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1 | INTRODUCTION

Using the algebraic curvature of modules and the Levi-Civita connection on 1-forms as defined in [MRLC], we introduce
the curvature tensor for spectral triples, as well as Ricci and scalar curvature. We then prove a general Weitzenbdck formula
for Dirac spectral triples, and exemplify this by establishing the formula for 8-deformations of commutative manifolds.

One recent approach to curvature in non commutative geometry is via heat kernel coefficients [13, 14]. We do not pursue
this approach, rather we adapt the long standing algebraic definitions to the context of spectral triples. In particular, we
exploit our construction of the Levi-Civita connection [25] to define a preferred curvature.

The curvature tensors we present are concrete operators computed as V2 and contractions thereof, familiar from differ-
ential geometry and algebra, see [4], and references therein. Calculations of these curvatures are of comparable difficulty
to the manifold case, so that for situations with reasonable symmetry they can be done by hand.

To relate the operator of a spectral triple to the curvature, we introduce the class of Dirac spectral triples, emulating
the notion of Dirac bundle on a manifold. In this setting, we can define connection Laplacians and obtain a Weitzenbock
formula. The positivity of connection Laplacians relies on the vanishing of a divergence term, just as in the manifold case.

The formulation of a noncommutative Weitzenbock formula requires the existence of a braiding on the module of 2-
tensors. On a manifold, the flip map plays the role of the braiding. To justify our formula, we explain this issue in detail
in Section 4.1.

While the flip map is typically not well-defined on noncommutative tensor products, there are numerous examples of
braidings in the algebraic context [4]. We provide examples of braidings for 6-deformations [25], and the Podle$ sphere [26].
In [25], braidings appeared for a related reason, and were used to obtain reality conditions on 2-tensors and uniqueness
of Hermitian and torsion-free bimodule connections on the module of 1-forms.
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In [25], we constructed the unique Levi-Civita connection for 6-deformations. Here, we show that the Levi-Civita con-
nection of the 6-deformed manifold coincides with the 6-deformation of the Levi-Civita connection of the manifold. This
allows us to establish the Weitzenbdck formula and shows that the scalar curvature remains undeformed, while the full
curvature tensor and Ricci tensor transform naturally under deformation.

Section 2 recalls the framework of [25], Section 3 discusses curvature tensors, Section 4 introduces Dirac modules and
proves a general Weitzenbock formula. Section 5 presents the example of 6-deformations.

2 | BACKGROUND ON NONCOMMUTATIVE FORMS AND CONNECTIONS

This section sets notation and summarizes the setup needed to obtain a (unique) Hermitian torsion-free connection on
the module of 1-forms of a spectral triple. We do this by reformulating the assumptions and results of [25] in the context
of spectral triples.

2.1 | Modules of forms

Throughout this article, we are looking at the differential structure provided by a spectral triple.

Definition 2.1. Let B be a C*-algebra. A spectral triple for B is a triple (3, H, D), where /3 C B is alocal [25, Definition 2.1]
dense #-subalgebra, H is a Hilbert space equipped with a #-representation B — B(}), and D an unbounded self-adjoint
operator D : dom(D) C H — H such thatforalla € B

a-dom(D) Cc dom(D) and [D,a] isbounded,
a1+ D?*»~1/2  is compact.

Remark 2.2. The compact resolvent condition plays no role in our constructions, but in this paper will only be discussing
examples arising from spectral triples satisfying this condition. See [25, Examples 2.4-2.6].

Given a spectral triple (B, H, D), the module of 1-forms is the space
Q1,(B) :=span{a[D,b] : a,b € B} C B(H).

We obtain a first-order differential calculusd : B — le(B) by setting d(b) : = [D, b]. This calculus carries an involution
(a[D,b])" :=[D,b]*a* induced by the operator adjoint. Thus, (QID(B), 1) is a first-order differential structure in the sense
of [25].

We recollect some of the constructions of [25] for (le(B), T). Writing T;")(B) = le(B)®Bk, the universal differential
forms Q;;(/3) admit a representation

mp  QE(B) - T%(B) mp(agd(ay) - 8(ar)) = ao[D,a1] @ --- ® [D, ail, (2.1)
Zp 1= momp 1 Q(B) > QX(B), #p(agd(ar) -+ 8(ay)) = ag[D, a;] -+ [D, a], (2.2)

where m : T’l‘)(B) - Q’Z‘)(B) is the multiplication map. Neither 7y, nor 7y, are maps of differential algebras, but are 53-
bilinear maps of associative *-B-algebras [21, 25]. The *-structure on Q7 (1) is determined by the adjoint of linear maps
on H, while the *-structure on EBkTi‘)(B) is given by the operator adjoint and

(@0 Q@@ Qu) 1=w; ® - @ w; ®w].
We will write ' := w* for 1-forms w as well, though we will adapt this notation when we come to 8-deformations.

The maps 7 : Q;;(B) —» T;, and J : Qk(B) — Qk+1(B) are typically not compatible in the sense that § need not map
ker 7 to itself. Thus in general, T7,(/3) cannot be made into a differential algebra. The issue to address is that there are
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universal forms w € Q1(B) for which 7(w) = 0 but 7(8(w)) # 0, and similarly for 7. The latter are known as junk forms
[11, Chapter VI]. We denote the B-bimodules of junk forms by

JTH(B) = {mp(8(w)) : 7p(w) =0} and J5(B) = {Zp(8(®)) : p(w) = 0}.
Observe that the junk submodules only depend on the representation of the universal forms.

Definition 2.3. A second-order differential structure (Q%), +,W) is a first-order differential structure (Q%)(B), 1) together
with an idempotent ¥ : T, — T, satisfying ¥ot = to®¥ and JT7(B) C Im(¥) C m~'(J7,(13)). A second-order differential
structure is Hermitian if Q%)(B) is a finitely generated projective right B-module with right inner product (- | -) 5, such
that ¥ = W2 = W* is a projection. We define A% (B) := (1 — ¥)T5,.

A second-order differential structure admits an exterior derivative dy : Q%)(B) - T%(B) via
dy(p) = (1 — W)orrpoSorry' (o). (2.3)

The differential satisfies dy([D, b]) = 0 for all b € B. A differential on 1-forms allows us to define curvature for modules,
and formulate torsion for connections on 1-forms.

For a Hermitian differential structure (QlD(B), 1, %, (- | -)), the module of 1-forms Q%)(B) is also a finite projective left
module [25, Lemma 2.12] with inner product z(w | p) = (@' | p7);. Thus, all tensor powers T;‘)(B) carry right and left
inner products. Using these we obtain bimodule isomorphisms

& : T — Hom®(TK, T%), d(w ® n)(p) := w(n® | p)
& T - Homy(Th, Tp), & @ w)(p) :=(p' | n)e, 2.4)

where p,n € TX ,and w € T7,. Inner products on Q’;')(B) do not arise automatically.

The two inner products on le(B) give rise to equivalent norms on le(b’), and using results of [19], le(B) is a bi-
Hilbertian bimodule of finite index. To explain what this means for us, recall [17] that a (right) frame for le(B) is a
(finite) collection of elements (w;) that satisfy

p= ij(wj | )5
J
forallp € Q;)(B). A finite projective bi-Hilbertian module has a “line element” or “quantum metric” [4] given by
— i
G_ij@)wj. (2.5)
J
The line element G is independent of the choice of frame, is central, meaning that bG = Gb for all b € 3, and

spanB{ Zcoj ®coj, : for any frame (coj)}
J

is a complemented submodule of TZD. The endomorphisms &(G) and &(G) coincide with the identity operator on QlD(B).
The inner product is computed via

—gw®p) :=(Glo®p)s= (o |p)s (2.6)

Such bilinear inner products appear in [4-6]. The element

ef 1= plw;|w)=—gG) € B 2.7)
J
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is independent of the choice of the right frame, and is central, positive, and invertible (provided the left action of 5 on
Q1 (B) is faithful). Setting Z = e /2 Zj w; ® co;., the endomorphisms &(Z ® Z) and a(Z ® Z) of T (1) are projections.

