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A methodology on making the variational principle well-posed in degenerate systems is
constructed. In the systems including higher-order time derivative terms being compati-
ble with Newtonian dynamics, we show that a set of position variables of a coordinate
system of a given system has to be fixed on the boundaries and that such systems are al-
ways Ostrogradski stable. For these systems, Frobenius integrability conditions are derived
in explicit form. Relationships between integral constants indicated from the conditions
and boundary conditions in a given coordinate system are also investigated by introducing
three fundamental correspondences between Lagrange and Hamilton formulation. Based
on these ingredients, we formulate problems that have to be resolved to realize the well-
posedness in the degenerate systems. To resolve the problems, we compose a set of embed-
dings that extract a subspace holding the symplectic structure of the entire phase space in
which the variational principle should be well-posed. Using these embeddings, we establish
a methodology to set appropriate boundary conditions that the well-posed variational prin-
ciple demands. Finally, we apply the methodology to examples and summarize this work
as a three-step procedure such that one can use just by following it.

Subject Index A00, A34, EOO

1. Introduction

The variational principle plays a crucial role in the modern physics to derive the equations of
motion for a given system, provided that the boundary term vanishes under certain boundary
conditions [1]. When the system is non-degenerate, the variational principle is applied under
imposing the Dirichlet boundary conditions as usual, leading to no problematic situations.
However, in degenerate systems, blindly fixing all position coordinates at the boundaries would
lead to cumbersome situations since the boundary conditions determine the dynamics of the
given system [2].

For instance, let us consider two systems: L; = ¢'¢> + ¢*>(¢*)?/2, which is the so-called Caw-
ley model [3], and L, = ¢'¢*> — ¢*°¢" — (¢")*> — (¢%)*, which is an imitation of the Dirac system
[4]. Hamilton—Dirac analysis reveals that L; and L, have three first-class constraints in the six-
dimensional phase space and two second-class constraints in the four-dimensional phase space,
respectively [5-10]. Therefore, when applying the variational principle to each system, on one
hand, L, and L, need to impose up to three boundary conditions and two boundary conditions,
respectively. On the other hand, direct computations indicate that, to make the variational prin-
ciple well-posed, L; and L, need to fix ¢' and ¢°, and ¢' and ¢? on the boundaries, respectively.
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These conditions, however, are over-imposing. This implies that the integral constants in the
solutions that are indicated by Frobenius integrability of the system do not uniquely determine:
the dynamics of the system cannot be consistent with the boundary conditions. Furthermore,
let us consider another example: Ly := —qi/2 — ¢*/2. This example is a modification of the sys-
tem discussed in Ref. [2] in the literature on the Gibbons—Hawking—York term [11-14]. We can
find this sort of systems in many gravity theories [15-31], which contain higher-order deriva-
tive terms. Hamilton—Dirac analysis as upgraded by Refs. [32-36] reveals that this system has
two second-class constraints in the four-dimensional phase space. However, since the bound-
ary term of the first-order variation of the action integral of L, includes both §¢g and §q, if
we blindly fix all configurations then the boundary condition becomes over-imposing; we are
stuck with the same situation again. The purpose of this paper is to provide a methodology to
resolve these cumbersome situations.

In a previous work [37], we established a five-step procedure to compose well-posed bound-
ary terms, meaning that the variational principle leads to the equations of motion in the well-
posed manner, provided that there are boundary conditions that fix the configurations for the
physical degrees of freedom on the boundaries after imposing all of the constraints of the sys-
tem. Applying the five-step procedure, for instance, L, L,, and L4 need to fix no configuration,
0 = (¢' + p»)/~/2,and ¢, respectively, on the boundaries, where p- is the canonical momentum
to g° of L,. In this paper, we reconsider the same problem but based on a different philosophy;
as many integral constants in the solutions of a given system as possible should be uniquely
determined through the boundary conditions.

The construction of this paper is as follows. In Sect. 2, we show that any system, which in-
cludes higher-order time derivative systems, being compatible with Newtonian dynamics needs
to fix a set of position variables, not velocity or momentum variables, on the boundaries when
the variational principle is applied. We also show that such systems are always stable: the Hamil-
tonian is bounded from below in the sense of Ostrogradski’s framework [32,33]. In Sect. 3, we
review a method to derive Frobenius integrability conditions in a constraint system based on a
novel work [38] and relate the integral constants in the solutions to the boundary conditions. We
then introduce three fundamental correspondences as maps to describe the well-posedness of
the variational principle. In Sect. 4, first, we formulate problems to consider the well-posedness
based on these maps. Second, we show two lemmas and a theorem in an explicit way by us-
ing the concept of a function group that states the existence of a canonical coordinate system
being decomposed into constraint and physical coordinates. The former and the latter coordi-
nates are composed only of the constraint conditions of the system, which are derived by using
Hamilton—Dirac analysis, and only of the physical degrees of freedom, respectively. These ex-
plicit proofs would give a clue to how to construct such canonical coordinate systems in an
explicit manner. Third, we introduce embeddings that restrict the entire phase space to a sub-
space holding the symplectic structure on which the variational principle should be well-posed.
Finally, we construct a methodology to make the variational principle well-posed. In Sect. 5,
we apply the methodology to examples including L;, L,, and L4 given above. Finally, we sum-
marize this work and give future perspectives.
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2. Boundary conditions in the variational principle on the ground of Newtonian
dynamics

2.1.  The characteristics of Newton's laws of motion

Newtonian dynamics is established upon three fundamental laws. The first law is the law of
inertia stated as every body continues in its state of rest, or uniform motion in a straight line unless
compelled to change that state by forces impressed upon it [39]. This law implies that position
coordinates which describe the trajectory of a point particle depend only on the first-power
of the time variable and constant parameters. Quantitatively, x(z) = At + B where 7 is a time
variable, ¥(¢) is a three-dimensional position vector of the point particle at time 7, and 4 and B
are three-dimensional constant vectors composed of constant parameters. Note that the mass
of the point particle is absent here. That is, the first law indicates the existence of an inertial
frame.

If a force exists the situation gets changed; we need the second law of motion, the equations of
motion, stated as the change of motion (i.e. momentum) of an object is proportional to the force
impressed upon it, and is made in the direction of the straight-line in which the force is impressed
[39]. Quantitatively, the second law, of course, is written as dj/dt = F where 7 is the three-
dimensional momentum vector of the particle with mass m, 7 = mdx/dt, and F is a force. When
F =0, the law of inertia is expressed in the equation of motion. That is, the equation of motion
is established upon the existence of the inertial frame. Therefore, the constant parameters in 4
and B are none other than integral constants that are demanded from the equations of motion.
This law implies the crucial fact that the equation of motion is described as a second-order
derivative differential equation with respect to the time variable.

To make the second law viable, it needs to clarify what is the force. First, as a general state-
ment, there is the third law of motion, the law of action and reaction, stated as to every action
there is always opposed an equal reaction; or, the mutual actions of two bodies upon each other are
always equal and directed to contrary parts [39]. Second, forces are classified into two types: con-
servative forces and non-conservative forces. In this paper, we treat only conservative forces; for
a force F there exists the potential U (X) such that F = —grad U(X) where “grad” is the gradient
operator with respect to X. That is, the force depends only on the position coordinates.

2.2.  Compatibility of the variational principle with Newtonian dynamics and boundary
conditions

From the previous section, to ensure the compatibility of a given theory with Newtonian dy-

namics, we have to verify whether or not the following three conditions are satisfied: (i) The

existence of a Lagrangian which expresses the law of inertia; (ii) Euler—Lagrange equations in-

clude up to second-order time derivative terms; and (iii) Conservative forces are taken into

account correctly: the equations of motion under the conservative force are recovered.

2.2.1.  First-order time derivative systems. The action integral of the system is given as fol-
lows:

t2 B B
St — / LOG, ¢, 1ydt (1)

141

where ¢'s are position coordinates, ¢'s are first-order time derivatives of ¢'s, L) is the La-
grangian for the system, and #, > ¢, i = 1, 2, ---, n. The first-order variation with respect to the

3/45

€20z AInr 90 uo Jasn AS3Q UoJ0IYoUAS usuoIpia|g sayasineq Aq 68€€61 2/S0VE90/9/€20Z/2101e/ds)d/woo dno olwepese//:sdiy woly papeojumoq



PTEP 2023, 063A05 K. Tomonari

position coordinates is

5]

aLm LM . oL .
550 — / Z[aq __(aq >]6th+|:z<aq,j>5q/:| , @)

i=1 1

If the system is non-degenerate, i.e. the kinetic matrix of the system K1 := 32L1) /9494’ is
full rank, the Euler—Lagrange equations, of course, are

oL d (LD
— — —[—=—)=0 (3)
aq dt \ 3¢

from the variational principle under position-fixing boundary conditions, in particular, in this
case, the Dirichlet boundary conditions:

3¢ (1) = 84¢'(1,) = 0. (4)

This system satisfies all conditions: (i), (ii), and (iii). For (i), the Lagrangian is LV = }".(¢')?/2.
For (ii), the second term in the left-hand side of Eq. (3) leads to ¢'-terms. For (iii), the first
term in the left-hand side of Eq. (3) realizes the correct force terms for the Lagrangian: L(D =
SR /2 - U@).

There is another possibility to take the first-order variation of the original action integral (1).
That is, the variation with respect to the velocities §':

(1)
88 = /Z oL 8¢ (5)

Remark that this manipulation implies that the variation § does not commute with the time
derivative d/dt: §(dldr) - #(dldt)s -. It can be interpreted as taking a variation while in advance
fixing all configurations: 8¢’ := 0 throughout all time. In this case, without any boundary con-
ditions, the variational principle is applicable, and the Euler-Lagrange equations are

9L
g’
However, these equations do not satisfy any of the conditions: (i), (ii), or (iii). Hence, this theory
is ruled out; it makes sense since we cannot determine in advance the trajectory of the system
without equations of motion.

Throughout these considerations, the first-order time derivative systems being compatible
with Newtonian dynamics are viable only for the variational principle varying with respect to
position coordinates. In this case, the variational principle needs the position-fixing (Dirichlet)
boundary conditions.

— 0. (6)

2.2.2.  Second-order time derivative systems. The action integral for the systems is given as
follows:

I ) . )
SO — / LOG. ¢ ¢, 1)d. )
141

where §'s are second-order time derivatives of ¢'s. There are three possibilities to take the first
variation of the action integral with respect to (a) the position coordinates ¢, (b) the velocity
coordinates ¢, and (c) the acceleration coordinates ¢'.
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Let us consider the first case (a). The first-order variation is computed as follows:
b ETaL® d [9L® d> (9L® .
e [ R[5 (7)o (s
" ; ¢ dt \ 94’ dr> \ 3¢

" (LD 4 [9L® Y SO N
__ 4 SITVESY ) s 8
+[Zl{a¢ dr(aq'>}q+.l(aql)"} ®
= 1= tl

The variational principle leads to the following Euler—Lagrange equations:
aL® d (aL® d> (9L
() L () =0 ©)
g dt \ 3¢’ dt g
under fixing both the position and velocity coordinates:

8q¢'(t1) =8¢ (1) = 0,

3¢'(11) = 8¢'(12) = 0 (10)
if the system is non-degenerate, i.e. K® = 32L?)/3¢'¢/ is full rank, but this condition is not
satisfied. This is just because the following conditions are imposed due to the compatibility with
Newtonian dynamics: condition (ii). That is, the Euler—Lagrange equations (9) are rewritten as
follows:

Ki(jz)ﬁ oy El.(f)'é[j + (up to 2nd-order terms) = 0 (11)

where we defined

@._ LY o L 9L

= ,E = — — ———. 12
Yoo 0gag Y 04'9¢) 979q (12

To satisfy condition (ii), the matrices K'® and E® have to be zero:
K®=0,E% =0. (13)

Then the Euler-Lagrange equations are up to second-order time derivative and now satisfy
condition (ii). The first condition in Eq. (13) indicates that this system has to be degenerate as
per the second-order derivative theory.

In addition, on one hand, the first condition of Eq. (13) leads to a specific form of Lagrangian
[40,41]:

LP =" fid. ¢ + 2. ¢). (14)
i=1

Conditions (i) and (iii) are now satisfied for the Lagrangian L) = — ", ¢4'G'/2 and L® =
—>°.4'4'/2 — U(q"), respectively. On the other hand, since we consider these under the com-
patibility with Newtonian dynamics, the second-order time derivative systems should be equiv-
alent to the first-order time derivative systems discussed in Sect. 2.2.1. This indicates that the
Lagrangian in this theory should be equivalent up to surface terms. That is,

dw

LO > pO=p®4 2" (15)
dt’
where W = W (', ¢'). If W satisfies the following conditions:
ow
fit+—=0 (16)
aq!
or
w==3 [ i+ ca@ (17)
i=1
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where Cis an arbitrary function of position coordinates, the first terms in the Lagrangian (14)
vanish, and the system turns into a first-order time derivative system. Note, here, that Eq. (17)
is none other than a counter-term in the second-order time derivative system. Furthermore, the
variation of the action integral of L) becomes as follows:

n 15
aL® d [(dL® oW .
88"V = the same terms to 65 + [ Y " —— - — [ —— |+ =184 | . (18
= 04’ dt \ 9§’ g’
= |

Therefore, the boundary condition (10) for the variational principle now turns into position-
fixing boundary conditions:

3¢'(11) =84'(t1) =0 (19)
if the kinetic matrix Kl.(jl) = 92L'D /3434’ is non-degenerate. This coincides with the boundary
conditions for the first-order time derivative systems: Eq. (4). It makes sense since boundary
conditions uniquely determine the dyamics; it should have the same Lagrangian up to sur-
face terms under Newtonian dynamics. In fact, for the Lagrangian L? = —>".¢/G'/2 — U(q'),
the counter-termis W = Y_, ¢'¢'/2. Then the Lagrangian turns into L'V = >".(¢")?/2 — U(¢").
From these considerations, case (a) is compatible with Newtonian dynamics, and the boundary
conditions for the variational principle are position-fixing boundary conditions.

In case (b), the first-order variation is computed as follows:

5L@ 9 L(z) _ " oL@ 1"
S<2)—/ 8q'dt —)sq' | . 20
Z ¥ dt G )| sdar+ 21: 2 )% (20)

1= tl

The variational principle under velocity-fixing boundary conditions:

8¢'(t1) = 8¢'(1) = 0 21)

leads to the following Euler—-Lagrange equations:

aL® d (9LP
———|—=]=0 (22)
¢’ dt \ 9§’
or
K @Gl 4 (up to 2nd-order terms) = (23)

K;; 2 — = 9%2L/3{'di’/ = 0leads to the same Lagrangian as Eq. (14). This indicates that these equa-
tlons satisfy condition (ii) but do not satisfy conditions (i) and (iii). Therefore, case (b) is ruled
out.

