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Abstract

This thesis describes novel, proof-of-concept machine learning models for particle
tracking in fundamental research and medicine. Proton computed tomography is
a medical imaging technology with the potential to improve on current medical
proton therapy treatment planning, but hampered by the computationally costly
need to reconstruct individual proton tracks. With this in mind, we developed the
Proton Path Neural Network, a neural network model capable of matching, and in
some situations exceeding, the performance of the standard reconstruction method,
with a significantly shorter execution time. Building on this experience, we turned
to pattern recognition within track reconstruction at the LHCb experiment, one
of the four major detector experiments located at CERN’s flagship LHC particle
accelerator. Focusing on reconstruction within the VELO tracking subdetector, we
developed a graph neural network approach with the capacity to draw inferences
from all measurements made by the subdetector for a given event, which exhibited

promising performance over existing trials.
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Chapter 1
Introduction

We have always sought to understand the world around us. From geometry and
the motion of planets, to quantum mechanics and beyond, humankind has built up
a remarkable picture of the workings of reality. Yet that picture is still incomplete.

Using complex particle accelerators to recreate conditions at the Big Bang, sci-
entists work to probe the fundamental building blocks of matter and forces; seeking
answers to big questions on a scale too small to see. Here, particle tracking detectors
seek to record the flight of individual particles, reconstructing particle tracks from
their measurements to understand what unfolded at a subatomic scale. Even though
large scale experiments may be the first that come to mind, particle tracking is not
only the domain of pure research. Among other uses, particle tracking is key to
many forms of medical imaging, where information deduced from particles and their
paths is used to reconstruct the anatomy of the patient they traverse.

The last few years have seen a veritable explosion in machine learning; algorithms
that can learn from data, approximating complex processes without needing them
first to be formally defined, or even understood. Given the vast and complex quan-
tities of data modern particle detectors can produce, machine learning techniques
have emerged as an invaluable tool for fundamental research.

Across this thesis, I will explore two investigations into harnessing cutting-edge
deep learning methods for particle tracking tasks, predominantly carried out between
2018 and 2022. This work was conducted under a scheme to spend time between
pure research and industry applications; as part of a data science program funded
by the Science and Technology Facilities Council.

Time at the Fondazione Bruno Kessler in Trento, Italy, as part of the LIV.DAT
doctoral training centre program, led to investigations into machine learning for

proton computed tomography, or pCT; a medical imaging technology using protons
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to map a patient’s anatomy. Using the same particle for treatment and planning,
pCT has the potential to improve on current proton therapy treatment planning,
but is hampered by the computationally costly need to reconstruct individual proton

tracks!t2,

From this emerged the Proton Path Neural Network, a proof-of-concept
model capable of matching and in some situations exceeding the performance of the
standard reconstruction method, with a significantly shorter execution time.
Subsequently brought to publication in a peer-reviewed journal®l, this work laid
the foundation for tackling particle tracking challenges at the LHCb experiment.
With a core program of Charge-Parity violation and rare beauty and charm hadron
decays, LHCb is the Large Hadron Collider’s dedicated flavour experiment and one

(456 As the tracking subdetector sitting

of the accelerator’s four large detectors
immediately around the collision point itself, track reconstruction within the LHCb
VELO is a vital component in understanding collision events at the detector. With
this in mind, we investigated the potential of a machine learning model for pattern
recognition with the capacity to draw inferences from all measurements made by the
subdetector for a given event. This culminated in the development of an overarching
framework and demonstration of a working graph neural network approach that
successfully grouped measured particle positions into tracks, and showing promise

over existing trials.

1.1 Structure

Owing to the varied nature of the work presented, this thesis has been structured

into several parts as follows.

e Part I provides an introduction to material common throughout. Chapter 2
discusses particle accelerators, detectors and tracking, and Chapter 3 provides

a brief introduction to machine learning and neural networks.

e Part II focuses on track prediction for proton computed tomography. An in-
troduction to proton computed tomography is given in Chapter 4, and aims
and method are described in Chapter 5. Results are presented in Chapter 6,

with concluding discussion in Chapter 7.

e Part III then turns to track reconstruction for the LHCb VELO. Chapter 8
provides an introduction to graphs and graph neural networks, while Chap-
ters 9, 10 and 11 discuss the LHC, LHCb and the VELO respectively. Aims
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and Method are described in Chapter 12, and results presented in Chapter 13.

Discussion of this work is given in Chapter 14.

e Finally, Part IV draws the previous two parts together, with concluding re-
marks from across the whole work in Chapter 15, followed by figure and table

lists, and bibliography. Appendices are included in Part V.

1.2 Naming Conventions

Given the varied domains touched upon in this work, there are some terms which,
depending on the field, often appear with different meanings. In an effort to avoid

confusion we will be using the following conventions;

e A graph denotes the mathematical structure, described further in Section 8.
Figures containing a graphical representation of data are referred to as plots.

Neural networks and diagrams depicting them are referred to as networks.

e The abbreviation MLP denotes the Most Likely Path formalism, as described
in Section 4.3.3, while a Multi Layer Perception will instead be referred to

as a perception, or by referring to the wider concept of a feed-forward neural
network, or FNN.

e A tensor is used here to refer to an n-dimensional array, as opposed to the

rigorous mathematical structure.



Chapter 2

Working with Particles

2.1 Particle Detectors

Subatomic particles operate on a scale that our own senses are simply not precise
enough to discern, let alone sufficient to make precise measurements with. There-
fore we rely on particle detectors of one form or another to sense for us, leveraging
particle interactions with matter to produce discernable signals for us to interpret[”).
Though the complex machines used in high energy physics may be the first to come
to mind, a particle detector can be as simple as a photographic plate; passing pho-
tons interacting with crystals to produce blackening visible to the eye[®). Depending
on its intended purpose, a detector might look to measure some specific parameter,
such as the quantity of certain particles to pass through an area, or it might endeav-
our to provide a comprehensive picture of everything that takes place within a set
scope. In the latter case, detectors are often composed of a myriad of component
detectors, designed so that particles ideally undergo interactions across multiple sen-

(. Many

sor elements in order to provide a wide range of different measurements
research detectors, such as the 4 large experiment detectors at the Large Hadron
Collider, follow this approach.

While fundamental scientific research has often driven the development of de-
tectors and detection methods, modern particle detectors can be found in a diverse
range of applications!”. In medicine, many diagnostic imaging techniques, such as
x-ray, CT and PET scanning, use particle detectors to make the precise radiation
measurements from which medical images are constructed®. Equally, various forms
of particle detector are a common sight for those working with ionising radiation,
with Geiger counters offering a means to measure current radiation levels, and per-

sonal dosemeters widely employed for monitoring individual exposure['”. Further
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afield, examination of carbon-14 levels allows archaeologists to estimate the age of
organic materials through radiocarbon dating!, while geologists probe subsurface

materials through neutron borehole logging!?.

2.2 Particle Tracking

One component in understanding events unfolding on the subatomic scale is
knowing the position and momentum of the particles involved, parameters referred
to as a particle’s kinematic properties!™. Responsibility for determining these prop-
erties is the domain of tracking; the combination of systems and analysis processes
responsible for recovering the path, or track, taken by one or more particles through
space. By applying a known magnetic field to at least a portion of the region covered
by a tracking detector, or tracker, it is then possible to deduce the momentum of

7. In the context of high energy parti-

charged particles through their deflection!
cle physics experiments, particularly looking at a wide range of particles, detector
systems are often divided between systems for tracking, and those related to parti-
cle identification, which seek predominately to make measurements with which to
determine the identity and nature of the particles detected.

Detector technology has come a long way since H. Becquerel’s 1896 discovery
of radioactivity using a photographic plate!”). In the past, tracking detectors such
as bubble and early spark and streamer chambers produced photographic readouts
for researchers to manually inspect and measure, modern detectors typically capture
a particles trajectory as a series of electronic signals, such as through fixed planes
of sensors that register a particles location as it passes to produce a set of spatial

coordinate measurements 14

. Current experimental tracking detector designs employ
various common approaches to performing measurements; though regardless of the
approach used, tracking detectors aim to disturb a particles flight as little as possible,
and therefore generally present the minimum amount of material to a traversing

13

particle that they can Equally, any measurements made must still be analysed

and interpreted in order to reconstruct the tracks of the observed particles.

2.2.1 Gaseous Tracking Detectors

Gaseous tracking detectors such as a multiwire proportional chamber, or MWPC,
operate around a large, gas filled volume. In a typical MWPC configuration, sheets of

anode wires are sandwiched between cathode planes, with a voltage applied between
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them!™? . As a charged particle passes through the detector, the gas is locally
ionised along its trajectory. Electrons and ions drift towards anodes and cathodes
respectively, where a current signal is induced. Given a sufficiently high voltage,
the electrons produce an ionisation cascade on approach, resulting in a charge cloud
around the anode, amplifying the signal measured. Stacking layers allows a particles
position to be determined from the wires it passed close by, building up a series of
measurements ") Drift chambers build the same principal by measuring the drift
time of electrons to the anode wires, allowing for the original ionisation to be further
localised to a position in between wires, providing higher resolution. While similar
configurations to a MWPC can be used, drift chambers are usually formed from
cell like structures of a single anode wire surrounded by cathode wires, beams or
shells, with such cells arranged in a regular pattern to covering the desired detector

el"15] Taking the concept of using drift time measurements even further,

volum
the time projection chambers consist of a large gas volume with an applied electric
field terminating at one end, with a planar arrangement of alternating anode and
cathode wires. This eschews the usual use of multiple layers of sensors to produce
a sequence of coordinates. Charged particles produce corkscrew trajectories within
the volume, electrons from ionisation drifting to the end cap to form a projection of
the particles path, with displacement from the end cap determined using drift time

measurements 3]

Developed to meet the increasing occupancy and resolution demands of experi-
mental physics, micro-strip gas chambers use narrow strips engraved onto an insu-
lating support in place of wires!”'). While this approach can achieve a spacing and
strip thickness on the micrometer scale, far finer than that obtainable with wires, it
is sensitive to discharges, and so prone to damage, at the voltages required for work-
ing with minimally ionizing particles['>6). Gas electron multiplier designs alleviate
this issue through the introduction of a pre-amplifier; one or more thin polymer foil
sheets, clad with metal on both sides, and perforated with holes on the micrometer
scale. These are placed in between an anode strip covered surface and a parallel cath-
ode plane, or equally between the wires of a MWPC. The electric field is 'squeezed’
within the foil gaps, allowing for a lower voltage to be used while retaining the field
necessary for the signal amplifying ionisation cascade within the holes, bringing the

process away from the anodes themselves!!17,

Gaseous tracking detectors pose various mechanical challenges, such as contain-
ment of gas, ensuring charged wires remain taught and degradation due to prolonged

radiation exposure; and have begun to fall out of favour as dedicated tracking systems
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s[M14 Nevertheless, gaseous tracking

for experimental high energy physics detector
detectors can still be found at the forefront of research, such as in the ALICEI$]
and g-212%) experiments; and are frequently employed for position sensitive detection
in muon systems, which typically require coverage of large areas, such as those in

ATLASPY cMSP? and LHCb!23,

2.2.2 Solid State Tracking Detectors

Turning now to solid state designs, semiconductor detectors employ thin layers
of a chosen semiconductor, exploiting that as a charged particle passes through the
material, electron-hole pairs are generated. The resultant charges are collected and
amplified, producing a readable signal. Strip detectors use layers segmented into
parallel strips, whereas pixel detectors instead use sheets of discrete tiles. While
strip detectors only measure one spacial coordinate, they are far easier to readout
as the number of strips scales linearly with size, and as each strip reaches the edge
of the detection area there is a convenient place to connect readout chips. Silicon
is by far the most common medium employed, though there is exploration of other
semiconductor materials for small scale trackers!”. While silicon detectors come with
various technical challenges and a significant cost, such detectors offer high spatial
resolution are widely used in cutting edge experiments, such as ATLAS, CMS and
LHCb .

Monolithic pixel detectors are a variant of silicon pixel detectors. As both the
active sensor and readout chip in a silicon pixel detector are composed of silicon, the
concept is to fashion the two components as a single piece. Though presenting signif-
icant technical challenges, with advances in fabrication methods such detectors have
begun to see practical use, including the current and future ALICE inner tracking
system [7:24,

Originally conceived as a form of memory device?®, Charge-Coupled Devices, or
CCDs, have been employed as optical sensors for decades!”. Charges are generated in
semiconductor capacitors, but then transferred around the sensor to readout nodes.
Capable of high spacial resolution, but with slower readout times and a sensitivity
to radiation, CCDs have many successes in astrophysics. In high energy experiments
however, they have largely been supplanted by the aforementioned forms of silicon
semiconductor detector[72%,

Unlike clear optical fibres, scintillating fibres consist of a scintillator doped core,
surrounded by cladding of a lower refractive index!2%). As particles traverse the fibre,

energy deposited in the core causes excitation and the emission of light. The cladding
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traps some of this light by total refraction, guiding it to the fibres end and capture

2627 Scintillating fibres provide

by photodetectors, such as silicon photomultipliers!
a relatively low cost and low material approach, though for high energy physics
radiation damage can pose a challenge, and has recently been employed for post

magnet tracking in the LHCb detector?728,

2.2.3 Track Reconstruction

Even neglecting the consequences of the uncertainty principal, practical con-
straints preclude us from being able to continuously measure everything we may
want at all times. Equally, we cannot always directly measure those properties we
wish to know, and therefore must determine what has taken place and the nature
of those particles involved from the measurements we do make. Ultimately, a detec-
tor’s various readout elements produce a variety of signals in response to one or more
particles passage through the detector, and those signals need to be processed and in-
terpreted ??. Track reconstruction is the process of interpreting those measurements
made by a tracking detector in order to recover the paths taken by particles, and is
typically divided into three tasks; clustering, pattern recognition and fitting ™32,

As particles traverse the tracking subsystems of a detector, they interact with
sensitive elements, activating them to produce signals announcing their presence at
a corresponding location; forming a series of spacial measurements, or hits *[13:29,
Depending on the form and granularity of a given detector, a particle may interact
with multiple neighbouring elements, producing a representative region of signals. In
such cases, clustering is performed, identifying and grouping readings into clusters
corresponding to a single particle’s passage, each interpreted as a single hit?.

Then comes pattern recognition, or track finding, which consists of identifying
those hits believed to correspond to the passage of the same particle, grouping them
to form potential track candidates™l. Where individual particles are sufficiently
separated in time this process is relatively trivial. But where a detector will witness
the passage of multiple particles in an indistinguishable time frame, such as the
dearth of particles emerging from a single high energy collision, it becomes a complex
classification task; particularly if dealing with curved tracks like those produced in
magnetic fields. Various common pattern recognition techniques have been developed

over the years, and can generally be distinguished as global methods, which adapt

*Though a hit may be used to refer to the signal of each activated sensitive element, we will
use it to denote the input data used by the pattern recognition stage, after any interpreting and
clustering has been performed.
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and solve an equivalent formulation of the problem in order to address the task
simultaneously as a whole, or local methods, which iteratively construct tracks by

examining groups of hits at a time 33,

Conformal mapping, a form of spacial transformation that preserves the angle
between any two lines, can be employed as a global method when working with curved
tracks. This exploits that circular tracks passing through or close to the origincan
in this way be mapped into a coordinate system where they form straight lines or
parabola. In the new coordinate system the azimuthal angle of hits forming such a
track will be close to one another. Thus tracks can be found by collecting angular
components into a histogram, with a peak indicating the corresponding hits line up
to form a potential track['®31. The Hough transform offers a similar approach when
working with straight tracks that do not necessarily pass close to the origin. This
instead uses that a point in the x — y plane can, through the straight line equation
y = cx + d, be mapped to a line in the ¢ — d plane, d = —cx + y; and exploits that
points which lie along the same straight line in the x-y space map to lines in c-d that

13,32

cross at a particular point!'®?#2. Along the same lines, transforming drift chamber

measurements into Legrande space leads tracks to appear as the intersection of the

[13,33]

now sine curve representations With analogies to the Hough transform, the

artificial retina algorithm builds heat maps and uses clustering to identify tracks in

an approach inspired by straight line recognition within the eye[*3%,

Turning to local approaches, track road methods begin by selecting a set of
hits which may have been created by the same particle. A potential trajectory,
or road, is interpolated between them, and additional hits are assigned from those
lying close to that prediction. The formed track candidates are then compared and
assessed to determine which are likely to be tracks, often based on the number of hits
successfully found along this trajectory and the quality of subsequent track fitting '3,
Track following, or forwarding, methods take a somewhat similar approach, initially
forming seed tracks from hits identified as likely constituting a short track segment.
This is often performed by looking at hits across neighbouring sensitive components,
and focusing on regions of a detector where it is usually easier to distinguish hits
made by the same particle, such as areas furthest from the collision point at a
particle accelerator. Each seed track is then extrapolated progressively through the
detector, picking up additional hits that lie close to the predicted path as sensitive
elements are encountered, continuing until either the end of the detector is reached,
or multiple sequential sensors fail to observe hits potentially continuing the track.

Similar methods may then be used to determine the likely true tracks among those
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13,29.30]  Though versatile, the iterative nature of such algorithms can present

challenges for parallelisation 2.

formed. |

Moving to track fitting, once track candidates have been formed out of the ob-
served hits a smooth predicted trajectory is determined for each candidate which
most accurately describes the path taken by the particle which left the correspond-

13,29 This is commonly performed using a least squares fit approach, with

ing hits!
many conventional methods employing variants of a Kalman filter 3. Though
Kalman filter techniques concern themselves with estimating variables of dynamic
systems as they evolve, they can be applied to tracking by sequentially adding hits to
the presented track, recursively building up and refining the predicted path as more

37], Assessing the quality of fitted trajectories can be used in turn to

hits are included
evaluate if track candidates may instead represent non existent tracks formed from
random combinations or to distinguish among incompatible candidates reusing hits
between them 13232 therefore forming a concurrent part of pattern recognition ™.

Depending on a detector’s particular context, separate vertex reconstruction may
also be performed as part of reconstructing an event; the task of accurately locating
one or more common origin points of the various particles tracked!®l. Often the
process is similarly divided into vertex finding, determining and grouping those tracks
that likely originate from the same vertex, and vertex fitting, accurately locating
that vertex in space!'®. Accurate vertex reconstruction is particularly important in
heavy flavour physics research, as it allows for reconstructing short lived particles
by identifying decay products and the common secondary vertex from which they

[13:36]  Using the displacement of this secondary decay vertex from the original

came
primary collision vertex, it is then possible to determine the particle’s decay length.
Moreover, constraining tracks to originate at identified vertices can be used to further

improve the quality of fitted trajectories!'?.

2.2.4 Trigger Systems

Overall, the processing of experiment data can be divided into online processing,
that which takes place in real time as data is collected, and offline processing, the
separate processing of stored data at its own pacel™'?. Given the stochastic nature of
quantum physics, events produced at research particle accelerators are frequently of
limited interest. While it may be attractive simply to store a detector’s total output
and perform all processing offline, the staggering quantities of events detectors at
such experiments usually observe combined with finite storage space mean it is simply

not possiblel™. The current LHCb configuration, for example, produces around
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4 TB of raw data per second when running at nominal instantaneous luminosity, an

infeasible quantity to simply store 23,

It is therefore common to employ a trigger; a system designed to reduce the
quantity of events by discarding those that are unlikely to be of interest, usually
by looking for a number of generic signatures that don’t require significant analysis
to identify. Triggers are, by their nature, closely intertwined with a detector’s data
acquisition, or DAQ), system, and a detector may employ multiple triggers, each
reducing down the flow of events to allow more detailed, and so slower, assessment
by subsequent triggers!”. Given the demanding speed requirements online processing
typically presents, simplified methods may be used to deduce a rough understanding
of collected data, such as for a trigger system, with full quality event reconstruction
and analysis later carried out offline. In detector experiments at particle accelerators,
some form of simplified track and vertex reconstruction is often performed online as

part of trigger systems (13,

2.3 Particle Accelerators

Though elementary particles may make up the known universe, we can’t rely
upon chance to present them as and when we want. Particle accelerators therefore
offer a means to generate beams of specific particles on demand, with precise control
over energies. From the ubiquitous cathode ray tube’s key contribution to the dis-
covery of the electron!®®, to the numerous publications of the Large Hadron Collider,
particle accelerators have built a widely established track record of groundbreaking
discoveries. As will be discussed in Section 9.1, they are an invaluable tool in mod-
ern experimental physics, and increasingly sophisticated designs continue to push

the boundaries of high-energy physics and discovery 9.

Yet just as with detectors, modern particle accelerators are not only the domain
of pure research!*’. For decades the aforementioned cathode ray tube played a well
known role in television displays, and accelerators now allow for the non-destructive

41 Accelerators are widely used in medical set-

analysis of artwork and artifacts
tings, from diagnostic imaging, such in X-ray imaging equipment and radioisotope
production for PET scans, to directly providing treatment in radiotherapy and the
sterilization of medical equipment 243, Turning to industry, accelerators have found
various roles in material and earth sciences, such as material testing and semicon-

ductor manufacturing %43,
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2.3.1 Forms of Particle Accelerator

Particle accelerators take many forms, and can be divided into several types
based on how they operate. Fundamentally, no one method can claim to be strictly
superior, with each potentially more suitable for different applications. Owing to
their distinct silhouettes and obvious differences, accelerators are broadly divided
into linear and circular designs, although circular accelerators encompass a range of
different forms 4%,

Linear Accelerators, or Linacs, utilise oscillating electric fields to propel charged
particles in straight line trajectories. With the capacity for precise control over beam
energy, Linacs are a common sight in medical applications. However, the significant
size needed in order to attain higher energies means that in modern research they are
usually found as injectors, pre-accelerating particles for entry into larger, circular-
style accelerators!*4.

Synchrotrons accelerate discrete particle bunches in a circular path, using mag-
netic fields to guide particles and radio-frequency (RF) cavities, chambers with a
strong directed electromagnetic field, to provide acceleration. With a closed loop
path, particles can perform multiple revolutions, accumulating energy each time they
pass the RF cavities. In order to keep particles on course, the magnetic field must
be varied to compensate as their velocities increase, and thus cannot provide a con-
tinuous stream of particles*”. Not only an essential tool in high-energy physics and
the basis of modern high energy experiment accelerators such as the Large Hadron
Collider ! synchrotrons are also the archetypal method of generating synchrotron
radiation. This electromagnetic radiation is emitted as relativistic charged particles
are forced to turn, and supports material science and biological research*°).

Cyclotrons instead accelerate a continuous stream of particles in a spiral trajec-
tory within a circular, disk shaped cavity. A constant magnetic field bends particles’
trajectories, while an alternating electric field provides acceleration. Compact and
cost-effective, cyclotrons are widely used in medical and industrial applications [40:46],

Synchrocyclotrons extend the principal of cyclotrons, adjusting the frequency
of the electric field to account for relativistic effects as velocity increases*”. This
allows particles to attain higher energies, but at the cost of comparative reduced
beam intensity.

Isochronous cyclotrons go further, increasing the magnetic field to match their
energy as particles move outward along their spiral path. This increasing magnetic
field compensates for relativistic effects and acts to maintain synchronization be-

tween the particles and the accelerating electric field*?l. The result is an accelerator
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particularly suited for producing high-intensity particle beams.
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Chapter 3

Machine Learning and Neural
Networks

3.1 The Concept of Machine Learning

In general terms, the field of machine learning concerns itself with algorithms
that learn from data or experience. Rather than being determined directly, tun-
able aspects of models are optimised algorithmically through exposure to examples.
Though the terms are frequently used interchangeably, machine learning is a subset
of the wider field of Artificial Intelligence, the study of replicating human intelligence
and thinking; in this case, emulating the ability to learn and improve through experi-
ence. In many ways, machine learning is about the process of calibrating algorithms,
rather than the nature of a final algorithm itself. Equally, machine learning is as
much a field of statistical analysis, seeking to extract meaning from datal4748),

To illustrate the concept, let us imagine we have a function we wish to model. One
direction would be to generate the Fourier series or Taylor polynomial of the function.
In either case, we have a set form, or model, for the representation, and procedurally
derive the corresponding coefficients for our particular function through application
of a formula. If we were instead to take a machine learning approach, rather than
looking to the function itself, we would work with examples of the function, applying
it to a range of inputs. From this data, we might apply a suitable model to the same
examples, tuning our coefficient equivalents to recreate the function’s behaviour. In
this way, machine learning methods can often be seen as a form of trial and error,
adjusting bit by bit to better produce the results we desire.

Consider for a moment electron drift in a wire under a small electric field. If at

a given moment we were to examine a single electron, each would have a seeming
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random velocity. Yet if we were to continue to select electrons, and record and
average their velocities, over time the drift velocity will emerge from among the
randomness. Calibrating, or training, of a machine learning model operates on a
similar principal. Each individual example a model is optimised towards may be
seemingly random and contradictory, but the aim is that as it is exposed to more
and more examples, it converges towards representing any patterns present in the
overall body of data.

This leads neatly to a key strength of machine learning; as algorithms are cal-
ibrated from data, we don’t need to be able to express, or even know, the formal
underlying rules behind a process in order to approximate it. Machine learning al-
gorithms are therefore ideally suited to tasks that as humans we find intuitive, but
which are extremely hard to explain formally, such as recognising letters and num-

4748] " This adaptability and lessening

bers from their shapes or making conversation!
of the need for prior knowledge has made Machine learning a cornerstone of many
modern applications, ranging from natural language processing to autonomous vehi-
cles. On the reverse side, great care must therefore be taken to ensure that any data
used is representative of that which we want a model to learn, and be mindful of
other, unintended patterns that may be present, or even introducing them ourselves
with how the data is presented. As with other forms of statistical analysis, large
datasets are therefore desirable as they are less likely skewed by random chance.
Given the scope and variety encompassed by machine learning, particularly as a
field straddling statistical analysis and computing domains, exact definitions vary.
Though we have endeavoured to remain general, this chapter is intended as a rough
illustration of some general ideas in order to understand the work, and its context,

discussed across this thesis.

3.2 Neural Networks

3.2.1 Deep Learning and Neural Networks

Though biological interpretations have largely fallen by the wayside, artificial
neural networks, or more commonly just neural networks, are loosely inspired by the
connection structure of the brain*7.

At its core, a neural network consists of a number of units known as neurons.
Each neuron itself only performs a simple computation; it receives a series of in-

put variables, performs a linear combination using a weightings map, and passes it
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through a non-linear activation function to produce a single output variable. Typi-
cally, neurons are organised into sets known as layers, with results from neurons in
one layer usually passed to neurons in another, though more complex arrangements
are possible. Neuron weights are the tunable parameters of a neural network, and are
calibrated through backpropagation; calculating the gradients of network parameters
using the chain rule to jointly adjust all weightings maps throughout the network at
once, moving the model towards producing a desired output for a given input each
time. While neurons are individually simple, the result is greater than the sum of its
parts. Through alternating linear and non-linear operations, neural networks have
proven capable of modelling complex non-linear processes 4748,

Deep learning concerns itself with neural network models with many layers of
neurons, which are optimised jointly from data as opposed to individually calibrat-
ing each layer to perform a specific task. This enables an algorithm to learn its own
intermediate knowledge, building up complicated concepts out of simpler ones of

[47,49]

its own determining However, their abstract nature makes understanding the

meaning behind how and why a model reaches its results challenging, and explain-
able Al with deep neural networks (DNN) remains a significant field of study®".
Though we may know the exact calculations a model performs, interpreting what
those calculations represent is often elusive.

While DNN are capable of efficiently approximating complex tasks, they are
computationally intensive, particularity during training; and significant efforts have
been invested into operating deep learning models on specialised hardware platforms.
Being extremely efficient for floating-point matrix-based calculations, and coupled
with high throughput and memory band widths, GPU’s have become the go to gen-
eral purpose platform for deep learning. Dedicated ASIC chips can provide superior
performance with less energy use, but there are significant costs and drawbacks to de-
veloping and fabricating dedicated chips for specific purposes. Field Programmable
Gate Arrays, or FPGAs, offer a programmable architecture alternative to ASICs,

bringing reconfigurability at the loss of some performance®!.

3.2.2 A Basic Neural Network

With the variety in modern neural network models, it is difficult to be entirely
general. Therefore we will introduce what is frequently described as the standard
or ‘vanilla’ deep neural network model; the feed forward, fully connected neural

48]

network! In a feed forward neural network, or FFNN, layers are arranged in a

clear sequence structure, with neurons in one layer passing their outputs onto those
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in the next. In this way, neurons are only connected to those on neighbouring layers,
and there are no cycles or skips in the structure. fully connected neural network, or
FCNN, utilises only fully connected, or dense, layers, where every neuron receives the
output of all neurons in the preceding layer as inputs. A well proven design, networks
of this form are effective for tasks like tabular data classification and regression, and

are often used as component sections within more complex architectures*?.

3.2.3 Anatomy of a Neural Network

To begin, let k denote a neuron with a set of m input values z;, for 1 € [1,m].

The output y; of neuron k is then given by

i=1
Yp =0 (bk + Z wkixZ) (3.2.1)

where wy, and by, are the set of weights and the bias term respectively, and o() the
chosen activation function, if there is one. The bias term by acts as an offset constant,

and by instead defining this as wy, and fixing zy = 1, the above can be simplified to

Y =0 (ZX: wm) : (3.2.2)

Depending on definition, the activation function is frequently considered as a
separate layer to the neurons, operating on all outputs at once. Given each neuron
in a fully connected layer receives the same inputs, this separation allows the layer

to be performed as a matrix operation;
y=o0(z), z=W- x (3.2.3)

where,
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Yo 20 W, Wo, ... Wy, ... Woy 1
U1 1 W1, wy .. wy, - W1, I
y = , Z= , W= , X =
Yk 2k W, Wk .- Wg, - Wk, xT;
YN ZN WNy, WN, ... WN, ... WNy, Vs
(3.2.4)

for a fully connected layer of N neurons with M input values, and where z; represent

the intermediate results of the neurons.

From here it is straightforward to generalise a whole feed forward fully connected
neural network. Let C be a network of L layers, with initial inputs x and corre-
sponding output C(x) = o. Let 0! and W' be as above, with the introduction of  to
indicate layer [ € [0, ..., L]. Then for a given layer [ receiving inputs y', the output
y!*! is given by,

yt =g (zl) .z =W'.y! (3.2.5)

L+1

where y° = x and y = 0; and with this we can finally express C' recursively as,

C(x) = (W . gt (WE . oW 0" (WO %)) (3.2.6)

for 1 € [0, ..., L] 1474849

The choice of activation function depends on a range of factors, such as the
application a network is designed for and the position of a corresponding neuron
within the network. Though it must be non-linear and differentiable, there are a
variety of potential activation functions available. Several commonly used functions

arel7]

e The Sigmoid Function,

1 er

:1—1—6—’”:1—1—69”'

o(x) (3.2.7)
Mapping any real value into the (0,1) range, the sigmoid function is a par-
ticularly useful activation function for the final layer of binary classification
networks. However, it suffers from vanishing gradients, which can slow down

learning in deep networks®?.
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e The Tanh Function,
et — e
o(r) = tahn(z) = ——. 3.2.8
(2) = tahn(e) = = (323)
Similar to the sigmoid function, the tanh function maps inputs into a set range,
this time (—1, 1), but similarly suffers with vanishing gradients for extreme

input values 2.

e The Rectified Linear Unit, or ReLLU,
o(z) = max(0,x). (3.2.9)

Both simple and less susceptible to the vanishing gradient issues, ReLLU has
risen to be the most commonly used activation function. However, if it reaches
a point where it is producing zeros for too many typical inputs, it can become

stuck in a ‘dead’ state (3],

3.2.4 The Training Process

Though exact optimisation algorithms themselves vary, the optimisation process
of a neural network model, or training, is built on the concept of gradient descent;
an iterative method for finding the minimum of a function by adjusting against its
gradient.

At its core, training revolves around evaluating a model in its current state for
a given set of inputs, and adjusting the neuron weights to produce something closer
to a desired output, known as the target. However, the overall algorithm containing
the neural network structure, the nature of the desired target, and overall training
procedures can vary greatly, obfuscating this core loop. While the process is here
envisioned sequentially, with the power of modern computing it is usually performed

on batches of input-and-target examples at a time.

Loss Functions

In order to optimise objectively, it is first necessary to define how a models per-
formance should be quantified. This role is fulfilled by the loss function, sometimes
known as the error function, which provides a numerical value characterising the
difference between a model’s output and the target. The specific choice of loss func-
tion depends on the form of task being tackled; and common choices include the

Mean Square Error for regression tasks, and variation of the Cross-Entropy Loss for
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classification !, Referring back to Equation 3.2.6, let F(o,t) be the loss function,
where t is the target corresponding to inputs x, and as before o the output of our
network on the same. Formally, the objective of training is therefore to adjust the

neuron weightings W' in order to minimise the loss function E(o,t).

Backpropagation

Before we can update the neuron weightings, we need to know how adjusting them
impacts the loss function. This is achieved through backpropagation; an efficient
method of calculating the loss function gradients with respect to the neuron weights
by traversing the network in reverse order, from the output to the input layer, using
the chain rule and storing intermediate variables as we go[*7.

Referring back to Equation 3.2.5 for a layer [, let H be a function of z', H = H(z!).

Then the gradient of H can be expressed as *.

o0H OH 07

= . 3.2.10
OW! 0zl OW! ( )
H 0 (W' .y
_oH 9(W'-y) (3:2.11)
0zl OW!
As y! is the input to layer [, it is independent of W, so this becomes
OH OHN\" |
== : 2.12
W <azl) Y (32.12)

Now let J be a function of y'*1, J = J(y'*!). Then the gradient can be expanded

as

a_J B oJ . @yl+1
ozl ayl+1 7!

aJ 0 (o (2
= Gy (az(l ))yl. (3.2.14)

(3.2.13)

Expressing the right hand term using the derivative of the activation function, ¢",

and element-wise multiplication, which we will denoted with ®, this becomes

oJ  aJ ,
g = 5y o ¢ (z)y'. (3.2.15)

*Given the complexities of calculus involving tensor style objects, throughout this chapter
assume any necessary operations such as transposition and swapping input positions are implied.
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Returning to Equation 3.2.12, we can now expand it further,

OH OH\"
OW! <3zl) 4 (3210
OH ) g
_ (8yl+1 @¢l(zl)) v (3.2.17)

In addition, looking at the gradient with respect to the layers input,

OH O0H 07
oOH 0 (W!.y!
== o(W'-y') oy ) (3.2.19)
= %Wl (3.2.20)

Now let us return to our loss function E. First a forward pass is performed to
calculate the models current output o = C'(x), for our given set of inputs x; retaining
relevant intermediate variables as we go for use on the way back. Then, let us begin
with the final layer, [ = L. Remembering that E = E(o,t) = E(y**! t), and as the
target t is independent of all W!, we can use Equation 3.2.16 to say

OF _<8E

T
ot~ (e S WEy)) oyt (3221

where % depends on the specific loss function used. Progressing to [ = L — 1 and

the gradient with respect to WX =1,

OF _(8E

gwiT = \gyr OF W yH)) oy (3.2.22)

As E depends on y**!, we can further expand the differential term,

oF oF
— = _—WF 3.2.23
oyl 0zt ( )
which in turn can be expanded similarly to before using Equation 3.2.15,
DyE = DL © ¢ (z") (3.2.24)
OE g
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Given the prevalence of similar terms, let us define §' such that

oF

l_
0 = 8yl+1

© " (W'-y'). (3.2.26)

Using this we can then simplify our calculation for the gradient with respect to W%
(Equation 3.2.21) as

oF T
WL = (6%)" -y" (3.2.27)
and for WX=1 as OF
T _
W = ((SL 1) . yL 1 (3228)
where 7! relates back to 6%,
ot = ((61) " WE) @ ¢ (W yh). (3.2.29)

As we can see, calculating the gradient corresponding to the second to final layer
involves repeating calculations performed for the final layer gradient, a pattern con-
tinuing down the network. Thus by working backwards through the network, inter-

mediate calculations can be reused from previous gradients, avoiding a duplication

of efforts! 47591

Optimisers

With the results of backpropagation in hand, it is then time to adjust the neu-
ral network. Optimisation algorithms themselves, commonly known as optimisers,
describe how updates to weightings are performed, and typically feature a learning
rate hyperparameter to control the relative size of adjustments. For the work in this
thesis, the Adam algorithm [°® was used throughout. Combining techniques from a
range of different learning algorithms, the Adam algorithm has a proven record as a

robust algorithm for training deep neural networks 7.

3.2.5 Forms of Neural Network Model

While we have so far discussed feed forward and fully connected neural networks,
they are far from the only architectures available. Given the versatile nature of their
core building blocks, various forms of neural network have been developed, enabling
models that can successfully tackle a variety of challenges.

Recurrent neural networks, or RNN, operate principally on sequential data, main-

taining information form previous inputs though cyclic neuron connections. This
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makes them effective for tasks requiring progression or sequences as input, such as
time series prediction and natural language processing. However, they can struggle
with retaining long-term information, an issue Long Short-Term Memory, or LSTM,
networks seek to address 7.

Convolutional neural networks, or CNN, use convolutional layers to operate on
data with a grid-like topology. Learning spatial features, in convolutional layers
neurons take the form of a filter or kernel, which is convoluted across its input ob-
ject to produce feature maps, and are frequently combined with pooling layers for
down-sampling. Many CNN models transition to a series of fully connected layers,
flattening the feature map, enabling them to perform tasks such as image classifi-
cation. Those that retain their structure throughout, known as fully convolutional
neural networks, can operate on variable sized inputs, and are employed for tasks
such as image generation or segmentation [4749-58]

Deep Reinforcement Learning algorithms, such as Deep Q-Learning and Actor
Critic, utilise neural network models which interact with an environment and learn
from their past actions, effectively generating their own examples to work from.
Optimising towards maximising a reward signal received from said environment,
models are designed to carry out decisions sequentially, acting based on potential
future gains rather than just immediate rewards7%9.

Graph neural networks, or GNN, operate on relational, network-like structures,

and are discussed in detail in Chapter 8.

3.3 Machine Learning in High Energy Physics

As the awarding of the 2024 Nobel Prize in Physics attests®”, machine learn-
ing and neural networks have emerged as key tools in modern fundamental physics
research. Experimental high energy physics is no exception, and machine learn-
ing based methods are now commonplace throughout cutting edge experiments and
analyses.

Since 2010, and as part of an online trigger reconstruction sequence from 2015,
the LHCb experiment has employed neural network based classifiers to screen for
fake charged particle tracks>61.6263: and by 2011, a machine learning based method
was serving as the main trigger selections for beauty physics/®¥. In neutrino experi-
ments, both the NOvA 626566 and DUNE667 experiments utilise CNN to categorise
neutrino interactions within the detector volume, and similar CNN approaches have

68,69,70,71,72]

been explored for calorimetry! RNN have demonstrated success at beauty
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jet identification ™™ and recently ATLAS and CMS have been exploring GNN and
attention based transformers for the task[™76:77,
In analyses, Boosted Decision Trees have largely replaced traditional cut based

36] Over a decade ago,

methods for signal selection and background discrimination!
the CMS experiment employed Boosted Decision Trees to identify and categorize
potential diphoton Higgs decay particles to make their first solo observation of the

(78] (7], The first evidence of

Higgs!™® while ATLAS’s analysis leveraged neural networks
beauty to muon anti-muon decays, carried out by CMS and LHCb, utilised Boosted
Decision Trees® as did the first solo observation by LHCb281 and the first ob-
servation of pentaquarks #2533l

Given the vast quantities of simulated data produced by researchers, there is
growing interest in machine learning for fast and ultra-fast simulation; reducing com-
puting needs through approximated simulation methods such as resampling methods
or parametrisation of detector response. The LHCb experiment has implemented a
framework that includes machine learning based fast-simulation as part of its simu-
lation package?3848%  Meanwhile the ATLAS collaboration has explored the use of
variational autoencoders and generative adversarial networks for simulating particle
showers within electromagnetic calorimeters(®®l, and CMS has investigated sample
re-weighting to generate samples for variant models without needing to re-simulate

detector responses! 778788,
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Part 11

Proton Computed Tomography
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Chapter 4

Hadron Therapy and Proton
Computed Tomography

The work presented here in Part I has previously been published as

T. Ackernley, G. Casse, and M. Cristoforetti. Proton path reconstruc-
tion for proton computed tomography using neural networks. Physics
in Medicine € Biology, 66(7):075015, apr 2021. doi: 10.1088/1361-
6560/abf00f. [3]

©Institute of Physics and Engineering in Medicine. Reproduced with

permission. All rights reserved.