2.2 | Existence of Hermitian torsion-free connections
A right connection on a right 3-module X is a C-linear map
V:iX—oX®p QJ,, such that V(xa)=V(x)a+x®[D,a], x€X, aecB.

There is a similar definition for left connections on left modules. Connections always exist on finite projective modules.
Given a connection V on a right inner product B-module X we say that V is Hermitian [25, Definition 2.23] if for all
X,y € X we have

—(Vx | )+ (x| Vy)5 = [D, (x | y)gl.

For left connections, we instead require

5(Vx | y) = 5(x | Vy) = [D, s(x | p)].

If furthermore X’ is a -bimodule [25, Definition 2.8] like TX , then for each right connection V on X there is a conjugate
left connection V given by V= —‘ro?o}‘ which is Hermitian if and only if V is Hermitian.

Example 2.4. Given a (right) frame v = (x;) C & we get left- and right-Grassmann connections
Vo) 1= D, px [ XD @ x],  VO(x) i=x; ®[D,(x; | x)5l, x€X

The Grassmann connections are Hermitian and conjugate, that is, g" = —‘ro?" of. A pair of conjugate connections on X
are both Hermitian if and only if for any right frame (x;) [25, Proposition 2.30]

V) ® x| +x;® V(x]) = 0. (2.8)

The differential (2.3) allows us to ask whether a connection on QlD(B) is torsion-free, meaning [25, Section 4.1] that for
any frame

1001 - W)(V(wj) ®w +w;® d\y(co;)) =0.
For a Hermitian right connection, being torsion-free is equivalent to (1 — l11)06 = —dy. For the conjugate left connection,
this becomes (1 — ¥)oV = dy [25, Proposition 4.5].
Given a right frame (w;) C le(B) we define
W i=dy(w) ® co; and W' i=w;® d\p(cuj).
Definition 2.5. Let (QlD(B), 1,9, (- | -)) be a Hermitian differential structure. Define the projections P :=¥ ® 1 and

Q:=1®%on T3D(B). The differential structure is concordant if T% = (Im(P) N Im(Q)) & (Im(1 — P) + Im(1 — Q)). Let
IT be the projection onto Im(P) N Im(Q). The differential structure is f-concordant if [25, Definition 4.30]

A+II—-PQ YW +PWH=Q+II-QP)"{(W' +QWw). (2.9)

The condition (2.9) expresses a compatibility between ¥, f, and the inner product, as encoded by the frame (w;).
Importantly, despite being defined in terms of a frame, the 3-tensor

A +I1—PQ) YW +PW") — (1 + 11— QP)'(W' + QW),
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is independent of the choice of frame. In particular, the f-concordance condition, which requires this 3-tensor to vanish,
is frame independent [25, Proposition 4.33].

Theorem 2.6. Let (QID(B), 1,9, (- | -)) be a Hermitian differential structure. Then, there exists a Hermitian and torsion-free
(right) connection

V:Ql(B) - T2(B)
if and only if(Q%)(B), 1,9, (- | -)) is t-concordant.

To obtain such a connection we use the maps a,a of Equation (2.4), and add to the Grassmann connection ?“ ofa
frame v = (w;) the 1-form-valued endomorphism a(A) € Hom;;(Q1 ,T%)), where

A=-(1+T1-PQ'(W+PWHeT;.

If instead we start with the left Grassmann connection V¥ we subtract the connection form @(A). The two connections
are conjugate.

Example 2.7. The construction for compact Riemannian manifolds yields the Levi-Civita connection on the cotangent
bundle [25, Theorem 6.15].
2.3 | Uniqueness of Hermitian torsion-free connections

For uniqueness, we need the left and right representations @, & as well as the definition of a special kind of bimodule
connection.

Definition 2.8. Suppose that o : T%)(B) - TZD(B) is an invertible bimodule map such that oo = c~'of and the
conjugate connections V, v satisfy

ooV = V.
Then, we say that o is a braiding and (V, o) is a T-bimodule connection.

We denote by Z(M) the center of a B-bimodule M.

Theorem 2.9. Let (le(B), 1,9, (- | -)) be a concordant Hermitian differential structure. Suppose that o : T2D - T2D isa
braiding for which the map

d+o toa : Z(Im(I)) » Hom(Q}), T7)
is injective. If there exists a Hermitian torsion-free o — t-bimodule connection, then it is unique.

Even when we have the uniqueness given by Theorem 2.9 we do not have a closed formula for the part of the connection
in Im(IT), but in examples this can usually be determined. For Riemannian manifolds, and indeed all examples so far, this
part of the connection is zero.

Definition 2.10. If the f-concordant Hermitian differential structure (Q;)(B), 1, %, (- | -)) admits a braiding o for which
there exists a Hermitian torsion-free o-1 bimodule connection, we call it the Levi-Civita connection, and denote it by
(V9,0).

For a compact Riemannian manifold (M, g) equipped with a Dirac bundle § — M, we have an associated spectral
triple (C*(M), L*(M, $), I§). Then, Q}”(C“’(M)) =~ Q'(M) ® C [11, Chapter VI], and we let (- | -), be the inner product on
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(C°°(M )) induced by g. Moreover, the junk 2-tensors in T? (C°°(M )) = T?(M) coincide with the module of symmet-

ric 2-tensors [25, Example 4.26]. Thus for o : T;(M ) > Tzzz)(M) the standard flip map we can set ¥ : = T for the junk
projection.

Theorem 2.11. Let (M, g) be a compact Riemannian manifold with a Dirac bundle § — M. Then, (Q}D(CDo (M), T, %, (- | )g)
is a f-concordant Hermitian differential structure and there exists a unique Hermitian torsion-free t-bimodule connec-
tion (VY, o) on Q;(C‘”(M)) ~ QM) ® C. The restriction V¢ : QY(M) ® C — Q(M) ® C coincides with the Riemannian

connection on QL(M).

Other examples to which this machinery applies are 6-deformations of Riemannian manifolds [25, Section 6], as well
as pseudo-Riemannian manifolds [25, Examples 2.4-2.6], and the standard Podle$ sphere [26].

3 | CURVATURE

The definitions of the curvature we use are the classical ones and have been used in the algebraic context for decades. The
books [21] and [4] serve as excellent sources for the background, examples, and related topics.

3.1 | Curvature for module connections and spectral triples

A second-order differential structure (Q (B), T, ¥) has a second-order exterior derivative
dy : QI (B) > AZ(B)=(1-¥)T;

which allows us to use the usual algebraic definition of curvature for a module connection.

Definition 3.1. Let (Q (B), T, ¥) be a second-order differential structure, X a finite projective right B-module, and
V¥ x5 x Rz Z)(B) a connection. The curvature of X is the map RV X > XQp D(B) defined by

RV (x)=1® (1-¥)o(V¥ @ 1+1®dy)oVi(x) € X ®5AL(B), x€EX.
Similarly, for a connection V¥ on a left module sX we define the curvature to be
(x)—(l—lp)®10(1®VX dq,®1)ovx(x)e/\ (B)®p X XEX.

