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Abstract: Quantum groups occupy a significant position in both mathematics and physics, contribut-

ing to progress in these fields. It is interesting to obtain new quantum groups by the quantization

of Lie bialgebras. In this paper, the quantization of the rank two Heisenberg–Virasoro algebra

by Drinfel’d twists is presented, Lie bialgebra structures of which have been investigated by the

authors recently.
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1. Introduction

Quantum groups were first independently introduced by Drinfel’d [1,2] and Jimbo [3]
around 1985 with the aim of constructing solutions to the quantum Yang–Baxter equations.
They have been identified by Drinfel’d and Jimbo with a certain class of Hopf algebras.
In Hopf algebra or quantum group theory, there exist two conventional approaches for
generating new bialgebras from existing ones. One approach involves twisting the product
by a 2-cocycle while maintaining the coproduct unchanged. Alternatively, one can twist
the coproduct utilizing a Drinfel’d twist element while preserving the product. The process
of quantizing Lie bialgebras serves as a crucial approach in generating new quantum
groups (cf. [2,4], etc.). Since quantum groups have been discovered to possess numerous
applications across diverse fields, encompassing statistical physics, symplectic geometry,
knot theory, and even modular representations of reductive algebraic groups, quantiza-
tions of Lie bialgebras have received considerable attention in many studies (e.g., [5–22]).
In [5], the infinite dimensional Witt algebra with characteristic 0 was explicitly quantized
through the utilization of the twist initially discovered by Giaquinto and Zhang in [6].
Afterwards, quantizations of the generalized Witt algebra with characteristic 0 were pro-
vided in [7], whereas its Lie bialgebra structures were determined in [8]. The quantizations
of generalized Kac–Moody algebras were obtained by Etingof and Kazhdan (see [9,10]).
The quantizations of generalized Virasoro-like-type, Block-type, W-algebra W(2, 2) and
Schroding–Virasoro algebra were given in [11–14], while Lie bialgebra structures of these
algebras were considered in [15–18], respectively. Recently, the authors proved in [23] that
every Lie bialgebra structure on the rank two Heisenberg–Virasoro algebra is triangular
coboundary. However its quantum group structure is not known, which is what our paper
shall focus on.

The rank two Heisenberg–Virasoro algebra L is an infinite-dimensional Lie algebra
with a C-basis

{
tα, Eα | α ∈ Z2\ {0}

}
and the following Lie brackets:

[
tα, Eβ

]
= det

(
β

α

)
tα+β,

[
Eα, Eβ

]
= det

(
β

α

)
Eα+β,

[
tα, tβ

]
= 0, (1)
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where α = (α1, α2), β = (β1, β2) ∈ Z2\ {0}, det

(
β

α

)
= β1α2 − α1β2, and 0 = (0, 0).

In [24], the derivations, automorphism group, and central extension of L were thoroughly
investigated. Furthermore, the irreducibility of universal Whittaker modules related to L
was conclusively determined in [25]. Lastly, authors in [26] delved into the Verma module
structure associated with L, offering a comprehensive characterization.

We present two degree derivations D1 and D2 on L, i.e.,

[Di, tα] = αitα, [Di, Eα] = αiEα, [D1, D2] = 0, for i = 1, 2. (2)

And subsequently, we arrive at our Lie algebra L̃ = L ⊕CD1 ⊕CD2. For convenience,
we still refer to it as the rank two Heisenberg–Virasoro algebra. In the present paper, we
shall consider the quantization of the rank two Heisenberg–Virasoro algebra L̃. We use
the general quantization method by Drinfel’d twists (cf. [6,27]) to quantize explicitly the
Lie algebra L̃. Actually, the entirety of this process relies solely on the construction of
Drinfel’d twists. The main results of this article are Theorems 1 and 2, which provide the
quantizations of the rank two Heisenberg–Virasoro algebra L̃. Our findings have broadened
the category of illustrative instances related to non-commutative and non-cocommutative
Hopf algebras.

In this paper, we use the notations N, Z+, Z and C to represent the sets of nonnegative
integers, positive integers, integers, and complex numbers, respectively.

2. Preliminaries

In this section, we first revisit several fundamental definitions and outcomes pertaining
to quantization techniques, which will be used in subsequent discussions.

Let A denote a unitary algebra over C. For an arbitrary element x of A, λ ∈ C, n ∈ N, define

x<n>
λ := (x + λ)(x + λ + 1) · · · (x + λ + n − 1) (3)

x
[n]
λ := (x + λ)(x + λ − 1) · · · (x + λ − n + 1) (4)

where x<0>
λ = x

[0]
λ = 1. For convenience, we use x<n> and x[n] to represent x<n>

0

and x
[n]
0 , respectively.

The following result and definition belongs to [2,5,6].

Lemma 1 ([5,6]). Let x be an arbitrary element of the unitary algebra A over C. For given λ, ρ ∈ C

and m, n, l ∈ Z+, the following equations hold.

x<m+n>
λ = x<m>

λ x<n>
λ+m, x

[m+n]
λ = x

[m]
λ x

[n]
λ−m, x

[m]
λ = x<m>

λ−m+1, (5)

∑
m+n=l

(−1)n

m!n!
x
[m]
λ x<n>

ρ =

(
λ − ρ

l

)
=

(λ − ρ)(λ − ρ − 1) · · · (λ − ρ − l + 1)

l!
(6)

∑
m+n=l

(−1)n

m!n!
x
[m]
λ x

[n]
ρ−m =

(
λ − ρ + l − 1

l

)
=

(λ − ρ)(λ − ρ + 1) · · · (λ − ρ + l − 1)

l!
(7)

Definition 1 ([2]). Let (W, σ, τ, ∆0, ε0, S0) be a Hopf algebra over a commutative ring. F is called
a Drinfel’d twist on W, if it is an invertible element of W ⊗ W such that

(F⊗ 1)(∆0 ⊗ Id)(F) = (1 ⊗ F)(Id ⊗ ∆0)(F) (8)

(ε0 ⊗ Id)(F) = 1 ⊗ 1 = (Id ⊗ ε0)(F) (9)

The well-known results mentioned below come from [2,4,27].
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Lemma 2 ([2,4,27]). Let (W, σ, τ, ∆0, ε0, S0) be a Hopf algebra over a commutative ring, F a
Drinfel’d twist of W. Then

(1) f = σ(Id ⊗ S0)(F) is an invertible element of W ⊗ W with f−1 = σ(S0 ⊗ Id)(F−1).
(2) the algebra (W, σ, τ, ∆, ε, S) is a new Hopf algebra, that is referred to as the twisting

of W by the Drinfel’d twist F, if we remains the counit unchanged (i.e., ε = ε0) and de-
fine ∆ : W → W ⊗ W , S : W → W by

∆(h) = F∆0(h)F
−1, S(h) = f S0(h) f−1, ∀ h ∈ W. (10)

3. The Main Results

Let (A(L̃), σ, τ, ∆0, ε0, S0) denote the standard Hopf algebra, which is characterized by
the specified definitions of the coproduct, the antipode, and the counit, as outlined below.