The following chapters therefore include material reproduced, paraphrased and
expanded on from said publication, including text and figures. Accompanying decla-
rations regarding the paper can be found in Appendix A. The full accepted manuscript
can be found at https://arxiv.org/abs/2010.00427, and for completeness has been
reproduced in Appendix D.

4.1 Radiotherapy

Before the century is out, cancer is predicted to surpass heart disease as the
leading cause of premature death throughout much of the world89%, It is therefore
little wonder that cancer therapy has a history, and present, intertwined with cutting
edge scientific and technological development.

The use of radiation for cancer therapy has come a long way since the first exper-

[91,92]

imental treatments of 1896 . Now, radiation therapy, or radiotherapy, is one of
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the principal treatment modalities, alongside chemotherapy and surgical resection,
employed by medical professionals!®®; with over a fifth of cancer patients in Eng-
land®, and up to half in the USA [ receiving radiation therapy in some form. Most
commonly this takes the form of external beam therapy, in which a beam of ionising

[42,93]

radiation is used to attack a targeted tumour Typically a megavoltage photon

beam, or occasionally an electron beam, generated by linear particle accelerator is

used [42:96]

4.1.1 Biological Impact

On passage through biological tissue, ionising radiation imparts energy as it
slows down, damaging the DNA within cells; with sufficient damage leading to cell
death293 While this is the motivation as far as cancerous tissue is concerned, ra-
diation does not discriminate between healthy and tumour cells. A photon beam im-
parts energy throughout its whole path, though this does not take place uniformly 4.
Different particles have their own characteristic dosage distribution patterns, several
of which are illustrated in Figure 4.1.

Not all tissues respond the same to this radiation, and sensitivity largely derives
from the speed at which cells divide and repair themselves, along with the specific

radiation and dosage level used 4293,

Some tissues are referred to as late reacting,
able to an extent to repair themselves to compensate for damage at low dosages;
making them less susceptible to damage when the same combined dose is suitably
spread out. Exploiting that many forms of cancer are conversely fast to divide
and poor at repair, modern treatment regimes are commonly broken into several
smaller instalments, called fractions, delivered in successive instalments over several

42,93,95]

weeks| Unfortunately, some cancers are late reacting, limiting effectiveness in

such cases[4?).

4.1.2 Treatment Planning

Avoiding collateral damage to healthy tissues is the principal limiting factor
in radiotherapy, and many developments revolve around this balancing act[®%92:93],
Imaging plays a crucial role in modern high precision radiotherapy, with advanced
conformal techniques naturally requiring an intimate knowledge of patient and tu-
mour in order to fine-tune delivery®”. For this reason, many modern clinical linear
accelerators now possess integrated x-ray CT (computed tomography) imaging or ra-

95,97]

diography capabilities . Heralded as a major step forwards, the introduction of
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Figure 4.1: A representation of the relative dose depth distributions in
water for various particle delivery methods used, or proposed for use, in
clinical radiotherapy treatment. Based on particle beams of photons at

~6 MV, electrons at ~ 18 MeV, protons at ~ 145 MeV, and carbon ions
at ~ 300 MeV /u. Reproduced from [100].

intensity-modulated radiation therapy in the 1990s allows tailoring beam to closely
match complex targets®>?. Volumetric methods such as stereotactic radiotherapy
and its variants leverage beams from different angles, overlapping at the target, to
reduce exposure of any one area of healthy tissue®>%), while recent advancements in

4D imaging and high precision regimes can even account for the motion of internal

organs 919

4.2 Hadron Therapy

4.2.1 Proton Therapy

Recent decades have seen considerable interest in the potential of hadron based
therapy. In particular, it would be hard to review developments in cancer care
without mention of the enormous growth of proton therapy. Though it has seen
increasing adoption in the last few years, the case for proton therapy was proposed
as far back as 194511°U with the first patients treated in the 1950s1%? and clinical
facilities since 1990192,

As illustrated in Figure 4.1, photons impart the largest dose close to the surface,

with a gradual fall off as they travel deeper. Electrons have similar behaviour, but
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with a sharper fall off making them preferable for tumours within a few centimetres
of the surface?. In contrast, protons impart more energy at lower speeds, and lose
velocity as they travel within matter. This results in focusing the largest dose de-
positation into a narrow peak, known as the Bragg peak, near the end of their path.
Exploiting this behaviour, protons can be used to target a specific region with com-
paratively little or no exposure for other tissues. Proton therapy is therefore ideally
suited for tumours near sensitive organs or for young patients, where sparing other
tissues is paramount 29398193 Qverall approaches such as stereotactic radiother-
apy "% and image guided therapy 1% are equally applicable; though the differences
in dose deposition and scattering render many specific techniques and algorithms

incompatible [°6:105

4.2.2 Practice

Modern proton therapy is not, however, suitable or advantageous in all cases,

96,98 Clinical pro-

and not a straight replacement for regular photon radiotherapy!
ton beam production is a costly enterprise requiring expensive specialist equipment,
making facilities a considerable investment and effective treatment costs high. Proton
therapy is therefore typically used sparingly, reserved for when it is proven advan-
tageous compared to other available approaches. However, high costs and the limi-
tations of laboratory apparatus also leads to limited clinical assessments with which
to make an informed decision on if and when proton therapy is worthwhile!91:96:103]

Clinical proton beam facilities typically employ a common particle accelerator to
provide particles to several treatment rooms!%!. Many such accelerators take the
form of a synchrotron, while others use isochronous cyclotrons, and are commonly ca-
pable of achieving maximum energies around 230-250 MeV 1% More recently, single-

room systems have been demonstrated utilising compact synchrocyclotrons!*7.

4.2.3 Other Heavy Ions

Exploration into the potential of heavy ions has not been limited to protons,
though none have seen the same level of adoption so far. Carbon ions have shown
significant promise, potentially more so, for their similar despoitatiation properties
as protons, but are handicapped by the exceptional equipment costs involved 19!,
In a different direction, the use of neutrons for radioresistant cancers has been in-

vestigated, but suffers from unresolved issues involving damage to other tissues®.

32



4.2.4 Treatment Planning

Just as with photon radiotherapy, treatment planning is crucial. Unlocking the
full potential of protons’ dosimetry properties relies on being able to align the Bragg
peak with a high degree of precision; all the more so given proton therapy is frequently
employed when vulnerable tissue is nearby. Accurately calibrating proton ranges
relies on a detailed knowledge of the relative stopping power, or RSP, of the materials
it will traverse; where the RSP is the ratio of the stopping power of said material to
that of water.

Current practice is to construct the RSP map using x-ray CT density measure-

ments, which are often expressed in the form of Hounsfield Units, or HU,

HU = (M> x 1000, (4.2.1)

(Hwat )
where fiyq; and pi,e: are the measured linear attenuation coefficients of water and
a given respectively!!9). The linear attenuation coefficient describes the fraction

of photons attenuated over a given distance, and is usually expressed in cm~'109,

Standard measurements are often given per unit density for a given material, such
as flwat/p = 7.072 x 1072 em?g~" for 1 MeV photons in water 1),

Unfortunately, differences in how x-rays and protons interact with matter in-
troduces complications to this approach. Deriving RSP from Hounsfield Unit mea-
surements leverages that both proton stopping power and photon attenuation coef-
ficients are each approximately, though not exactly, proportional to electron density

108] " Reliance on these approximate

[97]

in order to find the relationship between them!
relationships gives rise to conversion errors in the range of 2-5% 1", though recent
developments suggest this can be further reduced to 0.1-2.1% through measurements

made at duel energies!!'!.

4.3 Proton Computed Tomography

Envisioned as a method of imaging around the same time as the now ubiquitous
x-ray CTM2 ) proton computed tomography, or pCT*, offers a potential way to
circumvent the issue through measuring proton RSP directly, removing conversion
uncertainties by using the same particle for both planning and treatment 3. But

while pCT has seen renewed interest with the expansion of proton therapy, protons

*In some literature pCT is used to denote particle computed tomography, encompassing the
use of other particles besides protons.
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behaviour in matter presents its own challenges.

4.3.1 The Need for Proton Paths

Determining RSP using pCT depends on knowledge of protons trajectories. For

a given proton ¢, the line integral of the RSP is related to the energy loss using

RSP (z)dz ~ / d (4.3.1)

/ E;?"t Swater (E)

r;

where I'; C R? is the proton path, RSP(x) is the stopping power relative to water
at position x € R3, E™ and E* are the entrance and exit proton energies, and
Swater(F) is the stopping power of water for energy E. This integral is the Water
Equivalent Path Length (WEPL). Starting from this equation, the pCT reconstruc-
tion problem can be mapped to that of reconstructing each individual protons path,
combined with the calculation of WEPL (through the right side of the equation), to
recover the RSP map. The better the determination of the proton trajectories, the
better the RSP calculation will be.

4.3.2 Transport Through Matter

In order to achieve spatial resolution comparable to typical medical x-ray CT

L4 and unlike in

[106]

scanners, proton trajectories need to be measured individually!
x-ray CT cannot be adequately approximated using straight paths Protons expe-
rience significant small angle scattering while passing through a medium, resulting in
non-trivial curved paths. Most interactions occur from multiple coulomb scattering
from medium nuclei, more than 10 per cm ™!, though strong nuclear interactions
also contribute in a significant number of proton trajectories[106:116],

At 200 MeV, nuclear interactions account for less than 1% compared to ion-
ization interactions, and in our scope can largely be treated as a correction to the

[115]

electromagnetic processes The resulting net scattering and displacement distri-

butions are approximately Gaussian, with hard scattering interactions contributing
non-Gaussian tails'6,

For a given proton travelling through a medium of radiation length Xy, the root-
mean-square of the Gaussian core of several displacement distributions, projected

into a plane, can be approximately given as

1 1

rms _90 rms __ 90 rms 90 rms __ 0
) 9 9

plane — plane — % Yplane = \/3 Splane = m
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Figure 4.2: An example of a particle trajectory subject to multiple
coulomb scattering, with various properties used to describe said tra-
jectories labelled. The particles trajectory is aligned in the plane of the
page. Reproduced from [116].

13.6 MeV 2
90:3276,/)% 1+O.381n< %)] (4.3.2)

in which x denotes depth travelled parallel to Zpiane, and p and SBc the particles

where

momentum and speed respectively[uﬁ]. Opiane denotes the angular displacement of
direction of travel, ¥piqne the angular displacement in position, Ypiane the displacement
perpendicular to Zpigne, and spiqne the displacement from the equivalent straight line
path at half way in Z,.,.; these quantities are illustrated in Figure 4.2.

From this we can see that proton paths are substantially dependent on the ma-
terial traversed, making them sensitive to anatomical variations within a patient;
reinforcing the importance of the RSP map. This has the added effect of making
photon safety margin practices unsuitable for working with protons!?. It also shows
that scattering can be reduced by using higher energy protons. However doing so
potentially comes at the cost of reduced WEPL resolution, so an appropriate balance

needs to be struck 16l

4.3.3 The Most Likely Path Formalism

The need for individual particle tracks excludes direct reuse of many well-developed
image reconstruction methods developed in x-ray CTI06117  TJterative algebraic
methods, such as the algebraic reconstruction technique (ART'), have been proposed

as plausible pCT image reconstruction methods!**%118 but the computational cost
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of these algorithms is considerably high. More efficient techniques are direct recon-
struction methods, often following on from x-ray CT methods, whose development

is an active area of research, as discussed in [119].

While scattering remains an inherently probabilistic process, precluding the exact
prediction of any single track, the Most Likely Path formalism, MLP, is well estab-
lished as the most statistically precise method to account for MCS processes 120121122
Since its introduction in 1994123/ the MLP formalism as presented in [120] has un-
dergone various refinements for use in different application scenarios!!22:124,125,126,127]

In addition to the entry and exit positions of the beam, the MLP algorithm utilises
the angle between the direction of travel and the perpendicular to the phantom

surface to significantly improve the prediction!'?3.

Though it has been shown to
significantly reduce spatial resolution, excluding entry measurements would simplify
the challenge of apparatus design and achieving an adequate resolution may still be
possible!1128],

For a proton beam located at the origin and directed along the z direction, inci-
dent into a medium, at any given depth along z a proton’s path can be characterised
by the two coordinates z and y and the two angles # and ¢ relative to the z-axis.
Proton scattering can be considered independent along the x and y axis and the

MLP can be expressed independently for the two 2D parameter vectors x = (z, )
and 'y = (y, ).

Considering x for example, from [120] the MLP of protons in a homogeneous
medium can be expressed, in a Gaussian approximation of the generalised Fermi-

Eyeges theory of Multiple Coulomb Scattering, as
XMLP(Z) = (EII + R{EglRl)il(zflRO Xin + R{ZEI Xout>> (433)

where x;, and x,,; are the relevant entry and exit coordinates in the two 2D param-
eter vectors as mentioned above, Ry and R; are the change of basis for small-angle

rotation matrices

1 22—z, 1 zpwe — 2
Ro — 5 R1 = (434)
0 1 0 1

and X, and Y, are scattering matrices describing the variances and covariances of x
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and 0 between z;, and z, for ¥q, or z and z,,;, for 3,

2 2 2 2
g g g g
1 21601 T2 2602
o R BT B (4.3.5)
O-J:191 091 0-$292 062

The above components, called scattering moments, are given for 3; by the integrals

(4.3.6)

1

2 pz 2
o = 2 (1 +0.038In = ) (2 —u)]” du

Xo o0 B2(w)p?(u) Xo
2 — 2. \2 [* 1 du
o2 = E? (1 +0.0381n —”) S 4.3.7
o= 5o %o ) ). B X, (4.3.7)
z—zm>2 *(z-u) du
Xo a2 (w)p? (u) Xo

(4.3.8)

‘7920191 = E7 (1 +0.0381n
where u is z between z;, and the the fixed value of z for which we are calculating
X. The equivalent scattering moments for ¥, are found by replacing z;, with z
and z with z,, in the equations above. y,;»(z) follows identically, with variables
corresponding to x;, and x,,; replaced by y;, and y,,; as necessary.

However, nuclear interactions still have a non negligible role in a significant num-
ber of proton trajectories!!?. Recommended practice is therefore to reduce the
events influenced by nuclear interactions or large angle MCS through a 3¢ cut on
both the difference in energy and the difference in the direction of travel angle be-

tween entry and exit 2,

Unfortunately, this results in a reduction of the protons
available for the pCT image reconstruction and in an increase of the time needed to

compute the relative stopping power map for proton therapy treatment planning.

4.3.4 Computational Cost

The need for measurement and prediction of individual particle tracks brings
with it a considerable computational burden, one which was beyond the scope of vi-
able computing technology only a few decades ago!?. Exploring ways to minimise
this issue is an area of ongoing research. In [129] and [130], a computer optimised
implementation for use on a GPU is outlined, achieving a notable speed up at high
proton density. Others have taken the approach of devising alternative, more com-
putationally efficient, approximations in place of the MLP. The use of cubic splines
in [118], further developed in [122], has been shown to be adequate for pre treatment
verification purposes 3!, In [126], polynomial approximations lead to a reduction in

the number of floating point operations in calculations, while [132] fitted cubic Bézier
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curve tracks with a Moliere maximum likelihood method, demonstrating advantages
particularly for longer proton paths.

Machine learning has shown great potential for estimating complex processes effi-
ciently, and the implementation discussed in Chapters 5 to 7 has as already indicated
been published as [3]. Subsequently, in [133] a wider study by a different group into
machine learning for pCT proton trajectories has since been published. Examining
both feed forward neural networks and a boosted decision tree method in a more
realistic setup, their research similarly showed benefits to computational time and
accuracy. Further discussion is given in Section 7.1.

Beyond direct prediction of proton paths, machine learning has been applied to
pCT in other ways. [134] introduces a range verification measure to improve pCT
quality control, utilising a neural network to predict Bragg peak depth. Others have
looked to convolutional neural network models to improve the quality of CT im-
ages more directly. [135] looked to identify incorrectly reconstructed and secondary
production tracks, while [136] used a Bayesian CNN for image correction with ac-
companying uncertainty predictions. An alternative approach in [137] introduced a
machine learning-driven image denoising method designed around preserving WEPL

values that may be distorted during traditional image correction.

4.3.5 Equipment

Equipment and running costs represent a significant hurdle to the clinical imple-
mentation of pCT. In order to share an already necessary particle accelerator, pCT
is generally envisioned as an integrated part of proton therapy installations. Unlike
for therapy itself, scanning requires protons to completely pass through a target and
out the other side, and therefore higher energies for the same regions of interest are
required". Clinical accelerators for therapy use can typically achieve energies in
the 230 to 250 MeV range!l. This does introduce some limitations; it is typically
adequate for the head or chest region with a suitably positioned patient, but not, for
example, for scanning adult hips at all angles!.

With the significant cost of beam time, necessitating access for both planning and
therapy itself is a difficult proposition. The ideal achievement would be for on-site
treatment planning immediately before treatment, with the patient remaining in the
room throughout!!l. This would not only reduce overall proton therapy costs, but
removing the need for a separate treatment planning session also improves the patient
experience). While a naturally attractive proposition, and potentially in the realm

of possibility [, a currently more realistic scenario maybe optimising calibration of
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Figure 4.3: An illustration outlining the design of a typical pCT scanner.
Reproduced from [106].

N

an existing treatment plan for a patient on the day'%%), or reserving its use for only
special cases!!.

As it stands, various pCT systems have been proposed, and several prototype
pCT systems now exist. However, most current prototypes have been built as re-
search instruments, and are inappropriate for clinical use in their current form!. A
review of current pCT detector design and prototypes can be found in [1].

At its core, a pCT scanner is a particle detector. It is no surprise therefore
that many of the technologies employed are those developed and used in elementary
particle physics research detectors!!, even directly utilising components developed
for LHC experiments!™9.

An outline of a typical pCT scanner proposal can be found in Figure 4.3, To
build up a full image, the centrally-placed target, or the apparatus as a whole, must

[106] * Tracking detectors

be rotated in order to perform scans from different angles
located before and after the target measure entry and exit position, and in order to
ascertain particles’ direction of travel, double tracking planes are required!!l. Designs

elM0.14] " while scintillating

commonly employ silicon-strip detectors for this purpos
fibre technology'*? and monolithic active pixel sensors have also been used *¥, and
micro pattern gas detectors may be suitable!!.

As we saw in Equation 4.3.1, calculating the WEPL relies on the energy loss in
transit. As knowledge of the accelerator beam production can be used to deduce the
incoming kinetic energy, energy measurement is only necessary after the target. Some
designs achieve this using calorimeters %142l which stop the particle and produce a
signal related to the energy imparted. Others take a different approach, measuring

[141]

the range penetrated in some medium to infer the WEPL* while using time of

flight measurements has also been proposed 3.
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Chapter 5

Aims and Method

5.1 Aims

Neural networks are capable of approximating complex tasks in a computationally
efficient manner, aligning with the desire for a faster reconstruction of proton tracks

118,122,126] - Qur aim was therefore, in the context

for pCT seen from existing studies!
of pCT, to develop a proof-of-concept approach for the estimation of the proton
paths based on Machine Learning, through utilisation of a Deep Neural Network, in
order to explore the potential of such an approach to match the performance of MLP
formalism in a shorter execution time. This model became the Proton Path Neural
Network, or PPNN.

Equally, neural networks are not bound to following only predetermined physical
models. Predicting proton paths is limited by the statistical nature of scattering,
and as discussed the MLP formalism represents the most accurate estimate for Mul-
tiple Coulomb Scattering. A neural network however has the potential for increased
accuracy from a capacity to account for contributions beyond Multiple Coulomb
Scattering, and the better the determination of the proton trajectories, the better
the RSP calculation will be. Additionally, removing tracks with a heavy non Mul-
tiple Coulomb Scattering influence is the motivator for applying 3o data cuts, thus

reducing the need for these cuts may allow for more usable data.

5.2 Monte Carlo Simulation

Both model training and analysis were conducted using Monte Carlo simula-
tion data generated using GATE v9.01144 a framework built upon the widely used

Geant4 10.6 Monte Carlo simulation toolkit!'4?l. Simulations incorporating only
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Figure 5.1: Illustration of the Monte Carlo geometry used in this study.
3D representation of the phantom space (a) and 2D projection on the z-z
plane for the water (b) and inhomogeneous phantom (c). Trajectories are
only scored and monitored within the phantom volume itself. Note that
for convenience we redefine our coordinate axis such that the initial point
of each trajectory is located at the origin. Reproduced from [3].

electromagnetic processes were performed using the emstandard physics list. Nu-
clear interactions, among a full regime of physics processes, were modelled using the
QGSP_BIC physics list. Details can be found in [146] and [147] respectively. In
the discussion of the results, the choice of physics environment is indicated for each
simulation.

Our principal model consists of a homogeneous sheet of water centred on the
origin of a standard x-y-z coordinate system with a side length of 20 c¢m in the
z-axis direction and arbitrarily large extents in x and y. Phantoms of this kind
are widely used as a baseline in existing literature, such as in [120], [126] and [127].
Monoenergetic protons are simulated through the phantom, originating at the central
point of the phantom’s z = —10 cm face, such that their initial direction of travel are
orientated inwards and perpendicular to the face and parallel to the positive z-axis
direction. For convenience in the following we redefine our coordinate axis such that
the initial point of any trajectory is located at the origin, with particles initialised
at a depth of 0 cm and extending in range to a depth of 20 cm. This arrangement
is illustrated in Figure 5.1(a) and 5.1(b). While the situation as we are modelling it
is not a perfect recreation of the real world environment, it is sufficient for assessing
the capability of a neural network at path prediction in general terms.

The procedure as stated was repeated using an inhomogeneous phantom com-

prising 2 cm of water, 7 cm of skull, 2 cm of cortical-bone, 7 cm of skull, and 2 cm of
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water. For the purposes of this simulation, cortical-bone was defined using material
data found in [148]. This composition was chosen based on a similar inhomoge-
neous phantom used in [127]. While it is rare that such a large concentration of

127 by using a more

high density material would be encountered in a clinical setting!
extreme inhomogeneous phantom any performance impact will be more distinctive

in comparison.

5.3 Datasets

Datasets were produced using the aforementioned Monte Carlo simulations as
described in Section 5.2. Each dataset consisted of generating an initial 10° simu-
lated events, however only trajectories which traversed the full phantom depth were
retained, reducing the number of events ultimately used. Initial datasets for the
homogenous phantom were generated using a beam energy of 200MeV, and in order
to examine the impact of scattering due to nuclear interactions, separate datasets
were produced using the emstandard or QGSP_BIC physics lists.

Due to the increased stopping power of the inhomogeneous phantom, to ensure
that a large fraction of impinging protons successfully traverse that phantom’s full
length, datasets for the inhomogeneous phantoms were generated using a beam en-
ergy of 230 MeV. Additional datasets for the homogeneous phantom were also gener-
ated at 230 MeV. All 230 MeV simulations were carried out under the QGSP_BIC
physics list. For the inhomogeneous phantom at 230 MeV, this typically led to data
sets in excess of 700,000 events. Principally, examination of behaviour with the ho-
mogeneous phantom uses 200 MeV proton datasets, with the homogenous phantom
230 MeV protons datasets used for comparison with the inhomogeneous phantom.

Each proton trajectory was quantified as a series of spatial coordinates evenly
distributed at 0.1 cm intervals, including both phantom faces. This granularity was
chosen to match that used in [122], [126] and [127]. A total of 201 coordinate points
represent a complete path through the phantom, consisting of 603 variables. The
angle on entry and exit to the z-axis direction in both x and y planes was also

recorded.

5.4 The Proton Path Neural Network

The Proton Path Neural Network, or PPNN, is a fully connected neural network

based model designed to predict a proton trajectory in the form of a series of spacial
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Figure 5.2: PPNN architecture. The Proton Path Neural Network PPNN
consists of four fully connected layers with 24, 48, 96, 199 nodes and a
Relu activation function after each of the first three layers. The current
number of variables present at various points is additionally indicated in
brackets. A separate instance of same architecture was used for the x and
y planes. Reproduced from [3].

points at 0.1 cm intervals, matching the representation described in Section 5.3, using
variables similar to those employed by MLP calculations. As the z depth coordinates
are therefore a fixed set of values shared by all trajectories, for predicting a track
only the x and y variables need be considered. Similarly, the initial and final points
of each trajectory are known for each track and so likewise neglected. Thus a track
prediction consists of two sets of 199 points each, for a total of 398 variables per

track.

As with the MLP, trajectories along the x and y directions are reconstructed
independently by separate instances of the same network. The input features of the
network are quantities which can be recorded by a modern pCT scanning apparatus;
Ax = (Tour — Tin) and A0 = (0 — 0;,) in the x direction and equivalently Ay =
(Yout — Yin), Ad = (Pour — Pin) along y. This data is passed through 4 fully connected
(or dense) layers of 24, 48, 96 and 199 nodes respectively. As activation functions,
we employed a Rectified Linear Unit (ReLU) after each of the first 3 layers. A
representation of the network architecture is presented in Figure 5.2. PPNN is

written in python using the PyTorch (pytorch.org) framework.

Training and validation of the model was performed using a dataset of more
than 1,600,000 trajectories (1,400,000 for the inhomogeneous phantom), 800,000

(700,000) along each direction, as described in Section 5.3. Two separate instances

43



of the network were trained using datasets corresponding to different simulations;
the first used 200 MeV protons and the homogeneous phantom, the second 230 MeV
protons and the inhomogeneous phantom. Both employed the full QGSP_BIC
physics list. Unless otherwise stated, the relevant model was used when reconstruct-
ing datasets generated with the corresponding proton energy.

80% of the tracks are used for the training and the remaining 20% reserved
for validation. Optimisation of the network weights is performed using the Adam
algorithm % with a learning rate fixed at 10~°. For the loss, the Mean Squared Error
(MSE) is used,

LMo N
_ ~ 2
MSE = Em N gn (U — Umn)~, (5.4.1)

where M is the number of samples, N = 199 is the number of points in each proton
path, u the predicted path and @ the true trajectory. At a batch size of 32 samples
per batch, one epoch (one cycle through the full training dataset) running on Tesla
K80 GPU requires approximately 80 seconds on a Standard NC6 Microsoft Azure
machine.

The loss history of the model trained on 200 MeV protons, on the homogeneous
phantom, with the QGSP_BIC physics list, can be seen in Figure 5.3, in which after
around 400 epochs the loss flattens both for the training and validation datasets with
the ratio between the two histories almost constant; suggesting that the network is
not overfitting to the examples present in the training dataset. Ultimately this model

was trained for 1000 epochs.

5.5 Measurements and Analysis

5.5.1 Most Likely Path Implementation

For comparisons to the MLP formalism, we implemented the highly optimized
version of MLP presented in [130], in which 90% of the MLP is precalculated and the
number of operations required is minimised. We ported the code in python using
the vectorisation capabilities of the NumPy (numpy.org) library to parallelize the
execution on the number of protons. Assuming a homogeneous phantom composed
of water, we use Xy = 36.1cm for the radiation length of the material and Ey =
13.6 MeV. The momentum velocity ratio 1/82(u)p*(u) is approximated with a fifth-
order polynomial following [120]. This quantity is specific to the proton energy used;

implementation for other energies requires its recalculation for accurate performance.
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Figure 5.3: Loss history during network training at each epoch, for both
the training and validation. This corresponds to model trained using
200 MeV protons, with the homogeneous phantom, using the QGSP_BIC
physics list. Reproduced from [3].

For protons at 200 MeV, the coefficient values given in [120] were used. For protons at
230 MeV, the coefficient values were calculated following the method outlined in [120]
for the 200 MeV values. Monoenergetic protons initially at the required energy were
incident on a simulated 20 cm deep water sample. The fifth-order polynomial was
fitted to distribution of the mean value of 1/3%(u)p?(u) recorded at 5 mm intervals
throughout. As with the PPNN model, unless otherwise stated the corresponding

momentum velocity coefficients were used when reconstructing each dataset.

5.5.2 Root Mean Squared Error

“The (Square) Root of the Mean Squared Error, or RMSE; is commonly adopted
in literature evaluating the performance of the MLP reconstruction procedure, and

was adopted here as the principal means to compare performance between PPNN
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and the MLP formalism. The RMSE is calculated as
RMSE = vMSE (5.5.1)

where the MSE is as given in Equation 5.4.1. To avoid overfitting, all analysis
procedures were carried out on datasets generated independently from those used
in the PPNN training and validation process, or the MLP momentum velocity ratio

calibrations.

5.5.3 Execution Time

To measure execution time, the two algorithms were run on all trajectories of a
test dataset. This procedure was repeated 10 times, with unique batch combinations
in each instance, to produce a mean value. Both PPNN and the MLP formalism
were executed on the CPU of a Standard NC6 Microsoft Azure machine.
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Chapter 6

Results and Analysis

6.1 Homogenous Phantom

6.1.1 Root Mean Squared Error

For the homogeneous phantom, the RMSE for estimates of the paths, using
PPNN or MLP, with the emstandard and 200 MeV protons dataset are shown
in Figure 6.1(a). Even without the 30 cuts suggested in [120] we can see that the
difference between the two predictions is quite small. This difference disappears
(the two lines corresponding to the MLP and PPNN case are barely distinguishable)
upon applying said 3o cut to the angles and energy; under which here only ~ 1% of
the paths are omitted. This result clearly shows that the PPNN prediction is fully
consistent with the MLP approach, indicating that the approximations inherent to
the method are valid. This is crucial because anything different would represent a
serious flaw in the PPNN reconstruction method.

Moreover, the difference in the PPNN prediction error with or without the cut
is practically negligible, suggesting that our method can be applied to reconstruct
trajectories where processes other than MCS are present. This is more evident in
Figure 6.1(b) where the RMSE is evaluated for the QGSP_BIC dataset. When
nuclear interactions are included the error significantly increases, but to a far lesser
extent for PPNN than for MLP. Only with a 1o cut do the performances of the
two methods become comparable. Unfortunately, such a large cut entails the loss
of ~24% of the tracks. Comparing the full interaction dataset result with that of
the pure electromagnetic result, we see that with the typical 30 cut applied to both
cases the RMSE of PPNN is about 26% larger for the full interaction than for the

pure MCS dataset. Though not shown, with a 2¢ cut the discrepancy in performance
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Figure 6.1: Root Mean Squared Error obtained with MLP and PPNN
using the (a) emstandard and (b) QGSP_BIC datasets. Solid lines are
the performance on the full dataset while dotted and dashed incorporate
lo, and 30 cuts, performed on the energy and difference in the direction
of travel angle between entering and exiting the phantom, respectively.
The dashed-dotted line in (b) is the same solid PPNN result in (a) added
here to have a clear picture of the increasing of the errors when including
nuclear interactions. Reproduced from [3].
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decreases to around 20%, which corresponds to a fraction of discarded tracks of ~ 8%
from the QGSP_BIC dataset.

6.1.2 Relationship Between Error and Deviation

To understand the origin of this difference in performance between the two
methods, Figure 6.2(a) illustrates the distribution of A0 = (6, — 6;,) for both
QSPG_BIC and emsstandard datasets. The o cut is applied assuming a Gaussian
distribution of the signal, but from the figure a difference between the two distribu-
tions clearly emerges. For the full physics simulation the Gaussian approximation,
as employed in the MLP, clearly fails to describe the distribution away from the
centre. While the cuts based on a Gaussian fit are acceptable in the emstandard
case, they exhibit a large discrepancy with data when the full range of physics pro-
cesses are included. In Figure 6.2(b) we see a similar result for the distribution of
lateral displacement Az = (2o — i), With the Gaussian shape of the emstandard

distribution supplanted by an exponential decrease in the QSPG_BIC' distribution.
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Figure 6.2: (a) Distribution of A0 = (6,4 — 0i,) angle for the two test
datasets (solid lines) overlaid with the associated Gaussian using the o
values obtained from a fit of the emstandard data and the QSPG_BIC
data (dotted lines). (b) Distribution of Az = (2 — ). In both plots
it is evident that an exponential rather than a Gaussian decay provides
a better fit with respect to the number of paths for the QSPG_BIC
dataset. Reproduced from [3].

Given the limits of the MLP formulation shown in Figure 6.2, its worth con-
sidering how the error increases as a function of the two variables Af and Ax.
As the PPNN approach has the same performance as MLP in the context of pure
electromagnetic interaction, where MLP is designed to work, we will focus on the
the QSPG_BIC physics dataset, which provides a more realistic representation of
clinical pC'T scenario.

This is presented in Figure 6.3. Here the proton paths are collected into bins
of 0.1 rad and 1 mm for Af and Az respectively, with the RMSE computed in the
corresponding direction. The figure compares the error (right axis) and the number
of trajectories (left axis) to show the differences in performance. Note the logarithmic
scale on both right and left y axis. From Figure 6.3(a) we see that, as expected from
the RMSE plot, the two lines for PPNN and MLP begin to separate at around lo
cut at Af ~ 0.075 rad. For 35% of the tracks A6 is larger than 0.075, implying that
the PPNN method improves on the MLP reconstruction for an important fraction
of proton paths. Notice that the same analysis must be done for the ¢ angle which
would remove an analogous number of paths, resulting in a final cut of almost 50%
of the tracks in order to recover the same performance. Figure 6.3(b) shows the
reconstructed paths distribution broken down in terms of final displacement, Ax.

Again the performance of PPNN is consistently better across the full span of the
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Figure 6.3: (a) RMSE (right vertical axis, coloured lines) and number
of paths (left vertical axis, black lines) as a function of Af for PPNN
and MLP evaluated on the QSPG_BIC dataset. The shaded black area
represent the statistical error. Vertical lines refer to the position of the 1
and 3 o cut. (b) Same as (a) but as a function of Az. The difference in
performance between the two methods emerges immediately. Reproduced
from [3]. Note the right vertical axis of Figure 6.3 should read '"RMSE

[rad]’
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plot, with trajectories at large angle deviations resolved with improved precision.

6.1.3 Tracks with Differing Performance

Further insight can be gained by considering tracks where the two models perfor-
mance substantially differed. In order to focus on tracks with the largest difference,
we will consider only tracks outside the 1o cut in §. Figure 6.4 presents the distri-
butions of the difference between the RMSE for PPNN and MLP for tracks outside
the aforementioned cut. Negative values of the difference correspond to tracks in
which PPNN had the smallest error, while the positive side of the axis corresponds
to the inverse. In the first instance we can see that the profile is exponential, while
in the second the decay is noticeably steeper; confirming that PPNN has better
performance at large deviations of the angle 6.

Focusing in on only the behaviour when PPNN outperforms MLP, let us consider
only the set of events on the negative side of histogram. Dividing these events
into 10 quantiles by ARMSE, a selection of randomly chosen tracks, one from
each quantile, are shown in Figure 6.5(a). As expected, for larger deviations from
straight paths PPNN can better follow the simulated curve in the majority of such
cases, growing more notable for larger ARMSE. For Figure 6.5(b) the same dataset
was divided into quartiles, with the last bin, containing tracks with the largest error
difference, further divided into two subgroups. As with Figure 6.5(a), a random track
was chosen from each of the five groups. Both figures further support that PPNN
improved performance is due at-least in part to a better capability to reproduce the

particle path in the presence of nuclear interaction, which causes greater changes in
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Figure 6.6: (a) Distributions of the second derivative of the tracks in
the = direction with respect to the z coordinate. Lines indicate the four
quartiles of the distribution of ARMSE < 0. (b) Distribution of the
position along the z axis for the maximum of the second derivative for
cach path. Reproduced from [3].
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the direction of the track.

To further analyse this characteristic, Figure 6.6(a) shows the distribution of the
second derivative of the x component of the tracks, with respect to the z direction,
again for track in which PPNN outperforms MLP, broken down into quartiles by
ARMSE. Large values of this quantity are connected with significant direction
change, such as those observed in Figure 6.5. The four lines correspond to the four
quartiles of the blue histogram in Figure 6.4, as introduced in Figure 6.5(b). Where
PPNN exhibits the better performance, we see that the difference between the tracks
Pz,
922

reconstructed with PPNN and MLP grows with increasing values of 7%: the more

a trajectory differs from pure MCS scattering, the more the PPNN improves over
MLP.

Figure 6.6(b) shows the distribution of max(g%;“) as a function of z, broken down
into the same quartiles by ARMSE as before. The distribution for the last quartile,
corresponding to the largest discrepancies between the two methods, has a notably
different behaviour compared to the other three lines. It exhibits significantly more
events occurring at small and large z values. An example of these events can be seen
in Figure 6.5(b) where we have a strong deflection at z ~ 190 mm. Here we can
see that MLP struggles to reproduce this event while the neural network provides a

superior result.

6.2 Inhomogeneous Phantom

In order to consider the performance on the inhomogeneous phantom, as ex-
plained in Section 5.3, simulations using 230 MeV protons were used, along with
the corresponding models. The RMSE error for both the homogeneous and inho-
mogeneous phantoms, using either PPNN or MLP, is shown in Figure 6.7(a). This
comparison is without cuts and using the QGSP_BIC' physics environment. For
the water phantom both PPNN and MLP behave similarly to the corresponding
200 MeV case. This is an important check that the higher energy implementations
of the two methods are functioning correctly, particularly as this PPNN instance was
trained with the inhomogeneous phantom.

Focusing on the reconstruction error for the inhomogeneous case, we can similarly
observe that with PPNN the error is consistently reduced. Interestingly the error on
the new phantom using PPNN is comparable with that obtained with MLP in the
pure water simulation.

The improvement obtained with PPNN is more pronounced when examining the
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Figure 6.7: (a) Root Mean Squared Error obtained with MLP and PPNN
on a water and an inhomogeneous slab phantom irradiated at 230 MeV.
(b) Percentage reduction in RMSE with respect to depth by PPNN over
MLP. All studies were performed with the QGSP_BIC physics environ-
ment. Reproduced from [3].

percentage reduction of RMSE by PPNN over MLP, as shown in Figure 6.7(b).
A reduction in the error of the order of 25% can be seen around 150 mm, while on
average the improvement is in excess of 10% over MLP across a significant portion of
the depth. Introducing the familiar 30 cuts decreases the error reduction in both the
water and inhomogeneous cases, along with the difference in improvement between
them.

6.3 Execution Time

Using the methodology outlined in Section 5.5, from 10 runs we obtain an an
almost constant execution time of 0.47 4 0.01 sec for PPNN and 7.11 & 0.08 sec for
MLP. Within the validity of this test, the PPNN method is sixteen times faster than
the optimised MLP.
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Chapter 7
Discussion

Although MLP represents a powerful method of estimating proton path in pCT
applications, it suffers from certain limitations. The approach is designed specifically
to account only for effects on the proton path connected with MCS and energy loss.
This is reflected by the strategy of discarding proton trajectories with large deviation
from straight paths to reduce the error. Moreover, simulation in a realistic scenario of
high fluence (hundreds of millions of protons) and small spacing for the MLP (fraction
of millimetre) can require more than one hour; time mostly spent reconstructing the
proton paths 9.

The results presented suggest a machine learning approach such as PPNN has the
potential to relieve these two problems to some degree. Figure 6.1 and Figure 6.3
indicate that by using PPNN a good approximation of the path can be obtained
for a much larger number of protons than using MLP. This is important because in
principle fewer protons are needed to reach the same reconstruction quality, lowering
both the dose and the computation time.

The ability of the network to reconstruct tracks outside the validity of the MLP
approach is intrinsically tied to the nature of deep learning. Neural networks learn
‘blindly’ from examples; parsing though the training dataset, by means of the back-
propagation procedure for the minimisation of the loss function, the network adapts
its weights to the characteristics of the events it experiences, including those that
show large Af and/or Az. While such underlying processes may be challenging to
formulate into mathematical models, there are sufficient patterns for the network to
refine its prediction processes. Without an assumed structure to reproduce, it is not
bound to solely replicating the form of a given physical model. A tentative expla-
nation of what the network learns may be inferred from Figure 6.6 and the analysis

of the second derivative of x with respect to z. The network displays significant
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improvement over MLP where the second derivative is large, especially near the end

of the trajectories.”

Regarding execution speed, it is true that the time spent for reconstruction is
only one of the various aspects for evaluating a pCT system for clinical routine.
Moreover, our work is relevant only in the context of reconstruction methods based
on the evaluation of the proton path. Nevertheless, because these methods are seen
as the most promising for applicability in the clinical context and the MLP execution
speed is by order of magnitudes the slowest part of the algorithm [, the substantial
improvement shown by PPNN compared with the optimised MLP can be regarded

as an important feature.

