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1 Introduction

Observations show that the large-scale universe is homogeneous and isotropic, with only
small, Gaussian perturbations, typically one part in 105 [1]. These features are explained
by cosmic inflation, an early period of accelerating expansion driven by a scalar field called
the inflaton. The expansion smooths out prior inhomogeneities but also stretches quantum
vacuum fluctuations to observable scales. Due to their smallness, the typical fluctuations can
be described by linear perturbation theory, by adding small perturbations to the metric and
energy-momentum tensors on top of the homogeneous Friedmann-Lemaître-Robertson-Walker
(FLRW) solution and solving the Einstein equation to first order. The observables can be
condensed into the curvature perturbation and its power spectrum, which freeze to constant
values at super-Hubble scales.

The separate universe approximation [2, 3] provides another way to describe inflationary
perturbations. Each super-Hubble patch of inflating space behaves like an independent, local
FLRW universe. The super-Hubble perturbations arise as differences between the different
patches — in particular, the different amounts of expansion map to curvature perturbations.
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The mapping is called the ∆N formalism [3–6]. Incorporating the short-scale quantum
fluctuations gives rise to stochastic inflation [7], where the local inflaton evolution is affected
by stochastic noise and follows a stochastic differential equation (SDE), resembling Brownian
motion. For an introduction to SDEs, see [8].

When applied to the typical perturbations, the ‘stochastic ∆N formalism’ reproduces the
results of linear perturbation theory [9–11]. However, the separate universe approximation is
non-perturbative, and the stochastic approach captures super-Hubble evolution beyond linear
order, including non-Gaussian features. This is important for the strongest perturbations that
collapse into primordial black holes (PBHs) [12, 13]. Over recent years, stochastic inflation
has gained popularity as the tool of choice for studying PBH statistics, see, e.g., [14–46].

An often overlooked aspect of stochastic inflation is the different approaches to stochastic
integration. Unlike ordinary differential equations, SDEs can be integrated in many incom-
patible ways, producing different solutions. The Itô and Stratonovich approaches are the
most common ones [47–49], corresponding to a simple Euler integration scheme and a more
complicated scheme that preserves the chain rule. In physical systems, these lead to different
predictions (in stochastic inflation, slightly different curvature perturbations), and the right
approach depends on the details of the physics that causes the stochasticity [50]. For a recent
review of the debate between the two approaches in general physical systems, see [51].

A handful of works have considered the issue in stochastic inflation from the point of
view of various symmetry and consistency arguments [10, 11, 52–61]. However, a physical
interpretation of the differences is lacking. In this paper, I point out that the fluctuations in
stochastic inflation arise from ‘zooming in’ to ever shorter length scales in comoving coordi-
nates. Different descriptions of this zoom-in process may give rise to different interpretations
of the stochastic equation. Since the zooming is independent of the classical (non-stochastic)
drift, the most obvious zoom-in scheme consists of alternating independent steps of classi-
cal evolution and quantum kicks. I show that, in the usual de Sitter approximation with
Markovian noise and in the limit of small time steps, this reduces to the Itô approach; I
demonstrate this with a numerical computation of ϕ2 inflation. If the noise is computed
beyond the de Sitter approximation by evolving the short-wavelength modes explicitly in the
local background, as done in recent numerical studies [24, 33], its Markovian nature is lost. I
show the system can still be recast into the form of a traditional SDE by promoting the mode
functions to an equal position with the local background quantities. The Itô and Stratonovich
approaches coincide with each other and with the alternating zoom-in scheme in this setup.

In addition to the new results, I discuss stochastic calculus and the different approaches
to stochastic integration in a pedagogical way, presenting heuristic derivations of many
standard results.

The paper is organized as follows: in section 2, I introduce the stochastic inflation
formalism and discuss the zoom-in schemes. In section 3, I describe the difference between
the Itô and Stratonovich approaches and interpret the alternating zoom-in scheme as an
Itô integral in the Markovian slow-roll limit. Section 4 goes beyond slow roll and discusses
the zoom-in process in the non-Markovian case, and section 5 is reserved for discussion
and comparison to previous studies. Finally, appendix A reviews some additional results in
stochastic calculus. I work with the metric convention (−,+,+,+) and use natural units
where c = ℏ = MPl = 1.
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2 Zooming into the inflationary perturbations

Consider single-field inflation driven by the inflaton ϕ with a potential V (ϕ) and the canon-
ical action

S =
∫

d4x
√

−g
[1

2R− 1
2∂

µϕ∂µϕ− V (ϕ)
]
. (2.1)

At the background level, the metric takes the FLRW form

ds2 = −dt2 + a2(t) dxidxi , (2.2)

where a is the scale factor. The background equations of motion are

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , 3H2 = 1
2 ϕ̇

2 + V (ϕ) , (2.3)

where H ≡ ȧ/a is the Hubble parameter and dot denotes a derivative with respect to the
cosmic time t. Solutions of these equations are characterized by the slow-roll parameters

ϵ1 ≡ − 1
H

d lnH
dt = 1

2
ϕ̇2

H2 , ϵ2 ≡ 1
H

d ln ϵ1
dt . (2.4)

In particular, ϵ1 < 1 is the sufficient and necessary condition for inflation.

2.1 Linear perturbations

Consider next small scalar perturbations around the background,

ϕ = ϕ̄(t) + δϕ , (2.5)
ds2 = −(1 + 2A)dt2 + 2a(t)∂iBdxidt+ a2(t)[(1 + 2ψ)δij + 2∂i∂jE]dxidxj , (2.6)

where ϕ̄ is the background field, δϕ is the field perturbation, ψ is the curvature perturbation,
and A, B, and E are the other metric scalar perturbations, all of which depend both on time
and the spatial coordinates. The perturbations are connected by the various components of
the perturbed Einstein equation, and to first order, in the spatially flat gauge where ψ = 0,
they can all be written in terms of δϕ alone, following the equation of motion (see, e.g., [62])

δϕ̈+ 3Hδϕ̇+
[
− 1
a2∂

i∂i + V ′′(ϕ̄) − 1
a3

d
dt

(
a3

H
ϕ̄2
)]
δϕ = 0 . (2.7)

At this point, I promote the perturbations to a quantum field, described semi-classically as
quantum fluctuations over the classical background given by ϕ̄(t) and a(t). At linear level, the
Fourier modes of δϕ are independent harmonic oscillators, with the standard representation1

δϕ̂(t,x) =
∫ d3k

(2π)3/2 ϕ̂k(t)e−ik·x =
∫ d3k

(2π)3/2

[
âkδϕk(t) + â†

−kδϕ
∗
k(t)

]
e−ik·x , (2.8)[

âk, â
†
p

]
= δ(3)(k − p) , [âk, âp] =

[
â†

k, â
†
p

]
= 0 . (2.9)

1To be precise, quantization is done in terms of the Sasaki-Mukhanov variable ν = aδϕ, whose ac-
tion reduces to that of Minkowski space quantum field theory in the small-wavelength limit and in con-
formal time, dη = dt/a [63]. Our representation produces the correct canonical commutation relation
[ν̂(η, x), ∂η ν̂(η, y)] = iδ(3)(x − y).

– 3 –



J
C
A
P
0
4
(
2
0
2
5
)
0
3
5

Here â†
k and âk are the standard creation and annihilation operators, and all time evolution

is captured in the mode functions δϕk. The modes start at sub-Hubble lengths in the
Bunch-Davies vacuum state, the state annihilated by all âk for mode functions obeying [63]

δϕk = 1√
2ka

eik/(aH) when k ≫ aH . (2.10)

The expansion of space stretches the modes to super-Hubble scales and amplifies them
according to the equation

δϕ̈k + 3Hδϕ̇k +
[
k2

a2 + V ′′(ϕ̄) − 1
a3

d
dt

(
a3

H
˙̄ϕ2
)]
δϕk = 0 , (2.11)

the Fourier transformation of (2.7). The modes get highly excited, quantified by the cor-
relators 〈

ϕ̂†
kϕ̂p

〉
= |δϕk|2δ(3)(k − p) , (2.12a)〈 ˙̂

ϕ†
k

˙̂
ϕp
〉

= |δϕ̇k|2δ(3)(k − p) , (2.12b)〈
ϕ̂†

k
˙̂
ϕp
〉

= δϕkδϕ̇
∗
pδ

(3)(k − p) . (2.12c)

Since I treat the perturbations linearly, the corresponding states are Gaussian. At super-
Hubble scales, the quantum states are squeezed in the (δϕk, δϕ

′
k) phase space: ϕ̂k and ϕ̂′

k are
highly correlated so that one determines the other. The quantum properties of the correlators
get suppressed, and the perturbations essentially behave like classical random fields with
statistics given by (2.12). For more details, see [33, 64].

Finally, a gauge transformation gives the (classical) Gaussian comoving curvature per-
turbation, R = H

ϕ̇
δϕ.