The sign difference between the left and right curvatures is due to the fact that dy satisfies a graded Leibniz rule,
while connections do not interact with the grading in such a way. For a pair of conjugate connections V = —foVotona
t-bimodule X the curvatures are related via

RV (x)f = RV(xh). (3.1)

The next lemma provides tools for computing the curvature. For a finitely generated projective right inner product
module X, we set X* := Hom*(X, 3), so that the inner product (- | -) 3 on X defines an antilinear isomorphism

X=X xex"i=(xlg (x|p(y) =(x|y)s

Lemma3.2. Let (Q (B), T,¥,{- | -)) be a Hermitian differential structure, X a finite pmJectlve right inner product B-module
andv = (x;) a frame for X. Any right connection V¥ can bewritten VX = V° + &(A) where V' is the Grassmann connection
and A € X ®p QD ®p X* isgiven by A = Zj V(xj) ® xj. Writing A = Zj’k xX; ® A’; ® x;, we have

DxjlxdsAl=al, YA Ix)s=A4% Y X @D, (x; | x5l @ x; =0,
k k J.k

85UB01 7 SUOWILOD 3A1IeR.D 8|l dde 8Ly Ag peusenob ase sajolie YO ‘88N JO Sa|NJ 1oy Akeiqi8UlJUO AB|IA UO (SUOIPUD-PUR-SLULB}/WOD A8 |IM" ARe.q)1Bu UO//SAY) SUORIPUOD puUe SWS | 8L} 88S *[720Z/2T/ET] Uo Ariqi8uliuO A8|IM ‘85TO0YZ0Z BURW/Z00T OT/I0p/LLioo A8 | im Azeiq1jpul|uo//sdny woi papeojumoq ‘ZT ‘¥20e ‘9T9222ST



4588 %ﬁggﬁ%ﬁ%ﬁﬁHE MESLAND and RENNIE
[NACHRICHTEN |

Proof. The first two statements come from the frame relation

Zx ®Ak®x —le®(xl|x)BAk®x —Zx ®A (X [ x1)5 ® X
J.k,l J.kl

The third is similar, with

2 VO x5 = X V0ol | X)) %) 5
Jj.k

= V) | x5+ 3 x ® [D (x| X)) 514, | X)s. 0

k Jk

What follows is essentially the classical calculation showing that RV is a 2-form-valued endomorphism and can be
found in [21, 27].

Proposition 3.3. Let (Q (B),T,%,(- | -)) be a Hermitian differential structure, Xz a flnltely generated projective module,

V¥a right connection. The curvature is a well-defined 2-form-valued endomorphism RV € Homj(X, X @ A? - Ifv = (x;)
is a frame for X and V¥ =V 4+ a(A) then

R%’X(x) =11 - ‘P)<Z X ® [D, (x| xj) ] ® [D,(x; | x)sl{x1 | X)5

Jokl

+ D 0 ® AL @ Al (x; | ) + 2 X ® dy(AD)(x; | x>3>>
J.kl

Similarly, the curvature of a left connection V¥ =V + a(A) is a well-defined 2-form-valued endomorphism RV €
HomB(X,AD ® X), and

R ®=1-9e 1(2 (x| )D, 5(x | X)) @ [D, 5(x; | x1)] ® xi

okl

+28<x | x]>Al ®Ak®xk_ ZB(xlxj>d‘P(A )®Xk>
J.kl

Proof. In the proof, we will employ the Einstein summation convention. We prove the result for right modules. Fixing a
frame (x;) of X3, write

Vx(x):xj@)[l),(xj|x)B]+xj®A?(xk|x)B, X € Xp.
Given x € X we use Lemma 3.2 repeatedly to find
R =101 ~W)o(VE @1+ 1@ dy ) (x; ® [D, (x) | x)s] + ¢ ® A (x| %) 5)
=18 (1= 0)(V¥(x) ® [D, (x; | )51+ V(0 ® ALGx; | x5 + 31 @ du(AL (x| %))
=1®(1- q’)<xk ® [D, (x| x1)5] ® [D, (x; | X))+ xx @ AL (x; | x;)5 ® [D, (x; | x)5]
+x; ® [D, (1 | xi) 5] ® AL(x; | X)5 + X1 @ AV (X | Xie)s ® AL (X | X) 5

+ X ® dy(AD(x; | X)) = 31 ® 4] ® [D, (x; | x) 51
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=1Q (1 —W)(xk ® [D, (xic | xj)5] ® [D, (x; | xp)51(xp | X)55
+ 1 @ (D, (1 | %1051 ® (¥ | %) AR | X3+ 51 ® AT (X | k)5 @ AL () | X)5
3, ® dy(AD (x| X)) )
=1Q (1 —W)(x @ [D, (xic | x)5] ® [D. (x| xp)51(xp | X35
+x, ® Af ® A,j;(xj [ x)5 + X ® dw(Ai)(xj | x)B))-
The case of a left connection follows similarly. O

The advantage of using a global frame for computing the curvature, even classically, is that the topological contribution
to the curvature is separated out in the Grassmann term

1® 1 =) (x ® [D, (x| xj) 5] ® [D, (x| xp)51)(xp | X)5

with the connection form contributions “dyA + A A A” being purely geometric.

For a compact Riemannian manifold (M, g) equipped with a Dirac bundle § — p and associated spectral triple
(C*®(M),L*(M, $),1p) we have Qllp(C‘x’(M ) =~ QY(M) ® C and ¥ = symmetrization projection. It is well-known that this
notion of connection coincides with the usual one in the case of a connection on a smooth Riemannian vector bun-
dle E - M. Consequently, the definition of curvature applied to such a connection also recovers the usual geometric
curvature tensor.

In view of Theorem 2.11, we can recover the Riemann tensor of the manifold M by considering the curvature of the
Levi-Civita connection. This motivates the following definition.

Definition 3.4. Let (3,H,D) be a spectral triple admitting a f-concordant Hermitian differential structure
(Q%)(B), +,%,(- | -)) and a braiding o : T% - T%) for which there exists a Hermitian torsion-free ¥ bimodule connection

(VC, o). The curvature tensor of (3, , D) is then defined to be RV* .

3.2 | Ricciand scalar curvature

The Ricci and scalar curvature are obtained from the full Riemann tensor by taking traces in suitable pairs of variables.
The analog in our setting is the inner product with the line element G € T %(B) introduced in Equation (2.5), again for
suitable pairs of variables. Similar definitions appear in [4, p. 574ff].

For a manifold, we can choose a frame coming from orthonormalizing local coordinates

wk = \/gaaBﬁ dxt (3.2)
with the help of a partition of unity ¢,. Here, we abuse notation by writing dx* for [D, x% ] computed locally, Bl’jdxg = eéﬁ
is a local orthonormal frame, and where for a self-adjoint or symmetric operator D we have (dx*)" = —dx*.

Proposition 3.5. Let (M, g) be a Riemannian manifold and set B = C*(M). Identifying tangent and cotangent bundles of
the Riemannian manifold (M, g), the curvature tensor is (locally)

R = Z dx* ® R;,,dx% AdxP ® (dx”)".
U,V,0,0

The Ricci tensor is
and the scalar curvature is

r = (G | Ric)p.
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Proof. We will work over a single chart. Writing dx° A dx” as %(dx" ® dx* — dx® ® dx°) allows us to compute the left
inner product with the identity operator G. Locally G = g,zdx* ® (dxP)", so we find (using the Einstein summation
convention)

1
s(R|G) = de“ ® Ry X7 coo () (dXP @ (dx”)7 | gupdx* ® (dxB)Ty

1
— S @ Ry, dxXP e (dx® @ (A | gegdx® @ (dP))
1 1
= —de“ ® Rgpwdxagﬁvgaﬁgp“ + de“ ® Rgpwdxpgaﬁg”ﬁg"“

dxrg®”

TPUY

1
= _de’u ® R oPUY

dxgf? + %dx/‘ ®R

= dx* ® (dx°)R__°

= —dx* ® dx7R,p,, 8" = —dx* ® dx°R e

opuY
The scalar curvature is then the right inner product of the Ricci curvature with the identity operator,
(G 1 5(R1G))s = (8apdx™ ® (dxF)' | dx¥ @ (dx)') Ry 8
= Ropuv8”” 8ap8 P g™
= R0 8°" 87"
= Ropn878%H. D
As a consequence of these computations, we see that we can define the Ricci and scalar curvature for any connection

on the 1-forms of a Hermitian differential structure.