∆0(tα) = tα ⊗ 1 + 1 ⊗ tα, ∆0(Eα) = Eα ⊗ 1 + 1 ⊗ Eα, ∆0(Di) = Di ⊗ 1 + 1 ⊗ Di, (11)

S0(tα) = −tα, S0(Eα) = −Eα, S0(Di) = −Di, ε0(tα) = ε0(Eα) = ε0(Di) = 0, (12)

for α ∈ Z2\ {0}, i = 1, 2.
Let A(L̃) Jx K denote an associative algebra over C, where A(L̃) Jx K consists of formal

power series with coefficients belonging to A(L̃). Then, the Hopf algebra structure of
A(L̃) Jx K is naturally induced from (A(L̃), σ, τ, ∆0, ε0, S0). For convenience, we also denote
it by (A(L̃) Jx K, σ, τ, ∆0, ε0, S0).

The key findings of this paper are summarized in the following two theorems, which
give the quantizations of A(L̃) by the Drinfel’d twist F defined in (21).

Theorem 1. Let L̃ be the rank two Heisenberg–Virasoro algebra. For any α = (α1, α2) ∈
Z2\ {0}, Eα ∈ L̃, we choose H = 1

µ (η1D1 + η2D2) with µ := η1α1+η2α2 ̸= 0 and η1, η2 ∈ C to

satisfy [H, Eα] = Eα. Then there exists a non-commutative and non-cocommutative Hopf algebra
structure (A(L̃) Jx K, σ, τ, ∆, ε, S) on A(L̃) Jx K over CJx K with A(L̃) Jx K/xA(L̃) Jx K ∼= A(L̃),
which preserves the product and counit of A(L̃) Jx K, while the deformed coproduct and antipode are
defined as follows.

∆(Eβ) = Eβ ⊗ (1 − Eαx)

η

µ +
∞

∑
s=0

(−1)sbs H<s>⊗(1 − Eαx)−sEβ+sαxs,

∆(tβ) = tβ ⊗ (1 − Eαx)

η

µ +
∞

∑
s=0

(−1)sbs H<s>⊗(1 − Eαx)−stβ+sαxs,

∆(Dj) = Dj ⊗ 1 + 1 ⊗ Dj + αj H
<1> ⊗ (1 − Eαx)−1Eαx,

S(Eβ) = −(1 − Eαx)
−

η

µ
∞

∑
s=0

bsEβ+sαH<s>
1 xs,

S(tβ) = −(1 − Eαx)
−

η

µ
∞

∑
s=0

bstβ+sαH<s>
1 xs,

S(Dj) = αjH(1 − Eαx)−1(Eαx − E2
αx2)− Dj,

where j = 1, 2, for any β = (β1, β2) ∈ Z2\ {0}, we denote η = η1β1 + η2β2, bs =
1
s!(β1α2 − β2α1)

s,
b0 = 1.

For the sake of simplicity, we adopt the same notations as those utilized in Theorem 1
for the subsequent theorem.

Theorem 2. Let L̃ be the rank two Heisenberg–Virasoro algebra. For any α = (α1, α2) ∈
Z2\ {0}, tα ∈ L̃, we choose H = 1

µ (η1D1 + η2D2) with µ := η1α1 +η2α2 ̸= 0 and η1, η2 ∈ C to
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satisfy [H, tα] = tα. Then there exists another non-commutative and non-cocommutative Hopf alge-
bra structure (A(L̃)Jx K, σ, τ, ∆, ε, S) on A(L̃)Jx K over CJx K with A(L̃)Jx K/xA(L̃)Jx K ∼= A(L̃),
which preserves the product and counit of A(L̃) Jx K, while the deformed coproduct and antipode are
defined as follows.

∆(Eβ) = Eβ ⊗ (1 − tαx)
η
µ + 1 ⊗ Eβ − b1H<1> ⊗ (1 − tαx)−1tβ+αx,

∆(tβ) = tβ ⊗ (1 − tαx)
η
µ + 1 ⊗ tβ,

∆(Dj) = Dj ⊗ 1 + 1 ⊗ Dj + αj H
<1> ⊗ (1 − tαx)−1tαx,

S(Eβ) = −(1 − tαx)
−

η
µ (Eβ + b1tβ+α H<1>

1 x),

S(tβ) = −(1 − tαx)
−

η
µ tβ,

S(Dj) = αjH(1 − tαx)−1(tαx − t2
αx2)− Dj,

where j = 1, 2, b1 = β1α2 − β2α1.

4. Proof of the Main Results

The proof of Theorems 1 and 2 shall be divided into a series of lemmas. The formulas
in the following lemma will be used later in the quantizations of the rank two Heisenberg–
Virasoro algebra.

Lemma 3. For any α = (α1, α2) ∈ Z2\ {0}, we choose H = 1
µ (η1D1 + η2D2) and G = Eα or

G = tα with µ := η1α1 + η2α2 ̸= 0 and η1, η2 ∈ C such that [H, G] = G. For any
β = (β1, β2) ∈ Z2\ {0}, denote η = η1β1 + η2β2. Then the following equations hold in A(L̃) for
λ ∈ C, n, l ∈ Z+, γ = (γ1, γ2) ∈ Z2\ {0}.

EβH
[n]
λ = H

[n]

λ−
η
µ

Eβ, tβH
[n]
λ = H

[n]

λ−
η
µ

tβ, EβH<n>
λ = H<n>

λ−
η
µ

Eβ, tβ H<n>
λ = H<n>

λ−
η
µ

tβ, (13)

Gl H
[n]
λ = H

[n]
λ−lG

l , Gl H<n>
λ = H<n>

λ−l Gl , (14)

Dl
j H

[n]
λ = H

[n]
λ Dl

j , Dl
j H

<n>
λ = H<n>

λ Dl
j , (15)

EβEn
γ =

n

∑
k=0

(−1)k
(

n
k

)
(β1γ2 − β2γ1)

kEn−k
γ Eβ+kγ, (16)

Eβtn
γ = tn

γEβ − n(β1γ2 − β2γ1)t
n−1
γ tβ+γ, (17)

tβEn
γ =

n

∑
k=0

(−1)k
(

n
k

)
(β1γ2 − β2γ1)

kEn−k
γ tβ+kγ (18)

DjE
n
γ = nγjE

n
γ + En

γDj, Djt
n
γ = nγjt

n
γ + tn

γDj, j = 1, 2. (19)

Proof. For any α = (α1, α2) ∈ Z2\ {0}, we choose µ := η1α1 + η2α2 ̸= 0 with η1, η2 ∈ C.
Denote H = 1

µ (η1D1 + η2D2) and G = Eα or G = tα. Then by (2), it is obvious that

[H, G] = G.

For any β = (β1, β2) ∈ Z2\ {0}, we denote η = η1β1 + η2β2. Using (2), we have

[H, Eβ] =
η

µ
Eβ, [H, tβ] =

η

µ
tβ,

then
Eβ H = HEβ −

η

µ
Eβ, tβH = Htβ −

η

µ
tβ.
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Applying (3) and (4), we obtain

Eβ H
[1]
λ = Eβ(H + λ) = (H − η

µ + λ)Eβ = H
[1]

λ−
η
µ

Eβ,

tβ H
[1]
λ = tβ(H + λ) = (H − η

µ + λ)tβ = H
[1]

λ−
η
µ

tβ,

Eβ H<1>
λ = Eβ(H + λ) = (H − η

µ + λ)Eβ = H<1>
λ−

η
µ

Eβ,

tβ H<1>
λ = tβ(H + λ) = (H − η

µ + λ)tβ = H<1>
λ−

η
µ

tβ,

which shows that the case n = 1 of (13) is true. Suppose that (13) is true for n. Using (5), we
can derive

Eβ H
[n+1]
λ = Eβ H

[n]
λ H

[1]
λ−n = H

[n]

λ−
η
µ

EβH
[1]
λ−n = H

[n]

λ−
η
µ

H
[1]

λ−n−
η
µ

Eβ = H
[n+1]

λ−
η
µ

Eβ,

tβ H
[n+1]
λ = tβ H

[n]
λ H

[1]
λ−n = H

[n]

λ−
η
µ

tβH
[1]
λ−n = H

[n]

λ−
η
µ

H
[1]

λ−n−
η
µ

tβ = H
[n+1]

λ−
η
µ

tβ,

Eβ H<n+1>
λ = EβH<n>

λ H<1>
λ+n = H<n>

λ−
η
µ

Eβ H<1>
λ+n = H<n>

λ−
η
µ

H<1>
λ+n−

η
µ

Eβ = H<n+1>
λ−

η
µ

Eβ,

tβ H<n+1>
λ = tβH<n>

λ H<1>
λ+n = H<n>

λ−
η
µ

tβ H<1>
λ+n = H<n>

λ−
η
µ

H<1>
λ+n−

η
µ

tβ = H<n+1>
λ−

η
µ

tβ.

