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Abstract

Stars grazing supermassive black holes (SMBHs) on bound orbits may survive tidal disruption, causing periodic
flares. Inspired by the recent discovery of the periodic nuclear transient ASASSN-14ko, a promising candidate for
a repeating tidal disruption event (TDE), we study the tidal deformation of stars approaching SMBHs on eccentric
orbits. With both analytical and hydrodynamic methods, we show the overall tidal deformation of a star is similar
to that in a parabolic orbit provided that the eccentricity is above a critical value. This allows one to make use of
existing simulation libraries from parabolic encounters to calculate the mass fallback rate in eccentric TDEs. We
find the flare structures of eccentric TDEs show a complicated dependence on both the SMBH mass and the orbital
period. For stars orbiting SMBHs with relatively short periods, we predict significantly shorter-lived duration flares
than those in parabolic TDEs, which can be used to predict repeating events if the mass of the SMBH can be
independently measured. Using an adiabatic mass-loss model, we study the flare evolution over multiple passages,
and show the evolved stars can survive many more passages than main-sequence stars. We apply this theoretical
framework to the repeating TDE candidate ASASSN-14ko and suggest that its recurrent flares originate from a
moderately massive (M 1Me), extended (likely ≈10 Re), evolved star on a grazing, bound orbit around the
SMBH. Future hydrodynamic simulations of multiple tidal interactions will enable realistic models on the
individual flare structure and the evolution over multiple flares.

Unified Astronomy Thesaurus concepts: Supermassive black holes (1663); Galaxy nuclei (609); Tidal
disruption (1696)

1. Introduction

Most massive black holes, such as Sgr A* at the center of the
Milky Way, are quiescent, accreting gas at a very low rate
(Ho 2008). Although its mass is 4× 106Me (Ghez et al. 1998;
Genzel et al. 2000), Sgr A* has a luminosity of only about 102 Le
(Baganoff et al. 2003), less than many individual giant stars. Yet,
massive black holes inhabit Galactic Center environments of
extreme stellar density (Böker 2008). In these galactic nuclei, stars
trace dangerously wandering orbits dictated by the combined
gravitational force of a central, supermassive black hole (SMBH)
and all of the surrounding stars (Alexander 2005). When the
occasional star plunges too close to the SMBH and is disrupted by
its tidal field (Hills 1975), it can fuel an extremely luminous
accretion flare (Rees 1988). Stars can be tidally disrupted at any
evolutionary stage and can include main-sequence (MS) stars and
evolved stars (MacLeod et al. 2012; Arcavi et al. 2014; Law-
Smith et al. 2017a). The accompanying flare is not only a
definitive sign of the presence of an otherwise quiescent SMBH
but also a powerful diagnostic of the properties of the disrupted
star (Lodato et al. 2009; Ramirez-Ruiz & Rosswog 2009;

Guillochon & Ramirez-Ruiz 2013) and particularly if the
composition of the debris can be inferred (Kochanek 2016;
Gallegos-Garcia et al. 2018; Mockler et al. 2022).
Observational surveys are now routinely discovering the

optical, X-ray, and radio counterparts of these events at rates of
tens per year (Komossa 2015; Auchettl et al. 2017; van Velzen
et al. 2021). The observed rates of tidal disruption events
(TDEs) hold important discriminatory power over both the
dynamical mechanisms operating in galactic nuclei and the
nature of their underlying stellar populations (French et al.
2020; Mockler et al. 2022). However, the dynamical mechan-
isms that feed stars into disruptive orbits remain highly
uncertain. There have been several theories in addition to the
standard two-body relaxation (Frank & Rees 1976; Magorrian
& Tremaine 1999; Stone & Metzger 2016) put forward to
explain the rates of TDEs, from an overdensity of stars near the
SMBH (Stone & Metzger 2016; Law-Smith et al. 2017b; Graur
et al. 2018), to star formation in eccentric disks around SMBHs
(Madigan et al. 2018; Wernke & Madigan 2019), to the three-
body interaction between stellar binaries and SMBHs
(Hills 1988; Sari et al. 2010; Cufari et al. 2022), to the
presence of SMBH binaries (Ivanov et al. 2005; Chen et al.
2009, 2011; Stone & Loeb 2011; Li et al. 2015). What these
theories share in common is that the disrupted stars come from
within the radius of influence of the SMBH. Deep in the
potential of the SMBH, these stars gravitationally interact with
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one another coherently, in contrast to two-body relaxation,
resulting in a much more rapid angular momentum evolution
(Rauch & Tremaine 1996; Kocsis & Tremaine 2015). In these
scenarios, disrupted orbits are more likely to be bound and
highly eccentric, which could give rise to periodic outbursts if
the star can survive (MacLeod et al. 2013; Nixon &
Coughlin 2022). These expectations have become more
relevant in light of the recently claimed repeated-flaring TDE
ASASSN-14ko (Payne et al. 2021). This recent detection and
its multi-flare characterization motivate our study of stellar
disruption in eccentric orbits.