2.2 Separate universes and stochastic inflation

Solving (2.11) yields the perturbations in linear perturbation theory, but as discussed in the
introduction, we want access to large, non-linear perturbations. This can be achieved with
the separate universe picture [2, 3]. Let us, therefore, write the modified Fourier expansions

ϕR(t,x) ≡
∫ d3k

(2π)3/2W (kR)ϕk(t)e−ik·x , (2.13a)

πR(t,x) ≡
∫ d3k

(2π)3/2W (kR) ϕ̇k(t)
H(t) e

−ik·x . (2.13b)

These are the coarse-grained field and the field’s coarse-grained time derivative, or ‘mo-
mentum’.2 The window function W (x) goes to 1 for small x and to 0 for large x. The
coarse-grained quantities thus only get contributions from Fourier modes ϕk with wavelengths
≳R, the (comoving) coarse-graining length. They represent weighted averages over a patch

2This is not the canonical momentum in the sense of classical mechanics, just a convenient piece of notation.
Defined this way, πR corresponds to the derivative of the field with respect to the number of e-folds N ,
see below.
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of size R. I set R = Rσ ≡ 1/(σaH0), where σ ≪ 1 is a constant and H0 is the initial Hubble
radius.3 With this choice, R changes in time, always hovering slightly above the Hubble
radius. For simplicity, I use a sharp cutoff in Fourier space,

W (x) =

1, x < 1
0, x ≥ 1 ,

(2.14)

as is standard in the literature, but the general ideas in this paper also apply to other coarse-
graining schemes. I denote the cutoff in k-space by kR ≡ 1/R. With the above choice of R, this
kR = kσ ≡ σaH0. Later, I will also consider values of R and kR that differ from Rσ and kσ.

The time evolution of the coarse-grained quantities has two components. First, the sepa-
rate universe picture lets us treat the super-Hubble variables ϕR and πR like the background
quantities of a local FLRW universe, to leading order in the gradient expansion [2, 3]. They
then follow the Friedmann equations (2.3). This is encoded in the time dependence of the
Fourier modes ϕk(t) (and H(t)) in (2.13). Second, as time goes on, the short-wavelength
modes initially excluded from ϕR and πR get stretched to the point where they cross the
coarse-graining scale, becoming part of the coarse-grained quantities. This is captured by the
time dependence of R in W (kR). I treat the short-wavelength modes linearly and quantum
mechanically, as described in the previous section. As they get integrated into the classical
background quantities ϕR and πR, the latter undergo random jumps or ‘kicks’, leading to a
stochastic evolution. Instead of a unique time evolution, we get a family of solutions ϕR(N)
corresponding to different realizations of the stochastic noise, from which we can infer the
statistical properties of ϕR such as its probability distribution, mean, and variance.

At super-Hubble scales, the state of the system is uniquely determined by ϕ, its time
derivative, the time t, and the scale factor a, which I write in terms of the number of e-folds
of expansion N ≡ ln a. In principle, all perturbed quantities receive stochastic kicks. It is
convenient to switch to N as the time variable, that is, to describe the system at consecutive
N = constant hypersurfaces, eliminating N -perturbations4 and making N a convenient
classical clock variable. This allows us direct access to N in each stochastic realization,
useful to access the curvature perturbation through the ∆N formalism [3–6, 9–11].5 The
∆N formalism concerns the boundary conditions of the stochastic evolution. In this paper,
we study the bulk stochastic evolution and the ∆N formalism won’t enter explicitly, but
it informs our choices.

Combining these considerations, the evolution equations become

ϕ′
R = πR + ξϕ , π′

R = −
(

3 − 1
2π

2
R

)
πR − V ′(ϕR)

H2 + ξπ , H2 = V (ϕR)
3 − 1

2π
2
R

, (2.15)

3H is stochastic, so using it to define the coarse-graining scale would lead to complications. With our
convention, used before in, e.g., [40], the time dependence of R arises only from a, whose non-stochasticity I
will ensure below. I assume H does not change much during the period of inflation we’re interested in, so Rσ

is always slightly super-Hubble.
4This is a gauge choice. Technically, we should now evaluate δϕ in the uniform-N gauge instead of the

spatially flat gauge used in (2.7). However, these two gauges are close to each other at super-Hubble scales,
and the spatially flat gauge is easier to work in [20, 33].

5In the process, we lose track of the cosmic time t, which in the uniform-N gauge becomes a perturbed,
stochastic quantity. This is fine — t is not interesting observationally.
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where prime denotes a derivative with respect to N . The quantities H and N here also
describe the local background universe, even though I omit the index R for them. The
stochastic kicks are described by the ξϕ and ξπ terms, which by a direct differentiation
of (2.13) take the form6

ξϕ(N) =
∫

d3k

(2π)3/2
dW (kRσ)

dN ϕ̂k(N)e−ik·x = dkσ

dN

∫
d3k

(2π)3/2 δ(k−kσ)ϕ̂k(N)e−ik·x , (2.16a)

ξπ(N) =
∫

d3k

(2π)3/2
dW (kRσ)

dN ϕ̂′
k(N)e−ik·x = dkσ

dN

∫
d3k

(2π)3/2 δ(k−kσ)ϕ̂′
k(N)e−ik·x , (2.16b)

where I pulled the Fourier modes at the R-boundary from the short-wavelength quantum
regime, hence the hats. We can use (2.12) to compute the two-point functions

〈
ξϕ(N)ξϕ(N ′)

〉
= 1

6π2
dk3

σ

dN |δϕkσ (N)|2δ(N −N ′) , (2.17a)

〈
ξπ(N)ξπ(N ′)

〉
= 1

6π2
dk3

σ

dN |δϕ′
kσ

(N)|2δ(N −N ′) , (2.17b)

〈
ξϕ(N)ξπ(N ′)

〉
= 1

6π2
dk3

σ

dN δϕkσ (N)δϕ′∗
kσ

(N)δ(N −N ′) . (2.17c)

In this linear order, we get white Gaussian noise, completely characterized by the correla-
tors (2.17). To solve the mode functions, I write (2.11) in terms of N :

δϕ′′
k = −

(
3− 1

2π
2
R

)
δϕ′

k −
[

k2

a2H2 +π2
R

(
3− 1

2π
2
R

)
+2πR

V ′(ϕR)
H2 + V ′′(ϕR)

H2

]
δϕk , (2.18)

where the classical background equations (2.3) were used to express everything in terms
of ϕR, πR, and H. The latter can further be expressed in terms of ϕR and πR using the
last equation in (2.15).

Note that I used the classical background equations without the noise terms when
manipulating (2.11), and hence, the noises ξπ and ξϕ don’t appear in (2.18). I will discuss
this further in the next section.

In the classical, squeezed limit discussed at the end of section 2.1, the two noise terms are
fully correlated, ξπ = ξϕ

δϕ′
kσ

δϕkσ
(in this limit, the coefficient of proportionality is real) [24, 33, 39].

To solve equations (2.15), we need to generate only one Gaussian random variable at each time
step, determining the stochastic kicks to both ϕR and πR. It is the classicality of the correlators
that allows us to treat ξϕ and ξπ as consistent noise for the classical field and its momentum.

The equations presented above are well known in the stochastic inflation literature, see,
e.g., [20, 33] for recent work and [52] for an early similar take. Before moving to novel results,
let me emphasize that the local Friedmann equations (2.15) are fully non-linear in the field
and momentum. They can describe large field perturbations for which linear perturbation
theory fails. This is the power of stochastic inflation.

6I’m slightly abusing the notation here — in (2.16), ξϕ and ξπ are real random variables, while ϕ̂k are
quantum operators in a complex Hilbert space at the verge of exiting the quantum mechanical short-wavelength
regime. However, in the squeezed super-Hubble limit, the quantum variables behave in an almost classical
way, as explained in the text.
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2.3 Zoom-in schemes

The above derivation of (2.15) may seem ad hoc: I simply stated that the evolution splits into
two parts, the classical drift and the quantum noise, whose forms were deduced separately
and then added together. Equations (2.15) are indeed the form utilized in the literature,
but their derivation should be made more transparent.

To achieve this, let us turn off the noise terms ξϕ and ξπ for a moment, starting from time
N0. The variables ϕR and πR then follow the local FLRW evolution, as given by the gradient
expansion. The coarse-graining scale drifts with the Hubble flow, R = 1/kR = Rσ(N0) =
constant, so that no scales cross the barrier and no stochastic noise is induced. Let us continue
this time evolution for some finite time dN . After this time, to compensate, let us bring R
back to the current value of Rσ in one instantaneous jump. This corresponds to ‘zooming in’ in
the comoving coordinates, from the initial R = Rσ(N0) to the subsequent R = Rσ(N0 + dN).
Based on (2.13), this results in macroscopic kicks in ϕR and πR of magnitudes

dϕR =
∫ d3k

(2π)3/2 [W (kRσ(N0 + dN)) −W (kRσ(N0))]ϕ̂k(N0 + dN)e−ik·x , (2.19a)

dπR =
∫ d3k

(2π)3/2 [W (kRσ(N0 + dN)) −W (kRσ(N0))]ϕ̂′
k(N0 + dN)e−ik·x . (2.19b)

Changing R happens instantaneously: N does not change during this step. Let us repeat
this pattern, alternating periods of classical evolution and instantaneous stochastic kicks.
The process is depicted in figure 1. I call it the alternating zoom-in scheme. In the dN → 0
limit, the kicks (2.19) obey

dϕR

dN
dN→0−−−−→

∫ d3k

(2π)3/2
dW (kRσ(N0))

dN ϕ̂k(N0)e−ik·x = ξϕ(N0) , (2.20a)

dπR

dN
dN→0−−−−→

∫ d3k

(2π)3/2
dW (kRσ(N0))

dN ϕ̂′
k(N0)e−ik·x = ξπ(N0) , (2.20b)

giving a stochastic process that can be described by equations (2.15).
It should now be obvious why the noise is absent from the δϕk equation (2.18): the

short-wavelength modes δϕk evolve only during the free-flowing step, when time ticks forward
and ϕR and πR behave classically. They are not affected by the zoom-in step. After the
zoom-in, the modes continue to evolve in the new, zoomed-in background. To make plain
the absence of noise in the mode equation, I wrote (2.18) explicitly in terms of ϕR and πR,
eliminating, in particular, higher time derivatives. Similarly to the mode equation, the last
equation in (2.15) (the Friedmann equation) does not include noise terms, since it is simply a
constraint between the field evolution and spatial expansion during the classical steps.