Finally, in case (c), the first-order variation is computed as follows:

SRS S N
5§82 = f ( : )8"’dt. 24
i ; 5 )% (24)

The variational principle leads to the following Euler-Lagrange equations without any bound-
ary condition:

aL®
G
This system satisfies all conditions: (i), (i), and (iii) for L& = Y"._ (§)*/2, an arbitrary La-
grangian, and L® = Y".(4)*/2 — 3, §(dU(q)/3¢"), respectively. However, this manipulation
does not make sense since the form of L, implies that the Newtonian equations of motion of
the system, §' = dU(q)/d¢', are already known; the Euler-Lagrange equations (25) are identi-

(25)
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cally satisfied. In other words, we already know the trajectory of the system with a set of initial
conditions.

Throughout these considerations, the second-order time derivative systems in cases (a) and
(c) are systems possibly compatible with Newtonian mechanics. Boundary conditions are nec-
essary only for case (a), and these are position-fixing boundary conditions. For case (c), the
variational principle itself is always well-posed but does not have any ability to predict dynam-
ics.

2.2.3.  Higher-order time derivative systems. The action integral for the systems is given as
follows:

Ly . o
S(d) - f L(d) (qula ] D(]I’ ql’ [) dt’ (26)
1

where D¢’ denote the a(>2)th-order time derivative of the position coordinates ¢': D*g’ =
(dldt)*q'. A similar consideration leads to that the cases of first-order variation with respect to
Dq', D*¢', ---, D~ 14" are ruled out. For the case of ¢'s, the first-order variation of the action
integral is computed as follows:

5]

W (" a3 [ cor L g | 3 3 cope B ey
5S :/ t —D)* — | 84" + —D) " ———8(D* ¢
= I(D*q') I(DFq")

4] i=1 i=1 B=a>1 f
(27)
If the following differential equations for W = W(q', D¢, ---, D*~ 1¢):
d
L ow
> | (=Dy — + — | =0 (¢>2) (28)
e A(DPq")  o(D*q’)
are solvable, the Euler—Lagrange equations are derived as follows:
d
aLm oL d LM
> (-Dy* = =, (29)
— a(D*q") g’ dt 93¢’

where LV = L9 4+ dW/dt, under position-fixing boundary conditions:
8¢'(11) = 8¢'(t2) = 0. (30)

Then all conditions (i), (i), and (iii) are satisfied.

Finally, for the case of D?'s, the variational principle itself is always well-posed without any
boundary conditions and all conditions (i), (ii), and (iii) are satisfied for the Lagrangian L9 =
S (DG (D*q) — S (D)@ U(q')/dq") but it does not have any ability to predict dynamics.

2.3.  Stability of the systems

Newtonian dynamics demands that the Hamiltonian has to be bounded from below. For in-
stance, let us consider two systems described by a Lagrangian L; = ¢*>/2 — U(q) and L, =
—¢?/2 — U(q) for some potential U(q)ox — 1/¢ (¢ > 0). The corresponding Hamiltonians for L,
and L, are H = p*/2 + U(g) and H = —p?/2 + U(q), respectively. The former system is bounded
from below and stable, but the latter system is unstable due to the negative infiniteness of the
Hamiltonian. For the higher-order time derivative systems, another type of instability occurs:
Ostrogradski’s instability [32,33].
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In order to introduce Hamilton formulation for the Lagrangian L = L(D%, ---, Dq', ¢', t) in
Eq. (26), the following variables:

4 . oL
i =D""1q, P —D)f~ 31
Q) q Z( DY S iy (31)
B=a>1
are defined as canonical variables. In addition, we assume that the non-degeneracy of the kinetic
matrix K(d) =9°L/d Q( d) Q( D= 8Pl.(d) /0 chz)- Then the Legendre transformation of L called
an Ostrogradsk1 transformation, i.e. the Ostrogradski’s Hamiltonian, is introduced as follows:

n d—1 n
o) i d) i
H=3 % P+ FF - L (32)
i=1 a=1 i=1
where F! = Fi(Qél), ’('2), . (d), P(d) ), which corresponds to Q( 4)» comes from the implicit

function theorem for the kinetlc matrix K. The linear dependency on Pl.(“) in the first term im-
plies that the Hamiltonian is not bounded from below while Pl.(d) in the second term is bounded
from below through the function F’. This unboundedness makes the system unstable and this
is none other than Ostrogradski’s instability.

In particular, the case of d = 2 with the Lagrangian (14) is a constraint system since the
canonical momenta Pi(z) are given by

PP =1(Q)) ) (33)

That is, we have primary constraints:

o= PP (0}, 0))) =~ 0. (34)
where we denote : ~ as imposing the condition in the weak equality. The total Hamiltonian is
Hr = P 0}, — g+ vl (35)
where s = 1, 2, ---, n and v's are Lagrange multipliers. The Dirac procedure leads to secondary
constraints:
d
o = {(D(l) Hy } ~ P _ aQ(l)Qm anéz) ~0, (36)

where we denote =~ as the weak equality. Depending on whether or not the Poisson brackets
among CIDI(.I) and CIDI(.I) are weak equal to zero, some Lagrange multipliers are determined and
others remain arbitrary. The latter case indicates that the consistency conditions for secondary
constraints lead to tertiary constraints. Further analysis needs a specific Lagrangian. The above
analysis implies that the physical degrees of freedom are equal to or less than (2n + 2n — 2n)/2
= n. The Hamilton analysis described above is based on Refs. [5,6,32-35]. The authors in Refs.
[40-43] apply the method in Refs. [5,6,32,33,36]. An example is given in Sect. 5.4.

The point is that, after imposing these constraints, the system turns into a first-order time
derivative system, and the unbounded momentum variables P(z)s drop out as constraints. In
addition, since P( )s either are bounded from below if the matrix A;; : = aP(l) /0 Q(z) is non-
degenerate or become primary constraints if Aj; is degenerate, the system is stable. This fact
would also be deduced from the transformed Lagrangian (15) under Eq. (17). Therefore, the
systems being compatible with Newtonian dynamics are stable.
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2.4. Causality of the systems
As mentioned in Sect. 2.2, the compatibility of the systems with Newtonian dynamics demands
condition (ii). Euler—Lagrange equations include up to second-order time derivative terms, and
this property implies that the corresponding Lagrangian is composed up to first-order time
derivative terms and vice versa. In these systems, causality is, of course, satisfied. However,
higher-order time derivative systems generically suffer from “acausality” [44,45].

In order to see this problem more precisely, let us consider the following equation of motion
[44]:

1.
i=50+ %5@ — 1) 37)

where §( - ) is a delta function, and « and B are positive constants. The first term in the right-
hand side is the so-called Abraham—Lorentz force, which was rediscovered by Dirac in the
literature on self-radiation of an electron as a non-relativistic approximation. The second term
in the right-hand side is an impact force given at the time ¢ = ¢y. This equation has a solution:

s exp[B(r —1)+q0 (1 <1o)
F(t—10)+ & + 40 (1o < 1)
under the conditions: ¢(t - —o0) = qo, ¢(t — —o0) = 0, the continuity of ¢ at ¢t = #y, and
¢(t = tp) = o. The last condition is caused by the impact force at ¢+ = #y. This solution has
a strange feature; the particle accelerates before the impact force affects. This is the acausal
behavior firstly indicated by Dirac [44]. The Lagrangian of the system is given as follows:

P gt s

. o
L= T H 5 3 ﬁ2q5(t — 1) — Eq5(l — 1) (39)

This Lagrangian actually contains the second-order time derivative, and it is a non-degenerate
system. However, we show below that this acausality is none other than a paradox.
We can easily rewrite the Lagrangian as follows:

L=§Q—%®a—m, (40)

where we set Q := ¢ — ¢/B. Here, the answer for the paradox is almost trivial; ¢ is a gauge
variable, but Q is the physical variable. To see this, we only need to check the invariance of Q
for the following transformation: ¢ — ¢ = ¢ + exp (B¢). Therefore, when we use the physical
variable Q, the paradox is removed. In fact, the equation of motion turns into

Q=%Mr4w 41)

q(t) = (38)

and the solution is given as follows:

40 (1 < 1)
5—1)+q0 (1> 1)
under the same conditions. This is a causal behavior. The message of the example is that, as
long as we treat a system in terms of physical variables, the equations of motion contain up
to second-order time derivatives and the causality holds. The generalization of this statement
would be a difficult subject and is out of the scope of this paper. However, as long as we restrict
our investigation to the systems introduced in Sect. 2.2, the acausal problem never occurs since
the equations of motion of the systems are restricted up to the second-order time derivative.
This implies also that the variational principle under the position-fixing boundary conditions
(19) or, more generically, Eq. (30), guarantees that the systems are causal.

o) = (42)
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3. Existence of solutions and difficulties in degenerate systems

3.1. Non-degenerate systems and three fundamental correspondences

In this section, based on Ref. [38], we reveal the existence of solutions and the relations of
objects in Lagrange and Hamilton formulation. Based on these investigations, we define three
fundamental maps that describe correspondences to consider the well-posedness of the varia-
tional principle.

3.1.1.  Lagrange formulation. The Euler-Lagrange equations (3) can be split into a set of
1-forms, called a Pfaffian system, as follows:

pli=dqg —v'dt =0,
0= K dv/ — Sidt (43)
where Ki(jl) and S; are defined as follows:
K = 92L/0¢'9¢’,

L 0°L 9*L 9L
Sii=—V—— -+ —.
agtov/  dtavt ¢’
The existence of solutions for the Euler—Lagrange equations depends on whether or not a sys-
tem of generators, i.e. a closed algebra composed of vector fields that are orthogonal to the
Pfaffian system, exists. Since the Pfaffian system (43) spans 2n-dimensional 1-form space, which
is a subspace of 7*(T M x R), the system of generators is 1-dimensional vector space; denote
the generator as X;, which is a subspace of T(T M x R). Where M is an n-dimensional con-
figuration space, TM is the velocity-phase space of M, and T M x R is the extended velocity-
phase space. This vector field X, is a tangent vector to the trajectory of the system in the space
T M x R. Therefore, the generator can be expressed as follows:

X, = ai%+biaiqi+%’ (45)
where /¢, /v, and 3/3t are the coordinates basis of T(T M x R). The dual basis is, of course,
dq', dv', and dt. a's and b's are undetermined coefficients. If these coefficients exist, a system
of generators is determined. The duality between 7(7T M x R) and T*(T M x R) indicates the
existence of the following inner products: <dq', 3/0¢/ > =87, <dv', /90v > = ¥, <dt, /9t > =
1, and otherwise vanish. Therefore, the orthogonality among the Pfaffian system (43) and the
generator (45) determines all the coefficients a's and b's as follows:

a = (KWis;,

b= (46)
Notice, here, that the coefficients a's are determined uniquely by virtue of the non-degeneracy
of the kinetic matrix K", Therefore, since [X;, X;] = 0, Frobenius theorem indicates the exis-
tence of 2n functions f’ and integral constants ¢/ such that

(g’ v, 1) =, (47)
where I =1, 2, ---, 2n. Remark that Frobenius theorem indicates only the existence of f’; a set
of functions f’s are generically not uniquely determined. However, as long as we restrict our

consideration to physical interests, it would be allowed to regard the case where the theorem
gives unique functions f’s. That is, Eq. (47) implies that there exists a unique trajectory of

(44)
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which the tangent vector is X,. For such f’s, the implicit function theorem leads to the unique
solutions:

g =q'(t, ), v =V, ). (48)
Under the solutions of the first equation in Eq. (43), the second solutions above can be rewritten

as ¢' = ¢'(t, ¢'). The integral constants ¢/s play a crucial role for considering the well-posed
variational principle.

3.1.2.  Hamilton formulation. The Lagrangian in the phase space relating to the Hamiltonian
is

L=q'dp;— H(q', p)dt, (49)
where the left-lowered star % of L denotes an object expressed in the phase space. This is
none other than a Legendre transformation. Under the assumption of non-degeneracy, the

Lagrangian can be equivalently expressed in both the velocity-phase space and the phase space.
The total differentiation of L is

d.L = O A *pi, (50)
where
. . 0H
L =dq — —dt,
api
oH
aq’

For d, L to vanish, both , p’ and .6, have to be zero: ,p' = 0 and ,.0; = 0, resulting in the following
Hamilton’s equations:
i= = (52
dpi 9¢gi
The same considerations as in Sect. 3.1.1 but in the phase space 7*M x R lead to the follow-
ing generator:

-0 -0 d
X, =.4d— + .0 — + — 53
where
. 0H oH
W =—, b= ——. (54)
ap; aq'
Since the generator satisfies [, X7, + X;] = 0, Frobenius theorem leads to
*fl(q[v Dis t) = *cla (55)

where a runs from 1 to 2, and .f’s and ,.c’s are functions and integral constants, respectively,
which are implied from this theorem. Assuming that the functions ,f? are uniquely determined
by physical interests, the implicit function theorem gives the solutions:

qi = *qi(t, *CI)’ pi = pi(t, *CI)- (56)
Comparing with the result from Sect. 3.1.1, we already know that the configurations are given
by the first formulas in Eq. (48). In addition, both the formulations have a common configura-
tion space. That is, ,.¢'(t, w¢')s should be exactly the same as ¢(¢, ¢). This fact leads to ,.c/ = ¢/.

Therefore, the solutions become:

qi = qi(t’ CI)? pi= Pi(t» CI)' (57)
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The non-degeneracy of the kinetic matrix K is crucial for the existence and uniqueness of
the inverse Legendre transformation in Eq. (49). This means that a one-to-one correspondence
between X, and . X; exists. The correspondence is established using the relations:

0 0 ap;
aq' dq'  9q' dp;
0 ap;
0 W3
v v dp; Y op;
0 ap; 0 0
A +—, (58)
ot at ap; Ot
where the left-hand side and the right-hand side are composed of the coordinate basis of
T(TM x R)yand T(T*M x R), respectively. This one-to-one correspondence holds only when
the kinetic matrix is non-degenerate. With this correspondence, it can be shown that X, and , X

are also in one-to-one correspondence:
X < Xy, (59)

where we used p; = dL/3&'. The non-degeneracy of KV guarantees that the Lagrange and
Hamilton formulations are related through the Legendre transformation in a unique manner,
meaning that the velocity-phase space T M x R and the phase space 7*M x R have a one-to-
one correspondence.

3.1.3.  Three fundamental correspondences. In Sect. 2, we showed that the compatibility with
Newtonian dynamics requires position-fixing boundary conditions to be imposed when apply-
ing the variational principle. Taking the configurations ¢’ = ¢/(t, ¢!) into account, the boundary
conditions uniquely determine all the integral constants at least in non-degenerate systems. This
leads to a map ¢ that maps the configurations at times ¢, and ¢, to a parameter space C which
is spanned by all the integral constants:

L M[n] x M) = C; (¢'(11), ¢'(12) = ¢, (60)

where M([?] is the space spanned by the configurations at a time ¢. The space M[¢] is usually a
finite region since the variational principle leads to a local minimum of the action integral. In
other words, giving boundary conditions indicates the possible regions for the configurations
at each boundary are determined. ¢'(#;)s are the values of configuration coordinates at time ¢;.
¢'(t)s are defined in the same manner. Conversely, if all the integral constants ¢’s are given,
through the solutions ¢’ = ¢/(t, ¢!), the values of configuration coordinates are uniquely deter-
mined. Therefore, map ¢ is invertible. In other words, the position-fixing boundary conditions
can be replaced by the integral constants in the solutions and determine the dynamics uniquely
when the physical degrees of freedom match the number of the independent integral constants.
This is the first correspondence we have to state.

