives them identical

degeneracies. Expanding the logarithms, we obtain

- @0 e
—-fF = M?M:;«T:.z_:\\i-; -
> NW?<\1-:3-?. (103)

But for the massive modes wy, = k% + m? < m + &/(2m) so we obtain the
further inequality

-8F > uwus.n-?«\\&-f-nm

m=l
as N m -
= ~<...Muu_.rn ?Anﬂm_ﬁm (104)
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The result for the loop distribution in flat spacetime was calculated in

|99] and shown to agree well with the flat time lationa of Smith and

Vilenkin {112]. In the simulations the strings are discretised and the scale b
enters as the spacing between points on the string. mg enters as the cutoff
in the smallest loops allowed. The predictions from [99] and the simulation
results (112] arc shown in Fig 3.1.

3.6 The Microcanonical Approach

It is clear from (108) that the canonical approach will fail at high densities
for d > 4 because the canonical density tends to a finite limit

2
35 G e
as the temperature approaches Ty. It is also clear that it will fail for d = 4
because the fluctuations are _!.un.-.. Ty. Thus for every d of interest it is
cssential to use the more fundamental microcanonical easemble.

In the microcanonical ensemble one uses the density of states §}{ £) di-
rectly. One simply fiads the configurations that dominate the total aumber
of states, for energy fixed in the range E to £ + dE and for fixed volume V.

Now from (89) the partition function Z(4) is simply the Laplace transform
of }( E). Thesefore one way to obtaia fi( E) is to invert the Laplace transform.
Starting from (108), then as long as Smyg is small we can expand the logarithm
and keep only the first term. This yields

5 1 S Aoy
z(8) a..M-”. .._?\.1 .\l dm p(m)e2) (114)
Now since the inverse Laplace iransform of an exponential is just & delta

5

function we find

.,37 :?\1 ', [ dms plma))o(E - YE)  (1s)

al
=1 B i=1

with E, = 5w + k2. This is just the classical formula for the total number
of states for an arbitrary number n striugs of total energy E in a box. The
1/n! is just the usual ‘classical statistics’ overcounting factor for identical
particles. It ia only strictly valid when the average occupancy of each state
is much less than unity, which is truc here since we always have ¢ #% <
e Pme < ebme o ]

Equation (115) is the starting point for the microcanonical approach first

followed by Frautschi{108] and Carlitz[109).

3.7 High Density

In reference [99] Mitchell and myself atasted from (115) and found the config:
urations that dominate the integrals directly. This is a hard calculation but
there is a simpler approach that leads to the same result, based on examining
the nature of the divergences in canonical expectation values at Ty which [
shall explain here.

We can actually determine a lot about the function (E)e *% (the in-
tegrand of the pastition function at Ty) from its moments (107 - 109) and
higher moments considered as T approaches Ty. This then tells us about the

integrand }( E)c?*® at arbitrary 8. Consider the probability distribution

Q(E)e 5 4E
Z(Ty)

We shall be interested in its limit as § — b. Physically this is the probability

 M(EME = (116)

for finding the system with encrgy E when it is in contact with a heat bath

16



at Ty. The expectation value of the energy in this distribution is given by
(108) at T;

N cVm,y

E- nasm.l._ \ Aulaa.;ﬂ (17

which is finite in d > 4 and corresponds to & loop distribution

c dm
For d > 6 the fluctuations around this value are small;
_ ns.-c
] AR ...Ga?i T (119)

s0 the fractional fluctuation §E?/E? o V! which tends to zero in the infinite
volume limit. However for d < 6 the fluctuations are large.

In d > 6 near E the probability distribution is & sharply peaked Gaussian.
However (and this is how strings differ from ‘normal’ systems ) at large F
p(E) is not Gaussian at all.

We can see this by calculating higher moments of E just as in (107 - 109)
for # close to b. The first divergent moment is

sEt = un uul._\..t
<
~ AT G- s. (120)

as f — b which tells us that for large E and at 8 = b

8-Am

v 1
151%%1 (121)

7

80
vV  E
Q(E) =~ NA?V%N%
Nﬁﬂfv = e VFn
cV o dm
—bFg = % —ar (122)

The second term in 1 is simply the number of states available to a single

string of ‘energy E:

n(E) = n<\~.-.\ dm I.zm. VP +m?) (123)

where one uses the nonrelativistic solution to perform the m integral: m ~
~ P*/(2E) and thus the momentum integral to find

vV o.
M(E) ~ (2rt) 5 EF

(129)

Thus as one increases the density beyond py the energy just goes into a
single long string. Now the first term in (122) is just the partition function
st T

Z(Tw) = e*B0,..,.(E)AE (125)

in d > 6 because the integral is strongly peaked around E, and we take it's
width to be AE. i, is the number of states corresponding to the loop
distribution (118) at Ty. Thus assuming E >> E (123) is just

UE) & Qoo EYN(E — E)AE (126)

which is the number of states where E of the string is in loops and the

remainder is in one long string. This is therefore what happ at very
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which yields T, > Ty! However the difference in temperature is tiny in
the large volume limit - the E — T cutrve turns vertical at Ty in the large
volume limit. Differentisting (130) we would find a negative specific heat,
but ey o« V2, an infinite specific heat per unit volume.