The construction of stochastic inflation as alternating periods of classical drift and
quantum kicks is not completely novel. In fact, it was alluded to already in the early
paper [52],7 where the authors considered the stochastic noise as ‘impulses which continually
adjust the initial conditions for the next phase of drift.’ They also considered mode equations

7I thank the Referee for pointing this out.
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ar
=
H

-
1

ar
=
R
σ

r=
co
ns
t.

r=
R

N=N


dN

0

a × r

N

alternating zoom-in linear perturbations

Figure 1. The coarse-graining scale R versus the time N in the alternating zoom-in scheme (magenta)
and linear perturbation theory (blue) when computing ϕR for R = R̃ at time N = Ñ . The dashed
lines correspond to fixed values of r, the comoving radial coordinate in which R is measured; the
x-axis depicts the physical distance ar. The green region lies inside the Hubble radius.

that evolve classically in a stochastic background, with classical constraint equations. With
the explicit picture of figure 1, I aim to sharpen the intuition about this zoom-in process.
As we will see next, this picture is useful for comparing different approaches to cosmological
perturbation theory and stochastic integration.

If we’re interested in perturbations coarse-grained over a certain length scale R = R̃, we
may turn off the stochastic process when Rσ reaches this value. In other words, we freeze
the comoving value of R, skipping the zoom-in step in the evolution, so that no new modes
exit the coarse-graining scale. The local background then follows the classical background
equations (2.3) until a time N = Ñ where the wish to evaluate ϕR and πR (or, in the ∆N
formalism, until a fixed field value ϕR, where we evaluate the curvature perturbation through
N). This procedure was used in [24, 33] to obtain the background quantities at the end
of inflation, coarse-grained over scales much larger than the value of Rσ there. In figure 1,
this corresponds to the last part of R’s evolution.

The zoom-in scheme described here seems natural, but it need not be the only reasonable
choice. As a simple but illuminating example, consider a scheme where dN is not taken to
zero, but instead, we let it stretch to the full duration of inflation. The background evolves
classically until N = Ñ at the end of inflation, corresponding to a wavenumber k̃ = kσ(Ñ),

– 8 –
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and all perturbations are obtained in one final, huge stochastic kick, see again figure 1. We get

dϕR =
∫ k̃

kini

d3k

(2π)3/2 ϕ̂k(Ñ)e−ik·x ,
〈
dϕ2

R

〉
=
∫ k̃

kini

k3

2π2 |δϕk(Ñ)|2 d ln k . (2.21)

Now dϕR follows a Gaussian distribution with the above variance. This is just the standard
linear perturbation theory result. (We can further convert dϕR to the curvature perturbation
R using linear perturbation theory.) This picture illustrates the difference between linear
theory and the stochastic equations (2.15): in the latter, we utilize the separate universe
approximation more efficiently by keeping R close to the Hubble radius (in the former, it
is vastly super-Hubble by N = Ñ). This applies the non-linear FLRW evolution to the
perturbations, letting us solve them beyond linear order and (2.21). Different schemes are
different approximations of the system’s full evolution, and as such, they may yield different
results for the coarse-grained observables. Our task is to find a scheme that is easy enough
to implement while yielding accurate enough results.

Even if we maintain the dN → 0 limit and let the coarse-graining scale follow Rσ,
stochastic differential equations like (2.15) suffer from an ambiguity. As I will discuss in
the next section, they have many competing interpretations, varying by the way in which
the classical drift and the stochastic kicks are interlaced. Different interpretations lead
to different evolutions. The alternating zoom-in scheme described in this section, on the
other hand, is unambiguous, giving a well-defined meaning for (2.15).8 Next, I will study
the relationship between this scheme and the conventional interpretations of (2.15) in the
limit of Markovian noise.

3 Markovian noise

In slow-roll inflation, where the slow-roll parameters ϵ1 and ϵ2 are small, the stochastic
equations (2.15) simplify considerably. Classically, the system follows an attractor trajectory
in the (ϕ, π) phase space. The trajectory can be obtained from (2.15) by setting π′

R = ξπ = 0
and taking the π2

R ≪ 1 limit, yielding

πR = −V ′(ϕ)
V (ϕ) . (3.1)

The stochastic noise terms ξϕ and ξπ are also affected by the attractor, and they align to
always preserve the relationship (3.1) [39].9 It is then enough to study the equation for
the remaining field ϕR. To obtain the ξϕ noise, we solve the perturbation equation (2.18)
in slow roll for the standard result

|δϕk| = H√
2k3/2 =⇒

〈
ξϕ(N)ξϕ(N ′)

〉
= H2

4π2 δ(N −N ′) , (3.2)

8That is, assuming it leads to a well-behaved stochastic process in the dN → 0 limit. In section 3, I show
that this is true for Markovian noise. In section 4, I make the same argument for the general case.

9The same happens in other attractor setups as well, such as constant-roll inflation [40].
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where the Hubble parameter depends only on the field value through 3H2 = V (ϕR). The
stochastic equation is then

ϕ′
R = −V ′(ϕR)

V (ϕR)︸ ︷︷ ︸
≡µ(ϕR)

+ H(ϕR)
2π︸ ︷︷ ︸

≡σ(ϕR)

ξ(N) ,
〈
ξ(N)ξ(N ′)

〉
= δ(N −N ′) . (3.3)

This is the most common formulation of stochastic inflation in the literature, see, e.g., [7, 11].
The system is Markovian: the noise only depends on the system’s current state [8]. For
future convenience, I introduced a rescaled noise variable ξ(N) with a simple normalization
and the notations µ and σ for the drift and diffusion strength.

3.1 Itô versus Stratonovich

How is (3.3) solved? Let us write down an algorithm to do this time step by time step,
with a step length dN , which we will take to zero in the end. To simplify the notation,
I use the functions µ and σ introduced in (3.3) and drop the index R from ϕ. Using the
Euler method [65],

(Itô) ϕ(N+) = ϕ(N) + µ[ϕ(N)]dN + σ[ϕ(N)]
√

dN ξN , N+ ≡ N + dN . (3.4)

The discrete noise ξN here is normalized to unit variance:

⟨ξNξN ′⟩ = δNN ′ . (3.5)

Equation (3.4) is the Itô approach to solving SDEs [47]: evaluate the quantities on the r.h.s. of
the equation at the beginning of the time step, and use them to obtain ϕ at the end of the step.

For ordinary differential equations, Euler’s method is not the best choice due to its slow
convergence. Instead, we might want to use something like the following midpoint method,

(Stratonovich) ϕ(N+) = ϕ(N) + 1
2{µ[ϕ(N)] + µ[ϕ(N+)]}dN

+ 1
2{σ[ϕ(N)] + σ[ϕ(N+)]}

√
dN ξN .

(3.6)

In the context of SDEs, this is the Stratonovich approach [48]. Note that (3.6) is an implicit
equation for ϕ(N+): it is featured on both sides.

For ordinary differential equations, both approaches lead to the same final solution for
ϕ(N). The approaches are related to different methods of numerical integration. Solving a
first-order differential equation of the form ϕ′ = f(ϕ,N) is equivalent to finding ϕ(N) that
is the N -integral of f(ϕ(N), N). When computing the integral in the Itô approach, f is
approximated in each N -bin by its value at the bin’s starting point. In the Stratonovich
approach, the integral is instead evaluated using the trapezoidal rule. See figure 2 for a
comparison between the methods. For non-stochastic variables, both methods converge to
the same result when dN → 0. However, this is no longer true for stochastic variables.

The problem in the stochastic case arises from the noise term in (3.3), scaling as
√

dN .
As dN → 0, this term naively seems to dominate over the drift, which is proportional to dN .
In truth, we need to keep track of both contributions. Roughly speaking, the deterministic
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Figure 2. Integration in the Itô versus Stratonovich schemes.

O(dN) terms affect the mean of the ϕ distribution, while the stochastic O(
√

dN) terms affect
the distribution’s width. However, sometimes these terms mix.

Let us solve for ϕ(N+) for the Stratonovich step (3.6) keeping only terms up to O(dN).
For this, I Taylor expand µ(ϕ(N+)) = µ(ϕ(N))+µ′(ϕ(N))∆ϕ+. . . and σ(ϕ(N+)) = σ(ϕ(N))+
σ′(ϕ(N))∆ϕ+ . . . . Here ∆ϕ = ϕ(N+) − ϕ(N) has terms of order

√
dN and higher. Since

the µ term in (3.6) already has an explicit dN factor, only the leading term contributes
in the µ expansion. In the σ expansion, on the other hand, we need to keep contributions
up to O(

√
dN), since these can combine with the explicit

√
dN factor into a term of order

dN . Treating (3.6) iteratively, the only
√

dN contribution to ∆ϕ is σ(ϕ(N))
√

dNξN . The
corresponding term ends up with a factor of ξ2

N , which we can replace by its expectation
value of 1 (for details, see appendix A). We thus get, up to O(dN), [48]

(Stratonovich A) ϕ(N+) = ϕ(N) +
(
µ[ϕ(N)] + 1

2σ[ϕ(N)]σ′[ϕ(N)]
)

dN

+ σ[ϕ(N)]
√

dN ξN .