The second correspondence is introduced between the velocity and canonical momentum
variables, expressed in a map as

k:TMxR— T*M xR; ¢'(t) — pi(t). (61)

The non-degeneracy guarantees the invertibility of «, meaning that the velocity variables can
be restored from the canonical momentum variables as

kKN T*M x R— TM x R; pi(t) = ¢'(t) =v'(¢/, pj, 1). (62)
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The final correspondence is already mentioned in Sect. 3.1.2, expressed in a map as
O:8[T(TM x R)] — S[T(T*M x R)]; X, = X, (63)
where [T (T M x R)] and &[T*(TQ x R)] denote spaces of the system of generators for the

Pfaffian system (43) and Eq. (51), respectively. The non-degeneracy guarantees that this map is
invertible.

3.2. Degenerate systems and difficulties
In Sect. 3.1.3, we introduced the three fundamental maps: ¢, «, and ©. In this section, based

also on Ref. [38], we explore solutions in a degenerate system and the alteration of the maps: ¢,
k,and O.

3.2.1.  Lagrange formulation. In order to find a system of generators for the Pfaffian system
(43) in a degenerate system, we have to consider the degeneracy detK) = 0, or equivalently,

M_j _

K’ =0, (64)
where o = 1,2, .-, n — r, r = rank KV, and t/s are zero-eigenvalue vectors. This property and
the second equation of Eq. (43) lead to secondary constraints:'

®P = 1lS; :~ 0. (65)
Then there exists a set of vectors, n's, such that

Si~ Kij'n/ (66)
by virtue of the completeness of the zero-eigenvalue vectors t/s, where we denote ~ as the weak
equality. Based on the same consideration as for the non-degenerate case in Sect. 3.1, we can
derive the following operators:

d ad

Xo=n— v 4 L
CEN TV i Y

-0
Zy = —T,—. (67)
av!

These operators are not closed in the commutation relation since we have

9 . 0
1) . — _ _ i
V= K Z = g+ (2o = Xixd) g (68)
X; and Yofl)s, Yofl)s themselves, and Ya(l) s and Z,s are in the same situation. However, if the
conditions:
Zaté — Zgt) = Ta”ﬁt)’; (69)

are imposed, Z,s forms a closed algebra, where Ta’”ﬂs are some coefficients. The conditions are,
for instance, satisfied if 7/ is independent of the velocity variables v's. The authors in Ref. [38] do
not impose the conditions on the ground that [Z,, Z] is automatically closed within Z,s. Then
YV themselves, and Y\ and Z, form a closed algebra by virtue of Jacobi identity. However,
X; and Y. Vs still do not close. To form a system of generators that is compatible with total
Hamiltonian formulation, the following operator is introduced [38]:

Xr =X, +¢*YV 17, (70)

"Primary constraints are identically zero in the velocity-phase space: o =o0.
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where both ¢%s and £%s are undetermined functions. Remark that the Dirac conjecture is not
considered here [38]: Xz = X, + ¢& Ya(s) + £*Z,. Instead, for X7 and Ya(l), we introduce the fol-
lowing procedure to comprise a closed algebra:

Ya(erl) — |:XT’ Ya(S)] (S = 1, 2, ce Ve — 1),

Ya(ya+1) — |:XT, Ya(yu)] — Dngﬁ(S)’ (71)

where Dgss are constant coefficients. We will see in Sect. 3.2.2 that Ya(s)s correspond to the
constraints in the phase space. Then the operators X7, Ya(s), and Z,, or equivalently X;, YO,(S),
and Z,, form a closed algebra. Therefore, if X7 is orthogonal to p;s and 6;s, the Pfaffian system
is complete integrable by virtue of [X7, X7] = 0 and Frobenius theorem, and there exists a
unique trajectory of which the tangent vector is X7 in the space coordinated by ¢'s, v's, and
t under these constraints. To achieve this, we add a set of constraints based on the secondary
constraints: Cfo) ~ (0 and impose the orthogonality of X7 to p;s and 6;s under these constraints.

Since the secondary constraints have to be static, the time evolution of the secondary con-
straints has to be weak equal to zero:

®? = do?(X7) ~ 0. (72)

do (Zg) = 0 1s, on one hand, always held, which means that £*s remain arbitrary. On the
other hand, there is a case d d>ff)(Yﬁ( 1)) = 0; the corresponding ¢ is determined. Otherwise, we
get new constraints. Repeating this procedure, we obtain

(I)((strl) — dcb‘(xs)(XT) ~ () (s = 2, 3, cee My — 1),
(D(()[ma+1) = dq)gna)(XT) — C(/fs@S)’ (73)

where Cfss are some coefficients. Under these constraints, we question whether or not the fol-
lowing conditions are satisfied:

0:(X1) ~ —¢° K (Zan’ + Xit]) 0, (74)
If these conditions are satisfied, the Pfaffian system is Frobenius integrable. p,(X7) ~ 0Os are au-

tomatically satisfied by virtue of p; := Kl.‘(jl) o’. In addition, if the total number of the constraints
is equal to or less than the number of all variables:
.

Z my + the number of the primary constraints < 2n, (75)

a=1
the procedure derives the unique solutions satisfying all the constraints based on the same con-
sideration as for the non-degenerate case in Sect. 3.1. Here, the authors in Ref. [38] do not
impose this condition.

Although unique solutions exist, the map ¢ introduced by Eq. (60) in Sect. 3.1.3 may not be
well-defined due to inconsistent integral constants that are not determined by position-fixing
boundary conditions. Furthermore, even if map ¢ is well-defined, it may not be invertible, pre-
senting a challenge in the Lagrange formulation of degenerate systems and a crucial aspect in
formulating a well-defined variational principle.

3.2.2.  Hamilton formulation. In degenerate systems, the invertibility of the second transfor-
mation in Eq. (58) disappears:

0 ap; 0 0
Y ey
v v Op; ! op;

(76)
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As a result, while the map O defined in Eq. (63) remains well-defined, its inverse would generi-
cally not exist.

In order to translate the Lagrange formulation in Sect. 3.2.1 into Hamilton formulation,
the time evolution operator X7 in Eq. (70) and consistency conditions in Eq. (73) need to be
translated into 7T(T*M x R) from T(T M x R). First of all, using the transformation in Eq.
(58) and replacing the second law by Eq. (76), X;, Z,s, and Y. Vs are transformed as follows:

oH 0o oH 0o 0 d
XX =7—-——+—=Xyg+ —,

dp; dqg"  dq' dp; Ot ot
Zy — 2Ly =0,

0. 3 3.9l 9

YWH vy = e~ — X . 77
o e ap; 9q aq' dp; 0y 7
Therefore, X7 — X7 becomes
., i) 9
XT—>*XT=*XH+§*X*(pgn-l-E:*XHT‘f‘@, (78)

where Hy = H + ¢%,¢'! is none other than the total Hamiltonian of the system. Therefore,
map O is well-defined and pushes the consistency conditions (73) forward to the following

formulas:
(s)
gt = {*<D£f), Hr} + 220,
*¢&ma+]) = *XT*CD((yma) = *Cgs*q)fgs)s (79)

where s =1, 2, ---, m, — 1. These formulas reveal that

X gorn = X o0 1}y = [*X T *Ygf’] =, Y4,

X s = LCPLYY), (80)

os*
by virtue of [Xy, X,] = — X/, o, Where s = 1, 2, ---, m, — 1. These relations correspond to Eq.
(71), and it indicates that m, = y,, and Cfs, *Cgs, and Dgs correspond to each other, respectively.
Remark that if the Dirac conjecture is allowed [5]: Xz = X; + ¢ Y 4 &47,, we get Hi =
H + %Y. This quantity is called the extended Hamiltonian.

Under these constraints, we question whether or not the following conditions hold:

3, oD
i X 1)~ —é“aT i~ 0. (81)
q
+0;(+X 7) &~ Os are automatically satisfied, where
. 0H oH
;=K (dqf - —dt) 10 = dpi + —d1. (82)
ap; g’

Therefore, if Egs. (81) and (75) are satisfied, the system has unique solutions under these con-
straints.

3.2.3.  Another difficulty in Lagrange and Hamilton formulation. The degeneracy of the ki-
netic matrix results in the absence of an inverse for the map «. Although the corresponding
canonical momentum variable, p; = dL/94’, always exists for a velocity variable ¢, making
map « well-defined, its inverse does generically not exist. To demonstrate this, let us consider
the transformation of velocity variables V' [38]: # = V' + u®t], where u®s are arbitrary func-
tions. Expanding around (¢, V') up to first-order terms, we can show that p(q', ) = p(¢', v'),
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where we used Eq. (64). This result indicates that the inverse of map « does generically not exist.
That is, there is no one-to-one correspondence between the velocity-phase space and the phase
space. This feature describes another aspect for the absence of an inverse of map O; the to-
tal Hamiltonian does not determine a unique corresponding Lagrangian, despite the dynamics
being unique.

3.3.  Higher-order systems

A higher-order time derivative system can be decomposed into a first-order time derivative
system with additional second-class constraints using the method of the Lagrange multiplier
[36]. That is, a Lagrangian L = L(D%/, ---, D¢', ¢') is decomposed as follows:

d—1
L L=1(Qry Qi+ Oy Qi Qo) + DM (e = Q) (83)
a=1

where Qé()) := ¢'. Regarding the Lagrange multipliers )»l(.") also as position coordinates, the ar-

gument of the rewritten Lagrangian I becomes
Y T . @), 1 @)
L=L <Qé[[71)7 T, Qél)v l(())a Qédfl)’ T, Qzl)’ l(())» )“ja ) )"l’a ) . (84)

For this Lagrangian, all the discussions for first-order derivative systems in Sects. 3.1 and 3.2
are applicable. The present work focuses on the systems which are compatible with Newtonian
dynamics: the systems whose Lagrangian is given by Eq. (14). An example of such a system is
provided in Sect. 5.4.

4. Conditions for a well-posed variational principle

4.1.  Problems and a strategy for resolution

In Sect. 2, we verified that position-fixing boundary conditions are necessary for the variational
principle to be compatible with Newtonian mechanics. We showed, in Sects. 3.1.1 and 3.1.2, that
non-degenerate systems have unique solutions up to integral constants that are indicated by the
Frobenius integrability. Lastly, in Sect. 3.1.3, we introduced the three fundamental maps ¢, «,
and O in a well-defined manner, and these maps had their inverses in non-degenerate systems,
respectively. In particular, the invertible map ¢ is crucial since ¢ connects the integral constants
with boundary conditions. Therefore, we would define the well-posedness of the variational
principle as follows:

Definition 1. The variational principle is well-posed if and only if the three fundamental maps t,
Kk, and 9 are well-defined and invertible on a phase (sub)space in which the physical phase space
exists. |

In Sect. 3.2, we revealed that degenerate systems give rise to the following two difficulties:
Difficulty 1.

(1) Map ¢ is generically not introduced in a well-defined manner
(2) Maps k and O are always introduced in a well-defined manner, but their inverses generically
do not exist, respectively
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Therefore, to establish a well-posed variational principle in degenerate systems, we have to
remove these incompatibilities out from the theory. That is, we have to resolve the following
two problems:

Problem 1.

(1) How to introduce a well-defined and invertible map
(2) How to restore the invertibility of the maps k~' and O~!

when the Frobenius integrability conditions Egs. (74 ) and (81) are satisfied under the conditions
restricting the number of constraints (75 ). [ |

The strategy to tackle this problem is that we restrict the entire phase space to a subspace
such that each invertible map for ¥ and O exists, and then we construct a well-defined map ¢ in
the subspace of which the inverse map exists. The construction of subspaces of phase space,
however, differs from the cases of ordinary differential manifolds. That is, arbitrary restrictions,
or strictly speaking, embeddings, are not allowed unlike ordinary differential manifolds.

Let us consider an embedding v : S — R? for some 2-dimensional differential manifold S.
When R? is equipped with polar-coordinates (r, 8, ¢), we can identify an embedding by fix-
ing the pullback of some coordinate functions by . For instance, if we fix ¥*r as 1 then
we get an embedding ¥ : S — R (W*r = 1, ¥*0, ¥*¢) — (1,6, ¢); this is none other than
the embedding of the unit sphere, S?, where v* is the pullback operator of 1. We can also
identify an embedding for the case where S is a 1-dimensional differential manifold by fixing
that both ¥*# and ¥*¢ are constant, respectively, ¥ : S — R>; (*r, ¥*0 = constant, y*¢ =
constant) — (r, 0, ¢); this is none other than a line. Similarly, fixing either ¥*6 or {¥*¢ leads
to an embedding of a 2-dimensional plane. In the case of phase space, however, embeddings
by fixing coordinate functions are generically restricted. For instance, any odd-number dimen-
sional subspaces cannot be embedded into the entire phase space. Therefore, we have to realize
this restriction as an embedding into the entire phase space such that the canonical structure holds
at least for the subspace in which the dynamics lives. Let us call such embedding “canonical”
if it exists. To consider canonical embeddings, we need to introduce the concept of symplectic
manifolds.

Finally, note that once we compose such embeddings, we can freely map objects, such as
equations and those solutions, from the original space to an embedded subspace. We will use
this technique for specific computations.

4.2.  Symplectic manifold and peculiarity of its embedding

At each time ¢ € I, where I C R is an open interval of the time variable, a space T*M x R is
equivalent to 7M. Then a symplectic manifold of 7*M is defined as the structure (7% M, w)
equipped with a 2-form w on T*M represented by

W= %a)m,,dzm Adz" (85)
satisfying the following three conditions:
(1) Wy = —um
(it) det @y, # 0
(iil) dw = 0. (86)
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The w plays a role like a metric tensor on the phase space by virtue of that w(vi, v2) = V"V @,
for vector fields vy = v{"(3/9z™), v, = v4(9/0z") on T(T* M). We call this w a symplectic 2-form.
Darboux theorem under the conditions in Eq. (86) leads to the canonical structure:

1 .
W= sz,,dZ’" ANdZ" =dg' Ndp; (87)
at least in a local region on the symplectic manifold (7* M, w), where (', 2" T %) = (¢', p;) and
0 I,
J = e 88
|:_In><n 0 :| ( )
I, » , 1s an n x n unit matrix. Then the Poisson bracket (P.b.) is defined as follows:
{f, 8 = o(Xy, Xy), (89)

where X and X, are the Hamiltonian vector fields of f'and g, respectively. Using these concepts,
we can define a canonical transformation as a coordinate transformation ¢: T*M — T*M; (¢',
pi)—(Q!, P;) such that the symplectic 2-form is invariant under the pullback operation ¢*:

P wop=wy) (90)
where
Wy p = dq' Adp; = %Jmndzm AdZ",
wop:=d0 ANdP; = %Jm,,dZ’" AdZ", 91)
and (Z!, Z"+) = (Q', P;). The condition (90) is equivalent to
STIS =1, 92)
where S is the transpose of S, and S is given as follows:
¢ dzZ" = S)'dz", (93)
or, more concretely,
spo= 27 (04

for Z" = (¢~')*z". The definition of P.b. given in Eq. (89) implies that a canonical transfor-
mation does not change the P.b. That is, the equations of motion are invariant; the dynamics
remains unchanged before and after the transformation. Conversely, since the time evolution
is decomposed into a series of infinitesimal canonical transformations, the symplectic 2-form
(86), or more general form (85), is invariant under the time evolution.

