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Abstract
We compute analytically the small-scale temperature fluctuations of cosmic mi-
crowave background from cosmic (super-)strings and study the dependence on the
string intercommuting probability P . We develop an analytical model which describes
the evolution of a string network and calculate the numbers of string segments and
kinks in a horizon volume. Then we derive the probability distribution function (pdf).
The resultant pdf consists of a Gaussian part due to frequent scattering by long string
segments and a non-Gaussian tail due to close encounters with kinks. It contains two
phenomenological parameters which are determined by comparison with the result of
numerical simulations for P = 1 by Fraisse et al.. We predict that the non-Gaussian
feature is suppressed for small P .

1 Introduction

The imprint of cosmic strings on the cosmic microwave background (CMB) has been widely studied.
Although cosmic strings are excluded as a dominant source of the observed large angular scale anisotropy,
they could still be observable at small scales with new arcminute CMB experiments, such as the South
Pole Telescope or the Atacama Cosmology Telescope. Because the structure of a string network is highly
nonlinear, it would naturally induce a non-Gaussian feature in the CMB fluctuations. In fact, Fraisse
et al. [1] found that the probability distribution function (pdf) of the temperature fluctuations has a
non-Gaussian tail and negative skewness. These non-Gaussian features may help us distinguish cosmic
string signals from other secondary effects and hence enhance the observability.

Recently, cosmic superstrings have attracted much attention in the context of inflation in string theory
[2]. Cosmic superstrings have properties different from conventional field-theoretic cosmic strings. The
intercommuting probability P can be significantly smaller than unity for superstrings while P = 1 for
field-theoretic strings. Furthermore, a superstring network can consist of more than one type of strings
and may have Y-junctions. These differences may be used to distinguish superstrings from field-theoretic
strings observationally.

In this talk, we derive analytically the pdf of the small-scale CMB temperature fluctuations and
study its dependence on P . At small scales where the primary fluctuations are damped, only the inte-
grated Sachs-Wolfe (ISW) effect is relevant and, because the contribution from loops was shown to be
insignificant [1], we focus on the ISW effect of long string segments and kinks.

2 Temperature fluctuations due to cosmic strings

First we summarize basic formulae for the CMB temperature fluctuations due to cosmic strings, follow-
ing [3]. We denote the position of a cosmic string by ~r(t, σ) where t and σ are the time and position on
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the string worldsheet. The temperature fluctuation, ∆ ≡ ∆T/T , due to a segment, in the limit that the
impact parameter of a ray is much smaller than the segment length, is written as

∆(n̂) = 4π
v√

1 − v2
αsegGµ, αseg = n̂ ·

(
~r ′

|~r ′|
× ~̇r

|~̇r|

)
(1)

where v = |~̇r| is the velocity of the segment and αseg is a factor which represents the configuration of the
segment and the direction of line of sight, n̂, and the dot and prime denote the derivatives with respect
to t and σ, respectively.

A kink can be modeled as a nonsmooth junction of two straight strings with different directions, ~r ′

[3]. Then the temperature fluctuation with the impact parameter δ is

∆(n̂) = −4Gµαkink log
δ

Lkink
Θ(Lkink − δ), αkink = n̂ · ~p, ~p =

[
~r ′

|~r ′|2

]σkink+0

σkink−0

, (2)

where Lkink is a distance between kinks. The step function Θ(Lkink − δ) represents the effect that the
fluctuation becomes negligible far from the kink, αkink represents the kink configuration, ~p represents the
amplitude of the kink and σkink is the position of the kink.

3 Analytic model of cosmic string network

In this section, we develop an analytic model which describes the behavior of a cosmic string network.
First, the interstring distance ξ and the rms velocity vrms are calculated using a velocity-dependent one-
scale model [4, 5]. Then, the number of kinks in a horizon volume is calculated. We assume that the
scaling behavior is already realized by the recombination time.

For a universe with the scale factor a(t) ∝ tβ , the evolution equations for γ and vrms are given by
[4, 5]

t

γ

dγ

dt
= 1 − β − 1

2
βc̃Pvrmsγ − βv2

rms,
dvrms

dt
= (1 − v2

rms)H [k(vrms)γ − 2vrms] , (3)

where c̃ is a constant which represents the efficiency of the loop formation and k(vrms) ≈ (2
√

2/π)(1 −
8v6

rms)/(1 + 8v6
rms) is the momentum parameter [4]. Hereafter we assume a matter-dominated universe

and set β = 2/3.
It is known that a string network approaches a “scaling” regime where the characteristic scale grows

with the horizon size [6]. This means that γ and vrms are asymptotically constant in time. From (3), we
obtain γ and vrms. For small c̃P they can be approximately given as

v2
rms ≈

1
2
− 1

2

√
πc̃P

3
√

2
, γ =

2vrms

k(vrms)
≈

√
π
√

2
3c̃P

. (4)

We see that small P leads to large γ and hence large Nseg due to the inefficiency of loop formation [5].
Next, we consider the kink number evolution. Kinks are formed on string segments when they

intercommute and, simultaneously, some of the existing kinks are removed through loop formation. Fur-
thermore, kinks decay due to stretching by the cosmic expansion and the emission of gravitational waves.
Here we neglect the decay due to the gravitational wave emission and focus on the decay due to cosmic
expansion since it is the most efficient decay process at a matter-dominated stage [7].