(3.7)

This equation is of the Itô form (3.4), but with the added drift σ
2

∂σ
∂ϕ . The additional term

is non-zero for multiplicative noise, that is, if the σ factor multiplying ξ in (3.3) depends
on ϕ. Clearly, this changes the solution.

For future reference, I mention here another implementation of the Stratonovich approach,
the Euler-Heun method [65, 66]. In it, we first obtain an approximative ϕ(N+) using the
Itô step (3.4), and then we substitute this into the r.h.s. of (3.6):

(Stratonovich B) ϕ(N+) = [r.h.s. of (3.6) with ϕ(N+) from (3.4)] . (3.8)

Expanding in powers of dN produces (3.7), proving (3.8) describes the same stochastic
process, but (3.8) is closer in spirit to the original formula (3.6) and contains an explicit
product of two ξ noise terms.

The Stratonovich approach can also be interpreted as evaluating the functions µ and
σ at the midpoint between N and N+ when calculating the ϕ step. Such an approach may
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seem nonsensical since we don’t have access to ϕ at this midpoint in our stepwise process,
but a dN expansion of such a scheme again correctly produces (3.7).

We have seen that the same continuum equation (3.2) corresponds to two different
stochastic processes, depending on its stepwise interpretation. The stochastic equation alone
is not a complete description of the system: one also has to provide the interpretation.
In fact, there’s a continuous infinity of different interpretations, obtained by changing the
weights of the coefficients in (3.6) [51], and one may be able to cook up others. Out of
these, the Itô approach is uniquely simple: it gives the step in ϕ explicitly, and its numerical
implementation is straightforward. However, as I explain in appendix A, the Itô approach
violates the chain rule: for a smooth function f , the time derivative d

dN f(ϕ) is not given by
f ′(ϕ)ϕ′(N) but receives an extra contribution, again due to two O(

√
dN) terms combining

into a O(dN) term. The Stratonovich approach, on the other hand, turns out to respect
the chain rule. Sometimes, the Stratonovich approach is favored in physics, since it mixes
the different time steps in its noise term, resembling the limit of a more realistic process
with colored noise. However, such arguments are heuristic and depend on the way in which
the limit is taken [50]. It is also noteworthy that the Itô and Stratonovich approaches only
differ by a drift term, so a process defined in one can always be converted to another by
adding this term, without changing the statistics of ϕ.

In any case, we don’t need to resort to heuristics: we have a full description of the
stochastic process, given by our zoom-in scheme.

3.2 Comparison to the alternating scheme

For our alternating zoom-in scheme, one time step reads:

(Alternating) ϕ̃(N+) = ϕ(N) + µ[ϕ(N)]dN ,

ϕ(N+) = ϕ̃(N+) + σ[ϕ̃(N+)]
√

dN ξN .
(3.9)

In other words, we first evolve the field with the drift only to the value ϕ̃(N+), and then
add the stochastic kick using ϕ̃(N+) as the instantaneous field value. Since ϕ̃(N+) doesn’t
contain O(

√
dN) terms, expanding up to O(dN) gives simply

ϕ(N+) = ϕ(N) + µ[ϕ(N)]dN + σ[ϕ(N)]
√

dN ξN . (3.10)

In other words, the alternating scheme matches the Itô approach. This is one of the novel
results of this paper: the Itô approach matches a simple microphysical description of stochastic
inflation, while the Stratonovich approach does not.

Physically, the strength of the stochastic kick is determined by the perturbations exiting
the coarse-graining scale. In the Itô and alternating schemes, the kick strength — and thus
the perturbations — only depend on the pre-kick field value ϕ(N), that is, on evolution
up until the kick. In the Stratonovich scheme, the kick strength depends also on the post-
kick field value ϕ(N+), that is, the kicked field seems to affect the prior evolution of the
perturbations in an acausal manner.
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3.3 How big is the difference?

As we saw above, the difference between the Itô and Stratonovich approaches is an extra drift
term of the form σ

2
∂σ
∂ϕ . This should be compared to the original drift µ. For transparency,

I restore the units of the reduced Planck mass MPl for this section and the next, so that
the ϕ dependence of H is given by 3M2

PlH
2 = V (ϕ). We then have

µ(ϕ) = − V ′(ϕ)
3H2(ϕ) = −V ′(ϕ)M2

Pl
V (ϕ) , (3.11)

σ(ϕ)
2

∂σ(ϕ)
∂ϕ

= 1
4
∂σ2(ϕ)
∂ϕ

= 1
16π2

∂H2(ϕ)
∂ϕ

= V ′(ϕ)
48π2M2

Pl
. (3.12)

The extra drift always points in the opposite direction from µ: it pushes the field distribution
towards larger potential values, where the diffusion coefficient σ is larger. For the extra
term to be negligible, we need∣∣∣∣σ2 ∂σ∂ϕ

∣∣∣∣ ≪ |µ| ⇐⇒ H ≪ 4πMPl ⇐⇒ V ≪ 48π2M4
Pl . (3.13)

The difference is suppressed by H/MPl. This is not a new result: it was already noted
in [52], and later in [60]. Observable inflation takes place at sub-Planckian energies [1],
where the Itô and Stratonovich approaches agree with each other. Depending on the model,
the difference may be important for eternal inflation [67–69], where the field may probe
Planckian energy densities [70], although the semi-classical formalism arguably breaks down
in this regime as quantum gravity becomes important. The difference between the Itô and
Stratonovich approaches thus goes beyond the applicability of the leading-order stochastic
slow-roll equation (3.3), as noted before in [11, 55]. Since the limit (3.13) was derived
from (3.3), it is possible (though maybe not likely) that deviations from slow roll, such as
ultra slow roll [71], may yield observable differences in different stochastic schemes.

3.4 Numerical example

To demonstrate the concepts of the previous sections, let us study numerically a simple
model with

V (ϕ) = 1
2m

2ϕ2 =⇒ µ(ϕ) = −2M2
Pl
ϕ

, σ(ϕ) = mϕ

2
√

6πMPl
. (3.14)

Using the parameter values m = 0.1MPl, 0.5MPl, and 1MPl, I evolved ϕ for 100 e-folds,
starting from ϕ = 50MPl (so that H

4πMPl
= 0.16, 0.81, and 1.62 initially in the three cases),

with four numerical schemes: the Itô approach (3.4), the alternating zoom-in scheme (3.9),
the Stratonovich approach transformed into the Itô-like form (Stratonovich A) (3.7), and
the Stratonovich approach with the Euler-Heun method (Stratonovich B) (3.8). There is
an absorbing boundary at ϕ =

√
2MPl, where the first slow-roll parameter crosses one and

inflation ends. The super-Planckian parameters are chosen to produce noticeable differences
between the Itô and Stratonovich approaches, as discussed in section 3.3. I ran 107 realizations
of the stochastic process for each case and collected the statistics.

The results are depicted in figure 3. The figure shows the time evolutions of the mean
field value and its variance and the full ϕ distribution at the final time. In all cases, the field
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Figure 3. Evolution of the probability distribution in the ϕ2 model with different values of m, in the
different stochastic schemes. Left: the mean field value in terms of e-folds. The colored region covers
±0.1 standard deviations around the mean. Right: the field’s probability distribution at N = 100. The
numbers indicate the fraction with ϕ >

√
2MPl, that is, the fraction not absorbed into the boundary.
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starts with the fixed initial value with no variance, but as time goes on, the variance grows
and the field distribution spreads. For large m and thus σ, the field spreads fast to large
values, but an increasing portion also gets absorbed to the boundary.

As expected based on the above discussion, the Itô and alternating schemes agree with
each other to an excellent degree, and similarly, the two Stratonovich schemes agree with each
other. The Stratonovich and Itô distributions differ more and more for increasing m. When
m (and thus the typical energy density) is sub-Planckian, the difference is negligible, and the
classical drift µ pulls the mean field value towards zero. When m grows, the extra drift of the
Stratonovich approach starts to oppose µ and overcomes it around the Planck scale. In this
limit, the mean field value actually grows in the Stratonovich approach. Interestingly, the
peak of the probability distribution still decreases in time — the growth of the mean is related
to the ever-widening tail. Similar results were earlier obtained in [52], see their figure 4.

3.5 Validity of the Markovian approximation

Above, I argued the Markovian description of the stochastic process — that is, noise that
only depends on the current state of the system — applies in slow roll and possibly in other
attractor regimes. For the noise to behave this predictably, the background evolution must
be considerably regular, even in the presence of stochasticity. Attractor behavior helps with
this, confining the stochastic motion to some degree [39], but it alone may not guarantee
Markovianity. Let us examine these issues in more detail in slow roll.