In this paper, we explore via a hydrodynamical study how
mass fallback rates are expected to vary between the widely
studied parabolic case and the eccentric scenario in Section 3,
while Section 2introduces the problem analytically. In
Section 4, we compute the properties of eccentric TDE light
curves from our simulations, and use them to derive a
relationship between the time of the peak of the TDE flare
and the SMBH mass. In Section 5, we use this relationship to
predict whether a particular TDE flare is likely to repeat. While
our hydrodynamical study is restricted to individual passages,
in Section 6.2 we present a model aimed at constraining the
stellar structure of stars experiencing multiple tidal encounters.
Finally, our constraints on the nature of the star fueling
ASASSN-14ko are presented in Section 6 along with a
discussion of future prospects and lessons learned.

2. Setup of the Problem

When a disrupted star is initially in a parabolic orbit, as
assumed for canonical TDEs, roughly half of the stellar debris
is bound to the SMBH. However, repeating TDEs are
guaranteed to occur in eccentric orbits when the surviving
remnant and all of the disrupted material are bound to the
SMBH. This happens when the orbital eccentricity of the star is
below the critical value (Hayasaki et al. 2012)
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e
q

1 2 , 1cri
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where q≡MBH/M* is the mass ratio, and β≡ rT/rp is the
impact parameter of the encounter, the ratio of the tidal radius,
and the pericenter distance rp. In the case of a complete
disruption with e< ecri, all of the shredded material is bound to
the SMBH and is expected to end up being fully accreted. The
resultant TDE is predicted to drastically increase in luminosity
when the bulk of debris returns to the pericenter, which takes
place within approximately an orbital period for the center of
mass (CoM) of the disrupted debris (Dai et al. 2013; Hayasaki
et al. 2018; Park & Hayasaki 2020). For partial disruptions with
e< ecri, the majority of the star may survive multiple pericenter
passages and the decay rate after each disruption depends
crucially on the hydrodynamical evolution of the debris stream,
which is influenced by both the surviving core and the SMBH.
As the ratio between the tidal and self-gravitational forces
evolves persistently over the encounter, the relationship
between the distribution of binding energy across the star and
β is more intricate (Guillochon & Ramirez-Ruiz 2013) than the
one used to derive Equation (1). This means that simulations
are needed and they must cover far more than a few dynamical
timescales after the disruption, with the final functional form of
the mass return rate not being established until the star is many

hundreds of tidal radii away from the SMBH (Guillochon et al.
2011; Coughlin & Nixon 2019; Miles et al. 2020).
The disrupted material closest to the SMBH, i.e., the inner

tidal tail, returns to the pericenter ahead of the surviving core in
a partial disruption. When e< ecri, the outer tidal tail is also
bound to the SMBH. Part of the tail remains within the
surviving core’s Hill sphere, such that the material will be re-
accreted by the star within a few dynamical timescales. The
remaining tidal tail material will eventually return to the
pericenter, but since it is much less tightly bound to the SMBH
compared to the inner tail (which causes the major flare), it will
return long after the surviving core does. As a result, the mass
fallback rate is reduced, leading to a lower luminosity, and the
time interval between two consecutive encounters between the
stellar remnant and the SMBH is dictated by the orbital period
of the star rather than the fallback time, which is significantly
longer. After multiple flares, the material from the outer tails
will likely overlap and interact with each other. This could
generate a continuous level of low mass accretion between
flares (MacLeod et al. 2013). As such, the fallback of material
from the outer tails will probably generate a low-luminosity
background level of radiation with some mild degree of
variability. This is in sharp contrast to the fallback of material
arising from the inner tails, which is responsible for causing the
bright individual flares. Modeling the background radiation
requires simulations of multiple passages, which is beyond the
scope of this paper. In what follows we thus assume that the
mass fallback drastically terminates when the surviving core
returns to the pericenter, which is in contrast to the parabolic
case in which the accretion rate does not terminate abruptly but
continues to steadily decrease (Guillochon & Ramirez-
Ruiz 2013). In a repeating TDE, as shown in Section 3, we
expect a much steeper decay in the luminosity after each
encounter given the distribution of binding energies of the
material.
Still, when the eccentricity is close to unity, it is possible that

the debris structure after an eccentric tidal disruption remains
similar to those undergoing deformation in parabolic orbits,
even if the resultant light curves are much steeper and shorter
lived. To explore this scenario and estimate the degree of
distortion after an eccentric or parabolic disruption, we assess
the overall impact of tidal distortions with the time integration,
I, of the tidal force, FT(r)= 4GMBHR*/r
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as the star travels from the pericenter to the apocenter for
eccentric TDEs, or to infinity for parabolic ones. The relative
deviation in I with respect to the parabolic case is solely a
function of e because Keplerian orbits are scale-free. For a Sun-
like star, a 1% deviation in I requires an eccentricity
e1%= 0.9825, while a 5% deviation requires e5%= 0.9317.
Sizable deviations to the tidal deformation from cases in
parabolic orbits are only expected for eccentricities lower than
e5%.
In Figure 1, we show how ecri varies with the depth of the

encounter and the mass ratio between the SMBH and the
disrupted object assuming a Sun-like star. The two curves
correspond to the eccentricities e= e1% (dashed) and e= e5%
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(dashed–dotted). For stars undergoing eccentric disruptions
(e< ecri), only those in the region to the right of the dashed–
dotted curve (e1%< e< ecri) or dashed curve (e5%< e< ecri)
are similarly distorted to those in parabolic orbits, even though
the light curves can look dramatically different given the
expected differences in the orbital energy distribution of the
returning debris.