Note that when we consider a subspace as an embedding into the symplectic manifold (7% M,
w) by fixing some coordinates, a set of conjugate variables, i.e. pairs: ¢' and p;, have to be fixed
simultaneously. Fixing either ¢’ or p; would destroy the symplectic structure of the phase space.
That is, the first and/or second conditions in the definition (86) would be violated. This is the
peculiar property of symplectic manifolds differing from ordinary differential manifolds as
mentioned at the end of Sect. 4.1. Remark that taking into account the dynamics, we have
to consider 7*M x R rather than 7% M with the boundaries T*M x {t;} and T*M x {1,}.

4.3.  Phase space decomposition and canonical embedding

The authors in Refs. [46-49] proposed a novel theorem that states that a proper combination
of constraints can form a part of a canonical coordinate system. On one hand, the authors in
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Refs. [46-48] deduced the theorem without explicit proofs based on well-known facts in func-
tion group theory. The authors in Ref. [49], on the other hand, provided rigorous proofs using
their original methodology at least in the “weak” equality: “~” [5,6]. A mutual feature of these
works is that the existence is smartly deduced/proved, but the explicit method to construct the
coordinates is unclear. In this section, looking ahead to the application for specific models in
Sect. 5, we provide the theorem together with rigorous and explicit proofs based on function
group theory. The advance from the first set of previous works [46—48] is that we provide a
rigorous proof in terms of function groups and can guess an explicit method to compose a
canonical coordinate system which is implied by the theorem. In addition, we will verify that
the theorem holds in the sense of the “strong” equality: “="[5,6], when a condition holds. (See
Remark 1.) The latter result is the advance from the other previous work [49]. The theorem will
be proved based on one proposition and two lemmas while introducing canonical embeddings.

4.3.1.  Function group and the existence of a reciprocal subgroup. In order to decompose a
phase space consisting of constraints, we need the concept of the function group [50].

Definition 2. (i) Function group:

Let {fi}i= 1.2, ...+ be aset of functions on a symplectic manifold of which P.b.s are closed. Then a
set of functions, {ga}a=1,2,..r. Of {fi}i=1.2...r, i.€. §@a = ga(f1, f2, -, [1), is defined as a function
group with rank r of the basis {fi}i— 1 . ... if and only if all Pb.s among {ga}a 1.2, ... r are also
closed. We denote {g,}a =12, ....r as Ge({fi}i=1,2....1). When the basis is apparent we abbreviate
Gi({fiti=1.2,. 1) by G

(ii) ( Non-) Commutative function group.

If all elements in a function group G, are commutative in Pb., then G, is called a commutative
function group. If it is not the case, G, is called a non-commutative function group.

(iii) Subgroup.

Fors <1, Gs({fi}i=1.2....s)CGe(fi}i=1.2....+) is called a subgroup of G.

(iv) Reciprocal subgroup:

Let Gy, be a non-commutative function group. For a subgroup G, (r < n), if there exists a sub-
group Gy, _ ¢ such that G, = G.UGy, _ . and all P.b.s between G, and Gy, _  vanish, then the subgroup
Gy, _  is defined as a reciprocal subgroup of Gy, where U is a direct sum. We denote the reciprocal
subgroup as G, = G,_,. Then, of course, G, is a reciprocal subgroup of Gy _ - Gy = G,. [ |

We will use the existence of a reciprocal subgroup in Sect. 4.3.3 [50].

Proposition 1. Let Ga, be a non-commutative function group. Then, for any subgroup G;, a re-
ciprocal subgroup G = Go,—, exists.

Proof. Let {fa}a=1,2. ...r be a basis for G. Then we consider the following differential equa-
tions.

X;g=0. (95)

Using Xy, 1,y = —[ Xy, Xzl and { fa, fo} = C,f fe, where C s are functions, we can verify that
the operators, Xy,s, form a complete set. Therefore, Frobenius theorem leads to 2n — r solutions
for the equations: {gi}i—1 2. ...on —r. Using Jacobi identity, we can show that {gi}i—1,2, ...on—1 iS
also closed in P.b. Taking into account that the P.b.s between {fy}a 1.2, ...r and {gi}i—=1.2,...0n —r
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vanish by virtue of Eq. (95), {gi}i=1.2....2n—r forms a basis for a reciprocal subgroup of G;.
(Q.E.D.) [ |

4.3.2.  Systems with first-class constraint. First, we consider a phase space only with first-class
constraints. The phase space has a canonical coordinate system indicated as follows:

Lemma 1. Let {{r4}q=1.2. ....r be a set of first-class constraints in a 2n-dimensional symplectic
manifold. Then a canonical coordinate system: B%s, Wys, Q%s, and P,s such that {E*, Wg} = 5%,
{0, Py} = 8%, and otherwise vanish exists, and all of the E%s and Vs satisfy those consistency
conditions. Wherea, 8 =1,2, -, randa,b=1,2, -, n—r.

Proof.

The first-class constraints form a function subgroup with rank r of Gy, by its definition: {V,
Vgt = C(yy, ) at least around the neighbor of the constraint space, where C(r,, ) is a function of
which independent variables are the first-class constraints such that for all ,, — 0 then C(yr,,)
— 0, or {Yro, Y} = 0. That is, Gy = G ({Vi}i=1,2. ...t ). Then, for Yy, we consider the following
differential equation:

Xp & =15y~ 1 (96)

where & is a function of which independent variables are belonging to Ga, _ := Gyn\G;y. This
equation always has a solution at least in the weak equality, otherwise we find a new first-class
constraint since & is commutative with r1,° but it contradicts that the Dirac procedure always
takes the number of first-class constraints to the maximum. Let us denote the solution as 8" and
set Wi := 1. Then we get

2w~ 1. o7
For these variables B! and V1, we consider the following differential equations:
Xz,0 =0,
Xy, 0 =0, (98)

where © is a function of which independent variables are belonging to Gy 1 =
Gan\(G:U{E'}). These equations imply that Xz and Xy, form a complete set by virtue of
[Xz1, Xu,] = —X(z1.w,, and Eq. (97). Therefore, based on Frobenius theorem, there exists a
set of solutions for Eq. (98): ®1, ®y, -+, Oy _ 1, and these solutions form a function sub-
group Goyn—r—1 = Gon—r—1({Oafa=1.2, .20 —r—1). Appending the two functions 2! and v,
to the basis of Gaun_r—1, we get Goun_ri1 = Gum—r11({E), Wi, Oalaci 2 oom—r—1) by
virtue of Gan — v — 1({Oaya=1.2. .20 —r — 1) CGan — ¢ + 1. For other remaining elements yr, € G, _ 1,
the same processes lead to Gy, = G ({E%a=1.2. v {Vata=1.2, .1 1Oata=12 . 20—2)
Since Gon — 2r({Oata=1,2 - 2m—2) IS a non-commutative subgroup, Eq. (96) for ®,s on
Gon —2r = Gon— 2r({Oata=1,2 .on—2c) gives a basis of Gon 2 = Gon — (10" a=1,2,.n -1,
{Pata=12 .n—r) such that {Q% Py} = &%, and otherwise vanish. Therefore, we get Gy, =
GZn({Ea}a =1,2,, 1> {qja}a =12, 1 {Qa}a= 1,2, ,n—r1 {Pa}a= 1,2, ,n— r)' The statement is
concluded. (Q.E.D.) [ |

2If {£, ¥} = f, where f is some function being non-zero in all regions we consider, then just replacing
Y1 by ¥ 1/f, at least around the neighbor of the constraint space, we get {&, ¥/} ~ 1. Therefore, the
absence of the solution of the equation implies f = 0.
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Remark 1. If Eq. (96) holds in the strong equality for all the processes, these statements hold
also in the strong equality. W

Lemma 1 indicates that a canonical transformation ¢: T*M — T*M; (¢', pi)—(E*, ¥, O',

P;) under the necessary and sufficient condition (92) exists, and then we have

w=dq Nndp;=dBE* NdV, +dO' ANdP,, (99)
where the index i in the domain of ¢ runs from 1 to n. The indices « and 7 in the range of ¢ run
from 1 to r and from 1 to n — r, respectively. In addition, from the proof of Lemma I, since
the subgroups Gy, = G5.(E*, ¥,) and Gy, _ 2» = Ga, — 2,(Q', P;) relate with one another in the
reciprocal manner, the phase space can be decomposed as follows:

T"M=T"M|zy x T*M|g p (100)
where we denote 7% M|z, ¢ and 7" M|, p as the phase subspaces of 7% M, which are coordinated
by E%, W, and Q', P;, respectively.

Next, let us consider an embedding of 7" M|y, pinto T*M,i.e.01: T*M|o, p — T*M, by fixing
the pullback of the canonical coordinates 2, W,: o E%, 0;'¥,, where o denotes a pullback
operator of o . Then an embedding is given as follows:

o1: T*M|gp— T*M; (0] E* := €%, 01V, := €4, 070", 0/ P) > (E*, ¥, O, P) (101)
where €%s and €,s are constant parameters. The reason why we fixed E%s and W,s, not Q's and
P;s, will be revealed as we consider the time evolution of the system. Using this embedding, the
symplectic manifold (7* M, w) can be decomposed into two submanifolds. That is, we consider
the pullback of the symplectic 2-form (99) by o :

ofw = wg, p, (102)
where

wg v :=do[ B ANdo[¥, =0,

wo.p=do] Q" Ndo[P,. (103)
Then we obtain the two submanifolds (7*M|g, v, wg, v = 0) and (T* M|, p, wo, p). The former
submanifold does, on one hand, not have the symplectic structure; the second condition for the
symplectic 2-form in Eq. (86) is not satisfied. On the other hand, the latter submanifold holds
the symplectic structure. That is, the embedding o is canonical.

Now, to take into account the time evolution of the system, we consider an embedding such
thato(¢) : T*M|g,p x R — T*M x R; the embedding is now parameterized by a time variable
t. In this case, on one hand, the first-class constraints, or equivalently W,s, satisfy the consis-
tency conditions:

lijoz = {\Ijaa HT} ~ 0. (104)
On the other hand, E“s evolve depending on time. That is, there are two possibilities to intro-
duce the embedding o (7). First, fixing only o;"W,s, the embedding is introduced as follows:

61(t): T"M xR — T*M x R

L (07 (DB, o) ()W = €4, 07(1)Q', 07 ()P, o (u = 1) > (B, W, O, Pi, u).(105)

o (t)E%s are not fixed since the corresponding variables E*s evolve in time. The pullback of
the symplectic 2-form w by &;(¢) turns Egs. (102) and (103) into the following:

o7 (Hw = wg p(t) + wz w(?), (106)
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where
wzy(t) =dE*(t)ANdV,(t) =dE*(t) N O,
wo p(t) :==dO"(t) NdP,(t). (107)

This result indicates that the case without the consistency conditions for E*s does not reduce the
phase space into the physical space. In addition, since the first and/or the second condition of
the definition for the symplectic 2-form (86) would be violated, this embedding is not canonical
asitis. However, we will confirm that this embedding can be canonical as we impose gauge fixing
conditions. This is a peculiar feature of systems consisting of first-class constraints. Let us call
this sort of embeddings “quasi-canonical”. Notice that if we take the limit of ¢, — 0, then 6, (7)
restores the constraint space wherein all the constraints are satisfied; this is another reason why
o (t)E%s cannot be fixed in o} (7). E*s do not restrict the constraint space at all. Notice also
that &,(¢) occupies r integral constants that are indicated by the Frobenius integrability given
in Sect. 3.

Second, in contrast to the quasi-canonical case, if the consistency conditions for E*s are
imposed:

(1]

¢ 0,
2% = {E% Hyp) :~0, (108)

the phase subspace 7*M|z ¢ x R turns out to be static. These conditions correspond to gauge
fixing [51,52]. Therefore, a canonical embedding is given as follows:

o1(t): T*M|pp xR — T*M xR
LOF (DB 1= €, 07 (1) 1= €4, 07 (0. 07 ()P, o7 (D) = 1)
— (B% W, 0", P, u). (109)

For at a time ¢, o 1(?) restores, of course, o|. Hereinafter we abbreviate the pullback of a vari-
able X, o[(1)X, as X(#), when it is apparent in the context. Applying this embedding to the
entire phase space 7*M and the symplectic 2-form w in the same manner as in the case of
o1, we get a decomposition of (T*M x R, w(t) = dq'(t) Adpi(1)): (T*M|gp x R, wg p(t) =
dQ'(t) AdP(t)) and (T*M|zy x R, wz ¢ (1) = dE(t) A d¥(r) = 0). Note that wg ¢ () = 0 on
T*M|z v x Rthroughout all time implies that the subspace 7* M|z ¢ x R can be removed from
describing the dynamics. In contrast, wo, p(t) #0on T*M|p p x R holding the symplectic struc-
ture describes the dynamics. Then 7*M|g p x R becomes the physical space. Notice that, taking
the limit of € — 0 and ¢, — 0, o ((¢) restores the constraint space. o(¢) occupies r + r = 2r
integral constants that are indicated by the Frobenius integrability in Sect. 3.

4.3.3.  Systems with second-class constraint. Second, we consider a phase space only with
second-class constraints. The phase space has a canonical coordinate system indicated as fol-
lows:

Lemma 2. Let {0i}i— 1.2, .. 25 be a set of second-class constraints on a 2n-dimensional symplectic
manifold. Then a canonical coordinate system ©s, ©%s, Q%s, and P,s such that {©,, O®F} = (Sg,
{0, P} = 8%, and otherwise vanish exists, and all of the ©,s and ©%s satisfy those consistency

conditions. Where o, 8 =1, 2, -, sanda, b =1, 2, ---, n — 5. The same remark as in Lemma 1
holds.
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Proof.