Thus (13) follows.
From (7), one has

Eα H
[n]
λ = H

[n]
λ−1Eα, tα H

[n]
λ = H

[n]
λ−1tα,

Eα H<n>
λ = H<n>

λ−1 Eα, tα H<n>
λ = H<n>

λ−1 tα.

So (14) holds for l = 1. Suppose (14) holds for l. Then we obtain

El+1
α H

[n]
λ = EαEl

αH
[n]
λ = EαH

[n]
λ−lE

l
α = H

[n]
λ−(l+1)

El+1
α ,

tl+1
α H

[n]
λ = tαtl

αH
[n]
λ = EαH

[n]
λ−lt

l
α = H

[n]
λ−(l+1)

tl+1
α ,

El+1
α H<n>

λ = EαEl
αH<n>

λ = Eα H<n>
λ−l El

α = H<n>
λ−(l+1)

El+1
α ,

tl+1
α H<n>

λ = tαtl
αH<n>

λ = tα H<n>
λ−l tl

α = H<n>
λ−(l+1)

tl+1
α .

Hence, (14) holds for all l.
(15) follows from [Dj, H] = 0 for j = 1, 2.
For (16), we first prove the following equation by induction on n.

EβEn
γ =

n

∑
k=0

(−1)k
(

n
k

)
En−k

γ (ad Eγ)
k(Eβ) (20)

Because EβEγ = EγEβ − [Eγ, Eβ], it is clear that (20) is true for n = 1. Suppose that (20) is
true for n, then

EβEn+1
γ =

n

∑
k=0

(−1)k
(

n
k

)
En−k

γ (ad Eγ)
k(Eβ)Eγ

=
n

∑
k=0

(−1)k
(

n
k

)
En−k

γ

[
−(ad Eγ)

k+1(Eβ) + Eγ(ad Eγ)
k(Eβ)

]

=
n

∑
k=0

(−1)k+1
(

n
k

)
En−k

γ (ad Eγ)
k+1(Eβ) +

n

∑
k=0

(−1)k
(

n
k

)
En+1−k

γ (ad Eγ)
k(Eβ)

=
n+1

∑
k=1

(−1)k
(

n
k − 1

)
En+1−k

γ (ad Eγ)
k(Eβ) +

n

∑
k=0

(−1)k
(

n
k

)
En+1−k

γ (ad Eγ)
k(Eβ)

=
n

∑
k=1

(−1)k
[(

n
k − 1

)
+

(
n
k

)]
En+1−k

γ (ad Eγ)
k(Eβ) + (−1)n+1(ad Eγ)

n+1(Eβ)

+En+1
γ Eβ

=
n+1

∑
k=0

(−1)k
(

n + 1
k

)
En+1−k

γ (ad Eγ)
k(Eβ).
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Thus, (20) holds for all n. Furthermore, the following equation holds.

(ad Eγ)
k(Eβ) = (β1γ2 − β2γ1)

kEβ+kγ.

Hence, (16) follows. We can similarly obtain (18) by induction. For (17), we have

Eβtγ = tγEβ − [tγ, Eβ] = tγEβ − (β1γ2 − β2γ1)tβ+γ.

So (17) is true for n = 1. Suppose that (17) is true for n, then

Eβtn+1
γ = tn

γEβtγ − n(β1γ2 − β2γ1)t
n
γtβ+γ

= tn+1
γ Eβ − (n + 1)(β1γ2 − β2γ1)t

n
γtβ+γ.

Hence, (17) holds for all n = 1. Noting that

DjX = γjX + XDj for X = Eγ or X = tγ, j = 1, 2,

which imply the case n = 1 of (19). Suppose all equations of (19) hold for n. Then

DjX
n+1 = nγjX

n+1 + XnDjX

= (n + 1)γjX
n+1 + Xn+1Dj.

Thus, (19) follows. □
For the rank two Heisenberg–Virasoro algebra L̃, in order to describe a quantiza-

tion of A(L̃) by a Drinfel’d twist F over A(L̃) Jx K, we must explicitly construct such a
Drinfel’d twist.

For any α = (α1, α2) ∈ Z2\ {0}, we choose H = 1
µ (η1D1 + η2D2) and G = Eα or

G = tα with µ := η1α1 + η2α2 ̸= 0 and η1, η2 ∈ C such that [H, G] = G. For any λ ∈ C,
we set

Fλ =
∞

∑
k=0

(−1)k

k!
H

[k]
λ ⊗ Gkxk , Fλ =

∞

∑
k=0

1

k!
H<k>

λ ⊗ Gkxk , (21)

Uλ = σ · (S0 ⊗ Id)(Fλ), Vλ = σ · (Id ⊗ S0)(Fλ). (22)

For convenience, write H<k> = H<k>
0 , H[k] = H

[k]
0 , F = F0, F = F0, U = U0,V = V0.

Since S0(H<k>
λ ) = (−1)k H

[k]
−λ and S0(G

k) = (−1)kGk, we obtain

Uλ =
∞

∑
k=0

(−1)k

k!
H

[k]
−λGkxk , Vλ =

∞

∑
k=0

1

k!
H

[k]
λ Gkxk . (23)

Lemma 4. Whether G = Eα or G = tα, the following equations hold for any λ, ρ ∈ C.

FλFρ = 1 ⊗ (1 − Gx)λ−ρ, VλUρ = (1 − Gx)−(λ+ρ).

Therefore the elements Fλ, Fλ, Uλ, Vλ are invertible and F−1
λ = Fλ, U−1

λ = V−λ. In
particular, F−1 = F, U−1 = V.

Proof. Using (6) and (21), we deduce

FλFρ =

(
∞

∑
k=0

(−1)k

k!
H

[k]
λ ⊗ Gkxk

)
·

(
∞

∑
s=0

1

s!
H<s>

ρ ⊗ Gsxs

)

=
∞

∑
k, s=0

(−1)k

k!s!
H

[k]
λ H<s>

ρ ⊗ Gk+sxk+s

=
∞

∑
t=0

(−1)t

(
∑

k+s=t

(−1)s

k!s!
H

[k]
λ H<s>

ρ

)
⊗ Gtxt

=
∞

∑
t=0

(−1)t
(

λ − ρ

t

)
⊗ Gtxt

= 1 ⊗ (1 − Gx)λ−ρ.
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Using (7), (14) and (23), one has

VλUρ =

(
∞

∑
k=0

1

k!
H

[k]
λ Gkxk

)
·

(
∞

∑
s=0

(−1)s

s!
H

[s]
−ρGsxs

)

=
∞

∑
k, s=0

(−1)s

k!s!
H

[k]
λ H

[s]
−ρ−kGk+sxk+s

=
∞

∑
t=0

(
∑

k+s=t

(−1)s

k!s!
H

[k]
λ H

[s]
−ρ−k

)
Gk+sxk+s

=
∞

∑
t=0

(
λ + ρ + t − 1
t

)
Gtxt

= (1 − Gx)−(λ+ρ).