We note that a nonrelativistic approach is not applicable
when the pericenter distance rp is close to the event horizon of
the SMBH. For this reason, in Figure 1 we also plot the critical
eccentricities given β, q, and the stellar radius R*, at which
rp= 10 rg, where rg≡GMBH/c

2 is the gravitational radius.
When rp> 10 rg, studies on relativistic encounters (Cheng &
Bogdanovic 2014; Servin & Kesden 2017; Tejeda et al. 2017;
Gafton & Rosswog 2019; Stone et al. 2019; Ryu et al. 2020a)
have shown that the difference between the mass fallback rates
calculated in Newtonian and relativistic simulations is 10%–

20%. For more extended stars (such as evolved stars), our
analytical estimation remains applicable even for the more
massive SMBHs.

3. Simulations

3.1. The Need for Hydrodynamic Simulations

The analytical considerations presented in Section 2 provide
a useful framework for interpreting the results of hydrodynamic
simulations for Sun-like stars disrupted by an SMBH in
eccentric orbits. Hydrodynamic simulations are particularly
important for deriving the fallback rate ( )M t , which depends
sensitively on the binding energy distribution dE/dM of the
stellar debris as (e.g., Rees 1988; Evans & Kochanek 1989;

Phinney 1989),
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The surviving core and the material bound to it will not
contribute to the mass fallback (Lodato et al. 2009; Coughlin &
Nixon 2019; Law-Smith et al. 2019; Ryu et al. 2020b), and are
thus excluded from our calculations. Details on the binding
energy distribution and the structure of the debris before and
after disruption are discussed in Section 3.2.
In this paper we closely follow the approach of Law-Smith

et al. (2020) in the Stellar TDEs with Abundances and Realistic
Structures (STARS) library, which was used to evaluate the
mass fallback rate of MS stars disrupted by SMBHs. The
density profile and chemical abundances profile of a star are
modeled using the 1D stellar evolution code MESA (Paxton
et al. 2011). We use a Sun-like star model with zero-age MS
mass of 1Me, and an age of 0.445 Gyr, when the stellar radius
is roughly Re. The profile is then mapped into the 3D adaptive-
mesh refinement hydrodynamic code FLASH (Fryxell et al.
2000). The major difference with Law-Smith et al. (2020) is
that we place the CoM of the star in an elliptical orbit with a
given eccentricity rather than placing the star in a parabolic
orbit.
We study three impact parameters, β= 0.8, 1, 2. The critical

impact parameter of a full disruption βfull is ∼3 for a Sun-like
star in a parabolic orbit (Ryu et al. 2020b; Law-Smith et al.
2020). Our simulations thus cover a large variety of partial
disruptions and our results for the corresponding parabolic
encounters are completely consistent with those of Law-Smith
et al. (2020).
For a given β we test three simulation setups, whose orbits

were intentionally selected to describe the variety of stellar
disruptions expected around an SMBH with properties similar
to the one that powered ASASSN-14ko, whose mass, MBH, is
estimated to be around 7× 107Me

8 (Payne et al. 2021). The
three setups are (i) encounters in parabolic orbits; (ii)
encounters in eccentric orbits with a fixed orbital period of
114 days, which is the orbital period estimated for ASASSN-
14ko (Payne et al. 2021); and (iii) encounters in eccentric orbits
with a fixed eccentricity e= 0.9, well below e5%. For case (ii),
all three orbits tested, each with a different β for a Sun-like star,
have e> e1% (for β= 0.8, 1, 2, e= 0.9914, 0.9931, 0.9965,
respectively). We assume the orbit of the star to be Keplerian
and do not allow the orbital period or eccentricity to change,
since the period of ASASSN-14ko evolves rather slowly
(period derivative = - P 0.0017 0.0003; Payne et al. 2021).

3.2. Results

With the goal of paving the way for the presentation of our
numerical study, we employ the difference between the largest
and smallest specific binding energy across the debris as a
measure of the degree of tidal distortion, Δε. In Figure 2 we
plot the evolution of Δε during various tidal encounters. In all
cases, Δε is normalized by the typical energy dispersion of a
Sun-like star at its tidal radius, *d ºE GM R rBH T

2.

Figure 1. Critical eccentricity ecri from Equation (1), at which all the debris is
exactly bound to the SMBH, as a function of β and q. The dashed and dashed–
dotted curves correspond to the eccentricities e = e1% and e = e5%,
respectively. To the right side of the dashed curve, e1% < ecri always holds.
The same is true for e5% to the right of the dashed–dotted line. For stars in
elliptical orbits with e < ecri, only those in the region to the right of the dashed–
dotted curve (e1% < e < ecri) or dashed curve (e5% < e < ecri) are similarly
distorted to those in parabolic orbits. The two solid curves mark the critical β
given q at which the pericenter distance rp of a 1 Re (10 Re) star is 10 rg. When
the star is disrupted by a more massive SMBH, the relativistic effects cannot be
neglected.

8 We note here that our results are applicable to any nonrelativistic encounter
since all disruption quantities can be scaled with the BH mass (Guillochon &
Ramirez-Ruiz 2013; Mockler et al. 2019).
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The difference in the energy dispersion calculated for cases
(i) and (ii) is unnoticeable (0.5%), but case (iii) deviates
markedly from the parabolic case, showing an energy
dispersion that is larger by ∼4%. It is worth noting that in
simulations of the disruption of a star in an eccentric orbit, the
resulting tidal deformation is smaller than those predicted by
the energy-freezing model, which was used to calculate
Equations (1) and (2). This simple formalism predicts a
deviation 5% in the binding energy dispersion for e= 0.9
while we derive ∼4%. The reader is referred to Guillochon &
Ramirez-Ruiz (2013) for a complementary discussion of the
limitations of the energy-freezing model for parabolic encoun-
ters with varying β.