We have come o long way in the analysis of the Hagedorn transition to
long string domination. The main conclusion ie simple. In the large volume
limit there are more states available to a system of strings than there are to
a heat bath at any temperature above Ty. Thus as one squeezes a hox full
of string plus radiation there comes a density above which all the energy will
flood into the long string.

]

This may have important c for fi tal strings in the

b |

early universe, or in black holes, where very high densities are reached. As
long as equilibriumn is attained and the effects of gravity sufficiently weak
to validate the above analysis, above a certain density all the energy in
the radiation will flood into long strings which would fill the universe. It
is important to note that the radiation density is always bounded above,
basically to T§. Thus the problem of understanding singularitics in string
theory involves the massive string modes crucially. This makes it so different

from the usual problems with ordinary matter or radistion that it may even

have a solution!. Some discussion of the quantum mechanics of the massive
modes in the very early universe was given in {101 where it was argued that
they may actually lead to an m..nnze...s phase (see also [100]). Some recent
work on calculating the interaction rates for massive string modes may be
found in (114,115] - this is important in eventually deciding how reasonable

the essumption of thermal equilibrium is in the cuse of fundamental strings.
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Figure Captions

Figure 2.1
The potential V(#) = 3(#* — ) used in Section 2.

Figure 2.2

The effective potential for the long wavelength modes V,,;(#) calculated in
Section 2.2, at T =0, T =T,, and T = /2T..

Figure 2.3

The three simplest typen of defects. On the left is the spatial distribution of
the fields. Arrows show the location of the fields on the minimum of the
potential V,.;,., which is shown on the right.

a) a domain wall

b) a string

c} a magnetic monopole. .

Figure 2.4

A pictorial demonstration that x,(G/H) = xo( H) when G is simply
connected. On the left, H has two p te, the comp t connecied
to the identity, H., and the disconnected component H'. When G/H is
constructed from G oune identifies all the clements of H with the identity.
This can be pictured as squeezing all the elements of H together, forming a
‘tunnel’ as shown on the right. ?- clearly has a noncontractible loop.

Figure 2.5

The profile of & cosmic string. The solid line is | # | /1 where the angular
dependence (in cylindrical coordinates) is simply & =| & | ¢*. The dashed
line is Aggr, with G the gauge coupling. The gauge potential 4,
asymptotically teods to 1/(gr) so the total ‘magnetic’ flux down the string
is f B.dS = [ A.dl = 2x/g. The radius js in units of 1/(gn), snd the
solution is shown for A = g?, the case where the Higgs particle mass equals
the gauge particle mass in the broken phase (Section 2.7).

Figure 2.6 .

The approximation used in simulations of the formation of the simplest
‘U(1)’ cosmic strings (Section 2.8).

s) The space V.., (the circle) is approximated by 3 points. Each domain is
assigned a value 0,1 or 2 corresponding to one of these points. The rule for

the phase of the Higgs field is to move along the shortest path on V,,;,
when going from one domain to the next.

b) an edge with four surrounding domains - this edge is a string.

c) this edge is not a string.

Figure 2.7

A box of strings st formation. The stringe are formed on a cubic lattice

with the algonithm described in Figure 2.6. The box is tilted and the string
width decreases away from the nearest side of the box to give an impression
of perspective. Periodic boundary conditions are used so all of the string is
in the lorm of closed loops- most of it is actually in a single very long loop.

Figure 2.8

Coordinates used in the derivation of the Nambu action given in Section 2.9
. It is assumed that the radivs of curvature of the string, R, is much greater
than it’s width W. ’

Figure 2.9
When two strings collide they reconnect the other way (Section 2.9).

Figure 2.10

A selection of simple loop trajectories in flat spacetime which do not
self-intersect at any time. The solutions plotted are given by

o, t) = J((1 — a)sino_ + sindo_ + sinoy, —(1 - a)cosa_ — Jeosdo. -
cosdcosa, , ls.\oﬁ — a)eoso_ — sindcose,) where 0y = o + ¢ and o runs

from 0 to 2x. This family of solutions satisfies the equations (52) for all a
and ¢. They are periodic, with petiod r.

Figure 2.11

A string network in & radiation dominated yniverse. The cube shown is half
a Hubble radius on each side and the scale factor of the universe has
doubled since the beginning of the simulation. The picture is from »
forthcoming paper by Albrecht and myself.

Figure 2.12

The string .._n..-m.« in the lutest simulationa by Albrecht and myself, for
radistion dominated universes. The vertical axis shows the string density in
units of the string tension divided by the Hubble radius squared (u/(2¢)?).

The horisontal axis shows the comoving Hubble radius in unite of the initial
domain size { when the strings are formed. This is proportional to the scale
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