The slow-roll form of the noise, (3.2), depends on the current value of the Hubble
parameter H. In fact, the form (3.2) was computed assuming H is approximately constant
through the Fourier mode’s evolution from the sub-Hubble vacuum to the super-Hubble
coarse-graining scale. This corresponds to the zeroth order of the slow-roll approximation.
To account for a time-dependent H, it is better to work in terms of the comoving curvature
perturbation R = δϕ

ϕ′ = δϕ√
2ϵ1

. It can be shown that, to leading order in slow roll, Rk freezes
to a constant value H/(2

√
ϵ1k3) at super-Hubble scales, where H and ϵ1 are evaluated at

the mode’s Hubble exit (see, e.g., [72]). Note the discrepancy between the time when the
functions are evaluated (Hubble exit, aH = k) and the time they give the stochastic kick
(coarse graining, σaH = k). This discrepancy is necessary: we want the coarse-graining
scale to be sufficiently super-Hubble so that the gradient expansion applies and the modes
have assumed their super-Hubble values and are squeezed enough for the correlators to
become classical. Reversing the transformation between R and δϕ, we get the corrected
coarse-graining mode functions

|δϕk(Ncoarse)| = H(Ncoarse)√
2k3/2 ×

√
ϵ1(Ncoarse)
ϵ1(NH-exit)

H(NH-exit)
H(Ncoarse)

. (3.15)

From the definitions of the slow-roll parameters, H(N + ∆N)/H(N) ≈ 1 − ϵ1(N)∆N
and ϵ1(N + ∆N)/ϵ1(N) ≈ 1 + ϵ2(N)∆N . For a typical value of σ ∼ 0.01 [33], we have
∆N ≈ ln σ ≈ 5 between the Hubble exit and coarse graining, so, in the slow-roll limit of
ϵ ≪ 1, ϵ2 ≪ 1, the difference between (3.15) and (3.2) is small. For slow-roll parameters
closer to 1, it may become significant. Higher slow-roll orders bring more corrections.

Result (3.15) is no longer Markovian: it depends on the evolution of the field prior to
Ncoarse. It also depends on the coarse-graining parameter σ, which was absent from the
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leading result (3.2). Moreover, (3.15) becomes unreliable in a stochastic background, since
it was derived in the classical background, and the stochastic time-evolution deviates from
the classical slow-roll behavior. (Due to the attractor nature of slow roll, the stochastic
motion still happens along the classical trajectory in the (ϕ, π) phase space, as discussed
above and in [39], but the time dependence of ϕ, and thus of H, may differ from the classical
one.) The simple result (3.2) is likely the best Markovian approximation for the noise in
the regime of small to mid-sized perturbations, even though it suffers from the ambiguity
related to the difference between the Hubble and coarse-graining scales. This ambiguity
affects the comparison between the Itô and Stratonovich approaches since their difference is
related to the noise’s ϕ dependence. If the stochastic noise is extremely strong (either for the
model in general, or for a rare stochastic realization), corresponsing to large perturbations,
H may change so quickly during a single mode’s evolution that the Markovian approximation
breaks down completely.

Besides slow roll, an interesting example is constant-roll inflation near a local maximum
(or minimum) of the potential [40]. The second slow-roll parameter ϵ2 is a constant there;
it may be large, but even then, constant roll is an attractor, so the field is confined to its
classical trajectory. Furthermore, the energy scale is bound by the extremum of the potential,
making H approximately a constant. After constant roll has continued for a while, a result
similar to (3.2) applies to the mode functions.

In fact, constant-roll hilltop inflation is arguably the only limit in canonical single-
field inflation where the Markovian approximation is exact. For such exactness, the mode
equation (2.18) must have no dependence on ϕR or πR, since a dependence would inevitably
make the final δϕk depend on the prior stochastic evolution. In particular, this requirement
applies to H, which must then be close to a constant, implying πR =

√
−2∂N lnH ≈ 0. Only

the V ′′(ϕR)/H2 term remains in (2.18), so we finally need V ′′(ϕR) = constant. This results
in constant-roll inflation close to a potential minimum or maximum, where the constant
V ′′(ϕR) sets the constant value of ϵ2, see [40, 73]. All modes then evolve identically (after
constant roll starts), and the stochastic noise coefficient σ retains no dependence on ϕR. The
Itô and Stratonovich approaches are thus equivalent. Even then, strong enough stochastic
kicks will drive the field away from the hilltop, where the Markovian approximation needs
to be re-examined.

Beyond inflationary attractors, e.g., during ultra slow roll [29], the Markovian approxi-
mation becomes even worse, and, for accurate results, one must solve the full equations (2.15)
instead. I will discuss this in the next section. In such scenarios, ϵ2 is typically strongly
negative or changes quickly in time.

4 Beyond Markovian noise

The full set of stochastic equations (2.15), (2.17), (2.18) can be solved numerically — in
the context of primordial black holes, such a program was carried out in [24, 33]. During
the time evolution, we need to keep track of ϕR, πR, and a number of Fourier modes δϕk,
whose evolution we need to follow from sub-Hubble (when they start to deviate from the
Bunch-Davies vacuum (2.10)) up to the coarse-graining scale. These are all coupled: the
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δϕk with k = kσ,10 affects the stochastic kicks to ϕR and πR, and ϕR and πR backreact
on δϕk, affecting the evolution of all modes. Beyond simple cases such as slow roll, the
backreaction may be important in capturing all non-Gaussianity in a general case, as argued
in [15, 27, 35]. It renders the evolution non-Markovian.

The alternating zoom-in scheme of section 2.3 can be applied as-is also in the full non-
Markovian case. In a numerical setup, we can improve the computation of the classical
evolution step of ϕR, πR, and δϕk by choosing, e.g., a high-order Runge-Kutta method, as done
in [24, 33], instead of the Euler method of (3.4). This choice is independent of the stochastic
noise, which is applied between such steps.11 On the other hand, the concept of the Itô and
Stratonovich approaches is more involved in the non-Markovian case, as we will see next.

4.1 Itô versus Stratonovich in the non-Markovian case

The Itô and Stratonovich approaches are defined for Markovian SDEs of the form (3.3),
where the noise depended on the stochastic variable ϕR.12 In the non-Markovian case, the
noise instead depends on δϕk, and the dependence on the stochastic variables ϕR and πR

is indirect, going through the backreaction channel.
To apply the Itô and Stratonovich approaches in the non-Markovian case, I promote

the modes δϕk to equal status with ϕR and πR. To make the δϕk equation first order, I also
introduce the auxiliary ‘momentum’ variable δπk = δϕ′

k. The full system can be written as

Φ′
i = µi(Φj , N) + σα

i (Φj , N)ξα(N) ,
〈
ξα(N)ξβ(N ′)

〉
= δαβδ(N −N ′) , (4.1)

where I gathered all the variables into one vector with components Φi,13 whose evolution
is governed by the drift vector µi and the diffusion matrix σα

i . From (2.15), (2.18), the
vectors have the forms

Φi =


ϕR

πR

δϕk

δπk

 , µi =


πR

µπR(ϕR, πR)
δπk

µδπk
(δϕk, δπk, ϕR, πR, N)

 , σα
i =


σα

δϕR
(δϕk, δπk, N)

σα
δπR

(δϕk, δπk, N)
0
0

 , (4.2)

where I have indicated the variable dependence of the component functions. The mode
functions δϕk, δπk represent the set of all the relevant k modes.

The arguments below don’t depend on the exact forms of µi and σα
i beyond the general

shapes of (4.2), but for completeness, equations (2.15), (2.18) give

µπR = −
(

3 − 1
2π

2
R

)(
πR + V ′(ϕR)

V (ϕR)

)
,

µδπk
= −

(
3 − 1

2π
2
R

)(
δπk + π2

Rδϕk + 1
V (ϕR)

[
k2

a(N)2 + 2πRV
′(ϕR) + V ′′(ϕR)

]
δϕk

) (4.3)

10In a numerical setup with a discrete number of Fourier modes, this is the mode closest to kσ, or an
interpolation between modes.

11This excludes numerical methods that mix different time steps, such as leapfrog integration (see, e.g., [74]).
12The generalization to a two-dimensional Markovian case where πR is independent of ϕR and the noise

depends on both is simple, although such cases don’t tend to crop up in the literature on stochastic inflation.
13The notation Φj in the function arguments refers to the collection of all components of the vector Φ.
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for the drift. When it comes to the diffusion strength, in (4.1), I allowed the inclusion
of many independent noises ξα for generality; in the squeezed limit discussed in section 2,
there is only one ξ(N), with

σδϕR
=

√
k3

σ

2π2 |δϕkσ (N)| , σδπR
= δπkσ

δϕkσ

σδϕR
. (4.4)

These depend on N through kσ, which selects the coarse-grained mode for each moment in
time. Note that nearby modes are close to each other since their initial conditions (2.10)
are smooth in k and they share the same background evolution. In other words, δϕk(N)
and δπk(N) are continuous functions of k.

Going to discrete time steps, equation (4.1) can now be interpreted through the different
approaches. Analogously to (3.4), the Itô approaches reads

(Itô) Φi(N+) = Φi(N) + µi[Φj(N), N ]dN + σα
i [Φj(N), N ]

√
dNξα,N ,

N+ ≡ N + dN ,
〈
ξα,N ξβ,N ′

〉
= δαβδNN ′ ,

(4.5)

with a straightforward interpretation: we evaluate the functions Φi at N and use the results
to update Φi to N+.14

Analogously to (3.6), the Stratonovich approach reads

(Stratonovich) Φi(N+) = Φi(N) + 1
2{µi[Φj(N), N ] + µi[Φj(N+), N+]}dN

+ 1
2{σα

i [Φj(N), N ] + σα
i [Φj(N+), N+]}

√
dNξα,N .