A notable limitation to our findings is the artificial nature of the situation PPNN
was implemented in. Using a fixed incoming angle to the phantom serves adequately
for a proof of concept that a neural network based approach could handle the prob-
lem, but is not a realistic representation of intended use. For MLP, assuming the
incoming protons angle and position significantly reduces eventual spatial resolu-
tion'?8 so it is likely as impactful for a machine learning equivalent. Though the
axis can simply be relocated to account for the incoming spacial location, reorientat-
ing to account for angle alters the phantom depth, impacting that a fixed z direction
spacing was used. Equally, real scanning targets will be a range of thicknesses, and
measurement of a protons position and direction of travel is not made on the sur-
face. Not accounting for the air gap has been demonstrated to have a non-negligible

s112% In existing literature, several com-

impact on the accuracy of MLP prediction
parable simulations, such as the principal simulations in [120] and [127], therefore
utilise a fan beam placed back from the phantom surface as a particle source. For
our study we decided a simpler model was adequate for examining if, in the first
instance, a neural network model had the potential of achieving comparable results
to the existing MLP formalism; though any future work should likely employ a more

advanced setup.

While in extending the principals here to a more realistic simulation is likely
possible, it does mean our results may therefore not be perfectly reflective of network
designed for and operating in a real situation. Further, given their example based
learning nature, neural networks such as these have inherent limitations stemming
from the limits of the training data sets used. Another potential concern is that
both the training and evaluation Monte Carlo data was produced using the same

simulation, making the process blind to any systematic errors in the simulation.

This aside, PPNN performed admirably with the inhomogeneous phantom. The
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phantom considered is certainly extreme; large volumes of a high-density material
such as those in the slab phantom will rarely be encountered in clinical practice,
and in this sense we do not expect the gain to be so large in a realistic situation.
Nevertheless, it is encouraging that notably better results are obtained with PPNN
with respect to MLP, with a reduction of the RMSE of the order of 20%. This
is a more significant improvement compared to the work presented in [127] with a
similar phantom, where the maximum enhancement is about 5% for simulation with
the same beam energy.

Just the same, this was carried out using a single fixed material composition on
which the model had been trained. A realistic target will not be a set composition
that separate models can be trained against, and is unlikely to be well known anyway;
after all, the proposed primary use of pCT is for mapping relative stopping power.
Somewhat counter-intuitively however, several existing studies with other path es-
timation methods found little or no meaningful impact on resulting RSP accuracy

m [125,127,132] ~ In terms

from including prior knowledge of materials within a phanto
of the MLP formalism, it is posited that while the error will increase, the optimal
predicted path is more or less unchanged by the introduction of slab-like material

[125,149]

inserts along the beam line, excluding in large angle events . Furthermore,

in [133] no further accuracy benefit from including material information was shown

(133]  However in either

over including the simpler exit energy as an input variable
instance it is noted that this may not hold for inhomogeneities with finite lateral

dimension [133:149]

7.1 Related Study

Shortly after publication of our results®, a separate group independently pub-
lished an investigation into machine learning for pCT proton track prediction!!33),
Neither was aware anyone else was pursuing a similar line of investigation.

[133] took a different approach to encoding the problem of proton trajectories, and
operated under a situation conforming closer to that of a real world implementation.
Tracks were parameterised using a separate variable, and models designed to instead
predict the particles location for a given value of said variable, which is given as
an input variable, as opposed to predicting the location at a set of fixed intervals
at the same time. Input variables were given as would be measured by a simulated
proposed pCT detector surrounding the phantom, including realistic detector errors,

with paths predicted between the plates, whether phantom or not. Additionally, as
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mentioned the exit energy was also given. Models were trained and evaluated on
combined datasets of multiple different phantoms, with a range of thicknesses and
including several realistic voxel phantoms of relevant anatomical sections.

Several different machine learning based models were examined. Similar to our
approach, a feed forward neural network considering the problem as separate 2D
planes was used, but with an additional accompanying network designed to estimate
the error in the predictions of the first. Another used a feed forward neural network
instead predicting complete 3D coordinate points, and a model using a XGB gradient
boosted decision tree was also considered.

While the path averaging method used for comparison is conceptually different
from the MLP formalism, it is similarly suitable in this context, and outside of short
path lengths both the 2D approach and boosted decision tree showed superior per-
formance. Further, the accuracy of the error prediction network suggested potential

as a filtering method, perhaps as opposed to the 3o cuts typically used with MLP.
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Chapter 8

Graph Neural Networks

8.1 Graphs

The graphs of pure mathematics have little to do with bar charts and other graph-
ical means to display information. In their simplest form, graphs are a mathematical
structure for representing a number of objects, and encoding the relationships be-

(150.151] * From underground transport maps and flow charts, to chemical

tween them
structures and atomic models, practical examples of graphs are familiar and can be
found in a wide range of contexts. But while graphs are typically portrayed with
diagrams of dots or circles and connecting lines, the choice of how a graph is depicted
visually has no underlying significance. Indeed, graphs are not limited to when a
graph structure is readily apparent. Graphs can characterise any system of objects
in which relational links can be inferred or assumed, such as social networks!*52 or

even bouncing balls in a box 193154,

Relatively speaking, graph theory, the mathematical study of graphs, is a fairly
new discipline, with the bulk of developments occurring since 1890159 Its beginnings
as a formal field of study are usually attributed to Euler’s 1736 analysis of the Seven
Bridges of Konigsberg problem, a local pastime of attempting to devise a route

(156 Indeed puzzles, games

over the cities seven bridges, crossing each only once
and similar problems have often served as motivators in the development of graph

theory %6,

Since the resolution of the four colour conjecture in 1976, graph theory has seen
remarkable growth and increasing interplay with other areas of mathematics, as
reflected in the amount of literature available, and now plays a remarkable role in

applied mathematics and computer science!*?1l.
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8.1.1 Fundamentals of Graph Theory

While the core concepts of graph theory are well established, individual authors
have their own preferences for exact definitions, terminology and notation. Further,
graph theory as a rigorous mathematical discipline and the study of graphs in com-
puting often differ significantly. This here is intended as an introduction to some of
the concepts, not a rigours exploration, in order to be able to describe the concepts
in graph neural networks used. What follows largely draws from the notation and
definitions in [151], [155], [157], and expanding with ideas from [158].

With that in mind, let a graph G be defined as an ordered pair of sets G = (V, E),
where V' is the set of vertices or nodes, and E the set of edges, such that the elements
of E are two-element subsets of V, E C [V]? [155:157]

The number of vertices, NV = |V, is known as the order, and the number of
edges, N¥ = |E|, the size. If we consider v;,v; € V and e; € F such that e, = v;,v;,
then we say that edge ej joins vertices v; and v;. Should there be such an edge,
then we say that vertex v; and v; are incident with edge e, and vice versa, and that
v; and v; are adjacent, or neighbours, to each other. Furthermore, the degree of a

vertex denotes the number of edges incident with it 151157,

To illustrate, let us introduce the following example. Let G be a graph G = (V, E)
such that

V= {01,1)2,?)3,?]4} (811)
E ={ej,eq,e3,64} (8.1.2)

where
€1 = {U17U2}7 €y = {U17U3}7 €3 = {U27U3}7 €4 = {U27U4} . (813>

One possible diagram representation of G is provided in Figure 8.1(a). From the
above definition we can readily see that GG has an order of 4 and a size of 4. If we take
vertex vy, then this vertex is incident with edges e; and ey, and has two neighbours,
vy and vs. If instead we consider edge ey, it joins, and is incident with, vertices vy

and vs.

*Generally, mathematical graph theory texts refer to vertices, while computer science graph
neural network texts refer to nodes. For consistence we will use vertices throughout.
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Figure 8.1: (a) A diagrammatic representation of the example graph G.
(b) A diagrammatic representation of the example subgraph H C G (in
black), with G superimposed (in grey).

8.1.2 Pseudographs

Strictly speaking sets cannot contain multiples of the same element. With our
definition of graphs so far, this precludes multiple edges which join the same pair of
vertices, as a single element {v;, v,;} cannot be repeated 1%, Equally edges may not
join a vertex to itself, as an edge is itself a set of two vertices, and individual vertices
cannot therefore be repeated within an edge['®®,

As they will become relevant later on, we therefore relax our definitions to specif-
ically accommodate edges of these kinds. Formally such graphs are known as pseu-
dographs, though we will continue to refer simply to graphs. Multiple edges joining
the same pair of vertices are called skein, and such edges are said to be parallel to

151,155]

each other, while edges that join a vertex to itself are known as loops! In order

for a pair of edges in a directed graph to be parallel, they must also be orientated in

the same direction %7,

8.1.3 Subgraphs

In the same way a subset is a portion of a larger parent set, a subgraph is in
essence a portion of a larger parent graph. Specifically, a subgraph G' C G is a
graph G’ = (V' E’) who’s vertices and edges are subsets of the vertices and edges
of G; V' CV and E' C E. Furthermore, an induced subgraph is a subgraph that
contains all edges {v;,v;} € E where v;,v; € V'; that is, it contains all edges of G
joining the vertices also present in G’. Conversely a spanning subgraph is a subgraph
that retains all vertices of G, V/ = V, but not necessarily any particular edges!**7.

With our previous example in mind, let us introduce a graph H = (W, F') such
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that

W = {Ul,’(}Q, Ug} (814)
F = {62763} . (815)

As all vertices vy, v5,v3 € V and all edges eg,e3 € E, H is a subgraph H C G,
though it is neither an induced or spanning subgraph. A representation of H is given
in Figure 8.1(b), superimposed with the graph G for convenience; however, there is
no requirement for a diagram of a subgraph to take the same form as its parent. If we
were to modify H to include e; = {v1,v3} € F, then H would contain all edges from
G joining vertices in F', which would make H an induced subgraph of G. Equally if
vy € F, then H would contain all vertices of G, making H a spanning subgraph of

G.

8.1.4 Directed Graphs

Up until this point we have considered what are known as undirected graphs,
in which edges denote a reciprocal relationship between nodes. In a directed graph
however, edges are directional, denoting a one way relationship from an initial vertex
to a terminal vertex. Let D be a directed graph D = (V, E), where V is as before,
but now let the elements of £ be ordered pairs, such that for v,,,v5, € V and e, € E
the edge er, = {v,,,vs, } is a directed edge from an initial, or sender, vertex ry, to

a terminal, or receiver, vertex s 157

7, 151,

. We say that e, joins v, to v, but not s to

A symmetric directed graph is a directed graph in which for every edge, there is
also a corresponding oppositely directed edge, that is V{v,,,vs, } € E, v, , v, } €
E. The directed graph obtained by replacing all edges in a given undirected graph
with pairs of oppositely directed edges is known as the associated directed graph['®!.
Conversely, the undirected graph obtained by replacing all directed edges between a

given two vertices by a undirected single edge is known as the underlying graph*!,

Once again let us introduce an example, reusing the same vertices as G. Let D
be a directed graph D = (V, J) such that

V= {v1, vz, v3, va} (8.1.6)
J = {el, €3, ¢€5, €}, e5} (8.1.7)
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Figure 8.2: A diagrammatic representation of the example directed graph
D.

this time where

e) = {ui, v}, ey ={vi,vs}, €5 ={vs, 02}, e ={va,vs}, e5={vs,va}.
(8.1.8)
An illustration of D is given in Figure 8.2. As it stands, GG is the underlying graph
of D, as it does not matter if there are one or more edges in D with a corresponding
edge in (G, just that there is one joining the same vertices. If we were to introduce
additional elements e, €/, e € J such that ey = {va, v1}, €7 = {vs, v1}, eg = {v9, v3},
then D would then be the associated directed graph of G.

8.1.5 Adjacency Matrix Representations

So far, the approach we have taken for describing graphs has been ill-suited for

151]

use in computing! Graph or network embedding concerns representing graphs

in a low-dimensional vector form, while retaining their important properties such as
structure, enabling regular computing methods!%*,

One particularly common method for expressing graphs is to encode the presence
of edges in a matrix form"®!). Let G be a graph G' = (V, E) as usual. The adjacency
matrix of the graph G is the n x n matrix Ag := (avi,vj), where n = |V, and the
elements a,,,; denote the number edges joining the given pair of vertex v; and v;
(151 " This representation is applicable to both undirected and directed graphs. All
undirected graphs, due to the reciprocal nature of edges, have symmetric adjacency

matrixes, while directed graphs will when they are themselves symmetric.

*In mathematical graph theory, graph embedding refers to a different concept, involving the
representation of a graph on a surface such that no edges will cross except at the vertices, and other
conditions %11,

**For undirected graphs, loops are denoted as 2 edges!*®1l.
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To illustrate, for our example graphs GG, H and D the corresponding adjacency

matrixes Ag, Ay and Ap are given by

U1 Vo U3 V4 U1 Vo V3 V4
U1 (%) (%]

v [0 1 1 0 v [0 1 1 0
U1 0 0 1

vo |1 0 1 1 vu |0 0 0 O
V2 0 0 1

vg | 1 1 0 0 vs | O 1 0 0
(%] 1 1 0

vy \ 0 1 0 0 vy \ 0 1 0 0

Ac Ag Ap

Depending on a graph’s complexity, it can be more compact to instead use a
adjacency list representation. Let a list N(v;) be the list of adjacent vertices of a
vertex v;. Then the adjacency list Lg for the graph G is then the list of all lists
N(v;) for the vertices v; of G,

8.2 Graph Network Blocks

8.2.1 Weighted Graphs and Attributes

Particularly when modelling practical situations, there are many cases where we
might want to characterise the edges of a graph with a value, such as assigning each a
cost or importance. In graph theory, a graph with this kind of information is known
as a weighted graph. For each edge e, of a graph G, let there be an associated value
w(ey), called as its weight; then G, together with the weights w(eg), is a weighted
graph 1!, Theses weightings w(ey) can be considered as a vector indexed by the set
of edges e;,. Weighted graphs are frequently used in applied mathematics, and many
algorithms exist for solving problems described by weighted graphs.

However, it is possible to go further, assigning multiple properties to edges, and
to vertices or even the graph as a whole. Here we are going to do so largely by
drawing on the approach of the Graph Network framework, introduced in [158§],
which takes inspiration from a variety of graph, message passing and non-local neural
network approaches. Though designed with graph neural networks specifically in
mind, it is an intentionally general approach to incorporating attributes and applying

algorithms to graphs['®%],
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First, let us introduce the concept of the vertex attribute v;, which represents
various chosen properties of a vertex v;. Similarly, let e, be the edge attribute for
an edge ey, and let g be the global attribute for a graph as a whole!*58].

Vertex, edge and global attributes are separate from one another, and while these
attributes can be any arbitrary object, they take the same form for all vertices and

all edges!1%8].

For our purposes, and simplicity, from here on we are going to say they
are tensors; where we use tensor to refer to an n-dimensional array, rather than the
rigorously defined mathematical structure in linear algebra. In this way, multiple
weights can be encoded at the same time as the elements of said tensors, allowing
for multiple properties, or features, to be described at once.

Let a graph G be now defined as G = (g, V, E), where g is the global attribute.
Here, V is the set of vertices such that v; = {v;} € V, where v; is the vertex
attribute. Equally, E' is the set of edges such that e, = {eg, v, ,vs,.} € E, where e,
is the edge attribute, and v,,,v,, € V158l

If NP4 and NV4 are the number of features in edge and vertex attributes re-
spectively, then similar to with a traditional weighted graph theses attributes can be
considered, for edges or vertices, as a NF4 x N¥ or NV4 x NV tensor, where N¥
and NV are the number of edges or vertices respectively. Breaking down along the
feature indexed dimension retrieves the values for a certain property, or feature, for
all edges or vertices, in the same manner as a traditional weighted graph’s weighting

vector.

8.2.2 Operations

In order to manipulate these attributes, we shall again draw on and generalise
ideas in [158], and introduce some operations to formalise interaction with the at-
tributes. Let there be three forms of operation; edge, vertex and global operations,
and let each operation consist of mapping a function, ¢¢, ¢” and @9 respectively,
which is applied across all edges, all vertices, or once globally to give a new at-
tribute,

ey = ¢° (e, vy, Vs, 8) (8.2.1)
Vli = (bv (éza Vi, g) (822)
g, =¢(@vg) . (8.2.3)

The attributes €;, € and v are the result of aggregate functions, p, that reduce

any number of attributes from incident edges or vertices into a single representative
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attribute,

éi == pe—>v(Ei) (824)
&= p9(E) (8.2.5)
v = p'u(V) (8.2.6)

where E; C F is the subset of all e, = {ex,ry, sk} € FE such that r, = v;.
These new attributes need not be the same size as the original, and while formally
each attribute is replaced, the updated attribute may simply extend to the original,
retaining all previous elements and adding new ones. On a practical level, the func-
tions ¢° and ¢" can be implemented as being applied to the respective n x m tensor

representation of attributes.

8.2.3 Graph Network Blocks

Combining the edge, vertex and global operation, a Graph Network Block['%8],
or GN Block, represents a full update pass of all attributes, using the operations
just introduced. As a flexible framework, a wide range of graph algorithms can be
characterised using a sequence of GN Blocks, giving a common approach to describe
how disparate algorithms operate. Following from what has been introduced, a GN
Block can be summarised as a series six computation steps®®, though it need not

have all stages;

1. e, = ¢° (ex, vy, Vs, , 8) is performed per edge, replacing each edge attribute ey

by e;..

2. €; = p7Y(E!) is performed per vertex, aggregating incident edge attributes,

to generate a representative attribute €; for each vertex.

3. vl = ¢" (€, v;,g) is performed per vertex, replacing each vertex attribute v;

by V.

4. @ = p79(E') is performed for the graph as a whole, aggregating all edge

attributes into a single representative attribute € for the graph as a whole.

5. ¥ = pv7"(V’) is performed for the graph as a whole, aggregating all vertex

attributes into a single representative attribute v’ for the graph as a whole.
6. g = ¢9(€',v/,g) is carried out, replacing the global attribute g by g}
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In practice, steps 2. and 3. can readily be combined per vertex, performing the
edge aggregation then applying the update function for a vertex before progressing

to the next.

8.2.4 The Message Passing Paradigm

Introduced in [160], the Message Passing Neural Network generalised and for-
malised concepts implicit in many GNNU16 and is one of the principal inspirations
for the GN Block framework!™®!. Since then, the message passing paradigm has

1591611 " and part of what makes

emerged as an underlying concept in GNN design |
them effective; indeed, it has been suggested that the principal is inherent in all
modern GNN designs in some manner'®. While envisioned with neural networks
in mind, just as with the GN Block framework, the principal is readily generalisable
to graph algorithms in general.

The rough concept is that 'messages’ are formed for each edge, incorporating at-
tributes from edges themselves and joined vertices. These messages are then passed
to the joined vertices (to the terminal vertex in directed graphs), and vertex at-
tributes updated incorporating these messages; thus attributes are influenced by
their neighbours. Through repeated application of the algorithm, information effec-
tively flows around the graph, allowing unconnected parts of a graph to be influenced
by those distant. The graph’s structure governs how information flows, thus incor-
porating its structure without having to be explicitly encoded into an algorithm.

Referring back to the GN Block framework as given in Section 8.2.3, the first

three steps of the framework can be considered as a direct representation of this;

1. The message function ¢ form a message for each edge, effectively storing them

as attributes on said edges.

2. The reduce function p~" takes in and combines the incoming messages for

each vertex, compiling them into a single aggregate message.

3. The update function ¢" uses this aggregate message to update the attributes

on each vertex.

Many iterative algorithms fitting the GN Block framework can be considered as

using a form of the message passing paradigm, and we will continue to refer to ¢°,

p

7Y and ¢" as the message, reduce and update functions.
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8.3 Graph Neural Networks

Graph neural networks, or GNN, are a form of deep learning model in the field of
geometric deep learning!'%? | designed to operate on a graph in an end-to-end manner
as opposed to translating a task into a non-graph form for operation!'®”!. Whether
the later form of models are considered as GNN or not varies. The use of neural
networks with graphs first occurred over two decades ago in [163], with the concept
of what we would now refer to as a graph neural network later floated in [164];
and the first true GNN model is often attributed to [165], which extended existing

[150,159,166] * Gince then GNN have grown in

neural network models for use with graphs
popularity, and have been successfully applied to various graph analytics tasks, such
as vertex (edge, or whole graph) classification, link prediction, and clustering*69).
In many ways, GNN can be viewed as a further generalisation of convolutional
neural network principals. Whereas CNN operate on regular euclidean data struc-
tures, archetypally images or text, graphs present a more broad structure, and early
motivations came from seeking to expand the same underlying principals and op-

(150,166] ~ Tndeed, a digital image, and

erations that make CNN successful to graphs
other grid-like structures, can be considered as a specific form of graph; each pixel
is a vertex, with edges connecting each to its immediate neighbours in the image
matrix %0,

Referring back to the GN Block framework, it is straightforward to see how the
ideas introduced in Section 8.2 apply to GNN, by introducing neural networks, such

as the feed forward neural network, in the role of the message or update functions.

8.3.1 Forms of GNN

Despite the relatively young age of GNN within the study of neural networks, a
myriad of models have already emerged. Among them several rough design princi-
pals can be identified, though with the interrelated nature of models, many different
taxonomies and approaches to categorisation can be taken!'%!. More thorough sur-
veys of current graph neural networks methods can be found in reviews such as [166]
and [159], or textbooks such as [150].

The model introduced in [165], simply named to as the graph neural network
model, is often taken as the ‘vanilla’ GNNI A feed forward neural network is
used as a function to learn to generate a representative state embedding for each
vertex, that describes the neighbourhood of that vertex. Exploiting Banach’s fixed

point theorem, this function is performed repeatedly in order to converge to a final
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result. These state embeddings are subsequently used by a separate function to

x[150:165.166] - However this model experiences

generate an output label for each verte
several drawbacks. Iterative application to reach a fixed point is a computationally
inefficient approach!™? and the straight repeated application of a FNN in this way
is essentially the same as a FNN with more layers. In effect, the FNN is concatenated
with copies of itself, but without some of the advantages separate neuron weightings
would bring. Additionally, not all information encapsulated by an edge can be
modelled effectively, and thus is effectively lost, and issues can emerge if the number

of iterations is too large!*50-166],

Building on the same iterative approach to converge on a stable representa-

159] - Graph Recurrent Networks, or GRN, work to overcome these limitations

tion!
and improve long-term information propagation by looking to recurrent neural net-
works and LSTM models ™. Designed for tasks which require outputting sequences
of results, the Gated Graph Neural Network and Gated Graph Sequence Neural Net-
work "7 introduce Gate Recurrent Units into the iterative part['®?, and the later has
been successfully applied to text understanding and program verification tasks!*5%,
LSTM architectures have been implemented in a similar manner, with [168] and
[169] extending Tree-LSTM architectures17 (LSTM with a tree-like network topol-

150]

ogy, as opposed to the usual chain-like topology) to graphs! Regardless of form,

the repetitive iteration within the models can be seen as a form of message passing,

propagating information between vertices %9,

Inspired by GRN 9 Graph Convolutional Networks, or GCN, generalise convo-
lution operations, the heart of convolutional neural networks, to the graph domain.
Given the success of CNN at a wide number of tasks, GCN are a popular approach

%0 GCN models are often grouped into two forms

with a vast number of variation
based on what the convolution operation kernels operate on. Spectral methods, such
as the Spectral Network!"™! and the archetypally named GCN modell'™ operate
on the spectral representation of graphs, with convolutions applied to the eigende-
composition of the graph Laplacian. However, as the learned filters then depend
on the Laplacian eigenbasis, trained model instances are specific to a certain graph

[118,166] - Alternatively, spacial methods such as Neural FPS['73) and Graph-

structure
SAGEI™ define convolutions directly for the graph itself, applying to a vertex and
its neighbours. While conceptually more straightforward, spacial methods must
contend with defining convolutions that can handle different numbers of neighbours
while preserving local invariance'®%1661  In a similar manner to GRN, spacial GCN

incorporate the concept of message passing, with the convolution operation acting
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to share messages between vertices!'9,

While a regular GCN kernel treats all neighbouring vertices equally, Graph At-
tention Networks, or GAN, such as GAT[™! or GAANI7 further incorporate an
attention mechanism, allowing the designating of different importances to each neigh-
bour!150,

Given the often sparse, irregular and relational nature of data collected at acceler-
ator experiments, graphs offer a potent tool with which such data can be represented.
It is therefore little wonder that with the dearth of methods available, there have
been recent efforts to explore the potential of GNN for a variety of roles in experi-
mental high energy physics, such as for clustering, particle identification, calibration

[162]

and simulation A comprehensive technical review of studies into GNN at the

LHC can be found in [162].

8.3.2 The Interaction Network

Designed for reasoning how complex systems interact and their dynamic evolve,
the Interaction Network, or IN, introduced in [153] has shown great success at prob-
lems such as bouncing balls in a box, N-body problems, and the motion of strings %3,

Consider some dynamic system of objects at a time step ¢. Let this system be
described by a graph G; = (g, V, E), where the vertices V' correspond to the set of
objects, and edges E the relations between objects. The influence of one object on
another is not necessarily symmetric, so G is a directed graph, and both objects and
their relations are naturally described using various values, which will be encoded
as attributes. The set of vertices v; = {v;} € V therefore represents the state of
each object, and the edges e, = {e, 7k, Sk} € F the influence exerted by object 7y
on object s, or relation. Any external effects on the system as a whole are included
as g. Let the IN propagate the system of objects to a time step t + 1, so that
Gii1 = IN(Gy).

A basic IN unit is then defined as %%

N(Gy) =0 (a(V.g,v" (m(Gy)))) (8.3.1)
m (G;) = B = {by} a(V,g, H)=C = {c}
[ (o) = Iy f9(ci) = pi
Ve (B) = H = {hs} Y (C) =P ={p}

where k£ indexes the edges, and ¢ the vertices. The IN process can be described
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as follows [1%3;

e The marshalling function m forms interactions terms, by, that combine into
one place the information on an interaction between objects, therefore the

attributes of each edge, sender and receiver vertex; by = {€x, v, , Vs, } € B.

e The relation model ¥% predicts the effect of each interaction, hj, € H, through
applying the function f€ to each by.

e The aggregation function a collects up these interaction effects hy € H corre-
sponding to a given receiver vertex v,,, and combines them along with v,, € v
and g to form a single ¢,, € C' for that vertex, a representation of the combined

interaction effects.

e The object model " predicts how the combined interaction effects influences
each vertex v;, by applying the function f* to all ¢;, producing a result p; € P

for each vertex.

For a dynamic system, the result P may represent the new state of the system,
Git+1, with v; ;11 = p; the new states of the objects within the system. The dynamic
system represented by G is therefore evolved in time through iterative application
of IN (G); with each application acting as a message passing. However the IN is
more general in application. For example, the model may be expanded with a final
aggregation function, and after a single, or perhaps several iterations, said function
takes results P, along with g, in order to produce a result characterising the graph

as a whole !53],

In the context of a machine learning model, functions f¢ and f* take the form

(53] The same f¥ and fV are applied to every by

of feed forward neural networks
and c¢; respectively, allowing the model to apply to graphs with arbitrary numbers of
vertices and edges, and irrespective of the order in which functions are performed. To
allow for this, the aggregation function a needs to be commutative and associative,

and in the example implementation in [153] summation of Ay is used.

The IN served as a forerunner and inspiration to the GN Block framework, which

in many ways can be seen to generalise the IN. Translating into the format of the
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framework [158]

9256 (ekv Vs Vs g) = fe (bk) = fe (ek7 Vs Vsk) (832)
¢’ (@i, vi,8) = " (c;) = [ (€) (8.3.3)
pE) =a(vig, H) ={ ) | (he)} = {€;} (8.3.4)

where H; C H is all hy € H such that r, = v;. As whole graph attributes g
are not updated, this corresponds to performing stages 1 through 3 of the GN Block

framework.

8.3.3 The HEP.TrkX and Exa.TrkX Tracking Model

Exploring a variety of tracking challenges, the pilot HEP.TrkX project '™ pro-

posed the use of GNN for tracking!'™, with its ongoing successor the Exa.TrkX

t 17 successfully applying particle tracking for ATLAS and CMS style barrel

o [180]

projec
detector In a novel approach, the model took inspiration from the Interaction
Network introduced in [153]. Though the Interaction Network was designed with
a rather different task in mind, the architecture proved remarkably successful for
tracking'8%181); and similar models have since seen success in track finding in the

183]

whole ATLAS detector '8 particle flow reconstruction!'®?, and object reconstruc-

tion in liquid argon time projection chambers!®4. Models of this style have been
(185 and GNN methods are now under consideration for
future ATLAS detector triggering during HL-LHC [186],

The Exa.TrkX model * has since been generalised as a versatile, fully-learned

evaluated for use on FPGAs

pipeline that can be extended for a variety of tracking problems[6218L187] - Refering
to [181] and [180], the model can be summarised as several stages.

First, data is preprocessed into a suitable format, with each hit within the detec-
tor a data-point. The data prepared includes spatial coordinates, pixel cluster shape
information and others depending on use case.

As the pipeline is designed to be detector agnostic, the graph representation is
not constructed based on a specific detector layout. Instead, in the second stage the
Embedding Network, a Multi-Layer Perceptron, takes each data-point and produces
a latent space representation. This consists of 6 layers of 512 neurons, with hyperbolic

tan activation functions and normalisation. A final layer returns an 8 laten feature

*[181] refers to the model as the TrackML pipeline. However as this is also the name of a
specific dataset used across various papers, we will refer to it as the Exa.TrkX model.
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representation. From this a graph is formed, each data-point becoming a vertex, and
vertices joined to others within a given radius in the latent space representation.

In the third stage another perceptron, the Filter Network, is applied to each edge,
taking the two vertices as inputs and returning an edge efficiency score. This consists
of 3 layers of 1024 neurons, with a final binary cross-entropy loss function. Applying
a cut based on this score greatly reduces the number of edges, saving significantly
on computational costs in subsequent stages.

The fourth stage is the graph neural network, using the Interaction Network
architecture. 8 iterations are performed following the process as outlined above in
Section 8.3.2. Aggregation is performed using summation, and the vertex and edge
functions consist of 2 layer perceptrons, of 128 and 64 neurons, with ReLLU activation
functions. The network also features a form of skip connection, in which after each
iteration the output is combined with the values from the previous iteration to form
the set of input values for the next. The last layer of the network returns a binary
classification score for each edge, scoring the likelihood it corresponds to a segment
of a track.

The final stage of the pipeline consists of task-specific processing, based on the
desired use and output of the specific model. Notably as performed in [180], for track
seeding, after a single edge network perceptron is applied to produce characteristic
scores for each edge, the graph may be converted to a triplet graph, where vertices
correspond to high score edges in the original graph, connected by an edge if they
share a hit. A separate similar GNN applied to this new graph can produce results

with a high fraction of tracks matching particles8.
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Chapter 9

CERN and the Standard Model

9.1 The Case for High Energy Particle Physics

9.1.1 The Standard Model

The Standard Model of particle physics is the theoretical model describing all
known elementary particles, and their interactions through three of the four known

188]

fundamental forces! A product of decades of research and thousands of scientists,

it represents our best current understanding of matter 189,

At its heart, the standard model is a compilation of the laws of physics that
describe the behaviour of subatomic particles. As a quantum field theory, incorpo-
rating the principals of both quantum and relativistic mechanics, physical systems
are represented by quantum fields, and particles as the quantised excitations of these
fields['9%191 " Elementary particles and their interactions emerge as inherent features
of the system itself; deriving, through Noether’s theorem, from imposing invariance
under local phase transformation 191192,

The resulting fundamental particles can be differentiated into two families, fermions
and bosons. Elementary fermions act as the building blocks of matter, with all sta-
ble matter in the universe made from the lightest and most stable among them %,
With half integer spin, they are subject to the exclusion principal, precluding any two

191 Fermions are further divided

o [189]

identical fermions from occupying the same state!
into two types, each of which is composed of six varieties, in three sets of pair
Quarks interact with the strong force, which binds them together to form composite
particles such as protons and neutrons. The binding effect is strong enough that, so
far, isolated quarks have never been observed; either hadronizing or decaying on a

193]

minuscule timescale Leptons on the other hand do not interact with the strong

76



force, and consist of the electron, muon, tau, and a corresponding neutrino flavour
for each!'®. While the first three have an electric charge and increasing mass, their
partner neutrinos are electrically neutral and with negligible or no mass, making
them difficult to detect 193],

In contrast, elementary bosons are the mediators of interactions. Within the
standard model, the fundamental forces manifest through the exchange of gauge
bosons between matter particles, with each fundamental force possessing its own

corresponding bosons’ [189:190]

With no electric charge of their own, the carriers of
the electromagnetic force, photons, do not interact with one another but consequently
exist as free particles. The W and Z particles, carriers of the weak force, poses their
own charge equivalents, while gluons, carrier of the strong force, not only poses their
own colour charge, but are predicted to form bound states of several gluons joining
together; though this has yet to be detected experimentally . The Brout-Englert-
Higgs Field, and the corresponding Higgs boson, operate in a different manner,

instead imparting mass to those particles with which they interact 190194,

While the full Standard Model Lagrangian representation stretches into many

pages, it can be summarised in a compact form as

1 v
C - _ZFMVFH
+ i Py + h.c.
+ @/;iyz‘j%ﬁé +h.c.
+ Dol

—V(9) (9.1.1)

where h.c. denotes the hermitian conjugate of the preceding term, and 1 the quan-
tum fields!'%). Through the field strength tensor F, the first line describes how the
gauge bosons, aside from the Higgs, manifest and interact with one another. The
second line describes, through the covariant derivative /9, how the same gauge bosons
instead interact with matter particles. The third line describes how the fermions in-
teract with the Brout-Englert-Higgs field, ¢, with the coupling parameters encoded
in the Yukawa matrix, y;;. Of the gauge bosons, only the weak force carriers inter-
act with the Brout-Englert-Higgs field, as described by the fourth line. Finally, the
fifth line describes the potential of the Brout-Englert-Higgs field, which unlike the
other quantum fields does not have a single minimum at zero, leading to spontaneous

symmetry-breaking 19,
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The standard model gives rise to the the gauge symmetry group
SU(3) x SU(2) x U(1) (9.1.2)

where SU(n) and U(n) refer to the special unitary and unitary groups of degree
n93l The SU(3) symmetry corresponds to Quantum Chromodynamics, the com-
ponent of the standard model concerned with the strong interaction between gluons
and quarks%. The SU(2) x U(1) symmetry governs interactions of the weak and

[193]

electromagnetic forces, unified into the electroweak model"”?). As mentioned, the

Brout-Englert-Higgs field breaks this symmetry, leading to some particles possessing

mass, and others not 9%,

9.1.2 Unanswered questions

While the Standard Model has proved resilient under decades of scrutiny, it
presents an incomplete picture!190:191,

Though the standard model encompasses quantum theory with special relativity,
combining quantum theory with the full theory of general relativity is notoriously dif-
ficult, and we have yet to successfully do so in the context of the standard model ',
Thus, while it describes three of the four known fundamental forces, inclusion of grav-
ity remains illusive'¥199 Equally there are various specific properties the theory
does not predict, such as the entries of the Yukawa matrix'° and while the Brout-
Englert-Higgs Mechanism explains the masses of some particles, there are still open
questions such as why neutrinos appear to have mass!'9).

On a grander scale, though there is a limited asymmetry between matter and
antimatter within the standard model, it does not go far enough to account for the
apparent preponderance of matter in the universe, or line up with our current under-
standing of the Big Bang!®%'91. Nor does it describe dark matter and dark energy,
or the alternative modified gravity, implied by the motion of the cosmos [191:195:196]
Thus, while the standard model represents our best understanding of the funda-
mentals of matter, it does so as part of a bigger picture; one that is still being

explored [189:190,191]

9.1.3 The Role of Particle Accelerators and Detectors

The study of fundamental subatomic particles is thus about more than just the

manifestation of particles themselves, but offers a means to probe the underlying
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physics with which they are inherently intertwined.

As staples of ordinary matter, electrons and protons can be readily found. More
exotic particles on the other hand pose more of a challenge. One source of such parti-
cles is from cosmic rays; as high energy particles bombard the atmosphere, they can
produce showers of secondary particles such as muons and neutrinos. Alternatively,
as radioactive nuclei decay they may emit various particles, making nuclear reactor
emissions another potential source of material for study 191,

However these methods offer limited control over the range of particles produced.
Through conservation of energy and the mass-energy equivalence of relativity, heavier
particles can be produced through high energy collisions; the intense moment of high
energy providing the possibility for such particles to come into being. Going even
further, desired particles such as positrons, muons or neutrinos can be siphoned off
to produce secondary beams for further experimentation. Offering a means to not
only generate collisions, but fine tune energies and other conditions to maximise
the likelihood of desired outcomes, particle accelerators have become a mainstay of
modern particle physics research 40191,

Controlling where collisions take place allows advanced particle detectors to be
located right by the action, making measurements immediately after an event. Even
then, exotic particles often rapidly decay or may be involved in other interactions;
and it is up to scientists to deduce what unfolded. Through study of scattering, de-
cays and bound states, we can measure properties and place boundaries on standard

model physics, and hunt for signs of what lies beyond 19,

9.2 CERN and the Large Hadron Collider

9.2.1 The CERN Accelerator Complex

Born out of a desire for closer collaboration and the increasing costs of cutting
edge research facilities, 1953 saw the formal foundation of the Conseil Européen
pour la Recherche Nucléaire, or as its more commonly known in English, CERN 197,
In the 70 years since, CERN has grown into a truly international collaboration of
scientists, now encompassing over 12,000 users and 600 institutions from all over
the globe'9%19]  Ag our understanding of fundamental matter pushed deeper than
the nucleus, so too did CERN follow into the emerging domain of particle physics;
with its principal complex now frequently referred to as the European Laboratory

for Particle Physics!209,
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The CERN accelerator complex
Complexe des accélérateurs du CERN
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Figure 9.1: Diagrammatic representation of the CERN accelerator com-
plex as of 2022. Reproduction of [201]

Since CERN'’s first particle accelerator opened its doors in 195722 the CERN

accelerator complex has evolved into a record breaking installation hosting a wide

[203]

range of experiments!'’?. Not just a collection of disparate apparatus, as can be seen

in Figure 9.1, multiple accelerators build upon one another in succession, incorporat-

[204]

ing a multitude of experiment end points Indeed, most CERN accelerators are

202

still in use?%?, with previously cutting edge installations serving as pre-accelerators

or similar for subsequent generations 293209,

9.2.2 The Large Hadron Collider

Straddling the France-Swiss border, the Large Hadron Collider, or LHC, stands
as the most powerful particle accelerator ever built, and will remain so for at least the
next two decades!'. Replacing the LEP Collider as CERN’s flagship accelerator,
the LHC is capable of record breaking nominal collision energies of 13 TeV12%! has
already seen the publication of a staggering 2852 papers in its first decade of oper-

ation!?*l. Though principally a proton-proton experiment, heavy ions, particularly
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Figure 9.2: Long term schedule for operation of the LHC from 2021, as
of September 2024. Reproduction of [207].
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lead ions, are also routinely collided for atomic research 29,

Data taking operations are divided into a series of runs separated by long shut-
down periods for maintenance and upgrade programs. Runs themselves are punctu-
ated with short yearly winter technical stops, and all shutdowns are succeeded by
commissioning periods. The first formal data taking period began with Run 1 in
2011, and stretched into 2013; while Run 2 lasted from 2015 to 2018. Originally
scheduled to begin in 2021, Run 3 was postponed to 2022 to account for the chal-
lenges brought by the COVD-19 pandemic, and is currently ongoing. A summary of
the future LHC operating schedule can be found in 9.2207.