We plot the debris structure and energy distribution in
Figures 3 and 4. Shown are 2D snapshots of binding energy to
the SMBH in the debris shortly after the pericenter passage
time, tp. As illustrated in Figure 2, the energy dispersion across
the debris develops swiftly after the encounter, and converges
in a few dynamical timescales, * *( )ºt R GMdyn

3 1 2. So we
only show snapshots about 3 tdyn after tp.

In Figure 3, we show simulation snapshots at different times
for a fixed β but varying eccentricity. In Figure 4, on the other
hand, we show simulation snapshots for varying β taken at
2 tdyn after tp. To facilitate comparison, only the relative
binding energy with respect to the CoM of the debris, ΔE, is
displayed, which is again normalized to the typical energy
dispersion δE. In both figures, only the bottom panels with an
eccentricity well below the critical value show a significant
deviation when compared to the parabolic encounter.

For an eccentricity similar to that derived for ASASSN-
14ko, the disrupted star has a similarly shaped specific binding
energy distribution when compared to the parabolic case, even
though the mean value of the distribution has shifted
significantly. In this case, when approximating the binding
energy distribution with the simulation results for parabolic

encounters, the actual energy spread will be underestimated by
less than a few percent. This is no longer the case when e
approaches e5%. In these extreme cases, tailored simulations for
eccentric encounters are needed in order to derive dM/dE.
Intriguingly, when e> e5%, dM/dE can be easily calculated
from the parabolic library of stellar disruptions by making use
of the fact that the entire distribution has been shifted to the
star’s CoM,

⎜ ⎟
⎛
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= -E

G M

P2
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BH
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where P is the orbital period. The energy dispersion for an
eccentric disruption can then be derived by making use of the
following relation:

⎛
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⎞
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( ) ( ) ( )= -
dM

dE
E

dM

dE
E E , 5

0
CoM

where the subscript 0 denotes the original distribution in a
parabolic orbit, or when ECoM= 0. Figure 5 shows the shifting
of the distribution of specific energies. We adopt the dM/dE of
the inner tidal tail stripped from a Sun-like star in a β= 1
parabolic orbit from the STARS library, and shift it to match
that of an eccentric, 30 day orbit. Since the fallback time is
tfallback∝ |E|−3/2 due to Kepler’s third law, the tidal tail of an
eccentric TDE will return to the pericenter much faster than that
from a parabolic TDE. This formalism allows for light curves

Figure 2. Energy dispersion as a function of radial distance for different β and
e. For each case, we calculate the difference between the largest and smallest
specific binding energy, Δε, across the region above one critical density such
that ∼2/3 of the mass that is not in the self-bound core is encompassed. The
energy range is normalized by the typical energy dispersion for a Sun-like star.
In the upper panels, curves of different colors correspond to the normalized
energy dispersion after crossing the pericenter in (i) parabolic orbits (black); (ii)
orbits with a period of 114 days, or e = 0.9914, 0.9931, 0.9965 for β = 0.8, 1,
2 (red); and (iii) orbits with e = 0.9 (blue). In the lower panels, the deviations
from parabolic TDEs of the two eccentric cases are shown. The results are
smoothed with B splines. When the star has just passed the pericenter, the data
are too sparse for a valid B-spline fitting due to the extremely large orbital
velocity, so we simply assume the deviation is negligible at the pericenter, and
grows almost linearly when rp < r < 2.5 rp. This linear growth is shown in
dashed curves. Figure 3. Dispersion in specific binding energy to the SMBH in the stellar

debris for a fixed β = 1. Shown are the 2D projections weighted by density.
The three rows correspond to the cases in parabolic orbits (upper panels), orbits
with a period of 114 days (middle panels), and orbits with e = 0.9 (lower
panels). In each row, we show the snapshot for debris 1, 2, and 3 tdyn after the
encounter, respectively. For each snapshot, again we include ∼2/3 of the
stellar mass that is not self-bound. ΔE is the relative specific orbital energy
with respect to the CoM of the debris. The width of each snapshot is 12 Re.
Edges of the encompassed region are marked with vertical dashed lines.
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to be calculated using a library of parabolic simulations like the
one presented in Law-Smith et al. (2020) for a broad range of
stellar ages and masses.

We note that we only simulate the disruption of stars that
have not been tidally perturbed, meaning that we are modeling
the first pericenter passage since the unlucky star is captured. In
more general cases, the mass fallback from a star surviving
multiple encounters might not be well approximated by any
models in existing simulations for parabolic TDEs because the
stellar structure might have been significantly deformed. The
limitations of this individual encounter model and the need for
hydrodynamic simulations of multiple passages are discussed
in Section 7.2.