(4.6)

To compare (4.6) to (4.5), we wish to expand the N+ functions, keeping only contributions
up to order dN , analogously to (3.7). The expansions read

µi[Φj(N+), N+] = µi[Φj(N), N ] + ∂

∂N
µi[Φj(N), N ] × dN

+ ∂

∂Φl
µi[Φj(N), N ] × dΦl + O(dN2,dNdΦj ,dΦ2

j ) ,
(4.7a)

σα
i [Φj(N+), N+] = σα

i [Φj(N), N ] + ∂

∂N
σα

i [Φj(N), N ] × dN

+ ∂

∂Φl
σα

i [Φj(N), N ] × dΦl + O(dN2, dNdΦj , dΦ2
j ) ,

(4.7b)

dΦi ≡ Φi(N+) − Φi(N) . (4.7c)

Since the µi contributions in (4.6) already scale as dN , we only need to keep the leading
term in the µi expansion (4.7a), so these contributions agree trivially between the Itô and
Stratonovich formulas, just as in the Markovian case. As in the Markovian case, we need to be
careful with the σα

i contributions. Plugging the leading term of (4.7b) into the Stratonovich
formula (4.6) again matches the Itô case (4.5), but the additional terms in (4.7b) could

14For discrete time steps, it is enough to also consider a discrete set of modes k, exiting at the discrete
times N .
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give additional O(
√

dN) contributions that combine with the overall
√

dN factor to give a
new drift contribution, like in (3.7). Clearly, the only possible O(

√
dN) contribution comes

from the third term in the σα
i expansion, from dΦl. Expanding dΦl iteratively with (4.6),

this leading contribution is

σα
i [Φj(N+), N+] ∼ ∂

∂Φl
σα

i [Φj(N), N ] × dΦl ∼ ∂

∂Φl
σα

i [Φj(N), N ] × σα
l [Φj(N), N ]

√
dNξα,N .

(4.8)
Crucially, σα

i only depends on δϕR and δπR (the current perturbation values) as per (4.2),
so the Φl derivative is only non-zero for l = δϕR, δπR. However, by (4.2), σα

l is zero for
these l values (the perturbations evolve classically without noise). Thus (4.8) vanishes for
all i, and no extra drift terms emerge.

Up to O(dN), the Stratonovich step (4.6) then reduces to the Itô result (4.5). For the
same noise realizations ξα,N , both approaches give equivalent evolutions for the background
and the mode functions in the dN → 0 limit. This makes sense physically: the stochastic
noise depends on the full time evolution of the mode functions δϕk from vacuum to coarse
graining, and the noise at the last time step only has a minimal (subleading order) effect on
the mode’s final value. The connection between the noise and the current state of the system
is less direct than in the Markovian approximation, which exaggerated the importance of
the final kick by making the noise depend directly on ϕR. It does not matter whether δϕk is
evaluated at N or N+, at the previous or later ϕR, so to speak, and the Itô and Stratonovich
approaches (and all others following a similar pattern) become equal.

Finally, the alternating zoom-in scheme can be written as

(Alternating) Φ̃i(N+) = Φi(N) + µi[Φi(N), N ]dN ,

Φ(N+) = Φ̃i(N+) + σα
i [Φ̃j(N+), N ]

√
dN ξα,N ,

(4.9)

analogously to (3.9). A simple expansion again yields (4.5), confirming the alternating scheme
is also equal to the Itô one.

One interpretation of these results is that the extra drift in the Markovian Stratonovich
approach (3.7) is an artifact of the Markovian approximation, absent in a more complete
analysis of the system. This is why I advocate for the Itô interpretation instead of the
Stratonovich one in the Markovian case: it is better motivated by an analysis starting from
the full system (2.15), and it is equivalent to the unambiguously defined alternating zoom-in
scheme also in the Markovian limit.

Another interpretation is that since the Itô and Stratonovich approaches are equal in the
full non-Markovian case, they should also be equal in the Markovian case. Cases where this
is not true — for example, the super-Planckian dynamics of secion 3.3 — must break the
Markovian approximation, as discussed in section 3.5, and the full non-Markovian equations
should be used instead. In slow-roll models, the approaches only become different when H

changes quickly, and this is exactly the limit where the slow-roll approximation for the mode
functions (3.2) breaks down. The difference between Itô and Stratonovich is then beyond the
accuracy of the Markovian approximation, as suggested in [11, 55]. When the Markovian
approximation holds and the approaches are equal, it is fine to use the Stratonovich one, if
this is technically simpler, e.g., to conserve the chain rule [60, 61].
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Since we only used the general form of the equations (4.1), (4.2), these results are general,
and apply, e.g., for non-canonical inflation models and different window functions. The
generalization to multifield inflation and spectator fields is also trivial.

5 Discussion and conclusions

In this paper, I have explored the origin of the stochastic noise in stochastic inflation.
The noise arises from the time-dependent coarse-graining scale, which continuously lets
short-wavelength modes join the coarse-grained background. I have considered this process
systematically, introducing a zoom-in scheme that alternates between the system’s classical
evolution, where the comoving coarse-graining scale stays fixed, and zoom-in steps, where
the coarse-graining scale changes instantaneously. This conceptual development is a step
towards a systematic derivation of the stochastic inflation formalism from first principles. It
also guides the numerical implementation of stochastic inflation — indeed, this description
was used in the numerical work of [24, 33].

I also discussed the competing Itô and Stratonovich interpretations of the stochastic
equations. I explained the difference between the interpretations in depth in appendix A. In
the main text, I applied the interpretations to stochastic single-field inflation in the Markovian
slow-roll limit, showing that the alternating zoom-in scheme matches the Itô interpretation,
while the Stratonovich interpretation does not seem to have a similar match. On the other
hand, I demonstrated with both an analytical computation and numerical simulations that the
Itô and Stratonovich interpretations only differ significantly at super-Planckian energies, where
the standard slow-roll form of the stochastic equations is, in any case, expected to become
inaccurate. Similar arguments about the inaccuracy were presented earlier in [11, 52, 55, 60].

I then considered the general non-Markovian case, where the short-wavelength modes
evolve in the stochastic background, allowing backreaction between the two. To use the
Markovian framework with the full equations, the modes must be promoted to equal status
with the background quantities. The stochastic noise is then only indirectly coupled to
the background, and I showed the Itô and Stratonovich interpretations are equal. The
alternating zoom-in scheme successfully describes both. The same description applies also
for multifield setups.

Before concluding, let me briefly compare this work to earlier literature.

Previous literature on Itô versus Stratonovich. The difference between the Itô and
Stratonovich interpretations of stochastic inflation has been discussed in a handful of papers
over the years. In the early work [52], the authors advocated for the Itô approach, arguing it
better matches their formulation of stochastic inflation which was similar to this work, see
the discussion in section 2.3. In [53], it was argued that the Stratonovich approach is the
more natural one since the white noise approximation is the limit of a more general colored
process, which the Stratonovich process mimics. However, as explained in [50], such limits
depend strongly on the way they are taken, and the connection between colored noise and
the Stratonovich process is not a straightforward one. The Stratonovich approach was also
adopted in [54], while [56–58] opted for Itô, finding certain eternal-inflation observables to be
independent of the time parametrization in this approach. The authors of [10, 59] advocated
for the Itô approach based on a causality argument similar (if less detailed) to the approach
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of the current paper, while in [60, 61], it was argued that the Stratonovich approach is needed
to preserve the field-space covariance of the stochastic equations.

The previous arguments were based on heuristics and consistency checks. In this paper,
I have given a first-principles interpretation for the Itô approach as the alternating zoom-in
scheme. I have also emphasized that the stochastic framework is only an approximation of the
underlying dynamics. It may be inconsistent with some properties of the full, fundamental
theory; the goal is simply to minimize such errors while carefully tracking the coarse-graining
procedure. As noted above, the differences between the Itô and Stratonovich approaches
vanish in the full non-Markovian case.

Fictionality of stochastic velocities. The zoom-in scheme presented in this paper high-
lights the correct physical interpretation of the stochastic noise in stochastic inflation: the
noise describes a change in perspective, a ‘zooming in’ into an expanding patch of space,
and it is a priori independent of the inflaton’s classical time evolution. In [75, 76], it was
claimed that if the field fluctuations are particularly strong, they induce a high stochastic
field velocity, and the related energy may exceed the cutoff scale of the effective field theory
and thus invalidate the stochastic approach. The problem with this argument is that there
is no physical energy scale related to the stochastic noise. The processes that produce
the noise operate in accordance with usual cosmological perturbation theory: high-energy
perturbations are in their vacuum state deep inside the Hubble radius, and they only start
to grow around the Hubble exit, when their energy has been diluted by the expansion of
space. The induced — possibly large — time derivative of the coarse-grained field is due to
the change in the coarse-graining scale, which we can choose arbitrarily at any given time,
following our chosen zoom-in scheme. No physical energy scale is introduced by this choice —
indeed, if it were, our alternating zoom-in scheme would instantly lead to an infinite energy
when the coarse-grained field changes in zero time during the zoom-in step. Fast stochastic
evolution alone can’t invalidate stochastic inflation. At most, strong perturbations may lead to
large spatial derivatives, causing problems with the separate universe approach [77], but this
problem vanishes for a coarse-graining scale far enough outside the Hubble radius. Extremely
strong gradients could end inflation locally [54], providing a natural cutoff mechanism, but
in practice, typical stochastic deviations tend to arise from gradual change over long scales
rather than an abrupt jump [39]. A high stochastic velocity is also not automatically inherited
by the classical field if stochasticity is turned off, e.g., by the end of inflation.