Since 2020, Linear Accelerator 4 has taken on the role of producing initial proton
beams for the CERN accelerator complex [*42%3 Negative hydrogen ions are acceler-
ated to 160 MeV and injected into the Proton Synchrotron Booster, stripping them
of electrons to leave only protons. Here particles are accelerated to 2 GeV, before
transfer to the Proton Synchrotron, further accelerating beams up to 450 GeV 203,

Finally, protons are injected into the LHC itself. At almost 27 km in circumfer-
ence, the Large Hadron Collider is a two-ring synchrotron located between 45 m and
170 m underground, utilising the tunnel complex originally constructed for the LEP
Collider . Though often thought of as circular, the collider consists of eight arcs,
broken up by eight approximately 528 m long, evenly spaced straight sections. These
straight sections, numerated Points 1 through 8, serve as the sites of detector appa-
ratus or other utility purposes®?. Within the two beam pipes, protons are circulated
in opposite directions in a series of discrete bunches, and can be maintained circling

203)

for many hours?®!. Protons are kept in their circular path by the magnetic lattice, a

collection of thousands of magnets of different varieties and sizes®2%8! including the

81



[39,205]

1232 superconducting main dipole magnets Acceleration is performed using

a 400 MHz superconducting radio-frequency cavity system, featuring 8 cavities for

cach beam [39-205]

9.2.3 Beam Conditions

Using insertion magnets to squeeze them together, the two beams are brought
into collision in four places around the collider’s circumference, each host to one of

the principal detector experiments #9231,

Typically in the context of the LHC, an
event denotes a single crossing of proton bunches®”). However for this section an
event is used in the more general sense of a particular collision interaction.

The rate at which an accelerator produces collisions is typically characterised by
the instantaneous luminosity, £. For a Gaussian beam distribution, such as those at

the LHC, and assuming equal size particle bunches, this can be found by

L= Nl?nbfrev’y

yryr (9.2.1)

where N, is the number of particles per bunch, n, the number of bunches per beam,
and fie, the frequency of revolutions made by the beam. 7 is the Lorentz factor, ¢,
the normalized transverse beam emittance, and 8* the beta function at the collision
point, which relates to the bunch dimensions®?2%!. In many detectors, including
those at the LHC, beams are not collided straight on, but rather with a small offset

angle. This is accounted for by the inclusion of a reduction factor, F', which for small

F= ((925)2) (9.2.2)

where 6. is the crossing angle, and o, and ¢* the root-mean-square bunch length
[39,209]

angles can be given as

[NIES

and transverse beam size at the interaction point . Given the cross section for

a particular interaction, devent, We can recover the number of events per second by

»Co'event [39,209]

. With around 2800 bunches per beam and 1.2 x 10" initial protons
per bunch, during the 2015 to 2018 window the LHC was producing in the order of
a billion collisions per second?®? and achieved a peak instantaneous luminosity of
L =2x10% cm 2119,

In practice, over the lifetime of a particular particle batch, or fill, the luminosity
will decay, particularly as collisions naturally reduce the number of particles in the

[39]

beams Therefore we often instead consider the total quantity of collisions, rather

82



than focusing on the rate at which they occur. This can be characterised using the

integrated luminosity, where over some period T',

T
,cmt:/ Lt dt". (9.2.3)
0

Similar to with instantaneous luminosity, given the cross section for a particular
event the total number of such events is given by LinGevent 2*”, and between 2015
and 2018, the LHC produced an integrated luminosity of 160 fb™' at its two high

luminosity detector experiments!20%:210],

9.2.4 Detector Experiments

Though the LHC is best known for the confirmation of the Higgs?'1:212:213] that
was only one part of a far wider physics program[?42 ~ As a whole, the CERN
accelerator complex serves a diverse range of experiment installations, with the LHC
itself playing host to 9 distinct experiments?*¥, each designed and operated by its
own international collaboration.

Of these, the 4 large experiments sit right at each of the 4 interaction points
on the LHC’s circumference where particle collisions occur 203,
pose detector, ATLAS, or A Toroidal LHC Apparatus, studies a broad range of

phenomena, including the Higgs, extra dimensions, and potential dark matter can-

As a general pur-

didates. The largest particle detector ever constructed, ATLAS thus aims to make a
wide range of measurements with as much coverage around the interaction point as

possible[215:216]

Sharing broadly the same scientific goals, CMS, the Compact Muon
Solenoid, is in many ways a sister detector to ATLAS. However it approaches its aims
independently, with its own separate design and technical solutions. This enables the
cross-confirmation of any new discoveries and potential combining of results, such as
in the first observations of the Higgg!204211,216,217]

LHCb on the other hand is a specialist detector, with an initial focus on the
behaviour of heavy-flavour quark particles in order to probe charge-parity violation.
Providing high precision measurements of low deflection particles, LHCb has broad-
ened into a general purpose forward acceptance detector®%218 ALICE, A Large Ion
Collider Experiment, places its focus on the LHC’s alternative ion collision program.
Focusing on the physics of the strong interaction, ALICE explores the behaviour of
quark-gluon plasma; a state of matter believed to have existed shortly after the Big
Bang, and only possible at extreme values of energy density and temperature. 219220,

In addition, 5 smaller experiments utilise LHC collisions in different ways. Both
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TOTEM and LHCf examine those particles thrown forward by collisions, with very

204 Spread at almost half a kilometre around

low deflection from the beam line!
CMS, TOTEM makes precise measurements of such particles in order to investigate
elastic scattering and diffractive processes, offering insight into proton behaviour
and structure??1222 Exploiting similarities to extremely high-energy cosmic-rays,
LHCf sits either side of ATLAS, providing measurements to refine hadron interaction
models 223,

Dedicated to hunt for messengers of new physics potentially missed by the more
general detectors, MoEDAL, now expanded to the MoEDAL-MAPP, searches for
highly ionizing particles, including feebly ionizing and long lived particles??4. With
data taking beginning in 2022, FASER and SNDQLHC are the LHC’s two newest
experiments?®!. The ForwArd Search ExpeRiment, or FASER, searches for light
and very weakly-interacting new particles??). Sensitive to the full spectrum of
neutrinos, SNDQLHC, or the Scattering and Neutrino Detector at the LHC, makes

precision measurements of neutrinos, probing heavy flavour physics?2.

9.2.5 The High-Luminosity LHC

One avenue for improving the accuracy of measurements is to reduce statistical
errors through increasing quantities of data. The LHC has already seen substantial
upgrades, pushing nominal collision energies from ~ 7 TeV, later ~8 TeV, in Run
1 to 13 TeV in Run 2%); but while the current LHC has already reached twice
its nominal design instantaneous luminosity, particles such as the Higgs are a rare
occurrence 202,

Therefore in the coming years the LHC will undergo a far reaching upgrade and
replacement program to extend its working lifetime at the cutting edge of physics.
Dubbed the High-Luminosity LHC, or HL-LHC, this revitalised accelerator aims
to reach a fivefold increase in the instantaneous luminosity over the nominal LHC
design value, allowing scientists to push the boundaries of physics for many more
years to come™. Not only does this pose a huge technical challenge in itself, but
experiment detectors will also see their own significant upgrade programs in order

to contend with the increased radiation damage and pileup 199202227,
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Chapter 10

The LHCb Experiment

10.1 Physics at LHCb

With a core program of charge-parity violation and rare beauty and charm hadron
decays, LHCD is the Large Hadron Collider’s dedicated flavour experiment. Focus-
ing on high precision measurement, the detector’s single-arm spectrometer design
exploits the prevalence of beauty and charm hadron decays (from which the ‘b’ in
its name derives) in the forward region. Upgrades have seen LHCb broaden its ca-
pabilities as a general purpose forward acceptance detector, with interests ranging
from electroweak physics to heavy ion collisions [>6:23.

As a necessary condition for baryon asymmetry, understanding the origins and
mechanisms of charge-parity violation is a key question in particle physics. In the
standard model, all such violation is described by the CKM mechanism, but this
alone is insufficient to explain the observed baryon asymmetry in the universe. Decay
processes such as B* — DK* B — DK*® and B? — DFK* that are described
by tree amplitudes alone provide a means to refine the angle v of the CKM unitary
triangle, and make precise tests of standard model quark mixing predictions/©.

New particles beyond the standard model may potentially enter loop-mediated
processes such as flavour changing neutral current processes, or FCNC. FCNC tran-
sitions from b to s or d, such as B? mixing and loop mediated hadronic B decays,
offer a window to search for new physics sources of charge-parity violation. Equally,
rare FCNC processes involving electroweak box and penguin type diagrams, such as
BY — puTu~, and other exotic decays are highly suppressed in the standard model,
making them sensitive to new physics. In the charm sector, D meson decays offer a
means to investigate flavour changing neutral current processes involving u quarks.

Potentially sensitive to different forms of new physics, precise measurements of de-
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cays and particle-antiparticle mixing provides complementary constraints on new
physics models!©.

Looking beyond flavour physics, LHCb is able to probe the mechanism of heavy
quarkonium production and study the spectroscopy of bound states formed by heavy
quark-antiquark pairs. With its unique forward coverage (compared to ATLAS and
CMS) LHCb can examine electroweak boson production in a different regime, con-
tributing to refining the mass of the W-boson and the sine of the effective electroweak
mixing angle for leptons. Various models of new physics feature massive, long lived
particles capable of macroscopic distances of flight, resulting in displaced vertices

from the interaction point; something LHCb is well equipped to search for!®l.

In addition, an internal gas target, originally conceived for novel beam-imaging,
enables the detector to operate as a fixed-target experiment; and, with its notable
capabilities in the forward region, make a range of unique physics measurements.
Opening up the means to explore fixed-target physics with LHC beams, LHCb has a
unique opportunity to study the production of particles carrying a large momentum
fraction of a target nucleon, make novel probes of nucleon and nuclear structures,

and take various measurements of interest to cosmic-ray physics!?3228l.

10.2 Detector Design

With its distinctive conical silhouette, LHCb stands apart from the barrel-shaped
designs of other large detector experiments around the LHC ring. Given that b- and
b-hadrons, particles of wide interest to flavour physics, are predominantly produced
at small angular deflections from the beam line®®, LHCb has a nominal pseudora-
pidity range of 2 < n < 53 covering approximately ~ 15 mrad to ~ 300 mrad in
the horizontal bending plane and ~ 250 mrad in the vertical non-bending plane .
This focus on measurements in a limited region allows for greater precision than that
practically achievable when seeking to cover the whole angular range. An illustration
of the current LHCb detector can be found in Figure 10.123.

The various component subdetectors can be roughly divided into the particle
tracking system, which charts the passage of particles through the detector, and
particle identification systems, whose measurements determine the identity and cur-
rent properties of a particle. These components do not produce readily prepared
measurements, and so it falls to the data acquisition systems to process, interpret

and record the signals as they come.
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Figure 10.1: Side on representation of the current LHCb detector, af-
ter completion of the Phase-I upgrade. The interaction point is located
within the vertex locator, or VELO, on the left hand side. Reproduced
from [23].

10.2.1 Tracking System, Magnet, and Internal Gas Target

As in many experimental detectors, particles are subjected to a magnetic field,
the resulting curved tracks providing a means from which to determine their mo-
menta. To cover all particles produced, the other three large detector experiments
at the LHC apply a magnetic field orientated parallel to the beam line, over a wide
region encompassing the interaction point, one naturally occupied by various sensi-
tive elements, through the use of solenoid magnets. In contrast, LHCb’s forward arm
spectrometer design and focused angular acceptance allows for the magnetic field to
be applied to a region downstream of the interaction point, while still encompass-
ing those particles within the detector’s nominal acceptance. Consequently sensors,
such as tracking systems close to the interaction point, can be located outside the
magnetic field. This is performed using a dipole magnet of two saddle-shaped coils,
mounted above and bellow the beam line, capable of generating a vertical magnetic
field of approximately 4 Tm; resulting in curvature in the horizontal, accordingly
referred to as the bending, plane. During regular data-taking runs, magnet polarity
is periodically reversed, so that data is collected evenly for opposite field configura-
tions[>23:36],

As it makes its way through the detector, a particle’s passage is recorded at several
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places along its route. The overall tracking system is composed of three installations;
the VELO, UT and SciFi trackers. Surrounding the interaction region itself, the
vertex locator, or VELO, provides high precision positional measurements in the
first moments following a collision, through sequential layers of silicon pixel sensors
arranged along the beam line; and is thus ideally placed for locating vertices[??.
Details on the VELO can be found in Chapter 11.

Originally conceived as a means to perform collision luminosity calibrations, the
internal gas target and its injection system, SMOG, enables LHCb to operate as
a fixed target detector experiment with negligible effect on other LHC activities.
Injecting a low rate of noble gas into the centre of an open ended tube construct
of heat-treated aluminium within the VELO vacuum vessel, the system produces a
localised pressure bump, and a resulting increased beam-gas collision rate. With a
capacity for multiple different gases of differing nuclear sizes, such as Helium, Neon
and Argon, the system not only allows for making precise beam density profile mea-
surements, but enables exploration of the range of opportunities offered by colliding
LHC beams with a fixed target 22281,

Sitting immediately before, or upstream of, the magnet, lies the second stage of
the tracking system; the upstream tracker, or UT. As illustrated in Figure 10.2(a),
four planes of vertically arranged silicon microstrip detectors are mounted across two
stations, with the inner two planes inclined, in opposite inclinations, by 5°; enabling
calculation of the vertical coordinate of each hit without ambiguity. 187.5 pym pitch
sensors cover the majority of each plane’s surface, with special half pitch sensors
arranged around the innermost areas to maximise the active area near the beamline.
The planes of each station are nominally spaced 55 mm apart, with 205 mm between

232291 Through tracking particles as they enter the mag-

the two innermost planes!
net region, the UT plays a significant role in identifying duplicate particle tracks,
improving momentum resolution, and is vital for reconstructing long lived particles

that decayed outside of the VELO!36:230]
On the far side of the magnet is the SciFi, LHCb’s Scintillating Fibre tracker.

Measuring particle trajectories after their passage through the magnetic field, this
subdetector provides the means to determine their momentum. Twelve detection
planes are arranged into three stations of four planes, each station following a similar
pattern to the UT, with the middle two layers of each station again tilted at 5° in
opposite rotation to one another. Each plane’s active area is formed by fibre mats
of six layers of densely packed, 250 pm diameter, blue-emitting scintillating fibres.

[23,36,231]

Stations are separated approximately 700 mm apart A 3-dimensional render
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Figure 10.2: (a) Diagrammatic overview of the UT tracker as viewed
from the downstream direction, showing the four layer arrangement in-
cluding tilted layers. Green indicates regions using the regular sensors,
while yellow and pink indicate those regions near the beamline using spe-
cially designed sensors with half pitch. Reproduced from [229]. (b) A
3-dimensional render of the SciFi tracker, shown both from the from the
downstream direction (left) and side on (right). Reproduced from [23].

of the SciFi tracker is shown in Figure 10.2(b).

10.2.2 Particle Identification Systems

In the LHCD detector, differentiation between pions, kaons and protons is achieved
through a pair of ring imaging Cherenkov detectors, RICH1 and RICH21?*232 Ag a
charged particle traverses through a dielectric medium, if its velocity exceeds that of
light in said medium, electromagnetic radiation is emitted, overlapping waveforms
forming a characteristic cone-like wavefront, in a process known as the Cherenkov
effectl. Both RICH detectors exploit this process through use of fluorocarbon gas
volumes; the resulting photons then focused through a system of spherical and planar
mirrors onto detector planes formed of multi-anode photomultiplier tubes, positioned
outside the detectors acceptance to avoid influencing the onwards passage of parti-
cles?®232] " The radiation’s cone-like wavefront results in ring images, from which
the cone’s opening angle, and so the particles velocity, can be determined; proving
a means to relate a particles momentum and mass!™23.

Located between the VELO and UT trackers, RICH1 utilises C4F1o gas and cov-
ers an angular acceptance of 25 to 300 mrad in the horizontal (25 to 250 mrad in

the vertical) plane, enabling it to identify particles in the 2.6 to 60 GeV/c momen-
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Figure 10.3: A pair of 3-dimensional renders illustrating the (a) RICH1
and (b) RICH2 detectors after the Phase-I upgrade. Both reproduced
from [233].

tum range. Positioned instead after the SciFi tracker, and so the magnet, the larger
RICH2 subdetector provides identification for higher momentum particles in the 15
to 100 GeV/c range, using CF, gas and with a 15 to 120 mrad angular acceptance in
the horizontal bending (15 to 100 mrad in the vertical non-bending) plane 3. Illus-
trations of RICH1 and RICH2 can be found in Figure 10.3(a) and (b) respectively.
RICH2 is followed by the detector’s calorimeter system, which determines the en-
ergy of a range of particles, and uses a classical electromagnetic calorimeter followed
by hadronic calorimeter structure/®. As particles impact material in the relevant
calorimeter, they trigger a cascade of reactions, resulting in a shower of secondary
particles across which their energy is distributed. These particle showers are stopped
within the subdetector, producing scintillation light from whose measurement, using

723 Being

photomultiplier tubes, the original particles energy may be reconstructed!
a destructive method of measurement, the calorimeter system marks the end of many
particle’s journeys through the detector, and so lies near the end of overall detector;
the front surface of the first calorimeter, the ECAL, located around 12.5 m from the
interaction point 2.

As an electromagnetic calorimeter, the ECAL concerns itself with particles that
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Figure 10.4: Diagrams illustrating the compositions of (a) an ECAL and
(b) a HCAL cell, tiled to form the respective calorimeters. Both repro-
duced from [234].

interact with the electromagnetic force, such as electrons, positrons and photons.
Electromagnetic showers are provoked by 2 mm lead sheets, interspersed by 4 mm
plastic scintillator, and threaded with wavelength-shifting fibre cables to collect and
deliver scintillation light to the photomultiplier tubes?33%.  An illustration of a
ECAL cell can be seen in Figure 10.4(a). With the particle density significantly
higher closer to the beam line, the ECAL is divided into three regions, with pro-
gressively larger cells employed further from the beam line?*?34. The HCAL, as a
hadronic calorimeter, conversely covers protons, kaons and other hadronic particles
that interact by the strong nuclear force. As shown in Figure 10.4(b), staggered iron
and plastic scintillator tiles are here arranged parallel to the beam line for improved

(23,234

light collection, and again collected by fibre cables I. Given the typical spread

of hadronic showers, HCAL has a comparatively larger granularity compared to the
ECAL, and is similarly divided into two regions with larger cells employed away
from the beam line 2%

resolution, the ECAL has a thickness covering 25 radiation lengths; while the HCAL,
7,23]

. With the importance placed on electrons and photons energy

due to space limitations, is limited to 5.6 nuclear interaction lengths!

While electrons lie within the domain of the ECAL, owing to comparatively sup-
pressed bremsstrahlung, muons do not develop electromagnetic showers as electrons
do. Equally, muons do not experience the strong nuclear force, allowing them to
pass through hadron-absorbing material such as the tiles of the HCAL. Though

it leaves muons outside the reach of the calorimeter system, this penetrating power
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Figure 10.5: (a) Side on diagram of the muon system, showing the ar-
rangement MWPC’s and thick iron filters. Note that this diagram specif-
ically corresponds to the pre Phase-I upgrade detector. Aside from the
removal of the pre calorimeter M1 station and introduction of additional
shielding around the beam pipe, the detector’s overall composition as
shown is largely unchanged; with the upgrade program otherwise focus-
ing on the electronics and readout systems?>232. (b) Diagram illustrating
the four regions, as viewed from the downstream direction, with granu-
larity increasing as regions are located further from the beam pipe. The
region labels R1-4 correspond to the arcs indicated in (a). Both repro-
duced from [232].

y[23:282]
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is instead leveraged to provide robust muon identification™?3?. Located after the
calorimeter system, where few other particles will reach, LHCb employs a muon iden-
tification system comprising of four multi—-wire proportional chambers, separated by
thick, 80 cm iron walls to filter low energy particles?3232]. Each is composed of four
independent layers, consisting of anode wires between a pair of cathode plates, and
act to pick up the passage of those particles that have penetrated that far through
the detector. Diagrams of the muon system can be seen in Figure 10.5. As particle
flux is higher closer to the beam line, each chamber is divided into four regions of

differing granularity, again increasing further from the beam line to even out particle
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Figure 10.6: An illustration outlining how the LHCb readout chain is
managed, including the Experiment Control System and Timing and Fast
Control system. Reproduced from [23].

10.2.3 Control Systems

The ‘brain’ of the experiment if you will, centralised control systems manage and
operate the many components of the detector in real time. A rough outline of the

LHCDb readout chain and its management is shown in Figure 10.6.

The Experiment Control System, or ECS, manages the configuration, monitor-
ing and control of the experiment. As the system with which operators interact, it
provides a coherent interface for manage all detector equipment, including trigger
system; and is built on the joint control project, or JCOP, a common framework for
detectors at the LHC[?*%3% The many readout elements that make up the LHCb
detector are grouped in partitions, each of which may represent a part of a subde-
tector, a subdetector in its entirety, or a group of subdetectors. These partitions
are independent of one another, allowing them to be controlled and operated sepa-

rately (23],

Responsible for clock, timing and readout management, the Timing and Fast
Control system, or TFC, keeps the experiment running in synchronous. The system
handles generating and distributing signals from the experiment master reference
clock throughout the detector. It also manages the flow of data through the entire
readout chain to ensure coherent data taking across all readout elements; issuing

commands to control processing within readout and front end electronics, along with
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other calibration and subdetector-specific commands to detector electronics23:36:235],

10.3 Data Acquisition, Trigger and Analysis

While traditional trigger approaches look for generic signatures that don’t re-
quire significant analysis to identify, increasing event rates and the broad range of
potentially interesting events involved in the LHCb physics program mean it is not
possible to sufficiently reduce events in this way. Instead, to reduce events to record-
able levels it is necessary to first reconstruct an event online in order to identify
physics signals of interest. Though demanding, this has allowed the experiment to,
where possible, develop a novel system where only a limited amount of information
concerning the less interesting remainder of an event is propagated onwards to final
storage [23,236]

Therefore in order to achieve a readout of 40 Hz, LHCb has since 2022 operated
a fully software event filtering system, using this real time analysis and selective
persistence approach, to reduce incoming data down to a manageable 10 GB per
second; including the demanding task of performing full offline quality reconstruction

in real time[23:237),

Unlike the hardware stage of the previous trigger system, the
new first selection stage notably now has access to tracking information with which
to make its selections, as many signals of interest to the LHCb physics programs
can be distinguished using momentum direction and vertex information®”. Online
processing has been designed so that any offline reconstruction or selection is a
reconfiguration of the same algorithms; therefore, as of commencing data taking Run
3, no separate offline repetition of the reconstruction carried out online is foreseen,
and LHCD offline computing is consequently dominated by simulation®*. While the
nature of this system, from the point of view of the front end electronics, means the
detector can be justifiably considered ‘trigger-less’, in practice the event selection
system is still referred to as the trigger, for convenience and as a continuation of
naming schemes used by the previous system 23237,

A representation of the full LHCb data processing pipeline can be found in Fig-
ure 10.7, with the online data acquisition and offline processing stages detailed in
Figure 10.7(a) and (b) respectively. The LHCb codebase is largely written in C++,
for data processing and algorithms, and python, for job configuration.?”. The on-
line trigger system incorporates two reconstruction and selection stages, HLT1 and

HLT2 *. The experiment CPU codebase is built on the experiment wide Gaudi?*

*HLT refers to High Lever Trigger. This naming convention is a legacy of the previous trigger
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Figure 10.7: Hlustrations of the LHCb dataflow from 2022 onwards, fo-
cusing on the (a) online or (b) offline stages. Reproduced from [238].
Indicated dataflow values in turn from [237] and [239].

framework, with HLT2 and sprucing handled by the Moore?*!l application. HLT1
operates on GPU, implemented in CUDA within the Allen**? framework 232,

10.3.1 Track Categorisation

Before proceeding, it is worth summarising how tracks within the LHCb detector
are categorised. Tracks are divided into five types based on which trackers a given

track has a presence in.

e Velo tracks are those tracks which appear only within the VELO, and so in-

system, which incorporated a Low Level Trigger stage.
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Figure 10.8: Categorisation of track types, depicted in the bending plane.
Reproduced from [23], itself based on a diagram in [218].

cludes tracks outside the nominal LHCb angular acceptance and those corre-

sponding to short-lived particles that do not reach the UT.

Upstream tracks appear in both the VELO and UT trackers, but do not reach
the SciFi.

Long tracks pass through all three trackers, and as such are typically those for
which the most accurate momentum determination can be made, and therefore

are the most used for physics analysis.

Downstream tracks are present in the UT and Scifi trackers, such as those

originating from secondary vertices between the VELO and UT.

T tracks are those that appear only in the SciFi, and are so called as a legacy

of the previous TT tracking system.

An illustration of the above track types can be found in Figure 10.8[23:218,243]

10.3.2 Event Building and HLT1

As measurements are made, signals from the various subdetectors are dispatched

to the dedicated Event Builder server farm, located in a containerised data centre

above ground. Here, as the name suggests, the event building process is performed, in

which data corresponding to each specific bunch crossing event is assembled together.

Data corresponding to empty crossings are normally dropped at this stage, and a

global cut is used to remove events featuring a very large quantity of tracks, as
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these would both use a disproportionate amount of resources to reconstruct and the
reconstruction quality is likely to be worse[23:36:244],

Once data from all sources has been received, an event is transferred on to be
processed by HLT1, which runs on GPUs within the Event Builder farm. The first
of two principal filtering stages, HLT1, performs partial reconstruction, focusing on
long tracks, in order to perform an initial filtering pass. Though reconstruction
including information beyond the trackers would allow for more precise selection,
reducing calculations is very important at this stage, and a large efficiency can be
achieved from examining tracks alone!23:244.

Beginning with the reconstruction of tracks and primary vertices within the
VELO, tracks are subsequently extrapolated through the UT and SciFi Trackers,
including accounting for deflection by the magnet; enabling particles’ momenta to
be deduced. A simplified Kalman filter method is applied to high momentum tracks
to estimate details on them when they were near the beam line, and in turn better
pinpoint where they originated. Muons among the particles are then identified, and
finally tracks are fitted to common origin points to form displaced secondary vertex
candidates!?3:242:244]

Selection applied at this point are designed to reduce the number of events by
roughly a factor of 20, a level at which full quality event reconstruction can feasibly
take place. Designed to be inclusive, criteria are primarily driven by identifying
signatures desirable by the bulk of the LHCb physics program, along with additional
selections for other signatures that might otherwise not be picked by the principal

selections, and to select events for technical and calibration purposes!23:242:244.

10.3.3 Calibration Buffer and HLT?2

Successful events from HLT1 are subsequently transferred to the Event Filter
Farm, or EFF, a large farm of general purpose x86 CPU servers located in the
same data centre, which while the LHC is not taking data can be utilised for other
computing tasks[?336],

In order to perform event reconstruction, accurate calibration and alignment in-
formation is required. Thus events are sampled from the buffer to perform real time
calibration and alignment studies. Parameters important to HLT1 are relatively
quick to compute, and are updated as soon as possible. However while using old pa-
rameters is acceptable for a first reduction cut, it is not for detailed reconstruction,
and computing the complete range of parameters necessary takes time. Events are

therefore held in a large intermediary storage buffer as their corresponding calcula-
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tions are completed. This also allows events to be buffered during event production
and caught up on between LHC fills, spreading out processing to ease computing

requirements 23

Once prepared, events proceed to HLT2 and full offline-quality reconstruction.
Similar to in HLT1, this commences with track reconstruction, utilising separate

s[23:237.243] ' Tong tracks, the most used in physics

algorithms for different track type
analysis, are reconstructed by two independent algorithms. Each takes a different
approach; one extrapolating velo tracks into the UT and SciFi and picking up hits
directly, the other matching already found tracks within the SciFi, themselves recon-
structed with a hybrid seeding algorithm, to velo tracks and potential intermediary
UT hits?243 Said SciFi tracks are also extrapolated backwards to the UT in order
to construct downstream tracks. Likely duplicate tracks sharing segments in a given

tracker are analysed and pruned by individual pattern recognition algorithms?3237,

The properties of charged particle trajectories are determined using a Kalman fit
method. For most events, interactions with the detector material are parametrised,
while a more detailed method, employing interaction tables for magnetic field and
material distribution, is used for those events destined for alignment or analyses
requiring enhanced precision. A global algorithm then seeks out and removes any

overlapping tracks and other remaining duplicates 3.

Progressing to particle identification, separate reconstruction of ECAL 3 RICH

245 and muon system **6) measurements are performed; and with a combi-

detector
nation of these results, identification of electrons, muons, pions, kaons and protons
among the detected particles. Tau leptons and neutral particles decaying in the de-
tector are treated as composite particles. This identification process is performed
by multiple multivariate classifiers, tuned for different kinematic regions, and the
choice which specific algorithm informs a particular selection lies with the relevant

analyses!?.

Each reconstructed event is scrutinised by approximately one thousand differ-
ent algorithms to identify whether it is of interest to retain for the various LHCb
physics analyses, or for other purposes such as calibration. At the same time, these
algorithms propose what set of information to retain on a selected event, and in
accordance with the selective persistence approach used, the union of requested data

is recorded (23237

Where successful, events are grouped based on the underlying
physics present or event information recorded; and all necessary data is consolidated
into files for storage on magnetic tape. All events are associated to one of three

storage streams, depending on selecting algorithms and the data they request be
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recorded. Where reduced information is retained, events are allocated to the Turbo
stream, while those events stored in their entirety go to the FULL stream. Events

for calibration are stored as the TurCal stream [23:2471

10.3.4 Offline Processing and Analysis

With most data processing activities performed online, offline processing con-
sists largely of final data preparation for physics analysis, including minimising the
amount of data analysis will need to access in order to be carried out. Known as
sprucing, the process shares many algorithms and tools with HLT2 and principally
consists of skimming, slimming, and streaming tasks. Where required, skimming
applies further selections to events in the FULL stream, in order to reduce their
number, while slimming reduces the amount of information stored for a particular
event. Compared to selection within HLT2, the more relaxed limits on computing
time allows for selections unachievable on an online timescale, such as those depen-
dent on analysis of complex cascade or many-particle final state decays. Regardless
of whether skimming or slimming was performed, a given FULL or Turbo event is
then streamed according to its physics content, along with the creation of accom-
panying metadata files. The final data is then formatted and saved to disc, from
which the datasets used by physics analyses are centrally produced. Sprucing is per-
formed concurrently to data taking, and re-sprucing campaigns are also performed

periodically 23247,

10.4 Upgrade Programs

2571 twice the

Despite successfully operating at approximately £ = 4 x 1032 cm
instantaneous luminosity for which it was originally designed, various measurements
studied in LHCDb’s physics program are still constrained by statistical uncertain-
ties!?3l. Dubbed the Phase-I Upgrade, the 2018 to 2022 shutdown period therefore
saw the LHCb detector undergo a extensive upgrade, enabling the detector to op-
erate at a instantaneous luminosity a further factor of five higher and an increased
bunch crossing rate of 40 MHz[623229.232]  Central to this is the evolution of the
previous readout and online systems, with replacement of the previous hybrid hard-
ware and software triggers by the new flexible software based system; incorporating
real-time offline quality reconstruction for event selection while building on the selec-

tive persistence approach of the previous system. This overhaul of the data systems
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naturally involved improvements across the board, such as optimisation of recon-
struction algorithms, implementation of HLT1 on GPU hardware, and migration of
underlying software to operate on the latest C++ version [23:237.244]

In rising to meet the challenges posed by increased luminosity and readout, the
Phase-I Upgrade also involved upgrades to all component subdetectors, representing
a replacement of more than 90% of the active detector channels and including com-
plete replacement of the tracking system 23229247 The VELO was replaced by a new
system, it’s original silicon strip design exchanged for a silicon pixel system. Mean-
while, the previous Tracker Turicensis detector, or TT, had its duties taken over by
two new system, with the UT replacing the first TT station, and SciFi the remain-
ing three[?>??9 The internal gas target injection system saw upgrades focusing on
its expanded role in use as a fixed-target experiment, particularly the introduction
of a dedicated construct within which the gas is injected, tightening the achievable
density to a more localised area?>??8 Along with a redesign of RICH1’s optics, the
RICH system saw a new photon detection system, with its hybrid photon detector
replaced with multi-anode photomultiplier tubes and accompanying front end elec-
tronics. The calorimeter system saw a comprehensive redesign and replacement of
both front end and readout electronics; and having principally served the original
hardware trigger, the Scintillating Pad Detector, or SPD, and the PreShower, or PS,
calorimeter systems were removed. The muon system received new readout electron-
ics, along with introduction of additional shielding around the beam pipe. Similarly
to the SPD and PS systems, the muon M1 station largely provided for the previous
hardware trigger, and so was removed 23232,

As mentioned in Section 9.2.5, in the coming years the LHC will itself play host
to a transformative upgrade to push its potential luminosity output even further,
revitalising the accelerator as HL-LHC. Therefore work is underway towards a new
LHCb upgrade program, the Phase-II Upgrade, in order to take advantage of this am-
bition program and address the challenges posed by the accelerators high luminosity
phase[6:227,
work, dubbed Upgrade Ib, is planned for the 2026 to 2029 shutdown period 24,

As part of this, significant preparatory consolidation and enhancement
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Chapter 11

The LHCDb Vertex Locator

11.1 Role

Positioned at the tip of the LHCb detector, the VELO, or vertex locator system,
provides precision tracking in the immediate vicinity of the proton-proton interac-
tion region, and is typically the first sensitive detector particles encounter. With
sensitive elements sitting as little as 5.1 mm from the proton beams during data
taking, the VELO is specifically designed with precise resolution of primary and
secondary vertices in mind[?*24!. Displaced secondary vertices are a key signature
of b- and ¢- hadron decays, and so of crucial importance to event selection for the
LHCb physics program. Reconstruction of tracks within the VELO is among the
first steps performed during both HLT1 and HLT?2 stages, seeding further track re-

1233936~ Though LHCb as a whole has a nominal

construction across the detecto
2 < n < 5 acceptance, from its position surrounding the interaction point, the VELO
is not limited to the forward region, and so incorporates sensitive elements both up
and downstream; with additional tracks used to improve measurement of primary

vertices 249,

11.2 Overarching Design

LHCDb uses a global coordinate system, which places the origin at the nominal
interaction point, with the positive z-axis extending along the LHC beam-line into
the forward region accepted by the detector. The positive y-axis is orientated verti-
cally, and the z-axis horizontally with direction following standard conventions 2.
This coordinate system can be observed superimposed in Figure 10.1, with the origin

lying within the VELO and the positive z-axis extending towards the Muon system.
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Figure 11.1: A 3-dimensional model of the overall VELO detector, post
Phase-I upgrade, within the vacuum vessel. Reproduced from [249].

In addition, when facing down the beam-line into the detector, the left, z > 0, and
right, > 0, hand sides are conventionally referred to as the A and C sides respec-
tively*, with side C lying towards the inside of the LHC ring. Many parts of the
detector, VELO included, use to this nomenclature for components!?3:250,251],

A render of the wider VELO is shown in Figure 11.1, with key components of
the inner portion illustrated in Figure 11.2. The detector consists of 52 identical
‘L’ shaped modules, with correspondingly-shaped sensitive areas, arranged in pairs
across 26 stations spaced along the beam line. Each pair together forms an ap-
proximate square, orientated perpendicular to the LHC beam line, with the beams
themselves passing through the central aperture formed between them 23249251 Sta-
tions are arranged to ensure that 99% of tracks originating within +2§ lumi of the
nominal interaction point, and within the detector’s 2 < n < 5 acceptance, will be

measured by four stations!?5!.

To protect the sensors while still enabling them to be
placed as close as possible to the beam-line, modules are mounted as two indepen-
dently retractable halves, known as Side A and Side C. These halves are retracted
during the fill procedure to 30 mm until the circulating beams have stabilised, before

g 249251 " The approximate squares are

returning to the closed position for data takin
orientated at 45° about the z-axis, a module forming each side of the resulting dia-

mond shape, in order to minimise collision risks during installation. In addition, this

*This convention owes itself to the detector’s practical placement within the detector cavern,
and is in reference to ‘access’ and ‘cryogenics’ sides [23].
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CO2 supply
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‘Vacuum feedthrough board

Opto- and power board

Figure 11.2: An illustration of the two VELO halves, depicting the mod-
ules and their supporting structure, corresponding to the inner portion of
Figure 11.1. The electronics are included on the left side, while the right
side instead shows the COs coolant system. The RF foils are not shown,
and the LHCb nominal acceptance region is indicated by the transparent
pyramid. Reproduced from [23].

orientation is advantageous should the detector need to be operated with the halves

not fully closed [%:252,

Each half is encased by a thin aluminium alloy enclosure known as the RF foil,
corrugated in a stepped design following the modules, which acts to shield detector
electronics from beam induced currents?*%21 In order to maintain structural in-
tegrity while keeping material to a minimum, so as to reduce scattering, the foils are
fabricated from solid blocks, painstakingly machined down to a typical thickness of

250 + 100 jum [23:36:251]

The overall detector resides within a 1.4 m long by 1.1 m diameter vacuum vessel
integrated into the LHC beam pipe and which houses the primary beam vacuum,
with the detector assemblies entering through apertures on either side. Wakefield
suppressors are installed at both ends of the vessel. Modules themselves operate
within a secondary vacuum, separated by the RF foil together with a bellows system
to accommodate for motion; while a pair of hoods seal the secondary vacuum from

the external atmosphere [23:249,251],
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Figure 11.3: Photographs of a fully-assembled VELO module showing
the (left) connector, as viewed from the upstream, increasing z direction,
and (right) non-connector, as viewed from the downstream, decreasing
z direction, sides. Various components are labelled. Reproduced from
[249].

11.3 VELO Pixel Modules

An individual VELO pixel module is pictured in Figure 11.3. Each of the 52
modules is composed of a microchannel plate bearing four 14.080 mm by 42.570 mm
active area sensor tiles, two mounted on either side so as to form the overall 'L’

[249,250] ' Tny order to minimise the material present near the inter-

shape acceptance.
action region, the innermost tiles protrude from the plate by 5 mm, and to catch
highly inclined tracks, tiles on opposite sides are displaced such that they overlap
by 110 pm. Due to mechanical limitations however, there is a small unavoidable

[251,252]

gap in acceptance between the outermost tiles The arrangement of tiles is

illustrated in Figures 11.4(b) and 11.5.

This assembly is affixed, through an invar cooling connector, to a mechanical
support known as the hurdle; and in turn mounted to the module support base

t[49 Spread over just over 1 m, modules are arranged

using an aluminium foo
along each side with a tightly spaced central region, along with forward and back-
ward region groupings, and a minimum spacing of 25 mm for modules on the same
side. The layout is identical on each side, save that modules on Side A are dis-

placed in z by +12.5 mm relative to Side C. This allows so that when in the closed
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Figure 11.4: An overview of the VELO module setup. (a) Side on cross
section at y = 0 showing the LHCb VELO module locations, with the
interaction region and boundaries of LHCb’s nominal acceptance region
indicated. (b) Schematic of the sensitive region of a station in the x-y
plane, in both the closed (left) and open (right) states. Reproduced from
[250].

position, modules corresponding to the same station overlap by 200 pm to ensure
coverage [23:249.2561.252] " N[odules are labelled 0-51, with module 51 both at largest z
and farthest from the nominal interaction region!?%. The arrangement of modules
is depicted in Figure 11.4(a), and is optimised based on simulation with spacings
regularised to multiples of 12.5 mm for sake of the RF foill®2. A table of module
positions and numberings is provided in Appendix B and a detailed summary of
module geometry can be found in [250].

A single tile consists of a planar silicon pixel sensor bump-bonded to three bespoke
pixelated ASIC chips in line, which provide signal processing and digitisation [2%23:249

Each sensor is divided into 768 x 256 square pixels of 55 pm pitch, with an additional
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Figure 11.5: Positioning of tiles active areas for a pair of modules, in
the closed position, in the z-y plane. Tiles located on the back side of
a module are depicted with dotted outlines, tiles corresponding to the
same module are depicted in red or blue respectively. Note that the axes
shown do not correspond to the positioning of the x-y axes of the wider
coordinate scheme detailed above. Reproduced from [251].

row on the outer side acting to tie the ASIC ground to the innermost sensor guard
ring. Arranging the ASICs together in a line results in a 165 pm gap between the
256 x 256 pixel matrices corresponding to each ASIC; therefore pixels bordering the

inter-chip regions are elongated to 137.5 pm to provide coverage 249250,

Thermal cooling is achieved through an evaporative COy cooling system, the
liquid-vapor mixture circulating through 200 pm wide by 120 pm deep microchannels
within the plate to which the active components are affixed. Channels interface with
the wider coolant system through the invar cooling connector, with the local CO,
itself located in a separate tertiary vacuum volume. To achieve an even coolant
distribution, the first few centimetres of ingoing channels narrow to 60 pm by 60 pm,

while the hurdle acts to thermally insulate modules from their mounting point 23249,

The ASIC on each module side are managed by a pair of frontend hybrids, one
serving each 3 ASIC tile, while a single accompanying GBTx hybrid per side decodes
and distributes control and timing signals to each frontend hybrid pair. Placed out-
side the vacuum vessel, the opto- and power-board, or OPB, acts as the interface

between modules and the wider off-detector electronics systems; transmitting data
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Figure 11.6: Diagram outlining the main parts of the VELO electronics
system. Reproduced from [23].

and receiving control signals beyond the detector through optical fibres, while sig-
nals and voltages are routed across the vacuum barrier through a custom vacuum
feedthrough board. Both high and low voltage supplies are received from elsewhere
in the LHCb cavern, with the OPB converting and distributing the low supply volt-

age 23241 An overview of the electronics systems is depicted in Figure 11.6.

