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Abstract

This thesis describes novel, proof-of-concept machine learning models for particle

tracking in fundamental research and medicine. Proton computed tomography is

a medical imaging technology with the potential to improve on current medical

proton therapy treatment planning, but hampered by the computationally costly

need to reconstruct individual proton tracks. With this in mind, we developed the

Proton Path Neural Network, a neural network model capable of matching, and in

some situations exceeding, the performance of the standard reconstruction method,

with a significantly shorter execution time. Building on this experience, we turned

to pattern recognition within track reconstruction at the LHCb experiment, one

of the four major detector experiments located at CERN’s flagship LHC particle

accelerator. Focusing on reconstruction within the VELO tracking subdetector, we

developed a graph neural network approach with the capacity to draw inferences

from all measurements made by the subdetector for a given event, which exhibited

promising performance over existing trials.
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Chapter 1

Introduction

We have always sought to understand the world around us. From geometry and

the motion of planets, to quantum mechanics and beyond, humankind has built up

a remarkable picture of the workings of reality. Yet that picture is still incomplete.

Using complex particle accelerators to recreate conditions at the Big Bang, sci-

entists work to probe the fundamental building blocks of matter and forces; seeking

answers to big questions on a scale too small to see. Here, particle tracking detectors

seek to record the flight of individual particles, reconstructing particle tracks from

their measurements to understand what unfolded at a subatomic scale. Even though

large scale experiments may be the first that come to mind, particle tracking is not

only the domain of pure research. Among other uses, particle tracking is key to

many forms of medical imaging, where information deduced from particles and their

paths is used to reconstruct the anatomy of the patient they traverse.

The last few years have seen a veritable explosion in machine learning; algorithms

that can learn from data, approximating complex processes without needing them

first to be formally defined, or even understood. Given the vast and complex quan-

tities of data modern particle detectors can produce, machine learning techniques

have emerged as an invaluable tool for fundamental research.

Across this thesis, I will explore two investigations into harnessing cutting-edge

deep learning methods for particle tracking tasks, predominantly carried out between

2018 and 2022. This work was conducted under a scheme to spend time between

pure research and industry applications; as part of a data science program funded

by the Science and Technology Facilities Council.

Time at the Fondazione Bruno Kessler in Trento, Italy, as part of the LIV.DAT

doctoral training centre program, led to investigations into machine learning for

proton computed tomography, or pCT; a medical imaging technology using protons
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to map a patient’s anatomy. Using the same particle for treatment and planning,

pCT has the potential to improve on current proton therapy treatment planning,

but is hampered by the computationally costly need to reconstruct individual proton

tracks [1,2]. From this emerged the Proton Path Neural Network, a proof-of-concept

model capable of matching and in some situations exceeding the performance of the

standard reconstruction method, with a significantly shorter execution time.

Subsequently brought to publication in a peer-reviewed journal [3], this work laid

the foundation for tackling particle tracking challenges at the LHCb experiment.

With a core program of Charge-Parity violation and rare beauty and charm hadron

decays, LHCb is the Large Hadron Collider’s dedicated flavour experiment and one

of the accelerator’s four large detectors [4,5,6]. As the tracking subdetector sitting

immediately around the collision point itself, track reconstruction within the LHCb

VELO is a vital component in understanding collision events at the detector. With

this in mind, we investigated the potential of a machine learning model for pattern

recognition with the capacity to draw inferences from all measurements made by the

subdetector for a given event. This culminated in the development of an overarching

framework and demonstration of a working graph neural network approach that

successfully grouped measured particle positions into tracks, and showing promise

over existing trials.

1.1 Structure

Owing to the varied nature of the work presented, this thesis has been structured

into several parts as follows.

� Part I provides an introduction to material common throughout. Chapter 2

discusses particle accelerators, detectors and tracking, and Chapter 3 provides

a brief introduction to machine learning and neural networks.

� Part II focuses on track prediction for proton computed tomography. An in-

troduction to proton computed tomography is given in Chapter 4, and aims

and method are described in Chapter 5. Results are presented in Chapter 6,

with concluding discussion in Chapter 7.

� Part III then turns to track reconstruction for the LHCb VELO. Chapter 8

provides an introduction to graphs and graph neural networks, while Chap-

ters 9, 10 and 11 discuss the LHC, LHCb and the VELO respectively. Aims
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and Method are described in Chapter 12, and results presented in Chapter 13.

Discussion of this work is given in Chapter 14.

� Finally, Part IV draws the previous two parts together, with concluding re-

marks from across the whole work in Chapter 15, followed by figure and table

lists, and bibliography. Appendices are included in Part V.

1.2 Naming Conventions

Given the varied domains touched upon in this work, there are some terms which,

depending on the field, often appear with different meanings. In an effort to avoid

confusion we will be using the following conventions;

� A graph denotes the mathematical structure, described further in Section 8.

Figures containing a graphical representation of data are referred to as plots.

Neural networks and diagrams depicting them are referred to as networks.

� The abbreviation MLP denotes the Most Likely Path formalism, as described

in Section 4.3.3, while a Multi Layer Perception will instead be referred to

as a perception, or by referring to the wider concept of a feed-forward neural

network, or FNN.

� A tensor is used here to refer to an n-dimensional array, as opposed to the

rigorous mathematical structure.
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Chapter 2

Working with Particles

2.1 Particle Detectors

Subatomic particles operate on a scale that our own senses are simply not precise

enough to discern, let alone sufficient to make precise measurements with. There-

fore we rely on particle detectors of one form or another to sense for us, leveraging

particle interactions with matter to produce discernable signals for us to interpret [7].

Though the complex machines used in high energy physics may be the first to come

to mind, a particle detector can be as simple as a photographic plate; passing pho-

tons interacting with crystals to produce blackening visible to the eye [8]. Depending

on its intended purpose, a detector might look to measure some specific parameter,

such as the quantity of certain particles to pass through an area, or it might endeav-

our to provide a comprehensive picture of everything that takes place within a set

scope. In the latter case, detectors are often composed of a myriad of component

detectors, designed so that particles ideally undergo interactions across multiple sen-

sor elements in order to provide a wide range of different measurements [7]. Many

research detectors, such as the 4 large experiment detectors at the Large Hadron

Collider, follow this approach.

While fundamental scientific research has often driven the development of de-

tectors and detection methods, modern particle detectors can be found in a diverse

range of applications [7]. In medicine, many diagnostic imaging techniques, such as

x-ray, CT and PET scanning, use particle detectors to make the precise radiation

measurements from which medical images are constructed [9]. Equally, various forms

of particle detector are a common sight for those working with ionising radiation,

with Geiger counters offering a means to measure current radiation levels, and per-

sonal dosemeters widely employed for monitoring individual exposure [10]. Further
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afield, examination of carbon-14 levels allows archaeologists to estimate the age of

organic materials through radiocarbon dating [11], while geologists probe subsurface

materials through neutron borehole logging [12].

2.2 Particle Tracking

One component in understanding events unfolding on the subatomic scale is

knowing the position and momentum of the particles involved, parameters referred

to as a particle’s kinematic properties [13]. Responsibility for determining these prop-

erties is the domain of tracking; the combination of systems and analysis processes

responsible for recovering the path, or track, taken by one or more particles through

space. By applying a known magnetic field to at least a portion of the region covered

by a tracking detector, or tracker, it is then possible to deduce the momentum of

charged particles through their deflection [7]. In the context of high energy parti-

cle physics experiments, particularly looking at a wide range of particles, detector

systems are often divided between systems for tracking, and those related to parti-

cle identification, which seek predominately to make measurements with which to

determine the identity and nature of the particles detected.

Detector technology has come a long way since H. Becquerel’s 1896 discovery

of radioactivity using a photographic plate [7]. In the past, tracking detectors such

as bubble and early spark and streamer chambers produced photographic readouts

for researchers to manually inspect and measure, modern detectors typically capture

a particles trajectory as a series of electronic signals, such as through fixed planes

of sensors that register a particles location as it passes to produce a set of spatial

coordinate measurements [14]. Current experimental tracking detector designs employ

various common approaches to performing measurements; though regardless of the

approach used, tracking detectors aim to disturb a particles flight as little as possible,

and therefore generally present the minimum amount of material to a traversing

particle that they can [13]. Equally, any measurements made must still be analysed

and interpreted in order to reconstruct the tracks of the observed particles.

2.2.1 Gaseous Tracking Detectors

Gaseous tracking detectors such as a multiwire proportional chamber, or MWPC,

operate around a large, gas filled volume. In a typical MWPC configuration, sheets of

anode wires are sandwiched between cathode planes, with a voltage applied between
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them [7,15]. As a charged particle passes through the detector, the gas is locally

ionised along its trajectory. Electrons and ions drift towards anodes and cathodes

respectively, where a current signal is induced. Given a sufficiently high voltage,

the electrons produce an ionisation cascade on approach, resulting in a charge cloud

around the anode, amplifying the signal measured. Stacking layers allows a particles

position to be determined from the wires it passed close by, building up a series of

measurements [7,15]. Drift chambers build the same principal by measuring the drift

time of electrons to the anode wires, allowing for the original ionisation to be further

localised to a position in between wires, providing higher resolution. While similar

configurations to a MWPC can be used, drift chambers are usually formed from

cell like structures of a single anode wire surrounded by cathode wires, beams or

shells, with such cells arranged in a regular pattern to covering the desired detector

volume [7,15]. Taking the concept of using drift time measurements even further,

the time projection chambers consist of a large gas volume with an applied electric

field terminating at one end, with a planar arrangement of alternating anode and

cathode wires. This eschews the usual use of multiple layers of sensors to produce

a sequence of coordinates. Charged particles produce corkscrew trajectories within

the volume, electrons from ionisation drifting to the end cap to form a projection of

the particles path, with displacement from the end cap determined using drift time

measurements [15].

Developed to meet the increasing occupancy and resolution demands of experi-

mental physics, micro-strip gas chambers use narrow strips engraved onto an insu-

lating support in place of wires [7,15]. While this approach can achieve a spacing and

strip thickness on the micrometer scale, far finer than that obtainable with wires, it

is sensitive to discharges, and so prone to damage, at the voltages required for work-

ing with minimally ionizing particles [15,16]. Gas electron multiplier designs alleviate

this issue through the introduction of a pre-amplifier; one or more thin polymer foil

sheets, clad with metal on both sides, and perforated with holes on the micrometer

scale. These are placed in between an anode strip covered surface and a parallel cath-

ode plane, or equally between the wires of a MWPC. The electric field is ’squeezed’

within the foil gaps, allowing for a lower voltage to be used while retaining the field

necessary for the signal amplifying ionisation cascade within the holes, bringing the

process away from the anodes themselves [15,17].

Gaseous tracking detectors pose various mechanical challenges, such as contain-

ment of gas, ensuring charged wires remain taught and degradation due to prolonged

radiation exposure; and have begun to fall out of favour as dedicated tracking systems

8



for experimental high energy physics detectors [7,14]. Nevertheless, gaseous tracking

detectors can still be found at the forefront of research, such as in the ALICE [18,19]

and g-2 [20] experiments; and are frequently employed for position sensitive detection

in muon systems, which typically require coverage of large areas, such as those in

ATLAS [21], CMS [22] and LHCb [23].

2.2.2 Solid State Tracking Detectors

Turning now to solid state designs, semiconductor detectors employ thin layers

of a chosen semiconductor, exploiting that as a charged particle passes through the

material, electron-hole pairs are generated. The resultant charges are collected and

amplified, producing a readable signal. Strip detectors use layers segmented into

parallel strips, whereas pixel detectors instead use sheets of discrete tiles. While

strip detectors only measure one spacial coordinate, they are far easier to readout

as the number of strips scales linearly with size, and as each strip reaches the edge

of the detection area there is a convenient place to connect readout chips. Silicon

is by far the most common medium employed, though there is exploration of other

semiconductor materials for small scale trackers [7]. While silicon detectors come with

various technical challenges and a significant cost, such detectors offer high spatial

resolution are widely used in cutting edge experiments, such as ATLAS, CMS and

LHCb [7].

Monolithic pixel detectors are a variant of silicon pixel detectors. As both the

active sensor and readout chip in a silicon pixel detector are composed of silicon, the

concept is to fashion the two components as a single piece. Though presenting signif-

icant technical challenges, with advances in fabrication methods such detectors have

begun to see practical use, including the current and future ALICE inner tracking

system [7,24].

Originally conceived as a form of memory device [25], Charge-Coupled Devices, or

CCDs, have been employed as optical sensors for decades [7]. Charges are generated in

semiconductor capacitors, but then transferred around the sensor to readout nodes.

Capable of high spacial resolution, but with slower readout times and a sensitivity

to radiation, CCDs have many successes in astrophysics. In high energy experiments

however, they have largely been supplanted by the aforementioned forms of silicon

semiconductor detector [7,25].

Unlike clear optical fibres, scintillating fibres consist of a scintillator doped core,

surrounded by cladding of a lower refractive index [26]. As particles traverse the fibre,

energy deposited in the core causes excitation and the emission of light. The cladding
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traps some of this light by total refraction, guiding it to the fibres end and capture

by photodetectors, such as silicon photomultipliers [26,27]. Scintillating fibres provide

a relatively low cost and low material approach, though for high energy physics

radiation damage can pose a challenge, and has recently been employed for post

magnet tracking in the LHCb detector [27,28].

2.2.3 Track Reconstruction

Even neglecting the consequences of the uncertainty principal, practical con-

straints preclude us from being able to continuously measure everything we may

want at all times. Equally, we cannot always directly measure those properties we

wish to know, and therefore must determine what has taken place and the nature

of those particles involved from the measurements we do make. Ultimately, a detec-

tor’s various readout elements produce a variety of signals in response to one or more

particles passage through the detector, and those signals need to be processed and in-

terpreted [23]. Track reconstruction is the process of interpreting those measurements

made by a tracking detector in order to recover the paths taken by particles, and is

typically divided into three tasks; clustering, pattern recognition and fitting [13,29].

As particles traverse the tracking subsystems of a detector, they interact with

sensitive elements, activating them to produce signals announcing their presence at

a corresponding location; forming a series of spacial measurements, or hits * [13,29].

Depending on the form and granularity of a given detector, a particle may interact

with multiple neighbouring elements, producing a representative region of signals. In

such cases, clustering is performed, identifying and grouping readings into clusters

corresponding to a single particle’s passage, each interpreted as a single hit [29].

Then comes pattern recognition, or track finding, which consists of identifying

those hits believed to correspond to the passage of the same particle, grouping them

to form potential track candidates [13]. Where individual particles are sufficiently

separated in time this process is relatively trivial. But where a detector will witness

the passage of multiple particles in an indistinguishable time frame, such as the

dearth of particles emerging from a single high energy collision, it becomes a complex

classification task; particularly if dealing with curved tracks like those produced in

magnetic fields. Various common pattern recognition techniques have been developed

over the years, and can generally be distinguished as global methods, which adapt

*Though a hit may be used to refer to the signal of each activated sensitive element, we will
use it to denote the input data used by the pattern recognition stage, after any interpreting and
clustering has been performed.
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and solve an equivalent formulation of the problem in order to address the task

simultaneously as a whole, or local methods, which iteratively construct tracks by

examining groups of hits at a time [13,30].

Conformal mapping, a form of spacial transformation that preserves the angle

between any two lines, can be employed as a global method when working with curved

tracks. This exploits that circular tracks passing through or close to the origincan

in this way be mapped into a coordinate system where they form straight lines or

parabola. In the new coordinate system the azimuthal angle of hits forming such a

track will be close to one another. Thus tracks can be found by collecting angular

components into a histogram, with a peak indicating the corresponding hits line up

to form a potential track [13,31]. The Hough transform offers a similar approach when

working with straight tracks that do not necessarily pass close to the origin. This

instead uses that a point in the x− y plane can, through the straight line equation

y = cx + d, be mapped to a line in the c− d plane, d = −cx + y; and exploits that

points which lie along the same straight line in the x-y space map to lines in c-d that

cross at a particular point [13,32]. Along the same lines, transforming drift chamber

measurements into Legrande space leads tracks to appear as the intersection of the

now sine curve representations [13,33]. With analogies to the Hough transform, the

artificial retina algorithm builds heat maps and uses clustering to identify tracks in

an approach inspired by straight line recognition within the eye [34,35].

Turning to local approaches, track road methods begin by selecting a set of

hits which may have been created by the same particle. A potential trajectory,

or road, is interpolated between them, and additional hits are assigned from those

lying close to that prediction. The formed track candidates are then compared and

assessed to determine which are likely to be tracks, often based on the number of hits

successfully found along this trajectory and the quality of subsequent track fitting [13].

Track following, or forwarding, methods take a somewhat similar approach, initially

forming seed tracks from hits identified as likely constituting a short track segment.

This is often performed by looking at hits across neighbouring sensitive components,

and focusing on regions of a detector where it is usually easier to distinguish hits

made by the same particle, such as areas furthest from the collision point at a

particle accelerator. Each seed track is then extrapolated progressively through the

detector, picking up additional hits that lie close to the predicted path as sensitive

elements are encountered, continuing until either the end of the detector is reached,

or multiple sequential sensors fail to observe hits potentially continuing the track.

Similar methods may then be used to determine the likely true tracks among those
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formed. [13,29,30]. Though versatile, the iterative nature of such algorithms can present

challenges for parallelisation [30].

Moving to track fitting, once track candidates have been formed out of the ob-

served hits a smooth predicted trajectory is determined for each candidate which

most accurately describes the path taken by the particle which left the correspond-

ing hits [13,29]. This is commonly performed using a least squares fit approach, with

many conventional methods employing variants of a Kalman filter [36,37]. Though

Kalman filter techniques concern themselves with estimating variables of dynamic

systems as they evolve, they can be applied to tracking by sequentially adding hits to

the presented track, recursively building up and refining the predicted path as more

hits are included [37]. Assessing the quality of fitted trajectories can be used in turn to

evaluate if track candidates may instead represent non existent tracks formed from

random combinations or to distinguish among incompatible candidates reusing hits

between them [13,23,29], therefore forming a concurrent part of pattern recognition [13].

Depending on a detector’s particular context, separate vertex reconstruction may

also be performed as part of reconstructing an event; the task of accurately locating

one or more common origin points of the various particles tracked [13]. Often the

process is similarly divided into vertex finding, determining and grouping those tracks

that likely originate from the same vertex, and vertex fitting, accurately locating

that vertex in space [13]. Accurate vertex reconstruction is particularly important in

heavy flavour physics research, as it allows for reconstructing short lived particles

by identifying decay products and the common secondary vertex from which they

came [13,36]. Using the displacement of this secondary decay vertex from the original

primary collision vertex, it is then possible to determine the particle’s decay length.

Moreover, constraining tracks to originate at identified vertices can be used to further

improve the quality of fitted trajectories [13].

2.2.4 Trigger Systems

Overall, the processing of experiment data can be divided into online processing,

that which takes place in real time as data is collected, and offline processing, the

separate processing of stored data at its own pace [7,13]. Given the stochastic nature of

quantum physics, events produced at research particle accelerators are frequently of

limited interest. While it may be attractive simply to store a detector’s total output

and perform all processing offline, the staggering quantities of events detectors at

such experiments usually observe combined with finite storage space mean it is simply

not possible [7]. The current LHCb configuration, for example, produces around
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4 TB of raw data per second when running at nominal instantaneous luminosity, an

infeasible quantity to simply store [23].

It is therefore common to employ a trigger; a system designed to reduce the

quantity of events by discarding those that are unlikely to be of interest, usually

by looking for a number of generic signatures that don’t require significant analysis

to identify. Triggers are, by their nature, closely intertwined with a detector’s data

acquisition, or DAQ, system, and a detector may employ multiple triggers, each

reducing down the flow of events to allow more detailed, and so slower, assessment

by subsequent triggers [7]. Given the demanding speed requirements online processing

typically presents, simplified methods may be used to deduce a rough understanding

of collected data, such as for a trigger system, with full quality event reconstruction

and analysis later carried out offline. In detector experiments at particle accelerators,

some form of simplified track and vertex reconstruction is often performed online as

part of trigger systems [7,13].

2.3 Particle Accelerators

Though elementary particles may make up the known universe, we can’t rely

upon chance to present them as and when we want. Particle accelerators therefore

offer a means to generate beams of specific particles on demand, with precise control

over energies. From the ubiquitous cathode ray tube’s key contribution to the dis-

covery of the electron [38], to the numerous publications of the Large Hadron Collider,

particle accelerators have built a widely established track record of groundbreaking

discoveries. As will be discussed in Section 9.1, they are an invaluable tool in mod-

ern experimental physics, and increasingly sophisticated designs continue to push

the boundaries of high-energy physics and discovery [39].

Yet just as with detectors, modern particle accelerators are not only the domain

of pure research [40]. For decades the aforementioned cathode ray tube played a well

known role in television displays, and accelerators now allow for the non-destructive

analysis of artwork and artifacts [41]. Accelerators are widely used in medical set-

tings, from diagnostic imaging, such in X-ray imaging equipment and radioisotope

production for PET scans, to directly providing treatment in radiotherapy and the

sterilization of medical equipment [42,43]. Turning to industry, accelerators have found

various roles in material and earth sciences, such as material testing and semicon-

ductor manufacturing [40,43].
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2.3.1 Forms of Particle Accelerator

Particle accelerators take many forms, and can be divided into several types

based on how they operate. Fundamentally, no one method can claim to be strictly

superior, with each potentially more suitable for different applications. Owing to

their distinct silhouettes and obvious differences, accelerators are broadly divided

into linear and circular designs, although circular accelerators encompass a range of

different forms [40].

Linear Accelerators, or Linacs, utilise oscillating electric fields to propel charged

particles in straight line trajectories. With the capacity for precise control over beam

energy, Linacs are a common sight in medical applications. However, the significant

size needed in order to attain higher energies means that in modern research they are

usually found as injectors, pre-accelerating particles for entry into larger, circular-

style accelerators [44].

Synchrotrons accelerate discrete particle bunches in a circular path, using mag-

netic fields to guide particles and radio-frequency (RF) cavities, chambers with a

strong directed electromagnetic field, to provide acceleration. With a closed loop

path, particles can perform multiple revolutions, accumulating energy each time they

pass the RF cavities. In order to keep particles on course, the magnetic field must

be varied to compensate as their velocities increase, and thus cannot provide a con-

tinuous stream of particles [40]. Not only an essential tool in high-energy physics and

the basis of modern high energy experiment accelerators such as the Large Hadron

Collider [39], synchrotrons are also the archetypal method of generating synchrotron

radiation. This electromagnetic radiation is emitted as relativistic charged particles

are forced to turn, and supports material science and biological research [45].

Cyclotrons instead accelerate a continuous stream of particles in a spiral trajec-

tory within a circular, disk shaped cavity. A constant magnetic field bends particles’

trajectories, while an alternating electric field provides acceleration. Compact and

cost-effective, cyclotrons are widely used in medical and industrial applications [40,46].

Synchrocyclotrons extend the principal of cyclotrons, adjusting the frequency

of the electric field to account for relativistic effects as velocity increases [40]. This

allows particles to attain higher energies, but at the cost of comparative reduced

beam intensity.

Isochronous cyclotrons go further, increasing the magnetic field to match their

energy as particles move outward along their spiral path. This increasing magnetic

field compensates for relativistic effects and acts to maintain synchronization be-

tween the particles and the accelerating electric field [40]. The result is an accelerator
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particularly suited for producing high-intensity particle beams.
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Chapter 3

Machine Learning and Neural

Networks

3.1 The Concept of Machine Learning

In general terms, the field of machine learning concerns itself with algorithms

that learn from data or experience. Rather than being determined directly, tun-

able aspects of models are optimised algorithmically through exposure to examples.

Though the terms are frequently used interchangeably, machine learning is a subset

of the wider field of Artificial Intelligence, the study of replicating human intelligence

and thinking; in this case, emulating the ability to learn and improve through experi-

ence. In many ways, machine learning is about the process of calibrating algorithms,

rather than the nature of a final algorithm itself. Equally, machine learning is as

much a field of statistical analysis, seeking to extract meaning from data [47,48].

To illustrate the concept, let us imagine we have a function we wish to model. One

direction would be to generate the Fourier series or Taylor polynomial of the function.

In either case, we have a set form, or model, for the representation, and procedurally

derive the corresponding coefficients for our particular function through application

of a formula. If we were instead to take a machine learning approach, rather than

looking to the function itself, we would work with examples of the function, applying

it to a range of inputs. From this data, we might apply a suitable model to the same

examples, tuning our coefficient equivalents to recreate the function’s behaviour. In

this way, machine learning methods can often be seen as a form of trial and error,

adjusting bit by bit to better produce the results we desire.

Consider for a moment electron drift in a wire under a small electric field. If at

a given moment we were to examine a single electron, each would have a seeming
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random velocity. Yet if we were to continue to select electrons, and record and

average their velocities, over time the drift velocity will emerge from among the

randomness. Calibrating, or training, of a machine learning model operates on a

similar principal. Each individual example a model is optimised towards may be

seemingly random and contradictory, but the aim is that as it is exposed to more

and more examples, it converges towards representing any patterns present in the

overall body of data.

This leads neatly to a key strength of machine learning; as algorithms are cal-

ibrated from data, we don’t need to be able to express, or even know, the formal

underlying rules behind a process in order to approximate it. Machine learning al-

gorithms are therefore ideally suited to tasks that as humans we find intuitive, but

which are extremely hard to explain formally, such as recognising letters and num-

bers from their shapes or making conversation [47,48]. This adaptability and lessening

of the need for prior knowledge has made Machine learning a cornerstone of many

modern applications, ranging from natural language processing to autonomous vehi-

cles. On the reverse side, great care must therefore be taken to ensure that any data

used is representative of that which we want a model to learn, and be mindful of

other, unintended patterns that may be present, or even introducing them ourselves

with how the data is presented. As with other forms of statistical analysis, large

datasets are therefore desirable as they are less likely skewed by random chance.

Given the scope and variety encompassed by machine learning, particularly as a

field straddling statistical analysis and computing domains, exact definitions vary.

Though we have endeavoured to remain general, this chapter is intended as a rough

illustration of some general ideas in order to understand the work, and its context,

discussed across this thesis.

3.2 Neural Networks

3.2.1 Deep Learning and Neural Networks

Though biological interpretations have largely fallen by the wayside, artificial

neural networks, or more commonly just neural networks, are loosely inspired by the

connection structure of the brain [47].

At its core, a neural network consists of a number of units known as neurons.

Each neuron itself only performs a simple computation; it receives a series of in-

put variables, performs a linear combination using a weightings map, and passes it
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through a non-linear activation function to produce a single output variable. Typi-

cally, neurons are organised into sets known as layers, with results from neurons in

one layer usually passed to neurons in another, though more complex arrangements

are possible. Neuron weights are the tunable parameters of a neural network, and are

calibrated through backpropagation; calculating the gradients of network parameters

using the chain rule to jointly adjust all weightings maps throughout the network at

once, moving the model towards producing a desired output for a given input each

time. While neurons are individually simple, the result is greater than the sum of its

parts. Through alternating linear and non-linear operations, neural networks have

proven capable of modelling complex non-linear processes [47,48].

Deep learning concerns itself with neural network models with many layers of

neurons, which are optimised jointly from data as opposed to individually calibrat-

ing each layer to perform a specific task. This enables an algorithm to learn its own

intermediate knowledge, building up complicated concepts out of simpler ones of

its own determining [47,49]. However, their abstract nature makes understanding the

meaning behind how and why a model reaches its results challenging, and explain-

able AI with deep neural networks (DNN) remains a significant field of study [50].

Though we may know the exact calculations a model performs, interpreting what

those calculations represent is often elusive.

While DNN are capable of efficiently approximating complex tasks, they are

computationally intensive, particularity during training; and significant efforts have

been invested into operating deep learning models on specialised hardware platforms.

Being extremely efficient for floating-point matrix-based calculations, and coupled

with high throughput and memory band widths, GPU’s have become the go to gen-

eral purpose platform for deep learning. Dedicated ASIC chips can provide superior

performance with less energy use, but there are significant costs and drawbacks to de-

veloping and fabricating dedicated chips for specific purposes. Field Programmable

Gate Arrays, or FPGAs, offer a programmable architecture alternative to ASICs,

bringing reconfigurability at the loss of some performance [51].

3.2.2 A Basic Neural Network

With the variety in modern neural network models, it is difficult to be entirely

general. Therefore we will introduce what is frequently described as the standard

or ‘vanilla’ deep neural network model; the feed forward, fully connected neural

network [48]. In a feed forward neural network, or FFNN, layers are arranged in a

clear sequence structure, with neurons in one layer passing their outputs onto those
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in the next. In this way, neurons are only connected to those on neighbouring layers,

and there are no cycles or skips in the structure. fully connected neural network, or

FCNN, utilises only fully connected, or dense, layers, where every neuron receives the

output of all neurons in the preceding layer as inputs. A well proven design, networks

of this form are effective for tasks like tabular data classification and regression, and

are often used as component sections within more complex architectures [49].

3.2.3 Anatomy of a Neural Network

To begin, let k denote a neuron with a set of m input values xi, for 1 ∈ [1,m].

The output yk of neuron k is then given by

yk = σ

(
bk +

i=1∑

i

wkixi

)
(3.2.1)

where wki and bk are the set of weights and the bias term respectively, and σ() the

chosen activation function, if there is one. The bias term bk acts as an offset constant,

and by instead defining this as wk0 and fixing x0 = 1, the above can be simplified to

yk = σ

(
i=0∑

i

wkixi

)
. (3.2.2)

Depending on definition, the activation function is frequently considered as a

separate layer to the neurons, operating on all outputs at once. Given each neuron

in a fully connected layer receives the same inputs, this separation allows the layer

to be performed as a matrix operation;

y = σ(z), z = W · x (3.2.3)

where,
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y =




y0

y1
...

yk
...

yN




, z =




z0

z1
...

zk
...

zN




, W =




w00 w01 . . . w0i . . . w0M

w10 w11 . . . w1i . . . w1M

...
...

. . .
...

...

wk0 wk1 . . . wki . . . wkM

...
...

...
. . .

...

wN0 wN1 . . . wNi
. . . wNM




, x =




1

x1
...

xi
...

xM




(3.2.4)

for a fully connected layer of N neurons with M input values, and where zk represent

the intermediate results of the neurons.

From here it is straightforward to generalise a whole feed forward fully connected

neural network. Let C be a network of L layers, with initial inputs x and corre-

sponding output C(x) = o. Let σl and Wl be as above, with the introduction of l to

indicate layer l ∈ [0, ..., L]. Then for a given layer l receiving inputs yl, the output

yl+1 is given by,

yl+1 = σl
(
zl
)

, zl = Wl · yl (3.2.5)

where y0 = x and yL+1 = o; and with this we can finally express C recursively as,

C(x) = σL(WL · σL−1(WL−1 · ... · σl(Wl · ... · σ0(W0 · x)...)...)) (3.2.6)

for l ∈ [0, ..., L] [47,48,49].

The choice of activation function depends on a range of factors, such as the

application a network is designed for and the position of a corresponding neuron

within the network. Though it must be non-linear and differentiable, there are a

variety of potential activation functions available. Several commonly used functions

are [47]:

� The Sigmoid Function,

σ(x) =
1

1 + e−x
=

ex

1 + ex
. (3.2.7)

Mapping any real value into the (0, 1) range, the sigmoid function is a par-

ticularly useful activation function for the final layer of binary classification

networks. However, it suffers from vanishing gradients, which can slow down

learning in deep networks [52].
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� The Tanh Function,

σ(x) = tahn(x) =
ex − e−x

ex + e−x
. (3.2.8)

Similar to the sigmoid function, the tanh function maps inputs into a set range,

this time (−1, 1), but similarly suffers with vanishing gradients for extreme

input values [52].

� The Rectified Linear Unit, or ReLU,

σ(x) = max(0, x) . (3.2.9)

Both simple and less susceptible to the vanishing gradient issues, ReLU has

risen to be the most commonly used activation function. However, if it reaches

a point where it is producing zeros for too many typical inputs, it can become

stuck in a ‘dead’ state [53].

3.2.4 The Training Process

Though exact optimisation algorithms themselves vary, the optimisation process

of a neural network model, or training, is built on the concept of gradient descent;

an iterative method for finding the minimum of a function by adjusting against its

gradient.

At its core, training revolves around evaluating a model in its current state for

a given set of inputs, and adjusting the neuron weights to produce something closer

to a desired output, known as the target. However, the overall algorithm containing

the neural network structure, the nature of the desired target, and overall training

procedures can vary greatly, obfuscating this core loop. While the process is here

envisioned sequentially, with the power of modern computing it is usually performed

on batches of input-and-target examples at a time.

Loss Functions

In order to optimise objectively, it is first necessary to define how a models per-

formance should be quantified. This role is fulfilled by the loss function, sometimes

known as the error function, which provides a numerical value characterising the

difference between a model’s output and the target. The specific choice of loss func-

tion depends on the form of task being tackled; and common choices include the

Mean Square Error for regression tasks, and variation of the Cross-Entropy Loss for
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classification [54]. Referring back to Equation 3.2.6, let E(o, t) be the loss function,

where t is the target corresponding to inputs x, and as before o the output of our

network on the same. Formally, the objective of training is therefore to adjust the

neuron weightings Wl in order to minimise the loss function E(o, t).

Backpropagation

Before we can update the neuron weightings, we need to know how adjusting them

impacts the loss function. This is achieved through backpropagation; an efficient

method of calculating the loss function gradients with respect to the neuron weights

by traversing the network in reverse order, from the output to the input layer, using

the chain rule and storing intermediate variables as we go [47].

Referring back to Equation 3.2.5 for a layer l, letH be a function of zl, H = H(zl).

Then the gradient of H can be expressed as *.

∂H

∂Wl
=
∂H

∂zl
· ∂zl

∂Wl
(3.2.10)

=
∂H

∂zl
· ∂
(
Wl · yl

)

∂Wl
. (3.2.11)

As yl is the input to layer l, it is independent of Wl, so this becomes

∂H

∂Wl
=

(
∂H

∂zl

)T

yl . (3.2.12)

Now let J be a function of yl+1, J = J(yl+1). Then the gradient can be expanded

as

∂J

∂zl
=

∂J

∂yl+1
· ∂y

l+1

∂zl
(3.2.13)

=
∂J

∂yl+1
· ∂
(
σl
(
zl
))

∂zl
yl . (3.2.14)

Expressing the right hand term using the derivative of the activation function, ϕ′l,

and element-wise multiplication, which we will denoted with ⊙, this becomes

∂J

∂zl
=

∂J

∂yl+1
⊙ ϕ′l(zl)yl . (3.2.15)

*Given the complexities of calculus involving tensor style objects, throughout this chapter
assume any necessary operations such as transposition and swapping input positions are implied.
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Returning to Equation 3.2.12, we can now expand it further,

∂H

∂Wl
=

(
∂H

∂zl

)T

yl (3.2.16)

=

(
∂H

∂yl+1
⊙ ϕ′l(zl)

)T

yl . (3.2.17)

In addition, looking at the gradient with respect to the layers input,

∂H

∂yl
=
∂H

∂zl
· ∂z

l

∂yl
(3.2.18)

=
∂H

∂zl
· ∂
(
Wl · yl

)

∂yl
(3.2.19)

=
∂H

∂zl
Wl . (3.2.20)

Now let us return to our loss function E. First a forward pass is performed to

calculate the models current output o = C(x), for our given set of inputs x; retaining

relevant intermediate variables as we go for use on the way back. Then, let us begin

with the final layer, l = L. Remembering that E = E(o, t) = E(yL+1, t), and as the

target t is independent of all Wl, we can use Equation 3.2.16 to say

∂E

∂WL
=

(
∂E

∂yL+1
⊙ ϕ′l(WL · yL)

)T

· yL (3.2.21)

where ∂E
∂yL+1 depends on the specific loss function used. Progressing to l = L−1 and

the gradient with respect to WL−1,

∂E

∂WL−1
=

(
∂E

∂yL
⊙ ϕ′l(WL−1 · yL−1)

)
· yL−1 . (3.2.22)

As E depends on yL+1, we can further expand the differential term,

∂E

∂yL
=
∂E

∂zL
WL (3.2.23)

which in turn can be expanded similarly to before using Equation 3.2.15,

∂E

∂yL
=

(
∂E

∂yL+1
⊙ ϕ′L(zL)

)T

WL (3.2.24)

=

(
∂E

∂yL+1
⊙ ϕ′L(WL · yL)

)T

WL . (3.2.25)
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Given the prevalence of similar terms, let us define δl such that

δl =
∂E

∂yl+1
⊙ ϕ′l(Wl · yl) . (3.2.26)

Using this we can then simplify our calculation for the gradient with respect to WL

(Equation 3.2.21) as
∂E

∂WL
=
(
δL
)T · yL (3.2.27)

and for WL−1 as
∂E

∂WL−1
=
(
δL−1

)T · yL−1 (3.2.28)

where δL−1 relates back to δL,

δL−1 =
((
δL
)T

WL
)
⊙ ϕ′l(WL · yL) . (3.2.29)

As we can see, calculating the gradient corresponding to the second to final layer

involves repeating calculations performed for the final layer gradient, a pattern con-

tinuing down the network. Thus by working backwards through the network, inter-

mediate calculations can be reused from previous gradients, avoiding a duplication

of efforts [47,55].

Optimisers

With the results of backpropagation in hand, it is then time to adjust the neu-

ral network. Optimisation algorithms themselves, commonly known as optimisers,

describe how updates to weightings are performed, and typically feature a learning

rate hyperparameter to control the relative size of adjustments. For the work in this

thesis, the Adam algorithm [56] was used throughout. Combining techniques from a

range of different learning algorithms, the Adam algorithm has a proven record as a

robust algorithm for training deep neural networks [47].

3.2.5 Forms of Neural Network Model

While we have so far discussed feed forward and fully connected neural networks,

they are far from the only architectures available. Given the versatile nature of their

core building blocks, various forms of neural network have been developed, enabling

models that can successfully tackle a variety of challenges.

Recurrent neural networks, or RNN, operate principally on sequential data, main-

taining information form previous inputs though cyclic neuron connections. This
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makes them effective for tasks requiring progression or sequences as input, such as

time series prediction and natural language processing. However, they can struggle

with retaining long-term information, an issue Long Short-Term Memory, or LSTM,

networks seek to address [57].

Convolutional neural networks, or CNN, use convolutional layers to operate on

data with a grid-like topology. Learning spatial features, in convolutional layers

neurons take the form of a filter or kernel, which is convoluted across its input ob-

ject to produce feature maps, and are frequently combined with pooling layers for

down-sampling. Many CNN models transition to a series of fully connected layers,

flattening the feature map, enabling them to perform tasks such as image classifi-

cation. Those that retain their structure throughout, known as fully convolutional

neural networks, can operate on variable sized inputs, and are employed for tasks

such as image generation or segmentation [47,49,58].

Deep Reinforcement Learning algorithms, such as Deep Q-Learning and Actor

Critic, utilise neural network models which interact with an environment and learn

from their past actions, effectively generating their own examples to work from.

Optimising towards maximising a reward signal received from said environment,

models are designed to carry out decisions sequentially, acting based on potential

future gains rather than just immediate rewards [47,59].

Graph neural networks, or GNN, operate on relational, network-like structures,

and are discussed in detail in Chapter 8.

3.3 Machine Learning in High Energy Physics

As the awarding of the 2024 Nobel Prize in Physics attests [60], machine learn-

ing and neural networks have emerged as key tools in modern fundamental physics

research. Experimental high energy physics is no exception, and machine learn-

ing based methods are now commonplace throughout cutting edge experiments and

analyses.

Since 2010, and as part of an online trigger reconstruction sequence from 2015,

the LHCb experiment has employed neural network based classifiers to screen for

fake charged particle tracks [5,61,62,63]; and by 2011, a machine learning based method

was serving as the main trigger selections for beauty physics [64]. In neutrino experi-

ments, both the NOvA [62,65,66] and DUNE [36,67] experiments utilise CNN to categorise

neutrino interactions within the detector volume, and similar CNN approaches have

been explored for calorimetry [68,69,70,71,72]. RNN have demonstrated success at beauty
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jet identification [73,74] and recently ATLAS and CMS have been exploring GNN and

attention based transformers for the task [75,76,77].

In analyses, Boosted Decision Trees have largely replaced traditional cut based

methods for signal selection and background discrimination [36]. Over a decade ago,

the CMS experiment employed Boosted Decision Trees to identify and categorize

potential diphoton Higgs decay particles to make their first solo observation of the

Higgs [78], while ATLAS’s analysis leveraged neural networks [79]. The first evidence of

beauty to muon anti-muon decays, carried out by CMS and LHCb, utilised Boosted

Decision Trees [80], as did the first solo observation by LHCb [62,81], and the first ob-

servation of pentaquarks [82,83]

Given the vast quantities of simulated data produced by researchers, there is

growing interest in machine learning for fast and ultra-fast simulation; reducing com-

puting needs through approximated simulation methods such as resampling methods

or parametrisation of detector response. The LHCb experiment has implemented a

framework that includes machine learning based fast-simulation as part of its simu-

lation package [23,84,85]. Meanwhile the ATLAS collaboration has explored the use of

variational autoencoders and generative adversarial networks for simulating particle

showers within electromagnetic calorimeters [86], and CMS has investigated sample

re-weighting to generate samples for variant models without needing to re-simulate

detector responses [77,87,88].
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Part II

Proton Computed Tomography
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Chapter 4

Hadron Therapy and Proton

Computed Tomography

The work presented here in Part II has previously been published as

T. Ackernley, G. Casse, and M. Cristoforetti. Proton path reconstruc-

tion for proton computed tomography using neural networks. Physics

in Medicine & Biology, 66(7):075015, apr 2021. doi: 10.1088/1361-

6560/abf00f. [3]

©Institute of Physics and Engineering in Medicine. Reproduced with

permission. All rights reserved.

The following chapters therefore include material reproduced, paraphrased and

expanded on from said publication, including text and figures. Accompanying decla-

rations regarding the paper can be found in Appendix A. The full accepted manuscript

can be found at https://arxiv.org/abs/2010.00427, and for completeness has been

reproduced in Appendix D.

4.1 Radiotherapy

Before the century is out, cancer is predicted to surpass heart disease as the

leading cause of premature death throughout much of the world [89,90]. It is therefore

little wonder that cancer therapy has a history, and present, intertwined with cutting

edge scientific and technological development.

The use of radiation for cancer therapy has come a long way since the first exper-

imental treatments of 1896 [91,92]. Now, radiation therapy, or radiotherapy, is one of
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the principal treatment modalities, alongside chemotherapy and surgical resection,

employed by medical professionals [93]; with over a fifth of cancer patients in Eng-

land [94], and up to half in the USA [95] receiving radiation therapy in some form. Most

commonly this takes the form of external beam therapy, in which a beam of ionising

radiation is used to attack a targeted tumour [42,93]. Typically a megavoltage photon

beam, or occasionally an electron beam, generated by linear particle accelerator is

used [42,96].

4.1.1 Biological Impact

On passage through biological tissue, ionising radiation imparts energy as it

slows down, damaging the DNA within cells; with sufficient damage leading to cell

death [42,93]. While this is the motivation as far as cancerous tissue is concerned, ra-

diation does not discriminate between healthy and tumour cells. A photon beam im-

parts energy throughout its whole path, though this does not take place uniformly [42].

Different particles have their own characteristic dosage distribution patterns, several

of which are illustrated in Figure 4.1.

Not all tissues respond the same to this radiation, and sensitivity largely derives

from the speed at which cells divide and repair themselves, along with the specific

radiation and dosage level used [42,93]. Some tissues are referred to as late reacting,

able to an extent to repair themselves to compensate for damage at low dosages;

making them less susceptible to damage when the same combined dose is suitably

spread out. Exploiting that many forms of cancer are conversely fast to divide

and poor at repair, modern treatment regimes are commonly broken into several

smaller instalments, called fractions, delivered in successive instalments over several

weeks [42,93,95]. Unfortunately, some cancers are late reacting, limiting effectiveness in

such cases [42].

4.1.2 Treatment Planning

Avoiding collateral damage to healthy tissues is the principal limiting factor

in radiotherapy, and many developments revolve around this balancing act [91,92,93].

Imaging plays a crucial role in modern high precision radiotherapy, with advanced

conformal techniques naturally requiring an intimate knowledge of patient and tu-

mour in order to fine-tune delivery [97]. For this reason, many modern clinical linear

accelerators now possess integrated x-ray CT (computed tomography) imaging or ra-

diography capabilities [95,97]. Heralded as a major step forwards, the introduction of

30



Fig. 1. 
(a) Representative percent depth dose curves for photon (blue, ~6 MV), electron (yellow, 

~18 MeV), proton (green, ~145 MeV), and carbon ion (red, ~300 MeV/u) beams in water. 

