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 Abstract

The weak-strong model subjects the test particle in the
o weak beam to transverse impulses from the strong beam,
2 resultlng in betatron tune shifts. We give analytic formulae
E for small amplitude and asymptotic shifts for three cases:
@short-range, long-range, and wire compensation; and opti-
S mize the latter to minimize the non-linear tune spreads.
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£ BEAM-BEAM MODEL

*2 We have two counter-rotating particle beams with like
.2 charges (i.e. p-p or e-e). The electrical charges in a “weak”
=2

£ bunch can be equal to those in a “strong” bunch. Despite
= = the naming weak-strong beam-beam (BB) model, the for-
§ mulae for the short range (SR) and long range (LR) BB
£ tune shifts are actually the “almost strong-strong” model
£ tune shifts. The only sense in which they are not “exactly
2 strong-strong” is that the mutual disruption within (and of)
£ the beams is not included.

The LRBB interaction produces a closed orbit distortion
z = (COD) for the “weak” beam in the presence of the “strong”
< beam. In principle, the weak-strong model can give the lin-
B ear part of the mutual strong-strong COD; and Lie-alge-
.2 braic methods could be used to find the strong-strong COD
__é to higher order in displacements.
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éSingle-Beam Tune Shifts

& The space-charge tune shift of a particle within a single
s beam (alone) contains an electrical repulsion and a mag-
§ netic attraction — producing partial cancellation of forces.
o The single within-beam tune shift becomes very small at
B/high energy, (B —1, y>>1). But, it acts everywhere all the
g tlme It adds up, cannot be ignored; indeed, it renormalizes

the base tunes; or can be nulled by the ring quadrupoles.

o < Beam-Beam Tune Shifts

8 Beam-beam effects are well studied [1-10]. Consider a
o test particle in the weak beam, and forces from the strong
%beam. Because the witness has velocity opposite to the
o strong beam, the magnetic force reverses sign and acts out-
gwards (becomes repulsive). There is another way to see
o this. If we think about the case of strong-strong, we realize
gthat the SRBB interaction arises from a beam with twice
2 the charge and zero (net) current. The electrical forces dou-
S ble up, and the magnetic forces are zero. The net effect is
2 equal the SRBB value. Likewise for counter rotating parti-
8 cle & anti-particle beams, the electrical forces cancel (zero
Zcharge) during the SRBB interaction, and the magnetic

. forces double (opposite currents and opposite velocities).
O Agam the net effect is equal the nominal SRBB value.

,2 In contrast to the single-beam space-charge tune shift,
=
‘é the BB interaction is brief and isolated to a few specific
o
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locations in the ring. But the individual shifts contributed
are large (2>>1/y), and are therefore important.

Roughly speaking, the width of the SRBB tune shifts is
bracketed by the values at

= small/zero amplitude (largest tune shifts)

= Jargest amplitudes (smallest tune shifts).
Likewise, for sufficiently large beam separation, the width
of the LRBB tune shifts is bracketed by the values at

=  small/zero amplitude (smallest tune shifts)

= Jargest X amplitudes (largest tune shifts).

So, having simple expressions for zero amplitude and as-
ymptotic large amplitude tune shifts would be useful for
quick estimation. The dependence of SRBB & LRBB tune
shifts on parameters has been investigated previously [3,4];
but simple formulae are not given in those sources.

Wire

Weak Beam

Strong Beam

Figure 1: Geometry & coordinates of strong and weak
beams.

We know field E(r) for strong beam, and hence potential
V(r)= V(r?). We also know r(x,y,d); see Fig. 1. By taking
derivatives w.r.t. X or y, we can find forces on the test par-
ticle in weak beam due to the strong beam. By suitable
choice of x,y,d several interesting cases can be found:
short-range, long-range, and wire compensation.

Hamiltonian & Modulations

The 2-dimensional Hamiltonian is H=Hx +H, where Hy
= Ty +Uy =kinetict+ (harmonic potential) = Hy =(x")*+x.
We take action (J) and angle (q) variables: x=
Sqrt[2J]Cos[qx] and qx’= p; and likewise for Hy. Hence:
H=p..Jx + py.Jy. Now add the perturbation = interaction po-
tential V= V[r?] = V[r(x,y)*] = V[r(x(Jx,9x),y(Jy,qy))*]
=V(Ix,qx:Jy.qy).

V produces modulation of the angle (q) and action (J).

qx‘ = 0H/0J ; Jx* = -0H/0qx=0;

=0V/0lx ; J* =-0V/0qx .
Likewise for Hy. We use the chain rule for derivatives to
find these modulations. To find the net effect, we integrate
over one cycle of the unperturbed motions. Hence a double
integral over qx and qy. For example, Apy = UAqx‘ dqgx.dqy.

We take cylindrical Gaussian distributed beam density
p=Exp[-J] & J=r*/2 leading to field E=(1-Exp[J])/(2J) and
potential V = (—Eulerl’ — I'[0,]] — Log[J])/2. The T’
function generalises concept of factorials to non-integers.

