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Super-Higgs Effect in Supergravity
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Supersymmetry assigns equal masses to bo-
sons and fermions in the same multiplet.
Since such a degeneracy is not observed in
Nature, it is important to break supersymmetry
either spontaneously or explicitly. We opt for
spontaneous symmetry breaking since the
introduction of non symmetrical terms would
make the theory lose all predictive power.
The recent advances in supergravity, namely
the discovery of a minimal set of auxiliary
fields, and the establishment of a tensor cal-
culus, allow us to construct the most general
coupling of supergravity (2, 3/2) to the scalar
multiplet (1/2, 07, 07)."  We recover as special
cases all the previously derived couplings and
show that the model depends upon an arbit-
rary function G(A4, B) of the scalar (4) and
pseudoscalar (B) fields.

Futher we show that for a very large class
of such functions, spontaneous symmetry
breaking of supersymmetry takes place. The
spinor y field of the scalar multiplet plays
the role of a Goldstone fermion of super-
symmetry (Goldstino). Tt is then absorbed by
the spin 3/2 gauge field of supergravity (gra-
vitino), just like in the Higgs model, after
which banquet the gravitino becomes massive.
In addition, this can occur without develop-
ing a cosmological constant, due to a cancella-
tion between terms of opposite signs.

When supergravity? was first discovered, it

was remarked® that the algebra of local super-
symmetry transformations did not close unless
one used the equations of motion of the spin
3/2 field, a phenomenon which occurs also in
flat space supersymmetry when auxiliary (non-
propagating) fields are eliminated by use of
their equations of motion. This situation was
cured by the discovery* of a very simple set
of 6 auxiliary fields, consisting of an axial
vector A4, a scalar S and a pseudoscalar P.

This led in turn to the development of a
tensor calculus® which generalizes to curved
space the results originally obtained in flat
space by Wess and Zumino. Tensor calculus
applies both to scalar and vector multiplets.
Since here we are interested in the coupling of
supergravity to a scalar multiplet, we give a
very short summary of the tensor calculus for
scalar multiplets.

A scalar multiplet is a set of 5 objects
Y=(A, B, 3, F', G') which have well defined
properties under local supersymmetry trans-
formation. For instance d4=&(x)y, J0B=
—i&(X)ysy, ete.... The fields 4, F' (B, G')
are scalars (pseudoscalars) and y is a Majorana
spinor.

The tensor calculus® consists of two basic
operations. The first is the multiplication,
which to two scalar multiplets 2, %, associate
their product ¥=23,&®2%,. Incomponent form,
one has A=A4,4,—B,B; and so on for the
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other components. This operation is commu-
tative and does not involve any derivatives.
It is purely algebraic.

The second operation is called derivation
and associates to a multiplet 2 its derivative
7(2). The third component of 7(2) contains
a supercovariant generalization of the Dirac
operator applied on y and the fourth and
fifth components supercovariant generaliza-
tions of the d’Alembertian operator [] applied
on A and B.

Finally an invariant action can be obtained
from any scalar multiplet 2" by the formula:

1) =\atwe P ) ooy

4 3 e A —iBr) g+ 54 —I—PB]

2

In this formalism, the construction of
invariant actions under supersymmetry trans-
formations is very straightforward and is ana-
logous to the construction of covariant action
in curved space.

The most general interaction between super-
gravity and a scalar multiplet which involves
no more than one derivative on the fermi
field and 2 derivatives on the bose field can
thus be written as:

12 4 2,"QT(2S") + 2560 22")

@,» can be taken real and symmetric as one
can show that I(D R T(A)—ART(>}))=0 and
we wish to have a parity conserving model.
The action will thus depend a priori on two
functions of the spin 0 fields.

o(z, Z2)=0ppn2"Z"™

g(z2)=>b,z"
where z==A-+IB.

First one computes explicitly 7 as a function
of eg, $p, Ay S, P, A, B, 3, F', G'. The
fields A,, S, P, F', G’ are auxiliary fields and
appear only quadratically in the result. Thus
they can be eliminated by solving a set of linear
equations and one obtains a reduced action
depending only on the physical fields e,,,
Sb/l’ i Aa B.

The reduced action needs still to be put in a
canonical form, as for instance, at that stage,
the Einstein scalar curvature R and the Rarita—
Schwinger Lagrangian appear multiplied by the
function ¢(z, 2).

Thus one redefines the field e,, by a Weyl

rescaling such that the scalar curvature R
appears in the pure Einstein form with the
correct normalization. Similarly one rede-
fines the fields ¢, and y such that the kinetic
terms of the spin 3/2 and spin 1/2 fields are the
canonical correctly normalized terms mini-
mally coupled to gravity.

These transformations are compatible with
the reality of the vierbein and the Majorana
property of the spinor fields under very
general conditions, namely:

¢(z,2)<0 and G,,z<0

where G(z, 2)=3In [—¢(§’2)]—1n IS(ZX

Remarkably enough, the final action and
transformation laws involve only the function
G(z, Z) rather than ¢ and g separately. Fur-
ther the condition G,;3<<0 also implies that
the A4, B fields kinetic terms have the right
sign, i.e., that these fields have positive metric
and are not ghost-like.