Hence, Lemma 4 follows. □

The formula in Lemma 5 will be used to prove that F defined in (21) is a Drinfel’d
twist in Lemma 6.

Lemma 5. For any positive integer n and λ ∈ C, one can write

∆0(H[n]) =
n

∑
k=0

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ .

In particular, one has ∆0(H[n]) =
n

∑
k=0

(
n
k

)
H[k] ⊗ H[n−k].

Proof. We will use induction on n. Obviously, it is true for n = 1, since ∆0(H) =
H ⊗ 1 + 1 ⊗ H. Suppose it holds for n. Then we can deduce

∆0(H[n+1]) = ∆0(H[n])∆0(H − n)

=

[
n

∑
k=0

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ

]
[(H − λ − n)⊗ 1 + 1 ⊗ (H + λ − n) + n(1 ⊗ 1)]

=

[
n−1

∑
k=1

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ

]
[(H − λ − n)⊗ 1 + 1 ⊗ (H + λ − n)] + X

[n]
−λ ⊗ (H + λ − n)

+n

[
n

∑
k=0

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ

]
+
(

1 ⊗ H
[n+1]
λ + H

[n+1]
−λ ⊗ 1

)
+ (H − λ − n)⊗ H

[n]
λ

= 1 ⊗ H
[n+1]
λ + H

[n+1]
−λ ⊗ 1 + n

n−1

∑
k=1

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ + (H − λ)⊗ H

[n]
λ

+X
[n]
−λ ⊗ (H + λ) +

n−1

∑
k=1

(
n
k

)
H

[k+1]
−λ ⊗ H

[n−k]
λ +

n−1

∑
k=1

(k − n)

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ

+
n−1

∑
k=1

(
n
k

)
H

[k]
−λ ⊗ H

[n−k+1]
λ −

n−1

∑
k=1

k

(
n
k

)
H

[k]
−λ ⊗ H

[n−k]
λ

= 1 ⊗ X
[n+1]
λ + X

[n+1]
−λ ⊗ 1 +

[
n−1

∑
k=1

(
n
k

)
H

[k+1]
−λ ⊗ H

[n−k]
λ + (H − λ)⊗ H

[n]
λ

]

+

[
n−1

∑
k=1

(
n
k

)
H

[k]
−λ ⊗ H

[n−k+1]
λ + H

[n]
−λ ⊗ (H + λ)

]

= 1 ⊗ H
[n+1]
λ + H

[n+1]
−λ ⊗ 1 +

n

∑
k=1

[(
n
k − 1

)
+

(
n
k

)]
H

[k]
−λ ⊗ H

[n−k+1]
λ

=
n+1

∑
k=0

(
n + 1
k

)
H

[k]
−λ ⊗ H

[n+1−k]
λ .

Thus, the lemma follows. □
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The following lemma shows that F defined in (21) is a Drinfel’d twist.

Lemma 6. For H = 1
µ (η1D1 + η2D2) with α = (α1, α2) ∈ Z2\ {0} and µ = η1α1+η2α2 ̸=

0 (ηi ∈ C), F =
∞

∑
k=0

(−1)k

k!
H[k] ⊗ Gkxk is a Drinfel’d twist on A(L̃) Jx K, i.e., F satisfies the

following equalities, no matter whether G = Eα or G = tα.

(F⊗ 1)(∆0 ⊗ Id)(F) = (1 ⊗ F)(Id ⊗ ∆0)(F),(ε0 ⊗ Id)(F) = 1 ⊗ 1 = (Id ⊗ ε0)(F).

Proof. Using Lemma 5, (5) and (14), one obtains

(F⊗ 1)(∆0 ⊗ Id)(F)

=

[
∞

∑
k=0

(−1)k

k!
H[k] ⊗ Gkxk ⊗ 1

]
(∆0 ⊗ Id)

[
∞

∑
s=0

(−1)s

s!
H[s] ⊗ Gsxs

]

=

[
∞

∑
k=0

(−1)k

k!
H[k] ⊗ Gkxk ⊗ 1

]
·

[
∞

∑
s=0

(−1)s

s!

s

∑
t=0

(
s
t

)
H

[t]
−k ⊗ H

[s−t]
k ⊗ Gsxs

]

=
∞

∑
k, s=0

(−1)k+s

k!s!
xk+s

[
s

∑
t=0

(
s
t

)
H[k]H

[t]
−k ⊗ Gk H

[s−t]
k ⊗ Gs

]

=
∞

∑
k, s=0

(−1)k+s

k!s!
xk+s

[
s

∑
t=0

(
s
t

)
H[k+t] ⊗ H[s−t]Gk ⊗ Gs

]
,

and,

(1 ⊗ F)(Id ⊗ ∆0)(F)

=

[
∞

∑
m=0

(−1)m

m!
xm ⊗ H[m] ⊗ Gm

]
·

[
∞

∑
n=0

(−1)n

n!
xn H[n] ⊗

n

∑
l=0

(
n
l

)
Gl ⊗ Gn−l

]

=
∞

∑
m, n=0

(−1)m+n

m!n!
xm+n

[
n

∑
l=0

(
n
l

)
H[n] ⊗ H[m]Gl ⊗ Gm+n−l

]
.

It suffices to establish the validity of the following equality for any fixed p ∈ Z.

∞

∑
k+s=p

1

k!s!
xk+s

[
s

∑
t=0

(
s
t

)
H[k+t] ⊗ H[s−t]Gk ⊗ Gs

]

=
∞

∑
m+n=p

1

m!n!
xm+n

[
n

∑
l=0

(
n
l

)
H[n] ⊗ H[m]Gl ⊗ Gm+n−l

]

Fixing m, n, l such that m + n = p, 0 ≤ l ≤ n. Set k = l, k + t = n. Then s = p − l,
s − t = m. It is obvious that the coefficients of H[n] ⊗ H[m]Gl ⊗ Gp−l in both sides are equal.

The second equality follows from that

(ε0 ⊗ Id)(F) = (ε0 ⊗ Id)

[
1 ⊗ 1 +

∞

∑
k=1

(−1)k

k!
H[k] ⊗ Gkxk

]

= (ε0 ⊗ Id)(1 ⊗ 1)= 1 ⊗ 1,

and

(Id ⊗ ε0)(F) = (Id ⊗ ε0)

[
1 ⊗ 1 +

∞

∑
k=1

(−1)k

k!
H[k] ⊗ Gkxk

]

= (Id ⊗ ε0)(1 ⊗ 1)= 1 ⊗ 1.

Hence, the lemma is proved. □
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By Lemma 6, we can carry out the process of twisting the standard Hopf structure
(A(L̃) Jx K, σ, τ, ∆0, ε0, S0) by the Drinfel’d twist F.