Short Range Beam-Beam Tune Shift & Spread
We set beam separation d=0.
Let x = Jx Cos[gx]? + Jy Cos[qy]?. Due to the high
symmetry, expressions for qx’ & qy’ are equivalent.
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qx’ = (=1 +eX)Cos[qx]*/(2x)
Of course, we can compute the integrals numerically. But
there are useful special cases that can be found analytically.
Zero amplitude tune
Apx(@Jx=Jy=0)= Apy=(@Jx=Jy=0)=-1/4
Large amplitude tune
Apx(Jx=0,]y)= —ie‘IY/Z (BesselI[O,];y] + Bessell[l,];y])

Aux in x plane (well known result)
Apx(@Jx,Jy=0)= {—1 + e /2 Bessell[o,’;"]}/(mx)

Equal x & y amplitudes
1 2
JAn(@x=Jy=]/2) = 5(_1 +e7J/2 BesselI[O,ﬂ )
Sum of tune shifts
Jx.Apx + Jy. Apy =

1 x Jy Jx ly
E(—l +e 2 2 Bessel[[O,i] Bessel[[O,?])

Small amplitude tunes and splits

—_1 y WP L X (g 2 Iy*
Apx = 4(1+4 16)+32(1 Iy + 32)

gx=Jy) | 0x*=Jy?®
2 T e

9 dy-Jx)
1024

Apx — Apy = +

Note X tune shift at small Jx & large Jy is small; because
the Y motion carries the particle into regions with low
charge density; and, moreover, particles spend most of
their time at the extremities of motion (for SHO). Like wise
for small Jy & large Jx, the tune shifts are small.

LONG RANGE TUNE SHIFT & COD

Beam separation d#0 is assumed to be horizontal. The
forces acting on the test particle are no longer symmetric

d2
in “x”. The residual force Fyx at x=0, Fx(0)= {1 - e_7} /2

leads to a closed orbit distortion (COD). This has to be can-
celled by magnetic elements (dipoles and quads) up/down
stream of the BB interaction.

In principle, we should add a compensating term to the
interaction potential to zero out the COD; such as
el (-1+e!) /Jx Cos[gx]
N
But, Vx and its derivative will integrate to zero. Hence we
may omit the COD correction from the interaction poten-
tial provided that we always remember to integrate qx’
over one period in the motion in gx. But if we perform
tracking, the invariant of motion will wobble! (if the COD
is neglected). Moreover, the COD forces should be aver-
aged over the beam before compensation:

(+d) (2 e+ e-d;)

Vx0 = -Fx(@x=0).x =—

F ~
< Fx> W E

Symmetry is broken: expressions for qx’ # q’.

LetA=L+ ZJ]_XVZCos[qx] + X
,_ (-1+e™) (VLCos[qx] 2)_

The double integrals quxdqy cannot be found in closed
form*; but we can compute them numerically; see Fig. 2.

2A

X
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For large L & J, the integrals are poorly converging if com-
puted (summed) directly.

Numerical Examples
Typically d=9c sigma (action L=40.5) and we study am-
plitudes up to X,y =66 or Jx,Jy =18. S0 Jmax = L/2.

une shifts @ L=
bl s

Figure 2: Beam-beam footprint in (1, py) tune space (hor-
izontal, vertical). Beam core/tail is yellow/blue. Left:
L=Jmax=6; Centre L=18, Jnax=18; Right: L=40.5, Jma=18.
Because of the separation d, all of the BB forces are re-
duced and the LRBB tune shifts are smaller than SRBB.
However, large amplitude motion in X, will carry the Y
motion closer to the strong beam, resulting in larger BB
forces. Because the forces are non-linear, the average (over
X) effect is to boost the Y plane BB tune shifts compared
with the case of small amplitude X motion.

LRBB Tune Shift Formulae

The mathematical analysis is complicated by the fact
that the pix limits, qx‘(Jx,Jy) as Jx—0 and qx‘(Jx,Jy) as Jy =0
& Jx —0, are indeterminate. The ambiguity is resolved by
first performing the integration over qx (and qy), and then
taking the limits. To do the integration, first Taylor expand
gx’ as a series in Cosine.
Contrastingly, the py limits qy‘(Jx,Jy) as Jx—0, qy‘(Jx,Jy)
as Jy—0, and qy‘(Jx,Jy) Jy—0 & Jx—0 = qy‘(Jx,Jy) Jx—0
& Jy—0 are all well defined.
Hence uy(0,0) = (1 —e~1)/(4L).

Although the integrals over gx,qy cannot be found in
closed form, we can find, by analysis, limiting cases of
very small and very large amplitude; i.e. asymptotic forms
are good for L>>1 and Jx=L/2 (or less), and this happens
to be the relevant regime for beams with particles at 6c
(sigma) amplitude and 9c beam separation.