11.4 Track Reconstruction within the VELO

11.4.1 Development of the Pattern Recognition Algorithm

The first VELO pattern recognition algorithm was developed in 20021253 and
went on to see further tuning in 20042°Y and 20071%°1. Taking a track follow-
ing approach, it was designed in context of the previous VELO detector geometry,
which utilised a system of silicon strips arranged as concentric ring and radial strips
around the beam-line, with each station similarly composed by two (in this case

semi-circular) halves!2%253,

After clustering, a 2-dimensional search was performed
in the r-z plane, hunting for potential triplets of three hits across consecutive stations
based on slope and alignment. These seed tracks were then extended onwards to fol-
lowing stations, picking up additional hits to form track candidates, before tracking
with corresponding angular measurements, and finally, fitting using a Kalman fil-
ter[29:253.255] - Ag the detector looked to push beyond its original design luminosity,
and to accommodate unforeseen issues related to VELO positioning, a modified algo-

rithm was introduced in 2011%5¢; this revised method looking instead for quadruplets

107



of hits in the r-z plane, before seeking triplets among those left unused 29256,

With the new VELO pixel detector and software only trigger system on the
horizon, efforts began on redesigning the algorithm for the post Upgrade-I era, with

257 Now working in Cartesian coordinates

the first version implemented in 2012!
and with 3-dimensions from the beginning, it followed a similar approach to the
previous method; only instead considering pairs of unused hits, then extending them

29,257]

upstream!| Representing a more radical departure, an alternative approach

using a Hough transform method inspired by straight line recognition within the eye

3435 Returning to look for triplets across

was also investigated around the same time
neighbouring stations, a new local search algorithm designed with parallelisation and
GPU architectures in mind was presented in 2014[?%®! with further improvements

2591 An initial baseline tracking implementation for HLT1,

over the coming years!
featuring various execution time improvements, was introduced in 201829260],
Presented in [30], with further discussion in [261], the current pattern recogni-
tion implementation continues on the methodology of previous algorithms. A revised
search by triplet algorithm implemented in the Allen framework, it is designed with
parallelisation in mind and with features to reduce combinatorics and track overlap-
ping [30:242.244,261],
model of CUDA, for use on GPU, and is implemented in the HLT1 trigger stage. An

implementation for CPU using the SPMD programming model, detailed in [29], has

The algorithm was designed for use with the SIMT programming

also been developed 2612621

In what follows, we will focus on providing an outline of track reconstruction for
HLT1 during Run 3. Currently, HLT2 reuses VELO tracks as found in HLT1, though
other approaches are implemented. LHCDb software is constantly evolving, and the
following is predominantly based on the algorithm as described publications. It may

therefore not describe the algorithms used for a given day.

11.4.2 Clustering

Given that most VELO pixel sensors are only 55 pm square in size, it is not
uncommon for a particle’s passage to activate more than one sensor, typically 1-
4[36:263] " Therefore before pattern recognition, the reconstruction of particle tracks
within the VELO begins with grouping connected activated pixel measurements into
clusters?>242 Pixel data is read out of the VELO in 2 x 4 blocks, known as super
pixels. Where a cluster is isolated to a single super pixel, it is processed using
a lookup table of pre-calculated pixel combinations!?*36:2631  Otherwise, groupings

are first built up on a series of 10 x 12 matrices, or 3 X 3 super-pixels, filled in
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as neighbouring super-pixels are evaluated. Within these groupings, 3 x 3 cluster

candidates are identified, and similarly processed using a lookup table263].

11.4.3 Pattern Recognition

First, the angle ¢ with respect to the origin (as described in Section 11.2) is found
for all hits in an event, and hits within each module ordered in increasing ¢. This
is used to define, for each hit, a window of ¢ acceptance on consecutive modules,
and determine the hits which fall into them. An illustration of this is shown in
Figure 11.7(a) B,

Then, beginning farthest from the interaction point, the algorithm operates on
three consecutive modules at a time. Each hit on the central module is selected,
and three hit segments are formed using compatible hits from within the previously
calculated ¢ windows on either side. All combinations are compared using a x?
least-squares fit, and if it passes a minimum threshold, the best triplet is retained as
a track seed. By restricting the algorithm to look at only combinations falling within
these windows, the number of calculations is greatly reduced, and by ordering the
hits within a module by ¢, those falling within a given window can be defined by
the first and last which do sol.

A forwarding stage then attempts to extend any candidates by extrapolating the
segment formed by the last two hits onwards to the next module, and a ¢ window
is determined. Each hit within the window is evaluated against an extrapolation
function, , ,

dz® + dy

extr = — e (11.4.1)
where (dz,dy) is the displacement of the examined hit from the position predicted
by the extrapolation, and dz the distance parallel to the beamline to the segment’s
last hit. The hit which minimises this function (again within a minimum threshold)
is appended to the forming track. If a compatible hit is found, all hits composing
the forming track are flagged as having been accounted for, and are then excluded
from subsequent consideration. Candidates consisting only of the three initial hits
are therefore left unflagged. Should a candidate go without compatible hits being
found on a number of successive modules, it is stored and no longer propagated.
The algorithm then progresses one module onwards and repeats the seeding-then-
forwarding process. Figures 11.7(b)-(d) depict this process being carried out across

five modules Y.

Finally, candidates of four or more hits are promulgated as tracks. Candidates
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Figure 11.7: A sequence of illustrations of the stages of the pattern recog-
nition algorithm, as described in [30]. (a) shows, for an example set of
three consecutive modules, the process of determining the windows of
¢ acceptance, ¢;, corresponding to a middle module hits ¢;, in order to
generate seeds. (b)-(d) depicts the progressive building up of track can-
didates, beginning after an initial seeding, across five modules. (b) The
set of candidate tracks, t;, are forwarded onto the next module. Corre-
sponding windows ¢; are determined and acceptable hits are subsequently
added to the candidates, with all hits in those tracks flagged. (c¢) The al-
gorithm progresses one module on, and attempts to seed more candidates
around potential middle hits, ¢; in green, using corresponding windows,
¢i. Flagged hits (in red) are not considered. (d) Candidates are again
forwarded onwards, extrapolating the segment formed by the final two
hits onto the next module, and defining a window ¢, for each track ¢; 3.
Reproduced from [30].
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of only three hits are first subject to additional scrutiny, and must both be under a

x? threshold, and contain no hits that were later flagged .

11.4.4 Track Fitting

Assuming straight line tracks, as there is negligible magnetic field within the
VELO 37 candidates are fitted using a comparatively simple Kalman filter method.
A transverse momentum of 400 MeV/c is used for all particles for covariance calcula-
tions, and multiple scattering is treated independently along x and y axes [242:244262],
Particle states are estimated when closest to the beam line, for vertex reconstruction
calculations, and, at the end of the VELO, for use in extrapolating tracks onwards
to the other trackers?*4,

In both HLT1 and HLT2, after tracks have been formed incorporating all three
trackers, additional Kalman filters fittings are performed to determine the properties

of particle trajectories to maximum accuracy 3244,

11.5 Machine Learning at LHCb and the VELO

The LHCDb experiment is no stranger to machine learning in its quest to un-
derstand matter; and such tools can be found in all stages of data processing!.
Neural network classifiers are employed at various stages during and after track re-
construction to reduce fake tracks, and thus also combinatorics, particularly for long

[61,264]

tracks Using data from across the detector, global particle identification is

performed by neural networks, with separate algorithms estimating the probability

sP%] Boosted decision trees have served in topo-

of different identity hypothese
logical selection triggers for many years6426%l now with neural networks for the
inclusive heavy flavour trigger ®267): and machine learning based selection triggers
are responsible for the majority of data retained by the online trigger system 6.
Looking to the VELO specifically, a machine learning approach was developed for
detection of anomalies in the previous VELO subdetector calibrations, and was in-

¢268] In addition, a neural network

corporated into the detector monitoring softwar
based pulse-shape reconstruction technique for the readout ASCIs was employed for
optimisation 269

With the upgraded Run 3 VELO on the horizon, an early investigation into
integrating deep learning into pattern recognition for the new detector was published

in [270], and outlined bellow in Section 11.5.1. This work was continued by the
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authors, and one successor model is detailed in Section 11.5.2. Taking a different
direction, a model drawing from [270] and featuring notable post processing and
error reduction stages was developed, and is detailed in [36]. In addition, there has

been exploration of a neural network based kalman filter algorithm for HLT1 [,

11.5.1 An Early Pattern Recognition Model

Following previous pair seeding-based approaches, the model described in [270]
employs a neural network as a classifier to estimate the likelihood a particular pair of
hits forms a true track segment; acting as an alternative to both window techniques
for reducing combinations and in place of other selection methods to chose the most
likely pairing. Though this early model displayed significant promise, it suffered
notable degrading performance approaching the interaction region.

Beginning from the station farthest from the interaction point, a seed hit (rs, @)
on the given station is evaluated against N potential partner hits (r;, ¢;) on the
following station, using the neural network classifier. The classifier returns a set of N
values, interpreted as the probabilities corresponding to the N examined hits on the
following station. The hit with the highest predicted score and passing a threshold
is taken as forming a candidate track with the seed hit. Repeating the procedure,
the model works back towards the interaction region using each successful hit as the
new seed for the following pair of stations, until a set of hits is encountered where
no predicted score passes the threshold.

An independent instance is trained for each distinct station pairing, thus z coor-
dinates were not included. The network itself is a fully connected feed forward neural
network of four layers, with 2 (/N 4 1) inputs and layers of size 32N + 1, 32N + 2,
(32N + 2) and N. Each layer uses a ReLU activation function, apart from the final

layer which uses a sigmoid function.

11.5.2 The Hybrid Model

Building on their work, the authors of the above model developed a later algo-
rithm, which eschewed a track forwarding approach for an additional neural network
based stage. As it combines traditional pattern recognition with machine learning,
for the purpose of this thesis we will refer to this model as the Hybrid Model.

After first scaling r and ¢ values by 50 mm and 7 respectively, as an approximate
normalisation, the model commences by considering a pair of modules on successive

stations at a time. For each such module pairing, every combination of a pair of
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hits, one from each module, is compiled and evaluated using a pair classifier. The
classifier returns a single value, interpreted as a probability score that the specified
two hits form part of the same track, and is applied in batches of up to 4096 pairs
at a time. A separate classifier is used for each particular combination of modules,
and takes r, ¢ and the cluster size npix for both hits as its inputs. Pairs receiving a
prediction of over 0.5 are retained, along with their scores, for the next stage.

Once all module pairings have been considered, the model proceeds to examine
every combination of three modules that form a run across three successive stations.
In each case, three hit segments, or triplets, are constructed from those retained hit
pairs from the first and second pairings of modules forming the three module run,
which share a common hit on the central module. These triplets are then similarly
evaluated by a second form of classifier in batches of up to 4096, again returning
a single value for each and using a separate classifier for each combination of three
modules. The classifiers take as inputs the r, ¢ and npix for each of the three hits
forming the triplet, the two probability scores of the pairs composing it received in
the previous stage, and the explicit differences in r and ¢ between successive hits.

Both forms of classifier are fully connected, feed forward neural networks of three
layers with ReLu activation functions, save for the final layers, which employ sigmoid
functions. The pair classifiers use 6 input variables, and layers of sizes 16, 16, and
1; while the triplet classifiers use 15 input variables, and layers of sizes 64, 64, and
1. A final stage constructs tracks by connecting successful triplets where the final
two hits of one triplet correspond to the initial two hits of another; while lone triplet
tracks are required to pass a higher threshold. Where the last hit of a track match
the first of another, it is assumed the two tracks were accidental split by a missed
triplet and merged into a single track; a clone killing technique to reduce duplicate

tracks.
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Chapter 12

Aims and Method

12.1 Aims

Within a tracking detector, particle hits are highly relational, emerging from the

s[192] The presence or absence of

complex chains of particle decays and interaction
other nearby hits has the potential to inform whether particular detections likely
result from the same particle’s flight as another. This can be seen in how many local
pattern recognition methods which otherwise operate on specific hit combinations in
isolation, confer to form candidates using only the combination judged most likely
from among a selection, even if other hits would otherwise have been used. Not being
tied to follow predetermined models, deep neural networks can infer and leverage
complex patterns in data that are otherwise difficult to determine explicitly. Given
the increased instantaneous luminosity of the HL-LHC and the move to full online
track reconstruction, the timing requirements on LHCb VELO reconstruction present
a significant challenge; and neural networks have shown great success at performing
other pattern recognition tasks with fast execution times.

Therefore, our aim was to develop a proof of concept neural network model capa-
ble of performing the pattern recognition stage of VELO track reconstruction whilst
examining an event holistically; and thus potentially draw inferences from the event
as a whole. With graphs being well suited to describing sparse, irregular and re-
lational data, this evolved into a graph neural network approach, and development
of a network architecture agnostic framework with which to consider various GNN
models. Given the typically slower execution speeds of GNN models compared to
other neural networks, our focus became precision. Noting the success of architec-
tures based on the Interaction Network!'®3 at tracking in the context of the ATLAS

detector180185182] this work culminated in a similarly inspired model.
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12.1.1 The Challenge of Representation

A significant obstacle to a model which can consider an event as a whole, or at
least a portion of one, lies in that a basic feed forward neural network (and therefore
many other forms of neural network) takes a fixed and predetermined number of input
variables; where a single event contains a variable number of hits. Therefore, the
challenge is to represent the available data composing an event in a form accessible
to a neural network.

Though global mapping based approaches such as the Hough Transform offer a
representations in which solutions are more readily observable, they do not address
this problem in themselves. A truly local approach considering subsets of a prede-
fined size one at a time, by choosing say the nearest neighbours in real space, can
circumvent this issue. However there is a potential to exclude a correct partner in
high density events, or the need to pad out inputs if there are too few hits overall to
fill the subset each time; and is nevertheless a rather unsatisfactory starting point
considering our aim. Sequential neural network models such as LSTM are capable of
operating on variable size inputs, but are liable to introducing unintended structure
from the order in which information is presented.

Initially, we looked at the potential of translating the problem of track finding into
a ‘game’ like state, and leveraging recent developments in deep reinforcement learning
such as Deep Q-Learning. Reinforcement learning enables a machine learning model
to be trained to act in order to maximise a final goal without an immediate payoff;
in this case, the correct identification of hits that belong to the same track. By
calibrating how the goal is evaluated, a model can be encouraged to place more or
less importance on certain achievements over others, tuning its priorities. However,
as track finding is ultimately a pattern recognition task, we were unable to find an
approach that would not likely be better served as a direct classification task.

During these endeavours we investigated taking an image-like approach, in which
the cloud of hit coordinates could be represented as a 3-dimensional ‘image™. As
the VELO subdetector is itself fixed in size, this would represent an event of any
number of hits as a fixed sized object. In this approach, the problem of tracking
becomes one of instance segmentation; identifying objects within an image and which
pixels are attributed to them, here identifying track instances and which hit-pixels

are attributed to them. Convolutional neural network based models have proved

*Reinforcement learning approaches are generally agnostic to the specific form of neural network
model used, and have been successfully used in conjunction with CNN27] and even GNN[273 in
other applications.
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widely successful at instance segmentation tasks, and, depending on architecture,
can operate with variable sized data, giving the opportunity to built on existing
model architectures. While most instance segmentation work naturally addresses
2-dimensional images, advancements have been made into 3D image segmentation,
though unstructured and haphazard 3D data remains significantly challenging ™.

However, this method presented immense issues with the size of representations.
The naive approach is to represent the whole VELO using a cubic voxel grid, with
a voxel size matching that of a sensor element; but the VELO’s highly granular
resolution, and the size of gaps between modules, leads to a representation running
into Gigabyte size. Non-cubic voxels can be used, compressing the number of vox-
els in the z direction and using irregular lengths to minimise representation of the
between module gaps. Yet even then, reaching manageable sizes necessitated down
sampling, potentially merging hits, and approaches only considering only a portion
of the detector at a time. Further, the sparsity of data makes representing an event
this way extremely wasteful, with a significant quantity of empty voxels, and many
CNN methods struggle with operating on sparse data. Ultimately, work following
this approach struggled with untenable computational times for training, and as a
graph based approach had began to show success, was not pursued further.

As a data structure, graphs are an efficient way to represent sparse data struc-
tures; making them a natural choice for depicting an event. By encoding each hit
within the detector as a vertex, and joining all vertices which could form part of
the same track by an edge, tracking becomes an edge classification problem, a task
GNN have proved successful at tackling. Even though such graph representations do
not have a consistent size, many recent GNN models can function on variable size
graphs, and, through the message passing mechanism, remain sensitive to informa-

tion encoded by a graphs structure.

12.2 Dataset Production

12.2.1 Monte Carlo Simulation

From detector design to physics analysis, Monte Carlo simulations are a widely
established tool in high energy physics; and around 80% of LHCb CPU resources in
the 2015 to 2018 period were employed in Monte Carlo related tasks!?3/. Monte Carlo
sample production for the LHCb experiment utilises a modular system, designed

such that samples are processed through an identical dataflow as real data as far as
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23l The Gauss package is responsible for modelling collision events, utilising

possible!
dedicated physics generators such as Pythia8 ™27 or EvtGen?"™ and transporting
the resulting particles through the detector, typically using the Geant4 simulation
toolkit'9. Recreation of the detector and readout electronics response, known as
digitisation, is performed by the Boole package, after which an emulator of the event
building process is employed to produce raw data in an identical format to that
output by the LHCb DAQ chain. Where desired, simulated data may subsequently
proceed through the same online and offline processing, outlined in Section 10.3, as
used for real data. As with other LHCDb applications, both Gauss and Boole are built

on the Gaudi framework 23],

12.2.2 Datasets

The sample data used in this work was produced through Monte Carlo simulation,
as above, using a model of the (then future) Run 3 LHCb VELO subdetector. A
detailed description of this model can be found in [257]. A large number of simulated
minimum-bias events were generated, under conditions designed to reflect the events
realistically recorded by the detector, and each accompanied by Monte Carlo truth
information.

These events were divided into several independent batches, which we will refer
to as our datasets. A first dataset was used for the example events with which
neural networks were trained, a second for evaluation of a network at the end of an
epoch during the training procedure, and a third for evaluating trained models. The
same three datasets were used for all models, and each consisted of between 1.2 and

1.3 x 10° non-empty events.

12.2.3 Detector Scope

In order to reduce the computational burden from the size of graphs, in most
instances we limited ourselves to considering only one half the full VELO detector,
split lengthways along the beam-line. This is achieved by restricting our data to only
even numbered modules, which with the module layout as described in Section 11.3,
reduces us to a single module per station.

Approximately 10% of tracks include hits on both odd and even modules®*!l, and
this was verified for the three datasets primarily used. At two modules per station,
implementing the full detector would approximately quadruple the number of edges

in a pair graph representation (see Section 12.3.1). As events are approximately
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symmetric around the beam line, this still encompassed a full range and distribution
of potential particle tracks, so is sufficient for a proof of concept investigation. The
same datasets were employed regardless of how much of the detector was considered,
with any restrictions on data applied at the time an event was loaded, reducing the
number of tracks in a dataset as a whole.

A table summarising module potions is provided in Appendix B. Modules are
arbitrarily labelled 0-51 from lowest to highest z potion, with module 51 closest to
the remainder of the LHCb detector ?°. Unless otherwise stated, this even numbered
modules scheme is used, though in some instances other combinations of modules
were employed. Models are analysed using data restricted to the same combination
of modules as they were trained. When only two modules are employed, modules 46
and 48 are used. For three modules, modules 44, 46 and 48 are used. For 8 modules,
even numbered modules 36 to 50 inclusive are used. 26 and 52 modules refers to

using all even numbered modules or all modules respectively.

12.3 Graph Neural Network Models

12.3.1 Overarching Model Framework

Building upon the approach followed by the Hybrid model (see Section 11.5.2),
the various models presented here use a common overarching framework, in turn
containing two independent component models. An overall model can therefore be
characterised by the specific component models used, along with any other modifi-
cations to the general process.

Both component models perform edge classification, producing a single [0, 1]
value assigned to each edge of a given graph. This is interpreted as a probability or
likelihood score, characterising the model’s prediction that the hits, or combination
of hits, represented by the vertices connected by the given edge constitute part of
the same track. The two component models in the same overall model are always
independent instances, and need not take the same form. The various component
model architectures are themselves described in Section 12.3.2, and the component
models used within the same overall model need not take the same form.

An overall model can be divided into three principal stages: the pair stage, the
triplet stage, and the full tracking stage. An illustration outlining the overall model
is provided in Figure 12.1. Models are written in Python, using a combination of
the NumPy > (numpy.org), PyTorch 2™ (pytorch.org) and DGL " (dgl.ai) frame-
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works.

Pair Stage

The first stage begins with preparing a given event, with each event considered
separately. Spatial coordinates are translated into a cylindrical coordinate system, in
mm and degrees as appropriate, aligned along the direction of the detector, z, with
the nominal interaction point as the origin. In order to approximately normalise the
spacial coordinate values, unless otherwise stated, z, r and ¢ are scaled by 800 mm,
50 mm and 7 respectively.

From this the pair graph G¥, is constructed. Each hit within the detector is
represented as a vertex (VF), with the relevant properties encoded as the features of
the vertex attributes (v7). Edges (ET) are added between vertices representing hits
on neighbouring stations. Several derived features, such as the difference between
vertex variables, are encoded within the edge attributes (e})

Due to the nature of the DGL package framework for handling graphs, all graphs

2811 For neural networks, the order of input variables matters, so needs

are directed!
to be consistent, and in an undirected graph which vertex should be ‘first’ is am-
biguous. We principally implement edges as directed from highest to lowest module
number; for simple network models, this is sufficient as long as done consistently,
and saves on computation. However, for more complex network models, this impacts
message passing as the ‘low’ of messages is dictated by the direction of edges. For
such models, reverse direction edges are added to form a bidirectional graph, and
similarly self loop edges connecting each vertex to itself. Attributes for reverse di-
rection edges are replicated from the existing edges, but depending on what they
represent, features within may then be swapped or inverted, in order to ensure a
coherent description. For example, the order of variables corresponding to the initial
or terminal vertex are swapped, as which vertex is initial or terminal is now the
other way around; or taking the negative of the difference between vertex variables,
as which value should be subtracted from the other have effectively been reversed.
Self loop edge attributes are calculated as with the original edges.

The first component GNN model, denoted the pair network, is applied to this
graph. Which features are exposed to the GNN model as inputs depend on the
specific GNN model, but typically include z, r, ¢, and npix, the number of activated
pixels forming that hit’s cluster. Original edge and vertex attributes are preserved,
and any temporary ‘working’ vertex or edge attributes generated in their place during

application of the network are discarded.
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The network returns a new edge attribute of a single feature for each edge, the
likelihood score, a prediction probability that the hits represented by the respective
vertices connected by the edge form part of the same track. This is recorded by
extending the edge attributes (el) to include an additional feature. In order to
reduce the number of combinations in the following stage, and so memory use, edges
which do not meet a 0.5 threshold are discarded. For bidirectional graphs, the mean
of the predicted scores for each pair of edges is used. Scores for self loop edges are

ignored.

Triplet Stage

The triplet stage largely follows the same principals as those in the pair stage.
Inspired by the hybrid model approach, the previous pair graph is promoted into a
new graphs, the triplet graph GT. Each pair graph edge (ET) is now represented

by a triplet graph vertex (V'), with the attributes of the edge (ef), sender (vl')

and receiver vertices (Vi ) concatenated to form the triplet graph vertex attributes
(vi=el Uvi UVZ)
An edge (¢] € ET) is added between any two triplet graph vertices (v ,vf) where

P
8

the sender pair graph vertex (v} ) corresponding to one is the same as the receiver pair
graph vertex (vf; ) of the other (vﬂz = vg ). In this way, each triplet graph edge (ef)
corresponds to a proposed three-hit track segment. This is performed before any
reverse direction edges are considered, ensuring a run of three sequential stations
without doubling back. Similarly to the pair graph, various features, principally
differences between vertex features, are encoded within the edge attributes (el). So
that consistent ordering is followed regarding underlying hits represented, for reverse
direction edges some features are swapped around or inverted, similar to in the pair

graph.

In the same manner as before, the second component GNN model, denoted as
the triplet network, is applied to this graph. Again, which features are used by the
GNN model as inputs depend on the specific model. They typically include the
same features as for the pair model, but double the quantity due to each vertex
representing two hits, and usually also including the corresponding pair likelihood
score. This process returns a new score, the triplet likelihood score, for each edge;
interpreted as the predicted probability that the three hits represented form a part

of the same track.
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Full Tracking Stage

In the final stage, discrete tracks are formed using the likelihood score predictions
generated in the previous two stages. This stage was in large part taken directly from
the Hybrid Model. From the triplet graph, the three hit segments each edge repre-
sents are extracted, along with the assigned likelihood scores. Where bidirectional
edges are used, the mean of the two corresponding edges is again taken.

Tracks are constructed by joining these three hit segments to form chains of hits.
Segments are joined where they share a common overlapping pair of hits (correspond-
ing to a common edge in the pair graph, or a vertex in the triplet graph) and each
has a triplet likelihood score in excess of 0.8. Should multiple combinations fulfil
these criteria, the combination with the highest triplet likelihood score is taken. Re-
maining three hit segments with a triplet likelihood score of 0.95 or more are taken
as complete three hit tracks. Other isolated segments are discarded. Finally, should
the last hit of a track match the first of another, it is assumed the two tracks were
accidental split by a missed triplet and merged into a single track. Thus, the final
output of a model is a set of tracks, where each track is a variable length sequence
of hits given in the original event.

To boost this process, we also implemented an additional filter, designed to iden-
tify and correct where tracks had become split by a missed segment. Each track was
characterised as a straight line using its end points, and one by one extrapolated
back across 3 stations. If another track was found following the same trajectory,
with a tolerance of Imm in the x or y directions and a pseudorapidity of 1, the two

tracks were merged. This filter was applied only where explicitly stated.

12.3.2 Component Network Architectures
Basic Network

As the initial model implemented, the Basic Network is a straightforward fully
connected feed forward neural network, consisting of a series of fully connected layers
of neurons, followed by ReLLU activation functions. The final layer, instead of a ReLLU
function, employs a sigmoid activation function.

Applied to each edge, various features are taken from the edge and connecting
vertices as the inputs to the first layer, with the same features taken from each.
Referring to the GN Block framework in Section 8.2.3, this GNN model in its entirety
is a single performance of the first step, €’y = ¢° (e, v, , Vs, ) with the aforementioned

neural network as ¢°.
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When used as the Pair Network, a default of three layers are used, consisting
of 16, 16, and 1 neuron respectively. The variables z, r, ¢, and npix are taken as
inputs, for a total of 8 inputs to the first layer.

As the Triplet Network, a default of three larger layers are used, consisting of
64, 64, and 1 neuron respectively. The variables z, r, ¢, and npix for each of the
hits encoded within a vertex are again used as inputs, along with the differences in
z, v and ¢, and the pair score assigned in the previous stage, taken from the edge
attribute. As edges connect vertices representing a common hit between them, the
second set of features representing the shared duplicate hit are discarded, for a total
of 18 input variables to the first layer.

Several model variations are also examined, such as different numbers of layers
with different numbers of neurons within them, or different combinations of inputs.
In addition, variant was created employing separate network instances for each com-

bination of modules.

Interaction Network

Inspired by the use of Interaction Networks for particle tracking in [180] and
[181] (see Section 8.3.3), the Interaction Network model detailed here is based on
the architecture introduced in [153]. From here on, any reference to the Interaction
Network refers to the model described here, as opposed to the general model. A
diagram outlining the overall algorithm is given in Figure 12.2.

Throughout this model, five fully connected feed forward neural networks of a
similar design are used. These consist of three layers of neurons, each of 24, 24, and
y neurons respectively, where y is the desired number of outputs in each specific case.
Each layer is followed by a ReLU activation function, with one exception noted in
what follows, and all such networks are independent instances.
and 1)

edge and vertex attributes, taking the designated input features and producing a

Initially, a pair of encoder networks, are applied separately to the

€ v
enc enc’

new attribute of a corresponding number of latent features in place of the original

(e;f = SHC (ek) and Vg = gnc (VZ>)

The model’s core consists of the iterative section designed to exploit the message
passing principal (see Section 8.2.4). Referring to the GN Block framework, this
section corresponds to steps 1 though 3, and may be performed multiple times. Using
a form of skip connection, the inputs taken for each edge or vertex use two sets of
values, the current features (e, v;.), as produced by the previous iteration, along

side the preserved initial latent features (e}, v;). For the first iteration, the current
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Figure 12.2: An outline of how the Interaction Network model operates.
Blue boxes indicate the neural networks within the model, and solid,
arrowed lines indicate how edge or vertex attributes are passed between
them. The aggregation function operating on the relevant edge attributes
for each vertex is in green. Dotted lines indicate descriptive groupings
of components. The central section, denoted the iterative section, is re-
peated typically four times, with the previous output edge and vertex
attributes fed back in. Note the diagram is representative of the baseline
configuration of the model, and does not hold for some variants, such as
those using alternative skip connections.

features are also the initial latent features, doubling up. First, the edge attributes are
updated with the edge update network, ¢¢, producing a new set of edge attributes,
with an equal number of features, which act as the message to be passed onwards
(g1 = ¢° (ekjt ey, Vi UV, Ve 1 U v;k)) Using the aggregation function, p*7",
these new attributes are aggregated for each vertex (€;;41 = p*7(Ei++1)). Unless
otherwise given, this took the form of summing the corresponding features within
the incoming edge attributes. Subsequently, the vertex update network, ¢", is then
applied to each vertex, similarly producing a new set of vertex attributes.

Finally, the outcoder network ¢, is applied to the edges, taking the last edge at-
tributes and generating the final likelihood score. Contrary to the previous networks,
this last network utilises a sigmoid activation function on the final layer.

The Interaction Network can be summarised, with input edge features e, and

vertex features v;, as;

e
enc

e

¢ (Vi) are performed per edge or per vertex respec-

1. e, = (ex) and v, =

tively to generate latent attributes, of equal size to the original.
2. Iterating t =0, ..., tfna, where initially ey ,—o = €}, and v, ;—¢ = Vv,
(a) €41 = ¢° (ekﬂt U ey, Vit UV, Ve 1 U v’sk) is performed per edge
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(b) €it+1 = p° 7" (E;i44+1) is performed per vertex.

(¢) Vigr1 = ¢" (€441, Vi U V) is performed per vertex.

3. € = S, (€gy..,) is performed per edge, generating the final likelihood

scores.

As a baseline, the iterative section was performed 4 times. When used as the Pair
Network, the variables z, r, ¢, and npix are taken as the input features for vertices,
and the difference in z, r and ¢ for edges. For the edge and vertex update networks,
this gives a total of 22 and 11 input variables respectively. When serving as the
Triplet Network, more variables are used as inputs. For vertices, z, r, ¢, and npix
for both encompassed hits are used, along with the explicitly calculated differences in
z, r and ¢, and the corresponding pair likelihood score. For edges, the difference in
the difference in z, r and ¢ is along side the difference in pair likelihood score. In the
case of the edge and vertex update networks, this results in a total of 56 and 28 input
variables respectively. Unlike in the Basic Network, features corresponding to the
duplicated ‘middle’ hit are not discarded. The positions of which features within the
triplet vertex attributes correspond to which of the two underlying hits, represented
by each triplet graph vertex, are fixed. But with the presence of reverse direction
edges, which underlying hit, and so features, should be interpreted as the shared hit
depends on the direction of the given edge under consideration. Regardless, after the
encoder network is applied we work with latent features, which no longer directly
correspond to an original input, and so a specific hit.

As before several variations are also considered, though as a more complex model,
more variations are possible. Different inputs, numbers of layers and neurons per
layer can be used, and can be different for each of the five instances. Other param-
eters such as numbers of iterations can be changed. The encoder networks can be
disabled, allowing the original input features to reach the first iteration stage. The
skip connection can be removed, or alternatively, rather than the latent features, the
the original pre-encoder inputs may be passed through to the iteration stage each

time.

12.3.3 Training Procedure

The training procedure for network weights took place in two parts, with the
pair and triplet networks trained separately. For a pair network, only the pair stage

of the overarching model was performed each time. For a triplet network, both

125



the pair and triplet stages were performed, using a pre-trained pair network, as the
pair stage is required to produce the triplet graph. Thus a specific triplet network
is also dependent on what pair network it was used when trained. In either case,
networks were trained based on their predicted likelihood scores. Edges where all
hits corresponding to the connected vertices are from the same track were given a
target likelihood score of 1, otherwise 0, resulting in a binary classification task.
When included, self loop edges were also given a target of 1. For the variant of
the Basic Pair Network which employed separate network instances for each module
combination, each instance was trained separately, with the dataset restricted to hits
on the specific pair of modules chosen each time.

Weight adjustment was performed using the Adam algorithm %, with a learning
rate of 0.002 and a weight decay of 107°. For the loss, the Binary Cross Entropy
loss was effectively used. This was achieved using the Pytorch BCEW:ithLogitsLoss
function!?®? was used, a combination of a Sigmoid layer and Binary Cross Entropy

loss function equivalent to

1

M
BCEWithLogitsLoss = i Z (p wplog (o (Um)) + (1 — upm) log (1 — o (iy,)))

(12.3.1)
where o denotes a sigmoid function, M the number of samples, and v and @ the
predicted and truth values respectively. During training, the explicit final layer
sigmoid activation functions were disabled, effectively moving them into the loss
function. This combination function approach is more numerically stable than using
a Binary Cross Entropy loss function directly with a final sigmoid layer**? Events
discarded during graph construction, for reasons such as for having no viable edges,
were not included in the loss or other metrics. Back propagation and optimisation
was performed using a graph, and so an event, as a batch.

Due to the often significant prevalence of false edges, and so negative training
examples, particularly in a pair graph, models are likely to converge to predicting 0
for all edges, To counteract this, rather than using an unbalanced sample, BCEWith-
LogitsLoss allows for a positive weighting, p, to be used to bias the training effect of
positive examples. For a binary classification problem with a dataset containing n”

positive and n™ negative examples, an equal effective proportion is achieved by
p=—". (12.3.2)

The value of p was set as above using the training dataset. As pair graphs
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are determined entirely by the dataset, this is therefore fixed regardless of the pair
network trained. When limiting to the standard even module half, this weighting is
approximately p = 61.7, or p = 37.2 if bidirectional and self loop edges are included.
However for triplet network training, due to the 0.5 threshold on pair score used,
exactly which vertices, and so edges, are present in the triplet graph depends on
the performance of the respective pair network; requiring recalculation each time.
For some models, the positive weighting was additionally modified by introducing
a weighting multiplier, in order to encourage better performance at classifying true
positives or negatives, likely at the expense of the other. Where this has been done

will be indicated.

Each training was performed over a training dataset multiple times, until further
passes no longer showed sufficient performance improvement. Due to practical con-
straints, rather than full randomisation, the order of events was pseudo-randomised
for each epoch. Initially, the order of the 13 files that constituted the principal train-
ing dataset was randomised. Then within each file, events were loaded in batches of

1000 at a time and randomised within each batch.

After each epoch, the current instance was evaluated on a fixed 10000 event
sample, drawn at the beginning of the process from a separate dataset to avoid

overfitting, and the mean loss evaluated against a benchmark according to

benchmark loss — current loss

gain = (12.3.3)

benchmark loss

The same loss function, including positive weighting bias, was used in optimisa-
tion. For the validation dataset as a whole, the optimum weighting for balance would
be approximately p = 62.1, a negligible difference. However, one limitation is that as
the validation sample is drawn at the beginning of training and retained throughout,

there is the potential for said sample to have a notably different imbalance.

Should the current instance show a gain greater than a minimum threshold of
5 x 107%, training continues and the benchmark loss is updated to the new, most
recent loss. Regardless of whether the threshold is met or benchmark updated, should
the current model show an improved loss over previous tests, the model instance is
recorded as a checkpoint. If, after four consecutive epochs, the model failed to reach
the gain threshold, the training procedure was terminated and the model restored to
the last recorded checkpoint. Otherwise, the network instance was preserved from

one epoch to the next.
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Training Performance

It was observed that, while a higher validation than training loss can be expected,
the post-epoch validation loss for our models was always significantly higher, par-
ticularly in comparison to the scale of fluctuations. It was later discovered that this
difference in scale was likely attributed to an issue in calculating the loss values when
applied to the validation dataset. Note that is the post-epoch loss used to gauge a
models training progress, not the loss used to optimise the model. As described
above, the BCEWithLogitsLoss loss incorporates the effect of a Sigmoid layer with
a Binary Cross Entropy loss function, which is why during training the Network’s
final Sigmoid layer was disabled. However during inference on the validation the
model was being set with aforementioned Sigmoid layer enabled. By subsequently
using the BCEWithLogitsLoss loss function, the predicted likelihood scores were in
effect passed through a sigmoid function a second time. Given that this would shift
prediction values into the range 0.5 to 0.73, against targets of 0 or 1, this inflated
the validation loss. Due to the manner in which they were recorded during training,
we were unable to recover the actual loss values for our models retroactively.

The training code was modified to correctly disable the sigmoid function. Initial
test trainings of the Basic Pair Network yielded training and post-epoch losses of
comparable size and shape; indicating that this was the primary contributor at the
very least, and that there was not a fundamental issue with our approach. Given
time constrains and technical issues, we were unable to sufficiently explore further,
nor did we have the significant computational time required to retrain and evaluate
all our models in response.

It is worth noting that the non-symmetric-about-0.5 and non-linear scaling this
introduced will have altered the relative contributions of specific predictions to the
loss, and the effective impact of positive and negative edges. As the post-epoch
validation loss was used to gauge training progress, this may therefore have altered
the number of epochs ultimately trained for. However the training loss, which was
not affected, behaved as expected, usually plateauing after few epochs. Equally,
the initial test trainings under the revised implementation trained for a comparable
number of epochs. Therefore the impact of this issue appears to have been minor.

In addition, though our training procedure was predominantly successful, several
variations of the Interaction Triplet Network suffered from issues in training. Despite
the use of a positive weighting in the loss, calibrated for the specific Pair Network
used, some Interaction Triplet Networks would converge to predicting that all seg-

ments presented were either all true or all false; appearing to have become stuck in
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a local minima. In some cases, upon repeating the process a model would train as
intended, while in others the issue would continually repeat. In our time frame, we

were unable to ascertain exactly when or why this instability would occur.

12.4 Measurements and Analysis

12.4.1 Measurement Errors

All analysis was carried out using a separate dataset to both training and post-
epoch assessment, and of roughly the same number of events. Performance is mea-
sured per event and the mean taken over all events in the dataset. The standard
deviation given, usually denoted with ¢ or 4, indicates the statistical error on this

mear.

12.4.2 Component Network Performance

Component networks are themselves a form of binary classifier, and can be evalu-
ated using standard methods. The network is regarded as having made a positive or
negative prediction using a score threshold of 0.5. Edges themselves are categorised
as positive if they correspond to a sequence of hits from the same track, else negative.
For triplet networks, the same pair network as in training was used.

The accuracy, or error rate, is then the fraction of edges in an event correctly

classified by the network,

No. Correct Predictions
No. Total Predictions

Accuracy = (12.4.1)

The performance at classifying positive segments can be expressed as proportions,

No. T Positi
True Positive Rate = 0. 11He _O,Sl 1ves , (12.4.2)
No. Positives

No. False Negatives

False Negative Rate = 12.4.3
alse Sesative ate No. Positives ( )
and similarly for negative segments,
No. True Negati
True Negative Rate = 0. _THO Teeatives (12.4.4)

No. Negatives

No. False Positi
False Positive Rate = 0. Tase O,SI 1ves , (12.4.5)
No. Negatives
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As the true positive and false negative rate add up to one, and similarly for the true
negative and false positive rate, the false positive and false negative rates will not
be explicitly given.