Lemma 7. If G = Eα with α = (α1, α2) ∈ Z2\ {0} and µ = η1α1 + η2α2 ̸= 0(ηi ∈ C), then for
any λ ∈ C, β = (β1, β2) ∈ Z2\ {0}, denote η = η1β1 + η2β2, we have the following identities:

(Eβ ⊗ 1)Fλ = Fλ−
η
µ
(Eβ ⊗ 1), (tβ ⊗ 1)Fλ = Fλ−

η
µ
(tβ ⊗ 1), (24)

(1 ⊗ Eβ)Fλ =
∞

∑
s=0

(−1)sbsFλ+s

(
H<s>

λ ⊗ Eβ+sαxs
)
, (25)

(1 ⊗ tβ)Fλ =
∞

∑
s=0

(−1)sbsFλ+s

(
H<s>

λ ⊗ tβ+sαxs
)
, (26)

EβUλ = U
λ+

η

µ

∞

∑
s=0

bsEβ+sα H<s>
1−λ xs, tβUλ = U

λ+
η

µ

∞

∑
s=0

bstβ+sαH<s>
1−λ xs, (27)

DjUλ = −αj H
[1]
−λUλ+1Eαx + UλDj, (Dj ⊗ 1)Fλ = Fλ(Dj ⊗ 1), (28)

(1 ⊗ Dj)Fλ = Fλ+1(H<1>
λ ⊗ αjEαx) + Fλ(1 ⊗ Dj), (29)

EαUλ = Uλ+1Eα, tαUλ = Uλ+1tα, Vλ H
[1]
−λ = H

[1]
−λVλ − H

[1]
λ Vλ−1Eαx, (30)

where j = 1, 2, and bs =
1
s! (β1α2 − β2α1)

s, s ∈ N.

Proof. For (24), using (13), we can deduce

(Eβ ⊗ 1)Fλ =
∞

∑
k=0

1

k!
Eβ H<k>

λ ⊗ Gkxk=
∞

∑
k=0

1

k!
H<k>

λ−
η

µ

Eβ ⊗ Gkxk

=




∞

∑
k=0

1

k!
H<k>

λ−
η

µ

⊗ Gkxk


(Eβ ⊗ 1)= F

λ−
η

µ

(Eβ ⊗ 1),

(tβ ⊗ 1)Fλ =
∞

∑
k=0

1

k!
tβ H<k>

λ ⊗ Gkxk=
∞

∑
k=0

1

k!
H<k>

λ−
η

µ

tβ ⊗ Gkxk

=




∞

∑
k=0

1

k!
H<k>

λ−
η

µ

⊗ Gkxk


(tβ ⊗ 1)= F

λ−
η

µ

(tβ ⊗ 1).

For (25), using (5) and (16), we obtain

(1 ⊗ Eβ)Fλ =
∞

∑
k=0

1

k!
H<k>

λ ⊗ EβGkxk

=
∞

∑
k=0

1

k!
H<k>

λ ⊗

[
k

∑
s=0

(−1)s
(

k
s

)
(β1α2 − β2α1)

sEk−s
α Eβ+sα

]
xk

=
∞

∑
k=0

[
k

∑
s=0

(−1)s

(k − s)!s!
H<k>

λ ⊗ (β1α2 − β2α1)
sEk−s

α Eβ+sα

]
xk

=
∞

∑
k=0

∞

∑
s=0

(−1)s

k!s!
H<k+s>

λ ⊗ (β1α2 − β2α1)
sEk

αEβ+sαxk+s

=
∞

∑
s=0

(−1)s
(

∞

∑
k=0

1

k!
H<k>

λ+s ⊗ Ek
αxk

)(
bsH<s>

λ ⊗ Eβ+sαxs
)

=
∞

∑
s=0

(−1)sbsFλ+s

(
H<s>

λ ⊗ Eβ+sαxs
)
,
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where bs =
1
s! (β1α2 − β2α1)

s, s ∈ N.
For (26), using (5) and (18), we can deduce

(1 ⊗ tβ)Fλ =
∞

∑
k=0

1

k!
H<k>

λ ⊗ tβGk xk

=
∞

∑
k=0

1

k!
H<k>

λ ⊗

[
k

∑
s=0

(−1)s

(
k
s

)
(β1α2 − β2α1)

s Ek−s
α tβ+sα

]
xk

=
∞

∑
k=0

[
k

∑
s=0

(−1)s

(k − s)!s!
H<k>

λ ⊗ (β1α2 − β2α1)
s Ek−s

α tβ+sα

]
xk

=
∞

∑
k=0

∞

∑
s=0

(−1)s

k!s!
H<k+s>

λ ⊗ (β1α2 − β2α1)
s Ek

αtβ+sα xk+s

=
∞

∑
s=0

(−1)s

(
∞

∑
k=0

1

k!
H<k>

λ+s ⊗ Ek
α xk

)(
bs H<s>

λ ⊗ tβ+sα xs
)

=
∞

∑
s=0

(−1)s
bs Fλ+s

(
H<s>

λ ⊗ tβ+sα xs
)
.

For (27), using (5), (13), (14), (16), (18), we obtain

EβUλ =
∞

∑
k=0

(−1)k

k!
Eβ H

[k]
−λGk xk =

∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

EβGk xk

=
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

[
k

∑
s=0

(−1)s

(
k
s

)
(β1α2 − β2α1)

s Ek−s
α Eβ+sα

]
xk

=
∞

∑
k=0

k

∑
s=0

(−1)k+s

(k − s)!s!
(β1α2 − β2α1)

s H
[k]

−λ−
η

µ

Ek−s
α Eβ+sα xk

=
∞

∑
k=0

∞

∑
s=0

(−1)s

k!
bs H

[k+s]

−λ−
η

µ

Ek
α Eβ+sα xk+s

=
∞

∑
k=0

∞

∑
s=0

(−1)k

k!
bs H

[k]

−λ−
η

µ

H
[s]

−λ−
η

µ
−k

Ek
α Eβ+sα xk+s

=
∞

∑
k=0

∞

∑
s=0

(−1)k

k!
bs H

[k]

−λ−
η

µ

Ek
α H

[s]

−λ−
η

µ

Eβ+sα xk+s

=
∞

∑
s=0

bs




∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

Ek
α xk


H

[s]

−λ−
η

µ

Eβ+sα xs

= U
λ+

η

µ

∞

∑
s=0

bs H
[s]

−λ−
η

µ

Eβ+sα xs = U
λ+

η

µ

∞

∑
s=0

bs Eβ+sα H<s>
−λ+1xs ,

and

tβUλ =
∞

∑
k=0

(−1)k

k!
tβ H

[k]
−λGk xk =

∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

tβGk xk

=
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

[
k

∑
s=0

(−1)s

(
k
s

)
(β1α2 − β2α1)

s Ek−s
α tβ+sα

]
xk

=
∞

∑
k=0

k

∑
s=0

(−1)k+s

(k − s)!s!
(β1α2 − β2α1)

s H
[k]

−λ−
η

µ

Ek−s
α tβ+sα xk

=
∞

∑
k=0

∞

∑
s=0

(−1)s

k!
bs H

[k+s]

−λ−
η

µ

Ek
αtβ+sα xk+s

=
∞

∑
k=0

∞

∑
s=0

(−1)k

k!
bs H

[k]

−λ−
η

µ

H
[s]

−λ−
η

µ
−k

Ek
αtβ+sα xk+s

=
∞

∑
k=0

∞

∑
s=0

(−1)k

k!
bs H

[k]

−λ−
η

µ

Ek
α H

[s]