X-plane Tune Shifts & Spreads

Small amplitude
Apx(@L>Ix<1&Jy=0) =

el (-1+el—-2L)/(4L) +

e lx(-3+3el—-3L—-413)/(16L%)

Limit of zero amplitudes
Apx(@Jx=Jy=0) = et (=1 + e’ — 2L)/(4L)
Apx(@L=Jy=0) = (—8 + 3Jx)/32
Asymptotic Limit of very large amplitudes
Apx(@L>>1&Ix=L/2&Jy=0) =

* Lopez [4,6] writes them as 1-D integrals over “u” summed over an in-
finite series of Bessel functions.
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(1-e™) (—1 +
Apx(@L>>1&J y=L/2&J X—O) =

L2 (1 e+t + 2]y + ZL) /(4(L0y + L))

VL
NErew L) /@)%

3/2

—e 2

Y-plane Tune Shifts & Spreads
Small amplitude
S Apy(@Jy<1&Jx=0) =
(—1+eby/aL) +3eLy(—1 + L — L) /(161%)
Limit of zero amplitudes
Apy(@Ix=Jy=0) = (=1 +e~")/(4L)
Apy(@L=1x=0) =(—8 + 3]y)/(32)

-= Asymptotic Limit of very large amplitudes
2 Apy(@L>>1&Jy=L/2&Jx=0) =

VL
1—e ) -1+—=
(1-e )( + '_IY+L>
(—14+e LWL
4 (—Jx+L)3/?

/@2]y)

Apy(@L>>1&Ix=L/2&Jy=0) =

WIRE COMPENSATION OF TUNE SHIFT

= Compensation of the LRBB tune shift by a current car-
Erying wire is a relatively new idea [11-14]. To model this
s we add the potential of the wire, with strength parameter
& Ws: wire = Log [(d — x)?/2] Ws/2.

2 Pitfall: the wire must not be inside the weak beam, else the
Z 1/r type singularity at x=d will kick particles to large am-
2 plitudes and produce very large tune shifts. Some of this
é effect is artificial, as the wire has thickness. The effect can
5 be eliminated, for example, by making the current distribu-
o tion inside the wire equal to a narrow Gaussian. But here
@ we shall simply take Jmax < L/2.

§ There are several options for how to choose Ws.

§ Taking Ws — —1 + Exp|— d?/2] =1 — e’ has the effect of
= settmg Fx(x=0)=0. This removes the COD, but doubles the
= tune shifts and non-linear tune spreads in both planes. In
% such case, the currents in the strong beam and in the wire
O are in same direction.

o Or we may choose Ws to zero out the linear tune shift Api:
2 d2

Ws—>1—-e2—-d?’e 2z =1—-eL—-2e7tL

g In such case, currents in strong beam and wire are oppo-
£ 51tely directed. The COD forces are doubled, but they can
2 be compensated by dipoles.

_og The linear tune can be corrected by quadrupoles. So a bet-
:, ter option is to cancel the sextupole-like component of the
8 1/r force from the strong beam; leading to the choice:

ork must maintain attribution to the author(s), title of the work, publisher, and D
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a2 1d2 _a_ J6e- _a?
Ws—o1—e 2 —= ——dfe™z
s - e’ > gdve

= el (-1 +el —L—-413/3)

= This happens also to almost zero out the linear tune shift.
B But, the wire has also an effect on the Y plane tune spread.
= £ Fortunately, neither X nor Y is particularly sensitive to the
gchoice of Ws; and X 1is less sensitive than Y.
& Therefore, we can jointly optimize X and Y to minimize
£ the non-linear tune shifts; leading to wire strength:

may be use
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a2 1 a?
Ws > 1— e_T—Edze_7 =1—el—-eLL

Numerical Examples

Figure 2 gave examples of tune footprint before wire
compensation. Now examples with compensation. Figure
3 for small beam separation. By varying Jmax we can see
the shifts of the core (Jmax<2) versus the full beam with tails
(Jmax<6).

@Jmax=2&L=9)

Tune shifts

Figure 3: Beam-beam tune footprint in (L, [Ly) tune space
for separation d=4.24¢ (L=9) and wire compensation. Up-
per: beam core; lower full beam with tails.

Figure 4 is for large beam separation d=9c. After opti-
mized wire compensation, the tune spread of the beam core
is reduced almost to zero: few 1071 horizontal and few
108 vertical. Figure 4 shows the tune spread out to the tails
(Jmax<18).

Eea;wdensn..s

Tune shifts (@Jmax=188&L=40.5

Figure 4: Beam-beam tune footprint in (L, [Ly) tune space
for separation d=9¢ (L=40.5) and wire compensation.

Tune Shifts & Spreads After Wire Compensation
We use the optimised wire strength, leading to estimates.
Small Amplitude Tune Spread (Jy=0,Jx<<1)

e L jx? (15+10L—20L2+8 L3)
192L
Small Amplitude Tune Spread (Jx=0,Jy<<1)
e~L(-1+el-2L)
4L

-L
Aux = —67(1+]xL)—

Apy = ++]y (1—-et—Le™)

16 L2

+y?

3st( 1+e‘L(1+L+L2—2))
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