Definition 3.6. Let (Q;)(B), +,%,(- | -)) be a Hermitian differential structure and Va right connection on Q;) with

curvature RV € Q. (B) ® A7,(B) ® Q] (B). The Ricci curvature of Vis

Ric' = 5(RY | G) € T2(B)
and the scalar curvature is
rV = (G| Ric")p.

These definitions mirror those of [4], and references therein, and agree when both apply. We will compute these
curvatures for 6-deformations of compact manifolds in Section 5, and in [26] we will examine the curvature of the
Podles sphere.

4 | WEITZENBOCK FORMULA

In this section, we relate the second covariant derivative to the connection Laplacian. Under additional assumptions,
mimicking the definition of Dirac bundles on manifolds, we compare the connection Laplacian to D?.

Before introducing our definition of Dirac spectral triples, modeled on the definition for manifolds, we clarify the role of
the flip map which is present even in the commutative case. These observations influence the general form of Weitzenbock
formulae even for manifolds.

4.1 | Clifford connections and braiding

The definition of Clifford connection and Dirac bundle for Riemannian manifolds as found in [22, Chapter II, Section 5]
tacitly makes use of commutativity in a number of ways. Here, we clarify where commutativity is used and provide
motivation for the appearance of the braiding in the definition of Dirac spectral triple (Definition 4.1).
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In the setting of a Dirac bundle ¢ — ps on a Riemannian manifold (M, g), we write X := I'(M, §) for the central bimod-
ule of sections of g. One of the requirements of a Dirac bundle is that module of 1-forms Q!(M) acts as endomorphisms
of X. That is, we are given a C®(M)-linear map Q'(M) — End(X).

We say that a connection V¥ is a Clifford connection if given a 1-form w, the Levi-Civita connection V&, and a section x €
X, we have

w®x - V¥(w-x)=V8(w) x+w- V¥(x). (4.1

In order for the right-hand side of Equation (4.1) to be well-defined on the balanced tensor product Q! ®ceom) X (before
letting the 1-form part act) requires V& to be a right connection and V* to be a left connection. In the commutative case, any
right connection can be turned into a left connection using the flip map X ®ce ) ol - of Qo) X X Qw > 0w x.

Ensuring well-definedness forces us to work with a left and a right connection, but subsequently, care is required when
properly defining the action of the endomorphism defined by the 1-form w on Q' ¢« (yr) X. Since C® (M) commutes with
End(X) the operator (1 ® ©)(n ® x) :=7 ® w - x is well-defined on Q! ®c) X In the noncommutative setting, this
is no longer true.

The issue can be overcome by using a braiding o : Q' ®cwn Q' = Q! @cw(yr) QF, which in the commutative case
would be the flip map. In that case

@(@®®N) x=NQuw-x=1Q w1 x),

and in this equation the left-hand side can be generalized by using a braiding, whereas the right-hand side does not gen-
erally make sense. The classical Clifford connection condition can thus be rewritten in terms of left and right connections
as

V¥ (e(@)x) = 1 @ ¢)(o ® 1)(w ® V¥ (x) + Vo (w) ® x), (4.2)

and in this form can be reinterpreted in the noncommutative context.

4.2 | Dirac spectral triples and the connection Laplacian

We now introduce a class of spectral triples for which the Weitzenbock formula holds. Given a left inner product module
X and a positive functional ¢ : B — C, the Hilbert space L?(X, ¢) is the completion of X in the scalar product {x,y) :=

$(5(x | ¥).

Definition 4.1. Let (B,H,D) be a spectral triple equipped with a braided Hermitian differential structure
(Q,(B), 1,%,(- | -),0). Then, (B, H, D) is a Dirac spectral triple over (Q} (B), T, ¥, (- | -),0) if

1. for w,7 € Q(B) we have

(mo®)(p @ 1) = e Pm(G)p" | 1) = —e Pm(G)glp ® n); (4.3)

2. there is a left inner product module X over /B and a positive functional ¢ : B — C such that H = L?(X, ¢) and the
natural map ¢ : Qp,(B) @3 LA(X, ¢) — LA(X,¢) restricts toamap ¢ : Q1,(B) @z X — X;

3. There is a left connection VX : X — Q7 (B) ®p X such that D = coV¥ 1 X = [A(X, ¢);

4. there is a Hermitian torsion-free -bimodule connection (?G, g)on Q;) such that

D(wx)= coV¥(c(w ® x)) = co(mor @ N(VA@)® x) + & ® V¥(x)). (4.4)

The well-known order one condition for spectral triples gives a sufficient condition for D to be of the form coV¥ [23,
Section 3]. The compatibility of V¥ with VC is the analog of the ‘Clifford connection’ condition on a Dirac bundle [22,
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Definition 5.2]. Condition 1 captures the essential feature of Clifford multiplication, namely that the product is that of
differential forms modulo the line element G.

As discussed in Section 4.1, the definition of Dirac bundle for manifolds exploits commutativity to ensure the 1-forms
act in the correct order in condition 4. The bimodule map o plays the role of the flip map to do the same job in the
noncommutative context.

Remark 4.2. One could consider the Clifford connection condition (4.4) relative to an arbitrary right connection vV on
QID. Computing [D, a]wx then gives that

m(oV® (aw)) = [D, alw + am(c V' (w)).
Hence, V' is forced to be a o-bimodule connection modulo ker 1.

We will consider examples of Dirac spectral triples, such as 8-deformations of classical Dirac bundles in this paper and
the Podles sphere in [26].

The curvature of the left B-module X is given by the covariant second derivative (1 — ¥) ® 1o(1 ® VX - dy ® 1)0§X .
The existence of the connection V¢ on Q%)(B) allows us define a connection Laplacian, via a second derivative of the form

(1® V¥ + VC ® 1)oV?, combined with the analogue of a trace map on 2-tensors. By [25, Proposition 2.30]
Vi®1+1@ VY : QL(B)®pX — T2(B) ®p X
is well-defined. In this section, we will show how to construct the connection Laplacian for Dirac spectral triples.

Definition 4.3. Let (B,H,D) be a Dirac spectral triple with braided Hermitian differential structure denoted
by (QL(B),1,%,(-]-),0), and V¥ :X > Q] ®;& and V°: Q] — T7(B) the associated connections. With

m : T7(B) — Q7 (B) the multiplication map, we define the connection Laplacian of V¥ relative to VC by
A¥(x) 1= e PmG)HG | (VE @1 +1® V¥)oVA(x))y € X.

Note that (G | (VE ®1+1® V¥)oV¥(x))» € & since (VC @1 +1Q V¥)oV¥(x) € T7(B) ® 3 X. Moreover, Condi-
tion 2 of Definition 4.1 guarantees that m(G) maps X’ to itself, so that indeed AY : X — X.

For commutative manifolds and Dirac-type operators, this definition specializes to the usual connection Laplacian when
X is the module of smooth sections of a vector bundle and V© is the Levi-Civita connection on the cotangent bundle. The
operator e *G(G]| is the projection onto the span of G in T2, and the next lemma describes e #m(G) for manifolds.

Lemma 4.4. For a compact Riemannian manifold (M, g) equipped with a Dirac bundle § — M and associated spectral
triple (C*(M), LA(M, $), D), the operator e P m(G) is the identity, and so A¥ is the usual connection Laplacian.

Proof. On a Riemannian manifold, the line elementisG = }’, v P 8wy ® y”*. This is expressed using a covering of the

manifold by charts U, with partition of unity ¢, and coordinates x*, whose differentials are represented by y(dx*) =: y*
(see Equation (3.2)). Computing locally (as we may) using the Clifford relations gives

> m(guyt ® ") = Y. 84g*’1d = dim(M)1d
Hy u,v

and ef = dim(M). The formula for A%¥ reduces to the classical formula for the connection Laplacian, and so we are

done. O
Remark 4.5. The choice of the inner product on 9111) is critical to Lemma 4.4. The Clifford elements y*# encode the metric
g used to define pj, and if we take a different Riemannian metric 4 on Qllp we find m(G) = vahwg/"’ld.
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4.3 | The Weitzenbock formula for Dirac spectral triples
Given a Dirac spectral triple (B, L*(X, ¢), D), we can compare the action of D? on L?(X, ¢) with the connection Laplacian.