−λ−
η

µ

tβ+sα xk+s

=
∞

∑
s=0

bs




∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

Ek
α xk


tβ+sα H

[s]
−λ+s xs

= U
λ+

η

µ

∞

∑
s=0

bstβ+sα H
[s]
−λ+s xs = U

λ+
η

µ

∞

∑
s=0

bstβ+sα H<s>
1−λ xs .
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For (28) and (29), using (5), (15), (19), we obtain

DjUλ =
∞

∑
k=0

(−1)k

k!
H

[k]
−λDjE

k
αxk

=
∞

∑
k=1

(−1)k

(k − 1)!
αjH

[k]
−λEk

αxk +
∞

∑
k=0

(−1)k

k!
H

[k]
−λEk

αDjx
k

= −αj H
[1]
−λ

∞

∑
k=1

(−1)k−1

(k − 1)!
H

[k−1]
−λ−1Ek−1

α xk−1Eαx +

[
∞

∑
k=0

(−1)k

k!
H

[k]
−λEk

αxk

]
Dj

= −αjH
[1]
−λUλ+1Eαx + UλDj,

(Dj ⊗ 1)Fλ =
∞

∑
k=0

1

k!
H<k>

λ Dj ⊗ Gkxk

=

(
∞

∑
k=0

1

k!
H<k>

λ ⊗ Gkxk

)(
Dj ⊗ 1

)

= Fλ(Dj ⊗ 1),

(1 ⊗ Dj)Fλ =
∞

∑
k=0

1

k!
H<k>

λ ⊗ DjE
k
αxk

=
∞

∑
k=0

1

k!
H<k>

λ ⊗ (kαjE
k
α + Ek

αDj)xk

=
∞

∑
k=1

1

(k − 1)!
H<k>

λ ⊗ αjE
k
αxk+

∞

∑
k=0

1

k!
H<k>

λ ⊗ Ek
αDjx

k

=
∞

∑
k=1

1

(k − 1)!
H<1>

λ H<k−1>
λ+1 ⊗ αjE

k
αxk+

(
∞

∑
k=0

1

k!
H<k>

λ ⊗ Ek
αxk

)(
1 ⊗ Dj

)

=

(
∞

∑
k=1

1

(k − 1)!
H<k−1>

λ+1 ⊗ Ek−1
α xk−1

)(
H<1>

λ ⊗ αjEαx
)
+ Fλ

(
1 ⊗ Dj

)

= Fλ+1(H<1>
λ ⊗ αjEαx) + Fλ

(
1 ⊗ Dj

)
.

For (30), using (5) and (13), we deduce

EαUλ =
∞

∑
k=0

(−1)k

k!
Eα H

[k]
−λEk

αxk =
∞

∑
k=0

(−1)k

k!
H

[k]
−λ−1Ek+1

α xk = Uλ+1Eα,

tαUλ =
∞

∑
k=0

(−1)k

k!
tα H

[k]
−λEk

αxk =
∞

∑
k=0

(−1)k

k!
H

[k]
−λ−1tαEk

αxk = Uλ+1tα,

VλH
[1]
−λ =

∞

∑
k=0

1

k!
H

[k]
λ Ek

αxk H
[1]
−λ

=
∞

∑
k=0

1

k!
H

[k]
λ H

[1]
−λ−kEk

αxk

=
∞

∑
k=0

1

k!
H

[k]
λ (H − λ)Ek

αxk −
∞

∑
k=1

1

(k − 1)!
H

[k]
λ Ek

αxk

= H
[1]
−λ

∞

∑
k=0

1

k!
H

[k]
λ Ek

αxk −
∞

∑
k=1

1

(k − 1)!
H

[1]
λ H

[k−1]
λ−1 Ek

αxk

= H
[1]
−λVλ − H

[1]
λ Vλ−1Eαx.

Therefore, Lemma 7 is proved. □

The proof of the first principal result in this paper is as follows.
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Proof of Theorem 1. For any Eβ, tβ with β = (β1, β2) ∈ Z2\ {0} and Dj ∈ L̃, j = 1, 2, by
Lemmas 2 and 4 and (24)–(26), (28) and (29), we obtain

∆(Eβ) = F∆0(Eβ)F
−1 = F(Eβ ⊗ 1)F−1 + F(1 ⊗ Eβ)F

−1

= F(Eβ ⊗ 1)F + F(1 ⊗ Eβ)F

= FF
−

η

µ

(Eβ ⊗ 1) + F
∞

∑
s=0

(−1)sbsFs

(
H<s> ⊗ Eβ+sαxs

)

=


1 ⊗ (1 − Eαx)

η

µ


(Eβ ⊗ 1) +

∞

∑
s=0

(−1)sbs

(
1 ⊗ (1 − Eαx)−s

)(
H<s> ⊗ Eβ+sαxs

)

= Eβ ⊗ (1 − Eαx)

η

µ +
∞

∑
s=0

(−1)sbs

(
H<s> ⊗ (1 − Eαx)−sEβ+sαxs

)
,

∆(tβ) = F∆0(tβ)F
−1 = F(tβ ⊗ 1)F−1 + F(1 ⊗ tβ)F

−1

= F(tβ ⊗ 1)F + F(1 ⊗ tβ)F

= FF
−

η

µ

(tβ ⊗ 1) + F
∞

∑
s=0

(−1)sbsFs

(
H<s> ⊗ tβ+sαxs

)

=


1 ⊗ (1 − Eαx)

η

µ


(tβ ⊗ 1) +

∞

∑
s=0

(−1)sbs

(
1 ⊗ (1 − Eαx)−s

)(
H<s> ⊗ tβ+sαxs

)

= tβ ⊗ (1 − Eαx)

η

µ +
∞

∑
s=0

(−1)sbs

(
H<s> ⊗ (1 − Eαx)−stβ+sαxs

)
,

∆(Dj) = F∆0(Dj)F
−1 = F(Dj ⊗ 1)F−1 + F(1 ⊗ Dj)F

−1

= F(Dj ⊗ 1)F + F(1 ⊗ Dj)F

= FF(Dj ⊗ 1) + F
[
F1

(
H<1> ⊗ αjEαx

)
+ F(1 ⊗ Dj)

]

= Dj ⊗ 1 + 1 ⊗ Dj + αj H
<1> ⊗ (1 − Eαx)−1Eαx,

where η = η1β1 + η2β2, µ = η1α1 + η2α2 ≠ 0 (ηi ∈ C), bs =
1
s!(β1α2 − β2α1)

s, s ∈ N,j = 1, 2.
By Lemma 4, (27) and (30), we deduce

S(Eβ) = f S0(Eβ) f−1 = −VEβU= −VU η

µ

∞

∑
s=0

bsEβ+sα H<s>
1 xs

= −(1 − Eαx)
−

η

µ
∞

∑
s=0

bsEβ+sα H<s>
1 xs,

S(tβ) = f S0(tβ) f−1 = −VtβU= −VU η

µ

∞

∑
s=0

bstβ+sα H<s>
1 xs

= −(1 − Eαx)
−

η

µ
∞

∑
s=0

bstβ+sα H<s>
1 xs,

S(Dj) = f S0(Dj) f−1 = −VDjU= −V(−αjH
[1]U1Eαx + UDj)

= αj(HV − HV−1Eαx)U1Eαx − Dj,

= αjH(1 − Eαx)−1Eαx − αjHV−1U2E2
αx2 − Dj

= αjH(1 − Eαx)−1(Eαx − E2
αx2)− Dj.