The second-class constraints do not directly form a function subgroup since the definition implies
that {6;, 0;} # C(0y ). P.b.s among 0;s cannot be expressed only in 0;s themselves. However, we
can reconstruct 0;s as follows:

®;,=C0;, (110)
where Cl.j s are arbitrary functions on the symplectic manifold. Then we impose the following con-
ditions:

(Ous Oy} = Sup, (111)
and otherwise vanish, where o, B =1, 2, ---, s. The number of all the conditions above is 3s°, and
this number is less than the number of independent components of C,.‘i s: 4s°. Therefore, we can

determine Cl.j s satisfying Eq. (111) although it is not unique. To form a function subgroup, let us
consider the following equations:

{0,,0,} = C;/ oy, (112)
where Cl.jks are functions on the symplectic manifold such that Eq. (111) is satisfied. It is possible

to replace C; jkG)k by fi(®x ) such that it is not weak equal to zero: for all ® — 0 then f;;( ©y )+0,
as follows:

{0:,0;} = fij(O). (113)
This is none other than a generalization of Eq. (111). These equations lead to a function sub-
group of Gy Grs = G ({O®i}i—1.2, ...2s). Therefore, from Proposition 1, we get a reciprocal
subgroup of Gas = Gas({Oi}i=1,2, ... 25): Gos = Goy_oy. For each subgroup Gos and Gy, _ 25, we
can construct canonical variables in the same manner as in the proof of Lemma 1. That is,
Gy = G (1O% =12, s {Oqfa=1,2 ...5) With {©% O} = 8%, and otherwise vanish, and,
Gy = Gon2s({OYa=1,2, n—ss {Pata=12,... n—s) With {Q*, Py} = 89, and otherwise vanish. The for-
mer recovers Eq. (111). Since these subgroups are reciprocal subgroups to one another, we
get GosUGon — 25 = G ({1O%} e = 1,2, 5 {Oata=1,2, 5 10%a=1.2,n—s Pata=1,2n—s)
(Q.E.D.) |

Lemma 2 indicates the existence of a canonical transformation ¢: T*M — T*M; (¢', p;)— (O,
O, O, P;) under the necessary and sufficient condition (92). The symplectic 2-form » and the
phase space 7" M are decomposed as follows:

w=dO" Ad®, +dO' A dP,; (114)
and

T*M = T*M|e x T*M|g.p, (115)
respectively, where 7% M| and T M|p, p are the phase subspaces of T*M of which canonical
coordinates are given by ®%, @, and Q', P;, respectively. The index 7 in the domain of ¢ runs

from 1 to n. The index « runs from 1 to s and the index i in the range of ¢ runs from 1 ton —
s. Then the canonical embedding is given as follows:

0r: T*M|gp— T*M; (050" :=€",050, :=¢€y,0;, 0, 05 P) > (0%, B4, 0", ), (116)
where o} is the pullback operator of o5, and €*s and €,s are constant parameters. Applying
the embedding, (7" M, ) is decomposed into (T*Mle, we) and (T* M|, p, wg, p), Where

we :=do*O®* Ado*®, =0,
wo.p:=do*Q' Ado*P. (117)
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The pullback of w by o3 is, of course, given as follows:
o, = wo p. (118)

Therefore, only the submanifold (7% M|, p, wo, p) holds the symplectic structure.

Taking into account the time evolution of the system, since the second-class constraints, or
equivalently ®%s and ©,s, satisfy the consistency conditions, we lead straightforwardly to the
canonical embedding with the time evolution as follows:

o2(t): T*M|gp xR— T*M x R
(05 ()0 1= €%, 05 (1)Oy = €4, 05 (1)Q", 05 (1) P, 05 (H)u = 1)
> (0%, By, O', P, u), (119)

without any conditions in contrast to the case only consisting of first-class constraints.
Then we can decompose (T*M x R, w(t) = dq'(t) A dp;(t)) into the same structure as in
the case of o2: (T*M|g p x R, wg p(t) = do}(1)0'(t) Ado}(t)Pi(t)) and (T*M|e X R, we =
dof(t)O%(t) Adoy(1)O(t) =0). we(t) = 0 on T*M|g x R throughout all time implies that
it does not relate to the dynamics, but wg, p(t) # 0 on T*M|p p x R with the symplectic struc-
ture describes the dynamics, and this subspace is none other than the physical one. Notice that
taking limits of €* — 0 and €, — 0, 0»(7) restores the constraint space. o () occupies 2s integral
constants that are indicated by the Frobenius integrability in Sect. 3.

4.3.4.  Systems with first- and second-class constraints. Finally, we consider a phase space with
both first- and second-class constraints. Combining Lemmas 1 and 2, the following theorem
holds [46-49].

Theorem 1. Let {Yofo=1,2 ..r and {6i}i—1, 2. .. 25 be a set of first-class and second-class con-
straints, respectively. Then a canonical coordinate system E%s, W,s, ©%s, O, O's, and P;s such
that {8, W} = 8¢, {©%, Og} = 8%, {O/, P} = (Sij, and otherwise vanish exists, and all of the E%s,
W,s, ©%, and Oys satisfy those consistency conditions. Wherea, b=1,2, ---,1,a, B=1, 2, -+, 5,
andi, j=1, 2, -, n — r — 5. The same remark as in Lemma 1 holds.

Proof.

Combining Lemmas 1 and 2, we get the statement by virtue of the relation: Gy, =
GrlUGrUGn — o — 25 = Gon (B9, Wy, O Op, Q' P;), where Gor = G (EY, Wy ), Gog = G (07,
Op), and Gy, — 31 — 25 = Gon —2r —25( Q', P;). Remark that ©*s and ©s are generically written as
OY = fY(Yy, 0;) and Oy = fo (Y4, 0i), respectively, but these generalizations do not affect the
proof of Lemma 2 except for being valid only in the weak equality. (Q.E.D.) [ |

Theorem 1 indicates the existence of a canonical transformation ¢: T"M — T*M; (¢,
P (BY, ¥, ® 0, O, P;) under the necessary and sufficient condition (92), and it leads
to the following decomposition:

0=dBANdV,+dO% ANdO, +dO' A dP; (120)
and

T*M =T*M|g.y x T*M|o x T*M|g.p. (121)
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Then the canonical embedding is

03 . T*MlQ,P - T'M

D (0FBY =€, 0fV, 1= €,,050% := €%, 0}0, = €,,0;0', 05 P))
— (B ¥, 0%, 0,, 0, P) (122)

where o is the pullback operator of 3. The pullback of the symplectic 2-form w by o3 is
oiw = wo p (123)
where
wgy =doy 8 ANdoj ¥, =0,
we :=do;®% Ado;®, =0,
wo.p:=do; Q' Ado}P,. (124)

Therefore, (7% M, w) is decomposed into three subspaces: (7T* M|z, v, wz, v =0), (T*M|e, we =
0), and (T*M|p, p, wg, p). Only the last one holds the symplectic structure.
Of course, the following two embeddings are also canonical:

oV T* Mo x T*M|gp — T*M
(0B =€, 0}V, = €,,050%, 0104, 050", 07 P) > (B, ¥, O, B, O', P125)
and
o T*M|gy x T*M|gp — T*M
s (0FE, oW, 050% := €%, 070, := €, ag"Qi, o3 P) > (B9, U, ©%, O, 0, P).
(126)

Armed with these canonical embeddings, (7*M, w) is decomposed into (7*M|e %
T*M|gp,0iVw) and (T*M|zy,0iPw=0), and (T*M|zy x T*M|gp,0;Pw) and
(T*M]e, 03*(2)@ = 0), respectively. The pullback of w is computed in the same manner as
in the case of o73.

Taking into account the time evolution of the system, under imposing the consistency con-
dition (108), we obtain the canonical embedding with the time evolution as follows:

o3(t) : T*"M|pp x R— T"M x R
s (05 (DB =€, 05 ()W, i= €4, 05 (1)OY 1= €%, 05 (1) 1= €,
a3 (00, o5 ()P, 03 (1)u = 1)
— (B9, ¥, 0%, 0,, 0, P, u). (127)

In this case, we can also consider an embedding such that either the first-class constraints, or
equivalently W,s, are fixed:

oV(t): T*Mle x T*M|gp x R — T*M x R
L (B3(1E = €, 51(1)W, = €, 65(NO%, 510,(1), 0 ()0, 03 ()P, 03 (1 = 1)

— (2 W, 0%, 0,, 0, P, u), (128)
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under the consistency condition (108) holding, or the second-class constraints, or equivalently
®%s and O,s, are fixed:

C’;«gz)(l) T*M|gw X T*M|gp xR— T*M x R
; (65 (1B, 65 (1) Wy, 65(1)O% := €%, 65(1)O4 1= €4, 05 (1)Q', 05 (1)P;, 05 (Hu = 1)

> (8% W, ©%, O, 0', P, u). (129)

For at a time ¢, 03(1), o, )(t) and 03( )(t) restore, of course, 03, 03( ) and 03(2), respectively. The

corresponding decompositions introduced by these embeddings are constructed in the same
manner as o3, 03(1), and 03(2), respectively. Remark that (7*M|z ¢ X R, wg w(¢) = 0) and/or
(T*M|e X R, we(t) = 0) throughout all time implies that 7*M|z y x Rand/or T*M|e x R do
not describe the dynamics. Only the symplectic submanifold (7*M|p p x R, wg p(t)) describes
the dynamics.

The cases where the additional consistency conditions (108) are not imposed lead to quasi-

canonical embeddings. That is,
53(t): T*M|z.9 x T*M|gp x R — T*M x R
(G5 (NE 670V 1= €. 67O = €, 55 ()04 1= € 55 (1 0, 65(1)P, 65 (0 = 1)
= (Eaa \Ijav®as®o{,Qla I)is u) (130)
and
s0(): T"M x R — T*M x R
(GF()EY, 65 ()W, = €4, 65(1)O%, 55 (1)O4, 65(1) D', 65 (1) P, 55 (t)u = t)
= (Ea’ \Ijay @01, ®O{5Ql’ Pi7 u) (131)

Finally, remark that only for o3(7) and &5(¢), taking limits for all the constant parameters
to zero, these embeddings restore the constraint space. o 3(¢), 0*31)(t) @ (1), 65(¢), and 6*3(1)0)
occupy 2r + 2s, 2r, 2s, r + 2s, and r integral constants, respectively, that are indicated by the
Frobenius integrability in Sect. 3.

4.4. An answer for the problems
In this section, we reconstruct ¢, k, and O by using the concepts of canonical and quasi-
canonical embedding assembled in Sect. 4.3.

4.4.1.  The canonical embeddings: o(t), o1(t), and o3(t). The pullback of the entire sym-
plectic manifold (7" M, w) by o.(1), o7 () (T*M x R,w) = (T Ml|g.p X R, wg p(t) = dQ(t) A
dP,(1)), restores the existence of the inverse of x and O, respectively. Here, we denote the type
of embeddings as t = 1, 2, 3. First, we show this statement.

The dual bundle of T*M|g p x R =0of(t)(T*M x R) is determined as T M| r x R up to
isomorphism, where R“(?)s are a set of contra-variant vector components on M|p. Then assume
that there is a function L = L(Q“(¢), R(?), t) defined on T'M|p r x R such that the following
conditions are satisfied:

oL
P,(t) = 8Ra(l)
0P (1)
det (aRb(z)> £ 0. (132)
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Using the implicit function theorem, we get a set of functions: R* = R(Q“(¢), P*(¢), t). Since
0“(t)s are contra-variant vector components on M lo as well, without any loss of generality,
we can identify R%s as 0%(¢)s. Therefore, we acquire a coordinate system for the velocity-phase
space TM: 0“(1)s and 0“(¢)s. This construction leads to a one-to-one correspondence between
P,(7)s and Q“(¢)s. That is, the following map is a well-defined and invertible map:

Koty : TM|p o x R — T*M|g p x R; () > Pu(0), (133)

which restricts the domain 7M x R and the range 7°M x R of « to o (t)(TM x R) =
TM|,p xR and o] (t)(T*M x R) = T*M]|p p x R, respectively. Of course, there is a rela-
tion: TMlpp*xRx=T*Mlgp xR, and it implies that TMlppxT*Mlgp xR is equivalent
to TMl, s xR and T*M|g p x R.

Second, we define a Lagrangian in the space 7'M|, 5, x T*M|g, p x R; denote Lz, which cor-
responds to the total Hamiltonian Hr, as follows:

L7 :=0}(t)[P,0" + ©,0" — Hr (0%, O, 0°, P,)]
= P(1)0(t) — Hr(0%(1) = €%, 04 (1) = €. 0°(1), Pu(1)). (134)

That is, L = L7 and P,(?)s are introduced by Eq. (132). Where, we used o (¢)(d X /ds) =
d(o*(1)X)/d(c*(t)s) = dX (t)/dt, replacing X by Q% and ©%. This leads to o*(1)@% =
o ()% Hr} = of(t)F*(®) = F*(o}(1)®) = constant, where F*(®) denotes a function de-
pending only on the constraint coordinates: ®*s and ®,s. We used also that for r = 1, 3 all
of the E% and W,s in Lemma 1 and Theorem 1 turn into second-class by virtue of Eq. (108).
Based on this, we gathered these variables together into ®“s and ®,s and applied Lemma 2.
The Lagrangian Ly is uniquely determined by its construction up to surface terms. Let us de-
fine the pullback of the “total Lagrangian” by o (¢). Taking into account the « | (), it suggests
that the following map is a well-defined and invertible map:

Olowty : SIT(TMly o x R)] = S[T(T"Mlg.p x R)]; Xilg o = +Xilo.p (135)

where X;| 0.0 and .X/|p p are Hamiltonian vector fields restricted to T(T M |Q,Q x R) and
T(T*M]lg,p x R), respectively, and these correspond in a one-to-one manner.
Finally, let us consider map ¢. Varying Eq. (134), we get

SLy — [Q‘a_ 3£T]apu+ [_pa - aagg]agu < P50 (136)

where we abbreviated the argument “¢” in Q%(¢)s and P,(¢)s. In the form of an action integral,
it can be written as follows:

oH . 0H

8 (o)) = / [Q“ T] SPdt + [—P aQT] 8Q%dt + [P.s O} . (137)
5] a

In the subspace T M| 0.0 X T*M|g p x R, we can use the formulas in Eq. (132) or the invertible

map «|,, (1. Therefore, the above formula becomes as follows:

. ([ he 3Hr _d (8Lr\ dHr] . ., aLr 1"
(oo = | o= S |onar+ | dt<aQ.a) oo+ |2 QaQ}.

141

(138)

The one-to-one correspondence between o*(¢)Hr and L7 indicates that

ol (t)Hr := P,Q" — L(Q°, Q) (139)
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in the subspace TMlypx T Mlgp xR under Eq. (132). Therefore, we get
2T d (dLy ALy L7 &
S(or(nI) = / [—— ( . ) + ]SQ“dt + [—.8Q“} , (140)
con =] ~a\5e:) * 30 00« = 1,

which is now defined in the subspace 7'M, ; x R. The second condition of Eq. (132) implies
that Ly is non-degenerate. Therefore, we can fix all positions Q“s as boundary conditions:

8Q%(11) = 68Q%12) = 0. (141)

Here, notice that in the subspace 7M|, 4 x R this system always holds the Frobenius integra-
bility based on the consideration given in Sect. 3.1. In this formulation, map ¢ can be introduced
in a well-defined manner as an invertible map automatically:

o, = Mlglt] x Mlolta] = Clo,; (Q°(11), Q°(12)) > ¢, (142)

where M]p[?] is the configuration subspace restricted by the canonical embedding o, and
C|,, 1s a parameter space spanned by the independent integral constants restricted by all the
constraints. A runs from 1 to twice the number of Q“. Therefore, based on Definition 1,
8 (o7 (1)I) == 0 is the well-posed variational principle.

Summarizing, the well-posed variational principle is

8 (oF()I) =0 (143)

under the boundary condition (141).

4.4.2.  The quasi-canonical embeddings: &,(t) and 65(t). Let us consider the case of 63(¢). The
same considerations are applicable to &;(¢).