Due to the typical prevalence of false edges, and so negatives, it is useful to

consider the balanced accuracy, given by,

True Positive Rate 4+ True Negative Rate

5 (12.4.6)

Balanced Accuracy =

which assigns equal weight to performance at classifying true and false examples.
Another common way to assess binary classifier performance is to consider the
receiver operating characteristic, or ROC, curve; the true positive rate plotted against
the false positive rate across a range of score threshold settings. To characterise this
distribution as a single value, the area under the curve, which we will refer to as the
ROC AUC, can be considered as the probability that, given a positive and negative

example, a model will assign a higher score to the positive example283],

12.4.3 Tracking Performance

In order to measure a full model’s performance at tracking, we are going to borrow

the terminology used in [251], which are commonly used throughout the experiment;

e The track corresponding to a particle is considered reconstructable if there are

hits made by that particle’s passage on at least three separate modules.

e A particle’s track is considered successfully reconstructed if there is a predicted

track using at least 70% of the hits made by said particle.

e A ghost, or fake, track is a predicted track where less than 50% of hits forming
the track correspond to the same particle, and so is not associated to the

passage of any particle.

e Alternatively, if any single particle has more than one reconstructed track
associated to it, then any such predicted tracks beyond the first are counted

as clone tracks.

For the purposes of the number of hits made by a track, for any one model we
will only ever consider those on modules used for that specific model. Using these
terms, we can therefore further introduce several corresponding means to measure

tracking performance;
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e The Efficiency is the proportion of reconstructable tracks which have success-

fully been reconstructed,

No. Reconstructable

Efficiency = (12.4.7)

No. Reconstructed

providing a measure of how well a model performs at assigning groups of hits

made by the same particles path into the same track.

e The Ghost, or Fake, rate is the proportion of predicted tracks that are ghost

tracks,

No. Ghost
host Rate = 12.4.
Ghost Rate No. Predicted ( 8)

and measures how often a model predicts tracks, and so particles, within the

data that are not there.

e The clone rate is similarly the proportion of predicted tracks that are clone

tracks,

No. Clone
Clone Rate = No Prodicted (12.4.9)

and measures how often a model splits or duplicates tracks made by the same

particle, essentially seeing duplicate particles.

An ideal model would therefore have an efficiency of 1, alongside a ghost and
clone rate of 0. Code for the calculation of these metric was in large part taken from
that developed for analysing the Hybrid Model.

12.5 Comparison Model

12.5.1 Hybrid Model Implementation

To provide a baseline against which to assess performance, we utilised an ex-
isting and pre-trained implementation of the Hybrid Model. Given this model had
served as a starting point upon which the models described in the remainder of
this chapter were developed, including having being trained using the same form of
dataset, it could provide a straightforward comparison for both overall performance
and individual stages. The model used in the following chapter was implemented
predominantly using existing code, including trained weights, with modifications to
work with our overall execution, data and statistics handling. The Hybrid Model is

described in Section 11.5.2; and having served as the basis of the third stage of the
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overarching model framework, further details of the model’s final stage can be found
in Section 12.3.1.

12.5.2 Training Procedure

To accommodate the overabundance of false hit combinations compared to true,
a biased sampling method was employed during optimisation of the Hybrid model we
utilised. The training sample for a given pair classifier was built up using example
pairs over all events before training commences. For each event, a subsample was
constructed using each hit on the module with the highest module number, of the
two corresponding to the given classifier, once. Should a hit have a partner on the
other module with which it forms a true track, that pair was always used, otherwise a
partner hit was selected at random. Should more than half the pairs in a sample form
true track segments, and there is at least one such pair, the sample was extended
with a number of additional entries, equal in length to the number of true pairs.
These additions were constructed by duplicating the first entries of the subsample
and cycling their partner hits. Said subsamples were subsequently combined, and the
resulting sample shuffled. This method resulted in samples with a varying ratio of
fake to true pairs, always with more fake pairs than true, and sees further discussion
in Section 13.1.4. Training of triplet classifiers used every valid triplet formed after a
set of relevant prepared pair classifiers are applied to each event, similarly compiled
and shuffled beforehand. In both pair and triplet training, every other entry in a
sample was removed and set aside to form a separate sample for testing a given
networks progress during its training.

As the Hybrid Model’s training procedure was used as inspiration for those of
the models described in the remainder of this chapter, it otherwise bears significant
similarities to that described in Section 12.3.3. Weight adjustment was performed
using the Adam algorithm %, with a learning rate of 0.001 and a weight decay of
10~°. The Pytorch BCEWithLogitsLoss function*®? was used for the loss.

Classifiers were trained over the training sample multiple times, and after each
epoch was applied to the test sample and the mean loss recorded. Beginning with an
initial benchmark loss of 1.0, the classifier was evaluated using Equation 12.3.1. If
it failed to achieve a minimum gain threshold of 0.005 after four successive epochs,
training was terminated. Otherwise, training continued for another epoch, and if the
gain exceeded the threshold, the benchmark loss was updated to the previous mean
test loss.

The version of the Hybrid Model utilised here was trained using only even num-
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bered modules, as described in Section 12.2.3. However, as each module pair or
triplet used a independent network instance the choice of modules considered has no

effect save which combinations have corresponding networks trained.
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Chapter 13

Results

Tables of results can be found in Appendix C.

13.1 Basic Network Models

13.1.1 Consistency with the Hybrid Model

The Basic Networks and overall Model use the same neural network architecture
and roughly the same procedure as the Hybrid Model, as in effect they perform
the same operations on the same inputs, just with one arranged in the context of a
graph. Therefore their performance should be comparable, providing a consistency
check to evaluate if the Basic Model is behaving as expected. However, one notable
difference is that the Hybrid Model uses a separate network instance for each module

pair combination.

Pair Network

As shown in in Figure 13.1(a), the Basic Pair Network accuracy is around lo
lower than the Hybrid Pair Network, but exhibit a very similar balanced accuracy.
Breaking down to the true positive and true negative rates, we can see explicitly that
the Basic Network is comparably stronger at identifying true edges, at the expense
of worse performance at discounting false edges.

Due to the calculation of the bias weighting being tuned to effectively equal
quantities of positive and negative examples, the Basic model was in effect trained to
maximise the balanced accuracy, not the accuracy. The Hybrid model instead used a
sampling method, with batches with slightly higher quantities of negative examples,

in effect marginally prioritising the true negative rate over the true positive rate. As
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Figure 13.1: Performance metrics of the Hybrid and Basic (a) Pair and
(b) Triplet Networks, and (c) the full models at the complete tracking
problem.

The Triplet Networks, as shown in Figure 13.1(b), performed similarly to the

Triplet Network
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events contained a preponderance of negative examples, this goes some way to explain
the difference in behaviour. Ultimately though, the differences in performance are
within 1.50.

two one another, with very similar balanced accuracy and the Basic network ex-
hibiting slightly lower accuracy. Apart from the true positive rate and ROC AUC,
performance was generally closer between the two models compared to the Pair Net-
works, and errors larger. In particular, the true negative rates exhibited notably

larger errors than for the Pair Network, suggesting both models were more erratic




at discounting false segments during this stage.

Though not likely relevant here, its worth noting that the strong performance
of a Pair Network can make any subsequent Triplet Network’s task comparatively
more difficult, by potentially removing easier to classify segments from an event.
Additionally, Triplet Networks generally include the relevant Pair Network scores
as inputs, with more accurate scores likely aiding the Triplet Network in its own
classification. Thus comparison between Triplet Network stage performances can be
somewhat misleading, owing to having different Pair Networks effectively being as if

comparing models trained and evaluated on slightly different datasets.

Full Model

Looking at performance of the complete models at the full tracking problem,
shown in Figure 13.1(c), we can see the Basic Model efficiency is slightly higher,
and the clone rate slightly lower, than the Hybrid Model. This lines up with what
we would expect from the Pair and Triplet Networks individual performances; with
the Basic Network’s stronger performance at identifying true track segments leading
to an improved efficiency, while the worse performance at mistakenly identifying
incorrect segments as part of a track leads to a higher fake rate.

While the efficiency and clone rate are relatively close, the Basic Model’s fake
rate is approximately an order of magnitude larger. However, the error on the Basic
Model’s fake rate is also significantly larger, enough to encompass the Hybrid Model’s

fake rate and error.

13.1.2 Separate Network Instances

To investigate the impact of using separate network instances for edges between
different combinations of modules, as the Hybrid Network does, a variant of the Basic
Pair Network was created that behaved this way. This Pair Network, alongside the
Hybrid and regular Basic Pair Networks, was evaluated for a range of quantities of
modules, as described in Section 12.2.3, with the results shown in Figure 13.2. For
the regular single instance Basic Pair Network, additional instances of the model were
trained and evaluated on restricted numbers of modules to produce the additional
data points.

Both Basic Networks performed very similarly. As the number of modules con-
sidered is increased, the single instance version does not appear to show significant

deterioration in performance, suggesting that using a single network is sufficient.
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Figure 13.2: Performance of the Hybrid, Basic, and separate network
Basic variant pair stage networks, trained and evaluated over different
sized portions of the detector, as described in Section 12.2.3. Note the
horizontal axis uses a logarithmic scale.

As before, both Basic Pair Networks shows the same performance relative to the
Hybrid Pair Network, indicating that using separate instances is unlikely a factor in
the performance differences between the Basic and Hybrid Models. In general, er-
rors decrease as more modules are included, possibly a consequence of the increasing
number of segments for statistics.

Also included are results of the Basic Pair Network trained over the full 52 mod-
ules. Performance is similar to that for only even numbers modules, confirming that
working with only even numbered modules is largely sufficient to get an idea of how

models generally perform.

13.1.3 Input Variables

In order to assess the effect of including the z coordinate, and using an ex-

plicit approximate normalisation scaling of the input variables (as described in Sec-
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approximate normalisation scaling, trained and evaluated over different
sized portions of the detector, as described in Section 12.2.3. The regular
Basic and Hybrid Pair Networks are included for comparison. Note the
horizontal axis uses a logarithmic scale.

tion 12.3.1), additional Basic Pair Networks were trained without these features.
This was performed, as above, for a range of different quantities of modules, with

the results given in Figure 13.3.

As before, errors generally decreased across the board as more modules are in-
cluded. While excluding the z coordinate alone also showed a reduction in perfor-
mance as the quantity of modules was increased, the effect was not as significant as
expected; and for the full 52 modules, actually performed slightly better at accuracy,
though still within 1o. Similarly excluding both the z coordinate and explicit nor-
malisation showed a further drop in accuracy and balanced accuracy as the number
of modules was increased, but with a slight rise for 52 modules. This, along with the
separate networks results, suggests that, when considering only a single pair of hits

at a time, the location of the two hits along the length of the detector appears to

138



be of surprisingly little value when assessing if the hits form a track segment. One
possible influencing factor for this may be the layout of the VELO. The detector
consists of a series of sensitive planes arranged in a row, as opposed to a all encom-
passing barrel design. Valid tracks, and so their segments, are likely to be at small

angles to the beamline regardless of position along its length.

13.1.4 Training Bias

Motivated in large part by the differences in the balance of true positive rate and
true negative rate performance between the Basic and Hybrid models, we introduced
a multiplier to the positive weighting bias in the loss function. Values greater than 1
increase the effect of positive examples on the loss, effectively equivalent to increasing
the proportion of positive examples encountered, thus encouraging more importance
to be placed on classifying them correctly over negative ones, and the converse for
lower values.

There is also a potential benefit for using a multiplier above 1 in training the pair
stage, in order to ensure all true segments proceed to the triplet stage; as the triplet
stage cannot correct for those mistakenly discarded by the pair stage, but can reject

additional edges misclassified as being part of a track.

Pair Network

From Figure 13.4 we can see that, as expected, the true positive rate improves
at the expense of the true negative rate as the multiplier is increased, and visa
versa. Balanced accuracy remains consistent for multipliers bellow 1, at least well
within 1o, but begins to degrade above 1. For multipliers larger than 1, the true
negative rate seems to be more sensitive, its performance decreasing faster than the
improvement in the true positive rate, resulting in a reduction in balanced accuracy.
Accuracy on the other hand generally improves as the multiplier is lowered. As
an event contains significantly more false edges than true, the improvement in true
negative rate performance appears to be sufficient to surpass the loss in the true
negative rate.

The Basic Pair Network recovers the behaviour of the Hybrid Pair Network at
low multiplier values. However, the combined Hybrid sampling scheme is statistically
equivalent to using an effective multiplier of approximately 0.8, while the Basic Pair
Network does not exhibit similar behaviour until around 0.5; though is within 1o by

0.8. The Hybrid Network utilises different instances for different module combina-
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Figure 13.4: Performance of the Basic Pair Network with a multiplicative
value applied to the positive weighting bias used in the loss during train-
ing. The Hybrid Pair Network performance is indicated by a dotted line.

tions, each trained with separate samples. These samples are individually equivalent
to effective multipliers between 0.67 and 1.51 on the overall positive weighting bias
equivalent to a balance. But, if we take the ratios of positive and negative exam-
ples for each module combination separately, and the positive weighting required for
balance for each, the Hybrid sampling scheme has an effective multiplier of approx-

imately 0.8 for all module combinations separately.

Triplet Network

Several sets of Basic Triplet Networks were trained using a multiplier applied to
the loss positive weighting bias in the same manner. One set of networks, shown
in Figure 13.5(a), used the regular Basic Pair Network, with no multiplier, for the
pair stage. Other networks, shown in Figure 13.5(b), instead used the Basic Pair
Network, as shown above, with the same corresponding multiplier. Additional Triplet
Networks were trained with a multiplier applied during the Pair Network training,

but with no multiplier during Triplet Network training. Due to the difference in
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Figure 13.5: Performance of the Basic Triplet Network with a multiplica-
tive value applied to the positive weighting bias used in the loss during
training, using (a) the regular Pair Network for the pair stage with no
multiplier applied, and (b) the Pair Network with the same corresponding
multiplier for each pair stage. The Hybrid Pair Network performance is
indicated by a dotted line.

edges that are retained onwards to the triplet graph, any Triplet Network using
a Pair Network with a multiplier applied has a different positive weighting bias,
calculated for balance as usual, with any multiplier applied subsequently.

Where a multiplier is only applied to the Triplet Network, we see similar be-
haviour to that in Figure 13.4, with the true positive rate showing improvement at
the expense of the true negative rate as the multiplier is increased; though the effect
is in general less pronounced. Where a multiplier is applied during the training of
both stages, accuracy and balanced accuracy are fairly flat, with a slight rise at high
values, and a dip at low values due to a drop in the true positive rate. The true

negative rate is erratic, but with large error values is relatively insignificant.

Full Model

Performance of the Basic Model, with a multiplier applied to the loss positive
weighting during training of the Pair Network, the Triplet Network, or both, at
tackling the full tracking problem is illustrated in Figure 13.6. Efficiency is fairly
consistent across the board, except at low values where we see a drop, particularly
when the multiplier was applied in both stages. The clone rate is particularly similar

for all models, with a slight reduction as the multiplier increases, and a rise at low
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Figure 13.6: Performance of the Basic Pair Network with a multiplicative
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values for the both-stage models with a corresponding dip in efficiency. However the
fake rate notably increases as the multiplier increases, and shows considerably more,
and erratic, variation between the different multiplier schemes. FErrors similarly
increase, and the multiplier schemes always remain within 1o of each other. This
may again be a largely statistical effect as the fake rate gets comparatively closer to
0, as the statistical contributions from any one event can never go below 0.

For all three models with a multiplier of 1, the fake rate appears an outlier. This
data point is the regular Basic Model as used previously, as a multiplier of 1 is the
same as not having a multiplier at all, which is why all three converge to the same
result, which, with the erratic fake rate makes it stand out more. Even still, it is
higher than several of its neighbouring data points and has a comparatively larger
error. Looking back to Figures 13.5(a) and (b), the Triplet Networks corresponding
accuracy and true negative rates do appear to deviate from their neighbours, however

compared to the error the deviation is tiny.
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In comparison to the Hybrid Model, the only time within the range examined
here where the efficiency drops to match is for the variation employing multipliers to
both parts of between 0.4 and 0.5. The Clone rate for all multiplier schemes reaches
that of the Hybrid Model at low values, though it is so close throughout as to be
negligible. For the fake rate, all multiplier schemes generally improve towards that
of the Hybrid Model as the multiplier is decreased.

From the results of models in which only the pair stage was altered, it appears
that biasing the pair stage to ensure true segments progress to the triplet stage had
little or no effect at boosting the efficiency. Rather, the reverse may be true, and
that a mild bias to improve the rejection fake segments, potentially in the triplet

stage, may be desirable.

13.1.5 Network Configuration

Figure 13.7 illustrates the performance of Basic Pair Networks employing a range
of different sized layers and numbers of layers for the fully connected feed forward
neural network used within. Neurons per layer indicates the number of neurons in
the hidden layers, while the final layer always uses a single neuron in order to produce
a single score value for each edge.

The accuracy of the various Basic Pair Networks is erratic, while the balanced
accuracy is much tighter between the configurations, with layer sizes of 24 neurons
and above particularly close. Generally, we see a slight improvement when more
layers are used, and somewhat for larger sized layers. Setups with few layers appear
to struggle when partnered with larger layer sizes, and our default Basic Pair Network
setup of 3 size 16 layers also struggled compared to the other setups, though with the
smallest overall size examined this is somewhat expected. This would suggest that
using at least 24 neurons per layer may be an improvement over the default Basic
Pair Network setup, but with such close balanced accuracies from there and above,
any further increase of either number or size of layers may provide little additional
benefit.
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Figure 13.7: Performance of the Basic Pair Network with a range of
different size neural network configurations. Neurons per layer indicates
the number of neurons in the hidden layers, with the final layer always
using a single neuron. The Hybrid Pair Network performance is indicated
with a dotted line. Note the horizontal axis uses a logarithmic scale.

13.2 Interaction Network Models

13.2.1 Comparison With the Hybrid and Basic Models
Pair Network

From Figure 13.8(a), we can see that the Interaction Pair Network shows a no-
ticeable improvement in both accuracy and balanced accuracy over the Hybrid and
Basic Pair Networks. The Interaction Pair Network true positive rate is a further
improvement over the Basic Pair Network, and the true negative rate is better than
the Hybrid Pair Network. These results also exhibit comparatively smaller errors,
particularly the true positive rate, indicating a more consistent performance. Addi-
tionally, while other networks shown so far have had roughly comparable ROC AUC,
the Interaction Pair Network is higher by an order of magnitude; from 0.9970 for
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Figure 13.8: Performance metrics of the Interaction (a) Pair Network, (b)
Triplet Network, and (c) the full model at the complete tracking problem,
along side the Hybrid and Basic Models, and respective components. In
addition, two mixed models using one of the Interaction or Basic for each
stage are included in (b) and (c); where the two names given indicate the
networks used for the Pair and Triplet stages respectively.
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the Hybrid and regular Basic Pair Networks, to 0.9997. Together this suggests the
Interaction Pair Network presents an improvement in both identifying parts of real

tracks and discarding false segments.

Triplet Network

However, the Interaction Triplet Network, as shown in Figure 13.8(b), exhibits
comparable accuracy and balanced accuracy to the Hybrid Triplet Network. Break-
ing this down, the true positive rate is noticeably worse than either model, with a
slightly improved true negative rate. Unlike with Basic or Hybrid Pair Networks,
the strong performance of the Interaction Pair Network leads to positive weighting
under 1 when training subsequent Triplet Networks; inverting the impact of the true
positive and negative rates on balance accuracy.

As mentioned in Section 13.1.1, significant differences in Pair Network perfor-
mance can cloud comparison between Triplet Networks. Therefore to compare the
Basic and Interaction Triplet Networks more directly, a model was trained using
the Basic Pair Network for the pair stage, but with the Interaction Triplet Network
for the triplet stage, and is indicated as Basic Int. This model returned the best
accuracy of any triplet network examined here, but peculiarly a balanced accuracy
lower than either of the three previous models. From the true positive rate, the net-
work struggled noticeably at identifying true track segments among those returned
by the Interaction Pair Network, possibly a consequence of a strong performance at
identifying and excluding false segments in the previous stage. However, a high true
negative rate, and with a comparatively small error, indicates the network outper-
formed the full Basic Model at classifying false segments in this stage, though well
within 1o error.

Additionally, an inverse version in which a Basic Triplet Network was coupled
with the Interaction Pair Network was trained, and is indicated as Int. Basic. This
presented a worse accuracy and balanced accuracy than using the regular Basic
Triplet Network, with a poor true positive rate as with the full Interaction version
and a slightly lower true negative rate coupled with a significantly larger error. It
also gave a noticeably lower ROC AUC value.

Overall, these results suggest the Interaction Triplet Network struggles compared
to the Hybrid or Basic Triplet Networks, regardless of what Pair Network it is part-
nered with. Though the Interaction Networks feature more layers overall than the
Basic Networks, the layers themselves contain less neurons and are spread across

subcomponent neural networks, which may not be sufficient when encountering the
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triplet classification task; perhaps as the triplet task involves more input variables

due to encompassing three hits.

Full Model

Performance of the Hybrid, Basic and Interaction Models at the full tracking
problem, along with the mixed network models, is given in Figure 13.8(c). No-
ticeably, the Interaction Model produced a comparatively negligible fake rate of
0.000019 4 0.000404; two orders of magnitude smaller than the Hybrid Model. This
is accompanied by a slightly improved clone rate, and an efficiency close, but slightly
less than, that of the Basic Model, with both well within 1o. While the full Inter-
action Model generally appears an improvement over the other models, the Pair
Network’s strong true positive rate is not translating through to an improved effi-
ciency or a particularly significant reduction in clone tracks.

Using the Interaction Pair Network with a Basic Triplet Network ultimately per-
formed worse than the complete Interaction Model in all three metrics. On the other
hand, using a Basic Pair Network with the Interaction Triplet Network provided a
similar efficiency and fake rate to the complete Interaction Model, but also a slightly

higher clone rate.

13.2.2 Message Reduction Function

Figure 13.9 describes the performance of a set of Interaction Pair Stage Networks
using a variety different aggregation functions to carry out message passing reduc-
tion process, as described in Section 12.3.2; in which the sum, mean, maximum or
minimum of respective features of the incoming edge attributes is taken. All four
aggregation functions examined performed remarkably similarly. Naively, we would
have expected the choice of function to have been more impactful, and perhaps that
summation, which is used throughout the other Interaction Networks presented, may
have performed the worst, as it is at the mercy of variations in the number of hits.

While companion Interaction Triplet Network were trained using the same set of
aggregation functions, the mean, maximum and minimum variants consistently con-

verged to predicting true for all segments presented, as mentioned in Section 12.3.3.
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Figure 13.9: Performance metrics of the Interaction Pair Stage Network
using different message reduction functions, alongside the Hybrid and
Basic Models.
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Figure 13.10: Performance of the Interaction pair stage network with
different skip connections, alongside the Hybrid and Basic pair stage net-
works for comparison.
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13.2.3 Skip Connection

Several Interaction Pair Networks using alternative forms of skip connection were
examined, within which additional inputs are passed to the edge and vertex update
networks from an earlier part of the overall network, with the results shown in Fig-
ure 13.10. In the default configuration, denoted as latent, the initial latent features
as produced by the encoder subnetworks are passed as additional inputs. Alterna-
tively, in the variant denoted as inputs, the original features taken as inputs from
the edges or vertices are passed, bypassing the encoder subnetworks. Denoted as
differences, another instead passes the difference between the output of the previous
iteration, which the update subnetworks receive as their usual inputs, and the inputs
that previous iteration received. For the first iteration, 0’s are passed. Finally, a
variant not using any skip connection was also trained, denoted as none. In this
case, the edge and vertex update subnetworks have a smaller number of inputs, as
there are no skip connection inputs.

All four forms of skip connection led to remarkably consistent results. Using the
original inputs showed a marginally lower and larger error in the true negative rate,
leading to a small decrease in accuracy. Due to the ambiguity in ordering when
considering reverse direction edges, we would naively have expected a larger drop
in performance. The use of differences led to a drop in the true positive rate, par-
ticularly impacting the balanced accuracy. Not using a skip connection if anything
showed a small improvement in true negative rate, leading to slightly improved ac-
curacy. This suggests that the skip connection, for the Pair Network at least, is
not providing a meaningful contribution, and so gives a potential direction to reduce

computational costs by removing it.

13.2.4 TIteration Section

Several Interaction Models were trained with the iterative section performed a
varying number of times, with the results displayed in Figure 13.11. Within the
Interaction Model, the iterative section is where the message passing paradigm oc-
curs, with each iteration essentially propagating information one edge further. Each

model used the same number of iterations for both Pair and Triplet Networks.

Pair Network

From Figure 13.11(a) we can see the Interaction Pair Networks performed consis-

tently to one another, with some variation in accuracy owing to fluctuations between
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Figure 13.11: Performance metrics of the Interaction (a) Pair Network,
(b) Triplet Network, and (c) the full model at the complete tracking
problem with the iterative section performed a variable number of times.
Each variant was separately trained, and the corresponding Hybrid Pair
Network performance is indicated with a dotted line.
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the true positive and true negative rates.

Triplet Network

However, as can be seen in Figure 13.11(b), the corresponding Interaction Triplet
Networks exhibited far more variety in performance. Using only 2 iterations per-
formed comparatively poorly, and with all metrics exhibiting significantly larger
errors. While demonstrating the highest true positive rate among the Triplet Net-
works, and a marginally higher accuracy, a low true negative rate significantly brings
down its balanced accuracy; its difficulty in identifying fake track segments washing
out any gain from identifying true segments.

Going to 4 iterations and above, as the number of iterations increases the true
positive rate slowly improves, while the true negative rate tends steadily downwards;
resulting in a consistent accuracy, but a slowly dropping balanced accuracy, though
the differences are relatively small. However at 12 iterations, the true positive rate
drops sharply, bringing both the accuracy and balanced accuracy down. Though
2 iterations appears to be insufficient for useful information to spread, too many
iterations also causes the Interaction Triplet Network to struggle, perhaps washing

out local information.

Full Model

In the full model results, given in Figure 13.11(c), we can see the behaviour of the
Triplet Network continuing through. At low iterations, efficiency is improved, but
clone and fake rates also rise. With high numbers of iterations, efficiency begins to

drop and clone rate increase, suggesting tracks are being split by missing segments.

13.2.5 Network Configurations
Pair Network

Figure 13.12 describes the performance of several Interaction Pair Networks using
a range of different sized layers and numbers of layers for each of the five subcom-
ponent fully connected feed forward neural networks employed within. Neurons per
layer indicates the number of neurons in the hidden layers, while the final layer al-
ways uses the number of neurons needed to produce the required number of output
values.

The various Pair Networks shown gave fairly consistent results. As the number of

neurons per layer increases, configurations employing 3 layers displayed marginally
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Figure 13.12: Performance of the Interaction Pair Network, using a range
of different configurations for each of the five subcomponent neural net-
works within. Neurons per layer indicates the number of neurons in the
hidden layers, with the final layer always using the required number of
outputs. The Hybrid Pair Network performance is indicated with a dot-
ted line. Note the horizontal axis uses a logarithmic scale.

higher performance than using 2, though they all still remain well within 1o of each
other. The divergence in behaviour between the two with 32 neurons per layer is a
peculiar outlier, but again still within 1o. The single 4 layer configuration presented
closely matches the performance of the largest 3 layer configuration, though with
only 32 neurons per layer compared to 48. Additional 4 layer configurations were
trained, along with 6 configurations. However it was later realised they had failed
to train satisfactorily and would continually predict all edges as part of a track; and
so these models are not presented.

Overall, increasing the size and number of layers might offer some improvement
over the default Basic Pair Network configuration, but only marginally. Equally as

the Pair Network employs five subcomponent neural networks, this has a significant
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Figure 13.13: Performance metrics of the Interaction Triplet Stage Net-
work, using a range of different configurations for each of the five subcom-
ponent neural networks within, along side the Hybrid, Basic and default
configuration Interaction Triplet Networks. a layers b denotes the use of
a layers, with b neurons in the hidden layers, with the final layer always
using the required number of outputs.

impact on the overall size of the model; and given the failure of the larger models
trialled here, more neurons may potentially be a cause of, or exacerbate, issues in

training.

Triplet Network

To accompany Section 13.2.1, several Interaction Triplet Networks were created
using larger network configurations, closer to those used in the Basic Triplet Network.
These were all trained in conjunction with the default Interaction Pair Network, and
their performance is described in Figure 13.13.

Increasing the number of neurons in the hidden layers brought an improvement
to the true positive rate, while the true negative rate dropped only very slightly;
leading to an improvement in both the accuracy and balanced accuracy. Adding an
additional hidden layer left the accuracy and balanced accuracy relatively unchanged,
the true positive and negative rates marginally increasing and decreasing respectively.
Further doubling the neurons per layer caused the true positive rate to drop, and the
true negative rate to rise, leading to a small drop in the accuracy. Nevertheless, any
changes were small compared to the errors, so the significance of any improvement

or decline is relatively minor.
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Figure 13.14: Performance metrics of the full Hybrid, Basic and Inter-
action Models at the complete tracking problem, both with and without
the use of an additional missing segment filter.

13.2.6 Missing Segments Filter

The full Hybrid, Basic and Interaction Models were also evaluated with the in-
clusion of a missing segments filter, designed to correct for tracks that had been split
by a missed segment, as described in Section 12.3.1. As the filter is applied at the
end of the full tracking stage, the same component networks were used.

From the results shown in Figure 13.14, we can see that in all three models the
filter was successful in reducing the number of duplicate tracks. One concern was
that the filter may reduce a model’s efficiency, by effectively overriding where a model
had identified two distinct tracks. However this appears not to be the case, and the
efficiency of all three models remains constant. Similarly the fake rate is essentially
uneffected by use of the filter.
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Chapter 14
Discussion

With models such as that in [270] and the Hybrid Model focusing on augment-
ing approaches similar to that currently employed by the detector, our aim was to
develop a machine learning based pattern recognition with the capacity to draw in-
ferences from an event as a whole. This led us to explore a Graph Neural Network
based approach, which through the message passing paradigm could conceivably
be sensitive to all hits within an event when making its assessments; elevating an
otherwise local approach into a global one. Noting the success of an Interaction
Network architecture®¥ in context of the ATLAS experiment 180181182 " this lead to
implementing a Interaction Network based model, which demonstrated potential for

improved performance over a non-graph based approach.

Given it served as the basis upon which our overarching framework was designed,
an existing neural network model for VELO tracking, referred to here as the Hybrid
Model, was utilised as a baseline against which to evaluate performance. Overall, the
Basic graph model performed on a similar, abet marginally worse, level to the Hybrid
model. The two neural network stages traded a better performance at identifying true
track segments for worse at false segments, translating for the full model into slightly
improved efficiency and reduction in duplicate tracks, but at the cost of an increase
in fake tracks. Given that the Basic Model was designed to intentionally emulate
the actions of the Hybrid Model, but in the context of a graph based representation
of event data, similar behaviour was to be expected; significant differences would
indicate issues in the Basic model’s implementation. Neither the use of separate
networks for each module combination, nor introducing a bias to the loss weighting
to approximate the sampling based learning method used in training the Hybrid
networks, was able to adequately account the differences in balance between true

positive and true negative performances of the component stages; through, these
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two proposals were not examined together. Beyond that, results suggest a multiplier

of .5-.8 may be preferential to perfect balance in order to keep the fake rate down.

The variations we examined generally produced only small deviations in perfor-
mance. Increasing the complexity of the component network architectures provided
little improvement, though in the context of a model encompassing the full 52 mod-
ules it appears increasing the size of the networks may prove more impactful. Biasing
the loss during training to favour identification of false edges seems potentially bene-
ficial in reducing the fake rate, and excluding the z coordinate as an input performed

unexpectedly well.

The Interaction model on the other hand showed a tentative improvement over
the Hybrid and Basic models with a significant reduction in the number of fake
tracks, though coupled with only a slight improvement in reducing duplicates, and a
very slightly worse efficiency over the Basic Model. The Interaction Network notably
outperformed both compared models when used for the pair stage, but struggled as
the triplet stage. From the worse performance of using the Basic Network for the
triplet stage with the Interaction Pair Network, we can infer that this was at least
somewhat down to the Interaction Pair Network’s strengths providing a more difficult
dataset. Increasing the size of the component neural networks for either stage had

relatively limited effect, and potentially presented training issues.

Altering or removing the skip connection had little effect on the Interaction Pair
Network performance, suggesting that this element contributed little to the improved
performance over the Basic Pair Network. Equally using different message reduction
functions did not make a particular impact. Naively we expected summation to have
perform worse, however the Interaction Network based model examined for ATLAS
track finding in [181] also employed summation, and in our context it proved the more
stable for training the triplet stage network. The number of iterations performed did
have a noticeable impact on performance of the Triplet stage, and subsequently on the
final tracking, suggesting that message passing indeed played a role in the Interaction
Pair Network’s strong performance, and that too few or too many iterations would

lead to degraded performance.

Including an additional stage to look for broken tracks had the potential to
decrease the efficiency, through amalgamating two otherwise correct and separate
tracks. However for the settings trialled this was not the case, and it successfully
reduced the number of duplicate tracks. Although these trails offer some insight into
optimising the configuration of the Interaction Networks, most aspects were only

examined in isolation. It is plausible, for example, that the use of a skip connection
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may have a greater effect when more iterations are used, as current features become
further and further disconnected from their original meanings and values in later

iterations.

14.1 Limitations

A significant limitation of our results lies with the relative size of errors compared
to the differences in performance between models. In many cases, differences are well
within 1o of each other, and so any conclusions drawn must be tentative. Given the
naive way in which our errors are calculated (see Section 12.4.1), an increased sample
size may not alleviate this. The spread characterised by o is due at least in part to the
variation in performance between different events, not of certainty in measurement
of said performance. Increased statistics can provide a more accurate picture of this
spread, but does not change it. Further work would likely be better served in seeking
alternative approaches to assessing the accuracy of such performance measurements.
Ultimately though, a significant factor in judging performance, both between vari-
ations and in general, lies in the relative importance placed on the efficiency, clone
and fake rates to one another. Many of the parameters varied in these studies shifted
the balance of the pair and triplet stage networks’ performance between identifying
true and fake track segments.

In hindsight, it would have been informative to have followed the lead of other
studies on VELO pattern recognition algorithms, and have evaluated our perfor-
mance on important subsets of tracks, such as those within the detector’s nominal
2 < n < 5 acceptance, or on events of particular interest, such as those featuring B
hadrons. While we have focused on the VELO, LHCb overall is a forward arm de-
tector, and an algorithms performance at certain tracks is natural of greater interest
to its physics program. Equally, it would have been beneficial to compare against
the current pattern recognition stage algorithm employed by LHCb, applied to our
datasets, but which unfortunately proved unfeasible.

Though the majority of models presented here were restricted to only half the
detector, those trained and evaluated on the full 52 modules performed relatively
consistent to their 26 module counterparts. Thus the results here can be considered
at least indicative of full detector performance, which is sufficient for a proof-of-
concept. However, while our models considering the full 52 modules accounted for
tracks involving hits between modules on opposite sides, we failed to account for

tracks, if in a minority, with hits on both modules of the same station, due to angled
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trajectories or the overlap between the modules sensitive areas.

Many of our studies focused on the Pair Network stage. While it could be con-
sidered indicative of a potential triplet stage implementation of the same model, the
performance of the triplet stage is arguably a more important consideration, as its
output is that subsequently used to construct tracks. While the triplet stage was
dependant on the choice of pair stage employed in training, as the first step the pair
stage was more convenient to experiment with. Then again, we focused predomi-
nantly on modules using the same configuration for both stages, but this need not
be the case. Not only do the two component models not need to be the same, they
can take completely different forms, a direction we did not fully explore.

As discussed in Section 12.3.3, issues were identified relating to the post-epoch
validation loss used to gauge a model’s performance. Early tests indicate this is a
technical issue than could be solved with further work. Separate unresolved issues
were encountered in training the Interaction Model for use in the triplet stage, sug-
gesting the network is becoming stuck in a local minima. From issues encountered in
training the Interaction Model for the pair stage, using additional layers and neurons
per layer, there are tentative indications that the overall number of layers or neurons,
or for a specific component network, might have a bearing on this. Optimisation of
the training process was an area we did not greatly explore after establishing a work-
ing approach with the Basic Network. Given the issues encountered, lowering the
learning rate or implementing a steadily decreasing learning rate, are among other
potential directions that may prove beneficial. Equally, the issue may simply lie with
our implementation, though efforts were of course taken to hunt for corresponding

issues in our code.

14.2 Execution Time

While the results presented here suggest a Graph Neural Networks based ap-
proach to tracking finding within the VELO may offer improved reconstruction
quality, there is a significant issue we have so far not discussed. Due to the high
throughput requirements brought by LHCb’s move to full online reconstruction, cur-
rent implementations of machine learning are limited to simpler methods such as
fully connected feed forward neural networks and boosted decision trees. Though
research with more advanced approaches is ongoing, GNN are generally slower than
other more direct methods, and the need for graph construction, twice, in our model

caries a significant time cost63].
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We approached the problem of applying GNN to VELO tracking without an
architecture initially in mind, and so our implementation focused on providing a
flexible system with which to explore many models without significant rewriting
of code. A dedicated model could be implemented in a significantly more efficient
manner than was used, and given this we did not look to make dedicated measure-
ments of execution time. For example, due to the computing packages used, all
graphs were implemented as directed graphs. For models seeking to exploit message
passing, as reverse edges have essentially duplicate features, an ’effective’ undirected
graph might be used to reduce the size of an event, identifying when an edge is to
be used in the reverse direction and performing any necessary modifications as they
are read. However, this would be a material change for any model using the mes-
sage passing principal, as after the first application of a component network to any
edge, the updated features on opposite directed edges need not correspond to one
another; though the approach could be used only at the beginning to minimise the
data stored at that time. Going further, the nature of our data means we know the
rough structure and edge relations a graph representation will take; edges do not, for
example, have the potential to connect just any vertices, but must follow the station
structure of the VELO. By employing this domain knowledge, it may be possible
to further translate the problem into a more efficient form than an explicit graph.
Ultimately, what matters is how the data is handled and the calculations carried out,
not that it is done in a form which can readily be interpreted as a graph. Looking to
potential hardware, there has already been efforts to implement Interaction Network

style models for tracking on FPGAs!'®9.

Nevertheless, GNN are still relatively slow in comparison to other neural network
methods, and our algorithm was not designed with efficiency in mind; significant

development and refinement would be needed to achieve viable timing efficiency.

One approach used in various existing algorithms, such as in [30], is the introduc-
tion of a search window in ¢, limiting the combinations of hits considered to within
a range of ¢ of one another. In our context, this would amount to constructing
edges in the pair graph only between vertices representing hits within the window,
or pairs with comparable slopes in the triplet graph. However, such windows are
usually used for seed tracks, rather than on all potential pairings, with separate
windows calculated when looking to extend each seed to hits on another station;
while graph construction is carried out across the length of the VELO. Then again,
the surprisingly small effect that excluding 2z as an input had on the Basic Network

performance suggests that location along the detectors length is not of particular
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importance. The significant issue is that this approach has the potential to exclude
highly inclined tracks who, if while small in number, are important to LHCb’s physics
program!?!. A potential alternative would be a nearest N approach, connecting a
vertex to its nearest neighbours in ¢ each way, instead of a window. This does
however carry a similar potential to exclude correct partners in highly dense regions.

Another direction would be to consider a more hybridised approach, using the
model to construct pair seeds and forwarding them as is performed in other al-
gorithms; relying on the improved performance of the Interaction Network in the
pairing stage alone and circumventing construction of a triplet graph. Alternatively,
the triplet stage could be performed without the need for a triplet graph by using a

more basic neural network as in the Hybrid Model.

14.3 Potential Directions

Given the number of parameters within and other variations possible with the
Interaction Model, it has not been feasible to investigate all possibilities. As men-
tioned before, we did not particularly examine optimisation of our training process.
Neither did we examine the variations of the final construction of tracks, such as the
thresholds for combining triplets. As discussed previously, we often focused on using
the same configuration for both the Pair and Triplet stages. The neural networks
within the Interaction Model architecture itself do not need to be the same either;
as neural networks can be both too big or too small for a given task, so too may the
various components networks the have different optimum architectures.