Therefore we complete the proof of Theorem 1. □
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Lemma 8. If G = tα with α = (α1, α2) ∈ Z2\ {0} and µ = η1α1 + η2α2 ̸= 0 (ηi ∈ C), then for
any λ ∈ C, β = (β1, β2) ∈ Z2\ {0}, denote η = η1β1 + η2β2, one has

(Eβ ⊗ 1)Fλ = Fλ−
η
µ
(Eβ ⊗ 1), (tβ ⊗ 1)Fλ = Fλ−

η
µ
(tβ ⊗ 1), (31)

(1 ⊗ Eβ)Fλ = Fλ(1 ⊗ Eβ)− b1Fλ+1

(
H<1>

λ ⊗ tβ+αx
)

, (1 ⊗ tβ)Fλ = Fλ(1 ⊗ tβ), (32)

EβUλ = Uλ+
η
µ

Eβ + b1Uλ+
η
µ

tβ+α H<1>
1−λ x, tβUλ = Uλ+

η
µ

tβ, (33)

DjUλ = −αj H
[1]
−λUλ+1tαx + UλDj, (Dj ⊗ 1)Fλ = Fλ(Dj ⊗ 1), (34)

(1 ⊗ Dj)Fλ = Fλ+1(H<1>
λ ⊗ αjtαx) + Fλ(1 ⊗ Dj), (35)

EαUλ = Uλ+1Eα, tαUλ = Uλ+1tα, Vλ H
[1]
−λ = H

[1]
−λVλ − H

[1]
λ Vλ−1tαx, (36)

where j = 1, 2, and b1 = β1α2 − β2α1.

Proof. (31), (34)–(36) can be derived in a manner analogous to those presented in Lemma 7.
The first equation of (32) is a consequence of the following equation.

(1 ⊗ Eβ)Fλ =
∞

∑
k=0

1

k!
H<k>

λ ⊗ Eβtk
αxk

=
∞

∑
k=0

1

k!
H<k>

λ ⊗
[
tk
αEβ − k(β1α2 − β2α1)t

k−1
α tβ+α

]
xk

=

(
∞

∑
k=0

1

k!
H<k>

λ ⊗ tk
αxk

)
(1 ⊗ Eβ)−

∞

∑
k=1

1

(k − 1)!
H<k>

λ ⊗ (β1α2 − β2α1)t
k−1
α tβ+αxk

= Fλ(1 ⊗ Eβ)−
∞

∑
k=0

1

k!
H<k+1>

λ ⊗ (β1α2 − β2α1)t
k
αtβ+αxk+1

= Fλ(1 ⊗ Eβ)−

(
∞

∑
k=0

1

k!
H<k>

λ+1 ⊗ tk
αxk

)(
H<1>

λ ⊗ b1tβ+αx
)

= Fλ(1 ⊗ Eβ)− b1Fλ+1

(
H<1>

λ ⊗ tβ+αx
)
.

where b1 = β1α2 − β2α1. For the latter part of (32), one has

(1 ⊗ tβ)Fλ =
∞

∑
k=0

1

k!
H<k>

λ ⊗ tβtk
αxk =

(
∞

∑
k=0

1

k!
H<k>

λ ⊗ tk
αxk

)
(1 ⊗ tβ)

= Fλ(1 ⊗ tβ).

For (33), using (5), (13), (14) and (17), one obtains

EβUλ =
∞

∑
k=0

(−1)k

k!
Eβ H

[k]
−λtk

αxk =
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

Eβtk
αxk

=
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

[
tk
αEβ − k(β1α2 − β2α1)t

k−1
α tβ+α

]
xk

=
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

tk
αxkEβ−

∞

∑
k=1

(−1)k

(k − 1)!
H

[k]

−λ−
η

µ

(β1α2 − β2α1)t
k−1
α tβ+αxk

= U
λ+

η

µ

Eβ −
∞

∑
k=0

(−1)k+1

k!
H

[k+1]

−λ−
η

µ

(β1α2 − β2α1)t
k
αtβ+αxk+1

= U
λ+

η

µ

Eβ − b1




∞

∑
k=0

(−1)k+1

k!
H

[k]

−λ−
η

µ

tk
αxk


H

[1]

−λ−
η

µ

tβ+αx

= U
λ+

η

µ

Eβ + b1U
λ+

η

µ

H
[1]

−λ−
η

µ

tβ+αx

= U
λ+

η

µ

Eβ + b1U
λ+

η

µ

tβ+α H<1>
1−λ x,

tβUλ =
∞

∑
k=0

(−1)k

k!
tβ H

[k]
−λtk

αxk =
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

tβtk
αxk

=
∞

∑
k=0

(−1)k

k!
H

[k]

−λ−
η

µ

tk
αxktβ = U

λ+
η

µ

tβ
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Thus, Lemma 8 is proved. □

The proof of the second principal result in this paper is presented as follows.

Proof of Theorem 2. For any Eβ, tβ with β ∈ Z2\ {0} and Dj ∈ L̃, j = 1, 2, by Lemmas 2,
4 and 8, we deduce

∆(Eβ) = F∆0(Eβ)F
−1 = F(Eβ ⊗ 1)F + F(1 ⊗ Eβ)F

= FF− η
µ
(Eβ ⊗ 1) + F

[
F(1 ⊗ Eβ)− b1F1

(
H<1> ⊗ tβ+αx

)]

=
[
1 ⊗ (1 − tαx)

η
µ

]
(Eβ ⊗ 1) + (1 ⊗ 1)(1 ⊗ Eβ)

−b1

[
1 ⊗ (1 − tαx)−1

](
H<1> ⊗ tβ+αx

)

= Eβ ⊗ (1 − tαx)
η
µ + 1 ⊗ Eβ − b1H<1> ⊗ (1 − tαx)−1tβ+αx,

∆(tβ) = F∆0(tβ)F
−1 = F(tβ ⊗ 1)F + F(1 ⊗ tβ)F

= FF− η
µ
(tβ ⊗ 1) + FF(1 ⊗ tβ)= tβ ⊗ (1 − tαx)

η
µ + 1 ⊗ tβ,

∆(Dj) = F∆0(Dj)F
−1 = F(Dj ⊗ 1)F + F(1 ⊗ Dj)F

= FF(Dj ⊗ 1) + F
[
F1

(
H<1> ⊗ αjtαx

)
+ F(1 ⊗ Dj)

]

= Dj ⊗ 1 + 1 ⊗ Dj + αjH
<1> ⊗ (1 − tαx)−1tαx,

S(Eβ) = f S0(Eβ) f−1 = −VEβU= −V

(
U η

µ
Eβ + b1U η

µ
tβ+αH<1>

1 x

)

= −(1 − tαx)
−

η
µ
(
Eβ + b1tβ+α H<1>

1 x
)
,

S(tβ) = f S0(tβ) f−1 = −VtβU= −VU η
µ

tβ = −(1 − tαx)
−

η
µ tβ,

S(Dj) = f S0(Dj) f−1 = −VDjU= −V(−αjH
[1]U1tαx + UDj)

= αj(HV − HV−1tαx)U1tαx − Dj

= αjH(1 − tαx)−1tαx − αjH(1 − tαx)−1E2
αx2 − Dj

= αjH(1 − tαx)−1(tαx − t2
αx2)− Dj,

where j = 1, 2, b1 = β1α2 − β2α1. Therefore, Theorem 2 is proved. □

5. Conclusions

Heisenberg–Virasoro and in general Virasoro algebras are useful in Conformal Field
Theory (CFT). In [28], the authors shows this clearly by applying these algebras to CFT.
The papers by O. B. Fournier and P. Mathieu on and around the subject are useful to see
the consequences, notably the Virasoro characters (cf. [29–31] and other similar papers).
Heisenberg–Virasoro algebras and in general Virasoro algebras also have many applications
in Quantum Mechanics and Quantum Field Theory (QFT) (cf. [32–35], etc.). Furthermore,
Heisenberg–Virasoro algebras and in general Virasoro algebras hold a profound connection
with Vertex operator algebras (VOA) (cf. [36,37], etc.). The exploration of vertex operator
algebras in relation to Virasoro algebras serves as the algebraic cornerstone for investigating
minimal models in CFT.