(b) Representative depth dose curve for a proton spread out Bragg peak (black) with the 

weighted monoenergetic Bragg peaks (multicolored) used to generate the spread out Bragg 

peak.
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Figure 4.1: A representation of the relative dose depth distributions in
water for various particle delivery methods used, or proposed for use, in
clinical radiotherapy treatment. Based on particle beams of photons at
∼ 6 MV, electrons at ∼ 18 MeV, protons at ∼ 145 MeV, and carbon ions
at ∼ 300 MeV/u. Reproduced from [100].

intensity-modulated radiation therapy in the 1990s allows tailoring beam to closely

match complex targets [95,98]. Volumetric methods such as stereotactic radiotherapy

and its variants leverage beams from different angles, overlapping at the target, to

reduce exposure of any one area of healthy tissue [95,99], while recent advancements in

4D imaging and high precision regimes can even account for the motion of internal

organs [91,95].

4.2 Hadron Therapy

4.2.1 Proton Therapy

Recent decades have seen considerable interest in the potential of hadron based

therapy. In particular, it would be hard to review developments in cancer care

without mention of the enormous growth of proton therapy. Though it has seen

increasing adoption in the last few years, the case for proton therapy was proposed

as far back as 1945 [101], with the first patients treated in the 1950s [102] and clinical

facilities since 1990 [92].

As illustrated in Figure 4.1, photons impart the largest dose close to the surface,

with a gradual fall off as they travel deeper. Electrons have similar behaviour, but
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with a sharper fall off making them preferable for tumours within a few centimetres

of the surface [42]. In contrast, protons impart more energy at lower speeds, and lose

velocity as they travel within matter. This results in focusing the largest dose de-

positation into a narrow peak, known as the Bragg peak, near the end of their path.

Exploiting this behaviour, protons can be used to target a specific region with com-

paratively little or no exposure for other tissues. Proton therapy is therefore ideally

suited for tumours near sensitive organs or for young patients, where sparing other

tissues is paramount [92,93,98,103]. Overall approaches such as stereotactic radiother-

apy [104] and image guided therapy [105] are equally applicable; though the differences

in dose deposition and scattering render many specific techniques and algorithms

incompatible [96,105].

4.2.2 Practice

Modern proton therapy is not, however, suitable or advantageous in all cases,

and not a straight replacement for regular photon radiotherapy [96,98]. Clinical pro-

ton beam production is a costly enterprise requiring expensive specialist equipment,

making facilities a considerable investment and effective treatment costs high. Proton

therapy is therefore typically used sparingly, reserved for when it is proven advan-

tageous compared to other available approaches. However, high costs and the limi-

tations of laboratory apparatus also leads to limited clinical assessments with which

to make an informed decision on if and when proton therapy is worthwhile [91,96,103].

Clinical proton beam facilities typically employ a common particle accelerator to

provide particles to several treatment rooms [1,96]. Many such accelerators take the

form of a synchrotron, while others use isochronous cyclotrons, and are commonly ca-

pable of achieving maximum energies around 230-250 MeV [106]. More recently, single-

room systems have been demonstrated utilising compact synchrocyclotrons [107].

4.2.3 Other Heavy Ions

Exploration into the potential of heavy ions has not been limited to protons,

though none have seen the same level of adoption so far. Carbon ions have shown

significant promise, potentially more so, for their similar despoitatiation properties

as protons, but are handicapped by the exceptional equipment costs involved [91,95].

In a different direction, the use of neutrons for radioresistant cancers has been in-

vestigated, but suffers from unresolved issues involving damage to other tissues [91].
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4.2.4 Treatment Planning

Just as with photon radiotherapy, treatment planning is crucial. Unlocking the

full potential of protons’ dosimetry properties relies on being able to align the Bragg

peak with a high degree of precision; all the more so given proton therapy is frequently

employed when vulnerable tissue is nearby. Accurately calibrating proton ranges

relies on a detailed knowledge of the relative stopping power, or RSP, of the materials

it will traverse; where the RSP is the ratio of the stopping power of said material to

that of water.

Current practice is to construct the RSP map using x-ray CT density measure-

ments, which are often expressed in the form of Hounsfield Units, or HU,

HU =

(
(µmat − µwat)

(µwat)

)
× 1000 , (4.2.1)

where µwat and µmat are the measured linear attenuation coefficients of water and

a given respectively [108]. The linear attenuation coefficient describes the fraction

of photons attenuated over a given distance, and is usually expressed in cm−1 [109].

Standard measurements are often given per unit density for a given material, such

as µwat/ρ = 7.072 × 10−2 cm2g−1 for 1 MeV photons in water [110].

Unfortunately, differences in how x-rays and protons interact with matter in-

troduces complications to this approach. Deriving RSP from Hounsfield Unit mea-

surements leverages that both proton stopping power and photon attenuation coef-

ficients are each approximately, though not exactly, proportional to electron density

in order to find the relationship between them [108]. Reliance on these approximate

relationships gives rise to conversion errors in the range of 2-5% [97], though recent

developments suggest this can be further reduced to 0.1-2.1% through measurements

made at duel energies [111].

4.3 Proton Computed Tomography

Envisioned as a method of imaging around the same time as the now ubiquitous

x-ray CT [112], proton computed tomography, or pCT*, offers a potential way to

circumvent the issue through measuring proton RSP directly, removing conversion

uncertainties by using the same particle for both planning and treatment [113]. But

while pCT has seen renewed interest with the expansion of proton therapy, protons

*In some literature pCT is used to denote particle computed tomography, encompassing the
use of other particles besides protons.
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behaviour in matter presents its own challenges.

4.3.1 The Need for Proton Paths

Determining RSP using pCT depends on knowledge of protons trajectories. For

a given proton i, the line integral of the RSP is related to the energy loss using

WEPLi ≡
∫

Γi

RSP(x)dx ≈
∫ Ein

i

Eout
i

dE

Swater(E)
(4.3.1)

where Γi ⊂ R3 is the proton path, RSP(x) is the stopping power relative to water

at position x ∈ R3, Ein
i and Eout

i are the entrance and exit proton energies, and

Swater(E) is the stopping power of water for energy E. This integral is the Water

Equivalent Path Length (WEPL). Starting from this equation, the pCT reconstruc-

tion problem can be mapped to that of reconstructing each individual protons path,

combined with the calculation of WEPL (through the right side of the equation), to

recover the RSP map. The better the determination of the proton trajectories, the

better the RSP calculation will be.

4.3.2 Transport Through Matter

In order to achieve spatial resolution comparable to typical medical x-ray CT

scanners, proton trajectories need to be measured individually [1,114], and unlike in

x-ray CT cannot be adequately approximated using straight paths [106]. Protons expe-

rience significant small angle scattering while passing through a medium, resulting in

non-trivial curved paths. Most interactions occur from multiple coulomb scattering

from medium nuclei, more than 106 per cm [115], though strong nuclear interactions

also contribute in a significant number of proton trajectories [106,116].

At 200 MeV, nuclear interactions account for less than 1% compared to ion-

ization interactions, and in our scope can largely be treated as a correction to the

electromagnetic processes [115]. The resulting net scattering and displacement distri-

butions are approximately Gaussian, with hard scattering interactions contributing

non-Gaussian tails [116].

For a given proton travelling through a medium of radiation length X0, the root-

mean-square of the Gaussian core of several displacement distributions, projected

into a plane, can be approximately given as

θrms
plane = θ0 , ψrms

plane =
1√
3
θ0 , yrms

plane =
x√
3
θ0 , srms

plane =
1

4
√

3
θ0
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16 34. Passage of Particles Through Matter

the projected angular distribution, with an rms width given by Lynch & Dahl [40]:

θ0 = 13.6 MeV
βcp

z

√
x

X0

[
1 + 0.088 log10( x z

2

X0β2 )
]

= 13.6 MeV
βcp

z

√
x

X0

[
1 + 0.038 ln( x z

2

X0β2 )
]

(34.16)

Here p, βc, and z are the momentum, speed, and charge number of the incident particle, and x/X0 is
the thickness of the scattering medium in radiation lengths (defined below). This takes into account
the p and z dependence quite well at small Z, but for large Z and small x the β-dependence is not
well represented. Further improvements are discussed in Ref. [40].

Eq. (34.16) describes scattering from a single material, while the usual problem involves the
multiple scattering of a particle traversing many different layers and mixtures. Since it is from a fit
to a Molière distribution, it is incorrect to add the individual θ0 contributions in quadrature; the
result is systematically too small. It is much more accurate to apply Eq. (34.16) once, after finding
x and X0 for the combined scatterer.

x

splane

yplane
Ψplane

θplane

x /2

Figure 34.10: Quantities used to describe multiple Coulomb scattering. The particle is incident
in the plane of the figure.

The nonprojected (space) and projected (plane) angular distributions are given approximately
by [35]

1
2π θ2

0
exp


−

θ2
space
2θ2

0


 dΩ, (34.17)

1√
2π θ0

exp

−

θ2
plane
2θ2

0


 dθplane, (34.18)

where θ is the deflection angle. In this approximation, θ2
space ≈ (θ2

plane,x + θ2
plane,y), where the x

and y axes are orthogonal to the direction of motion, and dΩ ≈ dθplane,x dθplane,y. Deflections into
θplane,x and θplane,y are independent and identically distributed. Fig. 34.10 shows these and other
quantities sometimes used to describe multiple Coulomb scattering. They are

ψ rms
plane = 1√

3
θ rms

plane = 1√
3
θ0, (34.19)

11th August, 2022

Figure 4.2: An example of a particle trajectory subject to multiple
coulomb scattering, with various properties used to describe said tra-
jectories labelled. The particles trajectory is aligned in the plane of the
page. Reproduced from [116].

where

θ0 =
13.6 MeV

βcp

√
x

X0

[
1 + 0.38 ln

(√
xz2

X0β2

)]
, (4.3.2)

in which x denotes depth travelled parallel to x̂plane, and p and βc the particles

momentum and speed respectively [116]. θplane denotes the angular displacement of

direction of travel, ψplane the angular displacement in position, yplane the displacement

perpendicular to x̂plane, and splane the displacement from the equivalent straight line

path at half way in x̂plane; these quantities are illustrated in Figure 4.2.

From this we can see that proton paths are substantially dependent on the ma-

terial traversed, making them sensitive to anatomical variations within a patient;

reinforcing the importance of the RSP map. This has the added effect of making

photon safety margin practices unsuitable for working with protons [96]. It also shows

that scattering can be reduced by using higher energy protons. However doing so

potentially comes at the cost of reduced WEPL resolution, so an appropriate balance

needs to be struck [106].

4.3.3 The Most Likely Path Formalism

The need for individual particle tracks excludes direct reuse of many well-developed

image reconstruction methods developed in x-ray CT [106,117]. Iterative algebraic

methods, such as the algebraic reconstruction technique (ART), have been proposed

as plausible pCT image reconstruction methods [106,118], but the computational cost
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of these algorithms is considerably high. More efficient techniques are direct recon-

struction methods, often following on from x-ray CT methods, whose development

is an active area of research, as discussed in [119].

While scattering remains an inherently probabilistic process, precluding the exact

prediction of any single track, the Most Likely Path formalism, MLP, is well estab-

lished as the most statistically precise method to account for MCS processes [120,121,122].

Since its introduction in 1994 [123], the MLP formalism as presented in [120] has un-

dergone various refinements for use in different application scenarios [122,124,125,126,127].

In addition to the entry and exit positions of the beam, the MLP algorithm utilises

the angle between the direction of travel and the perpendicular to the phantom

surface to significantly improve the prediction [123]. Though it has been shown to

significantly reduce spatial resolution, excluding entry measurements would simplify

the challenge of apparatus design and achieving an adequate resolution may still be

possible [1,128].

For a proton beam located at the origin and directed along the z direction, inci-

dent into a medium, at any given depth along z a proton’s path can be characterised

by the two coordinates x and y and the two angles θ and ϕ relative to the z-axis.

Proton scattering can be considered independent along the x and y axis and the

MLP can be expressed independently for the two 2D parameter vectors x = (x, θ)

and y = (y, ϕ).

Considering x for example, from [120] the MLP of protons in a homogeneous

medium can be expressed, in a Gaussian approximation of the generalised Fermi-

Eyeges theory of Multiple Coulomb Scattering, as

xmlp(z) = (Σ−1
1 +RT

1 Σ−1
2 R1)

−1(Σ−1
1 R0 xin +RT

1 Σ−1
2 xout), (4.3.3)

where xin and xout are the relevant entry and exit coordinates in the two 2D param-

eter vectors as mentioned above, R0 and R1 are the change of basis for small-angle

rotation matrices

R0 =


 1 z − zin

0 1


 , R1 =


 1 zout − z

0 1


 (4.3.4)

and Σ1 and Σ2 are scattering matrices describing the variances and covariances of x
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and θ between zin and z, for Σ1, or z and zout, for Σ2,

Σ1 =


 σ2

x1
σ2
x1θ1

σ2
x1θ1

σ2
θ1


 , Σ2 =


 σ2

x2
σ2
x2θ2

σ2
x2θ2

σ2
θ2


 . (4.3.5)

The above components, called scattering moments, are given for Σ1 by the integrals

σ2
x1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

(z − u)2

β2(u)p2(u)

du

X0

(4.3.6)

σ2
θ1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

1

β2(u)p2(u)

du

X0

(4.3.7)

σ2
x1θ1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

(z − u)

β2(u)p2(u)

du

X0

, (4.3.8)

where u is z between zin and the the fixed value of z for which we are calculating

x. The equivalent scattering moments for Σ2 are found by replacing zin with z

and z with zout in the equations above. ymlp(z) follows identically, with variables

corresponding to xin and xout replaced by yin and yout as necessary.

However, nuclear interactions still have a non negligible role in a significant num-

ber of proton trajectories [106]. Recommended practice is therefore to reduce the

events influenced by nuclear interactions or large angle MCS through a 3σ cut on

both the difference in energy and the difference in the direction of travel angle be-

tween entry and exit [120]. Unfortunately, this results in a reduction of the protons

available for the pCT image reconstruction and in an increase of the time needed to

compute the relative stopping power map for proton therapy treatment planning.

4.3.4 Computational Cost

The need for measurement and prediction of individual particle tracks brings

with it a considerable computational burden, one which was beyond the scope of vi-

able computing technology only a few decades ago [1,2]. Exploring ways to minimise

this issue is an area of ongoing research. In [129] and [130], a computer optimised

implementation for use on a GPU is outlined, achieving a notable speed up at high

proton density. Others have taken the approach of devising alternative, more com-

putationally efficient, approximations in place of the MLP. The use of cubic splines

in [118], further developed in [122], has been shown to be adequate for pre treatment

verification purposes [131]. In [126], polynomial approximations lead to a reduction in

the number of floating point operations in calculations, while [132] fitted cubic Bézier
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curve tracks with a Molière maximum likelihood method, demonstrating advantages

particularly for longer proton paths.

Machine learning has shown great potential for estimating complex processes effi-

ciently, and the implementation discussed in Chapters 5 to 7 has as already indicated

been published as [3]. Subsequently, in [133] a wider study by a different group into

machine learning for pCT proton trajectories has since been published. Examining

both feed forward neural networks and a boosted decision tree method in a more

realistic setup, their research similarly showed benefits to computational time and

accuracy. Further discussion is given in Section 7.1.

Beyond direct prediction of proton paths, machine learning has been applied to

pCT in other ways. [134] introduces a range verification measure to improve pCT

quality control, utilising a neural network to predict Bragg peak depth. Others have

looked to convolutional neural network models to improve the quality of CT im-

ages more directly. [135] looked to identify incorrectly reconstructed and secondary

production tracks, while [136] used a Bayesian CNN for image correction with ac-

companying uncertainty predictions. An alternative approach in [137] introduced a

machine learning-driven image denoising method designed around preserving WEPL

values that may be distorted during traditional image correction.

4.3.5 Equipment

Equipment and running costs represent a significant hurdle to the clinical imple-

mentation of pCT. In order to share an already necessary particle accelerator, pCT

is generally envisioned as an integrated part of proton therapy installations. Unlike

for therapy itself, scanning requires protons to completely pass through a target and

out the other side, and therefore higher energies for the same regions of interest are

required [1]. Clinical accelerators for therapy use can typically achieve energies in

the 230 to 250 MeV range [1]. This does introduce some limitations; it is typically

adequate for the head or chest region with a suitably positioned patient, but not, for

example, for scanning adult hips at all angles [1].

With the significant cost of beam time, necessitating access for both planning and

therapy itself is a difficult proposition. The ideal achievement would be for on-site

treatment planning immediately before treatment, with the patient remaining in the

room throughout [1]. This would not only reduce overall proton therapy costs, but

removing the need for a separate treatment planning session also improves the patient

experience [1]. While a naturally attractive proposition, and potentially in the realm

of possibility [1], a currently more realistic scenario maybe optimising calibration of
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pCT scan time and correspondingly increasing the patient’s 
radiological dose. And if a range detector is used to measure 
the WEPL, then it is crucial for each of the 60 or more layers 
to be close to 100% efficient, in order to identify the proton’s 
stopping point reliably, although achieving that result is aided 
by the increased ionization inherent in the Bragg peak. High 
efficiency should be a high priority design goal.

Silicon strip detectors and some detectors that employ gas 
multiplication of ionization can readily yield particle detection 
efficiencies well above 99% with insignificant noise levels, at 
least until limited at high rates by signal pileup. Solid-state 
pixel detectors can do as well or better, at least in the case 
of those based on deeply depleted silicon diodes, and are far 
less susceptible to pileup. Scintillating fibers, while popular, 
have typically resulted in tracking systems with comparatively 
marginal signal-to-noise performance, even when employing 
relatively large fibers (e.g. 1 mm diameter) and some redun-
dancy to cover gaps between fibers. As shown in more detail 
in section 5, instruments based on scintillating fiber tracking 
for which efficiency figures have been published yielded low 
detection efficiencies compared with their silicon-strip based 
counterparts. However, most have been intended only for 
proton radiography, for which high efficiency is of reduced 
importance compared to pCT.

Other factors beyond detector-layer efficiency result in sig-
nificant losses of events. Nuclear interactions are common, 
occurring in 20% or more of proton events, depending on how 
much material is traversed. Those events must be eliminated 
by data filters to the extent possible, as they contribute con-
fusion or noise to the final images. Similarly, hard Coulomb 
scattering events should be filtered out, as they do not fit into 
the MLP framework used to analyze the data. Typically, the 
filters rely on binning proton events that follow similar tra-
jectories to identify and cut out tails in the WEPL and angle 
distributions. Overall, at most half of the events from protons 
that pass through the regions of interest end up being useful 
for image reconstruction, and that fraction can easily be far 
smaller if care is not taken with the detector efficiency.

The fraction used of all protons that trigger the detector 
system is typically much smaller, due to the simple fact that 
many miss the phantom entirely. Since human patients have 
not yet been involved in any of the tests of the systems dis-
cussed here, collaborations have not yet worried very much 
about this. A clinical system, however, will have to pay close 
attention to how well the beam conforms to the region of the 
patient being imaged, in order not to deliver unnecessary 
doses. Use of collimators in the beam nozzle will probably 
result in too many scattered, off-momentum protons that 
would confuse the image, so appropriate programming of a 
scanned beam will likely be the best choice.

3.3.  WEPL resolution

Although spatial resolution may have the greatest impact 
on how the image appears to the eye, WEPL resolution and 
accuracy in a pCT image are more important for the purpose 
of treatment planning. The WEPL resolution depends not 
only on the design and performance of the detector system 

responsible for measuring residual energy or range, but also 
on the natural fluctuations in energy loss (‘range straggling’) 
in any degrader placed upstream of the detector, in the track-
ing detector, in the phantom and, for the case of a range detec-
tor, in the WEPL detector itself. Quality assurance assessment 
of treatment delivery is expressed in terms of of a percent dose 
difference (∆D)) and a ‘distance to agreement’ (DTA) in mm; 
recent work advocates for a goal of ∆D/DTA = 1%/1 mm 
[47]. Therefore, to achieve the goal of improved treatment 
planning, we would like an RSP resolution and accuracy of 
one percent, to yield a range prediction at a typical depth of 
100 mm with an error no worse than 1 mm [20].

A calorimeter can measure the proton residual energy 
directly, but because its resolution is generally proportional 
to the energy deposition, it tends to achieve poor resolution 
on the WEPL when it is short, since in that case a large meas-
ured energy is subtracted from the known beam energy to 
yield a small result for the energy lost in the phantom. The 
most straightforward WEPL detector is a range detector, 
which detects where the proton stops—typically by means of 
many thin sensor layers interleaved with absorber material. 
Assuming that the sensors can be made sufficiently thin and 
numerous, then the WEPL resolution is independent of WEPL 

Figure 2.  Schematic of a typical contemporary pCT scanner 
designed to measure individual proton histories.

Figure 3.  The Monte Carlo predicted deviation of the most likely path 
(MLP) of a proton from its actual trajectory, for 200 MeV protons 
passing through 200 mm of water. From [76] John Wiley & Sons.  
© 2008 American Association of Physicists in Medicine. Most large 
deviations due to simulated nuclear interactions and hard scattering 
were easily eliminated by cutting out events with large exit angles, 
leaving events affected mainly by multiple Coulomb scattering.

Rep. Prog. Phys. 81 (2018) 016701

Figure 4.3: An illustration outlining the design of a typical pCT scanner.
Reproduced from [106].

an existing treatment plan for a patient on the day [1,138], or reserving its use for only

special cases [1].

As it stands, various pCT systems have been proposed, and several prototype

pCT systems now exist. However, most current prototypes have been built as re-

search instruments, and are inappropriate for clinical use in their current form [1]. A

review of current pCT detector design and prototypes can be found in [1].

At its core, a pCT scanner is a particle detector. It is no surprise therefore

that many of the technologies employed are those developed and used in elementary

particle physics research detectors [1], even directly utilising components developed

for LHC experiments [139].

An outline of a typical pCT scanner proposal can be found in Figure 4.3 [106]. To

build up a full image, the centrally-placed target, or the apparatus as a whole, must

be rotated in order to perform scans from different angles [106]. Tracking detectors

located before and after the target measure entry and exit position, and in order to

ascertain particles’ direction of travel, double tracking planes are required [1]. Designs

commonly employ silicon-strip detectors for this purpose [140,141], while scintillating

fibre technology [142] and monolithic active pixel sensors have also been used [139], and

micro pattern gas detectors may be suitable [1].

As we saw in Equation 4.3.1, calculating the WEPL relies on the energy loss in

transit. As knowledge of the accelerator beam production can be used to deduce the

incoming kinetic energy, energy measurement is only necessary after the target. Some

designs achieve this using calorimeters [140,142], which stop the particle and produce a

signal related to the energy imparted. Others take a different approach, measuring

the range penetrated in some medium to infer the WEPL [141], while using time of

flight measurements has also been proposed [143].

39



Chapter 5

Aims and Method

5.1 Aims

Neural networks are capable of approximating complex tasks in a computationally

efficient manner, aligning with the desire for a faster reconstruction of proton tracks

for pCT seen from existing studies [118,122,126]. Our aim was therefore, in the context

of pCT, to develop a proof-of-concept approach for the estimation of the proton

paths based on Machine Learning, through utilisation of a Deep Neural Network, in

order to explore the potential of such an approach to match the performance of MLP

formalism in a shorter execution time. This model became the Proton Path Neural

Network, or PPNN.

Equally, neural networks are not bound to following only predetermined physical

models. Predicting proton paths is limited by the statistical nature of scattering,

and as discussed the MLP formalism represents the most accurate estimate for Mul-

tiple Coulomb Scattering. A neural network however has the potential for increased

accuracy from a capacity to account for contributions beyond Multiple Coulomb

Scattering, and the better the determination of the proton trajectories, the better

the RSP calculation will be. Additionally, removing tracks with a heavy non Mul-

tiple Coulomb Scattering influence is the motivator for applying 3σ data cuts, thus

reducing the need for these cuts may allow for more usable data.

5.2 Monte Carlo Simulation

Both model training and analysis were conducted using Monte Carlo simula-

tion data generated using GATE v9.0 [144], a framework built upon the widely used

Geant4 10.6 Monte Carlo simulation toolkit [145]. Simulations incorporating only
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Figure 5.1: Illustration of the Monte Carlo geometry used in this study.
3D representation of the phantom space (a) and 2D projection on the x-z
plane for the water (b) and inhomogeneous phantom (c). Trajectories are
only scored and monitored within the phantom volume itself. Note that
for convenience we redefine our coordinate axis such that the initial point
of each trajectory is located at the origin. Reproduced from [3].

electromagnetic processes were performed using the emstandard physics list. Nu-

clear interactions, among a full regime of physics processes, were modelled using the

QGSP BIC physics list. Details can be found in [146] and [147] respectively. In

the discussion of the results, the choice of physics environment is indicated for each

simulation.

Our principal model consists of a homogeneous sheet of water centred on the

origin of a standard x-y-z coordinate system with a side length of 20 cm in the

z-axis direction and arbitrarily large extents in x and y. Phantoms of this kind

are widely used as a baseline in existing literature, such as in [120], [126] and [127].

Monoenergetic protons are simulated through the phantom, originating at the central

point of the phantom’s z = −10 cm face, such that their initial direction of travel are

orientated inwards and perpendicular to the face and parallel to the positive z-axis

direction. For convenience in the following we redefine our coordinate axis such that

the initial point of any trajectory is located at the origin, with particles initialised

at a depth of 0 cm and extending in range to a depth of 20 cm. This arrangement

is illustrated in Figure 5.1(a) and 5.1(b). While the situation as we are modelling it

is not a perfect recreation of the real world environment, it is sufficient for assessing

the capability of a neural network at path prediction in general terms.

The procedure as stated was repeated using an inhomogeneous phantom com-

prising 2 cm of water, 7 cm of skull, 2 cm of cortical-bone, 7 cm of skull, and 2 cm of
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water. For the purposes of this simulation, cortical-bone was defined using material

data found in [148]. This composition was chosen based on a similar inhomoge-

neous phantom used in [127]. While it is rare that such a large concentration of

high density material would be encountered in a clinical setting [127], by using a more

extreme inhomogeneous phantom any performance impact will be more distinctive

in comparison.

5.3 Datasets

Datasets were produced using the aforementioned Monte Carlo simulations as

described in Section 5.2. Each dataset consisted of generating an initial 106 simu-

lated events, however only trajectories which traversed the full phantom depth were

retained, reducing the number of events ultimately used. Initial datasets for the

homogenous phantom were generated using a beam energy of 200MeV, and in order

to examine the impact of scattering due to nuclear interactions, separate datasets

were produced using the emstandard or QGSP BIC physics lists.

Due to the increased stopping power of the inhomogeneous phantom, to ensure

that a large fraction of impinging protons successfully traverse that phantom’s full

length, datasets for the inhomogeneous phantoms were generated using a beam en-

ergy of 230 MeV. Additional datasets for the homogeneous phantom were also gener-

ated at 230 MeV. All 230 MeV simulations were carried out under the QGSP BIC

physics list. For the inhomogeneous phantom at 230 MeV, this typically led to data

sets in excess of 700, 000 events. Principally, examination of behaviour with the ho-

mogeneous phantom uses 200 MeV proton datasets, with the homogenous phantom

230 MeV protons datasets used for comparison with the inhomogeneous phantom.

Each proton trajectory was quantified as a series of spatial coordinates evenly

distributed at 0.1 cm intervals, including both phantom faces. This granularity was

chosen to match that used in [122], [126] and [127]. A total of 201 coordinate points

represent a complete path through the phantom, consisting of 603 variables. The

angle on entry and exit to the z-axis direction in both x and y planes was also

recorded.

5.4 The Proton Path Neural Network

The Proton Path Neural Network, or PPNN, is a fully connected neural network

based model designed to predict a proton trajectory in the form of a series of spacial
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Figure 5.2: PPNN architecture. The Proton Path Neural Network PPNN
consists of four fully connected layers with 24, 48, 96, 199 nodes and a
Relu activation function after each of the first three layers. The current
number of variables present at various points is additionally indicated in
brackets. A separate instance of same architecture was used for the x and
y planes. Reproduced from [3].

points at 0.1 cm intervals, matching the representation described in Section 5.3, using

variables similar to those employed by MLP calculations. As the z depth coordinates

are therefore a fixed set of values shared by all trajectories, for predicting a track

only the x and y variables need be considered. Similarly, the initial and final points

of each trajectory are known for each track and so likewise neglected. Thus a track

prediction consists of two sets of 199 points each, for a total of 398 variables per

track.

As with the MLP, trajectories along the x and y directions are reconstructed

independently by separate instances of the same network. The input features of the

network are quantities which can be recorded by a modern pCT scanning apparatus;

∆x = (xout − xin) and ∆θ = (θout − θin) in the x direction and equivalently ∆y =

(yout−yin), ∆ϕ = (ϕout−ϕin) along y. This data is passed through 4 fully connected

(or dense) layers of 24, 48, 96 and 199 nodes respectively. As activation functions,

we employed a Rectified Linear Unit (ReLU) after each of the first 3 layers. A

representation of the network architecture is presented in Figure 5.2. PPNN is

written in python using the PyTorch (pytorch.org) framework.

Training and validation of the model was performed using a dataset of more

than 1, 600, 000 trajectories (1, 400, 000 for the inhomogeneous phantom), 800, 000

(700, 000) along each direction, as described in Section 5.3. Two separate instances
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of the network were trained using datasets corresponding to different simulations;

the first used 200 MeV protons and the homogeneous phantom, the second 230 MeV

protons and the inhomogeneous phantom. Both employed the full QGSP BIC

physics list. Unless otherwise stated, the relevant model was used when reconstruct-

ing datasets generated with the corresponding proton energy.

80% of the tracks are used for the training and the remaining 20% reserved

for validation. Optimisation of the network weights is performed using the Adam

algorithm [56] with a learning rate fixed at 10−5. For the loss, the Mean Squared Error

(MSE) is used,

MSE =
1

M

M∑

m

1

N

N∑

n

(umn − ûmn)2, (5.4.1)

where M is the number of samples, N = 199 is the number of points in each proton

path, u the predicted path and û the true trajectory. At a batch size of 32 samples

per batch, one epoch (one cycle through the full training dataset) running on Tesla

K80 GPU requires approximately 80 seconds on a Standard NC6 Microsoft Azure

machine.

The loss history of the model trained on 200 MeV protons, on the homogeneous

phantom, with the QGSP BIC physics list, can be seen in Figure 5.3, in which after

around 400 epochs the loss flattens both for the training and validation datasets with

the ratio between the two histories almost constant; suggesting that the network is

not overfitting to the examples present in the training dataset. Ultimately this model

was trained for 1000 epochs.

5.5 Measurements and Analysis

5.5.1 Most Likely Path Implementation

For comparisons to the MLP formalism, we implemented the highly optimized

version of MLP presented in [130], in which 90% of the MLP is precalculated and the

number of operations required is minimised. We ported the code in python using

the vectorisation capabilities of the NumPy (numpy.org) library to parallelize the

execution on the number of protons. Assuming a homogeneous phantom composed

of water, we use X0 = 36.1 cm for the radiation length of the material and E0 =

13.6 MeV. The momentum velocity ratio 1/β2(u)p2(u) is approximated with a fifth-

order polynomial following [120]. This quantity is specific to the proton energy used;

implementation for other energies requires its recalculation for accurate performance.
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Figure 5.3: Loss history during network training at each epoch, for both
the training and validation. This corresponds to model trained using
200 MeV protons, with the homogeneous phantom, using theQGSP BIC
physics list. Reproduced from [3].

For protons at 200 MeV, the coefficient values given in [120] were used. For protons at

230 MeV, the coefficient values were calculated following the method outlined in [120]

for the 200 MeV values. Monoenergetic protons initially at the required energy were

incident on a simulated 20 cm deep water sample. The fifth-order polynomial was

fitted to distribution of the mean value of 1/β2(u)p2(u) recorded at 5 mm intervals

throughout. As with the PPNN model, unless otherwise stated the corresponding

momentum velocity coefficients were used when reconstructing each dataset.

5.5.2 Root Mean Squared Error

“The (Square) Root of the Mean Squared Error, or RMSE, is commonly adopted

in literature evaluating the performance of the MLP reconstruction procedure, and

was adopted here as the principal means to compare performance between PPNN
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and the MLP formalism. The RMSE is calculated as

RMSE =
√

MSE (5.5.1)

where the MSE is as given in Equation 5.4.1. To avoid overfitting, all analysis

procedures were carried out on datasets generated independently from those used

in the PPNN training and validation process, or the MLP momentum velocity ratio

calibrations.

5.5.3 Execution Time

To measure execution time, the two algorithms were run on all trajectories of a

test dataset. This procedure was repeated 10 times, with unique batch combinations

in each instance, to produce a mean value. Both PPNN and the MLP formalism

were executed on the CPU of a Standard NC6 Microsoft Azure machine.
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Chapter 6

Results and Analysis

6.1 Homogenous Phantom

6.1.1 Root Mean Squared Error

For the homogeneous phantom, the RMSE for estimates of the paths, using

PPNN or MLP, with the emstandard and 200 MeV protons dataset are shown

in Figure 6.1(a). Even without the 3σ cuts suggested in [120] we can see that the

difference between the two predictions is quite small. This difference disappears

(the two lines corresponding to the MLP and PPNN case are barely distinguishable)

upon applying said 3σ cut to the angles and energy; under which here only ∼ 1% of

the paths are omitted. This result clearly shows that the PPNN prediction is fully

consistent with the MLP approach, indicating that the approximations inherent to

the method are valid. This is crucial because anything different would represent a

serious flaw in the PPNN reconstruction method.

Moreover, the difference in the PPNN prediction error with or without the cut

is practically negligible, suggesting that our method can be applied to reconstruct

trajectories where processes other than MCS are present. This is more evident in

Figure 6.1(b) where the RMSE is evaluated for the QGSP BIC dataset. When

nuclear interactions are included the error significantly increases, but to a far lesser

extent for PPNN than for MLP. Only with a 1σ cut do the performances of the

two methods become comparable. Unfortunately, such a large cut entails the loss

of ∼ 24% of the tracks. Comparing the full interaction dataset result with that of

the pure electromagnetic result, we see that with the typical 3σ cut applied to both

cases the RMSE of PPNN is about 26% larger for the full interaction than for the

pure MCS dataset. Though not shown, with a 2σ cut the discrepancy in performance
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(a) (b)

Figure 6.1: Root Mean Squared Error obtained with MLP and PPNN
using the (a) emstandard and (b) QGSP BIC datasets. Solid lines are
the performance on the full dataset while dotted and dashed incorporate
1σ, and 3σ cuts, performed on the energy and difference in the direction
of travel angle between entering and exiting the phantom, respectively.
The dashed-dotted line in (b) is the same solid PPNN result in (a) added
here to have a clear picture of the increasing of the errors when including
nuclear interactions. Reproduced from [3].

decreases to around 20%, which corresponds to a fraction of discarded tracks of ∼ 8%

from the QGSP BIC dataset.

6.1.2 Relationship Between Error and Deviation

To understand the origin of this difference in performance between the two

methods, Figure 6.2(a) illustrates the distribution of ∆θ = (θout − θin) for both

QSPG BIC and emsstandard datasets. The σ cut is applied assuming a Gaussian

distribution of the signal, but from the figure a difference between the two distribu-

tions clearly emerges. For the full physics simulation the Gaussian approximation,

as employed in the MLP, clearly fails to describe the distribution away from the

centre. While the cuts based on a Gaussian fit are acceptable in the emstandard

case, they exhibit a large discrepancy with data when the full range of physics pro-

cesses are included. In Figure 6.2(b) we see a similar result for the distribution of

lateral displacement ∆x = (xout − xin), with the Gaussian shape of the emstandard

distribution supplanted by an exponential decrease in the QSPG BIC distribution.

48



(a) (b)

Figure 6.2: (a) Distribution of ∆θ = (θout − θin) angle for the two test
datasets (solid lines) overlaid with the associated Gaussian using the σ
values obtained from a fit of the emstandard data and the QSPG BIC
data (dotted lines). (b) Distribution of ∆x = (xout − xin). In both plots
it is evident that an exponential rather than a Gaussian decay provides
a better fit with respect to the number of paths for the QSPG BIC
dataset. Reproduced from [3].

Given the limits of the MLP formulation shown in Figure 6.2, its worth con-

sidering how the error increases as a function of the two variables ∆θ and ∆x.

As the PPNN approach has the same performance as MLP in the context of pure

electromagnetic interaction, where MLP is designed to work, we will focus on the

the QSPG BIC physics dataset, which provides a more realistic representation of

clinical pCT scenario.

This is presented in Figure 6.3. Here the proton paths are collected into bins

of 0.1 rad and 1 mm for ∆θ and ∆x respectively, with the RMSE computed in the

corresponding direction. The figure compares the error (right axis) and the number

of trajectories (left axis) to show the differences in performance. Note the logarithmic

scale on both right and left y axis. From Figure 6.3(a) we see that, as expected from

the RMSE plot, the two lines for PPNN and MLP begin to separate at around 1σ

cut at ∆θ ≃ 0.075 rad. For 35% of the tracks ∆θ is larger than 0.075, implying that

the PPNN method improves on the MLP reconstruction for an important fraction

of proton paths. Notice that the same analysis must be done for the ϕ angle which

would remove an analogous number of paths, resulting in a final cut of almost 50%

of the tracks in order to recover the same performance. Figure 6.3(b) shows the

reconstructed paths distribution broken down in terms of final displacement, ∆x.

Again the performance of PPNN is consistently better across the full span of the
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(a)

(b)

Figure 6.3: (a) RMSE (right vertical axis, coloured lines) and number
of paths (left vertical axis, black lines) as a function of ∆θ for PPNN
and MLP evaluated on the QSPG BIC dataset. The shaded black area
represent the statistical error. Vertical lines refer to the position of the 1
and 3 σ cut. (b) Same as (a) but as a function of ∆x. The difference in
performance between the two methods emerges immediately. Reproduced
from [3]. Note the right vertical axis of Figure 6.3 should read ’RMSE
[rad]’
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Figure 6.4: Distribution of the difference between the RMSE of PPNN
and MLP for the QSPG BIC dataset. The shaded area correspond to
the statistical error. Reproduced from [3].

plot, with trajectories at large angle deviations resolved with improved precision.

6.1.3 Tracks with Differing Performance

Further insight can be gained by considering tracks where the two models perfor-

mance substantially differed. In order to focus on tracks with the largest difference,

we will consider only tracks outside the 1σ cut in θ. Figure 6.4 presents the distri-

butions of the difference between the RMSE for PPNN and MLP for tracks outside

the aforementioned cut. Negative values of the difference correspond to tracks in

which PPNN had the smallest error, while the positive side of the axis corresponds

to the inverse. In the first instance we can see that the profile is exponential, while

in the second the decay is noticeably steeper; confirming that PPNN has better

performance at large deviations of the angle θ.

Focusing in on only the behaviour when PPNN outperforms MLP, let us consider

only the set of events on the negative side of histogram. Dividing these events

into 10 quantiles by ∆RMSE, a selection of randomly chosen tracks, one from

each quantile, are shown in Figure 6.5(a). As expected, for larger deviations from

straight paths PPNN can better follow the simulated curve in the majority of such

cases, growing more notable for larger ∆RMSE. For Figure 6.5(b) the same dataset

was divided into quartiles, with the last bin, containing tracks with the largest error

difference, further divided into two subgroups. As with Figure 6.5(a), a random track

was chosen from each of the five groups. Both figures further support that PPNN

improved performance is due at-least in part to a better capability to reproduce the

particle path in the presence of nuclear interaction, which causes greater changes in
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(a) (b)

Figure 6.5: Examples of tracks for which the PPNN outperform MLP.
(a) Tracks are selected at random from inside each of 10 quantiles, using
the data of Figure 6.4. (b) Same as (a), but in which tracks are extracted
from quartile groups; with the last quartile, which corresponds to tracks
with the largest discrepancies between the two methods, divided into two.
Reproduced from [3].

(a) (b)

Figure 6.6: (a) Distributions of the second derivative of the tracks in
the x direction with respect to the z coordinate. Lines indicate the four
quartiles of the distribution of ∆RMSE < 0. (b) Distribution of the
position along the z axis for the maximum of the second derivative for
each path. Reproduced from [3].
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the direction of the track.

To further analyse this characteristic, Figure 6.6(a) shows the distribution of the

second derivative of the x component of the tracks, with respect to the z direction,

again for track in which PPNN outperforms MLP, broken down into quartiles by

∆RMSE. Large values of this quantity are connected with significant direction

change, such as those observed in Figure 6.5. The four lines correspond to the four

quartiles of the blue histogram in Figure 6.4, as introduced in Figure 6.5(b). Where

PPNN exhibits the better performance, we see that the difference between the tracks

reconstructed with PPNN and MLP grows with increasing values of ∂2x
∂z2

: the more

a trajectory differs from pure MCS scattering, the more the PPNN improves over

MLP.

Figure 6.6(b) shows the distribution of max(∂
2x

∂z2
) as a function of z, broken down

into the same quartiles by ∆RMSE as before. The distribution for the last quartile,

corresponding to the largest discrepancies between the two methods, has a notably

different behaviour compared to the other three lines. It exhibits significantly more

events occurring at small and large z values. An example of these events can be seen

in Figure 6.5(b) where we have a strong deflection at z ≈ 190 mm. Here we can

see that MLP struggles to reproduce this event while the neural network provides a

superior result.

6.2 Inhomogeneous Phantom

In order to consider the performance on the inhomogeneous phantom, as ex-

plained in Section 5.3, simulations using 230 MeV protons were used, along with

the corresponding models. The RMSE error for both the homogeneous and inho-

mogeneous phantoms, using either PPNN or MLP, is shown in Figure 6.7(a). This

comparison is without cuts and using the QGSP BIC physics environment. For

the water phantom both PPNN and MLP behave similarly to the corresponding

200 MeV case. This is an important check that the higher energy implementations

of the two methods are functioning correctly, particularly as this PPNN instance was

trained with the inhomogeneous phantom.

Focusing on the reconstruction error for the inhomogeneous case, we can similarly

observe that with PPNN the error is consistently reduced. Interestingly the error on

the new phantom using PPNN is comparable with that obtained with MLP in the

pure water simulation.

The improvement obtained with PPNN is more pronounced when examining the
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(a) (b)

Figure 6.7: (a) Root Mean Squared Error obtained with MLP and PPNN
on a water and an inhomogeneous slab phantom irradiated at 230 MeV.
(b) Percentage reduction in RMSE with respect to depth by PPNN over
MLP. All studies were performed with the QGSP BIC physics environ-
ment. Reproduced from [3].

percentage reduction of RMSE by PPNN over MLP, as shown in Figure 6.7(b).

A reduction in the error of the order of 25% can be seen around 150 mm, while on

average the improvement is in excess of 10% over MLP across a significant portion of

the depth. Introducing the familiar 3σ cuts decreases the error reduction in both the

water and inhomogeneous cases, along with the difference in improvement between

them.

6.3 Execution Time

Using the methodology outlined in Section 5.5, from 10 runs we obtain an an

almost constant execution time of 0.47 ± 0.01 sec for PPNN and 7.11 ± 0.08 sec for

MLP. Within the validity of this test, the PPNN method is sixteen times faster than

the optimised MLP.
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Chapter 7

Discussion

Although MLP represents a powerful method of estimating proton path in pCT

applications, it suffers from certain limitations. The approach is designed specifically

to account only for effects on the proton path connected with MCS and energy loss.

This is reflected by the strategy of discarding proton trajectories with large deviation

from straight paths to reduce the error. Moreover, simulation in a realistic scenario of

high fluence (hundreds of millions of protons) and small spacing for the MLP (fraction

of millimetre) can require more than one hour; time mostly spent reconstructing the

proton paths [119].

The results presented suggest a machine learning approach such as PPNN has the

potential to relieve these two problems to some degree. Figure 6.1 and Figure 6.3

indicate that by using PPNN a good approximation of the path can be obtained

for a much larger number of protons than using MLP. This is important because in

principle fewer protons are needed to reach the same reconstruction quality, lowering

both the dose and the computation time.

The ability of the network to reconstruct tracks outside the validity of the MLP

approach is intrinsically tied to the nature of deep learning. Neural networks learn

‘blindly’ from examples; parsing though the training dataset, by means of the back-

propagation procedure for the minimisation of the loss function, the network adapts

its weights to the characteristics of the events it experiences, including those that

show large ∆θ and/or ∆x. While such underlying processes may be challenging to

formulate into mathematical models, there are sufficient patterns for the network to

refine its prediction processes. Without an assumed structure to reproduce, it is not

bound to solely replicating the form of a given physical model. A tentative expla-

nation of what the network learns may be inferred from Figure 6.6 and the analysis

of the second derivative of x with respect to z. The network displays significant
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improvement over MLP where the second derivative is large, especially near the end

of the trajectories.”�

Regarding execution speed, it is true that the time spent for reconstruction is

only one of the various aspects for evaluating a pCT system for clinical routine.

Moreover, our work is relevant only in the context of reconstruction methods based

on the evaluation of the proton path. Nevertheless, because these methods are seen

as the most promising for applicability in the clinical context and the MLP execution

speed is by order of magnitudes the slowest part of the algorithm [119], the substantial

improvement shown by PPNN compared with the optimised MLP can be regarded

as an important feature.