The setup resembles the famous lighthouse paradox (see, e.g., [78]): if a rotating lighthouse
shines a beam of light on a distant shore, the beam’s end may move at a superluminal speed.15

However, the photons themselves don’t travel faster than light; instead, different photons
arrive at different end points at almost the same time. The ‘beam’s end’ is an illusion, useful
for describing the workings of a lighthouse, but it follows different laws than individual photons.
Similarly, the value of the stochastic inflaton field is an illusion, set by the human-made
decision of a coarse-graining scale.

The zoom-in procedure resembles the renormalization group calculations of quantum
field theory (see, e.g., [79]). In both cases, high-energy degrees of freedom are integrated

15A more realistic version of the paradox replaces the lighthouse with a laser and the shore with the Moon.
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Figure 4. The coarse-graining scale R versus the time N in a two-step zoom-in scheme, analogously
to figure 1.

over to obtain an effective theory for the low-energy ones. The two halves of the system
are separated by a bookkeeping variable — the renormalization or coarse-graining scale

— without inherent physical meaning. Changing the renormalization scale doesn’t change
the predictions of the theory, but it may make a perturbation theory expansion converge
faster. A result computed to a fixed loop order will be more accurate if the renormalization
scale is chosen properly. Similarly, stochastic inflation produces more accurate results if
the coarse-graining scale (zoom-in scheme) is chosen appropriately. It would be interesting
to study this link in more detail.

Different zoom-in schemes. One may ask if there are other reasonable zoom-in schemes
besides the alternating one described in this paper. If the alternating nature of the scheme is
abandoned completely, interpreting the noise becomes difficult. However, the lengths of the
classical steps and the value of the coarse-graining scale after each zoom-in step could be
varied. This could improve the accuracy of the approximation and the numerical convergence
in the dN → 0 limit, especially if the Hubble parameter H varies a lot during the computation.

Instead of taking the dN → 0 limit, one may imagine leaving the length of the classical
evolution steps finite. In particular, we may divide the full inflationary period into two
periods of classical evolution separated by a single zoom-in, as depicted in figure 4. During
the first span of classical evolution, we fix the comoving size of the inflating patch to R1,
and evolve linear modes with wave numbers between kR1 and kR2 to super-Hubble scales, for
some R2 < R1. In the zoom-in step, at time Nz, we then change the coarse-graining scale
from R1 to R2, integrating in all the modes between kR1 and kR2 in one macroscopic jump.
We end by evolving classically, to obtain quantities coarse-grained at scale R2. This is a
middle ground between linear perturbation theory and full stochastic inflation, see figure 1.
In fact, this is essentially what is done in the ‘classical ∆N formalism’, see, e.g., [31, 80–91],
where an initial Gaussian field distribution is evolved classically from an initial time (our
N = Nz) until the end of inflation. In these computations, the width of the Gaussian is
usually treated as a free input parameter. The current description tells us which linear modes
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should make up the initial distribution. In particular, only modes that are super-Hubble at
the initial time Nz can contribute to the distribution’s width, and the initial Hubble scale
gives the shortest accessible coarse-graining scale. This description could also be generalized
to multiple (still finite) cycles of classical evolution and macroscopic jumps. Such a system
would be simpler to solve than full stochastic inflation, maybe even analytically, and it might
still provide a reasonable description of the physics if the cycles were chosen optimally. I
leave such considerations for future work.

Deriving the stochastic formalism from first principles. Finally, the concept of a
zoom-in scheme can be useful when deriving stochastic inflation from first principles. A full
derivation would shed light on the accuracy of stochastic computations and the limitations of
the separate universe and white noise approximations. Many derivations have been presented
in the literature, using varying levels of approximation, see, e.g., [27, 61, 92, 93] for recent
papers. The nature of the stochastic noise often receives little attention in such works. This
paper aims to amend the issue, paving the way for a deeper understanding of the relationship
between stochastic inflation and fundamental theories.
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A Deriving results for stochastic differential equations

In this appendix, I review basic results from stochastic calculus. For more details, see,
e.g., [8, 47, 48, 94].

Let us study the following generic SDE:

dX = µ(X, t)dt+ σ(X, t)dWt . (A.1)

This is the increment in the stochastic variable X in a time step dt. The first term gives a
deterministic drift, while the second term is stochastic: dWt is the time step of a Wiener
process [8]. The steps are independent Gaussian random variables with

dWt =
√

dt ξt , ⟨ξt⟩ = 0 , ⟨ξtξt′⟩ = δtt′ . (A.2)

It follows that

⟨dX⟩ = µ dt , VarX = σ2dt , (A.3)

that is, µ is the mean time increment and σ2 is its variance, when multiplied by dt.
To understand the dt scalings in (A.3), consider a finite time interval ∆t small enough

that µ and σ are approximately constant within it, and divide it into n sub-intervals of length
dt = ∆t/n. The integral of (A.1) over the interval gives

∆X = µ∆t+ σ
√

∆t ξ̄ , ξ̄ ≡ 1√
n

n∑
i=1

ξi . (A.4)
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Since ξ̄ is a sum of independent, zero-mean Gaussian random variables, it is itself a zero-mean
Gaussian random variable, with variance equal to the sum of the components’ variances.
Hence,

Var ξ̄ = 1
n

× n× 1 = 1 , (A.5)

and the left equation in (A.4) is of the same form as (A.1) and independent of n. In
the continuum limit of small time intervals, the finite-time behavior of X converges to a
well-defined form, thanks to the scaling of the variance in (A.3).

The different scalings of the two terms in (A.1) may seem baffling: the first scales as
dt, while the second scales as

√
dt. The first dominates in the long-time limit dt → ∞,

while the second dominates in the continuum limit dt → 0. Note, however, that the terms
contribute quite differently: the first one provides the mean behavior of X, and the second
gives the variation around this mean. Both are needed to characterize the stochastic process.
This is an important rule of thumb below, where I derive some central results of stochastic
calculus at a ‘physicist’s accuracy’: when expanding in dt, one must keep terms of both
orders,

√
dt and dt, to catch both the mean and the variations. Higher-order terms can

be neglected as subleading corrections.
Another way to see this is to note that even powers of the noises ξi yield deterministic

quantities in the dt → 0 limit. To see this, let us perform a trick: replace the Gaussian ξt

with binary variables ξ̂t with the same mean and variance, that is,

ξ̂t ∈ {−1, 1} , p(ξ̂t = 1) = p(ξ̂t = −1) = 1
2 ⇒ ⟨ξt⟩ = 0 , ⟨ξtξt′⟩ = δtt′ . (A.6)

The central limit theorem tells us that the sum of many ξ̂i variables is still a Gaussian, with
a variance equal to the sum of the component variances. For finite time intervals, the binary
components merge into a combined Gaussian just the same as the Gaussian components
did in (A.4). We straightforwardly see that

ξ̂n
t =

1, n even,
ξ̂i, n odd,

(A.7)

and we can use the same result for ξn
t in the dt → 0 limit. Any dt expansion starting

from (A.1) thus naturally produces only two types of terms: deterministic ones, with a
leading behavior ∝ dt, and stochastic ones proportional to ξi, with a leading behavior ∝

√
dt.

We will see this principle in action in the next section.
To solve equation (A.1) between two times t1 and t2 in a case where µ and σ are not

constants, we need to iterate over it, solving X one-time step at a time. We start with an
initial value X(t1) at t1, divide the time interval into small steps of length dt, and compute
X(t + dt) by plugging in t and X evaluated (or estimated) at some point in the interval
[t, t+ dt] to the right-hand side of (A.1) to obtain X(t+ dt) = X(t) + dX. However, there
is an ambiguity here: at which point in the interval should the right-hand side of (A.1) be
evaluated? For usual differential equations, solved by Riemann integration, this does not
matter: any choice converges to the same final answer when dt → 0. The final result is
the same whether we choose to approximate the integrand by its value at the start or the
end of an infinitesimal interval or by some linear combination of these. However, this is
not true for stochastic variables.
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A.1 Itô versus Stratonovich

Let us introduce two integration schemes for (A.1). In the Itô approach, we evaluate X and
t at the beginning of the dt interval, leading to the Euler method. In other words,

(Itô) X(t+) = X(t) + µ[X(t), t]dt+ σ[X(t), t]
√

dt ξt , t+ ≡ t+ dt . (A.8)

This is simple: to know the value of X in the future, we only need to know the value of X now.
In the Stratonovich approach, we instead use the averages of µ and σ evaluated at the

start and end of the dt interval [48]:

X(t+) = X(t) + 1
2{µ[X(t), t] + µ[X(t+), t+]}dt

+ 1
2{σ[X(t), t] + σ[X(t+), t+]}

√
dt ξt .