4. Mass Fallback Curves from Eccentric TDEs

The bolometric luminosity in an individual flare depends
sensitively on the mass fallback rate, and the dependence
reduces to an approximately proportional relationship if an
accretion disk is formed promptly or if the emission is mainly
liberated by shocks during the circularization processes such as
stream collisions within the infalling debris (Piran et al. 2015;
Bonnerot et al. 2016; Bonnerot & Lu 2020). If the radiation is
mainly accretion powered, two conditions have to be met: (i)
the accretion rate follows the mass fallback rate, meaning that
the tidally stripped material circularizes promptly after
returning to the pericenter, and the viscous delay in the
accretion disk is subdominant (see Section 6.5 for further
discussion of circularization and viscous delay); and (ii) the
luminosity follows the accretion rate, and the radiation
efficiency remains relatively constant during a flare. In optical

TDEs, fitting of multi-band light curves that make use of
theoretical mass fallback curves provides a reasonable
description of the total bolometric luminosity and shows that
the viscous delay is negligible in most, if not all cases (Mockler
et al. 2019; Nicholl et al. 2022). Motivated by this, in this
section we discuss the overall shapes and the typical timescales
of the mass fallback curves arising from eccentric TDEs. These
curves should provide a reasonable estimate of the bolometric
luminosity of the expected flaring events irrespective of the
dissipation process.
It is easy to scale the mass fallback rate ( )M t for parabolic

TDEs in the Newtonian regime. This is because the typical mass
fallback rate and flare timescale both depend on the SMBH
mass, the stellar mass, and the interior structure of the disrupted
star (Lodato et al. 2009; Ramirez-Ruiz & Rosswog 2009; Haas
et al. 2012; Guillochon & Ramirez-Ruiz 2013; Law-Smith et al.
2019; Ryu et al. 2020b, 2020c), such that

* *

* *( ) ( )
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- -
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
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M M M R

t M M M R
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. 6
BH

1 2 2 1 2

BH
1 2 1 3 2

For any SMBH mass, the mass fallback curves generally look
similar in shape, and the flare duration is proportional to the
peak time with respect to the disruption, tpeak.
When it comes to eccentric TDEs, however, the initial orbital

energy is nonzero, and one is not able to directly scale the light
curves. In particular, this requires us to examine tpeak and the
flare duration separately.

4.1. tpeak in Eccentric TDEs

Using the methods illustrated in Section 2, we adopted the
dM/dE9 in the STARS library to generate light curves for any
eccentricity above e5%. For simplicity, we fix β= 1. An
understanding of dM/dE allows one to use Kepler’s third law
to connect the orbital period with the eccentricity of the orbit:

( ) ( )p
= =
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GM
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e
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4 1
, 7

2

2
BH
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3
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2

where tdyn depends only on the stellar mass and radius and
there is a direct relation between P and e, which is independent
of MBH for tidal encounters with a fixed β value.
Figure 6 shows the dependence of the mass fallback rate M

with the orbital period for a fixed mass of the disrupted SMBH.
In the upper panels, each curve corresponds to one orbital
period, including the parabolic one (solid black). For e= e5%,
the corresponding orbital period is 6.5 days. All the orbital
periods we show in Figure 6 are above this critical value. Each
column in the upper panels has a unique central SMBH mass
MBH. With a fixed MBH, for lower eccentricity, tpeak and the
duration of a TDE flare both decrease, and therefore the
maximum fallback rate, as well as the peak luminosity,
increases due to mass conservation, as in all cases we have
the same amount of mass stripped from the star.
A rough estimate of tpeak is given by the fallback timescale of

the most bound debris, which lies deepest in the potential of the
SMBH. Compared to the CoM of the star, this most bound

Figure 4. Dispersion in specific binding energy in the stellar debris 2 tdyn after
the encounter. Shown are the 2D projections weighted by density. The three
rows again correspond to the cases in parabolic orbits (upper panels), orbits
with a period of 114 days (middle panels), and orbits with e = 0.9 (lower
panels), below the critical eccentricity e5%. For each column, β = 0.8, 1, and 2,
respectively. We use the same density threshold selection and the same
notations as that in Figure 3.

9 The dM/dE is extracted at the end of each simulation after running for
100 tdyn ≈ 1.8 days, when the hydrodynamical effects in the tidal tails have
ceased to be dominant.
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material has a relative binding energy of ∼δE, such that
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Fixing P to be constant, the relation is not self-similar, although
tpeak still monotonically increases as q is augmented. For the same
q, tpeak quickly drops if P decreases, especially for higher mass
ratio TDEs (Figure 6). As such, for eccentric TDEs, we are no
longer able to simply rescale the mass fallback rate with MBH.

4.2. Duration of Individual Flaring Events

The duration of individual flaring events in repeating TDEs,
defined as the time that the mass fallback rate is above a given
value, also depends on MBH and P. In practice, we use the e-
folding full widths (where dM/dE is greater than 1/e of its
peak value) of the energy distribution of the tidal debris in
terms of the fallback time to characterize the duration of the
flare, shown as the shaded regions in Figure 5. We define the
specific binding energy at the inner and the outer edge of the
shaded region as E− and E+. Then when the mass of the
SMBH is fixed, varying the orbital period of the TDE will not
change (E+− E−), i.e., the full width of the energy distribution.
The duration tw (defined as the difference between the
corresponding fallback times for E+ and E−), however, is
proportional to (∣ ∣ ∣ ∣ )-+