A notable limitation to our findings is the artificial nature of the situation PPNN

was implemented in. Using a fixed incoming angle to the phantom serves adequately

for a proof of concept that a neural network based approach could handle the prob-

lem, but is not a realistic representation of intended use. For MLP, assuming the

incoming protons angle and position significantly reduces eventual spatial resolu-

tion [128], so it is likely as impactful for a machine learning equivalent. Though the

axis can simply be relocated to account for the incoming spacial location, reorientat-

ing to account for angle alters the phantom depth, impacting that a fixed z direction

spacing was used. Equally, real scanning targets will be a range of thicknesses, and

measurement of a protons position and direction of travel is not made on the sur-

face. Not accounting for the air gap has been demonstrated to have a non-negligible

impact on the accuracy of MLP predictions [125]. In existing literature, several com-

parable simulations, such as the principal simulations in [120] and [127], therefore

utilise a fan beam placed back from the phantom surface as a particle source. For

our study we decided a simpler model was adequate for examining if, in the first

instance, a neural network model had the potential of achieving comparable results

to the existing MLP formalism; though any future work should likely employ a more

advanced setup.

While in extending the principals here to a more realistic simulation is likely

possible, it does mean our results may therefore not be perfectly reflective of network

designed for and operating in a real situation. Further, given their example based

learning nature, neural networks such as these have inherent limitations stemming

from the limits of the training data sets used. Another potential concern is that

both the training and evaluation Monte Carlo data was produced using the same

simulation, making the process blind to any systematic errors in the simulation.

This aside, PPNN performed admirably with the inhomogeneous phantom. The
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phantom considered is certainly extreme; large volumes of a high-density material

such as those in the slab phantom will rarely be encountered in clinical practice,

and in this sense we do not expect the gain to be so large in a realistic situation.

Nevertheless, it is encouraging that notably better results are obtained with PPNN

with respect to MLP, with a reduction of the RMSE of the order of 20%. This

is a more significant improvement compared to the work presented in [127] with a

similar phantom, where the maximum enhancement is about 5% for simulation with

the same beam energy.

Just the same, this was carried out using a single fixed material composition on

which the model had been trained. A realistic target will not be a set composition

that separate models can be trained against, and is unlikely to be well known anyway;

after all, the proposed primary use of pCT is for mapping relative stopping power.

Somewhat counter-intuitively however, several existing studies with other path es-

timation methods found little or no meaningful impact on resulting RSP accuracy

from including prior knowledge of materials within a phantom [125,127,132]. In terms

of the MLP formalism, it is posited that while the error will increase, the optimal

predicted path is more or less unchanged by the introduction of slab-like material

inserts along the beam line, excluding in large angle events [125,149]. Furthermore,

in [133] no further accuracy benefit from including material information was shown

over including the simpler exit energy as an input variable [133]. However in either

instance it is noted that this may not hold for inhomogeneities with finite lateral

dimension [133,149].

7.1 Related Study

Shortly after publication of our results [3], a separate group independently pub-

lished an investigation into machine learning for pCT proton track prediction [133].

Neither was aware anyone else was pursuing a similar line of investigation.

[133] took a different approach to encoding the problem of proton trajectories, and

operated under a situation conforming closer to that of a real world implementation.

Tracks were parameterised using a separate variable, and models designed to instead

predict the particles location for a given value of said variable, which is given as

an input variable, as opposed to predicting the location at a set of fixed intervals

at the same time. Input variables were given as would be measured by a simulated

proposed pCT detector surrounding the phantom, including realistic detector errors,

with paths predicted between the plates, whether phantom or not. Additionally, as
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mentioned the exit energy was also given. Models were trained and evaluated on

combined datasets of multiple different phantoms, with a range of thicknesses and

including several realistic voxel phantoms of relevant anatomical sections.

Several different machine learning based models were examined. Similar to our

approach, a feed forward neural network considering the problem as separate 2D

planes was used, but with an additional accompanying network designed to estimate

the error in the predictions of the first. Another used a feed forward neural network

instead predicting complete 3D coordinate points, and a model using a XGB gradient

boosted decision tree was also considered.

While the path averaging method used for comparison is conceptually different

from the MLP formalism, it is similarly suitable in this context, and outside of short

path lengths both the 2D approach and boosted decision tree showed superior per-

formance. Further, the accuracy of the error prediction network suggested potential

as a filtering method, perhaps as opposed to the 3σ cuts typically used with MLP.
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Part III

Graph Neural Network Tracking
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Chapter 8

Graph Neural Networks

8.1 Graphs

The graphs of pure mathematics have little to do with bar charts and other graph-

ical means to display information. In their simplest form, graphs are a mathematical

structure for representing a number of objects, and encoding the relationships be-

tween them [150,151]. From underground transport maps and flow charts, to chemical

structures and atomic models, practical examples of graphs are familiar and can be

found in a wide range of contexts. But while graphs are typically portrayed with

diagrams of dots or circles and connecting lines, the choice of how a graph is depicted

visually has no underlying significance. Indeed, graphs are not limited to when a

graph structure is readily apparent. Graphs can characterise any system of objects

in which relational links can be inferred or assumed, such as social networks [152] or

even bouncing balls in a box [153,154].

Relatively speaking, graph theory, the mathematical study of graphs, is a fairly

new discipline, with the bulk of developments occurring since 1890 [155]. Its beginnings

as a formal field of study are usually attributed to Euler’s 1736 analysis of the Seven

Bridges of Königsberg problem, a local pastime of attempting to devise a route

over the cities seven bridges, crossing each only once [156]. Indeed puzzles, games

and similar problems have often served as motivators in the development of graph

theory [156].

Since the resolution of the four colour conjecture in 1976, graph theory has seen

remarkable growth and increasing interplay with other areas of mathematics, as

reflected in the amount of literature available, and now plays a remarkable role in

applied mathematics and computer science [151].
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8.1.1 Fundamentals of Graph Theory

While the core concepts of graph theory are well established, individual authors

have their own preferences for exact definitions, terminology and notation. Further,

graph theory as a rigorous mathematical discipline and the study of graphs in com-

puting often differ significantly. This here is intended as an introduction to some of

the concepts, not a rigours exploration, in order to be able to describe the concepts

in graph neural networks used. What follows largely draws from the notation and

definitions in [151], [155], [157], and expanding with ideas from [158].

With that in mind, let a graph G be defined as an ordered pair of sets G = (V,E),

where V is the set of vertices or nodes, and E the set of edges, such that the elements

of E are two-element subsets of V , E ⊆ [V ]2 [155,157] *.

The number of vertices, NV = |V |, is known as the order, and the number of

edges, NE = |E|, the size. If we consider vi, vj ∈ V and ek ∈ E such that ek = vi, vj,

then we say that edge ek joins vertices vi and vj. Should there be such an edge,

then we say that vertex vi and vj are incident with edge ek, and vice versa, and that

vi and vj are adjacent, or neighbours, to each other. Furthermore, the degree of a

vertex denotes the number of edges incident with it [151,157].

To illustrate, let us introduce the following example. Let G be a graph G = (V,E)

such that

V = {v1, v2, v3, v4} (8.1.1)

E = {e1, e2, e3, e4} (8.1.2)

where

e1 = {v1, v2}, e2 = {v1, v3}, e3 = {v2, v3}, e4 = {v2, v4} . (8.1.3)

One possible diagram representation of G is provided in Figure 8.1(a). From the

above definition we can readily see that G has an order of 4 and a size of 4. If we take

vertex v1, then this vertex is incident with edges e1 and e2, and has two neighbours,

v2 and v3. If instead we consider edge e1, it joins, and is incident with, vertices v1

and v2.

*Generally, mathematical graph theory texts refer to vertices, while computer science graph
neural network texts refer to nodes. For consistence we will use vertices throughout.

62



  

e2

e1
e3

e4

v2

v1

v3

v4

  

e2

e1
e3

e4

v2

v1

v3

v4

(a) (b)

Figure 8.1: (a) A diagrammatic representation of the example graph G.
(b) A diagrammatic representation of the example subgraph H ⊆ G (in
black), with G superimposed (in grey).

8.1.2 Pseudographs

Strictly speaking sets cannot contain multiples of the same element. With our

definition of graphs so far, this precludes multiple edges which join the same pair of

vertices, as a single element {vi, vj} cannot be repeated [155]. Equally edges may not

join a vertex to itself, as an edge is itself a set of two vertices, and individual vertices

cannot therefore be repeated within an edge [155].

As they will become relevant later on, we therefore relax our definitions to specif-

ically accommodate edges of these kinds. Formally such graphs are known as pseu-

dographs, though we will continue to refer simply to graphs. Multiple edges joining

the same pair of vertices are called skein, and such edges are said to be parallel to

each other, while edges that join a vertex to itself are known as loops [151,155]. In order

for a pair of edges in a directed graph to be parallel, they must also be orientated in

the same direction [157].

8.1.3 Subgraphs

In the same way a subset is a portion of a larger parent set, a subgraph is in

essence a portion of a larger parent graph. Specifically, a subgraph G′ ⊆ G is a

graph G′ = (V ′, E ′) who’s vertices and edges are subsets of the vertices and edges

of G; V ′ ⊆ V and E ′ ⊆ E. Furthermore, an induced subgraph is a subgraph that

contains all edges {vi, vj} ∈ E where vi, vj ∈ V ′; that is, it contains all edges of G

joining the vertices also present in G′. Conversely a spanning subgraph is a subgraph

that retains all vertices of G, V ′ = V , but not necessarily any particular edges [157].

With our previous example in mind, let us introduce a graph H = (W,F ) such
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that

W = {v1, v2, v3} (8.1.4)

F = {e2, e3} . (8.1.5)

As all vertices v1, v2, v3 ∈ V and all edges e2, e3 ∈ E, H is a subgraph H ⊆ G,

though it is neither an induced or spanning subgraph. A representation of H is given

in Figure 8.1(b), superimposed with the graph G for convenience; however, there is

no requirement for a diagram of a subgraph to take the same form as its parent. If we

were to modify H to include e1 = {v1, v2} ∈ F , then H would contain all edges from

G joining vertices in F , which would make H an induced subgraph of G. Equally if

v4 ∈ F , then H would contain all vertices of G, making H a spanning subgraph of

G.

8.1.4 Directed Graphs

Up until this point we have considered what are known as undirected graphs,

in which edges denote a reciprocal relationship between nodes. In a directed graph

however, edges are directional, denoting a one way relationship from an initial vertex

to a terminal vertex. Let D be a directed graph D = (V,E), where V is as before,

but now let the elements of E be ordered pairs, such that for vrk , vsk ∈ V and ek ∈ E

the edge ek = {vrk , vsk} is a directed edge from an initial, or sender, vertex rk, to

a terminal, or receiver, vertex sk
[157]. We say that ek joins vrk to vsk , but not sk to

rk
[151].

A symmetric directed graph is a directed graph in which for every edge, there is

also a corresponding oppositely directed edge, that is ∀{vrk , vsk} ∈ E, ∃{vsk , vrk} ∈
E. The directed graph obtained by replacing all edges in a given undirected graph

with pairs of oppositely directed edges is known as the associated directed graph [151].

Conversely, the undirected graph obtained by replacing all directed edges between a

given two vertices by a undirected single edge is known as the underlying graph [151].

Once again let us introduce an example, reusing the same vertices as G. Let D

be a directed graph D = (V, J) such that

V = {v1, v2, v3, v4} (8.1.6)

J = {e′1, e′2, e′3, e′4, e′5} (8.1.7)
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Figure 8.2: A diagrammatic representation of the example directed graph
D.

this time where

e′1 = {v1, v2}, e′2 = {v1, v3}, e′3 = {v3, v2}, e′4 = {v2, v4}, e′5 = {v4, v2} .

(8.1.8)

An illustration of D is given in Figure 8.2. As it stands, G is the underlying graph

of D, as it does not matter if there are one or more edges in D with a corresponding

edge in G, just that there is one joining the same vertices. If we were to introduce

additional elements e′6, e
′
7, e

′
8 ∈ J such that e′6 = {v2, v1}, e′7 = {v3, v1}, e′8 = {v2, v3},

then D would then be the associated directed graph of G.

8.1.5 Adjacency Matrix Representations

So far, the approach we have taken for describing graphs has been ill-suited for

use in computing [151]. Graph or network embedding concerns representing graphs

in a low-dimensional vector form, while retaining their important properties such as

structure, enabling regular computing methods [159]*.

One particularly common method for expressing graphs is to encode the presence

of edges in a matrix form [151]. Let G be a graph G = (V,E) as usual. The adjacency

matrix of the graph G is the n × n matrix AG :=
(
avi,vj

)
, where n = |V |, and the

elements avi,vj denote the number edges joining the given pair of vertex vi and vj
[151]**. This representation is applicable to both undirected and directed graphs. All

undirected graphs, due to the reciprocal nature of edges, have symmetric adjacency

matrixes, while directed graphs will when they are themselves symmetric.

*In mathematical graph theory, graph embedding refers to a different concept, involving the
representation of a graph on a surface such that no edges will cross except at the vertices, and other
conditions [151].

**For undirected graphs, loops are denoted as 2 edges [151].
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To illustrate, for our example graphs G, H and D the corresponding adjacency

matrixes AG, AH and AD are given by

v1 v2 v3 v4





v1 0 1 1 0

v2 1 0 1 1

v3 1 1 0 0

v4 0 1 0 0

v1 v2 v3






v1 0 0 1

v2 0 0 1

v3 1 1 0

v1 v2 v3 v4





v1 0 1 1 0

v2 0 0 0 0

v3 0 1 0 0

v4 0 1 0 0

AG AH AD

Depending on a graph’s complexity, it can be more compact to instead use a

adjacency list representation. Let a list N(vi) be the list of adjacent vertices of a

vertex vi. Then the adjacency list LG for the graph G is then the list of all lists

N(vi) for the vertices vi of G [151].

8.2 Graph Network Blocks

8.2.1 Weighted Graphs and Attributes

Particularly when modelling practical situations, there are many cases where we

might want to characterise the edges of a graph with a value, such as assigning each a

cost or importance. In graph theory, a graph with this kind of information is known

as a weighted graph. For each edge ek of a graph G, let there be an associated value

w(ek), called as its weight; then G, together with the weights w(ek), is a weighted

graph [151]. Theses weightings w(ek) can be considered as a vector indexed by the set

of edges ek. Weighted graphs are frequently used in applied mathematics, and many

algorithms exist for solving problems described by weighted graphs.

However, it is possible to go further, assigning multiple properties to edges, and

to vertices or even the graph as a whole. Here we are going to do so largely by

drawing on the approach of the Graph Network framework, introduced in [158],

which takes inspiration from a variety of graph, message passing and non-local neural

network approaches. Though designed with graph neural networks specifically in

mind, it is an intentionally general approach to incorporating attributes and applying

algorithms to graphs [158].
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First, let us introduce the concept of the vertex attribute vi, which represents

various chosen properties of a vertex vi. Similarly, let ek be the edge attribute for

an edge ek, and let g be the global attribute for a graph as a whole [158].

Vertex, edge and global attributes are separate from one another, and while these

attributes can be any arbitrary object, they take the same form for all vertices and

all edges [158]. For our purposes, and simplicity, from here on we are going to say they

are tensors; where we use tensor to refer to an n-dimensional array, rather than the

rigorously defined mathematical structure in linear algebra. In this way, multiple

weights can be encoded at the same time as the elements of said tensors, allowing

for multiple properties, or features, to be described at once.

Let a graph G be now defined as G = (g, V, E), where g is the global attribute.

Here, V is the set of vertices such that vi = {vi} ∈ V , where vi is the vertex

attribute. Equally, E is the set of edges such that ek = {ek, vrk , vsk} ∈ E, where ek

is the edge attribute, and vrk , vsk ∈ V [158].

If NEA and NV A are the number of features in edge and vertex attributes re-

spectively, then similar to with a traditional weighted graph theses attributes can be

considered, for edges or vertices, as a NEA × NE or NV A × NV tensor, where NE

and NV are the number of edges or vertices respectively. Breaking down along the

feature indexed dimension retrieves the values for a certain property, or feature, for

all edges or vertices, in the same manner as a traditional weighted graph’s weighting

vector.

8.2.2 Operations

In order to manipulate these attributes, we shall again draw on and generalise

ideas in [158], and introduce some operations to formalise interaction with the at-

tributes. Let there be three forms of operation; edge, vertex and global operations,

and let each operation consist of mapping a function, ϕe, ϕv and ϕg respectively,

which is applied across all edges, all vertices, or once globally to give a new at-

tribute,

e′k = ϕe (ek,vrk ,vsk ,g) (8.2.1)

v′
i = ϕv (ei,vi,g) (8.2.2)

g′
i = ϕg (e,v,g) . (8.2.3)

The attributes ei, e and v are the result of aggregate functions, ρ, that reduce

any number of attributes from incident edges or vertices into a single representative
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attribute,

ei = ρe→v(Ei) (8.2.4)

e = ρe→g(E) (8.2.5)

v = ρv→u(V ) (8.2.6)

where Ei ⊆ E is the subset of all ek = {ek, rk, sk} ∈ E such that rk = vi.

These new attributes need not be the same size as the original, and while formally

each attribute is replaced, the updated attribute may simply extend to the original,

retaining all previous elements and adding new ones. On a practical level, the func-

tions ϕe and ϕv can be implemented as being applied to the respective n×m tensor

representation of attributes.

8.2.3 Graph Network Blocks

Combining the edge, vertex and global operation, a Graph Network Block [158],

or GN Block, represents a full update pass of all attributes, using the operations

just introduced. As a flexible framework, a wide range of graph algorithms can be

characterised using a sequence of GN Blocks, giving a common approach to describe

how disparate algorithms operate. Following from what has been introduced, a GN

Block can be summarised as a series six computation steps [158], though it need not

have all stages;

1. e′k = ϕe (ek,vrk ,vsk ,g) is performed per edge, replacing each edge attribute ek

by e′k.

2. e′i = ρe→v(E ′
i) is performed per vertex, aggregating incident edge attributes,

to generate a representative attribute e′i for each vertex.

3. v′
i = ϕv (e′i,vi,g) is performed per vertex, replacing each vertex attribute vi

by v′
i.

4. e′ = ρe→g(E ′) is performed for the graph as a whole, aggregating all edge

attributes into a single representative attribute e′ for the graph as a whole.

5. v′ = ρv→u(V ′) is performed for the graph as a whole, aggregating all vertex

attributes into a single representative attribute v′ for the graph as a whole.

6. g′
i = ϕg (e′,v′,g) is carried out, replacing the global attribute gk by g′

k.
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In practice, steps 2. and 3. can readily be combined per vertex, performing the

edge aggregation then applying the update function for a vertex before progressing

to the next.

8.2.4 The Message Passing Paradigm

Introduced in [160], the Message Passing Neural Network generalised and for-

malised concepts implicit in many GNN [160], and is one of the principal inspirations

for the GN Block framework [158]. Since then, the message passing paradigm has

emerged as an underlying concept in GNN design [159,161], and part of what makes

them effective; indeed, it has been suggested that the principal is inherent in all

modern GNN designs in some manner [161]. While envisioned with neural networks

in mind, just as with the GN Block framework, the principal is readily generalisable

to graph algorithms in general.

The rough concept is that ’messages’ are formed for each edge, incorporating at-

tributes from edges themselves and joined vertices. These messages are then passed

to the joined vertices (to the terminal vertex in directed graphs), and vertex at-

tributes updated incorporating these messages; thus attributes are influenced by

their neighbours. Through repeated application of the algorithm, information effec-

tively flows around the graph, allowing unconnected parts of a graph to be influenced

by those distant. The graph’s structure governs how information flows, thus incor-

porating its structure without having to be explicitly encoded into an algorithm.

Referring back to the GN Block framework as given in Section 8.2.3, the first

three steps of the framework can be considered as a direct representation of this;

1. The message function ϕe form a message for each edge, effectively storing them

as attributes on said edges.

2. The reduce function ρe→v takes in and combines the incoming messages for

each vertex, compiling them into a single aggregate message.

3. The update function ϕv uses this aggregate message to update the attributes

on each vertex.

Many iterative algorithms fitting the GN Block framework can be considered as

using a form of the message passing paradigm, and we will continue to refer to ϕe,

ρe→v and ϕv as the message, reduce and update functions.
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8.3 Graph Neural Networks

Graph neural networks, or GNN, are a form of deep learning model in the field of

geometric deep learning [162], designed to operate on a graph in an end-to-end manner

as opposed to translating a task into a non-graph form for operation [159]. Whether

the later form of models are considered as GNN or not varies. The use of neural

networks with graphs first occurred over two decades ago in [163], with the concept

of what we would now refer to as a graph neural network later floated in [164];

and the first true GNN model is often attributed to [165], which extended existing

neural network models for use with graphs [150,159,166]. Since then GNN have grown in

popularity, and have been successfully applied to various graph analytics tasks, such

as vertex (edge, or whole graph) classification, link prediction, and clustering [166].

In many ways, GNN can be viewed as a further generalisation of convolutional

neural network principals. Whereas CNN operate on regular euclidean data struc-

tures, archetypally images or text, graphs present a more broad structure, and early

motivations came from seeking to expand the same underlying principals and op-

erations that make CNN successful to graphs [150,166]. Indeed, a digital image, and

other grid-like structures, can be considered as a specific form of graph; each pixel

is a vertex, with edges connecting each to its immediate neighbours in the image

matrix [150].

Referring back to the GN Block framework, it is straightforward to see how the

ideas introduced in Section 8.2 apply to GNN, by introducing neural networks, such

as the feed forward neural network, in the role of the message or update functions.

8.3.1 Forms of GNN

Despite the relatively young age of GNN within the study of neural networks, a

myriad of models have already emerged. Among them several rough design princi-

pals can be identified, though with the interrelated nature of models, many different

taxonomies and approaches to categorisation can be taken [166]. More thorough sur-

veys of current graph neural networks methods can be found in reviews such as [166]

and [159], or textbooks such as [150].

The model introduced in [165], simply named to as the graph neural network

model, is often taken as the ‘vanilla’ GNN [150]. A feed forward neural network is

used as a function to learn to generate a representative state embedding for each

vertex, that describes the neighbourhood of that vertex. Exploiting Banach’s fixed

point theorem, this function is performed repeatedly in order to converge to a final
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result. These state embeddings are subsequently used by a separate function to

generate an output label for each vertex [150,165,166]. However this model experiences

several drawbacks. Iterative application to reach a fixed point is a computationally

inefficient approach [159], and the straight repeated application of a FNN in this way

is essentially the same as a FNN with more layers. In effect, the FNN is concatenated

with copies of itself, but without some of the advantages separate neuron weightings

would bring. Additionally, not all information encapsulated by an edge can be

modelled effectively, and thus is effectively lost, and issues can emerge if the number

of iterations is too large [150,166].

Building on the same iterative approach to converge on a stable representa-

tion [159], Graph Recurrent Networks, or GRN, work to overcome these limitations

and improve long-term information propagation by looking to recurrent neural net-

works and LSTM models [150]. Designed for tasks which require outputting sequences

of results, the Gated Graph Neural Network and Gated Graph Sequence Neural Net-

work [167] introduce Gate Recurrent Units into the iterative part [150], and the later has

been successfully applied to text understanding and program verification tasks [150].

LSTM architectures have been implemented in a similar manner, with [168] and

[169] extending Tree-LSTM architectures [170] (LSTM with a tree-like network topol-

ogy, as opposed to the usual chain-like topology) to graphs [150]. Regardless of form,

the repetitive iteration within the models can be seen as a form of message passing,

propagating information between vertices [159].

Inspired by GRN [159], Graph Convolutional Networks, or GCN, generalise convo-

lution operations, the heart of convolutional neural networks, to the graph domain.

Given the success of CNN at a wide number of tasks, GCN are a popular approach

with a vast number of variations [150]. GCN models are often grouped into two forms

based on what the convolution operation kernels operate on. Spectral methods, such

as the Spectral Network [171] and the archetypally named GCN model [172], operate

on the spectral representation of graphs, with convolutions applied to the eigende-

composition of the graph Laplacian. However, as the learned filters then depend

on the Laplacian eigenbasis, trained model instances are specific to a certain graph

structure [118,166]. Alternatively, spacial methods such as Neural FPS [173] and Graph-

SAGE [174] define convolutions directly for the graph itself, applying to a vertex and

its neighbours. While conceptually more straightforward, spacial methods must

contend with defining convolutions that can handle different numbers of neighbours

while preserving local invariance [150,166]. In a similar manner to GRN, spacial GCN

incorporate the concept of message passing, with the convolution operation acting
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to share messages between vertices [159].

While a regular GCN kernel treats all neighbouring vertices equally, Graph At-

tention Networks, or GAN, such as GAT [175] or GAAN [176] further incorporate an

attention mechanism, allowing the designating of different importances to each neigh-

bour [150].

Given the often sparse, irregular and relational nature of data collected at acceler-

ator experiments, graphs offer a potent tool with which such data can be represented.

It is therefore little wonder that with the dearth of methods available, there have

been recent efforts to explore the potential of GNN for a variety of roles in experi-

mental high energy physics, such as for clustering, particle identification, calibration

and simulation [162]. A comprehensive technical review of studies into GNN at the

LHC can be found in [162].

8.3.2 The Interaction Network

Designed for reasoning how complex systems interact and their dynamic evolve,

the Interaction Network, or IN, introduced in [153] has shown great success at prob-

lems such as bouncing balls in a box, N-body problems, and the motion of strings [153].

Consider some dynamic system of objects at a time step t. Let this system be

described by a graph Gt = (g, V, E), where the vertices V correspond to the set of

objects, and edges E the relations between objects. The influence of one object on

another is not necessarily symmetric, so G is a directed graph, and both objects and

their relations are naturally described using various values, which will be encoded

as attributes. The set of vertices vi = {vi} ∈ V therefore represents the state of

each object, and the edges ek = {ek, rk, sk} ∈ E the influence exerted by object rk

on object sk, or relation. Any external effects on the system as a whole are included

as g. Let the IN propagate the system of objects to a time step t + 1, so that

Gt+1 = IN (Gt).

A basic IN unit is then defined as [153]

IN (Gt) = ψV
(
a
(
V,g, ψE (m (Gt) )

))
(8.3.1)

m (Gt) = B = {bk}
f e (bk) = hk

ψe (B) = H = {hk}

a (V,g, H) = C = {ci}
f v (ci) = pi

ψv (C) = P = {pi}
where k indexes the edges, and i the vertices. The IN process can be described
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as follows [153];

� The marshalling function m forms interactions terms, bk, that combine into

one place the information on an interaction between objects, therefore the

attributes of each edge, sender and receiver vertex; bk = {ek,vrk ,vsk} ∈ B.

� The relation model ψE predicts the effect of each interaction, hk ∈ H, through

applying the function f e to each bk.

� The aggregation function a collects up these interaction effects hk ∈ H corre-

sponding to a given receiver vertex vrk , and combines them along with vrk ∈ v

and g to form a single crk ∈ C for that vertex, a representation of the combined

interaction effects.

� The object model ψv predicts how the combined interaction effects influences

each vertex vi, by applying the function f v to all ci, producing a result pi ∈ P

for each vertex.

For a dynamic system, the result P may represent the new state of the system,

Gt+1, with vi,t+1 = pi the new states of the objects within the system. The dynamic

system represented by G is therefore evolved in time through iterative application

of IN (G); with each application acting as a message passing. However the IN is

more general in application. For example, the model may be expanded with a final

aggregation function, and after a single, or perhaps several iterations, said function

takes results P , along with g, in order to produce a result characterising the graph

as a whole [153].

In the context of a machine learning model, functions f e and f v take the form

of feed forward neural networks [153]. The same fE and fV are applied to every bk

and ci respectively, allowing the model to apply to graphs with arbitrary numbers of

vertices and edges, and irrespective of the order in which functions are performed. To

allow for this, the aggregation function a needs to be commutative and associative,

and in the example implementation in [153] summation of hk is used.

The IN served as a forerunner and inspiration to the GN Block framework, which

in many ways can be seen to generalise the IN. Translating into the format of the
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framework [158]

ϕe (ek,vrk ,vsk ,g) = f e (bk) = f e (ek,vrk ,vsk) (8.3.2)

ϕv (e′i,vi,g) = f v (ci) = f v (e′i) (8.3.3)

ρe→v(Ei) = a (vi,g, Hi) = {
∑

k: rk=i

(hk)} = {e′i} (8.3.4)

where Hi ⊆ H is all hk ∈ H such that rk = vi. As whole graph attributes g

are not updated, this corresponds to performing stages 1 through 3 of the GN Block

framework.

8.3.3 The HEP.TrkX and Exa.TrkX Tracking Model

Exploring a variety of tracking challenges, the pilot HEP.TrkX project [177] pro-

posed the use of GNN for tracking [178], with its ongoing successor the Exa.TrkX

project [179] successfully applying particle tracking for ATLAS and CMS style barrel

detectors [180]. In a novel approach, the model took inspiration from the Interaction

Network introduced in [153]. Though the Interaction Network was designed with

a rather different task in mind, the architecture proved remarkably successful for

tracking [180,181]; and similar models have since seen success in track finding in the

whole ATLAS detector [182], particle flow reconstruction [183], and object reconstruc-

tion in liquid argon time projection chambers [184]. Models of this style have been

evaluated for use on FPGAs [185], and GNN methods are now under consideration for

future ATLAS detector triggering during HL-LHC [186].

The Exa.TrkX model * has since been generalised as a versatile, fully-learned

pipeline that can be extended for a variety of tracking problems [162,181,187]. Refering

to [181] and [180], the model can be summarised as several stages.

First, data is preprocessed into a suitable format, with each hit within the detec-

tor a data-point. The data prepared includes spatial coordinates, pixel cluster shape

information and others depending on use case.

As the pipeline is designed to be detector agnostic, the graph representation is

not constructed based on a specific detector layout. Instead, in the second stage the

Embedding Network, a Multi-Layer Perceptron, takes each data-point and produces

a latent space representation. This consists of 6 layers of 512 neurons, with hyperbolic

tan activation functions and normalisation. A final layer returns an 8 laten feature

*[181] refers to the model as the TrackML pipeline. However as this is also the name of a
specific dataset used across various papers, we will refer to it as the Exa.TrkX model.
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representation. From this a graph is formed, each data-point becoming a vertex, and

vertices joined to others within a given radius in the latent space representation.

In the third stage another perceptron, the Filter Network, is applied to each edge,

taking the two vertices as inputs and returning an edge efficiency score. This consists

of 3 layers of 1024 neurons, with a final binary cross-entropy loss function. Applying

a cut based on this score greatly reduces the number of edges, saving significantly

on computational costs in subsequent stages.

The fourth stage is the graph neural network, using the Interaction Network

architecture. 8 iterations are performed following the process as outlined above in

Section 8.3.2. Aggregation is performed using summation, and the vertex and edge

functions consist of 2 layer perceptrons, of 128 and 64 neurons, with ReLU activation

functions. The network also features a form of skip connection, in which after each

iteration the output is combined with the values from the previous iteration to form

the set of input values for the next. The last layer of the network returns a binary

classification score for each edge, scoring the likelihood it corresponds to a segment

of a track.

The final stage of the pipeline consists of task-specific processing, based on the

desired use and output of the specific model. Notably as performed in [180], for track

seeding, after a single edge network perceptron is applied to produce characteristic

scores for each edge, the graph may be converted to a triplet graph, where vertices

correspond to high score edges in the original graph, connected by an edge if they

share a hit. A separate similar GNN applied to this new graph can produce results

with a high fraction of tracks matching particles [181].
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Chapter 9

CERN and the Standard Model

9.1 The Case for High Energy Particle Physics

9.1.1 The Standard Model

The Standard Model of particle physics is the theoretical model describing all

known elementary particles, and their interactions through three of the four known

fundamental forces [188]. A product of decades of research and thousands of scientists,

it represents our best current understanding of matter [189].

At its heart, the standard model is a compilation of the laws of physics that

describe the behaviour of subatomic particles. As a quantum field theory, incorpo-

rating the principals of both quantum and relativistic mechanics, physical systems

are represented by quantum fields, and particles as the quantised excitations of these

fields [190,191]. Elementary particles and their interactions emerge as inherent features

of the system itself; deriving, through Noether’s theorem, from imposing invariance

under local phase transformation [191,192].

The resulting fundamental particles can be differentiated into two families, fermions

and bosons. Elementary fermions act as the building blocks of matter, with all sta-

ble matter in the universe made from the lightest and most stable among them [189].

With half integer spin, they are subject to the exclusion principal, precluding any two

identical fermions from occupying the same state [191]. Fermions are further divided

into two types, each of which is composed of six varieties, in three sets of pairs [189].

Quarks interact with the strong force, which binds them together to form composite

particles such as protons and neutrons. The binding effect is strong enough that, so

far, isolated quarks have never been observed; either hadronizing or decaying on a

minuscule timescale [193]. Leptons on the other hand do not interact with the strong
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force, and consist of the electron, muon, tau, and a corresponding neutrino flavour

for each [189]. While the first three have an electric charge and increasing mass, their

partner neutrinos are electrically neutral and with negligible or no mass, making

them difficult to detect [193].

In contrast, elementary bosons are the mediators of interactions. Within the

standard model, the fundamental forces manifest through the exchange of gauge

bosons between matter particles, with each fundamental force possessing its own

corresponding bosons’ [189,190]. With no electric charge of their own, the carriers of

the electromagnetic force, photons, do not interact with one another but consequently

exist as free particles. The W and Z particles, carriers of the weak force, poses their

own charge equivalents, while gluons, carrier of the strong force, not only poses their

own colour charge, but are predicted to form bound states of several gluons joining

together; though this has yet to be detected experimentally [190]. The Brout-Englert-

Higgs Field, and the corresponding Higgs boson, operate in a different manner,

instead imparting mass to those particles with which they interact [190,194].

While the full Standard Model Lagrangian representation stretches into many

pages, it can be summarised in a compact form as

L = −1

4
FµνF

µν

+ iψ̄ /Dψ + h.c.

+ ψ̄iyijψjϕ+ h.c.

+ |Dµϕ|2

− V (ϕ) (9.1.1)

where h.c. denotes the hermitian conjugate of the preceding term, and ψ the quan-

tum fields [190]. Through the field strength tensor F , the first line describes how the

gauge bosons, aside from the Higgs, manifest and interact with one another. The

second line describes, through the covariant derivative /D, how the same gauge bosons

instead interact with matter particles. The third line describes how the fermions in-

teract with the Brout-Englert-Higgs field, ϕ, with the coupling parameters encoded

in the Yukawa matrix, yij. Of the gauge bosons, only the weak force carriers inter-

act with the Brout-Englert-Higgs field, as described by the fourth line. Finally, the

fifth line describes the potential of the Brout-Englert-Higgs field, which unlike the

other quantum fields does not have a single minimum at zero, leading to spontaneous

symmetry-breaking [190].
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The standard model gives rise to the the gauge symmetry group

SU(3) × SU(2) × U(1) (9.1.2)

where SU(n) and U(n) refer to the special unitary and unitary groups of degree

n [193]. The SU(3) symmetry corresponds to Quantum Chromodynamics, the com-

ponent of the standard model concerned with the strong interaction between gluons

and quarks [193]. The SU(2) × U(1) symmetry governs interactions of the weak and

electromagnetic forces, unified into the electroweak model [193]. As mentioned, the

Brout-Englert-Higgs field breaks this symmetry, leading to some particles possessing

mass, and others not [190].

9.1.2 Unanswered questions

While the Standard Model has proved resilient under decades of scrutiny, it

presents an incomplete picture [190,191].

Though the standard model encompasses quantum theory with special relativity,

combining quantum theory with the full theory of general relativity is notoriously dif-

ficult, and we have yet to successfully do so in the context of the standard model [189].

Thus, while it describes three of the four known fundamental forces, inclusion of grav-

ity remains illusive [189,190]. Equally there are various specific properties the theory

does not predict, such as the entries of the Yukawa matrix [190], and while the Brout-

Englert-Higgs Mechanism explains the masses of some particles, there are still open

questions such as why neutrinos appear to have mass [193].

On a grander scale, though there is a limited asymmetry between matter and

antimatter within the standard model, it does not go far enough to account for the

apparent preponderance of matter in the universe, or line up with our current under-

standing of the Big Bang [189,191]. Nor does it describe dark matter and dark energy,

or the alternative modified gravity, implied by the motion of the cosmos [191,195,196].

Thus, while the standard model represents our best understanding of the funda-

mentals of matter, it does so as part of a bigger picture; one that is still being

explored [189,190,191].

9.1.3 The Role of Particle Accelerators and Detectors

The study of fundamental subatomic particles is thus about more than just the

manifestation of particles themselves, but offers a means to probe the underlying
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physics with which they are inherently intertwined.

As staples of ordinary matter, electrons and protons can be readily found. More

exotic particles on the other hand pose more of a challenge. One source of such parti-

cles is from cosmic rays; as high energy particles bombard the atmosphere, they can

produce showers of secondary particles such as muons and neutrinos. Alternatively,

as radioactive nuclei decay they may emit various particles, making nuclear reactor

emissions another potential source of material for study [7,191].

However these methods offer limited control over the range of particles produced.

Through conservation of energy and the mass-energy equivalence of relativity, heavier

particles can be produced through high energy collisions; the intense moment of high

energy providing the possibility for such particles to come into being. Going even

further, desired particles such as positrons, muons or neutrinos can be siphoned off

to produce secondary beams for further experimentation. Offering a means to not

only generate collisions, but fine tune energies and other conditions to maximise

the likelihood of desired outcomes, particle accelerators have become a mainstay of

modern particle physics research [40,191].

Controlling where collisions take place allows advanced particle detectors to be

located right by the action, making measurements immediately after an event. Even

then, exotic particles often rapidly decay or may be involved in other interactions;

and it is up to scientists to deduce what unfolded. Through study of scattering, de-

cays and bound states, we can measure properties and place boundaries on standard

model physics, and hunt for signs of what lies beyond [7,191].

9.2 CERN and the Large Hadron Collider

9.2.1 The CERN Accelerator Complex

Born out of a desire for closer collaboration and the increasing costs of cutting

edge research facilities, 1953 saw the formal foundation of the Conseil Européen

pour la Recherche Nucléaire, or as its more commonly known in English, CERN [197].

In the 70 years since, CERN has grown into a truly international collaboration of

scientists, now encompassing over 12, 000 users and 600 institutions from all over

the globe [198,199]. As our understanding of fundamental matter pushed deeper than

the nucleus, so too did CERN follow into the emerging domain of particle physics;

with its principal complex now frequently referred to as the European Laboratory

for Particle Physics [200].
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Figure 9.1: Diagrammatic representation of the CERN accelerator com-
plex as of 2022. Reproduction of [201]

Since CERN’s first particle accelerator opened its doors in 1957 [202], the CERN

accelerator complex has evolved into a record breaking installation hosting a wide

range of experiments [203]. Not just a collection of disparate apparatus, as can be seen

in Figure 9.1, multiple accelerators build upon one another in succession, incorporat-

ing a multitude of experiment end points [204]. Indeed, most CERN accelerators are

still in use [202], with previously cutting edge installations serving as pre-accelerators

or similar for subsequent generations [203,205].

9.2.2 The Large Hadron Collider

Straddling the France-Swiss border, the Large Hadron Collider, or LHC, stands

as the most powerful particle accelerator ever built, and will remain so for at least the

next two decades [199]. Replacing the LEP Collider as CERN’s flagship accelerator,

the LHC is capable of record breaking nominal collision energies of 13 TeV [205], has

already seen the publication of a staggering 2852 papers in its first decade of oper-

ation [206]. Though principally a proton-proton experiment, heavy ions, particularly
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Figure 9.2: Long term schedule for operation of the LHC from 2021, as
of September 2024. Reproduction of [207].

lead ions, are also routinely collided for atomic research [205].

Data taking operations are divided into a series of runs separated by long shut-

down periods for maintenance and upgrade programs. Runs themselves are punctu-

ated with short yearly winter technical stops, and all shutdowns are succeeded by

commissioning periods. The first formal data taking period began with Run 1 in

2011, and stretched into 2013; while Run 2 lasted from 2015 to 2018. Originally

scheduled to begin in 2021, Run 3 was postponed to 2022 to account for the chal-

lenges brought by the COVD-19 pandemic, and is currently ongoing. A summary of

the future LHC operating schedule can be found in 9.2 [207].

Since 2020, Linear Accelerator 4 has taken on the role of producing initial proton

beams for the CERN accelerator complex [44,203]. Negative hydrogen ions are acceler-

ated to 160 MeV and injected into the Proton Synchrotron Booster, stripping them

of electrons to leave only protons. Here particles are accelerated to 2 GeV, before

transfer to the Proton Synchrotron, further accelerating beams up to 450 GeV [203].

Finally, protons are injected into the LHC itself. At almost 27 km in circumfer-

ence, the Large Hadron Collider is a two-ring synchrotron located between 45 m and

170 m underground, utilising the tunnel complex originally constructed for the LEP

Collider [39]. Though often thought of as circular, the collider consists of eight arcs,

broken up by eight approximately 528 m long, evenly spaced straight sections. These

straight sections, numerated Points 1 through 8, serve as the sites of detector appa-

ratus or other utility purposes [39]. Within the two beam pipes, protons are circulated

in opposite directions in a series of discrete bunches, and can be maintained circling

for many hours [203]. Protons are kept in their circular path by the magnetic lattice, a

collection of thousands of magnets of different varieties and sizes [39,208], including the
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1232 superconducting main dipole magnets [39,205]. Acceleration is performed using

a 400 MHz superconducting radio-frequency cavity system, featuring 8 cavities for

each beam [39,205].

9.2.3 Beam Conditions

Using insertion magnets to squeeze them together, the two beams are brought

into collision in four places around the collider’s circumference, each host to one of

the principal detector experiments [39,203]. Typically in the context of the LHC, an

event denotes a single crossing of proton bunches [30]. However for this section an

event is used in the more general sense of a particular collision interaction.

The rate at which an accelerator produces collisions is typically characterised by

the instantaneous luminosity, L. For a Gaussian beam distribution, such as those at

the LHC, and assuming equal size particle bunches, this can be found by

L =
N2

b nbfrevγ

4πεnβ∗ F (9.2.1)

where Nb is the number of particles per bunch, nb the number of bunches per beam,

and frev the frequency of revolutions made by the beam. γ is the Lorentz factor, εn

the normalized transverse beam emittance, and β∗ the beta function at the collision

point, which relates to the bunch dimensions [39,209]. In many detectors, including

those at the LHC, beams are not collided straight on, but rather with a small offset

angle. This is accounted for by the inclusion of a reduction factor, F , which for small

angles can be given as

F =

((
θcσz
2σ∗

)2
)− 1

2

(9.2.2)

where θc is the crossing angle, and σz and σ∗ the root-mean-square bunch length

and transverse beam size at the interaction point [39,209]. Given the cross section for

a particular interaction, δevent, we can recover the number of events per second by

Lσevent [39,209]. With around 2800 bunches per beam and 1.2 × 1011 initial protons

per bunch, during the 2015 to 2018 window the LHC was producing in the order of

a billion collisions per second [205], and achieved a peak instantaneous luminosity of

L = 2 × 1034 cm−2s−1 [199].

In practice, over the lifetime of a particular particle batch, or fill, the luminosity

will decay, particularly as collisions naturally reduce the number of particles in the

beams [39]. Therefore we often instead consider the total quantity of collisions, rather
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than focusing on the rate at which they occur. This can be characterised using the

integrated luminosity, where over some period T ,

Lint =

∫ T

0

L(t′) dt′ . (9.2.3)

Similar to with instantaneous luminosity, given the cross section for a particular

event the total number of such events is given by Lintσevent
[209], and between 2015

and 2018, the LHC produced an integrated luminosity of 160 fb−1 at its two high

luminosity detector experiments [205,210].

9.2.4 Detector Experiments

Though the LHC is best known for the confirmation of the Higgs [211,212,213], that

was only one part of a far wider physics program [204,214]. As a whole, the CERN

accelerator complex serves a diverse range of experiment installations, with the LHC

itself playing host to 9 distinct experiments [204], each designed and operated by its

own international collaboration.

Of these, the 4 large experiments sit right at each of the 4 interaction points

on the LHC’s circumference where particle collisions occur [203]. As a general pur-

pose detector, ATLAS, or A Toroidal LHC Apparatus, studies a broad range of

phenomena, including the Higgs, extra dimensions, and potential dark matter can-

didates. The largest particle detector ever constructed, ATLAS thus aims to make a

wide range of measurements with as much coverage around the interaction point as

possible [215,216]. Sharing broadly the same scientific goals, CMS, the Compact Muon

Solenoid, is in many ways a sister detector to ATLAS. However it approaches its aims

independently, with its own separate design and technical solutions. This enables the

cross-confirmation of any new discoveries and potential combining of results, such as

in the first observations of the Higgs [204,211,216,217].

LHCb on the other hand is a specialist detector, with an initial focus on the

behaviour of heavy-flavour quark particles in order to probe charge-parity violation.

Providing high precision measurements of low deflection particles, LHCb has broad-

ened into a general purpose forward acceptance detector [5,6,218]. ALICE, A Large Ion

Collider Experiment, places its focus on the LHC’s alternative ion collision program.

Focusing on the physics of the strong interaction, ALICE explores the behaviour of

quark-gluon plasma; a state of matter believed to have existed shortly after the Big

Bang, and only possible at extreme values of energy density and temperature. [219,220].