(A.9)

For a pictorial comparison of (A.8) and (A.9), see figure 2.
Equation (A.9) is somewhat convoluted since it seems we’re required to already know the

value of X in the future to determine X there. However, we can solve the equation iteratively.
The first iteration is enough to get the correct continuum limit, and it yields the Euler-Heun
method, where X(t+) is replaced by the Euler estimate (A.8) on the right-hand side. We can
then expand the right-hand side of (A.9) to the leading order in dt to obtain

X(t+) = X(t) + µ dt+ σ

2
∂σ

∂X
ξ2

t dt+ σ
√

dt ξt . (A.10)

To lighten the notation, I will drop the explicit arguments of µ and σ from now on — unless
otherwise noted, these are to be evaluated at [X(t), t]. As stressed above, the ‘leading order
in dt’ includes terms of order

√
dt.

The new term ∝ ξ2
t arises from the mixing of the last terms in (A.8) and (A.9). As we

saw in the last section, we can replace ξ2
t by 1: the new term is deterministic and contributes

to the mean behavior of X. This gives us the final form

(Stratonovich) X(t+) = X(t) +
(
µ+ σ

2
∂σ

∂X

)
dt+ σ

√
dt ξt . (A.11)

In (A.11), we have converted (A.9) into an Euler-like form, where X(t+) only depends on
X(t) and t. This resembles the Itô solution (A.8). However, the non-trivial behavior of the
noise terms has introduced an additional contribution to the drift. The original equation (A.1)
is not well-defined until either the Itô or the Stratonovich approach has been chosen; different
approaches clearly give different time evolutions and correspond to different physical systems.
On the other hand, an equation defined in one approach can always be converted to an
equation in the other by adding or subtracting the additional drift term.

Taking different linear combinations of µ and σ evaluated at t and t+ creates additional
approaches on top of Itô and Stratonovich. However, these two are the most common ones:
Itô because of the simple correspondence between the ‘base equation’ (A.1) and the time
evolution (A.8), and Stratonovich because of an issue related to the chain rule, which I
will tackle next.
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A.2 The chain rule for stochastic variables

Let us define a new stochastic variable Y (t) ≡ f [X(t), t], where f is a smooth function.
According to the chain rule of calculus, the time steps of Y should be given by

dY = ∂f

∂t
dt+ ∂f

∂X
dX . (A.12)

However, expanding dY to leading order in dt with the Itô approach (A.8) gives16

Y (t+) − Y (t) = ∂f

∂t
dt+ ∂f

∂X
dX + 1

2
∂2f

∂X2 (dX)2 + . . .

=
(
∂f

∂t
+ µ

∂f

∂X
+ σ2

2
∂2f

∂X2

)
dt+ σ

∂f

∂X

√
dt ξt + O(dt3/2) .

(A.13)

The noise terms strike again: we had to include the (dX)2 term to capture the extra
(
√

dt ξt)2 contribution to the drift. (We again used ξ2
t → 1.) This ruins the chain rule (A.12).

Result (A.13) is known as Itô’s lemma [47].
What about the Stratonovich approach? Let us first introduce a bit of notation:

g
X◦ dWt ≡ g

2
∂g

∂X
dt+ g dWt (A.14)

for a generic function g[X(t), t]. With this, the Stratonovich step (A.11) can be written
in the simple form

(Stratonovich) X(t+) −X(t) = µ dt+ σ
X◦ dWt , (A.15)

directly analogous to the base equation (A.1). Using (A.11) and (A.15), the chain rule
takes the form17

Y (t+) − Y (t) = ∂f

∂t
dt+ ∂f

∂X
dX + 1

2
∂2f

∂X2 (dX)2 + . . .

=
(
∂f

∂t
+ µ

∂f

∂X
+ σ

2
∂σ

∂X

∂f

∂X
+ σ2

2
∂2f

∂X2

)
dt+ σ

∂f

∂X

√
dt ξt + O(dt3/2)

=
(
∂f

∂t
+ µ

∂f

∂X
n+ σ

2
∂f

∂X

∂

∂f

[
σ
∂f

∂X

])
dt+ σ

∂f

∂X

√
dt ξt + O(dt3/2)

= ∂f

∂t
dt+ µ

∂f

∂X
dt+ σ

∂f

∂X

Y◦ dWt .

(A.16)

We see that (A.12) holds when the circle operator on the last line is taken with respect to
Y = f and operates on the whole combination σ∂Xf to its left.

As an interesting consistency check, let us consider the case where σ is a constant,
independent of X. Since ∂Xσ = 0, the two approaches (A.8) and (A.11) obviously coincide
for X. Since X and Y are in a one-to-one relationship, the approaches should also be
equivalent for Y . This is not a trivial statement, since the standard deviation of dY ,
σY = σ∂Xf from (A.16), may depend on the variables. Nevertheless, we can easily see that
the Y evolutions coincide by comparing the second rows of (A.13) and (A.16) and using
∂Xσ = 0. The extra term in Itô’s lemma (A.13) is hidden in the Stratonovich differential
on the last line of (A.16).

16Like µ and σ, f is to be evaluated at [X(t), t] from now on.
17Except for explicit ∂

∂t
terms, the time t is kept constant in all partial derivatives in (A.16).
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A.3 Alternating deterministic evolution and stochastic kicks

The alternating scheme discussed elsewhere in this paper, that is, taking alternating steps
with deterministic evolution and stochastic kicks, can be written as

(Alternating) X̃(t+) = X(t) + µ[X(t), t]dt ,

X(t+) = X̃(t+) + σ[X̃(t+), t+]
√

dt ξt .
(A.17)

We first added to X(t) the µ term as the classical Euler time step and then used the thus
obtained value X̃ as the X-position when taking the stochastic step. This resembles the
Euler-Heun method discussed above for the Stratonovich approach, but the crucial difference
is that X̃ does not contain a noise component with the power

√
dt. Hence, the leading order

result for X(t+) obtains no non-trivial corrections from the noise and is reduced to the Itô
formula (A.8). The alternating steps approach is equivalent to the Itô approach.

A.4 Fokker-Planck equation

The statistics of the stochastic variable X at time t are described by its probability distribution
P (X, t). Let us consider the time evolution of this distribution. To get P (X, t+), we consider
all values X̃ at the previous time t and all possible steps ∆X that lead from X̃ to X. The
steps depend on the noise variable ξt. Integrating over the probability distributions of X̃
and ξt while maintaining a fixed X at t+ gives

P (X, t+) =
∫

dX̃
∫

dξt P (ξt)P (X̃, t)δ(X̃ + ∆X −X) . (A.18)

Here P (ξt) = 1√
2π
e−ξ2

t /2. The step ∆X is given by the Langevin equation; in the Itô
approach, (A.8) gives

∆X = µ(X̃, t)dt+ σ(X̃, t)
√

dt ξt . (A.19)

Next, we expand the delta function in (A.18) in powers of dt around X̃ = X:

δ(X̃ + ∆X −X) = δ(X̃ −X) + δ′(X̃ −X)∆X + 1
2δ

′′(X̃ −X)∆X2 + . . .

= δ(X̃ −X) + δ′(X̃ −X)
(
µ dt+ σ

√
dt ξt

)
+ 1

2δ
′′(X̃ −X)σ2ξ2

t dt+ O(dt3/2) .

(A.20)

Integrating over ξt, the term linear in ξt vanishes and the quadratic term gives
∫

dξtP (ξt)ξ2
t = 1.

Then, in the small time step limit, (A.18) becomes

P (X, t+) =
∫

dX̃ P (X̃, t)δ(X̃ −X)

+
∫

dX̃ P (X̃, t)δ′(X̃ −X)µ(X̃, t) dt

+ 1
2

∫
dX̃ P (X̃, t)δ′′(X̃ −X)σ2(X̃, t) dt

= P (X, t) − ∂X [P (X, t)µ(X, t)]dt+ 1
2∂

2
X

[
P (X, t)σ2(X, t)

]
dt ,

(A.21)
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where I moved the derivatives from the delta functions to the integrands through partial
integration. Moving the terms around, we get the Fokker-Planck equation [8]

∂tP = ∂X

[1
2∂X(σ2P ) − µP

]
. (A.22)

In the Stratonovich approach, equation (A.19) is replaced by

∆X = µ(X̃, t)dt+ σ(X̃, t)
2

∂σ(X̃, t)
∂X̃

ξ2
t dt+ σ(X̃, t)

√
dt ξt , (A.23)

from (A.10), so that, in practice, the Stratonovich form of the Fokker-Planck equation is
again obtained by replacing µ → µ + σ

2
∂σ
∂X in (A.22), giving18

∂tP = ∂X

[
σ

2 ∂X(σP ) − µP

]
. (A.24)

This can easily be seen to be covariant under changes of the stochastic variable: with the
above definition Y (t) ≡ f [X(t), t], we have

PX = (∂XY )PY , ∂X = (∂XY )∂Y (A.25)

at a fixed time t, given by the general rules of differentiation and probability densities, where
I labeled the quantities with X or Y depending on which variable they apply to. If the field
transformation behaves expectedly, we also have

dY = (∂tY )dt+ (∂XY )dX = [(∂XY )µX + ∂tY ]︸ ︷︷ ︸
≡µY

dt+ (∂XY )σX︸ ︷︷ ︸
≡σY

√
dt ξt . (A.26)

Plugging these into the Stratonovich equation (A.24) with X-labels and rearranging terms
produces an equation of the same form but with Y -labels. The same is not true for the
Itô version (A.22). This is a manifestation of the covariance of the Stratonovich approach
discussed above: (A.26) holds there, but not in the Itô approach.
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