Theorem 4.6. Let (B,L*(X,¢), D) be a Dirac spectral triple relative to (Q%)(B), t,%,(-|-),0) and A% the connection
Laplacian of the left connection 23 If mogo¥W = moV¥ and ¥(G) = G then

D2(x) = A%(x) + co(moo @ D(RV' (), x € . (4.5)
Proof. We start our comparison of D? and A% by using Equation (4.4) to write
DX(x) = co(moo @ (VE @ 1+ 1 ® V¥)oV*(x)))
= co(moo ® 1)((11J QDVE®1+1® V¥)oV¥ (x)) (4.6)
+co(mo ® DRV () + (1 - W)V + dy) ® 16V (x))) (4.7)
= co(mog @ (W ® DV ® 1+1® V)oV*(x)) + co(mos ® (R (x)).
We will identify the term (4.6) with the connection Laplacian A%. By Equation (4.3), we have
m(w ® p) = e Pm(G)w' | p)5 +m(1 - )@ ® p).
So, if ¥(w ® p) = w @ p then
com®@ (@@ p ® x) =e Pm(G)w' | p)sx = e Pm(G)G | w® p)sx.
Since mogo® = moW¥ and W(G) = G we have
co((mooo®) ® N(VE @ 1 +1® V¥)oVA(x))
= co((mo®) ® N(VE ®@ 1 + 1 ® V¥)oV¥(x))
=ePmG)G | (TR 1(VC ®1+1® V¥)oV*(x))
=ePm(G) G| (VC ®1+1® V¥)oV¥(x)) = A¥(x)
which completes the proof. O
Remark 4.7. As in Remark 4.2, one could consider the Clifford connection condition (4.4) relative to an arbitrary right
connection V', Equation (4.7) can then be derived and we see that in order for the Weitzenbock formula to hold, the
connection V' is forced to be Hermitian and torsion-free modulo ker m.
4.4 | Divergence condition for positivity of the Laplacian
In geometric applications, the fact that the connection Laplacian is a positive Hilbert space operator is essential. In this
subsection, we derive an abstract condition guaranteeing positivity, corresponding to the well-known fact that the inte-
gral of the divergence of a vector field vanishes. Although we will not use this condition in this paper, we record it for

completeness. We first observe the following.

Lemma 4.8. Suppose that (QID(B), T,9,{- | -)) a Hermitian differential structure and X a left B-inner product module.
Given V¥ : X — Q1,(B) ®5 X a Hermitian left connection and ve' . Q,(B) — T (B) a right connection, for x,y € X
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we have

(G| 5(VE I VA5 = (VO @ 1+1® VX)oVA(x) | ) — V' (u(VEx | 1)) | G).

Proof. For x € X, we write v (x) = w) ® x(1) as a Sweedler sum. Then, we use the Leibniz rule for V© and Hermitian
property for V¥ to obtain

5V @ 1+1® V¥)(we) ® x1) | ) | G)
5V (@)X [ ¥) 1 G) + 5w ® a1(V¥xa) | ¥) | G)

5V (@oys(xa) 1Y) 1 G) = 5wy ® [D, 5xq) | )11 G)

+ 5(w0) ® 5(x1) | VXYY | G) + 5@ ® [D, 5(xa) | ¥)11G)

5V (@) s(x) 1Y) 1 GY + 5(r2(VEx | VEy) | G).

The statement now follows by observing that for any 2-tensor p ® 7 € T%(B) we have

e ®n1G)=pp 1" = (" In)s=(Glp®n)p O
For a Dirac spectral triple (B, L*(X, ), D), we have Q1 (B) ® 3 H = L*(Q},(B) ® 5 X, ¢) with inner product

P®x,7®Y) =5 ®x |1 Q) = ({0 5(x | ¥) 1) = (s 5(x | ¥) @1 | G)).

Recognizing 3(691 ( B(ﬁ" x | y)¥) | G) as a divergence term, the centrality of e #m(G) gives us essentially the classical
argument for the positivity of the connection Laplacian.

Corollary 4.9. Let (B,Lz(if), ®),D) be a Dirac spectral triple over the braided Hermitian differential structure
(QL(B), 1,%, (- | -),0). If $(5(VE (woy{x1) | X)) | G)) = O then

AT, %)) = $((PmG)YAT () | V() e Pm(G)! /2 ) 2 0.

5 | CONNECTIONS AND CURVATURE FOR 6-DEFORMATIONS
5.1 | Background and notation

Let (M, g) be a compact Riemannian manifold equipped with a Dirac bundle § — M and (C®(M),L*(M, §),1§) the
associated Dirac spectral triple (in the sense of Definition 4.1).
The space of 1-forms Qllp(M ) ~ Q! ® C acts via the Clifford action on L?*(M, §), and so carries a T-operation induced by

operator adjoint T — T*, as well as an inner product (- | -); induced by the Riemannian metric g. Moreover, the standard

flip map o : Té(M) - T;(M) gives the junk projection ¥ := HTG and (QB(M ), *, W, (- | -),) is a Hermitian differential

structure. We briefly recall the necessary ingredients to deform this differential structure and refer to [25, Section 6.1] for
details and proofs.

Given a smooth group homomorphism a : T? — Isom(M, g), we obtain a unitary representation U : T2 — B(L2(M, %))
commuting with [j and such that Ady, restricts to a group of *-automorphisms of C*(M). The representation U is neces-
sarily of the form U(s) = e™1P1+152P2 where the p; are the self-adjoint generators of the one-parameter groups associated
to the coordinates sy, s, of T2. The =-algebra of smooth vectors CX(L*(M, §)) c B(L*(M, §)) consists of elements T that
can be written as a norm convergent series

T= Y Tum

(n1,np)€2?

where the family of homogeneous components T, ) is of rapid decay.
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We choose 1=¢® €T and define a new =-algebra structure on the =-algebra of smooth vectors
CX(L2(M, $)) c B(L*(M, $)). On homogenous elements S, T € B(L*(M, §)) with degrees n(S) = (n,(S), n,(S)) € Z? and
n(T) = (n,(T), ny(T)) € Z?, we define a new multiplication and adjoint T via

S % T = 1nOudgT, TT = pmMna (D)

where ST and T* are the existing composition and adjoint respectively. Extending linearly gives a new x-algebra structure
on CX(L*(M, $)), and we denote by C*(My) the vector space C*(M) with this new =x-algebra structure. The map defined
for homogenous elements T by

L: C?(LZ(M, $)) d B(LZ(M,$)), T T}L"Z(T)P1’

extends to a x-representation, and (C®(M,), L>(M, §), Ip) is a spectral triple.
For a pair (S, T) of homogenous operators, define

0(S,T) := AEmI)-nMm©S) = @(n(S), n(T)). (5.1)
The map 0 : T;(Me) - Té(Me) defined on homogeneous forms w, 7 by

oo(@ ® 1) 1= 0(w,n)(n @ w), (5.2)

is a well-defined bimodule map and ¥y := 12‘79 is an idempotent that projects onto the junk 2-tensors. Lastly, the

formula

<CQ | 77>9 = A(m(w)—m(’)))nz(w)(w | 77>’ w,n € Qllp(Me)’ (53)
equips Qllzj (M,) with a positive-definite Hermitian inner product for which ¥y is self-adjoint.