In addition, 5 smaller experiments utilise LHC collisions in different ways. Both

83



TOTEM and LHCf examine those particles thrown forward by collisions, with very

low deflection from the beam line [204]. Spread at almost half a kilometre around

CMS, TOTEM makes precise measurements of such particles in order to investigate

elastic scattering and diffractive processes, offering insight into proton behaviour

and structure [221,222]. Exploiting similarities to extremely high-energy cosmic-rays,

LHCf sits either side of ATLAS, providing measurements to refine hadron interaction

models [223].

Dedicated to hunt for messengers of new physics potentially missed by the more

general detectors, MoEDAL, now expanded to the MoEDAL-MAPP, searches for

highly ionizing particles, including feebly ionizing and long lived particles [224]. With

data taking beginning in 2022, FASER and SND@LHC are the LHC’s two newest

experiments [204]. The ForwArd Search ExpeRiment, or FASER, searches for light

and very weakly-interacting new particles [225]. Sensitive to the full spectrum of

neutrinos, SND@LHC, or the Scattering and Neutrino Detector at the LHC, makes

precision measurements of neutrinos, probing heavy flavour physics [226].

9.2.5 The High-Luminosity LHC

One avenue for improving the accuracy of measurements is to reduce statistical

errors through increasing quantities of data. The LHC has already seen substantial

upgrades, pushing nominal collision energies from ∼ 7 TeV, later ∼ 8 TeV, in Run

1 to 13 TeV in Run 2 [199]; but while the current LHC has already reached twice

its nominal design instantaneous luminosity, particles such as the Higgs are a rare

occurrence [202].

Therefore in the coming years the LHC will undergo a far reaching upgrade and

replacement program to extend its working lifetime at the cutting edge of physics.

Dubbed the High-Luminosity LHC, or HL-LHC, this revitalised accelerator aims

to reach a fivefold increase in the instantaneous luminosity over the nominal LHC

design value, allowing scientists to push the boundaries of physics for many more

years to come [199]. Not only does this pose a huge technical challenge in itself, but

experiment detectors will also see their own significant upgrade programs in order

to contend with the increased radiation damage and pileup [199,202,227].
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Chapter 10

The LHCb Experiment

10.1 Physics at LHCb

With a core program of charge-parity violation and rare beauty and charm hadron

decays, LHCb is the Large Hadron Collider’s dedicated flavour experiment. Focus-

ing on high precision measurement, the detector’s single-arm spectrometer design

exploits the prevalence of beauty and charm hadron decays (from which the ‘b’ in

its name derives) in the forward region. Upgrades have seen LHCb broaden its ca-

pabilities as a general purpose forward acceptance detector, with interests ranging

from electroweak physics to heavy ion collisions [5,6,23].

As a necessary condition for baryon asymmetry, understanding the origins and

mechanisms of charge-parity violation is a key question in particle physics. In the

standard model, all such violation is described by the CKM mechanism, but this

alone is insufficient to explain the observed baryon asymmetry in the universe. Decay

processes such as B± → DK±, B0 → DK∗0 and B0
s → D∓

s K
± that are described

by tree amplitudes alone provide a means to refine the angle γ of the CKM unitary

triangle, and make precise tests of standard model quark mixing predictions [6].

New particles beyond the standard model may potentially enter loop-mediated

processes such as flavour changing neutral current processes, or FCNC. FCNC tran-

sitions from b to s or d, such as B0
s mixing and loop mediated hadronic B decays,

offer a window to search for new physics sources of charge-parity violation. Equally,

rare FCNC processes involving electroweak box and penguin type diagrams, such as

B0
s → µ+µ−, and other exotic decays are highly suppressed in the standard model,

making them sensitive to new physics. In the charm sector, D meson decays offer a

means to investigate flavour changing neutral current processes involving u quarks.

Potentially sensitive to different forms of new physics, precise measurements of de-
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cays and particle-antiparticle mixing provides complementary constraints on new

physics models [6].

Looking beyond flavour physics, LHCb is able to probe the mechanism of heavy

quarkonium production and study the spectroscopy of bound states formed by heavy

quark-antiquark pairs. With its unique forward coverage (compared to ATLAS and

CMS) LHCb can examine electroweak boson production in a different regime, con-

tributing to refining the mass of the W-boson and the sine of the effective electroweak

mixing angle for leptons. Various models of new physics feature massive, long lived

particles capable of macroscopic distances of flight, resulting in displaced vertices

from the interaction point; something LHCb is well equipped to search for [6].

In addition, an internal gas target, originally conceived for novel beam-imaging,

enables the detector to operate as a fixed-target experiment; and, with its notable

capabilities in the forward region, make a range of unique physics measurements.

Opening up the means to explore fixed-target physics with LHC beams, LHCb has a

unique opportunity to study the production of particles carrying a large momentum

fraction of a target nucleon, make novel probes of nucleon and nuclear structures,

and take various measurements of interest to cosmic-ray physics [23,228].

10.2 Detector Design

With its distinctive conical silhouette, LHCb stands apart from the barrel-shaped

designs of other large detector experiments around the LHC ring. Given that b- and

b̄-hadrons, particles of wide interest to flavour physics, are predominantly produced

at small angular deflections from the beam line [5], LHCb has a nominal pseudora-

pidity range of 2 < η < 5 [23], covering approximately ∼ 15 mrad to ∼ 300 mrad in

the horizontal bending plane and ∼ 250 mrad in the vertical non-bending plane [5].

This focus on measurements in a limited region allows for greater precision than that

practically achievable when seeking to cover the whole angular range. An illustration

of the current LHCb detector can be found in Figure 10.1 [23].

The various component subdetectors can be roughly divided into the particle

tracking system, which charts the passage of particles through the detector, and

particle identification systems, whose measurements determine the identity and cur-

rent properties of a particle. These components do not produce readily prepared

measurements, and so it falls to the data acquisition systems to process, interpret

and record the signals as they come.
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the 40 MHz LHC bunch crossing rate and cope with the larger event multiplicity thanks to a higher
granularity. A full revision of the experiment’s software and of the data processing and computing
strategy was also necessary to deal with the expected large increase in data volume.

This paper describes the design and construction of the upgraded LHCb experiment providing
details on all the new subdetectors, on the trigger and online systems and on the software and data
processing frameworks.

2 The LHCb detector

2.1 Detector layout

LHCb is a single-arm forward spectrometer covering the pseudorapidity range 2 < 𝜂 < 5, located
at interaction point number 8 on the LHC ring. Figure 2 shows the layout of the upgraded detector.
The coordinate system used throughout this paper has the origin at the nominal 𝑝𝑝 interaction point,
the 𝑧 axis along the beam pointing towards the muon system, the 𝑦 axis pointing vertically upward
and the 𝑥 axis defining a right-handed system. Most of the subdetector elements (with the notable
exception of vertex and Cherenkov detectors) are split into two mechanically independent halves (the
access side or Side A at 𝑥 > 0 and the cryogenic side or Side C at 𝑥 < 0), which can be opened for
maintenance and to guarantee access to the beam pipe.

Figure 2. Layout of the upgraded LHCb detector.

The particle tracking system comprises an array of pixel silicon detectors surrounding the
interaction region called vertex locator (VELO), the silicon-strip upstream tracker (UT) in front of the
large-aperture dipole magnet, and three scintillating fibre tracker (SciFi Tracker) stations downstream

– 5 –

Figure 10.1: Side on representation of the current LHCb detector, af-
ter completion of the Phase-I upgrade. The interaction point is located
within the vertex locator, or VELO, on the left hand side. Reproduced
from [23].

10.2.1 Tracking System, Magnet, and Internal Gas Target

As in many experimental detectors, particles are subjected to a magnetic field,

the resulting curved tracks providing a means from which to determine their mo-

menta. To cover all particles produced, the other three large detector experiments

at the LHC apply a magnetic field orientated parallel to the beam line, over a wide

region encompassing the interaction point, one naturally occupied by various sensi-

tive elements, through the use of solenoid magnets. In contrast, LHCb’s forward arm

spectrometer design and focused angular acceptance allows for the magnetic field to

be applied to a region downstream of the interaction point, while still encompass-

ing those particles within the detector’s nominal acceptance. Consequently sensors,

such as tracking systems close to the interaction point, can be located outside the

magnetic field. This is performed using a dipole magnet of two saddle-shaped coils,

mounted above and bellow the beam line, capable of generating a vertical magnetic

field of approximately 4 Tm; resulting in curvature in the horizontal, accordingly

referred to as the bending, plane. During regular data-taking runs, magnet polarity

is periodically reversed, so that data is collected evenly for opposite field configura-

tions [5,23,36].

As it makes its way through the detector, a particle’s passage is recorded at several
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places along its route. The overall tracking system is composed of three installations;

the VELO, UT and SciFi trackers. Surrounding the interaction region itself, the

vertex locator, or VELO, provides high precision positional measurements in the

first moments following a collision, through sequential layers of silicon pixel sensors

arranged along the beam line; and is thus ideally placed for locating vertices [23].

Details on the VELO can be found in Chapter 11.

Originally conceived as a means to perform collision luminosity calibrations, the

internal gas target and its injection system, SMOG, enables LHCb to operate as

a fixed target detector experiment with negligible effect on other LHC activities.

Injecting a low rate of noble gas into the centre of an open ended tube construct

of heat-treated aluminium within the VELO vacuum vessel, the system produces a

localised pressure bump, and a resulting increased beam-gas collision rate. With a

capacity for multiple different gases of differing nuclear sizes, such as Helium, Neon

and Argon, the system not only allows for making precise beam density profile mea-

surements, but enables exploration of the range of opportunities offered by colliding

LHC beams with a fixed target [23,228].

Sitting immediately before, or upstream of, the magnet, lies the second stage of

the tracking system; the upstream tracker, or UT. As illustrated in Figure 10.2(a),

four planes of vertically arranged silicon microstrip detectors are mounted across two

stations, with the inner two planes inclined, in opposite inclinations, by 5◦; enabling

calculation of the vertical coordinate of each hit without ambiguity. 187.5 µm pitch

sensors cover the majority of each plane’s surface, with special half pitch sensors

arranged around the innermost areas to maximise the active area near the beamline.

The planes of each station are nominally spaced 55 mm apart, with 205 mm between

the two innermost planes [23,229]. Through tracking particles as they enter the mag-

net region, the UT plays a significant role in identifying duplicate particle tracks,

improving momentum resolution, and is vital for reconstructing long lived particles

that decayed outside of the VELO [36,230].

On the far side of the magnet is the SciFi, LHCb’s Scintillating Fibre tracker.

Measuring particle trajectories after their passage through the magnetic field, this

subdetector provides the means to determine their momentum. Twelve detection

planes are arranged into three stations of four planes, each station following a similar

pattern to the UT, with the middle two layers of each station again tilted at 5◦ in

opposite rotation to one another. Each plane’s active area is formed by fibre mats

of six layers of densely packed, 250 µm diameter, blue-emitting scintillating fibres.

Stations are separated approximately 700 mm apart [23,36,231]. A 3-dimensional render
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Figure 2.7: Overview of UT geometry looking downstream. The different sensor geometries are
colour coded.

1526 mm in X and 1336 mm in Y, corresponding to θx between ± 317 mrad, and θy between
± 279 mrad. The UTbX plane covers wider in X of 1717 mm. Its angular coverage is
± 314 mrad and ± 248 mrad in X and Y directions, respectively.

The radius of the circular cutout in the innermost sensors is determined by the size
of the beam-pipe, the thickness of thermal insulation layer, and the clearance required.
The outer radius of the existing beam-pipe at UTbX is 27.4 mm. The current design of
thermal insulation, presented in Ref. [19] is 3.5 mm thick aerogel heat shield. We allow
for 2.5 mm clearance. These considerations lead to an inner radius of the silicon sensor of
33.4 mm. Due to the 0.8 mm guard ring, the active area starts at 34.2 mm. The central
hole leads to an acceptance starting at roughly 14 mrad for straight tracks from the centre
of the interaction region. We have verified by simulation that for the typical B decay of
interest, we lose only about 5% of the events because one track is in the beam-pipe hole,
when compared with tracks reconstructed in the VELO and the outer tracker.

Each UT sensors is composed of 250 µm thick silicon and a 10 µm metalisation layer.
The sensors positions are shown as coloured squares in Fig. 2.7. In the central area the
track density is very high. To deal with the high density, sensors of thinner strips, and
also shorter lengths are used. Sensors shaded in yellow have nominal length, and 95µm
pitch, half that of the nominal sensor. Sensors shaded in pink have both half the nominal
pitch and the half nominal length, being about 5 cm long in Y direction. Thus, the central
two staves have sixteen sensors each, instead of fourteen. Each of these fine pitch sensors
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Figure 42. Front and side views of the 3D model of the SciFi Tracker detector.

• Radiation hardness: the tracker should operate at the desired performance over the lifetime of
the experiment, where 50 fb−1 of integrated luminosity is expected to be collected.

• Granularity: the tracker must have an occupancy low enough so that the hit efficiency is not
impacted with an instantaneous luminosity of 2 × 1033 cm−2 s−1 [78, 79].

A tracker design based on scintillating fibre (SciFi) technology with SiPM readout was chosen to
fulfil these requirements.

6.1.2 Detector layout

The SciFi Tracker acceptance ranges from approximately 20 mm from the edge of the beam pipe
to distances of ±3186 mm and ±2425 mm in the horizontal and vertical directions, respectively,
with a single detector technology based on 250 μm diameter plastic scintillating fibres arranged in
multilayered fibre mats. In total there are 12 detection planes arranged in 3 stations (T1, T2, T3) with
4 layers each in an 𝑋 −𝑈 −𝑉 − 𝑋 configuration, as shown in figure 42. The 𝑋 layers have their fibres
oriented vertically and are used for determining the deflection of the charged particle tracks caused
by the magnetic field [79]. The inner two stereo layers,𝑈 and 𝑉 , have their fibres rotated by ±5◦ in
the plane of the layer for reconstructing the vertical position of the track hit.

Each station is constructed from four independently movable structures referred here as C-Frames,
with two C-Frames on each side of the beam pipe. The carriages of the C-Frames move along rails
fixed to a stainless steel bridge structure above the detector, supported by stainless steel pillars. To
simplify production, each station is built from identical SciFi modules about 52 cm wide and spanning
the full height, except for a few modules near the beam pipe. The T3 station is instrumented with six
modules on each C-Frame. T1 and T2 stations have one less module on each side for instrumenting
the smaller acceptance at those locations due to the opening angle of LHCb.

– 57 –

(a) (b)

Figure 10.2: (a) Diagrammatic overview of the UT tracker as viewed
from the downstream direction, showing the four layer arrangement in-
cluding tilted layers. Green indicates regions using the regular sensors,
while yellow and pink indicate those regions near the beamline using spe-
cially designed sensors with half pitch. Reproduced from [229]. (b) A
3-dimensional render of the SciFi tracker, shown both from the from the
downstream direction (left) and side on (right). Reproduced from [23].

of the SciFi tracker is shown in Figure 10.2(b).

10.2.2 Particle Identification Systems

In the LHCb detector, differentiation between pions, kaons and protons is achieved

through a pair of ring imaging Cherenkov detectors, RICH1 and RICH2 [23,232]. As a

charged particle traverses through a dielectric medium, if its velocity exceeds that of

light in said medium, electromagnetic radiation is emitted, overlapping waveforms

forming a characteristic cone-like wavefront, in a process known as the Cherenkov

effect [7]. Both RICH detectors exploit this process through use of fluorocarbon gas

volumes; the resulting photons then focused through a system of spherical and planar

mirrors onto detector planes formed of multi-anode photomultiplier tubes, positioned

outside the detectors acceptance to avoid influencing the onwards passage of parti-

cles [23,232]. The radiation’s cone-like wavefront results in ring images, from which

the cone’s opening angle, and so the particles velocity, can be determined; proving

a means to relate a particles momentum and mass [7,23].

Located between the VELO and UT trackers, RICH1 utilises C4F10 gas and cov-

ers an angular acceptance of 25 to 300 mrad in the horizontal (25 to 250 mrad in

the vertical) plane, enabling it to identify particles in the 2.6 to 60 GeV/c momen-
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dose. Moreover, with the removal of the previous 1 MHz hardware trigger, the RICH read-out

electronics have to provide single-photon counting capability at 40 MHz and compensation for the

typical pixel gain variation. To cope with these new experimental conditions, the RICH system has

been upgraded with modified mechanics, new spherical mirrors, and redesigned photon detection

chain. Figure 1 shows a schematic view of the upgraded RICH system, highlighting the main

structural elements of the detectors.

Figure 1. Schematic view of RICH 1 (left) and RICH 2 (right).

2.1 RICH 1 new mechanics and optics

With the five-fold increase in the instantaneous luminosity, a redesign of the RICH 1 optics was

necessary to spread the photon distribution over a wider area, reducing the peak occupancy, defined

as the fraction of detected photons over the total number of channels [3]. As determined from

experience in Run 1 and Run 2 operations, the best performance of the pattern recognition algorithm

is achieved when the occupancy does not exceed 30%. This is accomplished by increasing the

radius of the spherical mirrors to 3.7 m with respect to the previous value of 2.7 m [4]. In addition,

as presented in figure 2, the focal plane has been moved backwards resulting in an enlargement of

the Cherenkov ring size.

2.2 The upgraded photon detection chain

The whole photon detection chain was replaced in both RICH 1 and RICH 2 detectors, in order

to readout the detectors at 40 MHz rate. The former Hybrid Photon Detectors (HPD), with the
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necessary to spread the photon distribution over a wider area, reducing the peak occupancy, defined

as the fraction of detected photons over the total number of channels [3]. As determined from

experience in Run 1 and Run 2 operations, the best performance of the pattern recognition algorithm

is achieved when the occupancy does not exceed 30%. This is accomplished by increasing the

radius of the spherical mirrors to 3.7 m with respect to the previous value of 2.7 m [4]. In addition,

as presented in figure 2, the focal plane has been moved backwards resulting in an enlargement of

the Cherenkov ring size.

2.2 The upgraded photon detection chain

The whole photon detection chain was replaced in both RICH 1 and RICH 2 detectors, in order

to readout the detectors at 40 MHz rate. The former Hybrid Photon Detectors (HPD), with the
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(a) (b)

Figure 10.3: A pair of 3-dimensional renders illustrating the (a) RICH1
and (b) RICH2 detectors after the Phase-I upgrade. Both reproduced
from [233].

tum range. Positioned instead after the SciFi tracker, and so the magnet, the larger

RICH2 subdetector provides identification for higher momentum particles in the 15

to 100 GeV/c range, using CF4 gas and with a 15 to 120 mrad angular acceptance in

the horizontal bending (15 to 100 mrad in the vertical non-bending) plane [23]. Illus-

trations of RICH1 and RICH2 can be found in Figure 10.3(a) and (b) respectively.

RICH2 is followed by the detector’s calorimeter system, which determines the en-

ergy of a range of particles, and uses a classical electromagnetic calorimeter followed

by hadronic calorimeter structure [23]. As particles impact material in the relevant

calorimeter, they trigger a cascade of reactions, resulting in a shower of secondary

particles across which their energy is distributed. These particle showers are stopped

within the subdetector, producing scintillation light from whose measurement, using

photomultiplier tubes, the original particles energy may be reconstructed [7,23]. Being

a destructive method of measurement, the calorimeter system marks the end of many

particle’s journeys through the detector, and so lies near the end of overall detector;

the front surface of the first calorimeter, the ECAL, located around 12.5 m from the

interaction point [23].

As an electromagnetic calorimeter, the ECAL concerns itself with particles that
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Figure 5: ECAL cell.

LHCb frame in which (x, y) is the plane perpendicular to the beam axis. The ECAL front
surface is located at about 12.5 m from the interaction point. The energy resolution of
ECAL for a given cell, measured with test-beam electrons is parameterised [5] as

σ(E)

E
=

(9.0± 0.5)%√
E

⊕ (0.8± 0.2)% ⊕ 0.003

E sin θ
, (1)

where E is the particle energy in GeV, θ is the angle between the beam axis and a line
from the LHCb interaction point and the centre of the ECAL cell. The second contribution
is the constant term (corresponding to mis-calibrations, non-linearities, leakage, ...) while
the third one is due to the noise of the electronics which is evaluated on average to 1.2
ADC counts [1].

2.5 HCAL

The HCAL thickness is 5.6 interaction lengths due to space limitations. A sampling
structure was chosen, made from iron and scintillating tiles, as absorber and active
material, respectively. The special feature of this sampling structure is the orientation of
the scintillating tiles that are placed parallel to the beam axis (Figure 6) thus enhancing
the light collection compared to a perpendicular orientation of the scintillating tiles. The
same photomultiplier type as in ECAL (Hamamatsu R7899-20) is used for the readout.
The HCAL has in total 1488 cells all of the same dimension located in two regions (inner
and outer), depending on their distance to the beam-pipe.

The energy resolution measured in test beams with pions is [6]

σ(E)

E
=

(67± 5)%√
E

⊕ (9± 2)%, (2)

where E is the deposited energy in GeV.
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Figure 6: HCAL cell.

2.6 Electronics, readout and monitoring

The common approach used in all four detectors to process the photomultiplier signal is
to make first a shaping and an analogue integration of the signal then sample and finally
digitise it. The reduced digitised information (8 bits) is sent to the trigger validation board
which builds signal candidates (hadron, electron, photon). The full digitised information
(12 bits) is available to data acquisition for higher level trigger selections and offline
analysis. The design of the calorimeters causes the MA-PMT or PMT output signal to be
wider than 25 ns. Different solutions are adopted to face this problem.

The SPD and PS subtract, in turn, a fraction of the signal measured in the previous
clock cycle to solve the problem of the width of the MA-PMT pulse. The integration is
performed by 2 interleaved integrators running at 20 MHz. One channel integrates while
the other discharges. Since the readout uses 64 channel MA-PMT, small boards, called
Very Front-End (VFE) boards, located close to the detector, host the MA-PMT and the
associated signal-processing electronics. The SPD output is reduced to a single bit of
data, comparing the integrated signal value with a threshold. This threshold is tuned by
measuring the SPD efficiency for different thresholds, looking for the best efficiency while
keeping the noise rate low. The analogue signal of the PS and the SPD bit are sent to the
FEB in the crates located near the ECAL and HCAL readout crates. In these FEB, the
PS signal is digitised by a 10-bit analogue to digital converter (ADC).

The ECAL and HCAL electronics performs a clipping of the signal prior to integration
so that it almost fully fits in one clock cycle. The readout is performed by an analogue
chip hosted in the FEB located in crates installed in the LHCb cavern, directly on top of
the calorimeter structure. The integrator discharge is done by injecting altogether with
the current PMT signal an inverted copy of the signal delayed by 25 ns [1, 2]. Hence, the
signal at the integrator output reaches its maximum on a plateau, which is stable (within
1%) during 4 ns where it is sampled and digitised on a 12-bit precision scale.
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(a) (b)

Figure 10.4: Diagrams illustrating the compositions of (a) an ECAL and
(b) a HCAL cell, tiled to form the respective calorimeters. Both repro-
duced from [234].

interact with the electromagnetic force, such as electrons, positrons and photons.

Electromagnetic showers are provoked by 2 mm lead sheets, interspersed by 4 mm

plastic scintillator, and threaded with wavelength-shifting fibre cables to collect and

deliver scintillation light to the photomultiplier tubes [23,36]. An illustration of a

ECAL cell can be seen in Figure 10.4(a). With the particle density significantly

higher closer to the beam line, the ECAL is divided into three regions, with pro-

gressively larger cells employed further from the beam line [23,234]. The HCAL, as a

hadronic calorimeter, conversely covers protons, kaons and other hadronic particles

that interact by the strong nuclear force. As shown in Figure 10.4(b), staggered iron

and plastic scintillator tiles are here arranged parallel to the beam line for improved

light collection, and again collected by fibre cables [23,234]. Given the typical spread

of hadronic showers, HCAL has a comparatively larger granularity compared to the

ECAL, and is similarly divided into two regions with larger cells employed away

from the beam line [23]. With the importance placed on electrons and photons energy

resolution, the ECAL has a thickness covering 25 radiation lengths; while the HCAL,

due to space limitations, is limited to 5.6 nuclear interaction lengths [7,23].

While electrons lie within the domain of the ECAL, owing to comparatively sup-

pressed bremsstrahlung, muons do not develop electromagnetic showers as electrons

do. Equally, muons do not experience the strong nuclear force, allowing them to

pass through hadron-absorbing material such as the tiles of the HCAL [7]. Though

it leaves muons outside the reach of the calorimeter system, this penetrating power
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Figure 4.1: (a) Side view of the LHCb Muon Detector. (b) Station layout with the four regions
R1−R4 indicated.

4.1.2 Upgrade overview

The muon system is the most shielded sub-detector of LHCb and particle rates will be tolerable
up to an instantaneous luminosity of 2× 1033 cm−2 s−1 at 14 TeV collision energy in all stations
apart from M1, which will be removed in the upgraded experiment. The particle flux experienced
by the innermost regions of station M2 is expected to be very high, and so additional shielding
will be installed around the beam-pipe behind the HCAL to reduce the occupancy in these
regions. The existing front-end electronics is already read out at the rate of 40 MHz intended for
the upgraded experiment, in order to provide information to the current L0-muon trigger. On the
other hand, the off-detector readout electronics provides full hit information (position and time)
only at a rate of 1 MHz, and is not compliant with the new fast communication protocol based
on the GBT chipset. Hence the off-detector readout electronics must be completely redesigned.

The upgrade programme for the muon system can therefore be summarized as follows:

• removal of station M1;

• design of new off-detector readout electronics compliant with full 40 MHz readout and the
new GBT–based communication protocol;

• installation of additional shielding around the beam pipe in front of station M2.

Ageing of detectors is a concern after LS3, especially in the innermost regions of station M2.
An R&D programme on new more radiation tolerant detectors is therefore ongoing.

This document is organized as follows: Sect. 4.2 discusses the detector requirements and
specifications; the technical design of the new readout electronics is described in detail in Sect. 4.3,
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(a) (b)

Figure 10.5: (a) Side on diagram of the muon system, showing the ar-
rangement MWPC’s and thick iron filters. Note that this diagram specif-
ically corresponds to the pre Phase-I upgrade detector. Aside from the
removal of the pre calorimeter M1 station and introduction of additional
shielding around the beam pipe, the detector’s overall composition as
shown is largely unchanged; with the upgrade program otherwise focus-
ing on the electronics and readout systems [23,232]. (b) Diagram illustrating
the four regions, as viewed from the downstream direction, with granu-
larity increasing as regions are located further from the beam pipe. The
region labels R1-4 correspond to the arcs indicated in (a). Both repro-
duced from [232].

is instead leveraged to provide robust muon identification [7,232]. Located after the

calorimeter system, where few other particles will reach, LHCb employs a muon iden-

tification system comprising of four multi–wire proportional chambers, separated by

thick, 80 cm iron walls to filter low energy particles [23,232]. Each is composed of four

independent layers, consisting of anode wires between a pair of cathode plates, and

act to pick up the passage of those particles that have penetrated that far through

the detector. Diagrams of the muon system can be seen in Figure 10.5. As particle

flux is higher closer to the beam line, each chamber is divided into four regions of

differing granularity, again increasing further from the beam line to even out particle

flux and channel occupancy [23,232].
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Figure 102. Schematic view of the packing mechanism to merge TFC and ECS information on the same GBT
links towards the FE electronics. GBT words are subdivided into small e-links.

10.4 Experiment control system

The ECS is in charge of the configuration, monitoring and control of all areas of the experiment; this
comprises classical slow controls of high and low voltages, fluid-systems, various sensors as well
as monitoring and control of the DAQ and HLT systems. It provides an homogeneous and coherent
interface between the operators and all experimental equipment, as shown in figure 103.

Figure 103. Scope of the ECS.

– 131 –

Figure 10.6: An illustration outlining how the LHCb readout chain is
managed, including the Experiment Control System and Timing and Fast
Control system. Reproduced from [23].

10.2.3 Control Systems

The ‘brain’ of the experiment if you will, centralised control systems manage and

operate the many components of the detector in real time. A rough outline of the

LHCb readout chain and its management is shown in Figure 10.6.

The Experiment Control System, or ECS, manages the configuration, monitor-

ing and control of the experiment. As the system with which operators interact, it

provides a coherent interface for manage all detector equipment, including trigger

system; and is built on the joint control project, or JCOP, a common framework for

detectors at the LHC [23,235]. The many readout elements that make up the LHCb

detector are grouped in partitions, each of which may represent a part of a subde-

tector, a subdetector in its entirety, or a group of subdetectors. These partitions

are independent of one another, allowing them to be controlled and operated sepa-

rately [23].

Responsible for clock, timing and readout management, the Timing and Fast

Control system, or TFC, keeps the experiment running in synchronous. The system

handles generating and distributing signals from the experiment master reference

clock throughout the detector. It also manages the flow of data through the entire

readout chain to ensure coherent data taking across all readout elements; issuing

commands to control processing within readout and front end electronics, along with
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other calibration and subdetector-specific commands to detector electronics [23,36,235].

10.3 Data Acquisition, Trigger and Analysis

While traditional trigger approaches look for generic signatures that don’t re-

quire significant analysis to identify, increasing event rates and the broad range of

potentially interesting events involved in the LHCb physics program mean it is not

possible to sufficiently reduce events in this way. Instead, to reduce events to record-

able levels it is necessary to first reconstruct an event online in order to identify

physics signals of interest. Though demanding, this has allowed the experiment to,

where possible, develop a novel system where only a limited amount of information

concerning the less interesting remainder of an event is propagated onwards to final

storage [23,236].

Therefore in order to achieve a readout of 40 Hz, LHCb has since 2022 operated

a fully software event filtering system, using this real time analysis and selective

persistence approach, to reduce incoming data down to a manageable 10 GB per

second; including the demanding task of performing full offline quality reconstruction

in real time [23,237]. Unlike the hardware stage of the previous trigger system, the

new first selection stage notably now has access to tracking information with which

to make its selections, as many signals of interest to the LHCb physics programs

can be distinguished using momentum direction and vertex information [29]. Online

processing has been designed so that any offline reconstruction or selection is a

reconfiguration of the same algorithms; therefore, as of commencing data taking Run

3, no separate offline repetition of the reconstruction carried out online is foreseen,

and LHCb offline computing is consequently dominated by simulation [23]. While the

nature of this system, from the point of view of the front end electronics, means the

detector can be justifiably considered ‘trigger-less’, in practice the event selection

system is still referred to as the trigger, for convenience and as a continuation of

naming schemes used by the previous system [23,237].

A representation of the full LHCb data processing pipeline can be found in Fig-

ure 10.7, with the online data acquisition and offline processing stages detailed in

Figure 10.7(a) and (b) respectively. The LHCb codebase is largely written in C++,

for data processing and algorithms, and python, for job configuration. [29]. The on-

line trigger system incorporates two reconstruction and selection stages, HLT1 and

HLT2 *. The experiment CPU codebase is built on the experiment wide Gaudi [240]

*HLT refers to High Lever Trigger. This naming convention is a legacy of the previous trigger
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Figure 1: LHCb upgrade dataflow focusing on the real-time aspects.
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Figure 10.7: Illustrations of the LHCb dataflow from 2022 onwards, fo-
cusing on the (a) online or (b) offline stages. Reproduced from [238].
Indicated dataflow values in turn from [237] and [239].

framework, with HLT2 and sprucing handled by the Moore [241] application. HLT1

operates on GPU, implemented in CUDA within the Allen [242] framework [23,29].

10.3.1 Track Categorisation

Before proceeding, it is worth summarising how tracks within the LHCb detector

are categorised. Tracks are divided into five types based on which trackers a given

track has a presence in.

� Velo tracks are those tracks which appear only within the VELO, and so in-

system, which incorporated a Low Level Trigger stage.
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Figure 110. Track types in the LHCb detector bending plane. Reproduced from [1]. © 2008 IOP Publishing
Ltd and Sissa Medialab. All rights reserved.

Charged particle pattern recognition. Different tracking algorithms exist to reconstruct different
track types, illustrated in figure 110. Tracks which originate in the vertex detector (VELO tracks)
are used to determine the positions of the primary 𝑝𝑝 collisions, a process known as primary vertex
finding. The combination of 𝑣 positions and track trajectories, in turn, allows tracks which originate
from the decays of long-lived particles and are therefore displaced from the 𝑣 to be precisely identified.
As there is effectively zero magnetic field inside the VELO, these tracks must be extrapolated into the
region covered by the UT (upstream tracks) and SciFi Tracker (long tracks) in order to measure their
momentum. Long tracks have the most precise and most accurate momentum determination and are
used in nearly all LHCb analyses. In addition to the forward algorithm which extrapolates VELO
tracks to the SciFi Tracker, a second redundant reconstruction path (seeding) performs a standalone
reconstruction of track segments in the SciFi Tracker (T tracks) before matching them to VELO tracks
and optionally UT hits. In addition, SciFi Tracker seeds are extrapolated to the UT and used to form
downstream tracks in order to reconstruct particles which originate outside the VELO but before the
UT. Downstream tracks provide the bulk of LHCb statistical power for the study of decays involving
strange hadrons. The track extrapolations used in all of these pattern recognition algorithms are, for
reasons of speed, based on parametric models of trajectories in the LHCb magnetic field. Duplicated
tracks (clones) can be formed when different algorithms reconstruct the same track segment in one of
the subdetectors, for example when a long track and a downstream track share a T-station seed. These
are filtered by removing duplicates within individual pattern recognition algorithms. Following the
Kalman fit, a global clone-killing algorithm uses the fit quality to perform a final arbitration between
overlapping VELO, long, and downstream tracks and removes the remaining duplicates.

The charged pattern recognition algorithms have undergone significant evolution from the Run 1
and Run 2 code in order to make them better able to efficiently use modern multicore CPU architectures.
An example of such optimised algorithms is described in detail in ref. [191], while their performance
is documented in section 13.
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Figure 10.8: Categorisation of track types, depicted in the bending plane.
Reproduced from [23], itself based on a diagram in [218].

cludes tracks outside the nominal LHCb angular acceptance and those corre-

sponding to short-lived particles that do not reach the UT.

� Upstream tracks appear in both the VELO and UT trackers, but do not reach

the SciFi.

� Long tracks pass through all three trackers, and as such are typically those for

which the most accurate momentum determination can be made, and therefore

are the most used for physics analysis.

� Downstream tracks are present in the UT and Scifi trackers, such as those

originating from secondary vertices between the VELO and UT.

� T tracks are those that appear only in the SciFi, and are so called as a legacy

of the previous TT tracking system.

An illustration of the above track types can be found in Figure 10.8 [23,218,243].

10.3.2 Event Building and HLT1

As measurements are made, signals from the various subdetectors are dispatched

to the dedicated Event Builder server farm, located in a containerised data centre

above ground. Here, as the name suggests, the event building process is performed, in

which data corresponding to each specific bunch crossing event is assembled together.

Data corresponding to empty crossings are normally dropped at this stage, and a

global cut is used to remove events featuring a very large quantity of tracks, as
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these would both use a disproportionate amount of resources to reconstruct and the

reconstruction quality is likely to be worse [23,36,244].

Once data from all sources has been received, an event is transferred on to be

processed by HLT1, which runs on GPUs within the Event Builder farm. The first

of two principal filtering stages, HLT1, performs partial reconstruction, focusing on

long tracks, in order to perform an initial filtering pass. Though reconstruction

including information beyond the trackers would allow for more precise selection,

reducing calculations is very important at this stage, and a large efficiency can be

achieved from examining tracks alone [23,244].

Beginning with the reconstruction of tracks and primary vertices within the

VELO, tracks are subsequently extrapolated through the UT and SciFi Trackers,

including accounting for deflection by the magnet; enabling particles’ momenta to

be deduced. A simplified Kalman filter method is applied to high momentum tracks

to estimate details on them when they were near the beam line, and in turn better

pinpoint where they originated. Muons among the particles are then identified, and

finally tracks are fitted to common origin points to form displaced secondary vertex

candidates [23,242,244].

Selection applied at this point are designed to reduce the number of events by

roughly a factor of 20, a level at which full quality event reconstruction can feasibly

take place. Designed to be inclusive, criteria are primarily driven by identifying

signatures desirable by the bulk of the LHCb physics program, along with additional

selections for other signatures that might otherwise not be picked by the principal

selections, and to select events for technical and calibration purposes [23,242,244].

10.3.3 Calibration Buffer and HLT2

Successful events from HLT1 are subsequently transferred to the Event Filter

Farm, or EFF, a large farm of general purpose x86 CPU servers located in the

same data centre, which while the LHC is not taking data can be utilised for other

computing tasks [23,36].

In order to perform event reconstruction, accurate calibration and alignment in-

formation is required. Thus events are sampled from the buffer to perform real time

calibration and alignment studies. Parameters important to HLT1 are relatively

quick to compute, and are updated as soon as possible. However while using old pa-

rameters is acceptable for a first reduction cut, it is not for detailed reconstruction,

and computing the complete range of parameters necessary takes time. Events are

therefore held in a large intermediary storage buffer as their corresponding calcula-
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tions are completed. This also allows events to be buffered during event production

and caught up on between LHC fills, spreading out processing to ease computing

requirements [23].

Once prepared, events proceed to HLT2 and full offline-quality reconstruction.

Similar to in HLT1, this commences with track reconstruction, utilising separate

algorithms for different track types [23,237,243]. Long tracks, the most used in physics

analysis, are reconstructed by two independent algorithms. Each takes a different

approach; one extrapolating velo tracks into the UT and SciFi and picking up hits

directly, the other matching already found tracks within the SciFi, themselves recon-

structed with a hybrid seeding algorithm, to velo tracks and potential intermediary

UT hits [23,243]. Said SciFi tracks are also extrapolated backwards to the UT in order

to construct downstream tracks. Likely duplicate tracks sharing segments in a given

tracker are analysed and pruned by individual pattern recognition algorithms [23,237].

The properties of charged particle trajectories are determined using a Kalman fit

method. For most events, interactions with the detector material are parametrised,

while a more detailed method, employing interaction tables for magnetic field and

material distribution, is used for those events destined for alignment or analyses

requiring enhanced precision. A global algorithm then seeks out and removes any

overlapping tracks and other remaining duplicates [23].

Progressing to particle identification, separate reconstruction of ECAL [23], RICH

detector [245] and muon system [246] measurements are performed; and with a combi-

nation of these results, identification of electrons, muons, pions, kaons and protons

among the detected particles. Tau leptons and neutral particles decaying in the de-

tector are treated as composite particles. This identification process is performed

by multiple multivariate classifiers, tuned for different kinematic regions, and the

choice which specific algorithm informs a particular selection lies with the relevant

analyses [23].

Each reconstructed event is scrutinised by approximately one thousand differ-

ent algorithms to identify whether it is of interest to retain for the various LHCb

physics analyses, or for other purposes such as calibration. At the same time, these

algorithms propose what set of information to retain on a selected event, and in

accordance with the selective persistence approach used, the union of requested data

is recorded [23,237]. Where successful, events are grouped based on the underlying

physics present or event information recorded; and all necessary data is consolidated

into files for storage on magnetic tape. All events are associated to one of three

storage streams, depending on selecting algorithms and the data they request be
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recorded. Where reduced information is retained, events are allocated to the Turbo

stream, while those events stored in their entirety go to the FULL stream. Events

for calibration are stored as the TurCal stream [23,247].

10.3.4 Offline Processing and Analysis

With most data processing activities performed online, offline processing con-

sists largely of final data preparation for physics analysis, including minimising the

amount of data analysis will need to access in order to be carried out. Known as

sprucing, the process shares many algorithms and tools with HLT2 and principally

consists of skimming, slimming, and streaming tasks. Where required, skimming

applies further selections to events in the FULL stream, in order to reduce their

number, while slimming reduces the amount of information stored for a particular

event. Compared to selection within HLT2, the more relaxed limits on computing

time allows for selections unachievable on an online timescale, such as those depen-

dent on analysis of complex cascade or many-particle final state decays. Regardless

of whether skimming or slimming was performed, a given FULL or Turbo event is

then streamed according to its physics content, along with the creation of accom-

panying metadata files. The final data is then formatted and saved to disc, from

which the datasets used by physics analyses are centrally produced. Sprucing is per-

formed concurrently to data taking, and re-sprucing campaigns are also performed

periodically [23,247].

10.4 Upgrade Programs

Despite successfully operating at approximately L = 4× 1032 cm−2s−1, twice the

instantaneous luminosity for which it was originally designed, various measurements

studied in LHCb’s physics program are still constrained by statistical uncertain-

ties [23]. Dubbed the Phase-I Upgrade, the 2018 to 2022 shutdown period therefore

saw the LHCb detector undergo a extensive upgrade, enabling the detector to op-

erate at a instantaneous luminosity a further factor of five higher and an increased

bunch crossing rate of 40 MHz [6,23,229,232]. Central to this is the evolution of the

previous readout and online systems, with replacement of the previous hybrid hard-

ware and software triggers by the new flexible software based system; incorporating

real-time offline quality reconstruction for event selection while building on the selec-

tive persistence approach of the previous system. This overhaul of the data systems
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naturally involved improvements across the board, such as optimisation of recon-

struction algorithms, implementation of HLT1 on GPU hardware, and migration of

underlying software to operate on the latest C++ version [23,237,244].

In rising to meet the challenges posed by increased luminosity and readout, the

Phase-I Upgrade also involved upgrades to all component subdetectors, representing

a replacement of more than 90% of the active detector channels and including com-

plete replacement of the tracking system [23,229,247]. The VELO was replaced by a new

system, it’s original silicon strip design exchanged for a silicon pixel system. Mean-

while, the previous Tracker Turicensis detector, or TT, had its duties taken over by

two new system, with the UT replacing the first TT station, and SciFi the remain-

ing three [23,229]. The internal gas target injection system saw upgrades focusing on

its expanded role in use as a fixed-target experiment, particularly the introduction

of a dedicated construct within which the gas is injected, tightening the achievable

density to a more localised area [23,228]. Along with a redesign of RICH1’s optics, the

RICH system saw a new photon detection system, with its hybrid photon detector

replaced with multi-anode photomultiplier tubes and accompanying front end elec-

tronics. The calorimeter system saw a comprehensive redesign and replacement of

both front end and readout electronics; and having principally served the original

hardware trigger, the Scintillating Pad Detector, or SPD, and the PreShower, or PS,

calorimeter systems were removed. The muon system received new readout electron-

ics, along with introduction of additional shielding around the beam pipe. Similarly

to the SPD and PS systems, the muon M1 station largely provided for the previous

hardware trigger, and so was removed [23,232].

As mentioned in Section 9.2.5, in the coming years the LHC will itself play host

to a transformative upgrade to push its potential luminosity output even further,

revitalising the accelerator as HL-LHC. Therefore work is underway towards a new

LHCb upgrade program, the Phase-II Upgrade, in order to take advantage of this am-

bition program and address the challenges posed by the accelerators high luminosity

phase [6,227]. As part of this, significant preparatory consolidation and enhancement

work, dubbed Upgrade Ib, is planned for the 2026 to 2029 shutdown period [248].
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Chapter 11

The LHCb Vertex Locator

11.1 Role

Positioned at the tip of the LHCb detector, the VELO, or vertex locator system,

provides precision tracking in the immediate vicinity of the proton-proton interac-

tion region, and is typically the first sensitive detector particles encounter. With

sensitive elements sitting as little as 5.1 mm from the proton beams during data

taking, the VELO is specifically designed with precise resolution of primary and

secondary vertices in mind [23,249]. Displaced secondary vertices are a key signature

of b- and c- hadron decays, and so of crucial importance to event selection for the

LHCb physics program. Reconstruction of tracks within the VELO is among the

first steps performed during both HLT1 and HLT2 stages, seeding further track re-

construction across the detector [23,30,36]. Though LHCb as a whole has a nominal

2 < η < 5 acceptance, from its position surrounding the interaction point, the VELO

is not limited to the forward region, and so incorporates sensitive elements both up

and downstream; with additional tracks used to improve measurement of primary

vertices [249].

11.2 Overarching Design

LHCb uses a global coordinate system, which places the origin at the nominal

interaction point, with the positive z-axis extending along the LHC beam-line into

the forward region accepted by the detector. The positive y-axis is orientated verti-

cally, and the x-axis horizontally with direction following standard conventions [250].

This coordinate system can be observed superimposed in Figure 10.1, with the origin

lying within the VELO and the positive z-axis extending towards the Muon system.
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beyond the Standard Model, mostly through precision studies of𝐶𝑃 Violation and rare decays, searches
for new hadronic states, electroweak precision measurements and a broad QCD phenomenology in
the forward region. A major change of the experiment has been undertaken for the LHCb Upgrade
I [1] which will operate for the next decade (Run 3 and Run 4). This detector incorporates a new
vertex locator (VELO) system [2], which provides crucial input to the trigger with precise primary
and secondary vertices reconstruction. The production and quality assurance of the modules of
this system are described in this paper.

