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Abstract. We present the results of a low-temperature scan of the phase diagram of dense
two-color QCD with Ny = 2 quarks. The study is conducted using lattice simulation with
rooted staggered quarks. At small chemical potential we observe the hadronic phase,
where the theory is in a confining state, chiral symmetry is broken, the baryon density
is zero and there is no diquark condensate. At the critical point u = m,/2 we observe
the expected second order transition to Bose-Einstein condensation of scalar diquarks. In
this phase the system is still in confinement in conjunction with nonzero baryon density,
but the chiral symmetry is restored in the chiral limit. We have also found that in the first
two phases the system is well described by chiral perturbation theory. For larger values
of the chemical potential the system turns into another phase, where the relevant degrees
of freedom are fermions residing inside the Fermi sphere, and the diquark condensation
takes place on the Fermi surface. In this phase the system is still in confinement, chiral
symmetry is restored and the system is very similar to the quarkyonic state predicted by
S U(N,) theory at large N..

1 Introduction.

The phase diagram of QCD is of high importance for several fields of observational physics like
cosmology and astrophysics. One field of experimental physics, located between nuclear physics
and high energy physics, is the study of hadronic matter created by relativistic heavy ion collisions.
Such experiments are addressing the structure of the phase diagram, although the understanding and
modeling of an actual collision requires much more than the knowledge of the equilibrium phase
diagram. However, equilibrium observables like the equation of state and transport coefficients are
highly needed to be used in hydrodynamical approaches which serve to probe various scenarios.
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Unfortunately, lattice simulation of QCD can not be applied today to arbitrary chemical potential
because of the sign problem [1]. The origin of the sign problem is that the fermion determinant
becomes complex-valued which makes impossible the direct simulation by importance sampling of
gauge field configurations. An alternative to lattice simulation of SU(3) QCD with u # 0 is the
simulation of SU(2) QCD (also called QC,D). Introduction of a chemical potential to the latter theory
does not lead to a sign problem, so one can apply the standard lattice approach to study this theory.
Although a two-color world differs from the tree-color world, lattice study of QC,D with chemical
potential can provide us with important information about the properties of QCD with non-zero baryon
density (EoS, generation of the fermion mass gap, efc.). We would like also to note that it is interesting
to study the QC,D by its own due to a rich structure of the phase diagram.

The properties of QC,D were studied theoretically within the following approaches: ChPT [2—
4], the NJL model [5-7], FRG [8, 9], random matrix theory [10-12]. Principally, these studies have
revealed the following phase structure of low temperature QC,D with three subsequent phases: (1)
0 < u < u¢ (hadronic phase), (2) ¢ < u < u (“baryon onset” with a superfluid condensate due to
Bose-Einstein condensation [BEC]) and (3) u¢ < u (the phase with diquark condensation due to the
Bardeen-Cooper-Schrieffer mechanism [BCS] [13]).

The first lattice study of QC,D with chemical potential and Wilson fermions was performed by
A. Nakamura in [14]. Futher lattice investigation of dense two-color QCD was continued by J. Kogut
and collaborators using staggered quarks. In [15] eight-flavor theory was investigated and in [16—18]
the authors studied Ny = 4 theory. What concerns a low temperature scan of the phase diagram, these
authors observed the succession of a hadronic phase and the BEC phase, with their properties well
described by ChPT, but they didn’t find a BCS phase.

The main activity in two-color QCD was later continued by the Swansea group (S. Hands and col-
laborators) for the two-flavor theory with Wilson fermions [19-22]. In a low temperature scan of the
phase diagram the authors observed a hadronic phase, followed by the BCS phase with deconfinement,
but did not encounter the BEC phase.

In this paper we are going to study the QC,D phase diagram with Ny = 2 flavors going back to
the lattice simulation of staggered fermions using the rooting procedure. In the present paper we are
going to carry out a ' scan at low temperature of the QC,D phase diagram.