In terms of the Interaction Model implemented here, there are numerous further

(153] allows

directions that can be explored. The original interaction network model
for a global attribute, enabling general information on a given graph to be encoded
and utilised. As there were no clear properties which may have proved useful, this
was not included in our implementation. However, some form of event characterising
information could prove useful to pattern recognition, perhaps detector configuration
information, or potentially using a graph classification neural network to generate a
set of characteristic latent features without having to explicitly identify what they
are.

To ensure consistency, some edge features in the graphs were swapped or inverted
compared to their opposite direction partner. But alternatively, using our knowl-
edge of how our graphs will always be structured, the aggregation of incoming edge

attributes could be split in two; with edges connected to vertices representing up-
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stream and downstream hits aggregated separately and used as separate inputs to
the vertex update network. This would not only sidestep the issue of needing to alter
features so that the edge update network does not see edges ‘backwards’, but indi-
rectly incorporate the domain knowledge distinction between modules up and down
stream of each other. It would even be possible to utilise separate network instances
of the edge update network for upstream and downstream directions, though it is

doubtful, given the nature of tracks, that this would be advantageous.

Though we implemented a track forwarding style filter stage to reduce clone
tracks, other potential post-track construction extensions are possible, and existing
algorithms offer various examples. However, given the increased calculations such
methods bring, filtering methods to reduce combinatorics prior to graph construction,
such as the ¢ window or N nearest neighbours approaches discussed earlier, are likely

of more interest initially.

In the context of tracking within the VELO, the complexity, and so required
calculations, introduced by a GNN method over simpler architectures may not be
worthwhile under current constraints for straight tracks uninfluenced by a magnetic
field. However, as demonstrated in [182], a graph is not limited to representing data
solely within a single tracking subdetector. A logical extension would be to consider
if a graph and GNN based method could instead perform pattern recognition across
the entire LHCDb tracking system. This would in a way sidestep some of the cost
of constructing graph representations, as such an algorithm would be in place of
track finding across multiple subdetectors. One consideration is that doing so would
naturally increase the size of graphs, and similarly calculations performed over them.

Going further, GNN have been adapted to operate on heterogenous graphs!234289:

graphs which contain distinct types of edge and vertex. Each type of edge or vertex
possesses its own form of attribute, with features representing different properties.
This conceivably opens up the more radical possibility of incorporating multiple
forms of measurement from non tracking subdetectors into a single graph repre-
sentation of an event, such as calorimeter measurements. In [187], a GNN model,
explored in the same paper for track finding in tracking, was modified to not only
perform calorimeter clustering, but identify particle type at the same time ", With
this in mind, it is conceivable that, through incorporating the measurements of mul-
tiple subdetectors into a heterogenous graph, one could potentially incorporate other
event reconstruction tasks into a GNN based algorithm of some sort; or potentially
boost track reconstruction efforts. Indeed, a study along these lines has already

been published in [187]. Combining tracking, electromagnetic and hadron calorime-
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ter measurements into a single heterogeneous graph representation, they explored
the potential of a general purpose GNN for event reconstruction 162183,

It is also worth considering that, rather than an edge classification task, track
finding can instead be interpreted as a segmentation problem. Image segmentation
is a well-trodden field in computer vision, and with the relation between CNN and

11286

GNN there is a growing interest in graph segmentatio I, and already there have

been moves to approach tracking in this manner*62:287

14.4 Related Projects

In recent years, a formal project to adapt the Exa.TrkX tracking pipeline (see Sec-
tion 8.3.3) to the LHCb VELO has independently been underway. Named ETX4VELO,
the model utilises nearest neighbour-based graph construction, and implements addi-
tional stages with respect to the Exa.TrkX model 63288 An exploration of ETX4VELO
performance can be found in [288], and documentation on the model can be found
at [289].
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Chapter 15
Conclusion

Fundamental particles are small, so small we must rely on specialised machines
to examine what takes place at their scale. Among these, tracking detectors allow
us to pinpoint particles’ locations through their interactions. Though research has
often driven their development, particle trackers can be found across a broad range
of practical applications. But even possessing the tools to make such measurements,
we still need to interpret our observations in order to understand their meaning, and
deduce what has taken place.

Able to learn patterns from data without explicit prior knowledge and capable
of considerable computational speeds compared to more direct methods, neural net-
works are eminently suitable as a tool for data-handling tasks, and are thus seeing
increasing use in cutting edge research. Not so much a single model but a core
concept and common elements, neural networks are a versatile tool than can be em-
ployed in many forms. With this in mind, we undertook, and have explored here, a
pair of projects looking to leverage neural network’s strengths within the context of
particle tracking.

While proton computed tomography has great potential for sidestepping issues
with x-ray based treatment planning in proton therapy, a long standing problem lies
in the need to reconstruct proton tracks individually, carrying a significant compu-
tational burden. Through the use of a neural network, we successfully demonstrated
that machine learning could be leveraged to match, and in some cases exceed the
accuracy of the standard algebraic method, and do so at a significantly shorter time
scale.

Within the LHCb experiment sits the VELO, a cutting edge tracking detector
nestled immediately around the interaction point itself. Making measurements vital

to the experiments event reconstruction efforts, individual particle tracks must be
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distinguished from among the multitude of measurements made in each collision
event. Seeking a neural network model with the capacity to draw inferences from
an event as a whole, we implemented a proof-of-concept graph neural network based
design. This approach showed potential improvement in reconstruction quality over
existing trials. It comes at the cost of computational demand, but one which will
likely shrink as technology and GNN methods develop further.

Though both lie firmly within the domain of tracking, they present fundamentally
different tasks, and thus lend themselves to different approaches. In pattern recogni-
tion, we are presented with analysing a field of individual measurements to deducing
those made by a common particle, a form of classification or segmentation task. On
the other hand, predicting a particle’s path given its end points is an interpolation
task, and in many ways more akin to track fitting in an event reconstruction con-
text. Nevertheless, with the versatility of neural networks and myriad of approaches
available, we have demonstrated they can be useful tools with which to address these
different challenges. Given machine learning, and neural networks in particular, is
an active and rapidly developing field, with the aid of research, such as that detailed
here, we will doubtlessly see many new and varied applications developed for particle

tracking, fundamental research and beyond.
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Appendix B

VELO Module Positions

Each station within the VELO is numbered consecutively from 0 to 25, beginning
with the negative z-direction. Similarly, every module is assigned a number 0 — 51,
with even and odd numbers corresponding to sides A and C respectively, and equally
all sensor tiles 0 — 2071, The position of each module in z, identified in the above
manner and with corresponding station and sensors, is provided in Table B.1. Due
to material thicknesses and tile arrangement, recorded position measurements are
marginally displaced in z from those indicated here. Further details on nomenclature
can be found in [250].
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Station C-side A-side Mean z
Module  Sensors 2z [mm] | Module  Sensors 2z [mm] [mm]
0 0 0-3 —287.50 1 4 -7 —275.00 | —281.25
1 2 8§ —11 —262.50 3 12 —15  —250.00 | —256.25
2 4 16 —19  —237.50 ) 20—-23 —225.00 | —231.25
3 6 24 —27  —212.50 7 28 —31  —200.00 | —206.25
4 8 32—-35 —137.50 9 36 -39 —125.00 | —131.25
5 10 40 — 43 —62.50 11 44 — 47 —50.00 | —56.25
6 12 48 — 51 —37.50 13 52 — 55 —25.00 | —31.25
7 14 56 — 59 —12.5 15 60 — 63 0.00 —6.25
8 16 64 — 67 12.50 17 68 — 71 25.00 18.75
9 18 72 =75 37.50 19 76 — 79 50.00 43.75
10 20 80 — 83 62.50 21 84 — 87 75.00 68.75
11 22 88 — 91 87.50 23 92 -95 100.00 93.75
12 24 96 — 99 112.50 25 100 — 103 125.00 118.75
13 26 104 — 107 137.50 27 108 — 111  150.00 143.75
14 28 112 — 115  162.50 29 116 — 119  175.00 168.75
15 30 120 — 123 187.50 31 124 — 127 200.00 | 193.75
16 32 128 — 131  212.50 33 132 — 135  225.00 218.75
17 34 136 — 139  237.50 35 140 — 143 250.00 243.75
18 36 144 — 147 262.50 37 148 — 151 275.00 268.75
19 38 152 — 155  312.50 39 156 — 159  325.00 318.75
20 40 160 — 168  387.50 41 164 — 167  400.00 | 396.75
21 42 168 — 173 487.50 43 172 — 175  500.00 493.75
22 44 176 — 179 587.50 45 180 — 183  600.00 593.75
23 46 184 — 187  637.50 47 188 — 191  650.00 643.75
24 48 192 — 195  687.50 49 196 — 199  700.00 | 693.75
25 50 200 — 203  737.50 o1 204 — 207  750.00 743.75

Table B.1: Overview of the VELO module positions. Adapted from [250].
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Appendix C

Results Tables for Chapter 13

Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +
Hybrid | 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Basic | 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Table C.1: Results corresponding to Figure 13.1(a).
Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +
Hybrid | 0.9733 | 0.015544 | 0.9736 | 0.021810 | 0.9822 | 0.011681 | 0.9650 | 0.041860 | 0.9963
Basic | 0.9694 | 0.017429 | 0.9757 | 0.021307 | 0.9914 | 0.007549 | 0.9601 | 0.041762 | 0.9973
Table C.2: Results corresponding to Figure 13.1(b).
Model Efficiency Clone Rate Fake Rate
B B B
Hybrid | 0.9296 | 0.037848 | 0.0158 | 0.015513 | 0.0020 | 0.004903
Basic | 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888

Table C.3: Results corresponding to Figure 13.1(c).

2

11




Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +

Hybrid 2 M. 0.9806 | 0.017446 | 0.9754 | 0.024846 | 0.9702 | 0.044390 | 0.9807 | 0.022122 | 0.9970
Hybrid 3 M. 0.9808 | 0.016409 | 0.9760 | 0.022083 | 0.9712 | 0.038231 | 0.9808 | 0.021804 | 0.9972
Hybrid 8 M. 0.9809 | 0.013947 | 0.9735 | 0.016370 | 0.9659 | 0.027991 | 0.9812 | 0.017656 | 0.9963
Hybrid 26 M. | 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Sng. Net. 2 M. | 0.9748 | 0.019052 | 0.9753 | 0.023300 | 0.9763 | 0.039146 | 0.9743 | 0.024878 | 0.9968
Sng. Net. 3 M. | 0.9703 | 0.019301 | 0.9745 | 0.020734 | 0.9795 | 0.031573 | 0.9695 | 0.026236 | 0.9967
Sng. Net. 8 M. | 0.9668 | 0.015694 | 0.9716 | 0.015009 | 0.9771 | 0.021468 | 0.9661 | 0.021136 | 0.9954
Sng. Net. 26 M. | 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Sng. Net. 52 M. | 0.9712 | 0.004791 | 0.9784 | 0.004436 | 0.9859 | 0.006364 | 0.9709 | 0.005903 | 0.9978
Sep. Net. 2 M. | 0.9791 | 0.018216 | 0.9751 | 0.024606 | 0.9712 | 0.043162 | 0.9790 | 0.023476 | 0.9969
Sep. Net. 3 M. | 0.9757 | 0.017594 | 0.9753 | 0.021241 | 0.9754 | 0.034786 | 0.9753 | 0.023615 | 0.9969
Sep. Net. 8 M. | 0.9670 | 0.015391 | 0.9711 | 0.015156 | 0.9758 | 0.022209 | 0.9663 | 0.020551 | 0.9956

Table C.4: Results corresponding to Figure 13.2. The regular single net-
work Basic model is abbreviated as Sng. Net, and the separate network
Basic variant as Sep. Net.. The number of modules included is abbrevi-

ated as M..
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Balanced True Positive True Negative ROC
Model Accuracy

Accuracy Rate Rate AUC

+ + + +
Hybrid 2 M. 0.9806 | 0.017446 | 0.9754 | 0.024846 | 0.9702 | 0.044390 | 0.9807 | 0.022122 | 0.9970
Hybrid 3 M. 0.9808 | 0.016409 | 0.9760 | 0.022083 | 0.9712 | 0.038231 | 0.9808 | 0.021804 | 0.9972
Hybrid 8 M. 0.9809 | 0.013947 | 0.9735 | 0.016370 | 0.9659 | 0.027991 | 0.9812 | 0.017656 | 0.9963
Hybrid 26 M. | 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Basic 2 M. 0.9748 | 0.019052 | 0.9753 | 0.023300 | 0.9763 | 0.039146 | 0.9743 | 0.024878 | 0.9968
Basic 3 M. 0.9703 | 0.019301 | 0.9745 | 0.020734 | 0.9795 | 0.031573 | 0.9695 | 0.026236 | 0.9967
Basic 8 M. 0.9668 | 0.015694 | 0.9716 | 0.015009 | 0.9771 | 0.021468 | 0.9661 | 0.021136 | 0.9954
Basic 26 M. 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Basic 52 M. 0.9712 | 0.004791 | 0.9784 | 0.004436 | 0.9859 | 0.006364 | 0.9709 | 0.005903 | 0.9978
w/o z 2 M. 0.9761 | 0.018987 | 0.9757 | 0.023354 | 0.9758 | 0.039450 | 0.9757 | 0.024687 | 0.9972
w/oz 3 M. 0.9725 | 0.018563 | 0.9749 | 0.020900 | 0.9781 | 0.032428 | 0.9718 | 0.025280 | 0.9971
w/o z 8 M. 0.9666 | 0.015324 | 0.9712 | 0.014771 | 0.9766 | 0.021556 | 0.9659 | 0.020439 | 0.9960
w/o z 26 M. 0.9654 | 0.008533 | 0.9700 | 0.008179 | 0.9751 | 0.012955 | 0.9650 | 0.010456 | 0.9958
w/o z 52 M. 0.9744 | 0.004339 | 0.9762 | 0.005121 | 0.9781 | 0.008686 | 0.9743 | 0.005426 | 0.9971
w/o z,sc. 2 M. | 0.9729 | 0.019544 | 0.9745 | 0.023343 | 0.9768 | 0.038563 | 0.9723 | 0.025845 | 0.9969
w/o z, sc. 3 M. | 0.9693 | 0.019173 | 0.9743 | 0.020146 | 0.9802 | 0.030193 | 0.9685 | 0.025861 | 0.9969
w/o z, sc. 8 M. | 0.9660 | 0.015524 | 0.9713 | 0.014746 | 0.9772 | 0.021069 | 0.9653 | 0.020775 | 0.9959
w/o z, sc. 26 M. | 0.9587 | 0.009087 | 0.9667 | 0.008492 | 0.9755 | 0.013046 | 0.9580 | 0.011300 | 0.9949
w/o z, sc. 52 M. | 0.9673 | 0.004714 | 0.9740 | 0.004856 | 0.9811 | 0.007787 | 0.9670 | 0.005847 | 0.9962

Table C.5: Results corresponding to Figure 13.3. Sc. indicates the ex-
clusion of scaling. The number of modules included is abbreviated as

M..
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Model

Accuracy

+

Balanced

Accuracy
+

True Positive
Rate
+

True Negative
Rate
+

ROC
AUC

Hybrid

0.4 Mult.
0.5 Mult.
0.6 Mult.
0.7 Mult.
0.8 Mult.
0.9 Mult.
1.0 Mult.
1.1 Mult.
1.2 Mult.
1.3 Mult.
1.4 Mult.
1.5 Mult.
1.6 Mult.

0.9824
0.9840
0.9819
0.9764
0.9752
0.9763
0.9731
0.9719
0.9663
0.9607
0.9588
0.9600
0.9590
0.9522

0.007318
0.007226
0.007343
0.007884
0.008394
0.007850
0.008069
0.008199
0.008472
0.009072
0.009317
0.009276
0.009260
0.009726

0.9770
0.9770
0.9774
0.9765
0.9750
0.9769
0.9755
0.9753
0.9734
0.9722
0.9713
0.9716
0.9713
0.9683

0.008593
0.008520
0.008185
0.007854
0.008312
0.007774
0.007807
0.007710
0.007637
0.007408
0.007703
0.007545
0.007507
0.007655

0.9713
0.9696
0.9727
0.9767
0.9750
0.9777
0.9782
0.9790
0.9811
0.9846
0.9849
0.9841
0.9844
0.9857

0.015024
0.015166
0.014270
0.012627
0.013554
0.012428
0.012267
0.011976
0.010992
0.009732
0.009475
0.009791
0.009694
0.009370

0.9827
0.9844
0.9821
0.9763
0.9750
0.9761
0.9728
0.9716
0.9657
0.9598
0.9578
0.9591
0.9581
0.9510

0.008651
0.008429
0.008723
0.009722
0.010379
0.009692
0.009969
0.010197
0.010910
0.011470
0.012038
0.011609
0.011629
0.012211

0.9970
0.9972
0.9973
0.9968
0.9965
0.9973
0.9970
0.9970
0.9965
0.9967
0.9971
0.9969
0.9959
0.9963

Table C.6: Results corresponding to Figure 13.4. The multiplier included
is abbreviated as Mult..
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Model

Accuracy

+

Balanced

Accuracy

+

True Positive
Rate

+

True Negative

Rate

+

ROC
AUC

Hybrid

0.4 Mult.
0.5 Mult.
0.6 Mult.
0.7 Mult.
0.8 Mult.
0.9 Mult.
1.0 Mult.
1.1 Mult.
1.2 Mult.
1.3 Mult.
1.4 Mult.
1.5 Mult.
1.6 Mult.

0.9733
0.9812
0.9806
0.9769
0.9796
0.9735
0.9734
0.9694
0.9735
0.9728
0.9743
0.9685
0.9681
0.9714

0.015544
0.013896
0.013776
0.015597
0.013830
0.016924
0.016928
0.017429
0.015739
0.016500
0.016083
0.018385
0.017558
0.016402

0.9736
0.9798
0.9804
0.9791
0.9807
0.9778
0.9776
0.9757
0.9777
0.9774
0.9783
0.9753
0.9752
0.9766

0.021810
0.017358
0.017363
0.019592
0.017972
0.020726
0.021105
0.021307
0.019767
0.020540
0.019959
0.022246
0.021375
0.020162

0.9822
0.9807
0.9835
0.9871
0.9862
0.9896
0.9895
0.9914
0.9894
0.9899
0.9894
0.9920
0.9923
0.9901

0.011681
0.012205
0.011282
0.009796
0.010242
0.008438
0.008587
0.007549
0.008473
0.008408
0.008534
0.007265
0.006994
0.008109

0.9650
0.9789
0.9773
0.9712
0.9752
0.9659
0.9657
0.9601
0.9661
0.9650
0.9673
0.9586
0.9582
0.9632

0.041860
0.032361
0.032710
0.037839
0.034273
0.040433
0.041235
0.041762
0.038466
0.040068
0.038821
0.043751
0.041984
0.039307

0.9963
0.9975
0.9977
0.9976
0.9977
0.9973
0.9976
0.9973
0.9975
0.9976
0.9978
0.9975
0.9977
0.9974

Table C.7: Results corresponding to Figure 13.5(a).

cluded is abbreviated as Mult..
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The multiplier in-




Model

Accuracy

+

Balanced

Accuracy
+

True Positive
Rate
+

True Negative
Rate
+

ROC
AUC

Hybrid

0.4 Mult.
0.5 Mult.
0.6 Mult.
0.7 Mult.
0.8 Mult.
0.9 Mult.
1.0 Mult.
1.1 Mult.
1.2 Mult.
1.3 Mult.
1.4 Mult.
1.5 Mult.
1.6 Mult.

0.9733
0.9726
0.9742
0.9794
0.9765
0.9741
0.9713
0.9694
0.9746
0.9746
0.9760
0.9739
0.9794
0.9798

0.015544
0.016665
0.015782
0.013914
0.015489
0.016048
0.017479
0.017429
0.016188
0.016115
0.015571
0.015905
0.013998
0.014222

0.9736
0.9706
0.9747
0.9790
0.9785
0.9770
0.9760
0.9757
0.9795
0.9797
0.9812
0.9799
0.9826
0.9835

0.021810
0.022189
0.022248
0.018306
0.019791
0.020534
0.020998
0.021307
0.018997
0.017745
0.016925
0.017820
0.015729
0.015333

0.9822
0.9727
0.9832
0.9824
0.9871
0.9880
0.9892
0.9914
0.9906
0.9898
0.9910
0.9911
0.9894
0.9904

0.011681
0.015084
0.011183
0.011922
0.009479
0.009168
0.008315
0.007549
0.007810
0.008120
0.007511
0.007524
0.008472
0.007848

0.9650
0.9686
0.9662
0.9757
0.9700
0.9661
0.9629
0.9601
0.9684
0.9696
0.9714
0.9687
0.9758
0.9765

0.041860
0.041900
0.042888
0.034572
0.033201
0.039893
0.041060
0.041762
0.037031
0.034374
0.032859
0.034680
0.030112
0.029503

0.9963
0.9952
0.9963
0.9973
0.9973
0.9972
0.9967
0.9973
0.9980
0.9979
0.9984
0.9980
0.9983
0.9986

Table C.8: Results corresponding to Figure 13.5(b).

cluded is abbreviated as Mult..
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Model Efficiency Clone Rate Fake Rate
+ + +

Hybrid 0.9296 | 0.037848 | 0.0158 | 0.015513 | 0.0020 | 0.004903
P.O. 0.4 Mult. | 0.9416 | 0.033400 | 0.0162 | 0.015367 | 0.0042 | 0.007636
P.O. 0.5 Mult. | 0.9436 | 0.033152 | 0.0149 | 0.014683 | 0.0047 | 0.008449
P.O. 0.6 Mult. | 0.9445 | 0.033353 | 0.0146 | 0.014392 | 0.0084 | 0.012441
P.O. 0.7 Mult. | 0.9442 | 0.033648 | 0.0138 | 0.014017 | 0.0085 | 0.012840
P.O. 0.8 Mult. | 0.9465 | 0.032384 | 0.0147 | 0.014494 | 0.0062 | 0.010319
P.O. 0.9 Mult. | 0.9486 | 0.031561 | 0.0152 | 0.014708 | 0.0124 | 0.016876
P.O. 1.0 Mult. | 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888
P.O. 1.1 Mult. | 0.9435 | 0.034483 | 0.0141 | 0.014177 | 0.0193 | 0.024706
P.O. 1.2 Mult. | 0.9459 | 0.033267 | 0.0143 | 0.014168 | 0.0169 | 0.021607
P.O. 1.3 Mult. | 0.9415 | 0.035193 | 0.0144 | 0.014203 | 0.0250 | 0.030958
P.O. 1.4 Mult. | 0.9414 | 0.035301 | 0.0146 | 0.014255 | 0.0234 | 0.029215
P.O. 1.5 Mult. | 0.9388 | 0.035562 | 0.0158 | 0.014892 | 0.0185 | 0.023957
P.O. 1.6 Mult. | 0.9427 | 0.034792 | 0.0155 | 0.014589 | 0.0322 | 0.038535
T.0O. 0.4 Mult. | 0.9386 | 0.034428 | 0.0159 | 0.015175 | 0.0033 | 0.006573
T.O. 0.5 Mult. | 0.9377 | 0.034815 | 0.0152 | 0.014794 | 0.0034 | 0.006878
T.0O. 0.6 Mult. | 0.9434 | 0.033907 | 0.0147 | 0.014571 | 0.0082 | 0.012279
T.0O. 0.7 Mult. | 0.9466 | 0.032407 | 0.0152 | 0.014722 | 0.0066 | 0.010517
T.0. 0.8 Mult. | 0.9430 | 0.034201 | 0.0146 | 0.014329 | 0.0129 | 0.017913
T.0. 0.9 Mult. | 0.9441 | 0.033683 | 0.0142 | 0.014166 | 0.0098 | 0.014274
T.0. 1.0 Mult. | 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888
T.0. 1.1 Mult. | 0.9450 | 0.033190 | 0.0142 | 0.014147 | 0.0094 | 0.013564
T.0. 1.2 Mult. | 0.9460 | 0.033136 | 0.0141 | 0.014184 | 0.0117 | 0.016354
T.0O. 1.3 Mult. | 0.9473 | 0.032458 | 0.0139 | 0.014039 | 0.0134 | 0.018154
T.0. 1.4 Mult. | 0.9464 | 0.033598 | 0.0140 | 0.014028 | 0.0222 | 0.027732
T.0O. 1.5 Mult. | 0.9479 | 0.032961 | 0.0138 | 0.013938 | 0.0229 | 0.028488
T.0O. 1.6 Mult. | 0.9452 | 0.033148 | 0.0146 | 0.014395 | 0.0136 | 0.018806

Table C.9: First part of results corresponding to Figure 13.6, continued
in Table C.10. The multiplier included is abbreviated as Mult.. Inclusion
of the multiplier in only the Pair Network, Triplet Network or both is

abbreviated as P.O., T.O or B. respectively.
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Efficiency Clone Rate Fake Rate
+ + +

Model

0.4 Mult. | 0.9122 | 0.041471 | 0.0189 | 0.016790 | 0.0014 | 0.004455
0.5 Mult. | 0.9369 | 0.035183 | 0.0160 | 0.015288 | 0.0024 | 0.005399
0.6 Mult. | 0.9391 | 0.034395 | 0.0169 | 0.015626 | 0.0041 | 0.007492
0.7 Mult. | 0.9424 | 0.033912 | 0.0153 | 0.014788 | 0.0073 | 0.011432
0.8 Mult. | 0.9438 | 0.033518 | 0.0148 | 0.014585 | 0.0072 | 0.011293
0.9 Mult. | 0.9400 | 0.035021 | 0.0153 | 0.014670 | 0.0152 | 0.020891
1.0 Mult. | 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888
1.1 Mult. | 0.9470 | 0.033017 | 0.0142 | 0.014221 | 0.0180 | 0.023409
1.2 Mult. | 0.9424 | 0.034895 | 0.0149 | 0.014507 | 0.0210 | 0.026383
1.3 Mult. | 0.9482 | 0.032778 | 0.0136 | 0.013847 | 0.0225 | 0.028687
1.4 Mult. | 0.9433 | 0.034567 | 0.0145 | 0.014194 | 0.0262 | 0.032037
1.5 Mult. | 0.9484 | 0.032313 | 0.0139 | 0.013996 | 0.0191 | 0.024595
1.6 Mult. | 0.9468 | 0.033134 | 0.0136 | 0.013876 | 0.0202 | 0.025710

TEIEFEIII NS E RS

Table C.10: Second part of results corresponding to Figure 13.6, contin-
uing from Table C.9. The multiplier included is abbreviated as Mult..
Inclusion of the multiplier in only the Pair Network, Triplet Network or
both is abbreviated as P.O., T.O or B. respectively.
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Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +

Hybrid 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970

3 L. 16 N. | 0.9635 | 0.009406 | 0.9720 | 0.007839 | 0.9812 | 0.010877 | 0.9628 | 0.011659 | 0.9967
3 L.24 N. | 0.9723 | 0.008360 | 0.9762 | 0.007560 | 0.9805 | 0.011238 | 0.9719 | 0.010457 | 0.9973
3 L.32N. | 0.9750 | 0.008023 | 0.9767 | 0.007676 | 0.9786 | 0.012050 | 0.9748 | 0.009952 | 0.9973
3 L.64 N. | 0.9669 | 0.008681 | 0.9747 | 0.007493 | 0.9831 | 0.010324 | 0.9662 | 0.010979 | 0.9972
4 L.16 N. | 0.9755 | 0.007840 | 0.9766 | 0.007744 | 0.9777 | 0.012457 | 0.9754 | 0.009570 | 0.9971
4 L.24 N. | 0.9746 | 0.008114 | 0.9766 | 0.007706 | 0.9788 | 0.012111 | 0.9744 | 0.009991 | 0.9969
4 L.32N. |0.9736 | 0.008215 | 0.9770 | 0.007491 | 0.9808 | 0.011164 | 0.9733 | 0.010251 | 0.9975
4 L. 64 N. | 0.9687 | 0.008523 | 0.9753 | 0.007512 | 0.9824 | 0.010590 | 0.9682 | 0.010858 | 0.9971
6 L. 16 N. | 0.9734 | 0.008120 | 0.9750 | 0.007831 | 0.9768 | 0.012396 | 0.9732 | 0.010011 | 0.9965
6 L. 24 N. | 0.9770 | 0.007782 | 0.9765 | 0.008022 | 0.9760 | 0.013021 | 0.9770 | 0.009695 | 0.9968
6 L. 32 N. | 0.9751 | 0.007695 | 0.9761 | 0.007764 | 0.9772 | 0.012453 | 0.9750 | 0.009521 | 0.9969
6 L. 64 N. | 0.9797 | 0.007610 | 0.9779 | 0.007805 | 0.9762 | 0.012959 | 0.9797 | 0.009131 | 0.9974
8 L. 16 N. | 0.9748 | 0.007813 | 0.9765 | 0.007769 | 0.9784 | 0.012360 | 0.9746 | 0.009669 | 0.9960
8 L. 24 N. | 0.9708 | 0.008499 | 0.9753 | 0.007699 | 0.9802 | 0.011479 | 0.9703 | 0.010593 | 0.9962
8 L. 32 N. | 0.9717 | 0.008095 | 0.9764 | 0.007421 | 0.9815 | 0.010984 | 0.9713 | 0.010169 | 0.9975
8 L. 64 N. | 0.9779 | 0.007800 | 0.9774 | 0.007912 | 0.9769 | 0.012900 | 0.9779 | 0.009525 | 0.9973
12 L. 16 N. | 0.9777 | 0.007903 | 0.9773 | 0.007770 | 0.9770 | 0.012523 | 0.9776 | 0.009629 | 0.9973
12 L. 24 N. | 0.9760 | 0.007832 | 0.9776 | 0.007523 | 0.9794 | 0.011656 | 0.9757 | 0.009785 | 0.9976
12 L. 32 N. | 0.9717 | 0.008311 | 0.9757 | 0.007732 | 0.9799 | 0.011594 | 0.9713 | 0.010389 | 0.9971
12 L. 64 N. | 0.9752 | 0.007930 | 0.9771 | 0.007644 | 0.9794 | 0.011947 | 0.9749 | 0.009858 | 0.9974
15 L. 16 N. | 0.9713 | 0.008412 | 0.9762 | 0.007606 | 0.9815 | 0.011153 | 0.9709 | 0.010545 | 0.9974
15 L. 24 N. | 0.9764 | 0.007882 | 0.9775 | 0.007541 | 0.9789 | 0.011923 | 0.9762 | 0.009625 | 0.9975
15 L. 32 N. | 0.9771 | 0.007785 | 0.9775 | 0.007731 | 0.9781 | 0.012219 | 0.9770 | 0.009758 | 0.9974
15 L. 64 N. | 0.9748 | 0.007948 | 0.9771 | 0.007578 | 0.9796 | 0.011776 | 0.9746 | 0.009815 | 0.9974

Table C.11: Results corresponding to Figure 13.7. The number of layers
is abbreviated as L., and the number of neurons per layer N..
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Balanced True Positive True Negative ROC
Model Accuracy

Accuracy Rate Rate AUC

+ + + +
Hybrid 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Basic 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Interaction | 0.9937 | 0.004877 | 0.9944 | 0.003952 | 0.9953 | 0.003958 | 0.9935 | 0.006998 | 0.9997

Table C.12: Results corresponding to Figure 13.8(a).

Model Accuracy Balanced True Positive True Negative ROC
Accuracy Rate Rate AUC

+ + + +
Hybrid 0.9733 | 0.015544 | 0.9736 | 0.021810 | 0.9822 | 0.011681 | 0.9650 | 0.041860 | 0.9963
Basic 0.9694 | 0.017429 | 0.9757 | 0.021307 | 0.9914 | 0.007549 | 0.9601 | 0.041762 | 0.9973
Interaction | 0.9736 | 0.011162 | 0.9729 | 0.021078 | 0.9659 | 0.016437 | 0.9801 | 0.041293 | 0.9972
Basic - Int. | 0.9863 | 0.010940 | 0.9691 | 0.014820 | 0.9426 | 0.024903 | 0.9957 | 0.018452 | 0.9987
Int. - Basic | 0.9670 | 0.013778 | 0.9592 | 0.030291 | 0.9686 | 0.016481 | 0.9499 | 0.061481 | 0.9940

Table C.13: Results corresponding to Figure 13.8(b). Basic - Int. denotes
using the Basic Network for the pair stage and Interaction Network for
the triplet stage; and vice versa for Int. - Basic.

Efficiency Clone Rate Fake Rate
Model

+ + +
Hybrid 0.9296 | 0.037848 | 0.0158 | 0.015513 | 0.0020 | 0.004903
Basic 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888
Interaction | 0.9437 | 0.033278 | 0.0107 | 0.012494 | 0.0000 | 0.000404
Basic - Int. | 0.8932 | 0.045979 | 0.0235 | 0.019165 | 0.0001 | 0.001031
Int. - Basic | 0.9429 | 0.034643 | 0.0209 | 0.017679 | 0.0001 | 0.001061
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Table C.14: Results corresponding to Figure 13.8(c). Basic - Int. denotes
using the Basic Network for the pair stage and Interaction Network for
the triplet stage; and vice versa for Int. - Basic.




Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +
Hybrid | 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Basic | 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Sum | 0.9937 | 0.004877 | 0.9944 | 0.003952 | 0.9953 | 0.003958 | 0.9935 | 0.006998 | 0.9997
Mean | 0.9932 | 0.005201 | 0.9937 | 0.004386 | 0.9945 | 0.004646 | 0.9930 | 0.007701 | 0.9997
Max | 0.9955 | 0.003783 | 0.9939 | 0.003897 | 0.9923 | 0.005498 | 0.9955 | 0.005617 | 0.9995
Min | 0.9953 | 0.003958 | 0.9953 | 0.003567 | 0.9954 | 0.003817 | 0.9952 | 0.006004 | 0.9998
Table C.15: Results corresponding to Figure 13.9.
Balanced True Positive True Negative ROC
Model Accuracy
Accuracy Rate Rate AUC
+ + + +
Hybrid 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
Basic 0.9719 | 0.008199 | 0.9753 | 0.007710 | 0.9790 | 0.011976 | 0.9716 | 0.010197 | 0.9970
Latent 0.9937 | 0.004877 | 0.9944 | 0.003952 | 0.9953 | 0.003958 | 0.9935 | 0.006998 | 0.9997
Inputs 0.9929 | 0.005552 | 0.9941 | 0.004280 | 0.9956 | 0.003784 | 0.9926 | 0.008014 | 0.9997
Differences | 0.9936 | 0.004657 | 0.9928 | 0.004317 | 0.9921 | 0.005724 | 0.9935 | 0.006770 | 0.9996
None 0.9950 | 0.004011 | 0.9950 | 0.003561 | 0.9951 | 0.004088 | 0.9948 | 0.005919 | 0.9998

Table C.16: Results corresponding to Figure 13.10.
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Balanced True Positive True Negative ROC
Model Accuracy

Accuracy Rate Rate AUC

+ + + +
Hybrid | 0.9824 | 0.007318 | 0.9770 | 0.008593 | 0.9713 | 0.015024 | 0.9827 | 0.008651 | 0.9970
2 Ttr. | 0.9923 | 0.005762 | 0.9929 | 0.004208 | 0.9937 | 0.004759 | 0.9921 | 0.007226 | 0.9996
4 Ttr. | 0.9937 | 0.004877 | 0.9944 | 0.003952 | 0.9953 | 0.003958 | 0.9935 | 0.006998 | 0.9997
6 Itr. | 0.9944 | 0.004069 | 0.9944 | 0.003420 | 0.9945 | 0.004208 | 0.9943 | 0.005232 | 0.9997
8 Ttr. | 0.9951 | 0.003760 | 0.9941 | 0.003619 | 0.9931 | 0.005175 | 0.9950 | 0.005011 | 0.9996
10 Ttr. | 0.9926 | 0.004659 | 0.9942 | 0.003753 | 0.9961 | 0.003619 | 0.9923 | 0.006716 | 0.9997
12 Ttr. | 0.9947 | 0.004434 | 0.9937 | 0.004028 | 0.9928 | 0.005489 | 0.9946 | 0.006226 | 0.9995

Table C.17: Results corresponding to Figure 13.11(a). Number of layers

is abbreviated as Itr..
Balanced True Positive True Negative ROC
Model Accuracy

Accuracy Rate Rate AUC

+ + + +
Hybrid | 0.9733 | 0.015544 | 0.9736 | 0.021810 | 0.9822 | 0.011681 | 0.9650 | 0.041860 | 0.9963
2 Ttr. | 0.9756 | 0.027407 | 0.9445 | 0.084145 | 0.9793 | 0.044700 | 0.9101 | 0.172020 | 0.9992
4 Ttr. | 0.9736 | 0.011162 | 0.9729 | 0.021078 | 0.9659 | 0.016437 | 0.9801 | 0.041293 | 0.9972
6 Itr. | 0.9737 | 0.012045 | 0.9722 | 0.024929 | 0.9673 | 0.016575 | 0.9773 | 0.049706 | 0.9974
8 Ttr. | 0.9730 | 0.011425 | 0.9706 | 0.026795 | 0.9697 | 0.014764 | 0.9717 | 0.053590 | 0.9965
10 Ttr. | 0.9718 | 0.012593 | 0.9668 | 0.025524 | 0.9700 | 0.015912 | 0.9637 | 0.051255 | 0.9957
12 Ttr. | 0.9590 | 0.015284 | 0.9561 | 0.028564 | 0.9541 | 0.020444 | 0.9584 | 0.057373 | 0.9931

Table C.18: Results corresponding to Figure 13.11(b). Number of layers
is abbreviated as Itr..
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Model Efficiency Clone Rate Fake Rate

+ + +
Hybrid | 0.9296 | 0.037848 | 0.0158 | 0.015513 | 0.0020 | 0.004903
2 Ttr. | 0.9718 | 0.023867 | 0.0149 | 0.014112 | 0.0036 | 0.006667
4 Ttr. | 0.9437 | 0.033278 | 0.0107 | 0.012494 | 0.0000 | 0.000404
6 Itr. | 0.9367 | 0.035712 | 0.0089 | 0.011310 | 0.0000 | 0.000439
8 Itr. | 0.9404 | 0.033916 | 0.0094 | 0.011696 | 0.0000 | 0.000498
10 Ttr. | 0.9319 | 0.037500 | 0.0172 | 0.016101 | 0.0001 | 0.001614
12 Ttr. | 0.8846 | 0.048701 | 0.0146 | 0.014844 | 0.0000 | 0.000605

Table C.19: Results corresponding to Figure 13.11(c). Number of layers
is abbreviated as Itr..

Model

Accuracy

+

Balanced
Accuracy
+

True Positive
Rate
+

True Negative

Rate

+

ROC
AUC

Hybrid
2 L. 24 N.
2 L. 32 N.
2 L. 64 N.
3 L.24 N.
3 L.32N.
3 L. 64 N.
4 L. 32 N.

0.9824
0.9937
0.9922
0.9936
0.9946
0.9944
0.9945
0.9944

0.007318
0.004877
0.005935
0.005550
0.004307
0.004537
0.004280
0.004620

0.9770 | 0.008593

0.9713 | 0.015024

0.9827

0.008651

0.9944
0.9910
0.9935
0.9944
0.9940
0.9950
0.9950

0.003952
0.004932
0.004256
0.003970
0.003996
0.003691
0.003751

0.9953
0.9900
0.9936
0.9944
0.9938
0.9957
0.9958

0.003958
0.006696
0.004765
0.004697
0.004928
0.003716
0.003773

0.9935
0.9920
0.9934
0.9944
0.9942
0.9943
0.9942

0.006998
0.008016
0.007501
0.006529
0.006608
0.006383
0.006637

0.9970
0.9997
0.9994
0.9997
0.9998
0.9997
0.9998
0.9998

Table C.20: Results corresponding to Figure 13.12. The number of layers
is abbreviated as L., and the number of neurons per layer as N..
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Balanced True Positive True Negative ROC

Model Accuracy
Accuracy Rate Rate AUC

+ + + +

Hybrid 0.9733 | 0.015544 | 0.9736 | 0.021810 | 0.9822 | 0.011681 | 0.9650 | 0.041860 | 0.9963
Basic 0.9694 | 0.017429 | 0.9757 | 0.021307 | 0.9914 | 0.007549 | 0.9601 | 0.041762 | 0.9973
Interaction | 0.9736 | 0.011162 | 0.9729 | 0.021078 | 0.9659 | 0.016437 | 0.9801 | 0.041293 | 0.9972
2 L.64 N. | 0.9773 | 0.010267 | 0.9756 | 0.021322 | 0.9723 | 0.014221 | 0.9791 | 0.042116 | 0.9975
3 L.64 N. |0.9779 | 0.010144 | 0.9753 | 0.022548 | 0.9746 | 0.013355 | 0.9762 | 0.044870 | 0.9976
3 L. 128 N. | 0.9757 | 0.010402 | 0.9751 | 0.020369 | 0.9685 | 0.015026 | 0.9819 | 0.039910 | 0.9974

Table C.21: Results corresponding to Figure 13.13. The number of layers
is abbreviated as L., and the number of neurons per layer as N..