Theorem 5.1 [25], Theorem 6.12. Let M be a compact Riemannian manifold, § — M a Dirac bundle, T? - Isom(M) a
smooth group homomorphism and e’ € T. For Wy the 8-deformed junk projection and (- | -)g the 6-deformed inner prod-
uct, (Q}D(Me), +, W, (- | -)g) is a T-concordant Hermitian differential structure. Moreover for oy : T;)(Me) - T;,(Me) the

O-deformed flip map (5.2) there exists a unique Hermitian torsion-free t-bimodule connection (?Ge, 0g) on Q;)(Me).

In [25], the Levi-Civita connection Vs was constructed explicitly using a homogeneous frame for the Hermitian dif-
ferential structure (QB(M@), T, ¥g, (- | -)g)- In Section 5.2, we will show how to deform connections V — Vg on suitable

T2-equivariant bundles. Then in Section 5.3 we apply this method, and the uniqueness guaranteed by Theorem 5.1, to
show that in fact VO¢ = Vg, where VC is the Levi-Civita connection of the original manifold.

5.2 | 6 Deformation of inner product bimodules and connections

We will give a general procedure for 6-deformations of T2-equivariant bimodules over x-algebras /3, as well as connec-
tions thereon. In order to accommodate general Dirac bundles in the subsequent sections (which may or may not be
t-bimodules) we work in the setting of equivariant inner product bimodules.

Definition 5.2. Let B be a local algebra (in the C*-algebra B) equipped with an action of T? by *-automorphisms such
that B3 is contained in the C'-subalgebra of B for the T2 action. A T?-equivariant inner product B-bimodule is a triple
(X, 5g(- | ), {- | -)B), where X is a bimodule over B equipped with a left inner product (- | -) and right inner product
(| -) in which it becomes a left- and right T2-equivariant pre-Hilbert C*-module over 3.

Asin the case of right modules, setting X* := Hom*(X, B)and *X := Hom™(X, B), the inner products define antilinear
isomorphisms

XX xpx" =g XX, xb *x:=pg|x).
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Given a f-bimodule Y over B, the bimodules ¥ ®z Y ® 3 X* and *X ® 3 Y ® 3 X become F-bimodules for the operations
®y®x) 1=,y ®x}, (x®y®x) ="x,®y ®x,.
Given a right frame (x;) for &, (x;) is a left frame for X* and a left frame (y;) for X gives a right frame *y; for *X.

Lemma 5.3. Let (X, (- | ), (- | -)5) be a T?-equivariant inner product bimodule over the local %-algebra B. For a,b € B
and x,y € X all homogeneous, the formulae

a % x 1= An@m® gy x % b = Ammb)yp,
(x|y)g := l("l(x)_nl(y))nz(x)<x | )5, o(x|y) = /1(”2()’)_”2(-)5))”1()’)3<x | y)

make the linear space X into a T?-equivariant inner product bimodule over Bg, which we denote by X,. Here, By is the
deformation of B as a module over itself. The module X admits homogeneous frames and any homogeneous frame for X is a
frame for Xg.

Proof. This is proved just as in [25, Lemmas 6.4 and 6.5, Corollary 6.6], where the same facts were verified for the 6-
deformed 1-forms Qllp(Me). O

To alleviate notation, we adopt the following for the remainder of this section. We write ® := @z and Q¢ 1= Q.
Given a T?-equivariant inner product right B-module X and a T2-equivariant inner product bimodule Y, the tensor
product X ®p Y is an equivariant inner product right module for the action

a,(x®y) i=aX(x)@al(y), zeT=

Analogous statements hold for the case where & is a bimodule and Y is a left module. We prove that the interior tensor
product commutes with deformation in the following sense.

Lemma 5.4. Let X, Y be T? equivariant B-bimodules. The map T;e,y defined for homogeneous elements x,y by

T3V 1 (X ®p Vo = X ®p, Vo, x®y = AMOx @, y,

is an isomorphism of inner product right, left or bimodules.

Proof. For homogeneous b € B we have
Tg’y(xb Q y) = A~mW-n®nWxp Q, y
= 2 m0mO)-mGmM-memb)y « b ®, y
= 17 Om®)=m®m)-nOm®)y @4 b % y
= 1 m0mO)-mmb)y @, by
= 17mby)y @, by

= T3 (x ® by),

SO Tgc,y is compatible with the balancing relations on X ® 3 Y and Xy ® Bo Ys. Since T;Y’y is a bilinear map on X X Y
compatible with the balancing, it gives rise to a well-defined map on X @z V.

Similarly, we prove that Tge,y preserves the inner products. Let x;,y; be homogeneous elements of X, Y for j = 1,2.
Then

(T30 @ 1) | Ty ¥ (6 ® y,) = AmCOmOD=mO2) (| (x| x3)6 * ¥2)a

= /1”2(x1)”1(Y1)—nz(xz)nl()&),1(”1(xl)—"1(xz))nz(x1)/1("1(yl)—”1()’2)+n1(Xl)—m(xz))nz(yl)(yl | (X1 ] %) * ¥,)

85UB01 7 SUOWILOD 3A1IeR.D 8|l dde 8Ly Ag peusenob ase sajolie YO ‘88N JO Sa|NJ 1oy Akeiqi8UlJUO AB|IA UO (SUOIPUD-PUR-SLULB}/WOD A8 |IM" ARe.q)1Bu UO//SAY) SUORIPUOD puUe SWS | 8L} 88S *[720Z/2T/ET] Uo Ariqi8uliuO A8|IM ‘85TO0YZ0Z BURW/Z00T OT/I0p/LLioo A8 | im Azeiq1jpul|uo//sdny woi papeojumoq ‘ZT ‘¥20e ‘9T9222ST



MESLAND and RENNIE %ﬁggﬁ%ﬁ%ﬁ“ 4597

— /1712()51)nl(Y1)—nz(xz)nl(Y2)+(n1(x1)—"1 ez (x1)+( (1) —n (¥2)+n1(xg )—nl(xz))nz(h)/l("z (x2)=na(x1))n1(y1)

X (V1 | {x1 | x2)y2)
- l(nl(x1)+n1(yl)—nl(xz)—nl(yz))(ng(x1)+n2(y1))<x1 ® Y1 | X, ® y2>

= (X1 ® Y1 | X ®¥2)e-

Thus, Tge,y is an isometric and so injective right module map, and as it has dense range as well, it is a unitary
isomorphism. d

In order to study second covariant derivatives and curvature tensors, we need to be able to deform three-fold tensor
products.

Lemma 5.5. Let X, Y, Z be T?-equivariant B-bimodules. We have an equality of linear maps
(186 T37)oTy 2% = (157 @ 1)oTi® 1 (X @Y ® 2)s — Xs ®s V2 ®e Zo.
Denote this linear map by Hg : (X @ Y ® Z)g — Xo Qg Vo Qg Zo-

Proof. Evaluating both maps on a simple tensor of homogeneous x € X,y € Y, and z € Z yields

1®q Tg]’Zng{’y'@Z(x ®y®z)=1Qq Té‘”z(l—nz(X)(n1(y)+n1(Z))x ®o (¥ ® 2))

= A—nz(x)(m(y)+"1(Z))/1—n2(y)n1(Z)x ®9 y ®6 z

and
T3 @6 10Ty ¥V (x @ y ® 2)p = Ty Y ®p 1(A"MRHROIME (x @ y) ®g 2)
= A1~ (oI (D ~mIm D) @, y @, 2.
Comparison of the phase factors and extending by linearity completes the proof. O

Definition 5.6. Let (3, H, D) be a T?-equivariant spectral triple [28], and Q%) the first-order differential forms, which are
equivariant for a T?-action. Given T?-equivariant right, respectively, left connections

Vix->X®z0L and V:X—0l®zx
the deformed connections are the maps

— — 1 =
Vo : Xp > X ®p, (Qh)s,  Ve(x) =T (V(x)),

Vo 1 X — QL) ®p, o, Vo) = TS (V(x)).
It is a straightforward verification that deformed connections are indeed connections. For x € X and b € 3, we have
Vo(x % b) = TH Y (V(x # b)) = ARmOTEY (V(xb))
= 2mOTX(V(x)b + x @ [D, b])
= TXY(V(0) * b+ 2mOTYY (x @ [D, b])
=Va(x) # b+ x ® [D, b],

and similarly for left connections.
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5.3 | Deformation of the Levi-Civita connection

Let (M, g) be a compact Riemannian manifold, § — M a T?-equivariant Dirac bundle and (C® (M), L3(M, §), Ip) the asso-
ciated T2-equivariant spectral triple. Furthermore, let (Q;(M ), %, ¥, (- | -)) be the Hermitian differential structure of the

equivariant spectral triple (C®(M), L?(M, §), 1), and VC the associated Levi-Civita connection.
We will now show that the Levi-Civita connection V¢ of the deformed Hermitian differential structure
(Q;(Me), t,%,, (- | -)g) indeed arises as the deformation of the classical Levi-Civita connection, so that V% = Vg. We

will achieve this by showing that ?g is a Hermitian torsion-free og-bimodule connection, and so coincides with Ve by
Theorem 5.1. For brevity, we will write Q! := Qllp(M )and Q; 1= Q;(Me).