The quasi-canonical embedding &3(¢) leads to G7(I)N(T*M xR, w) = (T"M|gy x
T*M|gp X R, wg p(t) + wy () =dQ'(t) NdPi(t) + dE*(t) AdW¥,(t)). For T*M|gy x
T*M|gp x R, we can introduce a function L = L(E(t), R(¢), Q(t), Q'(¢), t) defined in
T'M|gr x TM|, 5 % R such that

dL
BR—”(t) = W,(t) = constant, (144)
but, of course,
W, (2)
= 145
ORb(1) (143)

This indicates that an invertible map « does not exist even if we restrict the entire phase space
T*M x Rto the subspace 65 (1)(T*M x R). However, if we restrict T7*M x Rto T*M|g p x R,
then P;s and O's correspond to one another in a one-to-one manner. Then we can introduce an
invertible map k|5, between T'M|, 5 x Rand T*M|g p x R as follows:

klosiy : TM|g o x R— T*Mlgp x R; Q'(1) = Pi1) (146)

in a well-defined manner. In addition, under the same restriction of the phase space T*M x
R, an invertible map Ols,() : ®[T(TM|Q7Q- x R)] = S[T(T*M]p,p x R)]; Xilg o «Xilor is
introduced in a well-defined manner.
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Now, let us consider map ¢. The pullback of the total Lagrangian by &3(¢) corresponding to
the total Hamiltonian H7 is defined as follows:

Ly = P(Q'(1) + W()E“(t) + ©,(O"(1)
— Hr(8°(1), Walt) = €, ©'(1) = €, ©,(1) = e, ¢, 0'(1), P(1))
= P(1)0'(t) — Hr (2(1), W,(1) = €,, O"(1) = €, 0,(t) =¢,,¢%, 0'(1), P(1))
d —a
EALAOENG) (147

in the space TM,p % T*Mlgp x TM|g z x T*M|z,¢ x R. Remark that the condition (132)
on Q's and P;s holds in the subspace T M|, 5 x T*M|g p x R as well. {*s are Lagrange mul-
tipliers and « runs from 1 to the number of the primary first-class constraints. Hereinafter, we
abbreviate the argument “z” in Q“(¢)s, P,(?)s, E%(¢)s, and W ,(¢)s.

Lemma 1, or its proof, indicates that the first-class constraints themselves form canonical
momenta. Since P;s and (s have a one-to-one correspondence by virtue of det(dP,/d07) # 0
in Eq. (132), varying this in the action integral form, we get

. Lr. 9 .
5(03@)1):[1 [Q—B—RT]SPdH—[ P—a—QT}Sth

3HT5:“dz “di + [P8Q' + W, 88]; . (148)

ga 8;
Note, here, that d H7/3¢%s correspond to the pullback of the primary first-class constraints by
63(t). Therefore, we get

LT d (dLy oLy oLy 9L 2
5% — (== i — 5B 50"+ W, 8E
8 (65(0I) f [ d[( )+ } de+a -5 & dt+[aQ Q'+ W, 88 ]

| an an 51
9L 9Ly
+/ a ”“dl+¥8§“dt+[\11 LSE]> (149)
4]

in the subspace T M loo X TMlgz xT *M|z v x R, where we used the one-to-one correspon-
dence between Q's and P;s which is described by «|s, ). a's belong to the set of indices that
eliminates as from a = 1, 2, ---, r. Notice that in this subspace the symplectic structure breaks
down: wg, p(?) satisfies the definition (86), but so is not wg, ¢(7) as mentioned in Sect. 4.3.4.
Here, we define the “effective first-order variation” of the action integral as follows:

ord (dLy dLr oLt
effectiv 55 ) = - — 8 d[ SE”dl
Seftective (3 (1)) _/tl [ dz(an>+ aQ’:| ¢ +8

Lt ~
+ [Eag + W, 8E ]tl. (150)

The coordinate variables ¢ and 2% are now independent. The reason why we split out the

terms concerning primary first-class constraints will be revealed soon. Therefore, to vanish the
effective first-order variation, we have to fix all the position variables Q's at both t = ¢; and ¢t =
t, as boundary conditions:

8Q/(1) =80'(11) =0 (151)
and, since W, s are constant, we have to impose
8§29 (1) = 8EY(1)). (152)
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!‘qa/

Taking into account the equations of motion 8¢ = {8, Hr}, appropriate boundary condi-
tions for these variables s have to be either

82 (1) =0, (153)
then 2% (t,) = 0 s are automatically satisfied, or
8B (1)) =0 (154)

then §E9(1;) = 0's are automatically satisfied, since each solution of ¢ = {E¢, Hr} has one in-
tegral constant, respectively. That is, each solution with a given integral constant on a boundary
determines the value on the other boundary. Therefore, Eq. (152) is satisfied and becomes zero
if either Eq. (153) or Eq. (154) is imposed. In this work, we adopt the first choice; this choice is
none other than setting initial conditions. Here, notice that for Ly on TM|, 5 x TM|g 5 x R
the Frobenius integrability (74) under Eq. (75) has to be imposed. That is,

0/(Xr) ~ 6/:%&’&3”% ~0 (155)
where 7 runs the range of indices eliminating the ones for the second-class constraint co-
ordinates, t¢s are zero-eigenvalue vectors of the kinetic matrix, and n’ ~ (K(V=1)/ S;. Re-
mark that the (i, j)-block of the kinetic matrix is non-degenerate. In contrast, for 6;(1)Hr on
T*M]gp x T*M|zw x R, the Frobenius integrability (81) is automatically satisfied under Eq.
(75) since E%s and W, s form a part of the entire canonical coordinate system and all ¥ s are
canonical momenta with respect to E“s, respectively, on the ground of the proofs of Lemma 1
and Theorem 1. Therefore,

A Vv,
*91(*XT) ~ _81(4;0{ = -

o

i 81i¢ 90
In order to introduce map ¢ in a well-defined manner, the following two conditions have to
be taken into account. The first is that if the consistency condition (108) is imposed then 63(¢)
turns into o3(¢). The second is that the dimension of a parameter space that is spanned by all

independent integral constants is up to 2n — 2s — r. Then map ¢ can be introduced as follows:
s, 1 Mlg.elti] x Mglta] = Cla; (Q'(11), B (11), Q'(12)) > ¢, (157)

and 8§ 27 (t,) = 0Os are automatically satisfied, where M| o and M|, z are the configuration sub-
spaces of T*M|g p and T*M|p p x T*M|z v, respectively, and C|;, is the parameter space
spanned by the independent integral constants restricted by all the constraints. 4 runs from 1
to the sum of twice the number of Q’s and E¢s. Then map ¢ is invertible. Therefore, based on
Definition 1, Sefrective (65 (£)1) := 0 is the well-posed variational principle.

Under the well-posed variational principle Sefrective (&;‘(Z)I) := 0 with the boundary condi-
tions Egs. (151) and (153), the original first-order variation of the action integral (149) becomes

~ 0. (156)

as follows:

2oL L
3(&;(:)1):/ 9 T83“dz+a—TS§“dt+[\Da5E“]Z. (158)

a g ace
n

Applying the variational principle: § (65 (1)) = 0, we derive

oLt dH7t

— = — =0 (159)
if the following equations are identically satisfied:
oLt oHr
s = g = Y0 (160)
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In fact, the boundary conditions 8§ 2%(¢,) = §E%(#)s are not satisfied since 8¢ = {2%, Hy} ~
¢ + f(Q, P)s leads to

%) . 15}
88 (1) —8EY (1)) = 8/ [C“ + (0, P,-)] dt = 5/ c%de, (161)
151

1

where f is the definite function determined by Hy and we used the fact that the integral on the
interval #; <t < 1, of f has a definite value since Qs and P;s are physical degrees of freedom
and the equations of motion for these variables are already derived by virtue of the well-posed
variational principle Sefrective (&3* (t)I) := 0. This result indicates that the configurations corre-
sponding to the primary first-class constraints cannot be fixed on the boundaries. Therefore, we
have to impose W, (¢) = constant = 0 in advance and this means that the existence of first-class
constraints restricts the possible embedding 65(¢). Therefore, Eq. (158) becomes as follows:

15}

5 (53(0I) = /t ' 3;’ B%dt. (162)

1
The variational principle, § (65 (¢)I) := 0, derives the equations of motion, dL7/d E* = 0, with-
out any boundary condition. Under this assumption, if the effective first-order variation van-
ishes: Seffective (&;‘(Z)I ) := 0, the variational principle is applied to the entire phase space, and
vice versa. As another aspect, it would be convenient to introduce the “effective-total Hamil-
tonian” as follows:

Hefrective := Hr|w,:=0- (163)
For this Hgective, repeating the same consideration going back to Eq. (147), Eq. (150) is directly
derived. Of course, the appropriate boundary conditions are given by Egs. (151) and (153).
There is a remark. Eq. (147) can be rewritten as follows:

Lp(8%, %, @, P) = BQ' - &5(t)Hy (164)

where

) d
Ly =Ly — — [W"Edl. (165)

and we abbreviatied ®7s and ©,s. L', in Eq. (165) has the arbitrariness of the continuous infinite
since W¥s can be regarded as continuous parameters. In other words, L', is parametrized by W¥s.
The arbitrariness is not the one deriving from a canonical transformation on 7*M|g p x R.
That is, for a total Hamiltonian H7, the corresponding Lagrangian is not uniquely determined,
unlike the case of canonical embeddings. It is another aspect of the absence of the inverse map
O~ !in the entire space T*M x R.

Summarizing, the well-posed variational principle is

Seffective (53* (Z)I) =0 (166)
under the boundary conditions Egs. (151) and (153). The important result is that the config-

urations corresponding to the primary first-class constraint coordinates can never be fixed on
the boundaries until some gauge fixing conditions are imposed.

4.4.3.  Invalid canonical and quasi-canonical embeddings: 03(1)(t), 03(2)(t), and 53(])(t). The em-
beddings 03(1)(t) and 03(2)(t) are somewhat special; these are canonical but do not introduce any
well-posed variational principle. That is, map ¢ is not introduced in any well-defined manner,
unlike maps « and O. Let us consider the case of 03( l)(Z). The same considerations are applicable
to o{7(1).
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The same considerations as in Sects. 4.4.1 and 4.4.2 lead to the pullback of the total La-
grangian by o*gfl)(l) as follows:

Ly = PO + 0,0 — Hp(E' = €, W, = ¢, 0%, 04, 0', P). (167)
Therefore, the first-order variation is computed as follows:

() _(°[ d (oLr\  0Lr7_ ., aLr 1"
s on) = -5 (Ga )+ 5gr | o+ |5k

1 1

bro, OHr . OHr
—Q, — —— |80t + | ®% — 80,dt + [0,80%T (168
o [ (o Ga|perar+ [0~ ST |peuar viouery; sy

in the symplectic submanifold (7'M, 5 x T*M|e X R, o(t) = wg p(1) + we (1)) with wg, p(1)
# 0 and we(?) # 0. In this case, in general, map ¢ does not exist since we cannot fix the in-
tegral constants in the solutions of —©, — dH7/d®% = 0 through the boundaries. Therefore,
the embedding 03(1) (¢) does not have appropriate boundary conditions; to apply the variational
principle, fixing ®*s and ©,s, we have to use the embedding o 3(7).

For the embedding 53( 1)(t), for the same reason as for the above embedding 0—3(1)(z), map ¢ does
not exist in any well-defined manner.

Finally, notice that these embeddings do not restore the constraint space even if all the con-
stant parameters vanish. This is another reason why these embeddings are ruled out.

5. Examples
5.1. A system with only first-class constraints
Let us consider the following system [3]:
1

Li=4'¢ + 5612 (). (169)
This model has no physical degrees of freedom but is historically crucial; it was proposed as a
counter-example for the Dirac conjecture [5].

The kinetic matrix K is

0 0 1
KYV=10 0 o0f, (170)
1 0 O
where we used the canonical momenta: p; = ¢°, p» = 0, p3 = ¢'. There is a primary constraint
due to rank KV = 2:
o = py :~ 0. (171)
The total Hamiltonian is derived as follows:
Hr = H +t¢'V,
1
H=pips = 34 (172)

The Dirac procedure generates a secondary and a tertiary constraint as follows:

o = (¢, Hr} ~ %(f)z

P =g &0,
¢ = 9@ = (¢?, Hr} ~ p|
P = p =0, (173)
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$® = 0is automatically satisfied. All (U, @, and ¢® are classified into first-class constraints:
all Pb.s among them vanish. Lemma 1 and its proof indicate that this system has a canonical
transformation from the original coordinates to the ones such that a part of their canonical
momenta themselves are the first-class constraints. In fact, the symplectic 2-form of the system
is computed as follows:

w=dq ndp;=dE NdV,, (174)
where Es and ;s are defined as follows:
gli=¢", 8= 8= —p;
W= ¢, 0y = 9D, 0y = 9@ (175)

Notice that the second equality in the equation of w is the strong equality, not weak equality.
(See Remark 1.) The total Hamiltonian is transformed as follows:

1
Hpy = -, 8% — 552(\113)2 + oW, (176)

This system is always Frobenius integrable as mentioned in Sect. 4.4.2. In fact, we can compute
as follows:
oH d
O X7r) = <d\IJI~ + ﬁdl‘) <XH + ¢ Xy, + a)
oH
=dV(Xy) +dVi(¢ Xy,) + —

B!
oH
~ AW, HY + C{W;, Wal + PYol
=0,
o0 XT) = 0. (177)
Therefore, the system has six integral constants, of which three integral constants are occupied
by the consistency conditions of the constraints. Therefore, the remaining three independent
integral constants, which are originated from the three equations: 8! = —83, 82 = ¢,and 8° =
—E2W3, have to be fixed by imposing boundary conditions in the variational principle.

There are a possible quasi-canonical embedding &,(¢) and a possible canonical embedding
o1(t), which are defined in Sect. 4.3.2, respectively.

5.1.1.  The quasi-canonical embedding: &1(t). We derive the pullback of the total Lagrangian
L7 by &1(¢) and compute the first-order variation of the action integral for L7. L is defined as
follows:
LT = 5’1*(1) [\IJIE[ — HT]
Ly = 0S4 2wy L (w:) , (178)
2 dt

which is defined in the space T M|z z x R. Where we abbreviated the pullback operator 67 (¢),
a =1, 3, and we used 61 (t)¥, = 0. Then the effective first-order variation is given as follows:

15}
Seftective (67 (1)) = W / disE* + [V 8B + W38 33]jj . (179)
n
The appropriate boundary conditions are set as follows:

82 (1)) =0, (180)
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then §27(t;) = 0 s are automatically satisfied since each solution of the equations of mo-
tion for E%s is only one integral constant, respectively. That is, each solution gives a defi-
nite value at the boundary ¢ = #,. Then the variational principle for the effective first-order
variation, Sefrective (61 (2)1) := 0, leads to Wy = 0. In addition, §(6;(¢)]) := 0 derives W3 = 0.
Where, we abbreviated the pullback operator 6;°(¢). Remark that the Frobenius integrabil-
ity condition (81) in Sect. 3.2.2 restricted to 6, (¢)(T M x R) is also satisfied, and there oc-
curs no phase space reduction. It indicates that the six integral constants hold, of which the
three constants are occupied by the consistency conditions, or equivalently the embedding
6, (t). This fact can be also led to by that Eq. (74) under Eq. (75) given in Sect. 3.2.1 is al-
ways satisfied in this system by virtue of a zero-eigenvector t/ = (0, 72, 0) and ' =~ (0, 52, 0)
where 72 and n? are arbitrary functions in the space T M|z ¢ x R. Then the invertible map ¢ is
ts, 1 M|g[ti] = Clsy: (EN(1), B3(11)) = (c', ¢?). In fact, we have the two equations &' = — &3
and 8% = 0. Therefore, ¢; = E(t)) — E3(t1)t1, 2 = E*(t1). Remark that «|5,(,) and |5,y do
not exist in this case since this system does not have any dynamics. The remaining one integral
constant is assigned for 2 = ¢; this constant does not determine until a gauge fixing condition
is imposed.