The LHCb Upgrade will allow the experiment to run at an instantaneous luminosity of 2 ×
1033 cm−2s−1, a factor five higher than in the previous runs. The experiment is expected to collect
an integrated luminosity of 50 fb−1 by the end of Run 4. While the previous experiment relied on
a purely hardware based first level trigger, with a maximum readout rate of 1 MHz [3], a purely
software trigger is now utilised. This includes the identification of heavy-flavour decays with vertex
reconstruction, to expand the physics programme. The new trigger [4] requires all detector systems
to be upgraded for 40 MHz readout and all front- and back-end electronics to be replaced in order
to cope with the increased data rates. The Upgrade was installed during the LHC long shutdown
LS2 (2019–2021), with the first data taken in 2022.

Figure 1. A CAD model of the layout of the VELO Upgrade detector, showing the RF foil in the centre (grey),
the detector modules, Vacuum Feedthrough Board (light green) and the Opto-and-Power Board (purple).

Using the same mechanics as its predecessor, the upgraded VELO is separated into two retractable
halves which surround the interaction point, as shown in figure 1. Each half is enclosed in a thin
corrugated RF aluminium box, that keeps the detector vacuum separated from the main LHC vacuum,
as well as shielded from beam-induced currents. During LHC beam injection, the two VELO halves
are kept in a retracted position at a safe distance of 30 mm from the beams and only moved inward to

– 2 –

Figure 11.1: A 3-dimensional model of the overall VELO detector, post
Phase-I upgrade, within the vacuum vessel. Reproduced from [249].

In addition, when facing down the beam-line into the detector, the left, x > 0, and

right, x > 0, hand sides are conventionally referred to as the A and C sides respec-

tively*, with side C lying towards the inside of the LHC ring. Many parts of the

detector, VELO included, use to this nomenclature for components [23,250,251].

A render of the wider VELO is shown in Figure 11.1, with key components of

the inner portion illustrated in Figure 11.2. The detector consists of 52 identical

‘L’ shaped modules, with correspondingly-shaped sensitive areas, arranged in pairs

across 26 stations spaced along the beam line. Each pair together forms an ap-

proximate square, orientated perpendicular to the LHC beam line, with the beams

themselves passing through the central aperture formed between them [23,249,251]. Sta-

tions are arranged to ensure that 99% of tracks originating within ±2δ lumi of the

nominal interaction point, and within the detector’s 2 < η < 5 acceptance, will be

measured by four stations [251]. To protect the sensors while still enabling them to be

placed as close as possible to the beam-line, modules are mounted as two indepen-

dently retractable halves, known as Side A and Side C. These halves are retracted

during the fill procedure to 30 mm until the circulating beams have stabilised, before

returning to the closed position for data taking [249,251]. The approximate squares are

orientated at 45◦ about the z-axis, a module forming each side of the resulting dia-

mond shape, in order to minimise collision risks during installation. In addition, this

*This convention owes itself to the detector’s practical placement within the detector cavern,
and is in reference to ‘access’ and ‘cryogenics’ sides [23].
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Figure 21. Illustration of the VELO halves showing modules on the module support bases and the LHCb
acceptance as a transparent pyramid. On the left, the flexible electronic cables are shown leading to the vacuum
feedthrough boards and OPB boards in their custom frame. On the right, the flexible construction of long
cooling loops is shown as well as the interface between the secondary and isolation vacua, in which sits an array
of valves.

from the movable bases to the fixed detector hood, which is the large flange that seals the detector
volume on the external wall of the vacuum vessel. The ∼ 3 cm travel of the halves is absorbed by
flexible power and data cables running between the module foot and the vacuum feedthrough. These
details are shown in figure 21. For the CO2 supply, an elongated cooling loop, incorporated into
every pipe running to/from each module, absorbs the movement. The cooling lines are connected
to a series of valves located in the tertiary vacuum, the isolation volume.

3.7.1 RF boxes

The RF boxes are the thin-walled corrugated enclosures that provide the barrier between the primary
(beam) vacuum and the secondary (detector) vacuum and interface the VELO detector halves to the
LHC beams. They are made from aluminium, a light and electrically conductive material. Their
complex shape accommodates overlaps between sensors of opposing halves, while maintaining
electromagnetic effects to an acceptable level. In order to compensate for the reduced spatial resolution
of the pixel detector, compared to that of the innermost microstrips of the previous VELO sensors, the
distance of approach to the beams was reduced from 8.2 to 5.1 mm. The beam aperture, as defined
by the inner surface of the RF boxes, reduces from 5.5 to 3.5 mm. Special blocks of AlMg4.5Mn0.7
alloy were forged to obtain a homogeneous material with small grain size and without cavities. The
initial blocks had dimensions 1200 × 300 × 300 mm3 and were milled to the desired shape with a
5-axis milling machine.

The RF box fabrication procedure included several steps, such as verification of the block
quality, rough milling of the outside and inside shape, stress-relieving annealing, final milling to

– 31 –

Figure 11.2: An illustration of the two VELO halves, depicting the mod-
ules and their supporting structure, corresponding to the inner portion of
Figure 11.1. The electronics are included on the left side, while the right
side instead shows the CO2 coolant system. The RF foils are not shown,
and the LHCb nominal acceptance region is indicated by the transparent
pyramid. Reproduced from [23].

orientation is advantageous should the detector need to be operated with the halves

not fully closed [23,252].

Each half is encased by a thin aluminium alloy enclosure known as the RF foil,

corrugated in a stepped design following the modules, which acts to shield detector

electronics from beam induced currents [249,251]. In order to maintain structural in-

tegrity while keeping material to a minimum, so as to reduce scattering, the foils are

fabricated from solid blocks, painstakingly machined down to a typical thickness of

250 ± 100 µm [23,36,251].

The overall detector resides within a 1.4 m long by 1.1 m diameter vacuum vessel

integrated into the LHC beam pipe and which houses the primary beam vacuum,

with the detector assemblies entering through apertures on either side. Wakefield

suppressors are installed at both ends of the vessel. Modules themselves operate

within a secondary vacuum, separated by the RF foil together with a bellows system

to accommodate for motion; while a pair of hoods seal the secondary vacuum from

the external atmosphere [23,249,251].
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of the VeloPix ASICs by decoding and distributing the LHCb clock and other control signals. VeloPix
data are routed through four thin PCB cables each with up to seven differential links, for a total of 20
links per double-sided module. Power is delivered via an assembly of 20 silicone-coated copper cables
and a PCB transition bridge that reduces the thickness of the cables and thus the material budget close
to the beamline. The transition bridge also provides mechanical support for the various cables. The
bias voltage is delivered via thin PCB tapes which are wire-bonded to the top surface of the sensors.
All parts of a VELO module are shown in figure 5 and described in more detail in the next sections.

Figure 5. Left: connector side and right: non-connector side of a fully-assembled VELO module.

3.2.1 Microchannel plate

Since the module is operated in vacuum, power dissipated in the electronics must be efficiently removed.
The microchannel cooling technology was chosen since it provides an excellent thermal performance,
minimum material budget and no mismatch of thermal expansion with respect to the tiles. Figure 6
shows a drawing of the microchannels. The power dissipation of the electronics components on the
module is removed by the evaporative CO2 coolant running through the track-like cooling channels.
This technology builds on the experience of operating the first evaporative CO2 cooling system in the
original VELO [12]. In total, 19 channels are embedded into a silicon plate of 500 μm thickness. Each
channel has its own input and output and the coolant distribution is done under the fluidic connector.
The connector is made of invar and provides interface between the microchannels and the cooling
line. An extensive R&D programme on the soldering of the connector to the microchannel plate was
needed, in order to establish a reliable connection and adequate quality control procedure [13]. The
initial section of the channels (roughly 4 cm long) is narrower (60 μm × 60 μm) to ensure an even

– 7 –

Figure 11.3: Photographs of a fully-assembled VELO module showing
the (left) connector, as viewed from the upstream, increasing z direction,
and (right) non-connector, as viewed from the downstream, decreasing
z direction, sides. Various components are labelled. Reproduced from
[249].

11.3 VELO Pixel Modules

An individual VELO pixel module is pictured in Figure 11.3. Each of the 52

modules is composed of a microchannel plate bearing four 14.080 mm by 42.570 mm

active area sensor tiles, two mounted on either side so as to form the overall ’L’

shape acceptance. [249,250]. In order to minimise the material present near the inter-

action region, the innermost tiles protrude from the plate by 5 mm, and to catch

highly inclined tracks, tiles on opposite sides are displaced such that they overlap

by 110 µm. Due to mechanical limitations however, there is a small unavoidable

gap in acceptance between the outermost tiles [251,252]. The arrangement of tiles is

illustrated in Figures 11.4(b) and 11.5.

This assembly is affixed, through an invar cooling connector, to a mechanical

support known as the hurdle; and in turn mounted to the module support base

using an aluminium foot [249]. Spread over just over 1 m, modules are arranged

along each side with a tightly spaced central region, along with forward and back-

ward region groupings, and a minimum spacing of 25 mm for modules on the same

side. The layout is identical on each side, save that modules on Side A are dis-

placed in z by +12.5 mm relative to Side C. This allows so that when in the closed
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Figure 2: Layout of the upgraded VELO. Top: schematic cross-section at y = 0, together
with illustrations of the z-extent of the luminous region and the nominal LHCb acceptance.
Bottom: schematic layout in the xy plane (left: VELO closed, right: VELO fully open).

which the modules are located. The thin corrugated walls of the boxes facing the beam
are known as RF foils. Each of the two halves houses an array of 26 L-shaped silicon pixel
detector modules.
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(b)

Figure 11.4: An overview of the VELO module setup. (a) Side on cross
section at y = 0 showing the LHCb VELO module locations, with the
interaction region and boundaries of LHCb’s nominal acceptance region
indicated. (b) Schematic of the sensitive region of a station in the x-y
plane, in both the closed (left) and open (right) states. Reproduced from
[250].

position, modules corresponding to the same station overlap by 200 µm to ensure

coverage [23,249,251,252]. Modules are labelled 0-51, with module 51 both at largest z

and farthest from the nominal interaction region [250]. The arrangement of modules

is depicted in Figure 11.4(a), and is optimised based on simulation with spacings

regularised to multiples of 12.5 mm for sake of the RF foil [252]. A table of module

positions and numberings is provided in Appendix B and a detailed summary of

module geometry can be found in [250].

A single tile consists of a planar silicon pixel sensor bump-bonded to three bespoke

pixelated ASIC chips in line, which provide signal processing and digitisation [23,23,249].

Each sensor is divided into 768×256 square pixels of 55 µm pitch, with an additional
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Figure 39: Front and rear side of a module containing two 3× 1 tiles on either side. Sensors are
drawn in red and the microchannel cooling substrate in blue. The bottom sides of the ASICs
are drawn in yellow, while the area where the bond pads are located is made green. The overall
horizontal and vertical dimensions of the substrate are 80 and 104 mm, respectively.

• The adjacent ASICs need a minimum separation distance to allow for the dicing

Figure 40: Front (x,y) view where a module of each detector half is depicted, i.e. they are at
different z-positions. The contours of the tiles on the front (back) side of the module of the left
half are drawn in solid (dotted) blue. Those of the module on the right half in red. In each
module a small gap in the acceptance is visible in the horizontal plane. Tiles on opposite sides of
the module are shifted to eliminate a gap for highly inclined tracks.

47

Figure 11.5: Positioning of tiles active areas for a pair of modules, in
the closed position, in the x-y plane. Tiles located on the back side of
a module are depicted with dotted outlines, tiles corresponding to the
same module are depicted in red or blue respectively. Note that the axes
shown do not correspond to the positioning of the x-y axes of the wider
coordinate scheme detailed above. Reproduced from [251].

row on the outer side acting to tie the ASIC ground to the innermost sensor guard

ring. Arranging the ASICs together in a line results in a 165 µm gap between the

256× 256 pixel matrices corresponding to each ASIC; therefore pixels bordering the

inter-chip regions are elongated to 137.5 µm to provide coverage [249,250].

Thermal cooling is achieved through an evaporative CO2 cooling system, the

liquid-vapor mixture circulating through 200 µm wide by 120 µm deep microchannels

within the plate to which the active components are affixed. Channels interface with

the wider coolant system through the invar cooling connector, with the local CO2

itself located in a separate tertiary vacuum volume. To achieve an even coolant

distribution, the first few centimetres of ingoing channels narrow to 60 µm by 60 µm,

while the hurdle acts to thermally insulate modules from their mounting point [23,249].

The ASIC on each module side are managed by a pair of frontend hybrids, one

serving each 3 ASIC tile, while a single accompanying GBTx hybrid per side decodes

and distributes control and timing signals to each frontend hybrid pair. Placed out-

side the vacuum vessel, the opto- and power-board, or OPB, acts as the interface

between modules and the wider off-detector electronics systems; transmitting data
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Figure 17. Block diagram showing the main parts of the VELO electronics system.

The VeloPix ASIC [45] reads the analogue signals from the sensor and sends binary hit data in SPP
(see section 3.3.1) over serial links at rates up to 5.12 Gbit/s per link. Serial data routing as well as dis-
tribution of clock, control and power is managed on the FE by hybrid circuits (section 3.6.2). The serial
data from the hybrids is transmitted out of the secondary vacuum on high-speed serial links, through
a vacuum feedthrough board to the opto- and power board (OPB), see section 3.6.5, mounted on the
exterior of the vacuum vessel. The control signals to and from the FE are transmitted on identical serial
links. The low and high voltage is supplied through the same vacuum feedthrough board to separate
cables. The temperature monitoring (section 3.6.6) is routed through the data flex cables and the OPB.

Through optical links, the OPB transmits the data to the TELL40 data acquisition cards (section 3.8)
whilst receiving control signals from the SOL40 readout supervisor. The TELL40 and SOL40 boards
are located in the DAQ server rooms in the data centre, which requires over 300 m of optical fibre.
The high and low voltage supplies are located in the electronics barracks in the LHCb cavern,
requiring about 60 m of cable.

3.6.2 Front-end circuits (hybrids)

On the module, the distribution of ASIC power, clock and control signals and the routing of outward-
bound data is provided by hybrids. These are four-layered, flexible printed circuits interconnected with
two-layered polyimide cables. The hybrids have a total thickness of 390 μm and come in two types,
as shown in figure 18. The first type provides the FE electronic interface to each VeloPix where wire
bonds are used to connect the hybrid to the ASIC periphery. The second type houses the GBTx chip
and distributes timing signals and fast control instructions to the VeloPix ASICs via the FE hybrids.
Slow controls are routed through the GBTx hybrid as well as monitoring of the bias voltage.

On each module face there are two FE hybrids and one GBTx hybrid. The FE electronics are
packaged into these three pieces rather than one larger hybrid circuit in an effort to minimise stress

– 27 –

Figure 11.6: Diagram outlining the main parts of the VELO electronics
system. Reproduced from [23].

and receiving control signals beyond the detector through optical fibres, while sig-

nals and voltages are routed across the vacuum barrier through a custom vacuum

feedthrough board. Both high and low voltage supplies are received from elsewhere

in the LHCb cavern, with the OPB converting and distributing the low supply volt-

age [23,249]. An overview of the electronics systems is depicted in Figure 11.6.

11.4 Track Reconstruction within the VELO

11.4.1 Development of the Pattern Recognition Algorithm

The first VELO pattern recognition algorithm was developed in 2002 [253], and

went on to see further tuning in 2004 [254] and 2007 [255]. Taking a track follow-

ing approach, it was designed in context of the previous VELO detector geometry,

which utilised a system of silicon strips arranged as concentric ring and radial strips

around the beam-line, with each station similarly composed by two (in this case

semi-circular) halves [29,253]. After clustering, a 2-dimensional search was performed

in the r-z plane, hunting for potential triplets of three hits across consecutive stations

based on slope and alignment. These seed tracks were then extended onwards to fol-

lowing stations, picking up additional hits to form track candidates, before tracking

with corresponding angular measurements, and finally, fitting using a Kalman fil-

ter [29,253,255]. As the detector looked to push beyond its original design luminosity,

and to accommodate unforeseen issues related to VELO positioning, a modified algo-

rithm was introduced in 2011 [256]; this revised method looking instead for quadruplets
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of hits in the r-z plane, before seeking triplets among those left unused [29,256].

With the new VELO pixel detector and software only trigger system on the

horizon, efforts began on redesigning the algorithm for the post Upgrade-I era, with

the first version implemented in 2012 [257]. Now working in Cartesian coordinates

and with 3-dimensions from the beginning, it followed a similar approach to the

previous method; only instead considering pairs of unused hits, then extending them

upstream [29,257]. Representing a more radical departure, an alternative approach

using a Hough transform method inspired by straight line recognition within the eye

was also investigated around the same time [34,35]. Returning to look for triplets across

neighbouring stations, a new local search algorithm designed with parallelisation and

GPU architectures in mind was presented in 2014 [258], with further improvements

over the coming years [259]. An initial baseline tracking implementation for HLT1,

featuring various execution time improvements, was introduced in 2018 [29,260].

Presented in [30], with further discussion in [261], the current pattern recogni-

tion implementation continues on the methodology of previous algorithms. A revised

search by triplet algorithm implemented in the Allen framework, it is designed with

parallelisation in mind and with features to reduce combinatorics and track overlap-

ping [30,242,244,261]. The algorithm was designed for use with the SIMT programming

model of CUDA, for use on GPU, and is implemented in the HLT1 trigger stage. An

implementation for CPU using the SPMD programming model, detailed in [29], has

also been developed [261,262].

In what follows, we will focus on providing an outline of track reconstruction for

HLT1 during Run 3. Currently, HLT2 reuses VELO tracks as found in HLT1, though

other approaches are implemented. LHCb software is constantly evolving, and the

following is predominantly based on the algorithm as described publications. It may

therefore not describe the algorithms used for a given day.

11.4.2 Clustering

Given that most VELO pixel sensors are only 55 µm square in size, it is not

uncommon for a particle’s passage to activate more than one sensor, typically 1-

4 [36,263]. Therefore before pattern recognition, the reconstruction of particle tracks

within the VELO begins with grouping connected activated pixel measurements into

clusters [29,242]. Pixel data is read out of the VELO in 2 × 4 blocks, known as super

pixels. Where a cluster is isolated to a single super pixel, it is processed using

a lookup table of pre-calculated pixel combinations [29,36,263]. Otherwise, groupings

are first built up on a series of 10 × 12 matrices, or 3 × 3 super-pixels, filled in
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as neighbouring super-pixels are evaluated. Within these groupings, 3 × 3 cluster

candidates are identified, and similarly processed using a lookup table [263].

11.4.3 Pattern Recognition

First, the angle ϕ with respect to the origin (as described in Section 11.2) is found

for all hits in an event, and hits within each module ordered in increasing ϕ. This

is used to define, for each hit, a window of ϕ acceptance on consecutive modules,

and determine the hits which fall into them. An illustration of this is shown in

Figure 11.7(a) [30].

Then, beginning farthest from the interaction point, the algorithm operates on

three consecutive modules at a time. Each hit on the central module is selected,

and three hit segments are formed using compatible hits from within the previously

calculated ϕ windows on either side. All combinations are compared using a χ2

least-squares fit, and if it passes a minimum threshold, the best triplet is retained as

a track seed. By restricting the algorithm to look at only combinations falling within

these windows, the number of calculations is greatly reduced, and by ordering the

hits within a module by ϕ, those falling within a given window can be defined by

the first and last which do so [30].

A forwarding stage then attempts to extend any candidates by extrapolating the

segment formed by the last two hits onwards to the next module, and a ϕ window

is determined. Each hit within the window is evaluated against an extrapolation

function,

extr =
dx2 + dy2

dz2
(11.4.1)

where (dx, dy) is the displacement of the examined hit from the position predicted

by the extrapolation, and dz the distance parallel to the beamline to the segment’s

last hit. The hit which minimises this function (again within a minimum threshold)

is appended to the forming track. If a compatible hit is found, all hits composing

the forming track are flagged as having been accounted for, and are then excluded

from subsequent consideration. Candidates consisting only of the three initial hits

are therefore left unflagged. Should a candidate go without compatible hits being

found on a number of successive modules, it is stored and no longer propagated.

The algorithm then progresses one module onwards and repeats the seeding-then-

forwarding process. Figures 11.7(b)-(d) depict this process being carried out across

five modules [30].

Finally, candidates of four or more hits are promulgated as tracks. Candidates
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A. Sequential algorithm

Track forwarding is a local method consisting in finding
track candidates and forwarding them over the rest of detector
modules. The nominal LHCb algorithm [8] finds a candidate
pair of hits fulfilling a compatibility condition in neighbouring
modules on the same side. Then, the forwarding phase con-
sists in extrapolating the candidate’s trajectory to subsequent
modules, finding hits that fulfill an extrapolation condition.
Tracks are forwarded until either no modules remain, or no
hits fulfilling the extrapolation condition are found on two
consecutive modules on the same side. Hits are flagged upon
finding tracks of 4 or more hits, so they are not considered
for other tracks. The process is repeated until no candidates
remain.

Additional design decisions specific to the Velo detector
have been taken in the sequential algorithm. Tracks are re-
quired to consist of at least three hits. Three-hit tracks are
required to have no flagged hits and to pass a fit cut, since
they could potentially be formed out of noise. This is less
likely on tracks with more hits, as each additional track hit
has to fulfill the extrapolation condition.

A number of modules can be missed in the forwarding
phase. This stems from a physical condition: A particle may
not leave a signal on a module in its path. The probability of a
track missing a signal in a module while having left signals in
the precedent and posterior modules is under 1%. However,
the probability of a track missing two consecutive modules
on the same side is under 0.01%. Therefore, the sequential
algorithm allows for a missing module on the last signal side.

The sequential algorithm has been validated to deliver the
required physics performance. However, in our opinion there
are some fundamental design shortcomings. It should be noted
that the solution found by the algorithm is deterministic,
although it depends on the order in which hits are considered.
Hits are sorted prior to the reconstruction taking place, and
the order must be strictly followed for the results to be
reproducible. Additionally, hits are required not to be flagged
before checking the compatibility or extrapolation conditions.
These two facts are implicit RAW dependencies, and make
parallelization in the algorithm unfeasible without blocking
conditions.

III. SEARCH BY TRIPLET

We propose a data parallel approach to Velo reconstruction.
Events are physically independent, and can be reconstructed in
parallel. Within an event, several tracks can be reconstructed
in parallel. Also, events are sufficiently small that they are
amenable to be processed by relatively small kernels, avoiding
register spilling.

The Search by triplet algorithm is composed of five sub-
algorithms that are described independently. For all complexity
considerations, we generalize our algorithm to m consecutive
detector modules, and an average number of hits in each
module n.

Sort by phi
Given a list of module hits as input, no assumption can

be made as to the order of hits inside each module. This
algorithm sorts each of the module hit sets increasingly
according to ϕ, calculated as the 2-argument arctangent for
each hit with respect to the origin of coordinates. Given
the expected number of hits is small, a method employing
shared memory3 is used for storing the newly calculated ϕ
and finding the sort permutation. The permutation is then
applied to hit coordinates, yielding sorted Structure of Arrays
for each module. A parallel insertion sort method has been
implemented for calculating the permutation. The complexity
of this algorithm is O(m · n2).

Find candidate windows
In order to minimize the amount of candidates considered

in subsequent steps, the first and last hits in the region
of acceptance in the preceding and following modules are
calculated for every hit. Figure 2 depicts this process. Hit c0
would have one candidate on both the preceding and following
modules, whereas c1 would have one and two respectively.
This process is repeated for every hit in every module that has
a preceding and following module. All modules are processed
in parallel. In order to find the first and last candidate, a binary
search in ϕ is performed. The complexity of this algorithm is
therefore O(m · n · log(n)).

z

0

0 window 

1 window 
1

c0

c1

Figure 2: Three consecutive modules with hits are depicted.
For hits c0 and c1, their respective ϕ angles and opening win-
dows in the preceding and following modules are highlighted.
c0 has a compatible hit in the preceding module and another
one in the following module, on the left and right respectively.
c1 by contrast has one hit in the preceding module and two in
the following module.

Track seeding and track forwarding
The track seeding algorithm operates on three consecutive

modules at a time. It assigns threads4 to hits in the middle
3In our GPU implementation, the configurable L1-cache shared memory

is employed, due to its low latency and high throughput. In our CPU
implementation, main memory is employed.

4The CUDA terminology thread and block is employed here. Equivalently
for the CPU implementation, program instance and gang [18].
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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module, and each of these threads checks the preceding
and following modules for compatible hits. The previously
calculated ϕ windows are employed to this end. For every hit
in the middle module, all triplets in the search window are
fitted and compared, and the best one is kept as a track seed.
If there are no hits in either of the search windows, or the
least-squares fit χ2 is over a certain compatibility threshold,
no track is formed for that hit.

The multiplicity of triplets to be analyzed varies from hit to
hit. A variable workload has a negative impact on performance
in parallel architectures, as threads in a block would become
idle until all workloads are finished. For this reason, multiple
threads can be assigned to process the same hit. In this fashion,
if there is one hit with a very high workload, its performance
impact is diminished as it will be processed in parallel. The
amount of threads assigned to each hit is configurable in our
algorithm. Additionally, in cases where the number of hits is
under a certain threshold, threads are dynamically reassigned
to process one of the hits left, minimizing idle threads.

Since several threads may process the same hit, a synchro-
nization mechanism is required in order to guarantee that only
the best triplet for every one middle hit is kept as a track
seed. This synchronization mechanism utilizes shared memory,
where every thread stores its best found triplet, alongside its
fit χ2. Once all threads have computed their assigned triplets,
the χ2 values assigned to the same middle hit are compared,
and only the best fits for each middle hit are kept. After all
found triplets have been checked, threads assign to the next
hit.

This tiled processing mechanism for finding triplets is ap-
plied in first instance to the modules that are further apart from
the collision point, as they present the lowest hit multiplicity.
This algorithm yields a deterministic solution, that is, the
obtained set of triplets is independent of the order in which
hits are processed. Each triplet is the seed of a forming track,
and in the forwarding phase we will try to extend them by
looking for hits on the following modules.

Track forwarding operates on forming tracks and forwards
them to a specified module. Threads are assigned to forming
tracks. For every track, the segment defined by its last two hits
is extrapolated to the working module. Then, a binary search
is performed in ϕ in the module. The extrapolated segment is
checked against the hits as a function of their distance in the
module (dx, dy) and the distance along the beam axis from

the last hit to the current one (dz):
dx2 + dy2

dz2
. The hit that

minimizes the extrapolation function and is under a certain
threshold is then appended to the forming track, which is kept
for a posterior track forwarding step. A configurable number of
modules with no compatible hits are allowed when forming a
track. If this number is exceeded, three-hit tracks are stored in
a weak tracks container for posterior consideration, and tracks
with four or more hits are stored in the final tracks container.

When a compatible hit is found, track forwarding flags all
hits of the forming track. The flag can then be used in the
track seeding algorithm, imposing the condition that all hits

in a track seed be unflagged. Flags are populated in track
forwarding, and are read in track seeding. Therefore, this
imposes a Read-After-Write dependency between forwarding
and seeding, and the requirement of inter-algorithm synchro-
nization.
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Figure 3: Three processing stages of Search by triplet are
depicted. (a) Track forwarding operates on the second module
from the left. For each track ti, the segment given from its last
two hits is extrapolated to the processing module, and ϕi is
calculated. A search window is opened and the hit within this
window that minimizes the extrapolation function is chosen. If
a compatible hit is found, all hits in the track are flagged. (b)
Track seeding operates in the middle module. The highlighted
hits ci are considered for creating new seeds. Flagged hits
are ignored. (c) Track forwarding in the leftmost module. All
forming tracks are considered for the search. Since tracks
t3 and t4 present overlapping search windows, they may be
extended with the same hit.
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(c) (d)

Figure 11.7: A sequence of illustrations of the stages of the pattern recog-
nition algorithm, as described in [30]. (a) shows, for an example set of
three consecutive modules, the process of determining the windows of
ϕ acceptance, ϕi, corresponding to a middle module hits ci, in order to
generate seeds. (b)-(d) depicts the progressive building up of track can-
didates, beginning after an initial seeding, across five modules. (b) The
set of candidate tracks, ti, are forwarded onto the next module. Corre-
sponding windows ϕi are determined and acceptable hits are subsequently
added to the candidates, with all hits in those tracks flagged. (c) The al-
gorithm progresses one module on, and attempts to seed more candidates
around potential middle hits, ci in green, using corresponding windows,
ϕi. Flagged hits (in red) are not considered. (d) Candidates are again
forwarded onwards, extrapolating the segment formed by the final two
hits onto the next module, and defining a window ϕi for each track ti

[30].
Reproduced from [30].
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of only three hits are first subject to additional scrutiny, and must both be under a

χ2 threshold, and contain no hits that were later flagged [30].

11.4.4 Track Fitting

Assuming straight line tracks, as there is negligible magnetic field within the

VELO [237], candidates are fitted using a comparatively simple Kalman filter method.

A transverse momentum of 400 MeV/c is used for all particles for covariance calcula-

tions, and multiple scattering is treated independently along x and y axes [242,244,262].

Particle states are estimated when closest to the beam line, for vertex reconstruction

calculations, and, at the end of the VELO, for use in extrapolating tracks onwards

to the other trackers [244].

In both HLT1 and HLT2, after tracks have been formed incorporating all three

trackers, additional Kalman filters fittings are performed to determine the properties

of particle trajectories to maximum accuracy [23,244].

11.5 Machine Learning at LHCb and the VELO

The LHCb experiment is no stranger to machine learning in its quest to un-

derstand matter; and such tools can be found in all stages of data processing [63].

Neural network classifiers are employed at various stages during and after track re-

construction to reduce fake tracks, and thus also combinatorics, particularly for long

tracks [61,264]. Using data from across the detector, global particle identification is

performed by neural networks, with separate algorithms estimating the probability

of different identity hypotheses [265]. Boosted decision trees have served in topo-

logical selection triggers for many years [64,266], now with neural networks for the

inclusive heavy flavour trigger [63,267]; and machine learning based selection triggers

are responsible for the majority of data retained by the online trigger system [62].

Looking to the VELO specifically, a machine learning approach was developed for

detection of anomalies in the previous VELO subdetector calibrations, and was in-

corporated into the detector monitoring software [268]. In addition, a neural network

based pulse-shape reconstruction technique for the readout ASCIs was employed for

optimisation [269].

With the upgraded Run 3 VELO on the horizon, an early investigation into

integrating deep learning into pattern recognition for the new detector was published

in [270], and outlined bellow in Section 11.5.1. This work was continued by the
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authors, and one successor model is detailed in Section 11.5.2. Taking a different

direction, a model drawing from [270] and featuring notable post processing and

error reduction stages was developed, and is detailed in [36]. In addition, there has

been exploration of a neural network based kalman filter algorithm for HLT1 [271].

11.5.1 An Early Pattern Recognition Model

Following previous pair seeding-based approaches, the model described in [270]

employs a neural network as a classifier to estimate the likelihood a particular pair of

hits forms a true track segment; acting as an alternative to both window techniques

for reducing combinations and in place of other selection methods to chose the most

likely pairing. Though this early model displayed significant promise, it suffered

notable degrading performance approaching the interaction region.

Beginning from the station farthest from the interaction point, a seed hit (rs, ϕs)

on the given station is evaluated against N potential partner hits (ri, ϕi) on the

following station, using the neural network classifier. The classifier returns a set of N

values, interpreted as the probabilities corresponding to the N examined hits on the

following station. The hit with the highest predicted score and passing a threshold

is taken as forming a candidate track with the seed hit. Repeating the procedure,

the model works back towards the interaction region using each successful hit as the

new seed for the following pair of stations, until a set of hits is encountered where

no predicted score passes the threshold.

An independent instance is trained for each distinct station pairing, thus z coor-

dinates were not included. The network itself is a fully connected feed forward neural

network of four layers, with 2 (N + 1) inputs and layers of size 32N + 1, 32N + 2,

(32N + 2) and N . Each layer uses a ReLU activation function, apart from the final

layer which uses a sigmoid function.

11.5.2 The Hybrid Model

Building on their work, the authors of the above model developed a later algo-

rithm, which eschewed a track forwarding approach for an additional neural network

based stage. As it combines traditional pattern recognition with machine learning,

for the purpose of this thesis we will refer to this model as the Hybrid Model.

After first scaling r and ϕ values by 50 mm and π respectively, as an approximate

normalisation, the model commences by considering a pair of modules on successive

stations at a time. For each such module pairing, every combination of a pair of
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hits, one from each module, is compiled and evaluated using a pair classifier. The

classifier returns a single value, interpreted as a probability score that the specified

two hits form part of the same track, and is applied in batches of up to 4096 pairs

at a time. A separate classifier is used for each particular combination of modules,

and takes r, ϕ and the cluster size npix for both hits as its inputs. Pairs receiving a

prediction of over 0.5 are retained, along with their scores, for the next stage.

Once all module pairings have been considered, the model proceeds to examine

every combination of three modules that form a run across three successive stations.

In each case, three hit segments, or triplets, are constructed from those retained hit

pairs from the first and second pairings of modules forming the three module run,

which share a common hit on the central module. These triplets are then similarly

evaluated by a second form of classifier in batches of up to 4096, again returning

a single value for each and using a separate classifier for each combination of three

modules. The classifiers take as inputs the r, ϕ and npix for each of the three hits

forming the triplet, the two probability scores of the pairs composing it received in

the previous stage, and the explicit differences in r and ϕ between successive hits.

Both forms of classifier are fully connected, feed forward neural networks of three

layers with ReLu activation functions, save for the final layers, which employ sigmoid

functions. The pair classifiers use 6 input variables, and layers of sizes 16, 16, and

1; while the triplet classifiers use 15 input variables, and layers of sizes 64, 64, and

1. A final stage constructs tracks by connecting successful triplets where the final

two hits of one triplet correspond to the initial two hits of another; while lone triplet

tracks are required to pass a higher threshold. Where the last hit of a track match

the first of another, it is assumed the two tracks were accidental split by a missed

triplet and merged into a single track; a clone killing technique to reduce duplicate

tracks.
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Chapter 12

Aims and Method

12.1 Aims

Within a tracking detector, particle hits are highly relational, emerging from the

complex chains of particle decays and interactions [162]. The presence or absence of

other nearby hits has the potential to inform whether particular detections likely

result from the same particle’s flight as another. This can be seen in how many local

pattern recognition methods which otherwise operate on specific hit combinations in

isolation, confer to form candidates using only the combination judged most likely

from among a selection, even if other hits would otherwise have been used. Not being

tied to follow predetermined models, deep neural networks can infer and leverage

complex patterns in data that are otherwise difficult to determine explicitly. Given

the increased instantaneous luminosity of the HL-LHC and the move to full online

track reconstruction, the timing requirements on LHCb VELO reconstruction present

a significant challenge; and neural networks have shown great success at performing

other pattern recognition tasks with fast execution times.

Therefore, our aim was to develop a proof of concept neural network model capa-

ble of performing the pattern recognition stage of VELO track reconstruction whilst

examining an event holistically; and thus potentially draw inferences from the event

as a whole. With graphs being well suited to describing sparse, irregular and re-

lational data, this evolved into a graph neural network approach, and development

of a network architecture agnostic framework with which to consider various GNN

models. Given the typically slower execution speeds of GNN models compared to

other neural networks, our focus became precision. Noting the success of architec-

tures based on the Interaction Network [153] at tracking in the context of the ATLAS

detector [180,181,182], this work culminated in a similarly inspired model.
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12.1.1 The Challenge of Representation

A significant obstacle to a model which can consider an event as a whole, or at

least a portion of one, lies in that a basic feed forward neural network (and therefore

many other forms of neural network) takes a fixed and predetermined number of input

variables; where a single event contains a variable number of hits. Therefore, the

challenge is to represent the available data composing an event in a form accessible

to a neural network.

Though global mapping based approaches such as the Hough Transform offer a

representations in which solutions are more readily observable, they do not address

this problem in themselves. A truly local approach considering subsets of a prede-

fined size one at a time, by choosing say the nearest neighbours in real space, can

circumvent this issue. However there is a potential to exclude a correct partner in

high density events, or the need to pad out inputs if there are too few hits overall to

fill the subset each time; and is nevertheless a rather unsatisfactory starting point

considering our aim. Sequential neural network models such as LSTM are capable of

operating on variable size inputs, but are liable to introducing unintended structure

from the order in which information is presented.

Initially, we looked at the potential of translating the problem of track finding into

a ‘game’ like state, and leveraging recent developments in deep reinforcement learning

such as Deep Q-Learning. Reinforcement learning enables a machine learning model

to be trained to act in order to maximise a final goal without an immediate payoff;

in this case, the correct identification of hits that belong to the same track. By

calibrating how the goal is evaluated, a model can be encouraged to place more or

less importance on certain achievements over others, tuning its priorities. However,

as track finding is ultimately a pattern recognition task, we were unable to find an

approach that would not likely be better served as a direct classification task.

During these endeavours we investigated taking an image-like approach, in which

the cloud of hit coordinates could be represented as a 3-dimensional ‘image’*. As

the VELO subdetector is itself fixed in size, this would represent an event of any

number of hits as a fixed sized object. In this approach, the problem of tracking

becomes one of instance segmentation; identifying objects within an image and which

pixels are attributed to them, here identifying track instances and which hit-pixels

are attributed to them. Convolutional neural network based models have proved

*Reinforcement learning approaches are generally agnostic to the specific form of neural network
model used, and have been successfully used in conjunction with CNN [272], and even GNN [273], in
other applications.
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widely successful at instance segmentation tasks, and, depending on architecture,

can operate with variable sized data, giving the opportunity to built on existing

model architectures. While most instance segmentation work naturally addresses

2-dimensional images, advancements have been made into 3D image segmentation,

though unstructured and haphazard 3D data remains significantly challenging [274].

However, this method presented immense issues with the size of representations.

The naive approach is to represent the whole VELO using a cubic voxel grid, with

a voxel size matching that of a sensor element; but the VELO’s highly granular

resolution, and the size of gaps between modules, leads to a representation running

into Gigabyte size. Non-cubic voxels can be used, compressing the number of vox-

els in the z direction and using irregular lengths to minimise representation of the

between module gaps. Yet even then, reaching manageable sizes necessitated down

sampling, potentially merging hits, and approaches only considering only a portion

of the detector at a time. Further, the sparsity of data makes representing an event

this way extremely wasteful, with a significant quantity of empty voxels, and many

CNN methods struggle with operating on sparse data. Ultimately, work following

this approach struggled with untenable computational times for training, and as a

graph based approach had began to show success, was not pursued further.

As a data structure, graphs are an efficient way to represent sparse data struc-

tures; making them a natural choice for depicting an event. By encoding each hit

within the detector as a vertex, and joining all vertices which could form part of

the same track by an edge, tracking becomes an edge classification problem, a task

GNN have proved successful at tackling. Even though such graph representations do

not have a consistent size, many recent GNN models can function on variable size

graphs, and, through the message passing mechanism, remain sensitive to informa-

tion encoded by a graphs structure.

12.2 Dataset Production

12.2.1 Monte Carlo Simulation

From detector design to physics analysis, Monte Carlo simulations are a widely

established tool in high energy physics; and around 80% of LHCb CPU resources in

the 2015 to 2018 period were employed in Monte Carlo related tasks [23]. Monte Carlo

sample production for the LHCb experiment utilises a modular system, designed

such that samples are processed through an identical dataflow as real data as far as
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possible [23]. The Gauss package is responsible for modelling collision events, utilising

dedicated physics generators such as Pythia8 [275,276] or EvtGen [277], and transporting

the resulting particles through the detector, typically using the Geant4 simulation

toolkit [145]. Recreation of the detector and readout electronics response, known as

digitisation, is performed by the Boole package, after which an emulator of the event

building process is employed to produce raw data in an identical format to that

output by the LHCb DAQ chain. Where desired, simulated data may subsequently

proceed through the same online and offline processing, outlined in Section 10.3, as

used for real data. As with other LHCb applications, both Gauss and Boole are built

on the Gaudi framework [23].

12.2.2 Datasets

The sample data used in this work was produced through Monte Carlo simulation,

as above, using a model of the (then future) Run 3 LHCb VELO subdetector. A

detailed description of this model can be found in [257]. A large number of simulated

minimum-bias events were generated, under conditions designed to reflect the events

realistically recorded by the detector, and each accompanied by Monte Carlo truth

information.

These events were divided into several independent batches, which we will refer

to as our datasets. A first dataset was used for the example events with which

neural networks were trained, a second for evaluation of a network at the end of an

epoch during the training procedure, and a third for evaluating trained models. The

same three datasets were used for all models, and each consisted of between 1.2 and

1.3 × 106 non-empty events.

12.2.3 Detector Scope

In order to reduce the computational burden from the size of graphs, in most

instances we limited ourselves to considering only one half the full VELO detector,

split lengthways along the beam-line. This is achieved by restricting our data to only

even numbered modules, which with the module layout as described in Section 11.3,

reduces us to a single module per station.

Approximately 10% of tracks include hits on both odd and even modules [251], and

this was verified for the three datasets primarily used. At two modules per station,

implementing the full detector would approximately quadruple the number of edges

in a pair graph representation (see Section 12.3.1). As events are approximately
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symmetric around the beam line, this still encompassed a full range and distribution

of potential particle tracks, so is sufficient for a proof of concept investigation. The

same datasets were employed regardless of how much of the detector was considered,

with any restrictions on data applied at the time an event was loaded, reducing the

number of tracks in a dataset as a whole.

A table summarising module potions is provided in Appendix B. Modules are

arbitrarily labelled 0-51 from lowest to highest z potion, with module 51 closest to

the remainder of the LHCb detector [250]. Unless otherwise stated, this even numbered

modules scheme is used, though in some instances other combinations of modules

were employed. Models are analysed using data restricted to the same combination

of modules as they were trained. When only two modules are employed, modules 46

and 48 are used. For three modules, modules 44, 46 and 48 are used. For 8 modules,

even numbered modules 36 to 50 inclusive are used. 26 and 52 modules refers to

using all even numbered modules or all modules respectively.

12.3 Graph Neural Network Models

12.3.1 Overarching Model Framework

Building upon the approach followed by the Hybrid model (see Section 11.5.2),

the various models presented here use a common overarching framework, in turn

containing two independent component models. An overall model can therefore be

characterised by the specific component models used, along with any other modifi-

cations to the general process.

Both component models perform edge classification, producing a single [ 0, 1]

value assigned to each edge of a given graph. This is interpreted as a probability or

likelihood score, characterising the model’s prediction that the hits, or combination

of hits, represented by the vertices connected by the given edge constitute part of

the same track. The two component models in the same overall model are always

independent instances, and need not take the same form. The various component

model architectures are themselves described in Section 12.3.2, and the component

models used within the same overall model need not take the same form.

An overall model can be divided into three principal stages: the pair stage, the

triplet stage, and the full tracking stage. An illustration outlining the overall model

is provided in Figure 12.1. Models are written in Python, using a combination of

the NumPy [278] (numpy.org), PyTorch [279] (pytorch.org) and DGL [280] (dgl.ai) frame-
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works.

Pair Stage

The first stage begins with preparing a given event, with each event considered

separately. Spatial coordinates are translated into a cylindrical coordinate system, in

mm and degrees as appropriate, aligned along the direction of the detector, z, with

the nominal interaction point as the origin. In order to approximately normalise the

spacial coordinate values, unless otherwise stated, z, r and ϕ are scaled by 800 mm,

50 mm and π respectively.

From this the pair graph GP , is constructed. Each hit within the detector is

represented as a vertex (V P ), with the relevant properties encoded as the features of

the vertex attributes (vP
i ). Edges (EP ) are added between vertices representing hits

on neighbouring stations. Several derived features, such as the difference between

vertex variables, are encoded within the edge attributes (ePk ).

Due to the nature of the DGL package framework for handling graphs, all graphs

are directed [281]. For neural networks, the order of input variables matters, so needs

to be consistent, and in an undirected graph which vertex should be ‘first’ is am-

biguous. We principally implement edges as directed from highest to lowest module

number; for simple network models, this is sufficient as long as done consistently,

and saves on computation. However, for more complex network models, this impacts

message passing as the ‘flow’ of messages is dictated by the direction of edges. For

such models, reverse direction edges are added to form a bidirectional graph, and

similarly self loop edges connecting each vertex to itself. Attributes for reverse di-

rection edges are replicated from the existing edges, but depending on what they

represent, features within may then be swapped or inverted, in order to ensure a

coherent description. For example, the order of variables corresponding to the initial

or terminal vertex are swapped, as which vertex is initial or terminal is now the

other way around; or taking the negative of the difference between vertex variables,

as which value should be subtracted from the other have effectively been reversed.

Self loop edge attributes are calculated as with the original edges.

The first component GNN model, denoted the pair network, is applied to this

graph. Which features are exposed to the GNN model as inputs depend on the

specific GNN model, but typically include z, r, ϕ, and npix, the number of activated

pixels forming that hit’s cluster. Original edge and vertex attributes are preserved,

and any temporary ‘working’ vertex or edge attributes generated in their place during

application of the network are discarded.
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The network returns a new edge attribute of a single feature for each edge, the

likelihood score, a prediction probability that the hits represented by the respective

vertices connected by the edge form part of the same track. This is recorded by

extending the edge attributes (ePk ) to include an additional feature. In order to

reduce the number of combinations in the following stage, and so memory use, edges

which do not meet a 0.5 threshold are discarded. For bidirectional graphs, the mean

of the predicted scores for each pair of edges is used. Scores for self loop edges are

ignored.