Quantum groups play important roles in many fields such as mathematics and physics.
It is an important and interesting approach to construct new quantum groups through the
quantization of Lie bialgebras. In this paper, the explicit formulas of the quantization of the
rank two Heisenberg–Virasoro algebra L̃ by Drinfel’d twists (see Theorems 1 and 2) are
presented, Lie bialgebra structures of which were considered by the authors in a recent
paper [23]. It is found that the quantization of L̃ is not unique since there are two types of
Drinfel’d twists (see Lemma 6). Our results broaden the scope of examples encompassed
by non-commutative and non-cocommutative Hopf algebras.



Axioms 2024, 13, 446 15 of 16

Funding: This research was funded by National Natural Science Foundation of China (Grant no.

11801477); Natural Science Foundation of Fujian Province (Grant no. 2017J05016).

Data Availability Statement: The data of the Lie algebra relations used to support the findings of

this study are included within the article.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publica-

tion of this paper.

References

1. Drinfel’d, V.G. Hopf algebras and the quantum Yang–Baxter equation. Soviet Math. Dokl. 1985, 32, 254–258.

2. Drinfel’d, V.G. Quantum Groups. In Proceeding of the International Congress of Mathematicians, Berkeley, CA, USA, 3–11 August 1986;

American Mathematical Society: Providence, RI, USA, 1987; Volume 1–2, pp. 798–820.

3. Jimbo, M. Aq-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 1985, 10, 63–69. [CrossRef]

4. Etingof, P.; Schiffmann, O. Lectures on Quantum Groups, 2nd ed.; International Press: Somerville, MA, USA, 2002.

5. Grunspan, C. Quantizations of the Witt algebra and of simple Lie algebras in characteristic p. J. Algebra 2004, 280, 145–161.

[CrossRef]

6. Giaquinto, A.; Zhang, J. Bialgebra action, twists and universal deformation formulas. J. Pure Appl. Algebra 1998, 128, 133–151.

[CrossRef]

7. Hu, N.; Wang, X. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. J. Algebra 2007, 312,

902–929. [CrossRef]

8. Song, G.; Su, Y. Lie bialgebras of generalized Witt type. Sci. China Ser. A 2006, 49, 533–544. [CrossRef]

9. Etingof, P.; Kazhdan, D. Quantization of Lie bialgebras I. Selecta Math. New Ser. 1996, 2, 1–41. [CrossRef]

10. Etingof, P.; Kazhdan, D. Quantization of Lie bialgebras, part VI: Quantization of generalized Kac–Moody Algebras. Transform.

Groups 2008, 13, 527–539. [CrossRef]

11. Song, G.; Su, Y.; Wu, Y. Quantization of generalized Virasoro-like algebras. Linear Algebra Appl. 2008, 428, 2888–2899. [CrossRef]

12. Cheng, Y.; Su, Y. Quantization of Lie algebras of Block type. Acta Math. Sci. 2010, 30B, 1134–1142.

13. Li, J.; Su, Y. Quantizations of the W-Algebra W (2, 2). Acta Math. Sin. Engl. Ser. 2011, 27, 647–656. [CrossRef]

14. Su, Y.; Yuan, L. Quantization of Schrödinger-Virasoro Lie algebra. Front. Math. China 2010, 5, 701–715. [CrossRef]

15. Wu, Y.; Song, G.; Su, Y. Lie bialgebras of generalized Virasoro-like type. Acta Math. Sin. Engl. Ser. 2006, 22, 1915–1922. [CrossRef]

16. Cheng, Y.; Song, G.; Xin, B. Lie bialgebra structures on Lie algebras of Block type. Algebra Colloq. 2009, 16, 677–690. [CrossRef]

17. Li, J.; Su, Y. Lie bialgebra structures on the W-algebra W (2, 2). Algebra Colloq. 2010, 17, 181–190. [CrossRef]

18. Han, J.; Li, J.; Su, Y. Lie bialgebra structures on the Schrödinger-Virasoro Lie algebra. J. Math. Phys. 2009, 50, 083504. [CrossRef]

19. Yue, X.; Jiang, Q.; Xin, B. Quantization of Lie algebras of generalized Weyl type. Algebra Colloq. 2009, 16, 437–448. [CrossRef]

20. Chen, H.; Shen, R.; Zhang, J. Quantization on generalized Heisenberg-Virasoro algebra. Acta Math. Sin. Chin. Ser. 2014, 57,

109–116.

21. Yuan, L.; He, C. Lie super-bialgebra and quantization of the super Virasoro algebra. J. Math. Phys. 2016, 57, 053508. [CrossRef]

22. Su, Y.; Yue, X.; Zhu, X. Quantization of the Lie superalgebra of Witt type. J. Geom. Phys. 2021, 160, 103987. [CrossRef]

23. Su, Y.; Chen, X. Lie Bialgebras on the Rank Two Heisenberg–Virasoro Algebra. Mathematics 2023, 11, 1030. [CrossRef]

24. Xue, M.; Lin, W.; Tan, S. Central extension, derivations and automorphism group for Lie algebras arising from 2-dimensional

torus. J. Lie Theory 2006, 16, 139–153.

25. Tan, S.; Wang, Q.; Xu, C. On Whittaker modules for a Lie algebra arising from the 2-dimensional torus. Pac. J. Math. 2015, 273,

147–167. [CrossRef]

26. Li, Z.; Tan, S. Verma module for rank two Heisenberg-Virasoro algebra. Sci. China Math. 2020, 63, 1259–1270. [CrossRef]

27. Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1995.

28. Di Francesco, P.; Mathieu, P.; Sénéchal, D. Quantum Field Theory. In Conformal Field Theory. Graduate Texts in Contemporary Physics;

Springer: New York, NY, USA, 1997.

29. Blondeau-Fournier, O.; Mathieu, P.; Welsh, T.A. A quartet of fermionic expressions for M(k, 2k±1) Virasoro characters via

half-lattice paths. Nucl. Phys. B 2017, 924, 643–683. [CrossRef]

30. Mathieu, P.; Blondeau-Fournier, O.; Wood, S.; Ridout, D. The super-Virasoro singular vectors and jack superpolynomials

relationship revisited. Nucl. Phys. B 2016, 913, 34–63.

31. Blondeau-Fournier, O.; Mathieu, P.; Welsh, T.A. A Bijection Between Paths for the M(p, 2p + 1) Minimal Model Virasoro Characters.

Ann. Henri Poincaré 2010, 11, 101–125. [CrossRef]

32. Oh, C.H.; Singh, K. Realizations of the q-Heisenberg and q-Virasoro algebras. J. Phys. A 1994, 27, 3439–3444. [CrossRef]
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