-
-

-E E3 2 3 2 . For long period repeat-
ing TDEs, the timescale of the individual flares is well
described, as in the case of parabolic encounters, by
Equation (6). As such, the flare duration depends on the mass
ratio q, and goes as ∝q1/2. However, when the orbital period is
shorter, the fallback curves are significantly altered and the
individual flares show a steep decline at times close to the
orbital period P. This effect is more pronounced at high q
values, as individual flares peak at progressively later times as
q increases. In this regime, the duration of individual flaring

events does not increase monotonically with q any longer. To
explain this complicated dependence on q, we first note that
both P(E+) and P(E−) still increase for more massive SMBHs
whose behavior should be similar to that of tpeak, which is
characterized by Equation (8). This means that for a sufficiently
large q and a sufficiently small e, P(E+) would be
asymptotically approaching its upper limit, the orbital period
P of the star, and then become insensitive to the change of q.
Once P(E+) gets saturated while P(E−) keeps increasing for
larger q, tw starts to decrease. This is clearly illustrated in
Figure 5. While the tw in parabolic TDEs monotonically
increases for more massive SMBHs (black shaded regions), for
eccentric TDEs of a short orbital period of 30 days and when
MBH> 106Me, P(E−) increases faster than P(E+) for more
massive SMBHs as the latter gets saturated, and tw starts to get
shorter. Then in the bottom panel of Figure 6, we compare the
duration of the mass fallback for a wider range of models to
further illustrate the complicated dependence of the light curves
with q. As the period decreases from years to days,
progressively less massive black holes start deviating from
the characteristic q1/2 scaling, and as such, begin to have
progressively shorter duration flares. In the extreme case of a
very short orbital period (e.g., 7 days as shown in Figure 6), the
shape of the light curve is altered so significantly that more
massive SMBHs have shorter duration flares. For intermediate
values of P, the eventual resulting light curves for repeating
TDEs are thus expected to depend fairly strongly on the
combination of MBH and P.
There is a positive and a negative side to this. On the

negative side, this implies that one might be unable to
accurately estimate the mass of the SMBH using the properties
of the light curve (as done effectively for non-repeating TDEs
by Mockler et al. 2019; Nicholl et al. 2022), in particular for
rapidly repeating flares. On the positive side, when we identify
a flare whose duration is shorter than the one predicted by
parabolic encounters, which requires an independent estimate
of MBH, we can be fairly certain that the flare is likely to repeat.

Figure 5. The distribution of specific binding energies in eccentric TDEs (Equation (5)). Here we show how shifting the specific binding energy changes the duration
of the flare. We adopt the dM/dE of the inner tidal tail from a Sun-like star in a β = 1 parabolic orbit around an SMBH of 106 Me from the STARS library (black
curve in the center panel). The least bound material in the tail has a specific binding energy of zero; thus, the fallback time tfallback is infinity. The blue curve has exactly
the same shape as the black one, but the stripped star is on an eccentric, 30 day orbit, so the least bound material has a tfallback = 30 days. The corresponding tfallback for
different E are labeled in the axes on the top. In the left (right) panel, we rescale the parabolic result for a 105 Me (107 Me) SMBH following Equation (6), then again
shift it to match that of a 30 day orbit. The shaded regions show the e-folding full widths of dM/dE, where dM/dE is greater than 1/e of its peak value. When shifted
to eccentric orbits, dM/dE retains its width in terms of E, but shows a much smaller width in terms of tfallback (defined as tw), indicating a shorter duration of the mass
fallback.
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This encourages us to present a detailed account of the
properties of TDEs that might allow identifying repeating
sources solely on the properties of an individual flare detection.

5. Phase Space of Repeating Flares

We have shown that repeating TDEs in eccentric orbits
exhibit shorter and potentially brighter flares compared to the
widely discussed parabolic encounters. In this section, we
demonstrate that repeating and single TDEs can be distin-
guished by using the properties of the light curve of a single
flare. In particular, we show that for P 1 yr, the expected
light-curve changes are noticeable enough in order to
effectively predict that a TDE will recur.

For parabolic encounters, the peak timescale can be used to
constrain the mass of the disrupting SMBH, given that the
luminosity in TDEs closely follows the mass fallback rate
(Mockler et al. 2019). Though tpeak also depends on β and the
properties of the disrupted star, these dependencies are not as
strong. Law-Smith et al. (2020) show, for example, that for MS
stars of varying masses, stellar ages, and β values disrupted by an
SMBH in a parabolic orbit, tpeak varies only by 4. For eccentric
TDEs tpeak should also only weakly depend on the stellar structure
of the disrupted star, due to the minute changes expected in
binding energy distribution throughout the debris when compared
to parabolic encounters.

In Figure 7, we show tpeak as a function of MBH for the
disruption of Sun-like stars with β= 1 in orbits with varying
periods. As shown above, for stars disrupted in eccentric orbits
at a fixed MBH, tpeak monotonically decreases with decreasing
P. For reference, the same orbital periods as in Figure 6 are
shown. As highlighted by Mockler et al. (2019), tpeak
monotonically rises for parabolic encounters with increasing