Hybrid 0.9296 | 0.037848 | 0.0158 | 0.015513 | 0.0020 | 0.004903
Hybrid Filter | 0.9292 | 0.038020 | 0.0106 | 0.012384 | 0.0020 | 0.004928
Basic 0.9467 | 0.033270 | 0.0145 | 0.014321 | 0.0244 | 0.029888
Basic Filter | 0.9464 | 0.033386 | 0.0110 | 0.012409 | 0.0244 | 0.029935
Interaction | 0.9437 | 0.033278 | 0.0107 | 0.012494 | 0.0000 | 0.000404
Int. Filter | 0.9433 | 0.033503 | 0.0064 | 0.009611 | 0.0000 | 0.000448

Table C.22: Results corresponding to Figure 13.14. The Interaction Net-
work is abbreviated as Int. in the final entry.

224




Appendix D

Reproduction of ’Proton path
reconstruction for pCT using

Neural Networks’

Reproduction of the Accepted Manuscript, as found at https://arxiv.org/abs/
2010.00427.
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Abstract. The Most Likely Path formalism (MLP) is widely established as the
most statistically precise method for proton path reconstruction in proton computed
tomography (pCT). However, while this method accounts for small-angle Multiple
Coulomb Scattering (MCS) and energy loss, inelastic nuclear interactions play an
influential role in a significant number of proton paths. By applying cuts based on
energy and direction, tracks influenced by nuclear interactions are largely discarded
from the MLP analysis. In this work we propose a new method to estimate the proton
paths based on a Deep Neural Network (DNN). Through this approach, estimates of
proton paths equivalent to MLP predictions have been achieved in the case where
only MCS occurs, together with an increased accuracy when nuclear interactions are
present. Moreover, our tests indicate that the DNN algorithm can be considerably
faster than the MLP algorithm.

1. Introduction

When reviewing recent developments in cancer treatment, proton beam therapy has seen
rapid growth as an external beam radiotherapy technique, being increasingly favoured
over traditional x-ray treatment for several tumours. Unlike in regular radiation
treatment, protons deposit most energy near the end of their path, a well-established
effect known as the Bragg peak. By exploiting this property, protons are used to target
tumours while subjecting their surroundings to little or no damage. Such treatment
is well suited for tumours located near sensitive organs or in young patients for whom
excess radiation exposure is a significant long term concern (Tian et al. (2018), Hu et al.
(2018), Foote et al. (2012)). Its capacity for depositing large amount of energy in a small
volume increases the precision of treatment but so too the need to precisely locate the
proton beam spot.

Accurate calibration of proton ranges relies on a detailed knowledge of the Relative
Stopping Power, or RSP, of any tissue a proton will pass through along its path.
Inaccurate placement of Bragg peaks can not only result in under-dosage of the target
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but also in significant exposure to the sensitive areas whose presence warranted proton
therapy initially. Satisfactory resolution of RSP remains a substantial obstacle in
unlocking the full potential of proton therapy. Current treatment planning systems rely
on converting x-ray linear attenuation coefficient measurements, made in Hounsfield
Units (HU), to RSP. Unfortunately, the non-unique relationship between HU and RSP
introduces errors in the range of 2 — 5% (Beaton et al. 2019).

Proton computed tomography, or pCT, has been suggested as an alternative to
overcome this problem. For proton therapy planning pCT offers the advantage of
measuring proton RSP directly, removing conversion uncertainties by using the same
particle for both planning and treatment (Doolan et al. (2015)).

For a given proton 7, the line integral of the RSP is related to the energy loss using

Ein
g dF
RSP(z)dx =~ _
(x) v /E‘f“t Swater(E)

where T'; C R3 is the proton path, RSP(x) is the stopping power relative to water at

WEPL; = /

T

position z € R, EI" and E?* are the entrance and exit proton energies, and Syater (E)
is the stopping power of water for energy E. This integral is the Water Equivalent
Path Length (WEPL). Starting from this equation, the pCT reconstruction problem
can be mapped to that of reconstructing each individual protons path, combined with
the calculation of WEPL (through the right side of the equation), to recover the RSP
map. It is therefore crucial that the reconstruction of the proton path will be as accurate
as possible. Indeed, the better the determination of the proton trajectories, the better
the RSP calculation will be.

Image reconstruction using protons poses an additional challenge over standard
x-ray CT: during passage through matter protons experience significant deflections
through Multiple Coulomb Scattering (MCS), and, more rarely, nuclear interactions,
resulting in non-trivial curved paths. The probability of nuclear reactions compared
to ionization interactions is less than 1% for 200 MeV protons. As a consequence,
the influence of nuclear interactions of protons with atomic nuclei can be treated
as correction to the electromagnetic processes (Fippel et al. (2004)). Accurate
reconstruction of these paths determines the achievable imaging resolution in proton
computed tomography (pCT) and thus the exact dose distribution in proton therapy.
Unlike with x-ray CT, in which photon number attenuation along straight propagation
lines is considered, the pCT reconstruction process requires proton paths to be
individually estimated to account for the curved trajectories if an improved resolution
is to be achieved (Johnson (2017)).

This requirement excludes direct reuse of many well-developed image reconstruction
methods developed in x-ray CT (Johnson (2017), Bovik (2009)). Iterative algebraic
methods, such as the algebraic reconstruction technique (ART), have been proposed as
plausible pCT image reconstruction methods (Li et al. (2006), Johnson (2017)), but the
computational cost of these algorithms is considerably high. More efficient techniques
are direct reconstruction methods, often following on from x-ray CT methods, who’s
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development is an active area of research, as discussed in Khellaf et al. (2020).

At the core of these methods is the Most Likely Path (MLP) formalism for
the reconstruction of the single proton trajectory. While scattering remains an
inherently probabilistic process, precluding the exact prediction of any single track,
MLP is well established as the most statistically precise method to account for MCS
processes (Schulte et al. (2008), Williams (2004), Collins-Fekete et al. (2015)). Since its
introduction in 1994 (Schneider & Pedroni (1994)), the MLP formalism as presented in
Schulte et al. (2008) has undergone various refinements for use in different application
scenarios (Collins-Fekete et al. (2015), Collins-Fekete, Volz, Portillo, Beaulieu & Seco
(2017), Collins-Fekete, Bér, Volz, Bouchard, Beaulieu & Seco (2017), Krah et al. (2019),
Brooke & Penfold (2020)).

In addition to the entry and exit positions of the beam, the MLP algorithm utilises
the angle between the direction of travel and the perpendicular to the phantom surface
to significantly improve the prediction (Schneider & Pedroni (1994)). These quantities
can be measured by modern pCT scanners systems (Johnson (2017)). However, while
the formulation of MLP accounts for small-angle multiple Coulomb scattering (MCS)
and small energy loss, nuclear interactions play an influential role in a significant
number of proton trajectories (Johnson (2017)). Recommended practice is therefore
to reduce the events influenced by nuclear interactions or large angle MCS through a
30 cut on both the difference in energy and the difference in the direction of travel
angle between entry and exit (Schulte et al. (2008)). Unfortunately, this results in a
reduction of the protons available for the pCT image reconstruction and in an increase
of the time needed to compute the relative stopping power map for proton therapy
treatment planning. The need to estimate proton paths on a one by one basis, coupled
with the inability to use many well-established x-ray CT reconstruction methods,
comes with a significant computational burden (Johnson (2017)). Various avenues
of research into overcoming this problem have been explored, from optimizing the
computer code for MLP evaluation (McAllister et al. (2009)), to alternative approaches
approximating MLP through cubic splines (Collins-Fekete et al. (2015)) or polynomial
approximations (Krah et al. (2019)).

It is in this context that we introduce a new and original approach for the estimation
of the proton paths based on Machine Learning, through utilisation of a Deep Neural
Network. The Proton Path Neural Network (PPNN) is capable of reaching the same
performance as MLP when this last is applicable, and exceeding it on a large fraction
of paths influenced by nuclear interactions. Moreover, our tests indicate that PPNN
exhibits significantly shorter execution time than the MLP approach.

The paper is organised as it follows. An overview of the Monte Carlo simulations
used and the relevant physics environment is given in Section 2.1. This is followed
in Section 2.2 by a description of the existing MLP proton path reconstruction,
before the introduction of PPNN in Section 2.3. Studies comparing the reconstruction
capabilities of PPNN against MLP are presented in Section 3.1, with further analysis
into the methods’ behavioural differences and the characteristics of corresponding tracks
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introduced in Section 3.2 and Section 3.3 respectively. Initial work investigating
performance on an inhomogeneous phantom is reviewed in Section 3.4. Comparison
of execution times is covered in Section 3.5. Finally, a discussion of these results is
presented in Section 4.

2. Materials and methods

2.1. Monte Carlo Simulation

The Monte Carlo simulations presented were performed using GATE v9.0 (Jan et al.
(2011)), a framework built upon the widely used Geant4 10.6 Monte Carlo simulation
toolkit (Agostinelli et al. (2003)). Simulations incorporating only electromagnetic
processes were performed using the emstandard physics list. The impact of nuclear
interactions, among a full regime of physics processes, were modeled using the
QGSP_BIC physics list. In the discussion of the results, the choice of physics
environment is indicated for each simulation.

Our main model consists of a sheet of water centred on the origin of a standard
x-y-z coordinate system with a side length of 20 cm in the z-axis direction and arbitrarily
large extents in x and y. Monoenergetic protons initialised at 200MeV are simulated
through the phantom, originating at the central point of the phantom’s z = —10cm
face, such that their initial direction of travel are orientated inwards and perpendicular
to the face and parallel to the positive z-axis direction. For convenience in the following
we redefine our coordinate axis such that the initial point of any trajectory is located
at the origin, with particles initialised at a depth of 0 cm and extending in range to a
depth of 20 cm. This arrangement is illustrated in Figure 1.

Each data set produced initially contained 10° events; however, only trajectories
which traversed the full phantom depth were retained, reducing the number of events
ultimately used. Typically this led to data sets in excess of 800,000 events. For
the purposes of this study, trajectories themselves are quantified as a series of spatial
coordinates evenly distributed at 0.1 cm intervals, including both phantom faces. A total
of 201 coordinate points represent a complete path through the phantom, consisting of
603 variables. As the z depth coordinates are therefore a fixed set of values shared by
all trajectories, for predicting a track only the x and y variables need be considered.
Similarly, the initial and final points of each trajectory are known for each track and so
likewise neglected. Thus a track prediction consists of two sets of 199 points each, for a
total of 398 variables per track.

In addition, as a first check of the robustness of the PPNN approach in
inhomogeneous media, the procedure as stated was repeated using a phantom comprising
2 cm of water, 7 cm of skull, 2 cm of cortical-bone, 7 cm of skull, and 2 cm of water. For
the purposes of this simulation, cortical-bone was defined using material data found in
Berger et al. (2016). Due to the increased stopping power, to ensure that a large fraction
of impinging protons successfully traverse the phantom’s full length, a beam energy of
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Figure 1. [Illustration of the Monte Carlo geometry used in this study. 3D
representation of the phantom space (a) and 2D projection on the 2 — z plane for the
water (b) and inhomogeneous phantom (¢). Trajectories are only scored and monitored
within the phantom volume itself. Note that for convenience we redefine our coordinate
axis such that the initial point of each trajectory is located at the origin.

230 MeV was used. Additional simulations with an equivalently sized water phantom
were carried out as before at this initial proton energy, as a baseline for comparison. All
230 MeV simulations were carried out under the QGSP_BIC physics list.

2.2. Most Likely Path

Given the coordinate system and the simulation framework described in Section 2.1,
with the proton beam directed along the z direction, at any given depth along z a
proton’s path can be characterised by the two coordinates x and y and the two angles 6
and ¢ relative to the z-axis. Proton scattering can be considered independent along the
x and y axis and the MLP can be expressed independently for the two 2D parameter
vectors x = (z,0) and y = (y, ¢).

Considering x for example, from Schulte et al. (2008) the MLP of protons in a
homogeneous medium can be expressed, in a Gaussian approximation of the generalised
Fermi-Eyeges theory of Multiple Coulomb Scattering (MCS), as

XMLP (Z) - (21_1 + R{ZglRl)_l(ZflRO Xin + R{22_1 Xout)7 (1)

where x;, and X,,; are the relevant entry and exit coordinates in the two 2D parameter
vectors as mentioned above, Ry and R; are the change of basis for small-angle rotation

12—z 1 zew— 2
e (2o ) on (3 ) .

matrices
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and X; and Y5 are covariance matrices
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with components, called scattering moments, given for 3 by the integrals
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where v is the predicted proton path. The equivalent scattering moments for ¥, are
found by replacing z;, with z and z with z,,; in the equations above. yypp(z) follows
identically, with x;, and x,,; replaced by y;, and y,,; as necessary.

Assuming a homogeneous phantom composed of water, we use Xy = 36.1cm for
the radiation length of the material and Ey = 13.6 MeV. The momentum velocity
ratio 1/8%(u)p?(u) is approximated with a fifth-order polynomial following Schulte et al.
(2008). This quantity is specific to the proton energy used; implementation for other
energies requires its recalculation for accurate performance. For protons at 230 MeV
this was calculated as outlined in Schulte et al. (2008). Monoenergetic protons initially
at the required energy were incident on a simulated 20 cm deep water sample. The fifth-
order polynomial was fitted to distribution of the mean value of 1/3%(u)p*(u) recorded
at 5 mm intervals throughout.

2.83. Proton Path Neural Network

The Proton Path Neural Network (PPNN) is fully connected neural network based
model designed to predict a proton trajectory in the form of a series of spacial
points, as described in Section 2.1, using variables similar to those employed by
MLP calculations. As with the MLP, trajectories along the z and y directions are
reconstructed independently by separate instances of the same network. The input
features of the network are quantities which can be recorded by a modern pCT scanning
apparatus; Ax = (Zour — i) and Ab = (0 — 0;,) in the z direction and equivalently
AY = Your — Yin), AP = (Gour — Gin) along y. This data is passed through 4 fully
connected (or dense) layers of 24, 48, 96 and 199 nodes respectively. This type of layers
are the most simple between the many developed in the context of Deep Neural Network:
the output of the layer is a vector y obtained by

y =0(W - -x+Db)

where W and b are called respectively weigths and bias and correspond to the
parameters of the layer that will be fixed during training of the network; x is the input
vector and o is the activation function introducing non linear effects in the network
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Figure 2. PPNN architecture. The Proton Path Neural Network PPNN consists of
four fully connected layers with 24, 48, 96, 199 nodes and a Relu activation function
after each of the first three layers. The current number of variables present at various
points is additionally indicated in brackets.

behaviour. As activation function we employed the Rectified linear unit (ReLU) after
each of the first 3 layers (ReLU (z) = max(0,x)). A representation of the network
architecture is presented in Figure 2.

Training and validation of the network was performed using more than 1,600,000
trajectories (800,000 along each direction) generated as described in Section 2.1 using the
QGSP_BIC physics list. 80% of the tracks are used for the training and the remaining
20% reserved for validation. Optimization of the network weights is performed using
the Adam algorithm (Kingma & Ba (2014)) with a learning rate fixed at 107°. For the
loss, the Mean Squared Error (MSE) is used,

1 o 1w

where M is the number of samples, N = 199 is the number of points in each proton
path, u again the predicted path and @ the true trajectory. The (Square) Root of
the Mean Squared Error (RMSE) is commonly adopted in literature evaluating the
performance of the MLP reconstruction procedure. At a batch size of 32 samples per
batch, one epoch (one cycle through the full training dataset) running on Tesla K80
GPU requires approximately 80 seconds on a Standard NC6 Microsoft Azure machine.
For an introduction on Deep Neural Network we suggest looking at the free material
available at https://d2L.ai/.

The loss history can be seen in Figure 3, in which after around 400 epochs the
loss flattens both for the train and validation datasets with the ratio between the two
histories almost constant; suggesting that the network is not overfitting to the examples
present in the training dataset. Ultimately the model was trained for 1000 epochs.

In addition, a second instance of the PPNN was trained with a 230 MeV proton
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Figure 3. Loss history during network training at each epoch, for both the training
and validation.

dataset in excess of 1,400,000 events, using the same methodology and a pure water
phantom. This instance is used when reconstructing datasets with protons at that
energy.

3. Results

To principally test the performance of PPNN two entirely new datasets of 800,000
protons each were generated: the first with only electromagnetic interactions
(emstandard physics list), the other with all the physical processes including nuclear
interactions (QGSP_BIC physics list). These data sets are generated independently
from that used during the PPNN training procedure to avoid any possible source of
overfitting.

3.1. Root Mean Squared Error

Figure 4-(a) shows the RMSE for estimates of the paths using PPNN or MLP on the
emstandard dataset. Even without the 30 cuts suggested in Schulte et al. (2008)
we can see that the difference between the two predictions is quite small. This
difference disappears (the two lines corresponding to the MLP and PPNN case are barely
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Figure 4. Root Mean Squared Error obtained with MLP and PPNN using the (a)
emstandard and (b) QGSP_BIC datasets. Solid lines are the performance on the
full dataset while dotted and dashed incorporate 1o, and 30 cuts, performed on the
energy and difference in the direction of travel angle between entering and exiting the
phantom, respectively. The dashed-dotted line in (b) is the same solid PPNN result
in (a) added here to have a clear picture of the increasing of the errors when including
nuclear interactions.
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distinguishable) upon applying said 3o cut to the angles and energy; under which here
only ~ 1% of the paths are omitted. This result clearly shows that the PPNN prediction
is fully consistent with the MLP approach, indicating that the approximations inherent
to the method are valid. This is crucial because anything different would represent a
serious flaw in the PPNN reconstruction method.

Moreover, the difference in the PPNN prediction error with or without the cut
is practically negligible, suggesting that our method can be applied to reconstruct
trajectories where processes other than MCS are present. This is more evident in
Figure 4-(b) where the RMSE is evaluated for the QGSP_BIC dataset. When
nuclear interactions are included the error significantly increases, but to a far lesser
extent for PPNN than for MLP. Only with a 1o cut do the performances of the two
methods become comparable. Unfortunately, such a huge cut entails the loss of ~ 24%
of the tracks. Comparing the full interaction dataset result with that of the pure
electromagnetic result, we see that with the typical 30 cut applied to both cases the
RMSE of PPNN is about 26% larger for the full interaction that for the pure MCS
dataset. For the 20 cut the discrepancy in performance decreases to around 20%, which
corresponds to a fraction of discarded tracks of ~ 8% from the QGSP_BIC dataset.
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Figure 5. (a) Distribution of A8 = (0,4t — 0;,) angle for the two test datasets (solid
lines) overlaid with the associated Gaussian using the o values obtained from a fit
of the emstandard data and the QSPG_BIC data (dotted lines). (b) Distribution
of Ax = (Tout — Tin). In both plots it is evident that an exponential rather than
a Gaussian decay provides a better fit with respect to the number of paths for the

QSPG_BIC dataset.

3.2. Error as a function of deviations

To understand the origin of this difference in performance between the two methods,
Figure 5-(a) illustrates the distribution of A8 = (0, — 0;,) for both QSPG_BIC and
emsstandard datasets. The o cut is applied assuming a Gaussian distribution of the
signal, but from the figure a difference between the two distributions clearly emerges.
For the full physics simulation the Gaussian approximation, as employed in the MLP,
clearly fails to describe the distribution. While the cuts based on a Gaussian fit are
acceptable in the emstandard case, they exhibit a large discrepancy with data when
the full range of physics processes are included. In Figure 5-(b) we see a similar result
for the distribution of lateral displacement Az = (x4 — s, ), with the Gaussian shape of
the emstandard distribution supplanted by an exponential decrease in the QSPG_BIC
distribution.

Given this observation and having verified that the PPNN approach has the same
perfomances as MLP in the context of pure electromagnetic interaction, where MLP
is designed to work, from now on we will consider only the results obtained using the
QSPG_BIC physics dataset as a much more realistic representation of clinical pCT
scenario.

As the distributions of Figure 5 clearly show the limits of the MLP formulation,
it is interesting therefore to consider how the error increases as a function of the two
variables A and Ax. This is presented in Figure 6. Here the proton paths are collected
into bins of 0.1 rad and 1 mm for A and Ax respectively, with the RMSE computed in
the corresponding direction. The figure compares the error (right axis) and the number
of trajectories (left axis) to show the differences in performance. Note the logarithmic
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Figure 6. (a) RMSE (right vertical axis, coloured lines) and number of paths (left
vertical axis, black lines) as a function of Af for PPNN and MLP evaluated on the
QSPG_BIC dataset. The shaded black area represent the statistical error. Vertical
lines refer to the position of the 1 and 3 ¢ cut. (b) Same as (a) but as a function of
Azx. The difference in performance between the two methods emerges immediately.

scale on both right and left y axis. From Figure 6-(a) we see that, as expected from
the RMSE plot, the two lines for PPNN and MLP begin to separate at around 1o cut
at A ~ 0.075 rad. For 35% of the tracks Af is larger than 0.075, implying that the
PPNN method improves on the MLP reconstruction for an important fraction of proton
paths. Notice that the same analysis must be done for the ¢ angle which would remove
an analogous number of paths, resulting in a final cut of almost 50% of the tracks.
Figure 6-(b) shows the reconstructed paths distribution broken down in term of final
displacement, Ax. Again the performance of PPNN is consistently better across the
full span of the plot, with trajectories at large angle deviations resolved with improved
precision.
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Figure 7. Distribution of the difference between the RMSE of PPNN and MLP for
the QSPG_BIC dataset. The shaded area correspond to the statistical error.

3.3. Different trajectories for different errors

To gain an insight into the tracks with the largest difference in reconstruction
performance, let us begin by considering only tracks outside the 1o cut in 8. In Figure 7
we present the distributions of the difference between the RMSE for PPNN and MLP
for tracks outside the aforementioned cut. Negative values of the difference correspond
to tracks in which PPNN had the smallest error, while the positive side of the axis
corresponds to the inverse. In the first instance we can see that the profile is exponential,
while in the second the decay is noticeably faster; confirming that at large deviations of
the angle #, PPNN shows a notably superior performance.

Focusing in on only the behaviour when PPNN outperforms MLP, let us consider
only the set of events on the negative side of histogram. Dividing into 10 quantiles split
by ARMSE, in Figure 8-(a) we illustrate a selection of randomly chosen tracks, one
from each quantile. As expected, for larger deviations from straight paths PPNN can
better follow the simulated curve in the majority of such cases, growing more notable
for larger ARMSE. For Figure 8-(b) the same dataset is divided into quartiles, with
the last bin, containing tracks with the largest error difference, further divided into two
subgroups. As with Figure 8-(a) we chose a random track from each of the five groups.
Both figures further support that PPNN improved performance is due at-least in part to
a better capability to reproduce the particle path in the presence of nuclear interaction,
which causes greater changes in the direction of the track.

To further analyse this characteristic, Figure 9-(a) shows the distribution of the
second derivative of the = component of the tracks, with respect to the z direction, again
for track in which PPNN outperforms MLP, broken down into quartiles. Large values
of this quantity are connected with significant direction change, such as those observed
in Figure 8. The four lines correspond to the four quartiles of the blue histogram in
Figure 7, as introduced in Figure 8-(b). Where PPNN exhibits the better performance,
we see that the difference between the tracks reconstructed with PPNN and MLP grows
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Figure 8. Examples of tracks for which the PPNN outperform MLP. (a) Tracks are
selected at random from inside each of 10 quantiles, using the data of Figure 7. (b)
Same as (a), but in which tracks are extracted from quartile groups; with the last
quartile, which corresponds to tracks with the largest discrepancies between the two
methods, divided into two.
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Figure 9. (a) Distributions of the second derivative of the tracks in the x direction
with respect to the z coordinate. Lines indicate the four quartiles of the distribution
of ARMSE < 0. (b) Distribution of the position along the z axis for the maximum
of the second derivative for each path.

with increasing values of %: the more a trajectory differs from pure MCS scattering,
the more the PPNN improves over MLP.

Figure 9-(b) shows the distribution of max(%) as a function of z. The distribution
for the last quartile, corresponding to the largest discrepancies between the two methods,
has a notably different behaviour compared to the other three lines. It exhibits
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Figure 10. (a) Root Mean Squared Error obtained with MLP and PPNN on a water
and an inhomogeneous slab phantom irradiated at 230 MeV. (b) Percentage reduction
in RMSE with respect to depth by PPNN over MLP. All studies were performed under
the QGSP_BIC physics environment.

significantly more events occurring at small and large z values. An example of these
events can be seen in Figure 8-(b) where we have a strong deflection at z &~ 190 mm. We
see that MLP struggles to reproduce this event while the neural network can provide a
superior result.

3.4. Inhomogeneous slab phantom

In this section, we present the results obtained using PPNN in the reconstruction
of proton trajectory traversing the slab phantom described in 2.1 and represented
schematically in Figure 1-(c). Due to the inhomogeneous phantom’s increased stopping
power, a proton energy of 230 MeV was chosen to ensure a significant fraction of
simulated events traversed the full phantom depth. This ensured datasets in excess
of 1,400,000 trajectories (700,000 along each direction) for 10° simulated particles.
Both PPNN and MLP methods were re-trained (re-calibrated for MLP) to the new
energy scheme, as described in Sections 2.3 and 2.2. For this purpose, we consider a
simulation with 230 MeV protons through a water phantom analogous to the one used
in the 200 MeV case.

The RMSE error for both phantoms, using either PPNN or MLP, is shown in
Figure 10-(a). This compares the water and inhomogeneous systems, without cuts and
using the QGSP_BIC physics environment. For the water phantom both PPNN and
MLP behave similarly to the corresponding 200 MeV case. This is an important check
that the higher energy implementations of the two methods are functioning correctly.

Focusing on the reconstruction error for the inhomogeneous case, we similarly
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observe that with PPNN the error is consistently reduced. Interestingly the error on
the new phantom using PPNN is comparable with that obtained with MLP in the pure
water simulation.

The improvement obtained with PPNN is more pronounced when examining the
percentage reduction of RMSE by PPNN over MLP, as shown in Figure 10-(b). A
reduction in the error of the order of 25% can be seen around 150mm, while on average
the improvement is in excess of 10% over MLP across a significant portion of the depth.
Introducing the familiar 30 cuts decreases the error reduction in both the water and
inhomogeneous cases, along with the difference in improvement between them.

3.5. Execution time comparison

For this comparison of the execution time of the two algorithms, the highly optimized
version of MLP presented in McAllister (2009) is used, in which 90% of the MLP is
precalculated and the number of operation required is minimized. We ported the code
in python using the vectorization capabilities of the NumPy (numpy.org) library to
parallelize the execution on the number of protons. PPNN is written in python using
the PyTorch (pytorch.org) framework.

Both codes were executed on the CPU of a Standard NC6 Microsoft Azure machine.
Running the two algorithms on all the 1,600,000 trajectories of the test dataset in unique
batch combinations and repeating the procedure 10 times we obtain an almost constant
execution time of 0.47 £ 0.01 sec for PPNN and 7.11 £ 0.08 sec for MLP. Within the
validity of this test, the PPNN method is sixteen times faster than the optimized MLP.

4. Discussion

Although MLP represents a powerful method of estimating proton path in pCT
applications, it suffers from different limitations. The approach is designed specifically
to account only for effects on the proton path connected with MCS and energy loss.
This is reflected by the strategy of discarding protons trajectories with large deviation
from straight paths to reduce the error. Moreover, simulation in a realistic scenario of
high fluence (hundreds of millions of protons) and small spacing for the MLP (fraction
of millimetre) can require more than one hour; time mostly spent reconstructing the
proton (paths Khellaf et al. (2020)).

In the interests of alleviating these two problems we propose an alternative method,
based on Deep Learning Neural Network, to estimate the proton trajectory for pCT. The
results presented in the previous section suggests that within the PPNN approach, these
two problems can be relieved to some degree. Figure 4 and Figure 7 show that using
PPNN a good approximation of the path can be obtained for a much larger number of
protons than using MLP. This is important because in principle fewer protons are needed
to reach the same reconstruction quality, lowering both the dose and the computation
time. Consolidating this claim is one of the aims of our future developments.
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The ability of the network to reconstruct tracks outside the validity of the MLP
approach is intrinsically tied to the nature of deep learning. Neural networks learn
"blindly” from examples; parsing though the training dataset, by means of the back-
propagation procedure for the minimisation of the loss function, the network adapts its
weights to the characteristics of the events it experiences, including those that show
large A6 and/or Az. While such underlying processes maybe challenging to formulate
into mathematical models, there are sufficient patterns for the network to refine its
prediction processes. Without an assumed structure to reproduce, it is not bound to
solely replicating the form of a given physical model. A tentative explanation of what the
network learns may be inferred from Figure 9 and the analysis of the second derivative
of x w.r.t. z. The network displays significant improvement over MLP where the second
derivative is large, especially near the end of the trajectories.

The study of inhomogeneous systems is only started here, and it certainly warrants
a much more in-depth investigation into more realistic configurations of the phantom.
The phantom considered is certainly extreme; large volumes of a high-density material
such as those in the slab phantom will rarely be encountered in clinical practice, and in
this sense we do not expect the gain to be so large in a realistic situation. Nevertheless,
it is encouraging that notably better results are obtained with PPNN with respect to
MLP, with a reductions of the RMSE of the order of 20%. This is a more significant
improvement compared to the work presented in (Brooke & Penfold 2020) with a similar
phantom, where the maximum enhancement is about 5% for simulation with the same
beam energy.

Regarding execution speed, it is true that the time spent for reconstruction is only
one of the various aspects for evaluating a pCT system for clinical routine. Moreover, our
work is relevant only in the context of reconstruction methods based on the evaluation
of the proton path. Nevertheless, because these methods are seen as the most promising
for applicability in the clinical context and the MLP execution speed is by order of
magnitudes the slowest part of the algorithm (Khellaf et al. (2020)), the substantial
improvement shown by PPNN compared with the optimized MLP can be regarded as
an important feature.

5. Conclusions

MLP is the principal method adopted in pCT for the reconstruction of single proton
paths through the body. In this paper we have demonstrated that using Deep Learning
Neural Network it is possible to recreate the same performance of MLP in the regime
in which MLP is applicable and achieve a better performance outside its region of
validity. Using PPNN would also permit discarding fewer protons in the pC'T procedure.
Moreover, an execution time test of the two algorithms indicates that PPNN can be
substantially faster in performing the reconstruction. In the future we plan to move
forward in the development of the method towards a full reconstruction procedure
applicable to more realistic phantoms.



Proton path reconstruction for pCT using Neural Networks 17

6. Acknowledgments

We would like to acknowledge Simon Rit for the useful discussion and clarification of
the MLP method in the early phase of the experiments and development of the PPNN
method.

Agostinelli, S., Allison, J., Amako, K. a., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D.,
Banerjee, S., Barrand, G. . et al. (2003). Geant4d—a simulation toolkit, Nuclear instruments
and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 506(3): 250-303.

Beaton, L., Bandula, S., Gaze, M. N. & Sharma, R. A. (2019). How rapid advances in imaging are
defining the future of precision radiation oncology, British journal of cancer 120(8): 779-790.

Berger, M. J., Inokuti, M., Andersen, H. H., Bichsel, H., Powers, D., Seltzer, S. . M., Thwaites, D. . &
Watt, D. E. (2016). Report 49, Journal of the International Commission on Radiation Units
and Measurements 0s25(2): NP-NP.

URL: https://doi.org/10.1093/jicru/os25.2.Report49

Bovik, A. C. (2009). The essential guide to image processing, Academic Press.

Brooke, M. D. & Penfold, S. N. (2020). An inhomogeneous most likely path formalism for proton
computed tomography, Physica Medica 70: 184-195.

Collins-Fekete, C.-A., Bér, E.,; Volz, L., Bouchard, H., Beaulieu, L. & Seco, J. (2017). Extension of
the fermi—eyges most-likely path in heterogeneous medium with prior knowledge information,
Physics in Medicine & Biology 62(24): 9207.

Collins-Fekete, C.-A. C., Doolan, P., Dias, M. F.; Beaulieu, L. & Seco, J. (2015). Developing a
phenomenological model of the proton trajectory within a heterogeneous medium required for
proton imaging, Physics in Medicine & Biology 60(13): 5071.

Collins-Fekete, C.-A., Volz, L., Portillo, S. K., Beaulieu, L. & Seco, J. (2017). A theoretical
framework to predict the most likely ion path in particle imaging, Physics in Medicine € Biology
62(5): 1777.

Doolan, P., Testa, M., Sharp, G., Bentefour, E., Royle, G. & Lu, H. (2015). Patient-specific stopping
power calibration for proton therapy planning based on single-detector proton radiography,
Physics in Medicine € Biology 60(5): 1901.

Fippel, M., Soukup, M. et al. (2004). A monte carlo dose calculation algorithm for proton therapy,
Medical Physics 31.

Foote, R. L., Stafford, S. L., Petersen, I. A., Pulido, J. S., Clarke, M. J., Schild, S. E., Garces, Y. 1.,
Olivier, K. R., Miller, R. C., Haddock, M. G. et al. (2012). The clinical case for proton beam
therapy, Radiation Oncology 7(1): 1-10.

Hu, M., Jiang, L., Cui, X., Zhang, J. & Yu, J. (2018). Proton beam therapy for cancer in the era of
precision medicine, Journal of hematology & oncology 11(1): 136.

Jan, S., Benoit, D., Becheva, E., Carlier, T., Cassol, F., Descourt, P., Frisson, T., Grevillot, L., Guigues,
L., Maigne, L. et al. (2011). Gate v6: a major enhancement of the gate simulation platform
enabling modelling of ct and radiotherapy, Physics in Medicine €& Biology 56(4): 881.

Johnson, R. P. (2017). Review of medical radiography and tomography with proton beams, Reports
on Progress in Physics 81(1): 016701.

Khellaf, F., Krah, N., Létang, J. M., Collins-Fekete, C.-A. & Rit, S. (2020). A comparison of direct
reconstruction algorithms in proton computed tomography, Physics in Medicine € Biology
65(10): 105010.

Kingma, D. P. & Ba, J. (2014). Adam: A method for stochastic optimization, 3rd International
Conference on Learning Representations (ICLR) 2015.

Krah, N., Létang, J.-M. & Rit, S. (2019). Polynomial modelling of proton trajectories in homogeneous
media for fast most likely path estimation and trajectory simulation, Physics in Medicine €



Proton path reconstruction for pCT using Neural Networks 18

Biology 64(19): 195014.

Li, T., Liang, Z., Singanallur, J. V., Satogata, T. J., Williams, D. C. & Schulte, R. W. (2006).
Reconstruction for proton computed tomography by tracing proton trajectories: A monte carlo
study, Medical physics 33(3): 699-706.

McAllister, S. A. (2009). Efficient proton computed tomography image reconstruction using general
purpose graphics processing units, PhD thesis, California State University, San Bernardino.

McAllister, S., Schubert, K., Schulte, R. & Penfold, S. (2009). General purpose graphics processing
unit speedup of integral relative electron density calculation for proton computed tomography,
2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, pp. 4085-4087.

Schneider, U. & Pedroni, E. (1994). Multiple coulomb scattering and spatial resolution in proton
radiography, Medical physics 21(11): 1657-1663.

Schulte, R., Penfold, S., Tafas, J. & Schubert, K. (2008). A maximum likelihood proton path formalism
for application in proton computed tomography, Medical physics 35(11): 4849-4856.

Tian, X., Liu, K., Hou, Y., Cheng, J. & Zhang, J. (2018). The evolution of proton beam therapy:
Current and future status, Molecular and clinical oncology 8(1): 15-21.

Williams, D. (2004). The most likely path of an energetic charged particle through a uniform medium,
Physics in Medicine €& Biology 49(13): 2899.



	I Introduction
	Introduction
	Structure
	Naming Conventions

	Working with Particles
	Particle Detectors
	Particle Tracking
	Gaseous Tracking Detectors
	Solid State Tracking Detectors
	Track Reconstruction
	Trigger Systems

	Particle Accelerators
	Forms of Particle Accelerator


	Machine Learning and Neural Networks
	The Concept of Machine Learning
	Neural Networks
	Deep Learning and Neural Networks
	A Basic Neural Network
	Anatomy of a Neural Network
	The Training Process
	Forms of Neural Network Model

	Machine Learning in High Energy Physics


	II Proton Computed Tomography
	Hadron Therapy and Proton Computed Tomography
	Radiotherapy
	Biological Impact
	Treatment Planning

	Hadron Therapy
	Proton Therapy
	Practice
	Other Heavy Ions
	Treatment Planning

	Proton Computed Tomography
	The Need for Proton Paths
	Transport Through Matter
	The Most Likely Path Formalism
	Computational Cost
	Equipment


	Aims and Method
	Aims
	Monte Carlo Simulation
	Datasets
	The Proton Path Neural Network
	Measurements and Analysis
	Most Likely Path Implementation
	Root Mean Squared Error
	Execution Time


	Results and Analysis
	Homogenous Phantom
	Root Mean Squared Error
	Relationship Between Error and Deviation
	Tracks with Differing Performance

	Inhomogeneous Phantom
	Execution Time

	Discussion
	Related Study


	III Graph Neural Network Tracking
	Graph Neural Networks
	Graphs
	Fundamentals of Graph Theory
	Pseudographs
	Subgraphs
	Directed Graphs
	Adjacency Matrix Representations

	Graph Network Blocks
	Weighted Graphs and Attributes
	Operations
	Graph Network Blocks
	The Message Passing Paradigm

	Graph Neural Networks
	Forms of GNN
	The Interaction Network
	The HEP.TrkX and Exa.TrkX Tracking Model


	CERN and the Standard Model
	The Case for High Energy Particle Physics
	The Standard Model
	Unanswered questions
	The Role of Particle Accelerators and Detectors

	CERN and the Large Hadron Collider
	The CERN Accelerator Complex
	The Large Hadron Collider
	Beam Conditions
	Detector Experiments
	The High-Luminosity LHC


	The LHCb Experiment
	Physics at LHCb
	Detector Design
	Tracking System, Magnet, and Internal Gas Target
	Particle Identification Systems
	Control Systems

	Data Acquisition, Trigger and Analysis
	Track Categorisation
	Event Building and HLT1
	Calibration Buffer and HLT2
	Offline Processing and Analysis

	Upgrade Programs

	The LHCb Vertex Locator
	Role
	Overarching Design
	VELO Pixel Modules
	Track Reconstruction within the VELO
	Development of the Pattern Recognition Algorithm
	Clustering
	Pattern Recognition
	Track Fitting

	Machine Learning at LHCb and the VELO
	An Early Pattern Recognition Model
	The Hybrid Model


	Aims and Method
	Aims
	The Challenge of Representation

	Dataset Production
	Monte Carlo Simulation
	Datasets
	Detector Scope

	Graph Neural Network Models
	Overarching Model Framework
	Component Network Architectures
	Training Procedure

	Measurements and Analysis
	Measurement Errors
	Component Network Performance
	Tracking Performance

	Comparison Model
	Hybrid Model Implementation
	Training Procedure


	Results
	Basic Network Models
	Consistency with the Hybrid Model
	Separate Network Instances
	Input Variables
	Training Bias
	Network Configuration

	Interaction Network Models
	Comparison With the Hybrid and Basic Models
	Message Reduction Function
	Skip Connection
	Iteration Section
	Network Configurations
	Missing Segments Filter


	Discussion
	Limitations
	Execution Time
	Potential Directions
	Related Projects


	IV Conclusion
	Conclusion
	List of Figures
	List of Tables
	Bibliography

	V Appendices
	Declarations and Permissions
	Pertaining to Part II
	Candidate Declaration
	Co-author Declarations

	Pertaining to Part III

	VELO Module Positions
	Results Tables for Chapter 13
	Reproduction of 'Proton path reconstruction for pCT using Neural Networks'