Triplet Stage

The triplet stage largely follows the same principals as those in the pair stage.

Inspired by the hybrid model approach, the previous pair graph is promoted into a

new graphs, the triplet graph GT . Each pair graph edge (EP ) is now represented

by a triplet graph vertex (V T ), with the attributes of the edge (ePk ), sender (vP
sk

)

and receiver vertices (vP
rk

) concatenated to form the triplet graph vertex attributes

(vT
k = ePk ∪ vP

sk
∪ vP

rk
)

An edge (eTl ∈ ET ) is added between any two triplet graph vertices (vTj ,vTk ) where

the sender pair graph vertex (vPsj) corresponding to one is the same as the receiver pair

graph vertex (vPrk) of the other (vPrk = vPsj). In this way, each triplet graph edge (eTl )

corresponds to a proposed three-hit track segment. This is performed before any

reverse direction edges are considered, ensuring a run of three sequential stations

without doubling back. Similarly to the pair graph, various features, principally

differences between vertex features, are encoded within the edge attributes (eTk ). So

that consistent ordering is followed regarding underlying hits represented, for reverse

direction edges some features are swapped around or inverted, similar to in the pair

graph.

In the same manner as before, the second component GNN model, denoted as

the triplet network, is applied to this graph. Again, which features are used by the

GNN model as inputs depend on the specific model. They typically include the

same features as for the pair model, but double the quantity due to each vertex

representing two hits, and usually also including the corresponding pair likelihood

score. This process returns a new score, the triplet likelihood score, for each edge;

interpreted as the predicted probability that the three hits represented form a part

of the same track.
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Full Tracking Stage

In the final stage, discrete tracks are formed using the likelihood score predictions

generated in the previous two stages. This stage was in large part taken directly from

the Hybrid Model. From the triplet graph, the three hit segments each edge repre-

sents are extracted, along with the assigned likelihood scores. Where bidirectional

edges are used, the mean of the two corresponding edges is again taken.

Tracks are constructed by joining these three hit segments to form chains of hits.

Segments are joined where they share a common overlapping pair of hits (correspond-

ing to a common edge in the pair graph, or a vertex in the triplet graph) and each

has a triplet likelihood score in excess of 0.8. Should multiple combinations fulfil

these criteria, the combination with the highest triplet likelihood score is taken. Re-

maining three hit segments with a triplet likelihood score of 0.95 or more are taken

as complete three hit tracks. Other isolated segments are discarded. Finally, should

the last hit of a track match the first of another, it is assumed the two tracks were

accidental split by a missed triplet and merged into a single track. Thus, the final

output of a model is a set of tracks, where each track is a variable length sequence

of hits given in the original event.

To boost this process, we also implemented an additional filter, designed to iden-

tify and correct where tracks had become split by a missed segment. Each track was

characterised as a straight line using its end points, and one by one extrapolated

back across 3 stations. If another track was found following the same trajectory,

with a tolerance of 1mm in the x or y directions and a pseudorapidity of 1, the two

tracks were merged. This filter was applied only where explicitly stated.

12.3.2 Component Network Architectures

Basic Network

As the initial model implemented, the Basic Network is a straightforward fully

connected feed forward neural network, consisting of a series of fully connected layers

of neurons, followed by ReLU activation functions. The final layer, instead of a ReLU

function, employs a sigmoid activation function.

Applied to each edge, various features are taken from the edge and connecting

vertices as the inputs to the first layer, with the same features taken from each.

Referring to the GN Block framework in Section 8.2.3, this GNN model in its entirety

is a single performance of the first step, e′k = ϕe (ek,vrk ,vsk) with the aforementioned

neural network as ϕe.
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When used as the Pair Network, a default of three layers are used, consisting

of 16, 16, and 1 neuron respectively. The variables z, r, ϕ, and npix are taken as

inputs, for a total of 8 inputs to the first layer.

As the Triplet Network, a default of three larger layers are used, consisting of

64, 64, and 1 neuron respectively. The variables z, r, ϕ, and npix for each of the

hits encoded within a vertex are again used as inputs, along with the differences in

z, r and ϕ, and the pair score assigned in the previous stage, taken from the edge

attribute. As edges connect vertices representing a common hit between them, the

second set of features representing the shared duplicate hit are discarded, for a total

of 18 input variables to the first layer.

Several model variations are also examined, such as different numbers of layers

with different numbers of neurons within them, or different combinations of inputs.

In addition, variant was created employing separate network instances for each com-

bination of modules.

Interaction Network

Inspired by the use of Interaction Networks for particle tracking in [180] and

[181] (see Section 8.3.3), the Interaction Network model detailed here is based on

the architecture introduced in [153]. From here on, any reference to the Interaction

Network refers to the model described here, as opposed to the general model. A

diagram outlining the overall algorithm is given in Figure 12.2.

Throughout this model, five fully connected feed forward neural networks of a

similar design are used. These consist of three layers of neurons, each of 24, 24, and

y neurons respectively, where y is the desired number of outputs in each specific case.

Each layer is followed by a ReLU activation function, with one exception noted in

what follows, and all such networks are independent instances.

Initially, a pair of encoder networks, ψe
enc and ψv

enc, are applied separately to the

edge and vertex attributes, taking the designated input features and producing a

new attribute of a corresponding number of latent features in place of the original

(e′k = ψe
enc (ek) and v′

i = ψe
enc (vi)).

The model’s core consists of the iterative section designed to exploit the message

passing principal (see Section 8.2.4). Referring to the GN Block framework, this

section corresponds to steps 1 though 3, and may be performed multiple times. Using

a form of skip connection, the inputs taken for each edge or vertex use two sets of

values, the current features (ek,t, vi,t), as produced by the previous iteration, along

side the preserved initial latent features (e′k, v′
i). For the first iteration, the current
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Figure 12.2: An outline of how the Interaction Network model operates.
Blue boxes indicate the neural networks within the model, and solid,
arrowed lines indicate how edge or vertex attributes are passed between
them. The aggregation function operating on the relevant edge attributes
for each vertex is in green. Dotted lines indicate descriptive groupings
of components. The central section, denoted the iterative section, is re-
peated typically four times, with the previous output edge and vertex
attributes fed back in. Note the diagram is representative of the baseline
configuration of the model, and does not hold for some variants, such as
those using alternative skip connections.

features are also the initial latent features, doubling up. First, the edge attributes are

updated with the edge update network, ϕe, producing a new set of edge attributes,

with an equal number of features, which act as the message to be passed onwards

(ek,t+1 = ϕe
(
ek,t ∪ e′k,vrk,t ∪ v′

rk
,vsk,t ∪ v′

sk

)
). Using the aggregation function, ρe→v,

these new attributes are aggregated for each vertex (ei,t+1 = ρe→v(Ei,t+1)). Unless

otherwise given, this took the form of summing the corresponding features within

the incoming edge attributes. Subsequently, the vertex update network, ϕv, is then

applied to each vertex, similarly producing a new set of vertex attributes.

Finally, the outcoder network ψe
out is applied to the edges, taking the last edge at-

tributes and generating the final likelihood score. Contrary to the previous networks,

this last network utilises a sigmoid activation function on the final layer.

The Interaction Network can be summarised, with input edge features ek and

vertex features vi, as;

1. e′k = ψe
enc (ek) and v′

i = ψe
enc (vi) are performed per edge or per vertex respec-

tively to generate latent attributes, of equal size to the original.

2. Iterating t = 0, . . . , tfinal, where initially ek,t=0 = e′k and vi,t=0 = v′
i

(a) ek,t+1 = ϕe
(
ek,t ∪ e′k,vrk,t ∪ v′

rk
,vsk,t ∪ v′

sk

)
is performed per edge
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(b) ei,t+1 = ρe→v(Ei,t+1) is performed per vertex.

(c) vi,t+1 = ϕv (ei,t+1,vi,t ∪ v′
i) is performed per vertex.

3. escorek = ψe
out (ek,tfinal) is performed per edge, generating the final likelihood

scores.

As a baseline, the iterative section was performed 4 times. When used as the Pair

Network, the variables z, r, ϕ, and npix are taken as the input features for vertices,

and the difference in z, r and ϕ for edges. For the edge and vertex update networks,

this gives a total of 22 and 11 input variables respectively. When serving as the

Triplet Network, more variables are used as inputs. For vertices, z, r, ϕ, and npix

for both encompassed hits are used, along with the explicitly calculated differences in

z, r and ϕ, and the corresponding pair likelihood score. For edges, the difference in

the difference in z, r and ϕ is along side the difference in pair likelihood score. In the

case of the edge and vertex update networks, this results in a total of 56 and 28 input

variables respectively. Unlike in the Basic Network, features corresponding to the

duplicated ‘middle’ hit are not discarded. The positions of which features within the

triplet vertex attributes correspond to which of the two underlying hits, represented

by each triplet graph vertex, are fixed. But with the presence of reverse direction

edges, which underlying hit, and so features, should be interpreted as the shared hit

depends on the direction of the given edge under consideration. Regardless, after the

encoder network is applied we work with latent features, which no longer directly

correspond to an original input, and so a specific hit.

As before several variations are also considered, though as a more complex model,

more variations are possible. Different inputs, numbers of layers and neurons per

layer can be used, and can be different for each of the five instances. Other param-

eters such as numbers of iterations can be changed. The encoder networks can be

disabled, allowing the original input features to reach the first iteration stage. The

skip connection can be removed, or alternatively, rather than the latent features, the

the original pre-encoder inputs may be passed through to the iteration stage each

time.

12.3.3 Training Procedure

The training procedure for network weights took place in two parts, with the

pair and triplet networks trained separately. For a pair network, only the pair stage

of the overarching model was performed each time. For a triplet network, both
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the pair and triplet stages were performed, using a pre-trained pair network, as the

pair stage is required to produce the triplet graph. Thus a specific triplet network

is also dependent on what pair network it was used when trained. In either case,

networks were trained based on their predicted likelihood scores. Edges where all

hits corresponding to the connected vertices are from the same track were given a

target likelihood score of 1, otherwise 0, resulting in a binary classification task.

When included, self loop edges were also given a target of 1. For the variant of

the Basic Pair Network which employed separate network instances for each module

combination, each instance was trained separately, with the dataset restricted to hits

on the specific pair of modules chosen each time.

Weight adjustment was performed using the Adam algorithm [56], with a learning

rate of 0.002 and a weight decay of 10−5. For the loss, the Binary Cross Entropy

loss was effectively used. This was achieved using the Pytorch BCEWithLogitsLoss

function [282] was used, a combination of a Sigmoid layer and Binary Cross Entropy

loss function equivalent to

BCEWithLogitsLoss = − 1

M

M∑

m

(p um log (σ (ûm)) + (1 − um) log (1 − σ (ûm)))

(12.3.1)

where σ denotes a sigmoid function, M the number of samples, and u and û the

predicted and truth values respectively. During training, the explicit final layer

sigmoid activation functions were disabled, effectively moving them into the loss

function. This combination function approach is more numerically stable than using

a Binary Cross Entropy loss function directly with a final sigmoid layer [282] Events

discarded during graph construction, for reasons such as for having no viable edges,

were not included in the loss or other metrics. Back propagation and optimisation

was performed using a graph, and so an event, as a batch.

Due to the often significant prevalence of false edges, and so negative training

examples, particularly in a pair graph, models are likely to converge to predicting 0

for all edges, To counteract this, rather than using an unbalanced sample, BCEWith-

LogitsLoss allows for a positive weighting, p, to be used to bias the training effect of

positive examples. For a binary classification problem with a dataset containing np

positive and nn negative examples, an equal effective proportion is achieved by

p =
nn

np
. (12.3.2)

The value of p was set as above using the training dataset. As pair graphs
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are determined entirely by the dataset, this is therefore fixed regardless of the pair

network trained. When limiting to the standard even module half, this weighting is

approximately p = 61.7, or p = 37.2 if bidirectional and self loop edges are included.

However for triplet network training, due to the 0.5 threshold on pair score used,

exactly which vertices, and so edges, are present in the triplet graph depends on

the performance of the respective pair network; requiring recalculation each time.

For some models, the positive weighting was additionally modified by introducing

a weighting multiplier, in order to encourage better performance at classifying true

positives or negatives, likely at the expense of the other. Where this has been done

will be indicated.

Each training was performed over a training dataset multiple times, until further

passes no longer showed sufficient performance improvement. Due to practical con-

straints, rather than full randomisation, the order of events was pseudo-randomised

for each epoch. Initially, the order of the 13 files that constituted the principal train-

ing dataset was randomised. Then within each file, events were loaded in batches of

1000 at a time and randomised within each batch.

After each epoch, the current instance was evaluated on a fixed 10000 event

sample, drawn at the beginning of the process from a separate dataset to avoid

overfitting, and the mean loss evaluated against a benchmark according to

gain =
benchmark loss − current loss

benchmark loss
. (12.3.3)

The same loss function, including positive weighting bias, was used in optimisa-

tion. For the validation dataset as a whole, the optimum weighting for balance would

be approximately p = 62.1, a negligible difference. However, one limitation is that as

the validation sample is drawn at the beginning of training and retained throughout,

there is the potential for said sample to have a notably different imbalance.

Should the current instance show a gain greater than a minimum threshold of

5 × 10−4, training continues and the benchmark loss is updated to the new, most

recent loss. Regardless of whether the threshold is met or benchmark updated, should

the current model show an improved loss over previous tests, the model instance is

recorded as a checkpoint. If, after four consecutive epochs, the model failed to reach

the gain threshold, the training procedure was terminated and the model restored to

the last recorded checkpoint. Otherwise, the network instance was preserved from

one epoch to the next.
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Training Performance

It was observed that, while a higher validation than training loss can be expected,

the post-epoch validation loss for our models was always significantly higher, par-

ticularly in comparison to the scale of fluctuations. It was later discovered that this

difference in scale was likely attributed to an issue in calculating the loss values when

applied to the validation dataset. Note that is the post-epoch loss used to gauge a

models training progress, not the loss used to optimise the model. As described

above, the BCEWithLogitsLoss loss incorporates the effect of a Sigmoid layer with

a Binary Cross Entropy loss function, which is why during training the Network’s

final Sigmoid layer was disabled. However during inference on the validation the

model was being set with aforementioned Sigmoid layer enabled. By subsequently

using the BCEWithLogitsLoss loss function, the predicted likelihood scores were in

effect passed through a sigmoid function a second time. Given that this would shift

prediction values into the range 0.5 to 0.73, against targets of 0 or 1, this inflated

the validation loss. Due to the manner in which they were recorded during training,

we were unable to recover the actual loss values for our models retroactively.

The training code was modified to correctly disable the sigmoid function. Initial

test trainings of the Basic Pair Network yielded training and post-epoch losses of

comparable size and shape; indicating that this was the primary contributor at the

very least, and that there was not a fundamental issue with our approach. Given

time constrains and technical issues, we were unable to sufficiently explore further,

nor did we have the significant computational time required to retrain and evaluate

all our models in response.

It is worth noting that the non-symmetric-about-0.5 and non-linear scaling this

introduced will have altered the relative contributions of specific predictions to the

loss, and the effective impact of positive and negative edges. As the post-epoch

validation loss was used to gauge training progress, this may therefore have altered

the number of epochs ultimately trained for. However the training loss, which was

not affected, behaved as expected, usually plateauing after few epochs. Equally,

the initial test trainings under the revised implementation trained for a comparable

number of epochs. Therefore the impact of this issue appears to have been minor.

In addition, though our training procedure was predominantly successful, several

variations of the Interaction Triplet Network suffered from issues in training. Despite

the use of a positive weighting in the loss, calibrated for the specific Pair Network

used, some Interaction Triplet Networks would converge to predicting that all seg-

ments presented were either all true or all false; appearing to have become stuck in
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a local minima. In some cases, upon repeating the process a model would train as

intended, while in others the issue would continually repeat. In our time frame, we

were unable to ascertain exactly when or why this instability would occur.

12.4 Measurements and Analysis

12.4.1 Measurement Errors

All analysis was carried out using a separate dataset to both training and post-

epoch assessment, and of roughly the same number of events. Performance is mea-

sured per event and the mean taken over all events in the dataset. The standard

deviation given, usually denoted with σ or ±, indicates the statistical error on this

mean.

12.4.2 Component Network Performance

Component networks are themselves a form of binary classifier, and can be evalu-

ated using standard methods. The network is regarded as having made a positive or

negative prediction using a score threshold of 0.5. Edges themselves are categorised

as positive if they correspond to a sequence of hits from the same track, else negative.

For triplet networks, the same pair network as in training was used.

The accuracy, or error rate, is then the fraction of edges in an event correctly

classified by the network,

Accuracy =
No. Correct Predictions

No. Total Predictions
. (12.4.1)

The performance at classifying positive segments can be expressed as proportions,

True Positive Rate =
No. True Positives

No. Positives
, (12.4.2)

False Negative Rate =
No. False Negatives

No. Positives
, (12.4.3)

and similarly for negative segments,

True Negative Rate =
No. True Negatives

No. Negatives
, (12.4.4)

False Positive Rate =
No. False Positives

No. Negatives
, (12.4.5)
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As the true positive and false negative rate add up to one, and similarly for the true

negative and false positive rate, the false positive and false negative rates will not

be explicitly given.

Due to the typical prevalence of false edges, and so negatives, it is useful to

consider the balanced accuracy, given by,

Balanced Accuracy =
True Positive Rate + True Negative Rate

2
(12.4.6)

which assigns equal weight to performance at classifying true and false examples.

Another common way to assess binary classifier performance is to consider the

receiver operating characteristic, or ROC, curve; the true positive rate plotted against

the false positive rate across a range of score threshold settings. To characterise this

distribution as a single value, the area under the curve, which we will refer to as the

ROC AUC, can be considered as the probability that, given a positive and negative

example, a model will assign a higher score to the positive example [283].

12.4.3 Tracking Performance

In order to measure a full model’s performance at tracking, we are going to borrow

the terminology used in [251], which are commonly used throughout the experiment;

� The track corresponding to a particle is considered reconstructable if there are

hits made by that particle’s passage on at least three separate modules.

� A particle’s track is considered successfully reconstructed if there is a predicted

track using at least 70% of the hits made by said particle.

� A ghost, or fake, track is a predicted track where less than 50% of hits forming

the track correspond to the same particle, and so is not associated to the

passage of any particle.

� Alternatively, if any single particle has more than one reconstructed track

associated to it, then any such predicted tracks beyond the first are counted

as clone tracks.

For the purposes of the number of hits made by a track, for any one model we

will only ever consider those on modules used for that specific model. Using these

terms, we can therefore further introduce several corresponding means to measure

tracking performance;
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� The Efficiency is the proportion of reconstructable tracks which have success-

fully been reconstructed,

Efficiency =
No. Reconstructable

No. Reconstructed
(12.4.7)

providing a measure of how well a model performs at assigning groups of hits

made by the same particles path into the same track.

� The Ghost, or Fake, rate is the proportion of predicted tracks that are ghost

tracks,

Ghost Rate =
No. Ghost

No. Predicted
(12.4.8)

and measures how often a model predicts tracks, and so particles, within the

data that are not there.

� The clone rate is similarly the proportion of predicted tracks that are clone

tracks,

Clone Rate =
No. Clone

No. Predicted
(12.4.9)

and measures how often a model splits or duplicates tracks made by the same

particle, essentially seeing duplicate particles.

An ideal model would therefore have an efficiency of 1, alongside a ghost and

clone rate of 0. Code for the calculation of these metric was in large part taken from

that developed for analysing the Hybrid Model.

12.5 Comparison Model

12.5.1 Hybrid Model Implementation

To provide a baseline against which to assess performance, we utilised an ex-

isting and pre-trained implementation of the Hybrid Model. Given this model had

served as a starting point upon which the models described in the remainder of

this chapter were developed, including having being trained using the same form of

dataset, it could provide a straightforward comparison for both overall performance

and individual stages. The model used in the following chapter was implemented

predominantly using existing code, including trained weights, with modifications to

work with our overall execution, data and statistics handling. The Hybrid Model is

described in Section 11.5.2, and having served as the basis of the third stage of the
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overarching model framework, further details of the model’s final stage can be found

in Section 12.3.1.

12.5.2 Training Procedure

To accommodate the overabundance of false hit combinations compared to true,

a biased sampling method was employed during optimisation of the Hybrid model we

utilised. The training sample for a given pair classifier was built up using example

pairs over all events before training commences. For each event, a subsample was

constructed using each hit on the module with the highest module number, of the

two corresponding to the given classifier, once. Should a hit have a partner on the

other module with which it forms a true track, that pair was always used, otherwise a

partner hit was selected at random. Should more than half the pairs in a sample form

true track segments, and there is at least one such pair, the sample was extended

with a number of additional entries, equal in length to the number of true pairs.

These additions were constructed by duplicating the first entries of the subsample

and cycling their partner hits. Said subsamples were subsequently combined, and the

resulting sample shuffled. This method resulted in samples with a varying ratio of

fake to true pairs, always with more fake pairs than true, and sees further discussion

in Section 13.1.4. Training of triplet classifiers used every valid triplet formed after a

set of relevant prepared pair classifiers are applied to each event, similarly compiled

and shuffled beforehand. In both pair and triplet training, every other entry in a

sample was removed and set aside to form a separate sample for testing a given

networks progress during its training.

As the Hybrid Model’s training procedure was used as inspiration for those of

the models described in the remainder of this chapter, it otherwise bears significant

similarities to that described in Section 12.3.3. Weight adjustment was performed

using the Adam algorithm [56], with a learning rate of 0.001 and a weight decay of

10−5. The Pytorch BCEWithLogitsLoss function [282] was used for the loss.

Classifiers were trained over the training sample multiple times, and after each

epoch was applied to the test sample and the mean loss recorded. Beginning with an

initial benchmark loss of 1.0, the classifier was evaluated using Equation 12.3.1. If

it failed to achieve a minimum gain threshold of 0.005 after four successive epochs,

training was terminated. Otherwise, training continued for another epoch, and if the

gain exceeded the threshold, the benchmark loss was updated to the previous mean

test loss.

The version of the Hybrid Model utilised here was trained using only even num-
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bered modules, as described in Section 12.2.3. However, as each module pair or

triplet used a independent network instance the choice of modules considered has no

effect save which combinations have corresponding networks trained.
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Chapter 13

Results

Tables of results can be found in Appendix C.

13.1 Basic Network Models

13.1.1 Consistency with the Hybrid Model

The Basic Networks and overall Model use the same neural network architecture

and roughly the same procedure as the Hybrid Model, as in effect they perform

the same operations on the same inputs, just with one arranged in the context of a

graph. Therefore their performance should be comparable, providing a consistency

check to evaluate if the Basic Model is behaving as expected. However, one notable

difference is that the Hybrid Model uses a separate network instance for each module

pair combination.

Pair Network

As shown in in Figure 13.1(a), the Basic Pair Network accuracy is around 1σ

lower than the Hybrid Pair Network, but exhibit a very similar balanced accuracy.

Breaking down to the true positive and true negative rates, we can see explicitly that

the Basic Network is comparably stronger at identifying true edges, at the expense

of worse performance at discounting false edges.

Due to the calculation of the bias weighting being tuned to effectively equal

quantities of positive and negative examples, the Basic model was in effect trained to

maximise the balanced accuracy, not the accuracy. The Hybrid model instead used a

sampling method, with batches with slightly higher quantities of negative examples,

in effect marginally prioritising the true negative rate over the true positive rate. As
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Figure 13.1: Performance metrics of the Hybrid and Basic (a) Pair and
(b) Triplet Networks, and (c) the full models at the complete tracking
problem.

events contained a preponderance of negative examples, this goes some way to explain

the difference in behaviour. Ultimately though, the differences in performance are

within 1.5σ.

Triplet Network

The Triplet Networks, as shown in Figure 13.1(b), performed similarly to the

two one another, with very similar balanced accuracy and the Basic network ex-

hibiting slightly lower accuracy. Apart from the true positive rate and ROC AUC,

performance was generally closer between the two models compared to the Pair Net-

works, and errors larger. In particular, the true negative rates exhibited notably

larger errors than for the Pair Network, suggesting both models were more erratic
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at discounting false segments during this stage.

Though not likely relevant here, its worth noting that the strong performance

of a Pair Network can make any subsequent Triplet Network’s task comparatively

more difficult, by potentially removing easier to classify segments from an event.

Additionally, Triplet Networks generally include the relevant Pair Network scores

as inputs, with more accurate scores likely aiding the Triplet Network in its own

classification. Thus comparison between Triplet Network stage performances can be

somewhat misleading, owing to having different Pair Networks effectively being as if

comparing models trained and evaluated on slightly different datasets.

Full Model

Looking at performance of the complete models at the full tracking problem,

shown in Figure 13.1(c), we can see the Basic Model efficiency is slightly higher,

and the clone rate slightly lower, than the Hybrid Model. This lines up with what

we would expect from the Pair and Triplet Networks individual performances; with

the Basic Network’s stronger performance at identifying true track segments leading

to an improved efficiency, while the worse performance at mistakenly identifying

incorrect segments as part of a track leads to a higher fake rate.

While the efficiency and clone rate are relatively close, the Basic Model’s fake

rate is approximately an order of magnitude larger. However, the error on the Basic

Model’s fake rate is also significantly larger, enough to encompass the Hybrid Model’s

fake rate and error.

13.1.2 Separate Network Instances

To investigate the impact of using separate network instances for edges between

different combinations of modules, as the Hybrid Network does, a variant of the Basic

Pair Network was created that behaved this way. This Pair Network, alongside the

Hybrid and regular Basic Pair Networks, was evaluated for a range of quantities of

modules, as described in Section 12.2.3, with the results shown in Figure 13.2. For

the regular single instance Basic Pair Network, additional instances of the model were

trained and evaluated on restricted numbers of modules to produce the additional

data points.

Both Basic Networks performed very similarly. As the number of modules con-

sidered is increased, the single instance version does not appear to show significant

deterioration in performance, suggesting that using a single network is sufficient.
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Figure 13.2: Performance of the Hybrid, Basic, and separate network
Basic variant pair stage networks, trained and evaluated over different
sized portions of the detector, as described in Section 12.2.3. Note the
horizontal axis uses a logarithmic scale.

As before, both Basic Pair Networks shows the same performance relative to the

Hybrid Pair Network, indicating that using separate instances is unlikely a factor in

the performance differences between the Basic and Hybrid Models. In general, er-

rors decrease as more modules are included, possibly a consequence of the increasing

number of segments for statistics.

Also included are results of the Basic Pair Network trained over the full 52 mod-

ules. Performance is similar to that for only even numbers modules, confirming that

working with only even numbered modules is largely sufficient to get an idea of how

models generally perform.

13.1.3 Input Variables

In order to assess the effect of including the z coordinate, and using an ex-

plicit approximate normalisation scaling of the input variables (as described in Sec-
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Figure 13.3: Performance of the Basic Pair Network using different com-
binations of including or excluding the z coordinate or the use of an
approximate normalisation scaling, trained and evaluated over different
sized portions of the detector, as described in Section 12.2.3. The regular
Basic and Hybrid Pair Networks are included for comparison. Note the
horizontal axis uses a logarithmic scale.

tion 12.3.1), additional Basic Pair Networks were trained without these features.

This was performed, as above, for a range of different quantities of modules, with

the results given in Figure 13.3.

As before, errors generally decreased across the board as more modules are in-

cluded. While excluding the z coordinate alone also showed a reduction in perfor-

mance as the quantity of modules was increased, the effect was not as significant as

expected; and for the full 52 modules, actually performed slightly better at accuracy,

though still within 1σ. Similarly excluding both the z coordinate and explicit nor-

malisation showed a further drop in accuracy and balanced accuracy as the number

of modules was increased, but with a slight rise for 52 modules. This, along with the

separate networks results, suggests that, when considering only a single pair of hits

at a time, the location of the two hits along the length of the detector appears to
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be of surprisingly little value when assessing if the hits form a track segment. One

possible influencing factor for this may be the layout of the VELO. The detector

consists of a series of sensitive planes arranged in a row, as opposed to a all encom-

passing barrel design. Valid tracks, and so their segments, are likely to be at small

angles to the beamline regardless of position along its length.

13.1.4 Training Bias

Motivated in large part by the differences in the balance of true positive rate and

true negative rate performance between the Basic and Hybrid models, we introduced

a multiplier to the positive weighting bias in the loss function. Values greater than 1

increase the effect of positive examples on the loss, effectively equivalent to increasing

the proportion of positive examples encountered, thus encouraging more importance

to be placed on classifying them correctly over negative ones, and the converse for

lower values.

There is also a potential benefit for using a multiplier above 1 in training the pair

stage, in order to ensure all true segments proceed to the triplet stage; as the triplet

stage cannot correct for those mistakenly discarded by the pair stage, but can reject

additional edges misclassified as being part of a track.

Pair Network

From Figure 13.4 we can see that, as expected, the true positive rate improves

at the expense of the true negative rate as the multiplier is increased, and visa

versa. Balanced accuracy remains consistent for multipliers bellow 1, at least well

within 1σ, but begins to degrade above 1. For multipliers larger than 1, the true

negative rate seems to be more sensitive, its performance decreasing faster than the

improvement in the true positive rate, resulting in a reduction in balanced accuracy.

Accuracy on the other hand generally improves as the multiplier is lowered. As

an event contains significantly more false edges than true, the improvement in true

negative rate performance appears to be sufficient to surpass the loss in the true

negative rate.

The Basic Pair Network recovers the behaviour of the Hybrid Pair Network at

low multiplier values. However, the combined Hybrid sampling scheme is statistically

equivalent to using an effective multiplier of approximately 0.8, while the Basic Pair

Network does not exhibit similar behaviour until around 0.5; though is within 1σ by

0.8. The Hybrid Network utilises different instances for different module combina-

139



0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Hybrid

0.94

0.96

0.98

1.00

Ba
la

nc
ed

Ac
cu

ra
cy

0.94

0.96

0.98

1.00

Tr
ue

 P
os

iti
ve

Ra
te

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
Multiplier

0.94

0.96

0.98

1.00

Tr
ue

 N
eg

at
iv

e
Ra

te

Figure 13.4: Performance of the Basic Pair Network with a multiplicative
value applied to the positive weighting bias used in the loss during train-
ing. The Hybrid Pair Network performance is indicated by a dotted line.

tions, each trained with separate samples. These samples are individually equivalent

to effective multipliers between 0.67 and 1.51 on the overall positive weighting bias

equivalent to a balance. But, if we take the ratios of positive and negative exam-

ples for each module combination separately, and the positive weighting required for

balance for each, the Hybrid sampling scheme has an effective multiplier of approx-

imately 0.8 for all module combinations separately.

Triplet Network

Several sets of Basic Triplet Networks were trained using a multiplier applied to

the loss positive weighting bias in the same manner. One set of networks, shown

in Figure 13.5(a), used the regular Basic Pair Network, with no multiplier, for the

pair stage. Other networks, shown in Figure 13.5(b), instead used the Basic Pair

Network, as shown above, with the same corresponding multiplier. Additional Triplet

Networks were trained with a multiplier applied during the Pair Network training,

but with no multiplier during Triplet Network training. Due to the difference in
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Figure 13.5: Performance of the Basic Triplet Network with a multiplica-
tive value applied to the positive weighting bias used in the loss during
training, using (a) the regular Pair Network for the pair stage with no
multiplier applied, and (b) the Pair Network with the same corresponding
multiplier for each pair stage. The Hybrid Pair Network performance is
indicated by a dotted line.

edges that are retained onwards to the triplet graph, any Triplet Network using

a Pair Network with a multiplier applied has a different positive weighting bias,

calculated for balance as usual, with any multiplier applied subsequently.

Where a multiplier is only applied to the Triplet Network, we see similar be-

haviour to that in Figure 13.4, with the true positive rate showing improvement at

the expense of the true negative rate as the multiplier is increased; though the effect

is in general less pronounced. Where a multiplier is applied during the training of

both stages, accuracy and balanced accuracy are fairly flat, with a slight rise at high

values, and a dip at low values due to a drop in the true positive rate. The true

negative rate is erratic, but with large error values is relatively insignificant.

Full Model

Performance of the Basic Model, with a multiplier applied to the loss positive

weighting during training of the Pair Network, the Triplet Network, or both, at

tackling the full tracking problem is illustrated in Figure 13.6. Efficiency is fairly

consistent across the board, except at low values where we see a drop, particularly

when the multiplier was applied in both stages. The clone rate is particularly similar

for all models, with a slight reduction as the multiplier increases, and a rise at low
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Figure 13.6: Performance of the Basic Pair Network with a multiplicative
value applied to the positive weighting bias used in the loss during training
of either the pair, triplet, or both networks. The Hybrid Pair Network
performance is indicated with a dotted line.

values for the both-stage models with a corresponding dip in efficiency. However the

fake rate notably increases as the multiplier increases, and shows considerably more,

and erratic, variation between the different multiplier schemes. Errors similarly

increase, and the multiplier schemes always remain within 1σ of each other. This

may again be a largely statistical effect as the fake rate gets comparatively closer to

0, as the statistical contributions from any one event can never go below 0.

For all three models with a multiplier of 1, the fake rate appears an outlier. This

data point is the regular Basic Model as used previously, as a multiplier of 1 is the

same as not having a multiplier at all, which is why all three converge to the same

result, which, with the erratic fake rate makes it stand out more. Even still, it is

higher than several of its neighbouring data points and has a comparatively larger

error. Looking back to Figures 13.5(a) and (b), the Triplet Networks corresponding

accuracy and true negative rates do appear to deviate from their neighbours, however

compared to the error the deviation is tiny.
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In comparison to the Hybrid Model, the only time within the range examined

here where the efficiency drops to match is for the variation employing multipliers to

both parts of between 0.4 and 0.5. The Clone rate for all multiplier schemes reaches

that of the Hybrid Model at low values, though it is so close throughout as to be

negligible. For the fake rate, all multiplier schemes generally improve towards that

of the Hybrid Model as the multiplier is decreased.

From the results of models in which only the pair stage was altered, it appears

that biasing the pair stage to ensure true segments progress to the triplet stage had

little or no effect at boosting the efficiency. Rather, the reverse may be true, and

that a mild bias to improve the rejection fake segments, potentially in the triplet

stage, may be desirable.

13.1.5 Network Configuration

Figure 13.7 illustrates the performance of Basic Pair Networks employing a range

of different sized layers and numbers of layers for the fully connected feed forward

neural network used within. Neurons per layer indicates the number of neurons in

the hidden layers, while the final layer always uses a single neuron in order to produce

a single score value for each edge.

The accuracy of the various Basic Pair Networks is erratic, while the balanced

accuracy is much tighter between the configurations, with layer sizes of 24 neurons

and above particularly close. Generally, we see a slight improvement when more

layers are used, and somewhat for larger sized layers. Setups with few layers appear

to struggle when partnered with larger layer sizes, and our default Basic Pair Network

setup of 3 size 16 layers also struggled compared to the other setups, though with the

smallest overall size examined this is somewhat expected. This would suggest that

using at least 24 neurons per layer may be an improvement over the default Basic

Pair Network setup, but with such close balanced accuracies from there and above,

any further increase of either number or size of layers may provide little additional

benefit.
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Figure 13.7: Performance of the Basic Pair Network with a range of
different size neural network configurations. Neurons per layer indicates
the number of neurons in the hidden layers, with the final layer always
using a single neuron. The Hybrid Pair Network performance is indicated
with a dotted line. Note the horizontal axis uses a logarithmic scale.

13.2 Interaction Network Models

13.2.1 Comparison With the Hybrid and Basic Models

Pair Network

From Figure 13.8(a), we can see that the Interaction Pair Network shows a no-

ticeable improvement in both accuracy and balanced accuracy over the Hybrid and

Basic Pair Networks. The Interaction Pair Network true positive rate is a further

improvement over the Basic Pair Network, and the true negative rate is better than

the Hybrid Pair Network. These results also exhibit comparatively smaller errors,

particularly the true positive rate, indicating a more consistent performance. Addi-

tionally, while other networks shown so far have had roughly comparable ROC AUC,

the Interaction Pair Network is higher by an order of magnitude; from 0.9970 for
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Figure 13.8: Performance metrics of the Interaction (a) Pair Network, (b)
Triplet Network, and (c) the full model at the complete tracking problem,
along side the Hybrid and Basic Models, and respective components. In
addition, two mixed models using one of the Interaction or Basic for each
stage are included in (b) and (c); where the two names given indicate the
networks used for the Pair and Triplet stages respectively.

145



the Hybrid and regular Basic Pair Networks, to 0.9997. Together this suggests the

Interaction Pair Network presents an improvement in both identifying parts of real

tracks and discarding false segments.

Triplet Network

However, the Interaction Triplet Network, as shown in Figure 13.8(b), exhibits

comparable accuracy and balanced accuracy to the Hybrid Triplet Network. Break-

ing this down, the true positive rate is noticeably worse than either model, with a

slightly improved true negative rate. Unlike with Basic or Hybrid Pair Networks,

the strong performance of the Interaction Pair Network leads to positive weighting

under 1 when training subsequent Triplet Networks; inverting the impact of the true

positive and negative rates on balance accuracy.

As mentioned in Section 13.1.1, significant differences in Pair Network perfor-

mance can cloud comparison between Triplet Networks. Therefore to compare the

Basic and Interaction Triplet Networks more directly, a model was trained using

the Basic Pair Network for the pair stage, but with the Interaction Triplet Network

for the triplet stage, and is indicated as Basic Int. This model returned the best

accuracy of any triplet network examined here, but peculiarly a balanced accuracy

lower than either of the three previous models. From the true positive rate, the net-

work struggled noticeably at identifying true track segments among those returned

by the Interaction Pair Network, possibly a consequence of a strong performance at

identifying and excluding false segments in the previous stage. However, a high true

negative rate, and with a comparatively small error, indicates the network outper-

formed the full Basic Model at classifying false segments in this stage, though well

within 1σ error.

Additionally, an inverse version in which a Basic Triplet Network was coupled

with the Interaction Pair Network was trained, and is indicated as Int. Basic. This

presented a worse accuracy and balanced accuracy than using the regular Basic

Triplet Network, with a poor true positive rate as with the full Interaction version

and a slightly lower true negative rate coupled with a significantly larger error. It

also gave a noticeably lower ROC AUC value.

Overall, these results suggest the Interaction Triplet Network struggles compared

to the Hybrid or Basic Triplet Networks, regardless of what Pair Network it is part-

nered with. Though the Interaction Networks feature more layers overall than the

Basic Networks, the layers themselves contain less neurons and are spread across

subcomponent neural networks, which may not be sufficient when encountering the
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triplet classification task; perhaps as the triplet task involves more input variables

due to encompassing three hits.

Full Model

Performance of the Hybrid, Basic and Interaction Models at the full tracking

problem, along with the mixed network models, is given in Figure 13.8(c). No-

ticeably, the Interaction Model produced a comparatively negligible fake rate of

0.000019 ± 0.000404; two orders of magnitude smaller than the Hybrid Model. This

is accompanied by a slightly improved clone rate, and an efficiency close, but slightly

less than, that of the Basic Model, with both well within 1σ. While the full Inter-

action Model generally appears an improvement over the other models, the Pair

Network’s strong true positive rate is not translating through to an improved effi-

ciency or a particularly significant reduction in clone tracks.

Using the Interaction Pair Network with a Basic Triplet Network ultimately per-

formed worse than the complete Interaction Model in all three metrics. On the other

hand, using a Basic Pair Network with the Interaction Triplet Network provided a

similar efficiency and fake rate to the complete Interaction Model, but also a slightly

higher clone rate.

13.2.2 Message Reduction Function

Figure 13.9 describes the performance of a set of Interaction Pair Stage Networks

using a variety different aggregation functions to carry out message passing reduc-

tion process, as described in Section 12.3.2; in which the sum, mean, maximum or

minimum of respective features of the incoming edge attributes is taken. All four

aggregation functions examined performed remarkably similarly. Näıvely, we would

have expected the choice of function to have been more impactful, and perhaps that

summation, which is used throughout the other Interaction Networks presented, may

have performed the worst, as it is at the mercy of variations in the number of hits.

While companion Interaction Triplet Network were trained using the same set of

aggregation functions, the mean, maximum and minimum variants consistently con-

verged to predicting true for all segments presented, as mentioned in Section 12.3.3.
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Figure 13.9: Performance metrics of the Interaction Pair Stage Network
using different message reduction functions, alongside the Hybrid and
Basic Models.
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works for comparison.
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13.2.3 Skip Connection

Several Interaction Pair Networks using alternative forms of skip connection were

examined, within which additional inputs are passed to the edge and vertex update

networks from an earlier part of the overall network, with the results shown in Fig-

ure 13.10. In the default configuration, denoted as latent, the initial latent features

as produced by the encoder subnetworks are passed as additional inputs. Alterna-

tively, in the variant denoted as inputs, the original features taken as inputs from

the edges or vertices are passed, bypassing the encoder subnetworks. Denoted as

differences, another instead passes the difference between the output of the previous

iteration, which the update subnetworks receive as their usual inputs, and the inputs

that previous iteration received. For the first iteration, 0’s are passed. Finally, a

variant not using any skip connection was also trained, denoted as none. In this

case, the edge and vertex update subnetworks have a smaller number of inputs, as

there are no skip connection inputs.

All four forms of skip connection led to remarkably consistent results. Using the

original inputs showed a marginally lower and larger error in the true negative rate,

leading to a small decrease in accuracy. Due to the ambiguity in ordering when

considering reverse direction edges, we would näıvely have expected a larger drop

in performance. The use of differences led to a drop in the true positive rate, par-

ticularly impacting the balanced accuracy. Not using a skip connection if anything

showed a small improvement in true negative rate, leading to slightly improved ac-

curacy. This suggests that the skip connection, for the Pair Network at least, is

not providing a meaningful contribution, and so gives a potential direction to reduce

computational costs by removing it.

13.2.4 Iteration Section

Several Interaction Models were trained with the iterative section performed a

varying number of times, with the results displayed in Figure 13.11. Within the

Interaction Model, the iterative section is where the message passing paradigm oc-

curs, with each iteration essentially propagating information one edge further. Each

model used the same number of iterations for both Pair and Triplet Networks.

Pair Network

From Figure 13.11(a) we can see the Interaction Pair Networks performed consis-

tently to one another, with some variation in accuracy owing to fluctuations between
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Figure 13.11: Performance metrics of the Interaction (a) Pair Network,
(b) Triplet Network, and (c) the full model at the complete tracking
problem with the iterative section performed a variable number of times.
Each variant was separately trained, and the corresponding Hybrid Pair
Network performance is indicated with a dotted line.
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the true positive and true negative rates.

Triplet Network

However, as can be seen in Figure 13.11(b), the corresponding Interaction Triplet

Networks exhibited far more variety in performance. Using only 2 iterations per-

formed comparatively poorly, and with all metrics exhibiting significantly larger

errors. While demonstrating the highest true positive rate among the Triplet Net-

works, and a marginally higher accuracy, a low true negative rate significantly brings

down its balanced accuracy; its difficulty in identifying fake track segments washing

out any gain from identifying true segments.

Going to 4 iterations and above, as the number of iterations increases the true

positive rate slowly improves, while the true negative rate tends steadily downwards;

resulting in a consistent accuracy, but a slowly dropping balanced accuracy, though

the differences are relatively small. However at 12 iterations, the true positive rate

drops sharply, bringing both the accuracy and balanced accuracy down. Though

2 iterations appears to be insufficient for useful information to spread, too many

iterations also causes the Interaction Triplet Network to struggle, perhaps washing

out local information.

Full Model

In the full model results, given in Figure 13.11(c), we can see the behaviour of the

Triplet Network continuing through. At low iterations, efficiency is improved, but

clone and fake rates also rise. With high numbers of iterations, efficiency begins to

drop and clone rate increase, suggesting tracks are being split by missing segments.

13.2.5 Network Configurations

Pair Network

Figure 13.12 describes the performance of several Interaction Pair Networks using

a range of different sized layers and numbers of layers for each of the five subcom-

ponent fully connected feed forward neural networks employed within. Neurons per

layer indicates the number of neurons in the hidden layers, while the final layer al-

ways uses the number of neurons needed to produce the required number of output

values.

The various Pair Networks shown gave fairly consistent results. As the number of

neurons per layer increases, configurations employing 3 layers displayed marginally
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Figure 13.12: Performance of the Interaction Pair Network, using a range
of different configurations for each of the five subcomponent neural net-
works within. Neurons per layer indicates the number of neurons in the
hidden layers, with the final layer always using the required number of
outputs. The Hybrid Pair Network performance is indicated with a dot-
ted line. Note the horizontal axis uses a logarithmic scale.

higher performance than using 2, though they all still remain well within 1σ of each

other. The divergence in behaviour between the two with 32 neurons per layer is a

peculiar outlier, but again still within 1σ. The single 4 layer configuration presented

closely matches the performance of the largest 3 layer configuration, though with

only 32 neurons per layer compared to 48. Additional 4 layer configurations were

trained, along with 6 configurations. However it was later realised they had failed

to train satisfactorily and would continually predict all edges as part of a track; and

so these models are not presented.