MBH and the pink-shaded region shows the variation in tpeak
expected for Sun-like stars with a wide range of β values. This
range is calculated from a rather grazing passage (β= 0.5) to
an extremely deep encounter leading to a full disrup-
tion (β= 4).
We plot in Figure 7 the tpeak and MBH values derived for 14

optical TDEs from Table 2 in Mockler et al. (2019) as red dots.
In these cases, tpeak and MBH were estimated with Modular
Open Source Fitter for Transients (MOSFiT). The SMBH
masses in these events range from 106–108Me. The data can be
found in the Open TDE Catalog (Auchettl et al. 2017;
Guillochon et al. 2017) and the detailed selection criteria are
described in Section 3.1 of Mockler et al. (2019).
All these events, as expected, land within the shaded region

in the tpeak−MBH phase space of the disruption of a Sun-like
star, even though the disrupted stars vary in stellar mass and
age (Mockler & Ramirez-Ruiz 2021; Mockler et al. 2022).
When tpeak lies below this shaded region, as in the case of
ASASSN-14ko, the unlucky star is only consistent with having
been disrupted by the SMBH in an eccentric orbit, and as such,
is predicted to repeat in the future. It is important to note that in
order to predict a repeating event, the MBH needs to be
independently inferred, using, for example, the host galaxy
properties. If the SMBH causing the TDE is massive
(MBH 107Me), then the tidal radius of a Sun-like star would
be close to the event horizon. In this case, the mass fallback
rates in the STARS library, which are based on nonrelativistic
simulations, are no longer accurate. In Figure 7 we show the
critical SMBH masses for a Sun-like star (1Me, 1 Re), a
massive MS star (10Me, 8.4 Re),

10 and an evolved star (1Me,

Figure 6. Mass fallback curves from a Sun-like star being disrupted by an SMBH in a variety of eccentric orbits. In all cases β = 1. Top: the SMBH mass is fixed in
each panel (105, 106, 106.5, 107 Me), and the orbital period is varied (7 days, 30 days, 100 days, and 1 yr). Black curves correspond to the widely discussed parabolic
encounters. Bottom: the orbital period is fixed in each panel, and the SMBH mass is varied. For each curve, the fallback rates are normalized to their maximum value.
In order to highlight the differences in the shape, the M curves are aligned based on their tpeak values.

10 This corresponds to the parameters of the most massive star in the STARS
library.
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10 Re), defined as where we expect rT� 10 rg. Since
r̄µ -rT

1 3, lower-mass MS stars undergo strong relativistic
effects when disrupted by an SMBH 107 Me. However, the
critical SMBH mass for strong relativistic effects can be larger
for heavier MS stars and significantly larger for evolved stars.
Although relativistic effects do not significantly alter tpeak
(Stone et al. 2019), our estimate of tpeak using the STARS
library is not extremely accurate when the encounter is
relativistic. In addition, when tpeak is present within the slash-
line region in Figure 7, the corresponding orbital eccentricity is
below e5% and we are thus unable to effectively estimate tpeak
using dM/dE extracted from simulations of parabolic TDEs.
Having said this, we expect the vast majority of repeating flares
to exist well above the slash-line region and be effectively
described by using the results of parabolic TDE libraries (e.g.,
Guillochon & Ramirez-Ruiz 2013; Law-Smith et al. 2020).

6. Lessons Learned from ASASSN-14ko

Here we discuss the corresponding ramifications of our
findings in the context of the recently observed ASASSN-14ko.
While repeating nuclear transients have been unveiled,
ASASSN-14ko is arguably the most convincing case for being
triggered by the disruption of a star in an eccentric orbit. Other
events that have been claimed to potentially been associated
with repeating TDEs include HLX-1 (Lasota et al. 2011;
MacLeod et al. 2016; van der Helm et al. 2016; Wu et al.

2016), IC 3599 (Campana et al. 2015; Grupe et al. 2015),
OGLE16aaa (Shu et al. 2020), and eRO-QPE1&2 (Arcodia
et al. 2021; Zhao et al. 2022).

6.1. Constraints Derived from Light-curve Fitting

We have shown how the mass fallback curves can be
reshaped by putting the disrupted star on eccentric orbits. In
this section, we use MOSFiT (Guillochon et al. 2018) to
describe the multi-band light curves of ASASSN-14ko, with an
attempt to constrain the properties of the system. The model
takes FLASH simulations of the mass fallback rate of Sun-like
stars (Guillochon & Ramirez-Ruiz 2013) as inputs to fit TDE
observations. Details can be found in Mockler et al. (2019).
The fitting routine was modified for eccentric TDEs and the
orbital period was introduced as a new free parameter, where
the distribution of debris mass dM/dE as described in
Equation (5) was shifted before converting it to the mass
fallback rate using Equation (3). We note that the fallback rates
in MOSFiT originate from simulations calculated using
Newtonian gravity. In Sections 6.2 and 6.3 we will show that
this assumption is valid for ASASSN-14ko.
We select the flare on 2018 November around