5.1.2.  The canonical embedding: o(t). We impose the condition (108) on all 8%: &' =

—8%:~0,8%=¢:®~0,and 8> = —E>W; :~ 0. The first and the third equations are automat-
ically satisfied by virtue of E*: ~ 0 (¢ = 1, 2, 3). The second equation is satisfied if and only
if ¢: ~ 0. Remark that all these ingredients are derived in the entire space 7*M |y z x R: the
target space of the embedding o ((¢). Then the pullback of the total Lagrangian L7 by o(¢) is
introduced as follows:

Ly =o/(t) [%Ei — HT] = constant, (181)

which is defined in the null subspace {0} x R. That is, this system does not describe any dynam-
ics. Therefore, of course, ks ) and O|; ) do not exist. Map ¢ is in the same situation: all the
integral constants, which are implied by Eq. (74) under Eq. (75) given in Sect. 3.2.1 by virtue of
the same reason as in Sect. 5.1.1, are occupied by the consistency conditions for W,s and E¢s,
or equivalently fixing the embedding o (7).

5.2. A system with only second-class constraints
Let us consider the following system:

Li=4¢'¢@ - ¢4 — (") - (@) (182)

This model is an imitation of the Dirac system for spin 1/2-particles in field theory [4].
The kinematic matrix KV is

0 O
KM = : 183
Y as3)
where we used the canonical momenta: p; = —g°, p» = ¢'. There are two primary constraints
due to rank KV = 0:
¢ = pr1+ ¢~ 0,03 = pr— g 0. (184)
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The Pb. is {¢fl), gl)} = 2 and otherwise vanish. The total Hamiltonian is derived as follows:
Hy = H+ ¢,
H=(q"V+(¢"). (185)
The Dirac procedure determined all Lagrange multipliers:
('t P g (186)

Then the consistency conditions for ¢, ¢ are satisfied: ¢ ~ 0, $® ~ 0. That is, all con-
straints are classified into second-class constraints and the physical degrees of freedom of the
system are (2 x 2 — 2)/2 = 1. Lemma 2 and its proof indicate that the system has a canonical
transformation from the original coordinates to the ones such that a part of the entire canon-
ical coordinates are represented by the linear combination of the second-class constraints. In
fact, the symplectic 2-form is computed as follows:

w=dq Ndp;=dO' NdO, +dO' NdP;, (187)
where ®!, ©, Q!, and Py are defined as follows:

1 1
1. ey . (1
e = —2¢1 , @1 = —2¢2 s

V2 V2
1 1
Q1 = E(Ql + ), P = E(Pl - (]2)- (188)

Notice that the second equality in the equation of w is the strong equality, not weak equality.
(See Remark 1.) The total Hamiltonian is transformed as follows:
1 1 1 1
Hr = =(P)* + =(0")? — (0" — (@))% 189
r=3P)?+35(0) - 30 - 3@ (189)
The pullback of the total Lagrangian by o,(7) is derived as follows:
Lr =05()(©,0' + PQ' — Hr)

_ 91! 1 1\2 1 2 1 1,2 1 2
=PQ - E(Q ) — E(Pl) +§(@ )"+ 5(91) ,
Ly =POQ' — %(Ql N %(Pl)2 + constant, (190)

which is defined in the subspace 7'M lo.o X T*Mlg.p x R. Where, we abbreviated the pullback
operator o5 (¢), which is defined in Sect. 4.3.3, in the second and the last line. Remark that the
pullback of H7 by o,(¢) above is defined in the symplectic submanifold (T*M|g p x R, wo p =
dQ' A dPy). This system is Frobenius integrable as mentioned in Sect. 4.4.1. In fact, we will
show the unique solution for this system.

The first-order variation of the action integral of L is computed as follows:

8 (o5(0)I) = /ttz [-Pi - Q'60"dr + [Q' — P]sPidt + [P160']; . (191)
1
The appropriate boundary conditions are set as follows:
80" (12) =80 (1) =0. (192)
Then the variational principle leads to the following equations:
—P-0'=0,0'-P =0. (193)
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The second equation gives the explicit form for the canonical momentum P;. Therefore, Ly is
rewritten as follows:

Ly = %(Q'l)2 — %(Ql)2 + constant, (194)

which is now defined in the subspace 7'M lo.o X R. This indicates that the system is always
Frobenius integrable as mentioned in Sect. 3.1 and that two integral constants exist. In fact,
L7 is none other than describing the one-dimensional harmonic oscillator. The equation of
motion is as follows:

-0'-0'=0. (195)

This equation has the unique solution Q'(¢) = 4 exp( + it) + B exp( — it) and the boundary
condition uniquely determines the integral constant A4, B.

The fundamental maps are given as follows: «lq ) : TM|Q’Q- — T Mo p; Q'1 — P
and Oloyiy : Xo = 0'(3/00") + 0'(3/00") + (3/01) > X, = (IH7/IP1)(3/0Q") —
(0H7/30")(3/0P) + (3/dt), where Hy = (Q")?/2 + (P1)*/2 + constant; these are introduced
in a well-defined manner and invertible. The invertible map ¢ is t|q,) : M|p[t1] x M|p[t2] —
Cloy; (Q'(11), 0'(12)) = (4, B) with 4 = (Q'(t1)exp(ita) — Q' (t2)exp(it)))2isin(t2 — 1) and
B = (0 (t)exp( — ity) — Q' (11)exp( — it2))/2isin(t, — 11).

5.3. A system with first- and second-class constraints
Let us consider the following system [53]:
1 PO B UV B |

Ly=3 @'+ +4¢) + 3 (¢*—¢) + 3 (¢" +24%) (¢" +24%). (196)
This model has not only both first- and second-class constraints but also physical degrees of
freedom. The author in Ref. [53] reveals that this system is equivalent to a one-dimensional
harmonic oscillator on the ground of the extended Hamiltonian. In this section, however, we
use the total Hamiltonian formulation to reveal the dynamics of this system since the extended
Hamiltonian formulation has a series of controversies [3,54,55]. We will derive the same dynam-
ics as in Ref. [53]. The kinetic matrix K" and primary constraints are computed as follows:

0O 0 0 O
0o 2 1 -1
KW = 197
0 1 1 0 (157)
0o -1 0 1
V= p1i 0,08 = p2 = p3 + pa 0, (198)

where py =0, pr = q' + 26> + ¢* — ¢*, p3 = ¢' + ¢> + ¢, and ps = ¢* — ¢*. The rank of KV
is 2. The P.b.s of these constraints vanish. The total Hamiltonian and higher-order constraints
are derived as follows:

Hy = H + "o,
H = (03P + 5047~ ¢'ps — 36 +20)d" +24°)
ol =gV — %fﬁél) =p1— %(Pz — p3+pa) =0,
@)= 2 (610 +8") = 201 + 2= ps +p0) =0 (199)
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where ¢%s are Lagrange multipliers, and
L (1 1
o) = (", Hr) ~ ps
" @Ez) = p3 =0,

. 1
of) = (@), Hr} ~ 3Pt 9+ +q"

1
Lo = 334 4 4" ~0. (200)

The P.b.s among these constraints are {ng), <I>(21)} = 1 and otherwise vanish. That is, <I>(1), <I>§2)
and <I>§]), <I>§2) are classified into first-class constraints and second-class constraints, respectively.
The consistency condition for CI>§2) is automatically satisfied and the Lagrange multiplier ¢! re-
mains arbitrary. For d>§2), the consistency condition determines a Lagrange multiplier £ as —p4
in the weak equality. Therefore, the degrees of freedom of the system are (2 x 4 — 2 — 2 x 2)/2
= 1. Theorem 1 and its proof indicate that the system has a canonical transformation from the
original coordinates to the ones such that a part of the entire canonical coordinates is com-
posed as linear combinations of the first- and second-class constraints. In fact, the symplectic
2-form of the system is computed as follows:

w=dg Ndp;=dE' ANdV, +dE* NdV, +dO' AdO| +dQ' ANdP, (201)
where each variable is defined as follows:

gli=2g'+ %ps —¢ -4 E =g+ %pl +q,

b=y = %Pl - é(ﬁz — p3+ pa), W= @) = ps,

1 1
0= = I+d +a+qh 0= o) = 3 (P14 2= p3+ pa),

1
0''=¢—q¢" P := 5(P2 = 3 = pa). (202)

The P.b.s among these variables are {E!, W} =1, {E2, ¥,} =1, {®', 0} =1, {0", P} =1,
and otherwise vanish. Notice that the second equality in the equation of w is the strong equality,
not weak equality. (See Remark 1.) Then the total Hamiltonian is transformed as follows:
1 1
Hr = 5(1’)1)2 + E(Ql)2 + WP+ 4B U, 01) +g(W), Wy, ©1,01),  (203)
where we set

1 1
f(8', ¥n, ©') i= — (8" = 5B (=50 +4wy),

1 1 1
g(Uy, ¥,, 0!, 09)) = —E(S@l — W) + 5(3@1 -V )(O) —¥) — 5\1’2(@1 —¥).(204)

The system satisfies the Frobenius integrability condition (81) under Eq. (75) in Sect. 3.2.2.
It implies that eight integral constants exist of which the four constants are occupied by the
consistency conditions for ¥, ¥,, ®', and ©,.

There are a possible quasi-canonical embedding: 63(¢) and a possible canonical embedding:
o3(t), which are introduced in Sect. 4.3.4. These embeddings, 65(¢) and o3(¢), occupy the four
and six integral constants that are equivalent to the consistency conditions for ®!, ©, ¥, ¥,
and ©', @, ¥, W,, E!, B2, respectively.
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5.3.1.  The quasi-canonical embedding: 65(¢t). The pullback of the total Lagrangian by &3(¢)
is given as follows:

Ly = 5'3*(1) [P]Q] + \I’aga + @1@1 — HT]

d .
= = [\I/z Ez] + P Q1 — Hr + constant, (205)

which is defined in the subspace TMlppx T Mlgpx TM|ggx T*Mlz v xR. Where, we
used 65 ()W) = 0. Remark that A7 above is defined in the symplectic submanifold (7*M|g p x
T*M|zw X R, wg,p+ 0wg,v = dQ' AdPy + dE A dV,). Where, we abbreviated the pullback
operator &5 (). The effective first-order variation of the action integral of Lz is computed as
follows:

5] . .
Seftective (65 (1)) = / [P — 0']8Q"dt + [Py + Q'] 8Pidt + [V,8E + P18Q1]Z .(206)
N

The appropriate boundary conditions are set as follows:

80" (1) =80 (11) =0 (207)
and
§2%(1) = 0. (208)
Then the variational principle leads to the following equations:
—P—0'=0,
—P+0'=0. (209)

First, we can verify the following facts: that «|s): TM|Q’Q~ — TM|g,p; Q'1 — P
and Ol : O[T(T M|y o x R)] = O[T(T*Mlgp x R): X; = 0'(8/90") + 0'(3/00") +
(3/0t) — X, = (0H7/P)(3/00") — (dH7/d0Q")(3/dP) + (3/9t) are introduced in a well-
defined manner and invertible, where Hy = (Q")*/2 + (P1)*/2 + f(E!, W5, ©) + constant
i T*M|opx TM|gw x R. This Hr satisfies the Frobenius integrability condition (81) in
Sect. 3.2.2 under Eq. (75) in Sect. 3.2.1. This indicates that the system has six integral con-
stants. Second, we can also verify that the Frobenius integrable condition (74) under Eq. (75) in
Sect. 3.2.1 of Ly is satisfied. That is, the kinetic matrix restricted to TM|, 5 x TM|g z x R:

1 0 0
KYV=10 0 0 (210)
0 0 0

leads to two zero-eigenvalue vectors: ! = (0, 7%,0) and 7} = (0,0, %), where 7> and 73 are
arbitrary functions in TM|, 5 x TM|g 5 x R. ys are computed as follows: n’ ~ (Q', n*, n°),
where 7° and n® are arbitrary functions in TM|, 5 x TM|g 5 x R. Therefore, the statement
holds. This leads to the existence of six integral constants of which two constants are occu-
pied by the consistency conditions for W;s or equivalently the embedding &3(¢) without ®' and
©) since we are now in the subspace TM|, 5, x T M|z z x R. Three constants of those oth-
ers remaining are determined by the boundary conditions. In fact, we can convince ourselves
of the result by solving the equations derived from the well-posed variational principle. Equa-
tion (209) describes a one-dimensional harmonic oscillator: —Q' — Q' = 0 and the boundary
condition (207) determines all the integral constants in the solution: Q'(7) = Aexp( + it) +
Bexp( — it). For 2, we have the equation 82 = —4E'/9 +20!/9 + 5W,/9 ~ —4E'/9 and the
solution of this equation occupies one integral constant. Therefore, the invertible map ¢ is t|s, () :
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Mg g[ti] x M|g[t2] = Clsyoy: (Q'(11), E*(11). Q' (12)) = (A, B, C) with 4 = (Q'(11)expl(ity) —
Ol (ty)exp(ity))2isin(t, — 1), B = (Q'(t2)exp( — it;) — Q' (t1)exp( — it2))/2isin(t, — t1), and C =
E(11).

The remaining one integral constant is assigned for =2l = —l P =20+, ~ -+ P
this constant does not determine until a gauge fixing condition is imposed. Remark that these
equations for ' and E? are considered in the original space: the target space of the embedding

63(1).

5.3.2.  The canonical embedding: o5(t). First of all, we find an appropriate Lagrange multi-
plier ¢!; B! is static if and only if ¢! &~ —P;. The pullback of the total Lagrangian by o 3(¢) is
given as follows:

Ly = 0'3*(1) [PIQI + \DaS“ + @1@1 — HT]
= P Q'1 — Hr + constant (211)

in the subspace T M lo.o X T*M|g.p x R. Remark that Hr above is defined in the symplectic
submanifold (T*M|g p x R, wo p = d O' A dPy). Where, we abbreviated the pullback operator
05 (t). The first-order variation is computed as follows:

S(o5 () = ftz [P — 0']80"dt +[0" — Pi]sPidt + [PlaQ‘]jj (212)

1

where we used the pullback of ¢! ~ —P; by o3(¢): o5 (t)¢' = —P; + constant. Then the appro-
priate boundary conditions are set as follows:

50" (1) =80 (1) =0. (213)
Then the variational principle leads to the following equations:
-P - Q' =0,
Q' - P =0 (214)

Under this construction, we can verify the facts that «|,,;) and O|,,(,) are the same as in the case
of 65(¢) but Hr turns into Hy = (Q")*/2 + (P1)*/2 + constant in T*M| g p x R. Then this system
is Frobenius integrable as mentioned in Sect. 3.1. This indicates that two integral constants exist
which are determined by the boundary conditions. In fact, combining the equations derived
from the well-posed variational principle, we get the equation for a one-dimensional harmonic
oscillator. That is, the invertible map ¢ is t|,,1) : M|olt1] x M|g[ta] = Cloyry; (O'(11), (1)) =
(4, B) with 4 = (Q'(t))exp(it2) — O'(t)exp(it1))/2isin(t, — t;) and B = (Q'(t2)exp( — ity) —
Ol (t))exp( — it2))2isin(t> — t1).