Overall, increasing the size and number of layers might offer some improvement

over the default Basic Pair Network configuration, but only marginally. Equally as

the Pair Network employs five subcomponent neural networks, this has a significant
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Figure 13.13: Performance metrics of the Interaction Triplet Stage Net-
work, using a range of different configurations for each of the five subcom-
ponent neural networks within, along side the Hybrid, Basic and default
configuration Interaction Triplet Networks. a layers b denotes the use of
a layers, with b neurons in the hidden layers, with the final layer always
using the required number of outputs.

impact on the overall size of the model; and given the failure of the larger models

trialled here, more neurons may potentially be a cause of, or exacerbate, issues in

training.

Triplet Network

To accompany Section 13.2.1, several Interaction Triplet Networks were created

using larger network configurations, closer to those used in the Basic Triplet Network.

These were all trained in conjunction with the default Interaction Pair Network, and

their performance is described in Figure 13.13.

Increasing the number of neurons in the hidden layers brought an improvement

to the true positive rate, while the true negative rate dropped only very slightly;

leading to an improvement in both the accuracy and balanced accuracy. Adding an

additional hidden layer left the accuracy and balanced accuracy relatively unchanged,

the true positive and negative rates marginally increasing and decreasing respectively.

Further doubling the neurons per layer caused the true positive rate to drop, and the

true negative rate to rise, leading to a small drop in the accuracy. Nevertheless, any

changes were small compared to the errors, so the significance of any improvement

or decline is relatively minor.
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Figure 13.14: Performance metrics of the full Hybrid, Basic and Inter-
action Models at the complete tracking problem, both with and without
the use of an additional missing segment filter.

13.2.6 Missing Segments Filter

The full Hybrid, Basic and Interaction Models were also evaluated with the in-

clusion of a missing segments filter, designed to correct for tracks that had been split

by a missed segment, as described in Section 12.3.1. As the filter is applied at the

end of the full tracking stage, the same component networks were used.

From the results shown in Figure 13.14, we can see that in all three models the

filter was successful in reducing the number of duplicate tracks. One concern was

that the filter may reduce a model’s efficiency, by effectively overriding where a model

had identified two distinct tracks. However this appears not to be the case, and the

efficiency of all three models remains constant. Similarly the fake rate is essentially

uneffected by use of the filter.
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Chapter 14

Discussion

With models such as that in [270] and the Hybrid Model focusing on augment-

ing approaches similar to that currently employed by the detector, our aim was to

develop a machine learning based pattern recognition with the capacity to draw in-

ferences from an event as a whole. This led us to explore a Graph Neural Network

based approach, which through the message passing paradigm could conceivably

be sensitive to all hits within an event when making its assessments; elevating an

otherwise local approach into a global one. Noting the success of an Interaction

Network architecture [153] in context of the ATLAS experiment [180,181,182], this lead to

implementing a Interaction Network based model, which demonstrated potential for

improved performance over a non-graph based approach.

Given it served as the basis upon which our overarching framework was designed,

an existing neural network model for VELO tracking, referred to here as the Hybrid

Model, was utilised as a baseline against which to evaluate performance. Overall, the

Basic graph model performed on a similar, abet marginally worse, level to the Hybrid

model. The two neural network stages traded a better performance at identifying true

track segments for worse at false segments, translating for the full model into slightly

improved efficiency and reduction in duplicate tracks, but at the cost of an increase

in fake tracks. Given that the Basic Model was designed to intentionally emulate

the actions of the Hybrid Model, but in the context of a graph based representation

of event data, similar behaviour was to be expected; significant differences would

indicate issues in the Basic model’s implementation. Neither the use of separate

networks for each module combination, nor introducing a bias to the loss weighting

to approximate the sampling based learning method used in training the Hybrid

networks, was able to adequately account the differences in balance between true

positive and true negative performances of the component stages; through, these
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two proposals were not examined together. Beyond that, results suggest a multiplier

of .5-.8 may be preferential to perfect balance in order to keep the fake rate down.

The variations we examined generally produced only small deviations in perfor-

mance. Increasing the complexity of the component network architectures provided

little improvement, though in the context of a model encompassing the full 52 mod-

ules it appears increasing the size of the networks may prove more impactful. Biasing

the loss during training to favour identification of false edges seems potentially bene-

ficial in reducing the fake rate, and excluding the z coordinate as an input performed

unexpectedly well.

The Interaction model on the other hand showed a tentative improvement over

the Hybrid and Basic models with a significant reduction in the number of fake

tracks, though coupled with only a slight improvement in reducing duplicates, and a

very slightly worse efficiency over the Basic Model. The Interaction Network notably

outperformed both compared models when used for the pair stage, but struggled as

the triplet stage. From the worse performance of using the Basic Network for the

triplet stage with the Interaction Pair Network, we can infer that this was at least

somewhat down to the Interaction Pair Network’s strengths providing a more difficult

dataset. Increasing the size of the component neural networks for either stage had

relatively limited effect, and potentially presented training issues.

Altering or removing the skip connection had little effect on the Interaction Pair

Network performance, suggesting that this element contributed little to the improved

performance over the Basic Pair Network. Equally using different message reduction

functions did not make a particular impact. Näıvely we expected summation to have

perform worse, however the Interaction Network based model examined for ATLAS

track finding in [181] also employed summation, and in our context it proved the more

stable for training the triplet stage network. The number of iterations performed did

have a noticeable impact on performance of the Triplet stage, and subsequently on the

final tracking, suggesting that message passing indeed played a role in the Interaction

Pair Network’s strong performance, and that too few or too many iterations would

lead to degraded performance.

Including an additional stage to look for broken tracks had the potential to

decrease the efficiency, through amalgamating two otherwise correct and separate

tracks. However for the settings trialled this was not the case, and it successfully

reduced the number of duplicate tracks. Although these trails offer some insight into

optimising the configuration of the Interaction Networks, most aspects were only

examined in isolation. It is plausible, for example, that the use of a skip connection
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may have a greater effect when more iterations are used, as current features become

further and further disconnected from their original meanings and values in later

iterations.

14.1 Limitations

A significant limitation of our results lies with the relative size of errors compared

to the differences in performance between models. In many cases, differences are well

within 1σ of each other, and so any conclusions drawn must be tentative. Given the

näıve way in which our errors are calculated (see Section 12.4.1), an increased sample

size may not alleviate this. The spread characterised by σ is due at least in part to the

variation in performance between different events, not of certainty in measurement

of said performance. Increased statistics can provide a more accurate picture of this

spread, but does not change it. Further work would likely be better served in seeking

alternative approaches to assessing the accuracy of such performance measurements.

Ultimately though, a significant factor in judging performance, both between vari-

ations and in general, lies in the relative importance placed on the efficiency, clone

and fake rates to one another. Many of the parameters varied in these studies shifted

the balance of the pair and triplet stage networks’ performance between identifying

true and fake track segments.

In hindsight, it would have been informative to have followed the lead of other

studies on VELO pattern recognition algorithms, and have evaluated our perfor-

mance on important subsets of tracks, such as those within the detector’s nominal

2 < η < 5 acceptance, or on events of particular interest, such as those featuring B

hadrons. While we have focused on the VELO, LHCb overall is a forward arm de-

tector, and an algorithms performance at certain tracks is natural of greater interest

to its physics program. Equally, it would have been beneficial to compare against

the current pattern recognition stage algorithm employed by LHCb, applied to our

datasets, but which unfortunately proved unfeasible.

Though the majority of models presented here were restricted to only half the

detector, those trained and evaluated on the full 52 modules performed relatively

consistent to their 26 module counterparts. Thus the results here can be considered

at least indicative of full detector performance, which is sufficient for a proof-of-

concept. However, while our models considering the full 52 modules accounted for

tracks involving hits between modules on opposite sides, we failed to account for

tracks, if in a minority, with hits on both modules of the same station, due to angled
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trajectories or the overlap between the modules sensitive areas.

Many of our studies focused on the Pair Network stage. While it could be con-

sidered indicative of a potential triplet stage implementation of the same model, the

performance of the triplet stage is arguably a more important consideration, as its

output is that subsequently used to construct tracks. While the triplet stage was

dependant on the choice of pair stage employed in training, as the first step the pair

stage was more convenient to experiment with. Then again, we focused predomi-

nantly on modules using the same configuration for both stages, but this need not

be the case. Not only do the two component models not need to be the same, they

can take completely different forms, a direction we did not fully explore.

As discussed in Section 12.3.3, issues were identified relating to the post-epoch

validation loss used to gauge a model’s performance. Early tests indicate this is a

technical issue than could be solved with further work. Separate unresolved issues

were encountered in training the Interaction Model for use in the triplet stage, sug-

gesting the network is becoming stuck in a local minima. From issues encountered in

training the Interaction Model for the pair stage, using additional layers and neurons

per layer, there are tentative indications that the overall number of layers or neurons,

or for a specific component network, might have a bearing on this. Optimisation of

the training process was an area we did not greatly explore after establishing a work-

ing approach with the Basic Network. Given the issues encountered, lowering the

learning rate or implementing a steadily decreasing learning rate, are among other

potential directions that may prove beneficial. Equally, the issue may simply lie with

our implementation, though efforts were of course taken to hunt for corresponding

issues in our code.

14.2 Execution Time

While the results presented here suggest a Graph Neural Networks based ap-

proach to tracking finding within the VELO may offer improved reconstruction

quality, there is a significant issue we have so far not discussed. Due to the high

throughput requirements brought by LHCb’s move to full online reconstruction, cur-

rent implementations of machine learning are limited to simpler methods such as

fully connected feed forward neural networks and boosted decision trees. Though

research with more advanced approaches is ongoing, GNN are generally slower than

other more direct methods, and the need for graph construction, twice, in our model

caries a significant time cost [63].
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We approached the problem of applying GNN to VELO tracking without an

architecture initially in mind, and so our implementation focused on providing a

flexible system with which to explore many models without significant rewriting

of code. A dedicated model could be implemented in a significantly more efficient

manner than was used, and given this we did not look to make dedicated measure-

ments of execution time. For example, due to the computing packages used, all

graphs were implemented as directed graphs. For models seeking to exploit message

passing, as reverse edges have essentially duplicate features, an ’effective’ undirected

graph might be used to reduce the size of an event, identifying when an edge is to

be used in the reverse direction and performing any necessary modifications as they

are read. However, this would be a material change for any model using the mes-

sage passing principal, as after the first application of a component network to any

edge, the updated features on opposite directed edges need not correspond to one

another; though the approach could be used only at the beginning to minimise the

data stored at that time. Going further, the nature of our data means we know the

rough structure and edge relations a graph representation will take; edges do not, for

example, have the potential to connect just any vertices, but must follow the station

structure of the VELO. By employing this domain knowledge, it may be possible

to further translate the problem into a more efficient form than an explicit graph.

Ultimately, what matters is how the data is handled and the calculations carried out,

not that it is done in a form which can readily be interpreted as a graph. Looking to

potential hardware, there has already been efforts to implement Interaction Network

style models for tracking on FPGAs [185].

Nevertheless, GNN are still relatively slow in comparison to other neural network

methods, and our algorithm was not designed with efficiency in mind; significant

development and refinement would be needed to achieve viable timing efficiency.

One approach used in various existing algorithms, such as in [30], is the introduc-

tion of a search window in ϕ, limiting the combinations of hits considered to within

a range of ϕ of one another. In our context, this would amount to constructing

edges in the pair graph only between vertices representing hits within the window,

or pairs with comparable slopes in the triplet graph. However, such windows are

usually used for seed tracks, rather than on all potential pairings, with separate

windows calculated when looking to extend each seed to hits on another station;

while graph construction is carried out across the length of the VELO. Then again,

the surprisingly small effect that excluding z as an input had on the Basic Network

performance suggests that location along the detectors length is not of particular
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importance. The significant issue is that this approach has the potential to exclude

highly inclined tracks who, if while small in number, are important to LHCb’s physics

program [29]. A potential alternative would be a nearest N approach, connecting a

vertex to its nearest neighbours in ϕ each way, instead of a window. This does

however carry a similar potential to exclude correct partners in highly dense regions.

Another direction would be to consider a more hybridised approach, using the

model to construct pair seeds and forwarding them as is performed in other al-

gorithms; relying on the improved performance of the Interaction Network in the

pairing stage alone and circumventing construction of a triplet graph. Alternatively,

the triplet stage could be performed without the need for a triplet graph by using a

more basic neural network as in the Hybrid Model.

14.3 Potential Directions

Given the number of parameters within and other variations possible with the

Interaction Model, it has not been feasible to investigate all possibilities. As men-

tioned before, we did not particularly examine optimisation of our training process.

Neither did we examine the variations of the final construction of tracks, such as the

thresholds for combining triplets. As discussed previously, we often focused on using

the same configuration for both the Pair and Triplet stages. The neural networks

within the Interaction Model architecture itself do not need to be the same either;

as neural networks can be both too big or too small for a given task, so too may the

various components networks the have different optimum architectures.

In terms of the Interaction Model implemented here, there are numerous further

directions that can be explored. The original interaction network model [153] allows

for a global attribute, enabling general information on a given graph to be encoded

and utilised. As there were no clear properties which may have proved useful, this

was not included in our implementation. However, some form of event characterising

information could prove useful to pattern recognition, perhaps detector configuration

information, or potentially using a graph classification neural network to generate a

set of characteristic latent features without having to explicitly identify what they

are.

To ensure consistency, some edge features in the graphs were swapped or inverted

compared to their opposite direction partner. But alternatively, using our knowl-

edge of how our graphs will always be structured, the aggregation of incoming edge

attributes could be split in two; with edges connected to vertices representing up-
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stream and downstream hits aggregated separately and used as separate inputs to

the vertex update network. This would not only sidestep the issue of needing to alter

features so that the edge update network does not see edges ‘backwards’, but indi-

rectly incorporate the domain knowledge distinction between modules up and down

stream of each other. It would even be possible to utilise separate network instances

of the edge update network for upstream and downstream directions, though it is

doubtful, given the nature of tracks, that this would be advantageous.

Though we implemented a track forwarding style filter stage to reduce clone

tracks, other potential post-track construction extensions are possible, and existing

algorithms offer various examples. However, given the increased calculations such

methods bring, filtering methods to reduce combinatorics prior to graph construction,

such as the ϕ window or N nearest neighbours approaches discussed earlier, are likely

of more interest initially.

In the context of tracking within the VELO, the complexity, and so required

calculations, introduced by a GNN method over simpler architectures may not be

worthwhile under current constraints for straight tracks uninfluenced by a magnetic

field. However, as demonstrated in [182], a graph is not limited to representing data

solely within a single tracking subdetector. A logical extension would be to consider

if a graph and GNN based method could instead perform pattern recognition across

the entire LHCb tracking system. This would in a way sidestep some of the cost

of constructing graph representations, as such an algorithm would be in place of

track finding across multiple subdetectors. One consideration is that doing so would

naturally increase the size of graphs, and similarly calculations performed over them.

Going further, GNN have been adapted to operate on heterogenous graphs [284,285];

graphs which contain distinct types of edge and vertex. Each type of edge or vertex

possesses its own form of attribute, with features representing different properties.

This conceivably opens up the more radical possibility of incorporating multiple

forms of measurement from non tracking subdetectors into a single graph repre-

sentation of an event, such as calorimeter measurements. In [187], a GNN model,

explored in the same paper for track finding in tracking, was modified to not only

perform calorimeter clustering, but identify particle type at the same time [187]. With

this in mind, it is conceivable that, through incorporating the measurements of mul-

tiple subdetectors into a heterogenous graph, one could potentially incorporate other

event reconstruction tasks into a GNN based algorithm of some sort; or potentially

boost track reconstruction efforts. Indeed, a study along these lines has already

been published in [187]. Combining tracking, electromagnetic and hadron calorime-
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ter measurements into a single heterogeneous graph representation, they explored

the potential of a general purpose GNN for event reconstruction [162,183].

It is also worth considering that, rather than an edge classification task, track

finding can instead be interpreted as a segmentation problem. Image segmentation

is a well-trodden field in computer vision, and with the relation between CNN and

GNN there is a growing interest in graph segmentation [286], and already there have

been moves to approach tracking in this manner [162,287].

14.4 Related Projects

In recent years, a formal project to adapt the Exa.TrkX tracking pipeline (see Sec-

tion 8.3.3) to the LHCb VELO has independently been underway. Named ETX4VELO,

the model utilises nearest neighbour-based graph construction, and implements addi-

tional stages with respect to the Exa.TrkX model [63,288]. An exploration of ETX4VELO

performance can be found in [288], and documentation on the model can be found

at [289].
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Chapter 15

Conclusion

Fundamental particles are small, so small we must rely on specialised machines

to examine what takes place at their scale. Among these, tracking detectors allow

us to pinpoint particles’ locations through their interactions. Though research has

often driven their development, particle trackers can be found across a broad range

of practical applications. But even possessing the tools to make such measurements,

we still need to interpret our observations in order to understand their meaning, and

deduce what has taken place.

Able to learn patterns from data without explicit prior knowledge and capable

of considerable computational speeds compared to more direct methods, neural net-

works are eminently suitable as a tool for data-handling tasks, and are thus seeing

increasing use in cutting edge research. Not so much a single model but a core

concept and common elements, neural networks are a versatile tool than can be em-

ployed in many forms. With this in mind, we undertook, and have explored here, a

pair of projects looking to leverage neural network’s strengths within the context of

particle tracking.

While proton computed tomography has great potential for sidestepping issues

with x-ray based treatment planning in proton therapy, a long standing problem lies

in the need to reconstruct proton tracks individually, carrying a significant compu-

tational burden. Through the use of a neural network, we successfully demonstrated

that machine learning could be leveraged to match, and in some cases exceed the

accuracy of the standard algebraic method, and do so at a significantly shorter time

scale.

Within the LHCb experiment sits the VELO, a cutting edge tracking detector

nestled immediately around the interaction point itself. Making measurements vital

to the experiments event reconstruction efforts, individual particle tracks must be
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distinguished from among the multitude of measurements made in each collision

event. Seeking a neural network model with the capacity to draw inferences from

an event as a whole, we implemented a proof-of-concept graph neural network based

design. This approach showed potential improvement in reconstruction quality over

existing trials. It comes at the cost of computational demand, but one which will

likely shrink as technology and GNN methods develop further.

Though both lie firmly within the domain of tracking, they present fundamentally

different tasks, and thus lend themselves to different approaches. In pattern recogni-

tion, we are presented with analysing a field of individual measurements to deducing

those made by a common particle, a form of classification or segmentation task. On

the other hand, predicting a particle’s path given its end points is an interpolation

task, and in many ways more akin to track fitting in an event reconstruction con-

text. Nevertheless, with the versatility of neural networks and myriad of approaches

available, we have demonstrated they can be useful tools with which to address these

different challenges. Given machine learning, and neural networks in particular, is

an active and rapidly developing field, with the aid of research, such as that detailed

here, we will doubtlessly see many new and varied applications developed for particle

tracking, fundamental research and beyond.
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[202] Oliver Brüning, Max Klein, Stephen Myers, and Lucio Rossi. 70 years at the

high-energy frontier with the CERN accelerator complex. Nature Rev. Phys.,

6(10):628–637, 2024. doi: 10.1038/s42254-024-00758-5.

[203] CERN. Cern’s accelerator complex, . CERN, https://home.cern/science/

accelerators/accelerator-complex, Accessed 17/02/2025.

[204] CERN. Experiments, . CERN, https://home.cern/science/experiments, Ac-

cessed 19/02/2025.

[205] CERN. Facts and figures about the lhc, . CERN, https://home.cern/

resources/faqs/facts-and-figures-about-lhc, Accessed 17/01/2025.

[206] Alex Kohls, Jens Vigen, and Micha Moskovic. A decade in lhc publications.

Cern Courier, https://cerncourier.com/a/a-decade-in-lhc-publications/, Ac-

cessed 09/06/2025.

[207] CERN. Longer term lhc schedule, . LHC Commissioning, CERN,

https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm, Ac-

cessed 17/06/2025.

[208] CERN. The large hadron collider, . CERN, https://home.cern/science/

accelerators/large-hadron-collider, Accessed 18/02/2025.

[209] Werner Herr and B Muratori. Concept of luminosity. 2006. doi: 10.5170/

CERN-2006-002.361.

[210] Jorg Wenninger. Operation and Configuration of the LHC in Run 2. 2019.

[211] CERN. Cern experiments observe particle consistent with long-sought higgs

boson, . CERN, https://home.web.cern.ch/news/press-release/cern/cern-

experiments-observe-particle-consistent-long-sought-higgs-boson, Accessed

19/02/2025.

197

https://home.cern/about/who-we-are/our-history
https://home.cern/about/who-we-are/our-history
https://home.cern/science/accelerators/accelerator-complex
https://home.cern/science/accelerators/accelerator-complex
https://home.cern/science/experiments
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://home.cern/resources/faqs/facts-and-figures-about-lhc
https://cerncourier.com/a/a-decade-in-lhc-publications/
https://lhc-commissioning.web.cern.ch/schedule/LHC-long-term.htm
https://home.cern/science/accelerators/large-hadron-collider
https://home.cern/science/accelerators/large-hadron-collider
https://home.web.cern.ch/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson
https://home.web.cern.ch/news/press-release/cern/cern-experiments-observe-particle-consistent-long-sought-higgs-boson


[212] S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan, W. Adam,

et al. Combined results of searches for the standard model higgs boson in pp

collisions at s=7 tev. Physics Letters B, 710(1):26–48, 2012. ISSN 0370-2693.

doi: https://doi.org/10.1016/j.physletb.2012.02.064.

[213] Georges Aad, Tatevik Abajyan, Brad Abbott, Jalal Abdallah, Samah Ab-

del Khalek, et al. Combined search for the standard model higgs boson in pp

collisions at
√
s = 7 tev with the atlas detector. Phys. Rev. D, 86:032003, 2012.

doi: 10.1103/PhysRevD.86.032003.

[214] Addendum to the report on the physics at the HL-LHC, and perspectives for

the HE-LHC: Collection of notes from ATLAS and CMS. Technical report,

CERN, Geneva, 2019.

[215] G Aad, S Bentvelsen, G J Bobbink, K Bos, H Boterenbrood, et al. The ATLAS

Experiment at the CERN Large Hadron Collider. JINST, 3:S08003, 2008. doi:

10.1088/1748-0221/3/08/S08003.

[216] CERN. Atlas, . CERN, https://home.cern/science/experiments/atlas, Ac-

cessed 19/02/2025.

[217] S Chatrchyan, G Hmayakyan, V Khachatryan, A M Sirunyan, R Adolphi,

et al. The CMS experiment at the CERN LHC. The Compact Muon Solenoid

experiment. JINST, 3:S08004, 2008. doi: 10.1088/1748-0221/3/08/S08004.

[218] A Augusto Alves, L M Andrade, F Barbosa-Ademarlaudo, I Bediaga, G Cer-

nicchiaro, et al. The LHCb Detector at the LHC. JINST, 3:S08005, 2008. doi:

10.1088/1748-0221/3/08/S08005.

[219] K Aamodt, A Abrahantes Quintana, R Achenbach, S Acounis, D Adamova,

et al. The ALICE experiment at the CERN LHC. A Large Ion Collider Ex-

periment. JINST, 3:S08002, 2008. doi: 10.1088/1748-0221/3/08/S08002.

[220] CERN. Heavy ions and quark-gluon plasma, . CERN, https://home.cern/

science/physics/heavy-ions-and-quark-gluon-plasma, Accessed 19/02/2025.

[221] CERN. Totem, . CERN, https://home.cern/science/experiments/totem, Ac-

cessed 19/02/2025.

[222] The TOTEM Collaboration, G Anelli, G Antchev, P Aspell, V Avati, et al.

Journal of Instrumentation, 3(08):S08007, aug 2008. doi: 10.1088/1748-0221/

3/08/S08007.

198

https://home.cern/science/experiments/atlas
https://home.cern/science/physics/heavy-ions-and-quark-gluon-plasma
https://home.cern/science/physics/heavy-ions-and-quark-gluon-plasma
https://home.cern/science/experiments/totem


[223] O Adriani, L Bonechi, M Bongi, G Castellini, R D’Alessandro, et al. The LHCf

detector at the CERN Large Hadron Collider. JINST, 3:S08006, 2008. doi:

10.1088/1748-0221/3/08/S08006.

[224] Pinfold J. et al. Moedal-mapp, an lhc dedicated detector search facility, 2023.

[225] Henso Abreu, Elham Amin Mansour, Claire Antel, Akitaka Ariga, Tomoko

Ariga, et al. The faser detector. Journal of Instrumentation, 19(05):P05066,

may 2024. doi: 10.1088/1748-0221/19/05/P05066.

[226] G. Acampora, C. Ahdida, R. Albanese, C. Albrecht, A. Alexandrov, et al.

Snd@lhc: the scattering and neutrino detector at the lhc. Journal of Instru-

mentation, 19(05):P05067, may 2024. doi: 10.1088/1748-0221/19/05/P05067.

[227] Framework TDR for the LHCb Upgrade II: Opportunities in flavour physics,

and beyond, in the HL-LHC era. Technical report, CERN, Geneva, 2021.

[228] LHCb SMOG Upgrade. Technical report, CERN, Geneva, 2019.

[229] LHCb Collaboration. LHCb Tracker Upgrade Technical Design Report. Tech-

nical report, 2014.

[230] Sara Cesare. The LHCb Upstream Tracker: Operations and Performance in

Run3. 2024.

[231] Plamen Hopchev. SciFi: A large Scintillating Fibre Tracker for LHCb. Techni-

cal report, 2017. Presented at The Fifth Annual Conference on Large Hadron

Collider Physics.

[232] LHCb Collaboration. LHCb PID Upgrade Technical Design Report. Technical

report, 2013.

[233] S Okamura. Commissioning of the upgraded RICH system at the LHCb exper-

iment. Commissioning of the upgraded RICH system at the LHCb experiment.

JINST, 17(11):C11006, 2022. doi: 10.1088/1748-0221/17/11/C11006.

[234] Carlos Abellán Beteta, A. Alfonso Albero, Y. Amhis, S. Barsuk, C. Beigbeder-

Beau, et al. Calibration and performance of the LHCb calorimeters in Run 1

and 2 at the LHC. Technical report, 2020.

[235] Ken Wyllie, Federico Alessio, Clara Gaspar, Richard Jacobsson, Renaud

Le Gac, Niko Neufeld, and Rainer Schwemmer. Electronics Architecture of

the LHCb Upgrade. Technical report, CERN, Geneva, 2013.

199



[236] R. Aaij, S. Benson, M. De Cian, A. Dziurda, C. Fitzpatrick, et al. A com-

prehensive real-time analysis model at the lhcb experiment. Journal of In-

strumentation, 14(04):P04006–P04006, April 2019. ISSN 1748-0221. doi:

10.1088/1748-0221/14/04/p04006.

[237] LHCb Trigger and Online Upgrade Technical Design Report. Technical report,

2014.

[238] RTA and DPA dataflow diagrams for Run 1, Run 2, and the upgraded LHCb

detector . 2020.

[239] Computing Model of the Upgrade LHCb experiment. Technical report, CERN,

Geneva, 2018.

[240] G. Barrand, I. Belyaev, P. Binko, M. Cattaneo, R. Chytracek, et al. Gaudi

— a software architecture and framework for building hep data processing

applications. Computer Physics Communications, 140(1):45–55, 2001. ISSN

0010-4655. doi: https://doi.org/10.1016/S0010-4655(01)00254-5. CHEP2000.

[241] LHCb Collaboration. Moore application gitlab repository, . https://

gitlab.cern.ch/lhcb/Moore., Accessed 15/08/2025.

[242] R. Aaij, J. Albrecht, M. Belous, P. Billoir, T. Boettcher, et al. Allen: A high-

level trigger on gpus for lhcb. Computing and Software for Big Science, 4(1),

April 2020. ISSN 2510-2044. doi: 10.1007/s41781-020-00039-7.

[243] Paul Andre Günther. LHCb’s Forward Tracking algorithm for the Run 3 CPU-

based online track reconstruction sequence. 2022.

[244] LHCb Upgrade GPU High Level Trigger Technical Design Report. Technical

report, CERN, Geneva, 2020.

[245] M. Adinolfi, G. Aglieri Rinella, E. Albrecht, T. Bellunato, S. Benson, et al.

Performance of the lhcb rich detector at the lhc. The European Physical Journal

C, 73(5), May 2013. ISSN 1434-6052. doi: 10.1140/epjc/s10052-013-2431-9.

[246] L. Anderlini, F. Archilli, A. Cardini, V. Cogoni, M. Fontana, et al. Muon iden-

tification for lhcb run 3. Journal of Instrumentation, 15(12):T12005–T12005,

December 2020. ISSN 1748-0221. doi: 10.1088/1748-0221/15/12/t12005.

[247] Computing Model of the Upgrade LHCb experiment. Technical report, CERN,

Geneva, 2018.

200

https://gitlab.cern.ch/lhcb/Moore.
https://gitlab.cern.ch/lhcb/Moore.


[248] Johannes Albrecht, Frederic Henry Blanc, Matthew John Charles, Conor Fitz-

patrick, Matthew David Needham, et al. Recommendations from Upgrade Ib

Review. Technical report, CERN, Geneva, 2019.

[249] K. Akiba, M. Alexander, C. Bertella, A. Biolchini, A. Bitadze, et al. The lhcb

velo upgrade module construction. Journal of Instrumentation, 19(06):P06023,

jun 2024. doi: 10.1088/1748-0221/19/06/P06023.

[250] Victor Coco, Kazu Akiba, John Back, Claudia Bertella, Alexander Bitadze,

et al. Velo Upgrade Module Nomenclature. Technical report, CERN, Geneva,

2019.

[251] The LHCb Collaboration. LHCb VELO Upgrade Technical Design Report.

Technical report, 2013.

[252] Thomas Bird. Flavour studies with lhcb: b-meson mixing, lepton- flavour

violation and the velo upgrade, March 2017.

[253] O Callot. Velo tracking for the High Level Trigger. Technical report, CERN,

Geneva, 2003.

[254] O Callot. Online Pattern Recognition. Technical report, CERN, Geneva, 2004.

[255] D Hutchcroft. VELO Pattern Recognition. Technical report, CERN, Geneva,

2007.

[256] O Callot. FastVelo, a fast and efficient pattern recognition package for the

Velo. Technical report, CERN, Geneva, 2011.

[257] T Bird, T Britton, O Callot, V Coco, P Collins, et al. VP Simulation and

Track Reconstruction. Technical report, CERN, Geneva, 2013.

[258] Alexey Badalov, Daniel Campora, Gianmaria Collazuol, Marco Corvo, Stefano

Gallorini, et al. GPGPU opportunities at the LHCb trigger. Technical report,

CERN, Geneva, 2014.

[259] Alexey Pavlovich Badalov. Coprocessor integration for real-time event pro-

cessing in particle physics detectors. PhD thesis, Universitat Ramon Llull. La

Salle, 2016.

[260] Michel De Cian, Agnieszka Dziurda, Vladimir Gligorov, Christoph Hasse,

Wouter Hulsbergen, et al. Status of HLT1 sequence and path towards 30

MHz. Technical report, CERN, Geneva, 2018.

201
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Appendix B

VELO Module Positions

Each station within the VELO is numbered consecutively from 0 to 25, beginning

with the negative z-direction. Similarly, every module is assigned a number 0 − 51,

with even and odd numbers corresponding to sides A and C respectively, and equally

all sensor tiles 0− 207 [250]. The position of each module in z, identified in the above

manner and with corresponding station and sensors, is provided in Table B.1. Due

to material thicknesses and tile arrangement, recorded position measurements are

marginally displaced in z from those indicated here. Further details on nomenclature

can be found in [250].
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Station C-side A-side Mean z

Module Sensors z [mm] Module Sensors z [mm] [mm]

0 0 0 − 3 −287.50 1 4 − 7 −275.00 −281.25

1 2 8 − 11 −262.50 3 12 − 15 −250.00 −256.25

2 4 16 − 19 −237.50 5 20 − 23 −225.00 −231.25

3 6 24 − 27 −212.50 7 28 − 31 −200.00 −206.25

4 8 32 − 35 −137.50 9 36 − 39 −125.00 −131.25

5 10 40 − 43 −62.50 11 44 − 47 −50.00 −56.25

6 12 48 − 51 −37.50 13 52 − 55 −25.00 −31.25

7 14 56 − 59 −12.5 15 60 − 63 0.00 −6.25

8 16 64 − 67 12.50 17 68 − 71 25.00 18.75

9 18 72 − 75 37.50 19 76 − 79 50.00 43.75

10 20 80 − 83 62.50 21 84 − 87 75.00 68.75

11 22 88 − 91 87.50 23 92 − 95 100.00 93.75

12 24 96 − 99 112.50 25 100 − 103 125.00 118.75

13 26 104 − 107 137.50 27 108 − 111 150.00 143.75

14 28 112 − 115 162.50 29 116 − 119 175.00 168.75

15 30 120 − 123 187.50 31 124 − 127 200.00 193.75

16 32 128 − 131 212.50 33 132 − 135 225.00 218.75

17 34 136 − 139 237.50 35 140 − 143 250.00 243.75

18 36 144 − 147 262.50 37 148 − 151 275.00 268.75

19 38 152 − 155 312.50 39 156 − 159 325.00 318.75

20 40 160 − 168 387.50 41 164 − 167 400.00 396.75

21 42 168 − 173 487.50 43 172 − 175 500.00 493.75

22 44 176 − 179 587.50 45 180 − 183 600.00 593.75

23 46 184 − 187 637.50 47 188 − 191 650.00 643.75

24 48 192 − 195 687.50 49 196 − 199 700.00 693.75

25 50 200 − 203 737.50 51 204 − 207 750.00 743.75

Table B.1: Overview of the VELO module positions. Adapted from [250].
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Appendix C

Results Tables for Chapter 13

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Basic 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Table C.1: Results corresponding to Figure 13.1(a).

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

Basic 0.9694 0.017429 0.9757 0.021307 0.9914 0.007549 0.9601 0.041762 0.9973

Table C.2: Results corresponding to Figure 13.1(b).

Model
Efficiency Clone Rate Fake Rate

± ± ±
Hybrid 0.9296 0.037848 0.0158 0.015513 0.0020 0.004903

Basic 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

Table C.3: Results corresponding to Figure 13.1(c).
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 2 M. 0.9806 0.017446 0.9754 0.024846 0.9702 0.044390 0.9807 0.022122 0.9970

Hybrid 3 M. 0.9808 0.016409 0.9760 0.022083 0.9712 0.038231 0.9808 0.021804 0.9972

Hybrid 8 M. 0.9809 0.013947 0.9735 0.016370 0.9659 0.027991 0.9812 0.017656 0.9963

Hybrid 26 M. 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Sng. Net. 2 M. 0.9748 0.019052 0.9753 0.023300 0.9763 0.039146 0.9743 0.024878 0.9968

Sng. Net. 3 M. 0.9703 0.019301 0.9745 0.020734 0.9795 0.031573 0.9695 0.026236 0.9967

Sng. Net. 8 M. 0.9668 0.015694 0.9716 0.015009 0.9771 0.021468 0.9661 0.021136 0.9954

Sng. Net. 26 M. 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Sng. Net. 52 M. 0.9712 0.004791 0.9784 0.004436 0.9859 0.006364 0.9709 0.005903 0.9978

Sep. Net. 2 M. 0.9791 0.018216 0.9751 0.024606 0.9712 0.043162 0.9790 0.023476 0.9969

Sep. Net. 3 M. 0.9757 0.017594 0.9753 0.021241 0.9754 0.034786 0.9753 0.023615 0.9969

Sep. Net. 8 M. 0.9670 0.015391 0.9711 0.015156 0.9758 0.022209 0.9663 0.020551 0.9956

Table C.4: Results corresponding to Figure 13.2. The regular single net-
work Basic model is abbreviated as Sng. Net, and the separate network
Basic variant as Sep. Net.. The number of modules included is abbrevi-
ated as M..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 2 M. 0.9806 0.017446 0.9754 0.024846 0.9702 0.044390 0.9807 0.022122 0.9970

Hybrid 3 M. 0.9808 0.016409 0.9760 0.022083 0.9712 0.038231 0.9808 0.021804 0.9972

Hybrid 8 M. 0.9809 0.013947 0.9735 0.016370 0.9659 0.027991 0.9812 0.017656 0.9963

Hybrid 26 M. 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Basic 2 M. 0.9748 0.019052 0.9753 0.023300 0.9763 0.039146 0.9743 0.024878 0.9968

Basic 3 M. 0.9703 0.019301 0.9745 0.020734 0.9795 0.031573 0.9695 0.026236 0.9967

Basic 8 M. 0.9668 0.015694 0.9716 0.015009 0.9771 0.021468 0.9661 0.021136 0.9954

Basic 26 M. 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Basic 52 M. 0.9712 0.004791 0.9784 0.004436 0.9859 0.006364 0.9709 0.005903 0.9978

w/o z 2 M. 0.9761 0.018987 0.9757 0.023354 0.9758 0.039450 0.9757 0.024687 0.9972

w/o z 3 M. 0.9725 0.018563 0.9749 0.020900 0.9781 0.032428 0.9718 0.025280 0.9971

w/o z 8 M. 0.9666 0.015324 0.9712 0.014771 0.9766 0.021556 0.9659 0.020439 0.9960

w/o z 26 M. 0.9654 0.008533 0.9700 0.008179 0.9751 0.012955 0.9650 0.010456 0.9958

w/o z 52 M. 0.9744 0.004339 0.9762 0.005121 0.9781 0.008686 0.9743 0.005426 0.9971

w/o z, sc. 2 M. 0.9729 0.019544 0.9745 0.023343 0.9768 0.038563 0.9723 0.025845 0.9969

w/o z, sc. 3 M. 0.9693 0.019173 0.9743 0.020146 0.9802 0.030193 0.9685 0.025861 0.9969

w/o z, sc. 8 M. 0.9660 0.015524 0.9713 0.014746 0.9772 0.021069 0.9653 0.020775 0.9959

w/o z, sc. 26 M. 0.9587 0.009087 0.9667 0.008492 0.9755 0.013046 0.9580 0.011300 0.9949

w/o z, sc. 52 M. 0.9673 0.004714 0.9740 0.004856 0.9811 0.007787 0.9670 0.005847 0.9962

Table C.5: Results corresponding to Figure 13.3. Sc. indicates the ex-
clusion of scaling. The number of modules included is abbreviated as
M..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

0.4 Mult. 0.9840 0.007226 0.9770 0.008520 0.9696 0.015166 0.9844 0.008429 0.9972

0.5 Mult. 0.9819 0.007343 0.9774 0.008185 0.9727 0.014270 0.9821 0.008723 0.9973

0.6 Mult. 0.9764 0.007884 0.9765 0.007854 0.9767 0.012627 0.9763 0.009722 0.9968

0.7 Mult. 0.9752 0.008394 0.9750 0.008312 0.9750 0.013554 0.9750 0.010379 0.9965

0.8 Mult. 0.9763 0.007850 0.9769 0.007774 0.9777 0.012428 0.9761 0.009692 0.9973

0.9 Mult. 0.9731 0.008069 0.9755 0.007807 0.9782 0.012267 0.9728 0.009969 0.9970

1.0 Mult. 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

1.1 Mult. 0.9663 0.008472 0.9734 0.007637 0.9811 0.010992 0.9657 0.010910 0.9965

1.2 Mult. 0.9607 0.009072 0.9722 0.007408 0.9846 0.009732 0.9598 0.011470 0.9967

1.3 Mult. 0.9588 0.009317 0.9713 0.007703 0.9849 0.009475 0.9578 0.012038 0.9971

1.4 Mult. 0.9600 0.009276 0.9716 0.007545 0.9841 0.009791 0.9591 0.011609 0.9969

1.5 Mult. 0.9590 0.009260 0.9713 0.007507 0.9844 0.009694 0.9581 0.011629 0.9959

1.6 Mult. 0.9522 0.009726 0.9683 0.007655 0.9857 0.009370 0.9510 0.012211 0.9963

Table C.6: Results corresponding to Figure 13.4. The multiplier included
is abbreviated as Mult..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

0.4 Mult. 0.9812 0.013896 0.9798 0.017358 0.9807 0.012205 0.9789 0.032361 0.9975

0.5 Mult. 0.9806 0.013776 0.9804 0.017363 0.9835 0.011282 0.9773 0.032710 0.9977

0.6 Mult. 0.9769 0.015597 0.9791 0.019592 0.9871 0.009796 0.9712 0.037839 0.9976

0.7 Mult. 0.9796 0.013880 0.9807 0.017972 0.9862 0.010242 0.9752 0.034273 0.9977

0.8 Mult. 0.9735 0.016924 0.9778 0.020726 0.9896 0.008438 0.9659 0.040433 0.9973

0.9 Mult. 0.9734 0.016928 0.9776 0.021105 0.9895 0.008587 0.9657 0.041235 0.9976

1.0 Mult. 0.9694 0.017429 0.9757 0.021307 0.9914 0.007549 0.9601 0.041762 0.9973

1.1 Mult. 0.9735 0.015739 0.9777 0.019767 0.9894 0.008473 0.9661 0.038466 0.9975

1.2 Mult. 0.9728 0.016500 0.9774 0.020540 0.9899 0.008408 0.9650 0.040068 0.9976

1.3 Mult. 0.9743 0.016083 0.9783 0.019959 0.9894 0.008534 0.9673 0.038821 0.9978

1.4 Mult. 0.9685 0.018385 0.9753 0.022246 0.9920 0.007265 0.9586 0.043751 0.9975

1.5 Mult. 0.9681 0.017558 0.9752 0.021375 0.9923 0.006994 0.9582 0.041984 0.9977

1.6 Mult. 0.9714 0.016402 0.9766 0.020162 0.9901 0.008109 0.9632 0.039307 0.9974

Table C.7: Results corresponding to Figure 13.5(a). The multiplier in-
cluded is abbreviated as Mult..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

0.4 Mult. 0.9726 0.016665 0.9706 0.022189 0.9727 0.015084 0.9686 0.041900 0.9952

0.5 Mult. 0.9742 0.015782 0.9747 0.022248 0.9832 0.011183 0.9662 0.042888 0.9963

0.6 Mult. 0.9794 0.013914 0.9790 0.018306 0.9824 0.011922 0.9757 0.034572 0.9973

0.7 Mult. 0.9765 0.015489 0.9785 0.019791 0.9871 0.009479 0.9700 0.038201 0.9973

0.8 Mult. 0.9741 0.016048 0.9770 0.020534 0.9880 0.009168 0.9661 0.039893 0.9972

0.9 Mult. 0.9713 0.017479 0.9760 0.020998 0.9892 0.008315 0.9629 0.041060 0.9967

1.0 Mult. 0.9694 0.017429 0.9757 0.021307 0.9914 0.007549 0.9601 0.041762 0.9973

1.1 Mult. 0.9746 0.016188 0.9795 0.018997 0.9906 0.007810 0.9684 0.037031 0.9980

1.2 Mult. 0.9746 0.016115 0.9797 0.017745 0.9898 0.008120 0.9696 0.034374 0.9979

1.3 Mult. 0.9760 0.015571 0.9812 0.016925 0.9910 0.007511 0.9714 0.032859 0.9984

1.4 Mult. 0.9739 0.015905 0.9799 0.017820 0.9911 0.007524 0.9687 0.034680 0.9980

1.5 Mult. 0.9794 0.013998 0.9826 0.015729 0.9894 0.008472 0.9758 0.030112 0.9983

1.6 Mult. 0.9798 0.014222 0.9835 0.015333 0.9904 0.007848 0.9765 0.029503 0.9986

Table C.8: Results corresponding to Figure 13.5(b). The multiplier in-
cluded is abbreviated as Mult..
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Model
Efficiency Clone Rate Fake Rate