We first consider the deformation of V6 ® 1+ 1 ® V<. This sum is a well-defined map Q' @ X - Q' ® Q! ® X by
[25, Proposition 2.30], and we want to compare it to the (also well-defined) map

VE®1+1® VY 1 QL @ X — Q) @ Q) ®o Xs.
Lemma 5.7. With H as in Lemma 5.5 there is an equality of maps
VO ®01+1®0 VY = Hoo(VE @ 1+ 1@ VN)o(T9 )1 1 0l @ X5 — Q) ® QL ® Xs.
Proof. Using the definition of the deformed connection ?G, for homogeneous w, x we have
Vo(@) ®o x = (T3 @ 1D(V(®) @ x)

= 2m@mETFY @ 1)oTF®Y ¥ (V(w) @ x)

= @O H(V(w) ® x).
Similarly, we find that

@ 8 Vo(x) = @M1 8, Tg *)oT " (@ @ Vo(x)) = 12 WHy(w @ V()

which proves the claim. Cd

Lemma 5.8. Let (w;) C Q! be a homogeneous frame, and Gy = Zj w; Qg co; S Qé ®o Qé the deformed metric. Then, the

deformation gg of the Levi-Civita connection VG satisfies
(Vg Qs 1+1®g ‘53)(09) =0
and so ﬁg is Hermitian.
Proof. Observe that Gg = Té)l’ﬂl (G), so that by Lemma 5.7 we have
(69 Qo1+ 1Q®g ve)(Ge) = He)@) ®1+1® V)G)=0. O
We obtain the following description of the deformed exterior derivative.

Lemma 5.9. Let w € Qllp(M). Then, dg(w) = Tgl’ﬂl(d(co)). Moreover, the braiding and junk projection satisfy oo =
T2 Y ogo(TS ) and Wy = T oWo(1 )2,

Proof. For all 6, the exterior derivative of a form a * [D, b] with a, b homogenous is given by

d@(a * [D’ b]) = (1 - IP@)[D’ a] ® [D7 b] = %([D7 a] ® [D, b] - ®(a7 b)[D’ b] ® [D’ a])
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Now, since a[D, b] = A 2@u®)g 4 [D, b] and 172@mb)@(q, b) = 172D we obtain
dg(a[D,b]) = %(/1‘”2(“)”1(1’)[1), al ® [D,b] — A7=0m@[D, b] @ [D, al),
and extension by linearity then gives the asserted formula. The relations for o and W are straightforward verifications. []

Lemma 5.10. Let VC be the undeformed Levi-Civita connection. The deformed connection Vg is torsion-free.

1l
Proof. Lemma 5.8 shows that the deformed connections are Hermitian. Writing Ty = T;2 2 and recalling that Wy =

Te o‘PoTs_l, we can use Lemma 5.9 and the torsion-free property for VC to see that

dg = Tgody = Tgo(1 — ¥)oVC = (1 — ¥g)oVs
whence Ve is torsion-free. O
Lemma 5.11. The deformed adjoints +,,, on Q) ®g Q; and ¥, 5 on (Q' ® Q'); arerelated by t,5,, = Tgot,goT," where

_ p0L0!
T = Te

Proof. We check that the diagram

Q) ® Q) Q'® Q)
Tl@sl l T;e \L
Q) ® Q) Q'® Q)

commutes by computing on elementary tensors of homogeneous 1-forms. Recalling that

Tro(@®p) = ,1("2(60)+n2(p))(n1(w)+n1(p))p* ® w* = /1("2(“’)"'”2(9))("1("’)"'”1(p))”rz(co ® p),

we have
©®; p T @ Ey @ o
o |
AEmEREN @) 5r @ ¢+ = A ma@m(eHHm(e)+ra@)(m (P m @) o+ @ ¢*
S0, T19e1 = Te0260T5 " O

Theorem 5.12. The Levi-Civita connection VO on Qllp(Me) is the deformation %g of the Levi-Civita connection VE on
1
QL (M)

Proof. We make use of Theorem 5.1 and prove that the deformed connection VG is Hermitian, torsion-free, and
a Tblmodule connection for the braiding og. - By uniqueness of the Levi-Civita connectlon this will show that
V0o = VG Lemmas 5.8 and 5.10 showed that VG is Hermitian and torsion-free, so we need only prove that it is a
t- blmodule connection.

To show that gg is a f-bimodule connection, it suffices to prove that

Vi(w) = —ggoty g, 0Vi(@).
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10l
Using Lemma 5.11 and (writing Ty = Té) 2 0o =Tg ocroTe_1 we have

_Ue°T1®91°_€9G°TL@(CO) = —0p °T2,e/1”2(w)"1(w)0_€g(w*)

=-Tg oao/l—”z(w)nl(w)Tz,e o%’G (@*)

= —Te(ool—nz(w)nl(w),lnz(w)nl(w)TzoﬁG(w*))

= —To(o0t,0V0 (")

= Ty (VC(w))

= VS(w),
since VC is a ‘t-bimodule connection. Hence, Vg is the unique Hermitian torsion-free {-bimodule connection, and hence
agrees with Ve, -

In the case of free actions of T2, [5, 6] defined the Levi-Civita connection directly as the deformed connection and proved
existence and uniqueness. Hence, Theorem 5.12 shows that our Levi-Civita connection agrees with theirs.

5.4 | Invariance of the scalar curvature
We now proceed to show that the scalar curvature rg € C*°(My) remains undeformed in the sense that rg = r, = r in the
linear space C*°(M). We also show that the full curvature tensor and Ricci tensor transform naturally under deformation.

First, we record a lemma about contractions with Gg.

Lemma 5.13. Let w, p,7,7 € Q' be homogeneous with n(w) + n(p) + n(n) + n(r) = 0. Then

1 1
e(Ho(w®p®1) ®o 7| Go) =Ty ** (@ ®p)o(n®T|G).
Proof. This is just a computation. With w, p,, 7 as in the statement we have

o(Ho(@ ® p Q1) @ 7| Gg) = e(Tgl’QIOTg@QI’QI(CU ®p®n) Qo T|Gg)

= 9<Té2 o (@ ® p) ®o 1 ®p T | Gg)A~(2(@)+n2(p))n1 ()
= T2 (@@ p) # 6(n ®g 7' | Gg))A~(ra@)+nale)m()
=Ty YO (0 ® P @6 T | G))ATRE@HHR(E)m (@)
=T (0 ® p)a(n | 7)) A +rale)m()
= T2 (@ ® p)o(n | 7F)) A @ +na(e)+ra(@4na(mIm ()
=12 (W ®p)(n ® 71 G)
where in the last step we used the assumption on the degrees of the 1-forms. 0

Theorem 5.14. Fora I-form p € Qllp(M) = Qllﬁ(Me) we have

« « <G pavel « «
RV (p) = He®R™ (p)),  Ric' ~ = TPV Ric"™), and r'® =r".
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Proof. We saw in Lemma 5.7 that
(VO ®51+1®p V92)oV = Ho((VC @ 1+1® V6)oVO).
. ol ol otol\_1 .
Since (1 — Py) = (Te A= 1I‘)(T6 %)) ®g 1, one now checks directly that

RY%(0) = (1 — Po)(V ®5 1+ 1 ®, VO6)oVCe(p)
= Ho(1 = P)(VE @1+ 1 ® V9)oVC(p))

= Hy(R¥" (0)).