2 The lattice set-up

In our simulations we used the Wilson action for the SU(2) gauge fields

4
S =BZ Z (1- %Tr Uy, (1

x p<v=l

For the fermionic degrees of freedom we used staggered fermions with an action of the form
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where i, ¢ are staggered fermion fields, a is the lattice spacing, m is the bare quark mass, and 7,(x)
are the standard staggered phase factors: 77;(x) = 1, n,(x) = (=1)""**%1, y = 2,3,4. The chemical
potential u is introduced into equation (3) through the multiplication of the links along and opposite
to the temporal direction by factors e**¢ respectively. This way of introducing the chemical potential
makes it possible to avoid additional divergences and to reproduce well known continuum results [23].

In addition to the standard staggered fermion action we add a diquark source term [15] to equation
(2). The diquark source term explicitly violates Uy(1) and allows to observe diquark condensation
even on finite lattices. The results presented in this paper are obtained as follows: we carry out
simulations at small but nonzero parameter 4 < ma, and then extrapolate obtained data to 4 — 0.
Notice that similar to the diquark source term an additional pion term was introduced to the fermion
action during the studies of QCD phase diagram with isospin chemical potential [24-26].

Integrating out the fermion fields the partition function for the theory can be written as

7= f DUeSG-Pf(/IA‘?T AA;I ): f DUe™5¢ - \Jdet(M™M + 22), @)
- 2

where M is the staggered Dirac operator and A is the diquark source. Note that the pfaffian Pf is
strictly positive, such that one can use Monte-Carlo methods to study this system. Partition function
(4) corresponds to Ny = 4 in the continuum limit. In the present paper we are going to study

Z-= f DUESe - [detM™M + %)), 5)

which corresponds to the theory with Ny = 2 dynamical fermions in the continuum limit.

To study the phase diagram of QC,D with Ny = 2 flavors we used a 16 x 32 lattice, simulating
with 8 = 2.15, ma = 0.005, the lattice spacing a = 0.112(1) fm and the pion mass M, = 378(4) MeV
(detailed description of the action and parameters may be found in [27]). The simulation was carried
out for a set of values of the chemical potential u spanning the region u € [0;1759] MeV (ua €
[0.0; 1.0]). For each value of u € [0; 1055] MeV (ua € [0.0;0.6]) we carried out the simulation at
three values of the diquark source: 4 = 0.001, 0.00075 and 0.0005, the measured data have been
then extrapolated to A = 0. Simulations with higher ¢ are more computationally demanding, thus for
1> 1055 MeV (ua > 0.6) only the value A = 0.0005 was used.

3 Numerical results
3.1 The diquark condensate

In Fig. 1 we plot the diquark condensate (gg), obtained by linear extrapolation to A = 0, as a function
of u in the region u € [0.0;440] MeV (ua € [0.0;0.25]). It may be seen, that for u < 141 MeV
(ua < 0.08) the diquark condensate (gq) is compatible with zero, i.e. the system is in the hadronic
phase. However, for 4 > 176 MeV (ua > 0.1) the diquark condensate starts to deviate from zero.
If we are sufficiently far from the position of the phase transition, one can try to use ChPT [2, 3]
to describe the data. In particular, ChPT predicts that at u° = m,/2 there is the transition from
the hadronic phase to the phase of Bose-Einstein condensation of scalar diquarks with (gg) # O,
and the behaviour of the diquark condensate above the transition would be given by the formula

(qq) = qqdo+J1 — (u° /w*, where (Gg)o is the chiral condensate at zero chemical potential. Fit with
this formula in the region u € [263;352] MeV (ua € [0.15;0.20]) provides u¢ = 215(10) MeV
(au‘ = 0.122(6)) with y?/dof = 2.5. We plot this fit in the Fig. 1.
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Figure 1. The diquark condensate as a function of u. ~ Figure 2. The ratio (qq)/(Tu?) as a function of p.

One can try to fit the data by another function: (gq) = (gg)o /1 — (u¢ /u)*® with the power a con-
sidered as an additional fitting parameter. The fit with this formula in the same region u € [263;352]
MeV (u € [0.15,0.20]) gives u€ = 193(10) MeV (au‘ = 0.110(6)) with y?/dof = 1.4. From these ex-
amples one sees, that the position of the critical point determined from the fitting procedure strongly
depends on the fitting function. Nevertheless, the results for 4¢ and the behaviour of (gg) are in
reasonable agreement with ChPT predictions in the region ua € [0.0; 0.20].