± ± ±
Hybrid 0.9296 0.037848 0.0158 0.015513 0.0020 0.004903

P.O. 0.4 Mult. 0.9416 0.033400 0.0162 0.015367 0.0042 0.007636

P.O. 0.5 Mult. 0.9436 0.033152 0.0149 0.014683 0.0047 0.008449

P.O. 0.6 Mult. 0.9445 0.033353 0.0146 0.014392 0.0084 0.012441

P.O. 0.7 Mult. 0.9442 0.033648 0.0138 0.014017 0.0085 0.012840

P.O. 0.8 Mult. 0.9465 0.032384 0.0147 0.014494 0.0062 0.010319

P.O. 0.9 Mult. 0.9486 0.031561 0.0152 0.014708 0.0124 0.016876

P.O. 1.0 Mult. 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

P.O. 1.1 Mult. 0.9435 0.034483 0.0141 0.014177 0.0193 0.024706

P.O. 1.2 Mult. 0.9459 0.033267 0.0143 0.014168 0.0169 0.021607

P.O. 1.3 Mult. 0.9415 0.035193 0.0144 0.014203 0.0250 0.030958

P.O. 1.4 Mult. 0.9414 0.035301 0.0146 0.014255 0.0234 0.029215

P.O. 1.5 Mult. 0.9388 0.035562 0.0158 0.014892 0.0185 0.023957

P.O. 1.6 Mult. 0.9427 0.034792 0.0155 0.014589 0.0322 0.038535

T.O. 0.4 Mult. 0.9386 0.034428 0.0159 0.015175 0.0033 0.006573

T.O. 0.5 Mult. 0.9377 0.034815 0.0152 0.014794 0.0034 0.006878

T.O. 0.6 Mult. 0.9434 0.033907 0.0147 0.014571 0.0082 0.012279

T.O. 0.7 Mult. 0.9466 0.032407 0.0152 0.014722 0.0066 0.010517

T.O. 0.8 Mult. 0.9430 0.034201 0.0146 0.014329 0.0129 0.017913

T.O. 0.9 Mult. 0.9441 0.033683 0.0142 0.014166 0.0098 0.014274

T.O. 1.0 Mult. 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

T.O. 1.1 Mult. 0.9450 0.033190 0.0142 0.014147 0.0094 0.013564

T.O. 1.2 Mult. 0.9460 0.033136 0.0141 0.014184 0.0117 0.016354

T.O. 1.3 Mult. 0.9473 0.032458 0.0139 0.014039 0.0134 0.018154

T.O. 1.4 Mult. 0.9464 0.033598 0.0140 0.014028 0.0222 0.027732

T.O. 1.5 Mult. 0.9479 0.032961 0.0138 0.013938 0.0229 0.028488

T.O. 1.6 Mult. 0.9452 0.033148 0.0146 0.014395 0.0136 0.018806

Table C.9: First part of results corresponding to Figure 13.6, continued
in Table C.10. The multiplier included is abbreviated as Mult.. Inclusion
of the multiplier in only the Pair Network, Triplet Network or both is
abbreviated as P.O., T.O or B. respectively.
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Model
Efficiency Clone Rate Fake Rate

± ± ±
B. 0.4 Mult. 0.9122 0.041471 0.0189 0.016790 0.0014 0.004455

B. 0.5 Mult. 0.9369 0.035183 0.0160 0.015288 0.0024 0.005399

B. 0.6 Mult. 0.9391 0.034395 0.0169 0.015626 0.0041 0.007492

B. 0.7 Mult. 0.9424 0.033912 0.0153 0.014788 0.0073 0.011432

B. 0.8 Mult. 0.9438 0.033518 0.0148 0.014585 0.0072 0.011293

B. 0.9 Mult. 0.9400 0.035021 0.0153 0.014670 0.0152 0.020891

B. 1.0 Mult. 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

B. 1.1 Mult. 0.9470 0.033017 0.0142 0.014221 0.0180 0.023409

B. 1.2 Mult. 0.9424 0.034895 0.0149 0.014507 0.0210 0.026383

B. 1.3 Mult. 0.9482 0.032778 0.0136 0.013847 0.0225 0.028687

B. 1.4 Mult. 0.9433 0.034567 0.0145 0.014194 0.0262 0.032037

B. 1.5 Mult. 0.9484 0.032313 0.0139 0.013996 0.0191 0.024595

B. 1.6 Mult. 0.9468 0.033134 0.0136 0.013876 0.0202 0.025710

Table C.10: Second part of results corresponding to Figure 13.6, contin-
uing from Table C.9. The multiplier included is abbreviated as Mult..
Inclusion of the multiplier in only the Pair Network, Triplet Network or
both is abbreviated as P.O., T.O or B. respectively.
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

3 L. 16 N. 0.9635 0.009406 0.9720 0.007839 0.9812 0.010877 0.9628 0.011659 0.9967

3 L. 24 N. 0.9723 0.008360 0.9762 0.007560 0.9805 0.011238 0.9719 0.010457 0.9973

3 L. 32 N. 0.9750 0.008023 0.9767 0.007676 0.9786 0.012050 0.9748 0.009952 0.9973

3 L. 64 N. 0.9669 0.008681 0.9747 0.007493 0.9831 0.010324 0.9662 0.010979 0.9972

4 L. 16 N. 0.9755 0.007840 0.9766 0.007744 0.9777 0.012457 0.9754 0.009570 0.9971

4 L. 24 N. 0.9746 0.008114 0.9766 0.007706 0.9788 0.012111 0.9744 0.009991 0.9969

4 L. 32 N. 0.9736 0.008215 0.9770 0.007491 0.9808 0.011164 0.9733 0.010251 0.9975

4 L. 64 N. 0.9687 0.008523 0.9753 0.007512 0.9824 0.010590 0.9682 0.010858 0.9971

6 L. 16 N. 0.9734 0.008120 0.9750 0.007831 0.9768 0.012396 0.9732 0.010011 0.9965

6 L. 24 N. 0.9770 0.007782 0.9765 0.008022 0.9760 0.013021 0.9770 0.009695 0.9968

6 L. 32 N. 0.9751 0.007695 0.9761 0.007764 0.9772 0.012453 0.9750 0.009521 0.9969

6 L. 64 N. 0.9797 0.007610 0.9779 0.007805 0.9762 0.012959 0.9797 0.009131 0.9974

8 L. 16 N. 0.9748 0.007813 0.9765 0.007769 0.9784 0.012360 0.9746 0.009669 0.9960

8 L. 24 N. 0.9708 0.008499 0.9753 0.007699 0.9802 0.011479 0.9703 0.010593 0.9962

8 L. 32 N. 0.9717 0.008095 0.9764 0.007421 0.9815 0.010984 0.9713 0.010169 0.9975

8 L. 64 N. 0.9779 0.007800 0.9774 0.007912 0.9769 0.012900 0.9779 0.009525 0.9973

12 L. 16 N. 0.9777 0.007903 0.9773 0.007770 0.9770 0.012523 0.9776 0.009629 0.9973

12 L. 24 N. 0.9760 0.007832 0.9776 0.007523 0.9794 0.011656 0.9757 0.009785 0.9976

12 L. 32 N. 0.9717 0.008311 0.9757 0.007732 0.9799 0.011594 0.9713 0.010389 0.9971

12 L. 64 N. 0.9752 0.007930 0.9771 0.007644 0.9794 0.011947 0.9749 0.009858 0.9974

15 L. 16 N. 0.9713 0.008412 0.9762 0.007606 0.9815 0.011153 0.9709 0.010545 0.9974

15 L. 24 N. 0.9764 0.007882 0.9775 0.007541 0.9789 0.011923 0.9762 0.009625 0.9975

15 L. 32 N. 0.9771 0.007785 0.9775 0.007731 0.9781 0.012219 0.9770 0.009758 0.9974

15 L. 64 N. 0.9748 0.007948 0.9771 0.007578 0.9796 0.011776 0.9746 0.009815 0.9974

Table C.11: Results corresponding to Figure 13.7. The number of layers
is abbreviated as L., and the number of neurons per layer N..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Basic 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Interaction 0.9937 0.004877 0.9944 0.003952 0.9953 0.003958 0.9935 0.006998 0.9997

Table C.12: Results corresponding to Figure 13.8(a).

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

Basic 0.9694 0.017429 0.9757 0.021307 0.9914 0.007549 0.9601 0.041762 0.9973

Interaction 0.9736 0.011162 0.9729 0.021078 0.9659 0.016437 0.9801 0.041293 0.9972

Basic - Int. 0.9863 0.010940 0.9691 0.014820 0.9426 0.024903 0.9957 0.018452 0.9987

Int. - Basic 0.9670 0.013778 0.9592 0.030291 0.9686 0.016481 0.9499 0.061481 0.9940

Table C.13: Results corresponding to Figure 13.8(b). Basic - Int. denotes
using the Basic Network for the pair stage and Interaction Network for
the triplet stage; and vice versa for Int. - Basic.

Model
Efficiency Clone Rate Fake Rate

± ± ±
Hybrid 0.9296 0.037848 0.0158 0.015513 0.0020 0.004903

Basic 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

Interaction 0.9437 0.033278 0.0107 0.012494 0.0000 0.000404

Basic - Int. 0.8932 0.045979 0.0235 0.019165 0.0001 0.001031

Int. - Basic 0.9429 0.034643 0.0209 0.017679 0.0001 0.001061

Table C.14: Results corresponding to Figure 13.8(c). Basic - Int. denotes
using the Basic Network for the pair stage and Interaction Network for
the triplet stage; and vice versa for Int. - Basic.
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Basic 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Sum 0.9937 0.004877 0.9944 0.003952 0.9953 0.003958 0.9935 0.006998 0.9997

Mean 0.9932 0.005201 0.9937 0.004386 0.9945 0.004646 0.9930 0.007701 0.9997

Max 0.9955 0.003783 0.9939 0.003897 0.9923 0.005498 0.9955 0.005617 0.9995

Min 0.9953 0.003958 0.9953 0.003567 0.9954 0.003817 0.9952 0.006004 0.9998

Table C.15: Results corresponding to Figure 13.9.

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

Basic 0.9719 0.008199 0.9753 0.007710 0.9790 0.011976 0.9716 0.010197 0.9970

Latent 0.9937 0.004877 0.9944 0.003952 0.9953 0.003958 0.9935 0.006998 0.9997

Inputs 0.9929 0.005552 0.9941 0.004280 0.9956 0.003784 0.9926 0.008014 0.9997

Differences 0.9936 0.004657 0.9928 0.004317 0.9921 0.005724 0.9935 0.006770 0.9996

None 0.9950 0.004011 0.9950 0.003561 0.9951 0.004088 0.9948 0.005919 0.9998

Table C.16: Results corresponding to Figure 13.10.
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

2 Itr. 0.9923 0.005762 0.9929 0.004208 0.9937 0.004759 0.9921 0.007226 0.9996

4 Itr. 0.9937 0.004877 0.9944 0.003952 0.9953 0.003958 0.9935 0.006998 0.9997

6 Itr. 0.9944 0.004069 0.9944 0.003420 0.9945 0.004208 0.9943 0.005232 0.9997

8 Itr. 0.9951 0.003760 0.9941 0.003619 0.9931 0.005175 0.9950 0.005011 0.9996

10 Itr. 0.9926 0.004659 0.9942 0.003753 0.9961 0.003619 0.9923 0.006716 0.9997

12 Itr. 0.9947 0.004434 0.9937 0.004028 0.9928 0.005489 0.9946 0.006226 0.9995

Table C.17: Results corresponding to Figure 13.11(a). Number of layers
is abbreviated as Itr..

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

2 Itr. 0.9756 0.027407 0.9445 0.084145 0.9793 0.044700 0.9101 0.172020 0.9992

4 Itr. 0.9736 0.011162 0.9729 0.021078 0.9659 0.016437 0.9801 0.041293 0.9972

6 Itr. 0.9737 0.012045 0.9722 0.024929 0.9673 0.016575 0.9773 0.049706 0.9974

8 Itr. 0.9730 0.011425 0.9706 0.026795 0.9697 0.014764 0.9717 0.053590 0.9965

10 Itr. 0.9718 0.012593 0.9668 0.025524 0.9700 0.015912 0.9637 0.051255 0.9957

12 Itr. 0.9590 0.015284 0.9561 0.028564 0.9541 0.020444 0.9584 0.057373 0.9931

Table C.18: Results corresponding to Figure 13.11(b). Number of layers
is abbreviated as Itr..
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Model
Efficiency Clone Rate Fake Rate

± ± ±
Hybrid 0.9296 0.037848 0.0158 0.015513 0.0020 0.004903

2 Itr. 0.9718 0.023867 0.0149 0.014112 0.0036 0.006667

4 Itr. 0.9437 0.033278 0.0107 0.012494 0.0000 0.000404

6 Itr. 0.9367 0.035712 0.0089 0.011310 0.0000 0.000439

8 Itr. 0.9404 0.033916 0.0094 0.011696 0.0000 0.000498

10 Itr. 0.9319 0.037500 0.0172 0.016101 0.0001 0.001614

12 Itr. 0.8846 0.048701 0.0146 0.014844 0.0000 0.000605

Table C.19: Results corresponding to Figure 13.11(c). Number of layers
is abbreviated as Itr..

Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9824 0.007318 0.9770 0.008593 0.9713 0.015024 0.9827 0.008651 0.9970

2 L. 24 N. 0.9937 0.004877 0.9944 0.003952 0.9953 0.003958 0.9935 0.006998 0.9997

2 L. 32 N. 0.9922 0.005935 0.9910 0.004932 0.9900 0.006696 0.9920 0.008016 0.9994

2 L. 64 N. 0.9936 0.005550 0.9935 0.004256 0.9936 0.004765 0.9934 0.007501 0.9997

3 L. 24 N. 0.9946 0.004307 0.9944 0.003970 0.9944 0.004697 0.9944 0.006529 0.9998

3 L. 32 N. 0.9944 0.004537 0.9940 0.003996 0.9938 0.004928 0.9942 0.006608 0.9997

3 L. 64 N. 0.9945 0.004280 0.9950 0.003691 0.9957 0.003716 0.9943 0.006383 0.9998

4 L. 32 N. 0.9944 0.004620 0.9950 0.003751 0.9958 0.003773 0.9942 0.006637 0.9998

Table C.20: Results corresponding to Figure 13.12. The number of layers
is abbreviated as L., and the number of neurons per layer as N..
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Model Accuracy
Balanced True Positive True Negative ROC

Accuracy Rate Rate AUC

± ± ± ±
Hybrid 0.9733 0.015544 0.9736 0.021810 0.9822 0.011681 0.9650 0.041860 0.9963

Basic 0.9694 0.017429 0.9757 0.021307 0.9914 0.007549 0.9601 0.041762 0.9973

Interaction 0.9736 0.011162 0.9729 0.021078 0.9659 0.016437 0.9801 0.041293 0.9972

2 L. 64 N. 0.9773 0.010267 0.9756 0.021322 0.9723 0.014221 0.9791 0.042116 0.9975

3 L. 64 N. 0.9779 0.010144 0.9753 0.022548 0.9746 0.013355 0.9762 0.044870 0.9976

3 L. 128 N. 0.9757 0.010402 0.9751 0.020369 0.9685 0.015026 0.9819 0.039910 0.9974

Table C.21: Results corresponding to Figure 13.13. The number of layers
is abbreviated as L., and the number of neurons per layer as N..

Hybrid 0.9296 0.037848 0.0158 0.015513 0.0020 0.004903

Hybrid Filter 0.9292 0.038020 0.0106 0.012384 0.0020 0.004928

Basic 0.9467 0.033270 0.0145 0.014321 0.0244 0.029888

Basic Filter 0.9464 0.033386 0.0110 0.012409 0.0244 0.029935

Interaction 0.9437 0.033278 0.0107 0.012494 0.0000 0.000404

Int. Filter 0.9433 0.033503 0.0064 0.009611 0.0000 0.000448

Table C.22: Results corresponding to Figure 13.14. The Interaction Net-
work is abbreviated as Int. in the final entry.
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Appendix D

Reproduction of ’Proton path

reconstruction for pCT using

Neural Networks’

Reproduction of the Accepted Manuscript, as found at https://arxiv.org/abs/

2010.00427.
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Abstract. The Most Likely Path formalism (MLP) is widely established as the

most statistically precise method for proton path reconstruction in proton computed

tomography (pCT). However, while this method accounts for small-angle Multiple

Coulomb Scattering (MCS) and energy loss, inelastic nuclear interactions play an

influential role in a significant number of proton paths. By applying cuts based on

energy and direction, tracks influenced by nuclear interactions are largely discarded

from the MLP analysis. In this work we propose a new method to estimate the proton

paths based on a Deep Neural Network (DNN). Through this approach, estimates of

proton paths equivalent to MLP predictions have been achieved in the case where

only MCS occurs, together with an increased accuracy when nuclear interactions are

present. Moreover, our tests indicate that the DNN algorithm can be considerably

faster than the MLP algorithm.

1. Introduction

When reviewing recent developments in cancer treatment, proton beam therapy has seen

rapid growth as an external beam radiotherapy technique, being increasingly favoured

over traditional x-ray treatment for several tumours. Unlike in regular radiation

treatment, protons deposit most energy near the end of their path, a well-established

effect known as the Bragg peak. By exploiting this property, protons are used to target

tumours while subjecting their surroundings to little or no damage. Such treatment

is well suited for tumours located near sensitive organs or in young patients for whom

excess radiation exposure is a significant long term concern (Tian et al. (2018), Hu et al.

(2018), Foote et al. (2012)). Its capacity for depositing large amount of energy in a small

volume increases the precision of treatment but so too the need to precisely locate the

proton beam spot.

Accurate calibration of proton ranges relies on a detailed knowledge of the Relative

Stopping Power, or RSP, of any tissue a proton will pass through along its path.

Inaccurate placement of Bragg peaks can not only result in under-dosage of the target
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but also in significant exposure to the sensitive areas whose presence warranted proton

therapy initially. Satisfactory resolution of RSP remains a substantial obstacle in

unlocking the full potential of proton therapy. Current treatment planning systems rely

on converting x-ray linear attenuation coefficient measurements, made in Hounsfield

Units (HU), to RSP. Unfortunately, the non-unique relationship between HU and RSP

introduces errors in the range of 2− 5% (Beaton et al. 2019).

Proton computed tomography, or pCT, has been suggested as an alternative to

overcome this problem. For proton therapy planning pCT offers the advantage of

measuring proton RSP directly, removing conversion uncertainties by using the same

particle for both planning and treatment (Doolan et al. (2015)).

For a given proton i, the line integral of the RSP is related to the energy loss using

WEPLi ≡
∫

Γi

RSP(x)dx ≈
∫ Ein

i

Eout
i

dE

Swater(E)

where Γi ⊂ R3 is the proton path, RSP(x) is the stopping power relative to water at

position x ∈ R3, Ein
i and Eout

i are the entrance and exit proton energies, and Swater(E)

is the stopping power of water for energy E. This integral is the Water Equivalent

Path Length (WEPL). Starting from this equation, the pCT reconstruction problem

can be mapped to that of reconstructing each individual protons path, combined with

the calculation of WEPL (through the right side of the equation), to recover the RSP

map. It is therefore crucial that the reconstruction of the proton path will be as accurate

as possible. Indeed, the better the determination of the proton trajectories, the better

the RSP calculation will be.

Image reconstruction using protons poses an additional challenge over standard

x-ray CT: during passage through matter protons experience significant deflections

through Multiple Coulomb Scattering (MCS), and, more rarely, nuclear interactions,

resulting in non-trivial curved paths. The probability of nuclear reactions compared

to ionization interactions is less than 1% for 200 MeV protons. As a consequence,

the influence of nuclear interactions of protons with atomic nuclei can be treated

as correction to the electromagnetic processes (Fippel et al. (2004)). Accurate

reconstruction of these paths determines the achievable imaging resolution in proton

computed tomography (pCT) and thus the exact dose distribution in proton therapy.

Unlike with x-ray CT, in which photon number attenuation along straight propagation

lines is considered, the pCT reconstruction process requires proton paths to be

individually estimated to account for the curved trajectories if an improved resolution

is to be achieved (Johnson (2017)).

This requirement excludes direct reuse of many well-developed image reconstruction

methods developed in x-ray CT (Johnson (2017), Bovik (2009)). Iterative algebraic

methods, such as the algebraic reconstruction technique (ART), have been proposed as

plausible pCT image reconstruction methods (Li et al. (2006), Johnson (2017)), but the

computational cost of these algorithms is considerably high. More efficient techniques

are direct reconstruction methods, often following on from x-ray CT methods, who’s
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development is an active area of research, as discussed in Khellaf et al. (2020).

At the core of these methods is the Most Likely Path (MLP) formalism for

the reconstruction of the single proton trajectory. While scattering remains an

inherently probabilistic process, precluding the exact prediction of any single track,

MLP is well established as the most statistically precise method to account for MCS

processes (Schulte et al. (2008), Williams (2004), Collins-Fekete et al. (2015)). Since its

introduction in 1994 (Schneider & Pedroni (1994)), the MLP formalism as presented in

Schulte et al. (2008) has undergone various refinements for use in different application

scenarios (Collins-Fekete et al. (2015), Collins-Fekete, Volz, Portillo, Beaulieu & Seco

(2017), Collins-Fekete, Bär, Volz, Bouchard, Beaulieu & Seco (2017), Krah et al. (2019),

Brooke & Penfold (2020)).

In addition to the entry and exit positions of the beam, the MLP algorithm utilises

the angle between the direction of travel and the perpendicular to the phantom surface

to significantly improve the prediction (Schneider & Pedroni (1994)). These quantities

can be measured by modern pCT scanners systems (Johnson (2017)). However, while

the formulation of MLP accounts for small-angle multiple Coulomb scattering (MCS)

and small energy loss, nuclear interactions play an influential role in a significant

number of proton trajectories (Johnson (2017)). Recommended practice is therefore

to reduce the events influenced by nuclear interactions or large angle MCS through a

3σ cut on both the difference in energy and the difference in the direction of travel

angle between entry and exit (Schulte et al. (2008)). Unfortunately, this results in a

reduction of the protons available for the pCT image reconstruction and in an increase

of the time needed to compute the relative stopping power map for proton therapy

treatment planning. The need to estimate proton paths on a one by one basis, coupled

with the inability to use many well-established x-ray CT reconstruction methods,

comes with a significant computational burden (Johnson (2017)). Various avenues

of research into overcoming this problem have been explored, from optimizing the

computer code for MLP evaluation (McAllister et al. (2009)), to alternative approaches

approximating MLP through cubic splines (Collins-Fekete et al. (2015)) or polynomial

approximations (Krah et al. (2019)).

It is in this context that we introduce a new and original approach for the estimation

of the proton paths based on Machine Learning, through utilisation of a Deep Neural

Network. The Proton Path Neural Network (PPNN) is capable of reaching the same

performance as MLP when this last is applicable, and exceeding it on a large fraction

of paths influenced by nuclear interactions. Moreover, our tests indicate that PPNN

exhibits significantly shorter execution time than the MLP approach.

The paper is organised as it follows. An overview of the Monte Carlo simulations

used and the relevant physics environment is given in Section 2.1. This is followed

in Section 2.2 by a description of the existing MLP proton path reconstruction,

before the introduction of PPNN in Section 2.3. Studies comparing the reconstruction

capabilities of PPNN against MLP are presented in Section 3.1, with further analysis

into the methods’ behavioural differences and the characteristics of corresponding tracks
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introduced in Section 3.2 and Section 3.3 respectively. Initial work investigating

performance on an inhomogeneous phantom is reviewed in Section 3.4. Comparison

of execution times is covered in Section 3.5. Finally, a discussion of these results is

presented in Section 4.

2. Materials and methods

2.1. Monte Carlo Simulation

The Monte Carlo simulations presented were performed using GATE v9.0 (Jan et al.

(2011)), a framework built upon the widely used Geant4 10.6 Monte Carlo simulation

toolkit (Agostinelli et al. (2003)). Simulations incorporating only electromagnetic

processes were performed using the emstandard physics list. The impact of nuclear

interactions, among a full regime of physics processes, were modeled using the

QGSP BIC physics list. In the discussion of the results, the choice of physics

environment is indicated for each simulation.

Our main model consists of a sheet of water centred on the origin of a standard

x-y-z coordinate system with a side length of 20 cm in the z-axis direction and arbitrarily

large extents in x and y. Monoenergetic protons initialised at 200MeV are simulated

through the phantom, originating at the central point of the phantom’s z = −10 cm

face, such that their initial direction of travel are orientated inwards and perpendicular

to the face and parallel to the positive z-axis direction. For convenience in the following

we redefine our coordinate axis such that the initial point of any trajectory is located

at the origin, with particles initialised at a depth of 0 cm and extending in range to a

depth of 20 cm. This arrangement is illustrated in Figure 1.

Each data set produced initially contained 106 events; however, only trajectories

which traversed the full phantom depth were retained, reducing the number of events

ultimately used. Typically this led to data sets in excess of 800, 000 events. For

the purposes of this study, trajectories themselves are quantified as a series of spatial

coordinates evenly distributed at 0.1 cm intervals, including both phantom faces. A total

of 201 coordinate points represent a complete path through the phantom, consisting of

603 variables. As the z depth coordinates are therefore a fixed set of values shared by

all trajectories, for predicting a track only the x and y variables need be considered.

Similarly, the initial and final points of each trajectory are known for each track and so

likewise neglected. Thus a track prediction consists of two sets of 199 points each, for a

total of 398 variables per track.

In addition, as a first check of the robustness of the PPNN approach in

inhomogeneous media, the procedure as stated was repeated using a phantom comprising

2 cm of water, 7 cm of skull, 2 cm of cortical-bone, 7 cm of skull, and 2 cm of water. For

the purposes of this simulation, cortical-bone was defined using material data found in

Berger et al. (2016). Due to the increased stopping power, to ensure that a large fraction

of impinging protons successfully traverse the phantom’s full length, a beam energy of
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Figure 1. Illustration of the Monte Carlo geometry used in this study. 3D

representation of the phantom space (a) and 2D projection on the x− z plane for the

water (b) and inhomogeneous phantom (c). Trajectories are only scored and monitored

within the phantom volume itself. Note that for convenience we redefine our coordinate

axis such that the initial point of each trajectory is located at the origin.

230 MeV was used. Additional simulations with an equivalently sized water phantom

were carried out as before at this initial proton energy, as a baseline for comparison. All

230 MeV simulations were carried out under the QGSP BIC physics list.

2.2. Most Likely Path

Given the coordinate system and the simulation framework described in Section 2.1,

with the proton beam directed along the z direction, at any given depth along z a

proton’s path can be characterised by the two coordinates x and y and the two angles θ

and φ relative to the z-axis. Proton scattering can be considered independent along the

x and y axis and the MLP can be expressed independently for the two 2D parameter

vectors x = (x, θ) and y = (y, φ).

Considering x for example, from Schulte et al. (2008) the MLP of protons in a

homogeneous medium can be expressed, in a Gaussian approximation of the generalised

Fermi-Eyeges theory of Multiple Coulomb Scattering (MCS), as

xmlp(z) = (Σ−1
1 +RT

1 Σ−1
2 R1)−1(Σ−1

1 R0 xin +RT
1 Σ−1

2 xout), (1)

where xin and xout are the relevant entry and exit coordinates in the two 2D parameter

vectors as mentioned above, R0 and R1 are the change of basis for small-angle rotation

matrices

R0 =

(
1 z − zin
0 1

)
, R1 =

(
1 zout − z
0 1

)
, (2)
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and Σ1 and Σ2 are covariance matrices

Σ1 =

(
σ2
t1

σ2
t1θ1

σ2
t1θ1

σ2
θ1

)
, Σ2 =

(
σ2
t2

σ2
t2θ2

σ2
t2θ2

σ2
θ2

)
, (3)

with components, called scattering moments, given for Σ1 by the integrals

σ2
t1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

(z − u)2

β2(u)p2(u)

du

X0

(4)

σ2
θ1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

1

β2(u)p2(u)

du

X0

(5)

σ2
t1θ1

= E2
0

(
1 + 0.038 ln

z − zin
X0

)2 ∫ z

zin

(z − u)

β2(u)p2(u)

du

X0

, (6)

where u is the predicted proton path. The equivalent scattering moments for Σ2 are

found by replacing zin with z and z with zout in the equations above. ymlp(z) follows

identically, with xin and xout replaced by yin and yout as necessary.

Assuming a homogeneous phantom composed of water, we use X0 = 36.1 cm for

the radiation length of the material and E0 = 13.6 MeV. The momentum velocity

ratio 1/β2(u)p2(u) is approximated with a fifth-order polynomial following Schulte et al.

(2008). This quantity is specific to the proton energy used; implementation for other

energies requires its recalculation for accurate performance. For protons at 230 MeV

this was calculated as outlined in Schulte et al. (2008). Monoenergetic protons initially

at the required energy were incident on a simulated 20 cm deep water sample. The fifth-

order polynomial was fitted to distribution of the mean value of 1/β2(u)p2(u) recorded

at 5 mm intervals throughout.

2.3. Proton Path Neural Network

The Proton Path Neural Network (PPNN) is fully connected neural network based

model designed to predict a proton trajectory in the form of a series of spacial

points, as described in Section 2.1, using variables similar to those employed by

MLP calculations. As with the MLP, trajectories along the x and y directions are

reconstructed independently by separate instances of the same network. The input

features of the network are quantities which can be recorded by a modern pCT scanning

apparatus; ∆x = (xout − xin) and ∆θ = (θout − θin) in the x direction and equivalently

∆y = (yout − yin), ∆φ = (φout − φin) along y. This data is passed through 4 fully

connected (or dense) layers of 24, 48, 96 and 199 nodes respectively. This type of layers

are the most simple between the many developed in the context of Deep Neural Network:

the output of the layer is a vector y obtained by

y = σ(W · x + b)

where W and b are called respectively weigths and bias and correspond to the

parameters of the layer that will be fixed during training of the network; x is the input

vector and σ is the activation function introducing non linear effects in the network
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Figure 2. PPNN architecture. The Proton Path Neural Network PPNN consists of

four fully connected layers with 24, 48, 96, 199 nodes and a Relu activation function

after each of the first three layers. The current number of variables present at various

points is additionally indicated in brackets.

behaviour. As activation function we employed the Rectified linear unit (ReLU) after

each of the first 3 layers (ReLU (x) = max (0, x)). A representation of the network

architecture is presented in Figure 2.

Training and validation of the network was performed using more than 1,600,000

trajectories (800,000 along each direction) generated as described in Section 2.1 using the

QGSP BIC physics list. 80% of the tracks are used for the training and the remaining

20% reserved for validation. Optimization of the network weights is performed using

the Adam algorithm (Kingma & Ba (2014)) with a learning rate fixed at 10−5. For the

loss, the Mean Squared Error (MSE) is used,

MSE =
1

M

M∑

m

1

N

N∑

n

(umn − ûmn)2, (7)

where M is the number of samples, N = 199 is the number of points in each proton

path, u again the predicted path and û the true trajectory. The (Square) Root of

the Mean Squared Error (RMSE) is commonly adopted in literature evaluating the

performance of the MLP reconstruction procedure. At a batch size of 32 samples per

batch, one epoch (one cycle through the full training dataset) running on Tesla K80

GPU requires approximately 80 seconds on a Standard NC6 Microsoft Azure machine.

For an introduction on Deep Neural Network we suggest looking at the free material

available at https://d2l.ai/.

The loss history can be seen in Figure 3, in which after around 400 epochs the

loss flattens both for the train and validation datasets with the ratio between the two

histories almost constant; suggesting that the network is not overfitting to the examples

present in the training dataset. Ultimately the model was trained for 1000 epochs.

In addition, a second instance of the PPNN was trained with a 230 MeV proton
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Figure 3. Loss history during network training at each epoch, for both the training

and validation.

dataset in excess of 1, 400, 000 events, using the same methodology and a pure water

phantom. This instance is used when reconstructing datasets with protons at that

energy.

3. Results

To principally test the performance of PPNN two entirely new datasets of 800,000

protons each were generated: the first with only electromagnetic interactions

(emstandard physics list), the other with all the physical processes including nuclear

interactions (QGSP BIC physics list). These data sets are generated independently

from that used during the PPNN training procedure to avoid any possible source of

overfitting.

3.1. Root Mean Squared Error

Figure 4-(a) shows the RMSE for estimates of the paths using PPNN or MLP on the

emstandard dataset. Even without the 3σ cuts suggested in Schulte et al. (2008)

we can see that the difference between the two predictions is quite small. This

difference disappears (the two lines corresponding to the MLP and PPNN case are barely
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(a) (b)

Figure 4. Root Mean Squared Error obtained with MLP and PPNN using the (a)

emstandard and (b) QGSP BIC datasets. Solid lines are the performance on the

full dataset while dotted and dashed incorporate 1σ, and 3σ cuts, performed on the

energy and difference in the direction of travel angle between entering and exiting the

phantom, respectively. The dashed-dotted line in (b) is the same solid PPNN result

in (a) added here to have a clear picture of the increasing of the errors when including

nuclear interactions.

distinguishable) upon applying said 3σ cut to the angles and energy; under which here

only ∼ 1% of the paths are omitted. This result clearly shows that the PPNN prediction

is fully consistent with the MLP approach, indicating that the approximations inherent

to the method are valid. This is crucial because anything different would represent a

serious flaw in the PPNN reconstruction method.

Moreover, the difference in the PPNN prediction error with or without the cut

is practically negligible, suggesting that our method can be applied to reconstruct

trajectories where processes other than MCS are present. This is more evident in

Figure 4-(b) where the RMSE is evaluated for the QGSP BIC dataset. When

nuclear interactions are included the error significantly increases, but to a far lesser

extent for PPNN than for MLP. Only with a 1σ cut do the performances of the two

methods become comparable. Unfortunately, such a huge cut entails the loss of ∼ 24%

of the tracks. Comparing the full interaction dataset result with that of the pure

electromagnetic result, we see that with the typical 3σ cut applied to both cases the

RMSE of PPNN is about 26% larger for the full interaction that for the pure MCS

dataset. For the 2σ cut the discrepancy in performance decreases to around 20%, which

corresponds to a fraction of discarded tracks of ∼ 8% from the QGSP BIC dataset.
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(a) (b)

Figure 5. (a) Distribution of ∆θ = (θout − θin) angle for the two test datasets (solid

lines) overlaid with the associated Gaussian using the σ values obtained from a fit

of the emstandard data and the QSPG BIC data (dotted lines). (b) Distribution

of ∆x = (xout − xin). In both plots it is evident that an exponential rather than

a Gaussian decay provides a better fit with respect to the number of paths for the

QSPG BIC dataset.

3.2. Error as a function of deviations

To understand the origin of this difference in performance between the two methods,

Figure 5-(a) illustrates the distribution of ∆θ = (θout − θin) for both QSPG BIC and

emsstandard datasets. The σ cut is applied assuming a Gaussian distribution of the

signal, but from the figure a difference between the two distributions clearly emerges.

For the full physics simulation the Gaussian approximation, as employed in the MLP,

clearly fails to describe the distribution. While the cuts based on a Gaussian fit are

acceptable in the emstandard case, they exhibit a large discrepancy with data when

the full range of physics processes are included. In Figure 5-(b) we see a similar result

for the distribution of lateral displacement ∆x = (xout−xin), with the Gaussian shape of

the emstandard distribution supplanted by an exponential decrease in the QSPG BIC

distribution.

Given this observation and having verified that the PPNN approach has the same

perfomances as MLP in the context of pure electromagnetic interaction, where MLP

is designed to work, from now on we will consider only the results obtained using the

QSPG BIC physics dataset as a much more realistic representation of clinical pCT

scenario.

As the distributions of Figure 5 clearly show the limits of the MLP formulation,

it is interesting therefore to consider how the error increases as a function of the two

variables ∆θ and ∆x. This is presented in Figure 6. Here the proton paths are collected

into bins of 0.1 rad and 1 mm for ∆θ and ∆x respectively, with the RMSE computed in

the corresponding direction. The figure compares the error (right axis) and the number

of trajectories (left axis) to show the differences in performance. Note the logarithmic
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(a)

(b)

Figure 6. (a) RMSE (right vertical axis, coloured lines) and number of paths (left

vertical axis, black lines) as a function of ∆θ for PPNN and MLP evaluated on the

QSPG BIC dataset. The shaded black area represent the statistical error. Vertical

lines refer to the position of the 1 and 3 σ cut. (b) Same as (a) but as a function of

∆x. The difference in performance between the two methods emerges immediately.

scale on both right and left y axis. From Figure 6-(a) we see that, as expected from

the RMSE plot, the two lines for PPNN and MLP begin to separate at around 1σ cut

at ∆θ ' 0.075 rad. For 35% of the tracks ∆θ is larger than 0.075, implying that the

PPNN method improves on the MLP reconstruction for an important fraction of proton

paths. Notice that the same analysis must be done for the φ angle which would remove

an analogous number of paths, resulting in a final cut of almost 50% of the tracks.

Figure 6-(b) shows the reconstructed paths distribution broken down in term of final

displacement, ∆x. Again the performance of PPNN is consistently better across the

full span of the plot, with trajectories at large angle deviations resolved with improved

precision.
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Figure 7. Distribution of the difference between the RMSE of PPNN and MLP for

the QSPG BIC dataset. The shaded area correspond to the statistical error.

3.3. Different trajectories for different errors

To gain an insight into the tracks with the largest difference in reconstruction

performance, let us begin by considering only tracks outside the 1σ cut in θ. In Figure 7

we present the distributions of the difference between the RMSE for PPNN and MLP

for tracks outside the aforementioned cut. Negative values of the difference correspond

to tracks in which PPNN had the smallest error, while the positive side of the axis

corresponds to the inverse. In the first instance we can see that the profile is exponential,

while in the second the decay is noticeably faster; confirming that at large deviations of

the angle θ, PPNN shows a notably superior performance.

Focusing in on only the behaviour when PPNN outperforms MLP, let us consider

only the set of events on the negative side of histogram. Dividing into 10 quantiles split

by ∆RMSE, in Figure 8-(a) we illustrate a selection of randomly chosen tracks, one

from each quantile. As expected, for larger deviations from straight paths PPNN can

better follow the simulated curve in the majority of such cases, growing more notable

for larger ∆RMSE. For Figure 8-(b) the same dataset is divided into quartiles, with

the last bin, containing tracks with the largest error difference, further divided into two

subgroups. As with Figure 8-(a) we chose a random track from each of the five groups.

Both figures further support that PPNN improved performance is due at-least in part to

a better capability to reproduce the particle path in the presence of nuclear interaction,

which causes greater changes in the direction of the track.

To further analyse this characteristic, Figure 9-(a) shows the distribution of the

second derivative of the x component of the tracks, with respect to the z direction, again

for track in which PPNN outperforms MLP, broken down into quartiles. Large values

of this quantity are connected with significant direction change, such as those observed

in Figure 8. The four lines correspond to the four quartiles of the blue histogram in

Figure 7, as introduced in Figure 8-(b). Where PPNN exhibits the better performance,

we see that the difference between the tracks reconstructed with PPNN and MLP grows
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(a) (b)

Figure 8. Examples of tracks for which the PPNN outperform MLP. (a) Tracks are

selected at random from inside each of 10 quantiles, using the data of Figure 7. (b)

Same as (a), but in which tracks are extracted from quartile groups; with the last

quartile, which corresponds to tracks with the largest discrepancies between the two

methods, divided into two.

(a) (b)

Figure 9. (a) Distributions of the second derivative of the tracks in the x direction

with respect to the z coordinate. Lines indicate the four quartiles of the distribution

of ∆RMSE < 0. (b) Distribution of the position along the z axis for the maximum

of the second derivative for each path.

with increasing values of ∂2x
∂z2

: the more a trajectory differs from pure MCS scattering,

the more the PPNN improves over MLP.

Figure 9-(b) shows the distribution of max(∂
2x
∂z2

) as a function of z. The distribution

for the last quartile, corresponding to the largest discrepancies between the two methods,

has a notably different behaviour compared to the other three lines. It exhibits
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(a) (b)

Figure 10. (a) Root Mean Squared Error obtained with MLP and PPNN on a water

and an inhomogeneous slab phantom irradiated at 230 MeV. (b) Percentage reduction

in RMSE with respect to depth by PPNN over MLP. All studies were performed under

the QGSP BIC physics environment.

significantly more events occurring at small and large z values. An example of these

events can be seen in Figure 8-(b) where we have a strong deflection at z ≈ 190 mm. We

see that MLP struggles to reproduce this event while the neural network can provide a

superior result.

3.4. Inhomogeneous slab phantom

In this section, we present the results obtained using PPNN in the reconstruction

of proton trajectory traversing the slab phantom described in 2.1 and represented

schematically in Figure 1-(c). Due to the inhomogeneous phantom’s increased stopping

power, a proton energy of 230 MeV was chosen to ensure a significant fraction of

simulated events traversed the full phantom depth. This ensured datasets in excess

of 1, 400, 000 trajectories (700, 000 along each direction) for 106 simulated particles.

Both PPNN and MLP methods were re-trained (re-calibrated for MLP) to the new

energy scheme, as described in Sections 2.3 and 2.2. For this purpose, we consider a

simulation with 230 MeV protons through a water phantom analogous to the one used

in the 200 MeV case.

The RMSE error for both phantoms, using either PPNN or MLP, is shown in

Figure 10-(a). This compares the water and inhomogeneous systems, without cuts and

using the QGSP BIC physics environment. For the water phantom both PPNN and

MLP behave similarly to the corresponding 200 MeV case. This is an important check

that the higher energy implementations of the two methods are functioning correctly.

Focusing on the reconstruction error for the inhomogeneous case, we similarly
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observe that with PPNN the error is consistently reduced. Interestingly the error on

the new phantom using PPNN is comparable with that obtained with MLP in the pure

water simulation.

The improvement obtained with PPNN is more pronounced when examining the

percentage reduction of RMSE by PPNN over MLP, as shown in Figure 10-(b). A

reduction in the error of the order of 25% can be seen around 150mm, while on average

the improvement is in excess of 10% over MLP across a significant portion of the depth.

Introducing the familiar 3σ cuts decreases the error reduction in both the water and

inhomogeneous cases, along with the difference in improvement between them.

3.5. Execution time comparison

For this comparison of the execution time of the two algorithms, the highly optimized

version of MLP presented in McAllister (2009) is used, in which 90% of the MLP is

precalculated and the number of operation required is minimized. We ported the code

in python using the vectorization capabilities of the NumPy (numpy.org) library to

parallelize the execution on the number of protons. PPNN is written in python using

the PyTorch (pytorch.org) framework.

Both codes were executed on the CPU of a Standard NC6 Microsoft Azure machine.

Running the two algorithms on all the 1,600,000 trajectories of the test dataset in unique

batch combinations and repeating the procedure 10 times we obtain an almost constant

execution time of 0.47 ± 0.01 sec for PPNN and 7.11 ± 0.08 sec for MLP. Within the

validity of this test, the PPNN method is sixteen times faster than the optimized MLP.

4. Discussion

Although MLP represents a powerful method of estimating proton path in pCT

applications, it suffers from different limitations. The approach is designed specifically

to account only for effects on the proton path connected with MCS and energy loss.

This is reflected by the strategy of discarding protons trajectories with large deviation

from straight paths to reduce the error. Moreover, simulation in a realistic scenario of

high fluence (hundreds of millions of protons) and small spacing for the MLP (fraction

of millimetre) can require more than one hour; time mostly spent reconstructing the

proton (paths Khellaf et al. (2020)).

In the interests of alleviating these two problems we propose an alternative method,

based on Deep Learning Neural Network, to estimate the proton trajectory for pCT. The

results presented in the previous section suggests that within the PPNN approach, these

two problems can be relieved to some degree. Figure 4 and Figure 7 show that using

PPNN a good approximation of the path can be obtained for a much larger number of

protons than using MLP. This is important because in principle fewer protons are needed

to reach the same reconstruction quality, lowering both the dose and the computation

time. Consolidating this claim is one of the aims of our future developments.
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The ability of the network to reconstruct tracks outside the validity of the MLP

approach is intrinsically tied to the nature of deep learning. Neural networks learn

”blindly” from examples; parsing though the training dataset, by means of the back-

propagation procedure for the minimisation of the loss function, the network adapts its

weights to the characteristics of the events it experiences, including those that show

large ∆θ and/or ∆x. While such underlying processes maybe challenging to formulate

into mathematical models, there are sufficient patterns for the network to refine its

prediction processes. Without an assumed structure to reproduce, it is not bound to

solely replicating the form of a given physical model. A tentative explanation of what the

network learns may be inferred from Figure 9 and the analysis of the second derivative

of x w.r.t. z. The network displays significant improvement over MLP where the second

derivative is large, especially near the end of the trajectories.

The study of inhomogeneous systems is only started here, and it certainly warrants

a much more in-depth investigation into more realistic configurations of the phantom.

The phantom considered is certainly extreme; large volumes of a high-density material

such as those in the slab phantom will rarely be encountered in clinical practice, and in

this sense we do not expect the gain to be so large in a realistic situation. Nevertheless,

it is encouraging that notably better results are obtained with PPNN with respect to

MLP, with a reductions of the RMSE of the order of 20%. This is a more significant

improvement compared to the work presented in (Brooke & Penfold 2020) with a similar

phantom, where the maximum enhancement is about 5% for simulation with the same

beam energy.

Regarding execution speed, it is true that the time spent for reconstruction is only

one of the various aspects for evaluating a pCT system for clinical routine. Moreover, our

work is relevant only in the context of reconstruction methods based on the evaluation

of the proton path. Nevertheless, because these methods are seen as the most promising

for applicability in the clinical context and the MLP execution speed is by order of

magnitudes the slowest part of the algorithm (Khellaf et al. (2020)), the substantial

improvement shown by PPNN compared with the optimized MLP can be regarded as

an important feature.

5. Conclusions

MLP is the principal method adopted in pCT for the reconstruction of single proton

paths through the body. In this paper we have demonstrated that using Deep Learning

Neural Network it is possible to recreate the same performance of MLP in the regime

in which MLP is applicable and achieve a better performance outside its region of

validity. Using PPNN would also permit discarding fewer protons in the pCT procedure.

Moreover, an execution time test of the two algorithms indicates that PPNN can be

substantially faster in performing the reconstruction. In the future we plan to move

forward in the development of the method towards a full reconstruction procedure

applicable to more realistic phantoms.
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