According to [8], the kink amplitude, p = |~p|, decays with cosmic expansion as p(t) = pf(t/tf)−ε,
where tf and pf are the formation time and the amplitude at the formation respectively. We count the
number of kinks with amplitude pmin ≤ p ≤ pmax. The kink number in a comoving volume V (t) = a3(t)V0

is given by the integral of the formation rate, dN̄form(t, p)/dtdp. And this formation rate of kinks, which
is assumed here to be independent of p, is proportional to the loop formation rate, dN̄loop/dt.

N̄kink =
∫ pmax

pmin

dp

∫ t

t0(p)

dt
dN̄form(t, p)

dtdp
=
∫ pmax

pmin

dp

∫ t

t0(p)

dt
q

pmin

dN̄loop(t)
dt

≈ 2qc̃Pvrmsγ
4ε

3α

(
pmax

pmin

)1/ε

,

(5)
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where t0(p) = t(p/pmax)1/ε, a barred quantity is a number in the comoving volume V (t), q is a constant
which represents the efficiency of the kink formation and α is the average loop length in units of ξ.

4 PDF of CMB fluctuations

A photon ray is scattered by segments many times through its way from the last scattering surface to an
observer, hence the temperature fluctuation would behave like a random walk. If we treat a segment as
a particle with the cross section ξ2, the optical depth is

τ =
∫ zrec

0

NsegH
3ξ2 dz

H(1 + z)
=

Nseg

γ2
log (1 + zrec), (6)

where zrec ≈ 1100 is the redshift at recombination. This is estimated as 7Nsegγ
−2 ≈ 16 for P = 1 and

greater for smaller P . Therefore, remenbering Eq. (1), the pdf from segments can be approximated as
Gaussian with the dispersion,

σ = 2π
v√

1 − v2
αsegGµ

√
Nsegγ−2 log (1 + zrec) ≈ 2παseg

√
log (1 + zrec)

(
π
√

2
3c̃P

)1/4

Gµ, (7)

where we have set v = vrms and substituted (4) in the second equality.
Next, let us consider the contribution from kinks. The temperature fluctuation depends on the impact

parameter as given by (2). Therefore the differential cross section with the temperature fluctuation ∆
can be written as

dσkink

d∆
=

L2
kink

∆0
e−|∆|/∆0 , ∆0 ≡ 2αkinkGµ, (8)

where αkink should be understood as the statistical average of the kink configuration. Then the pdf of
temperature fluctuations due to kinks is

dPkink

d∆
=
∫ zrec

0

NkinkH
3 dσkink

d∆
dz

H(1 + z)
=

γ2

K∆0
e−|∆|/∆0 log (1 + zrec). (9)

We have a pdf of the form,

dPtot

d∆
=

dPG

d∆
+

dPNG

d∆
,

dPG

d∆
=

1√
2πσ

e−∆2/2σ2
,

dPNG

d∆
=

γ2

K∆0
log (1 + zrec)e−|∆|/∆0 , (10)

with σ and ∆0 are given by Eqs. (7) and (8), respectively. dPG/d∆ is the Gaussian part due to frequent
scattering by string segments, and dPNG/d∆ is the non-Gaussian tail due to rare scattering by kinks.
Here, because dPNG/d∆ � 1 as we see just below, we have normalized dPG/d∆ as

∫∞
−∞ d∆ dPG/d∆ = 1.

In the limit P → 1, we have

σ ≈ 14Gµ, A ≈ 10α−1
kink

(
pmax

pmin

)−5.1

(Gµ)−1, ∆0 = 2αkinkGµ, (11)

where we have set q = 2, c̃ = 0.23 and α = 0.1, as their standard values [9] and αseg = 1/
√

2 for
the statistical average. In addition, we have set αkink = 4.5 and pmax/pmin = 2.3 as a phenomelogical
parameters. On the other hand, the pdf from numerical simulations [1] can be also described as Eq. (10)
with

σsim ≈ 12Gµ, Asim ≈ 0.03(Gµ)−1, ∆0,sim ≈ 9Gµ. (12)

As we see in Fig. 1, as P decreases, the Gaussian dispersion increases and the contribution of the
non-Gaussian tail is suppressed. Thus the non-Gaussianity could be a probe of the cosmic string property,
P . However, future observation with typical angular resolution 5′ will not be able to resolve kinks as
the non-Gaussian feature is highly suppressed even for P = 1. Thus we would need observation with
arcminute resolution.
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Figure 1: Dependence of the pdf on the intercommuting probability P (thick lines). The respective
Gaussian parts are plotted with thin lines for comparison. For P = 1 and 10−0.25, the pdfs deviate
significantly from the Gaussian distribution. For P . 10−0.5, pdfs are almost Gaussian.
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