Let us consider the region of larger chemical potential u > 352 MeV (ua > 0.2). To understand
what happens in this region, we plot in Fig. 2 the linearly extrapolated diquark condensate, divided
by Tu?, as a function of . As it is visible from this plot, in the region u € [528;1055] MeV (ua €
[0.3;0.6]) there is a plateau, i.e. the value of the diquark condensate is proportional to the surface of
a sphere with the radius u: (gg) ~ p*. This is a characteristic property of the BCS theory, where the
condensate appears on the Fermi surface and is proportional to the density of states on this surface.
Thus we conclude, that for u > 528 MeV (ua > 0.3) the system reveals properties of the BCS phase,
and that the transition from the BEC to the BCS phase is smooth.

3.2 The chiral condensate

In the Fig. 3 we plot the chiral condensate calculated for the smallest diquark source value A = 0.0005
as a function of u (during the simulations we discovered that dependence of the chiral condensate
on the source A was very weak). The first observation is that up to u < 176 MeV (ua < 0.1),
which is approximately m,/2, the chiral condensate does not depend on the chemical potential. In
the region y > 176 MeV, where the system is in the vicinity of the transition to the BEC phase, the
chiral condensate starts to decrease. These properties are in agreement with ChPT predictions (see
the Figures 4 and 5 in paper [2]).

According to ChPT, at u > u¢ the chiral condensate drops as (7q) = (Gq)o (u/u)* . To check this
prediction in the region u € [263;352] MeV (ua € [0.15;0.20]) we fitted our data by a power law
(Gq) = A/u®, which provided a = 0.78(2) with y?>/dof = 0.3. It is interesting to note, that this fit
gives a satisfactory description of the data up to u ~ 1055 MeV (ua ~ 0.6). Thus, one sees that the
chiral condensate drops slower with increasing chemical potential than ChPT predicts (similar slower
decrease of the form (gg) ~ 1/u was observed in [21] with N; = 2 Wilson quarks).
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Figure 3. The chiral condensate {Gg)/T* as a function Figure 4. The chiral limit of the chiral condensate
of u. taken for different values of the chemical potential.

Finally, it is interesting to study the chiral symmetry breaking in the chiral limit for different
regions of the chemical potential. In Fig. 4 we plot the chiral condensate for different values of the
chemical potential as a function of the quark mass and the results of the linear extrapolation to ma = 0.
It may be seen from Fig. 4, that chiral symmetry breaking exists in the chiral limit within the hadronic
phase (values ¢ = 0, 70 and 141 MeV), whereas there is no chiral symmetry breaking in the chiral
limit in the BCS phase (1« = 615 MeV) and in the BEC phase (u = 246, 281, 352 MeV). However, it
is difficult to claim, that there is no chiral symmetry breaking in the whole BEC phase: when we take
the chiral limit, we change the pion mass and thus shift the critical point ¢ closer to zero. This effect
might be important near the phase transition. Note, that the absence of chiral symmetry breaking in
the chiral limit within the BEC phase agrees with ChPT predictions.

3.3 The baryon density

In Fig. 5 we plot the baryon density2 in the region y € [0.0;528] MeV (ua € [0.0;0.3]). It is clear,
that for all 4 < 176 MeV (ua < 0.1) the baryon density is vanishing within the uncertainty of the
calculations. In the vicinity of the phase transition (u > 176 MeV) the baryon density starts to
deviate from zero, and for larger values of the chemical potential it rises with the increasing of u.
ChPT predicts, that the dependence of the baryon density on the chemical potential above u€ is given
by a formula ng ~ u — u*/u3. Fit of the data by this formula in the region u € [263;352] MeV
(ua € [0.15;0.20]) provides u¢ = 207(7) MeV (au‘ = 0.118(4)) with x*/dof = 1.2. This value is in
agreement with our previous results for u¢, obtained from the (gg) fits. From Fig. 5 it is visible, that
for bigger chemical potential, ua > 0.2, our data deviate from the ChPT prediction.