For the Ricci curvature, we write
4—G " "
RV () ®g @] = Ha(R(w})) ®¢ @]

. =0 S SG . .
Since V@, VO, dy are all degree zero, we see that RV® (w j) ®g coJT. is degree zero. We can now compute the Ricci curvature

of V0 using Lemma 5.13
. V6 v G F olal,. VO
Ric'e = o(R"¢ | Gg) = o(Ho(RY (w))) ®s @; | Gg) =Ty ™ (Ric™ ).
Finally the scalar curvature is given by

T . Ve Ql,o! aQlol, . V6 . Vo TG
rV? =(Gg [Ric" ")g=(Ty " (G)|T, ™ (Ric' ))g =(G|Ric" )o=r"

5.5 | Dirac spectral triple and Weitzenbock formula

To establish the Weitzenbdck formula for 8-deformations of manifolds, we now consider the deformation of Clifford con-
nections.
Recall that for a 6-deformed Dirac bundle § — M we have the maps my : T;(Me) - B(L*(M, $)),

Co - Qllp(M@) Qcey TM, $)g = T(M, $)es 0 : T;(Me) - T;(Me) and g : T;(Me) — C®(Mp). TFor later
computations, we describe how these maps interact with Ty and Hy of Lemmas 5.4 and 5.5.

Lemma 5.15. Let § — M be a T’-equivariant Dirac bundle over the compact Riemannian manifold (M,g),
(C®(M), L2(M, §), Ip) the associated T?-equivariant Dirac spectral triple and X := I'(M, §) the module of smooth sections of

1 0l 1 1 0l
g — M. WithTy ¢ and Ho = Hy % *

p p as in Lemmas 5.4 and 5.5 we have

ol.ol,
m=mg °T9 ;

Ql.ol,
g=g°Ty ™ ;
1
c= ceoTé) o
(1 ®9 C@)OH@ = TQl’XQO(l [139) C)"

09 ®p 1 = Hg(c @ DH, ™.

Lk Wb o~

Proof. These are all straightforward verifications using the definitions. |
Proposition 5.16. The 0-deformed Clifford connection condition
Viocs = (1 ® ¢)(06 ® 1)(1 ® V4 + V% @ 1), (5.4)

holds on the module X.
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Proof. Using Lemma 5.15, we compute and compare

Vioc = (T2)(VEoc) (TS ),

and
(1 ®s ¢6)(06 ®6 D(1 ® V¥ + Vo ®; 1)
= (T9"")1 ® O)H; Hy(o ® DH;'Ho(1 ® V¥ + VO @ 1)(T2 )
=TI @ )e®DA® VE + Vo @ 1)(Tg )™
Since
V0c=(1®)0®@ 11V +Vi®1),
the statement follows. O

Proposition 5.17. Let § — M be a T?-equivariant Dirac bundle. The connections V% and %g make (C*(My), L*(M, $), )
into a Dirac spectral triple over (C®(Mjy), T, g, {- | -)o)-

Proof. We start with Condition 1 of Definition 4.1. We have that Gy = Té)l’ﬂl (G), so by Lemma 5.15 we have

mg(Gg) = mgoTS ™ (G) = m(G) = dim M 1dy. (5.5)
Using Equation (2.7) and Lemma 5.15, we have

efo = —go(Go) = —gs(Ts(G)) = —g(G) = eF. (5.6)
Given p,n € leﬁ(Me)we have
mgoWq = mengl’Ql o‘Po(Té)l’Ql)_1 = mo‘Po(Téll’Ql)_1 = go(Té)l’Ql)_1 = gp.
Condition 2 holds since ¢ : Q' ® X - X and co = coTé)l’X so that
Co 1 Qp ®g Xy = Xp.
For Condition 3, we have
P=coV¥ = ceoTé)l’Xo(@g = C@°§e'

Condition 4 follows by applying cg to Equation (5.4). O

Theorem 5.18. Let § — M be a T?-equivariant Dirac bundle over a compact Riemannian manifold (M,g) and

(C®(My), L*(M, §), ) an associated 6-deformed spectral triple. Then, the connection ‘ﬁg satisfies the Weitzenbiock formula
2 4
B - Ag = cgo(mgoog @ 1)(RYe).

Proof. In view of Theorem 4.6 and Proposition 5.17, we need only verify that mgooyo¥y = mgoW¥y and ¥o(Gg) = Gg. Since
0g = 2¥, — 1 the first condition is immediate. Using Lemma 5.15 again yields

09(Gg) = TeoT, (Te(G)) = To(0(G)) = Te(G) = Gy,

which completes the proof. O
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We prove another result about contractions with Gg.

Lemma 5.19. For homogeneous w, o € Q' and x € X, we have
ololx
(Go | Hy (W®p®X))x, =(Glo®@p)xx=(Glo®p® x)x.

Proof. We compute using the definitions of the deformed inner product and multiplication from Lemma 5.3, and the maps
Te and Hy from Lemmas 5.4 and 5.5 to find

(Go |HS (@@ p @ )z, = (T§  (G) 1 TS @9 1TE ®¥ ¥ (0 ® p @ 1)),
= 2@ mEm 1Y (6) | T2 @4 10 @ p) ®6 X)x,
= 1@ EmETE Y G) | T @@ ), * x
=127 O TS @@ Py
=(Glo®phx=(Glo®p®x)

as claimed. O

Proposition 5.20. Let § — M be a T?-equivariant Dirac bundle over a compact Riemannian manifold (M, g), X = T(M, §)
and (C®(M,), L*(M, $), Ip) the associated 6-deformed spectral triple. The connection Laplacian Aﬁ : T(M, $) = L*(M, §)

remains undeformed, that is Ag =A*

Proof. First, consider the map (ﬁ)ge ®s1+1®s ‘ﬁg)ﬁg : Xy = Qf ®p Q ®g Xp, and recall that
(VS ® 1+ 1®, VE)oVEi(x) = Ho(VO ® 1+ 1 ® V) (Tp) " oTo(V¥(x))
= Ho(VC ® 1 +1® Vo VA(x)).

1l
To obtain the connection Laplacian for X, we contract with Gy = Zj Té2 Y (w i ® co;f). Using Lemma 5.19, we have

(Go | (V§* ®g 1+1® VEoVA())z, = (Go | HE (VO @ 1+ 1@ VH)oVH(x))s,
= (G| (VC@1+1® V¥$)oV¥(x))x.
Now, since e Pom(Gp) = e #m(G), we have

A5(x) = e Pm(Ge)(Ge | (V" ®p 1+1 @ VE)oVA()),
=ePmG)G | (VE®1+1® V¥)oVH(x))x
= A% (x). O
Corollary 5.21. Let g be a T*-equivariant Dirac bundle over a Riemannian spin manifold (M, g) and (C®(My), L*(M, $), 1)

an associated 0-deformed spectral triple. Then, the Clifford representation of the curvature of Vﬁ remains undeformed, that
is

cso((meo0s) ® D(RY) = co((moo) ® DRY).

In particular, if ¢ is the spinor bundle of a manifold, the Lichnerowicz formula says that

cgo((mgooy) ® 1)(R%5) =rg/4 = r/4 as elements of the linear space C*(M).

Proof. This follows from the invariance of jpz — A% and Theorem 5.14. O
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