The final action is given by:

I:]gG+I)IATTER
where the first term is the supergravity action,
and
IMATTER:]?;TL]%'TLIINT
where the bosonic action is given by:
1= Sdue[c:,zza,[azﬂz- V(z, 7]
and the potential V by:
2
|28 ﬁ(expr)[3+ G, A ]
G) zZ
The fermionic action /% contains the kinetic
term of the y field and terms bilinear in

the fermi fields ¢, and ¥, but does not contain
derivatives of the scalar fields:

I _
o= Sd*xe[~ 5 ZDX+<CXP“ g><€/)#0’w¢y
—(—2G, ZZ)_l’lzéj']’G, 212G, 42)"'
G, 175G, A A
X ( ézzh g +G?, 4, —G, ZZ>X>]
» 22
where by definition if M=Re M-iy, Im M.
Finally /;xr contains quartic terms in the
fermi fields ¢, and % and bilinear of the
fermi ficlds multiplied by derivatives of the
scalar fields, for instance of the type (G, ,0,z2—
G, Za!lz)sﬂu()ag,}#’/“pgbg.
This action is the most general coupling
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of supergravity to the scalar multiplet and
depends upon one arbitrary function G(z, Z)
of two real variables. It includes as special
cases all previously derived couplings.®~*

The transformation laws of the redefined
fields can also be computed. For the discus-
sion of the super-Higgs effect, we shall only
need the transformation law of y:

0% =02 p(—2G, z2)°
G G,z
How= 3 )
where the dots indicate cubic terms in the
fermi fields.

Using this very general result we can discuss
the super-Higgs effect'*'* in a model indepen-
dent way. In flat space a necessary condition
for spontaneous supersymmetry breaking to
occur is that the auxiliary field F’ (resp. D in
the vector multiplet) can pick up a non-zero
vacuum expectation value. It then follows that
gy contains a term 6y=:(1/a)s+--- where a is
a constant.

The supersymmetry charge @, does not
annihilate the vacuum, and a zero mass ex-
citation of spin 1/2 (Goldstino) is seen to be
present in the theory. In addition, a cosmo-
logical constant of fixed sign (+) is induced by
the supersymmetry breaking.

In curved space, Deser and Zumino'® used as
a model for spontaneous breaking of super-
symmetry the coupling to supergravity the
non-linear Volkov—-Akulov Lagrangian** which
contains only one fermi field y transforming
as oy=(l/a)e-+iagy"yo,x. As dy contains a
(1/a)e term, y is a candidate to represent a
Goldstino field. The presence of this term
implies a negative cosmological constant;
however if one introduces a mass term for the
spin 3/2, another cosmological constant of
positive sign arises. Since experimentally the
cosmological constant is very small, one im-
poses that the net cosmological constant
vanishes. One then finds' that m}=k?/64"
and is very small. Since 0y contains a con-
stant term proportional to ¢(x) and we have
one spinor gauge degree of freedom, ¥ can be
gauged away completely and is absorbed by the
gravitino which becomes massive. A massive
gravitino indeed has 4 helicity states -+3/2,
+1/2.

In our general model we can see the same

phenomenon occurring for a large class of
functions G(z, ).

The potential V(z, Z) reaches its minimum
for a certain value z, such that:

Va ZIZ(): Va ZlZ():O

If we require that the final theory does not
violate parity z,=<z) must be real.

Further we can impose that the absolute
minimum of ¥V is reached for V(z,, z,)=0
which implies the absence of a cosmological
constant, and that V>0 everywhere. It is
indeed possible for V' to be non negative as it
contains two terms of opposite sign (remember
that G, ,z<<0 is a necessary condition for the
A, B fields not to represent ghost particles of
negative metric).

Finally the condition for spontaneous break-
ing of supersymmetry is that at the minimum,
dy contains a constant term times ¢(x). Look-
ing at dy we see that the requirement is that
1a=(exp—G/2){G, 7/(—G, 17/2)"}|5z,70.

The condition that 1/a#=0 and that V(z,,
z,)=0 are compatible as ¥ vanishes precisely
if

|G, z|*=—3G, 4z

in which case 1/a*=6 exp (—G).

Unless G becomes infinite at that point too
1/a is non zero.

When these very general conditions for
supersymmetry breaking to occur are met,
one can explicitly show by a further redefini-
tion of the fermi fields that y can be com-
pletely eliminated from the action and that the
spin 3/2 acquires a mass given by mj=1/6a4*=
e”% (in k=1 units), recovering the result
obtained by Deser and Zumino.*® It is easier
however to write the full action in the y=-0
gauge where the Goldstino has been ““eaten up”
by the gravitino:

1 _
I= gd*x[— ;“R—zee"‘”“"’gbpy‘ﬁy‘prg,b,,

G\~ . 2 2
~[—<exp--2~)¢#a‘ O+G, 22(0,4)+(0,.B)°]

2
+(exp—G) <3+~!g’ ;') — ;(Ga 20,7

a1

In general A and B acquire different masses.
In the simple case where G, ;7= —1/2 (canonical
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kinetic term for A, B) one can establish the
general mass formula:

m%1+m}"g:4mf;
which is independent upon the remaining
arbitrary function of one variable g(z). Par-
ticular examples of functions exhibiting the
super-Higgs effect are easily found.

Our investigation shows thus that the super
Higgs effect can take place in a large class
of models, and that realistic models where
supersymmetry is spontaneously broken even
in curved space can be constructed, without
having huge cosmological constants. It would
be interesting to extend these result to the
O(N) supergravity theories which once they
are gauged, create their own potential for
N >4 since they contain spin 0 fields. Unfor-
tunately the potentials found in the O(4) and
SU(4) theories” do not lead to spontaneous
symmetry breaking, being unbounded below,
which is a disappointing result. However, the
discovery of auxiliary fields for O(N) super-
gravity theories may reveal more flexibility in
this construction than originally thought, as
similarily it was believed that the coupling of
supergravity to the scalar multiplet was unique.
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