Next, let us consider the baryon density at larger values of the chemical potential. In Fig. 6 we plot
the ratio ng/ng as a function of u, where for the square points the reference density ny is the baryon
density for free continuum fermions at 7 = 0, ng = (2u>)/(372), and for the circle points ny is the
baryon number density for the free lattice fermions. It can be seen, that in the region u € [528; 1055]
MeV (ua € [0.3;0.6]) these ratios are slowly varying functions of the chemical potential, whereas
the measured baryon density changes by an order of magnitude. We believe, that the scaling of the

The ansatz ng(1) = A + BA> was employed for the 1 — 0 extrapolation.
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Figure 5. The baryon density np in the physical units Figure 6. The ratio ng/ny as a function of the chemical
as a function of u. potential y.

baryon density ng ~ ngy confirms the conclusion that in the region u € [528; 1055] MeV the system
is in a BCS-like phase. The relevant degrees of freedom in this phase are quarks, which mostly
live inside the Fermi sphere with a condensate of Cooper pairs on the Fermi surface. The fact that
ng/ng ~ 2.0...2.5, but not ~ 1.0, can be attributed to UV and IR effects (similar artifact effects for
np scaling were observed in [21]).

3.4 The gluon observables

In this section we study the gluon observables: Polyakov loop and Wilson loops. Similarly to the
chiral condensate the gluon observables are not sensitive to the value of the A, thus we take these
observables calculated at the smallest value 4 = 0.0005 as their values at the 1 = 0.
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Figure 7. The time-like Wilson loops for the contours 8 x 8 and 10 X 10 as a functions of the chemical potential.



EPJ Web of Conferences 137, 07011 (2017) DOI: 10.1051/epjconf/201713707011
XII™ Quark Confinement & the Hadron Spectrum

We measured the average of the Polyakov loop as a function of the chemical potential. The result
of this measurement is that for all values of the chemical potential studied in this paper the average
Polyakov loop is vanishing within the uncertainty of the calculation.

Furthermore, in order to investigate the confinement properties of the system, we have calculated
time-like Wilson loops for the quadratic contours of the size 8 X 8 and 10 x 10 (for larger Wilson
loops we obtained results compatible with zero) as functions of the chemical potential. The results are
shown in Fig. 7. One learns from this plot, that for ¢ > 352 MeV (u > 0.2) the Wilson loops decrease
with the growth of the chemical potential. At small y, for u € [0;263] MeV (ua € [0.0;0.15]), a
plateau for both Wilson loops may be noticed. From these results one can conclude, that the system
is in a confined phase for all values of the chemical potential under consideration. The possible
explanation for this behaviour may be the absence of the Debye screening in two-color QCD at zero
temperature [4, 28].

4 Discussion and conclusion

Our results can be summarized as follows. At small chemical potential u < u¢ = m,/2 ~ 200 MeV we
observe a hadronic phase. In this phase QC,D matter is in confinement, chiral symmetry is broken,
the diquark condensate vanishes and the baryon number density is also zero. Relevant degrees of
freedom in this phase are Goldstone bosons.

In the region u¢ < u < u? ~ 352 MeV we observe the BEC phase. Characteristic feature of this
phase is Bose-Einstein condensation of scalar diquarks. The order parameter for the transition to the
BEC phase is the diquark condensate, which develops a non-zero value in the region u > . Within
the uncertainty of the calculation y. = m,/2, where m, is the pion mass at zero chemical potential.
In this phase, QC,D matter has also confining properties, whereas the baryon density is non-zero.
Relevant degrees of freedom in the BEC phase are Goldstone bosons as well.

It is important to notice, that for all values of the chemical potential u < u? our results are in good
agreement with the predictions of ChPT. An exception is the chiral condensate, which drops with
increasing chemical potential slower than ChPT predicts in the leading order. This behaviour of the
chiral condensate might be explained by higher order radiative corrections.

If we further increase the chemical potential, starting from u ~ 500 — 600 MeV one can observe
that the diquark condensate scales as (gq) o u” and the baryon density scales as ng o 1. Physically,
this implies that the relevant degrees of freedom are quarks, which are mostly living inside the Fermi
sphere with a condensate of Cooper pairs on the Fermi surface. These properties are clear hints in
favor of the BCS phase. In this phase the chiral symmetry is restored in the chiral limit. The BCS
phase extends up to u ~ 1000 — 1100 MeV. We believe, that the BCS phase of the QC,D theory may
be similar to the “quarkyonic phase” of the SU(N,) QCD at large N, [29].
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