5.4. A system with second-order time derivatives
Let us consider the following system:

1 1
Ly=—=q§— =q" 215
4= 5494~ 54 (215)
This model is a modification of the model described by L = —¢¢/2 in Ref. [2]. The authors in-
troduced it for the purpose of revealing the relations between boundary conditions and counter-

terms. Also see Ref. [37]. For this system, applying the consideration given in Sect. 2.2.2, there
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exists the counter-term W given as follows:

1.
W =344+ C9). (216)
where C(q) is an arbitrary function of ¢. Then L4 becomes as follows:
daw 1 1 aC
Ly=Li+— =" - ¢+ —4¢. 217
s=Lit—-=5() 24 T 51 (217)

This is none other than the Lagrangian for a one-dimensional harmonic oscillator. In fact, the
first-order variation of Lj:

& d aC\ . 1°
sI' = f (=G — q)8qdt + — (q + —) 8q (218)
” dt aq "

and the well-posed variational principle under the Dirichlet boundary condition §¢(#,) = §¢(¢1)
= ( lead to an equation: —§ — ¢ = 0. The solution is, of course, g(¢) = Aexp( + it) + Bexp( —
it), where A, B are integral constants that are determined by the boundary conditions.

In this section, for this trivial system, we try to apply the two different methodologies which
are briefly mentioned in Sect. 2.3, to introduce the well-defined variational principle without
any counter-term. That is, (i) the methodology introduced by Sato, Sugano, Ohta, and Kimura
[34,35], let us call it the “SSOK method”, and (ii) the methodology introduced by Pons [36],
let us call it the “Pons method”; both methodologies are based on Refs. [5,6,32,33]. The former
method is already applied in Sect. 2.3 and the latter method is explained briefly in Sect. 3.3.

5.4.1.  Theanalysis by the SSOK method. The configuration space, denoted M, in this method
is coordinated by Q1) := g and Q(») := ¢. Then the corresponding canonical momenta are given
as follows: P := 8L4/8Q(2) — (d/dl)(aL4/Q(2)) = Q(z)/2 and P® := 8L4/Q(2) = —Q(l)/2.
Therefore, the rank of the kinetic matrix K@ = §P? /9 Q(z) is zero, and there is a primary con-
straint: ¢V := P® 4 Q()/2: ~ 0. Then the total Hamiltonian is Hy = PV Q) + PP Q) —
Ly + ¢ = PDQu) + (01))?/2 + ¢V, where ¢ is a Lagrange multiplier. This Legendre
transformation is, in particular, called an Ostrogradski transformation [32,33]. The consistency
condition for ¢ generates a secondary constraint: ¢ := — PV + Q5/2: ~ 0, but it is expected
from the definition of PV [34,35]. The consistency condition for ¢* determines the Lagrange
multiplier ¢ as Qg in the weak equality. Therefore, the procedure stops here. The P.b.s between
¢ and ¢@ are {¢pV, $'} = —1 and otherwise vanish. This system has two second-class con-
straints, and this indicates that we have to use the canonical embedding o »(¢) given in Sect. 4.3.3
to introduce the well-posed variational principle.

The symplectic 2-form is computed as follows: = dQAdP? = dO'Ad®; + dQAdP, where
0 =¢@, 0, = ¢M, 0 = PV 4 Qp/2, and P = P® — Q2. The Pbis are {O!, 0} =
1, {Q, P} =1, and otherwise vanish. The original variables Q(1), Q(), PD . and Py are ex-
pressed by using the transformed variables as follows: Q) = e' + 0, Op) =0 — P, ph
= (0 — ®Y/2, and P® = (P 4+ ©)/2. Then the total Hamiltonian is transformed as fol-
lows: Hy = P*/2 + 0?2 — 20, P — (®")?/2 + 3(0®;)?/2 and is defined in the symplectic man-
ifold (T*M|g p x T*M|e x R, ®). The pullback of Hr by o2(¢) is 05 (t1)Hr = P?/2 + Q*/2 —
20 P + constant in the symplectic submanifold (7*M|g p x R, 05 (t)w = dQ A dP), and this
is a Frobenius integrable system. That is, there are two integral constants. The pullback of the
total Lagrangian is Ly := o} (1)[PQ + ©10' — Hr] = PQ — P*/2 — 0*/2 — 2@, P + constant
in the subspace T M loox T “*M]p p x R. Therefore, the first-order variation of the action in-
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tegral is given as follows:
5]

8(o3(0)]) = / [P — 0]50di + [0 — P—20,]8Pdt + [P5Q]> . (219)

141
Under the boundary conditions:

§0(12) =60(t1) =0, (220)
the well-posed variational principle §(o(¢)/) := 0 leads to the equations of motion: —P—-Q0=
0 and O — P — 20, = 0. That is, using 0 (1)® = constant, —0 — 0 = 0; this is none other
than the equation of a one-dimensional harmonic oscillator. Remark, here, that Ly is now
defined in the subspace T M lo.o x T*Mlgp x R~TM|,, xR and Frobenius integrable. In
fact, the solution is Q(f) = Aexp( + it) + Bexp( — it), and this includes the two integral con-
stants: A and B. The boundary conditions fix these constants.

Finally, the maps «, O, and ¢ are introduced as follows: k|5, : TMlpy— TMlgrp; Q — P
and Oloyry : OIT(T M|y 5 x R)] = O[T(T*Mlgp x R)]: X; = 0(3/00) + 0(3/0Q) +
(0/0t) — X, =(@Hr/0P)(0/0Q)— (0H7/0Q)(0/0P)+ (0/0t) are introduced in a
well-defined manner and invertible, where Hy = P*2 + Q%2 — 20,P + constant in
T*Mlopx TM|zy xR. 15 o) : Mlolt1] x M|g[t2] = Cloyn); (Q(11), Q(12)) = (A4, B)
with 4 = (Q(21)exp(itz) — Q(t2)exp(it1))/2isin(t, — t1) and B = (Q(s2)exp( — it1) — O(t1)exp( —
ity))2isin(t; — t1).

5.4.2.  The analysis by the Pons method. The original Lagrangian L, is represented by using
a Lagrange multiplier A as follows:

1 1
L = —qu — qu + A(x = g). (221)
Regarding A also as a position coordinate of the configuration space, the canonical momenta
are derived as follows: p = —A, y = —¢/2, and &= = 0. Therefore, the rank of the kinetic ma-

trix Kf/l) = dp;/d¢’ (where p| :=p, p» =y, p3 =7, q' :=¢q, ¢* := x, ¢° := X) is zero, and
there are three primary constraints: ¢§1) =p+Ar =0, ¢§1) =y+¢q/2:~0,and ¢§1) =R
0. The total Hamiltonian is computed as follows: Hy := ¢*/2 — Ax+¢ "qﬁf,l), where ¢%s are
Lagrange multipliers and ¢ = 1, 2, 3. The consistency conditions for ¢§,” become as follows:
¢V~ —g— 2240 0,¢" 2 r+1/2:20,and ¢\ ~ x — ¢!~ 0; there is a secondary
constraint: ¢® := A + x/2 where we used ¢' ~ x. The consistency condition for ¢ restricts
the relation between ¢? and ¢, and this determines all the multipliers as follows: ¢> ~ —¢
and ¢? &~ ¢/2. The Pb.s among the constraints are computed as follows: {q}{l), ¢§1)} =—1/2,
{qbi”, gl)} =1, {¢p?, ¢§1)} =1/2, {¢®, ¢>§1)} = 1, and otherwise vanish. This system has four
second-class constraints, and this indicates that we have to use the canonical embedding o,(¢)
given in Sect. 4.3.3 to introduce the well-posed variational principle.

The symplectic 2-form is computed as follows: w = dgAdp + dxrdy + dindrn = dO' AdO,
+ dO>AdO> + dOAdP, where O := ¢ — ¢f1), Q)= 51), O = (¢® + ¢§1))/2, Q) = gl),
Q:=ql2 — y+ n/2, and P := p + x/2. Then the total Hamiltonian is transformed as fol-
lows: Hr = Q%/2 + P*/2 — (©")%/2 in the symplectic manifold (T*M|p p x T*M|e x R, w). The
pullback of Hr by o2(7) is 05 (1) Hr = Q*/2 + P?/2 + constant in the symplectic submanifold
(T*M]gp,p x R, 05 (t)w =dQ A dP), and this is a Frobenius integrable system. That is, there
are two integral constants. The pullback of the total Lagrangianis Ly := o5 (O[PO+ 6,69 —
Hr] = PO — Q%2 — P2/2 + constant in the subspace TM|, o x T*M|gp x R. Therefore, the
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first-order variation of the action integral is given as follows:

S(a3(OI) = / 2 [P — 0]8Qdt + [0 — PSP +[PsQ]” . (222)

151

Under the boundary conditions

§0(n) =60(t) =0, (223)

the well-posed variational principle §(o5(¢)]) := 0 leads to the equations of motion, resolving
as an equation —Q — Q = 0; this is none other than the equation of a one-dimensional har-
monic oscillator. Remark, here, that Ly is now defined in the subspace T M |Q,Q x T*M|g.p x
R>~TMl,s xR and Frobenius integrable. In fact, the solution is Q(¢) = Aexp( + it) + Bexp(
— it), and this includes the two integral constants: 4 and B. The boundary conditions fix these
constants. The maps «, O, and ¢ are the same as in the previous case by just replacing Hy =
P22 + Q2 — 20 P + constant by Hy = P*/2 + Q*/2 + constant.

6. Summary
In this paper, we constructed a methodology to make the variational principle well-posed in
degenerate point particle systems.

When we applied the variational principle, it was generically possible to consider the first-
order variation with respect not only to configurations but also to higher-order time derivative
variables. However, when taking into account the compatibility of Lagrange mechanics with
Newtonian dynamics, the possible variables for the variation were restricted only to the con-
figurations of a given system. This indicated that position-fixing boundary conditions were
necessary for the variational principle to lead to Euler—Lagrange equations even if containing
higher-order time derivative terms. In addition, Hamilton—Dirac analysis revealed the stability
of higher-order time derivative systems being compatible with Newtonian dynamics: there is
no Ostrogradski’s instability.

On the ground of this framework, we investigated the Frobenius integrability conditions for
each Lagrange and Hamilton formulation. In particular, we introduced the three fundamental
maps: t, k, and 9. Map ¢ connected the integral constants in the solutions to the boundary
conditions for the variational principle. Maps « and £ described the correspondence between
Lagrange and Hamilton formulation. Armed with these ingredients, we represented the diffi-
culties of making the variational principle well-posed and formulated a set of problems. To
resolve these problems, we needed to construct a subspace of the original phase space in which
the dynamics lives, the symplectic structure holds, and all the maps ¢, «, and O restricted in
this subspace have to be well-defined and invertible. We achieved the purpose by introducing a
set of embeddings, canonical and quasi-canonical embeddings, that extract subspaces diffeo-
morphic to the constraint subspace. A novel theorem with its explicit proof, which states the
existence of constraint coordinates, played a fundamental role in this consideration. Applying
these embeddings, we resolved the problems. Finally, we applied the methodology to examples.

Let us summarize the methodology in the following steps. One can use the following method-
ology:

(1). For a given system, just performing Hamilton—Dirac analysis, reveal the constraint struc-
ture.
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Table 1. Embeddings for each type of system. “Ist-class system” means a system with Ist-class con-
straint(s). Others are defined in the same manner.

Gauge fixing Ist-class system 2nd-class system 1st- and 2nd-class system
Yes oi(t) - o3(t)
No (or no gauge d.o.f) a1(t) oa(t) 63(1)

(2). Construct constraint coordinates referring to the proof of Theorem 1 (or Lemma I and/or
2). Then, computing the symplectic 2-form, find a new canonical coordinate system which is indi-
cated by Theorem 1 (or Lemma I andlor 2). Then select a suitable embedding (see Table 1).

(3). Consider the pullback of the Legendre transformation of the total Hamiltonian by the
selected embedding: the pullback of the total Lagrangian by the selected embedding.

-(i) If one uses o.(t) (1t =1, 2, 3), take the first-order variation of its action integral, and
just fix the emerged configurations in the boundary term at both end-points. Then the variational
principle becomes well-posed.

-(ii) If one uses 6:(t)(T = 1, 3), take the first-order variation of its action integral, under the
assumption that the pullback of primary first-class constraint coordinates by 6;(t) is set to be zero
in advance. Then fix the configurations for the physical degrees of freedom at both end-points and
the configurations which correspond to higher-order (more than secondary) first-class constraint
coordinates at either end-point. Then the variational principle becomes well-posed.

Remark that, in the case of (3)-(ii), we cannot fix the configurations corresponding to primary
first-class constraint coordinates on the boundaries; otherwise the boundary conditions become
over-imposing. To remove this difficulty, we have to fix the gauge degrees of freedom.

In a previous work [37], which is established based only on the compatibility of the first-order
variation of the action integral to the equations of motion, the well-posed variational princi-
ple required us to fix all configurations on the boundaries that correspond only to the physical
degrees of freedom, regardless of the presence of first-class constraints. However, the present
work indicates that configurations corresponding to higher-order (more than secondary) first-
class constraints must also be fixed on either end-point. This represents a difference from the
previous work and arises from the fact that the previous work did not consider how to deter-
mine the integral constants, which are implied by the Frobenius integrability, through boundary
conditions, as is assumed in the present work.

For future works, mathematical properties of the three fundamental maps ¢, ¥, and O should
be investigated. In particular, revealing the detailed features of map ¢ is important to get a
deeper understanding of boundary conditions. The same applies for the canonical embeddings:
o.(#) and the quasi-canonical embeddings: 6;(¢). In particular, since gauge transformations
generically give rise to some surface terms [51,52,56-59], this would affect the determination
of the boundary conditions; the quasi-canonical embbedings would be restricted. From the as-
pects of practical applications for modern physics, the methodology should be extended to field
theories. In particular, applications for gravitation are important. For instance, gravitational
phenomena for which we cannot neglect boundaries such as black hole physics need to consider
appropriate boundary conditions for introducing some counter-term including the so-called
Gibbons-Hawking—York term [11-14,60-73], as mentioned also in the previous work [37]. Fur-
ther, introducing correct counter-terms would play a crucial role in the absence of acausality in
higher-order derivative systems as mentioned briefly in Sect. 2.4, anti-de Sitter/conformal field
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theory (AdS/CFT) correspondence [74], and Chern—Simons theory [75]. We would expect that
the methodology gives a new perspective on modern physics.
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