MJD= 58436, which was monitored by Transiting Exoplanet
Survey Satellite (TESS; Ricker et al. 2015) and All-Sky
Automated Survey for Supernovae (ASAS-SN Shappee et al.
2014; Kochanek et al. 2017) at the same time (Payne et al.
2021). In Figure 7, we show the best fit for tpeak and MBH of
ASASSN-14ko in the phase space of parabolic and eccentric
TDEs (black dot). As argued before, the comparatively shorter
tpeak of the 2018 November flare of ASASSN-14ko, despite its
relatively large MBH, is clearly consistent with this event being
a repeating TDE.
The general structure of the light curve in the ASAS-SN g

and TESS bands can be effectively described by the
nonrelativistic tidal disruption of a star by an SMBH on an
eccentric orbit. Yet, MOSFiT is unable to effectively model the
steep rise of the light curve with the available library of
hydrodynamic simulations. The bluer g-band flux also drops
faster than that in the TESS band, showing significant
decrement in the photospheric temperature after the luminosity
has reached its peak. This is in contrast with what is observed
in other optical TDEs (Mockler et al. 2019).
Figure 8 shows the mass fallback rates, which are expected

to follow the bolometric luminosity, for the most grazing
disruptions (β� 1 and ΔM/M� 0.1) in the STARS library
(Law-Smith et al. 2020), where the distribution of debris mass
dM/dE has been shifted for an eccentric orbit with P= 114
days. Law-Smith et al. (2020) found that the rising slope of the
mass fallback curve mainly depends on the impact parameter β
and the ratio of the central and mean density ¯r rc , which
characterize how centrally concentrated the star is. In the
upper/lower panels, the theoretical mass fallback curves are
colored coded based on the two parameters. For these most
grazing events in the STARS library, we find that the rising
slope has a stronger dependency on β than that on ¯r rc . As has
been pointed out in Law-Smith et al. (2020), low-β encounters
show the steepest rises in M , since only the outermost layers of
the star are stripped. In such cases, the spread in binding energy
in the outer layers is relatively narrow, which means all the
material falls back to the pericenter within a similar timescale.
Together with the mass fallback curves, we also plot the
normalized flux in the TESS and ASAS-SN g bands of the

Figure 7. The relation of tpeak andMBH for events triggered by the disruption of
Sun-like stars. The pink-shaded region corresponds to parabolic TDEs of
varying masses, ages, and β values. We show the best fit for 14 TDEs from
Table 2 in Mockler et al. (2019) using MOSFiT as red dots. The colored
curves, on the other hand, show the effects of eccentricity as characterized by
the orbital period (7 days, 30 days, 100 days, and 1 yr). We also show the best
fit for tpeak and MBH for ASASSN-14ko (black dot). In this case, we use the
estimate for MBH from Payne et al. (2021) derived from the galaxy host
properties. TDEs in the region filled with slash lines have e � e5%, and the
corresponding tpeak cannot be evaluated using the simulation results of
parabolic disruptions. The dotted, dashed–dotted, and dashed vertical lines
(from left to right) mark the SMBH masses at which the tidal radius rT of a
Sun-like star (1 Me, 1 Re), a massive MS star (10Me, 8.4 Re), and an evolved
giant star (1 Me, 10 Re) is equal to 10 rg. For more massive SMBHs (in the
shaded regions), the relativistic effects cannot be neglected.
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2018 November flare, with the caveat that the luminosity in
broadband optical filters is not equivalent to the bolometric
luminosity.11 Unfortunately, we do not have high-cadence
ultraviolet (UV) observations during the 2018 November flare
to constrain the bolometric light curve. ASASSN-14ko shows
an unusually fast rise in the TESS and ASAS-SN gbands. In the
TESS light curve (which has a higher cadence), the brightness
increased by a factor of ≈20 in only ≈6 days. We expect the
rise in the optical light curve to be slower than the rise in the
bolometric luminosity because the temperature cools near the
peak (Payne et al. 2021), so we conclude that none of the
encounters in the STARS library could reproduce the rising

slope of ASASSN-14ko. Nonetheless, extrapolating the mass
fallback curves to those from lower-β encounters could
potentially fix this discrepancy. Currently, both the library in
MOSFiT and the STARS library have a minimum impact
parameter of β= 0.5. The hydrodynamical modeling of more
grazing encounters requires higher spatial resolution, and as
such, is more computationally expensive. Another reason that it
is difficult to reproduce the rise of ASASSN-14ko is that the
structure of the disrupted star is expected to be modified over
multiple passages and is likely to be significantly altered. A
more accurate description of the light curve thus requires
hydrodynamic simulations of stars experiencing multiple
passages, which are difficult to model. That being said, we
expect the leading order changes to the light curve to come
from β, not the stellar structure (see Figure 8).

6.2. Flare Evolution Over Multiple Passages

After an orbit in which the star experiences a partial
disruption, some of the envelope material is removed while
some remains marginally bound to the stellar core. The material
that is bound is then re-accreted over a few dynamical
timescales, which results in the surviving star possessing a
hot outer layer envelope. The process of disruption and the
subsequent re-accretion produce a star that has a lower average
density and a shallower density profile, which makes the star
more vulnerable to tidal deformation on subsequent passages.
This regime where stars in an eccentric orbit lose some mass in
their first encounter and are only completely destroyed after a
large number of passages is largely unexplored with simula-
tions. The reader is referred to Antonini et al. (2011) and
Guillochon et al. (2011) for multiple-passage simulations of
stars and planets, respectively. There has also been no
hydrodynamical modeling of the TDE light curves from
multiple-passage encounters, which limits our ability to extract
information from the observations.
The goal of this section is to make use of the simple semi-

analytical model developed by MacLeod et al. (2013) to gain a
deeper physical interpretation of observations of repeating
TDEs. This formalism, which is formally introduced in
Section 7.2, uses an analytical model combining the degree
of mass loss from former hydrodynamic simulations of single
passages and evolves the stellar structure adiabatically. At each
pericenter passage, the star loses some of its mass and is
subsequently restructured under the assumption that it will be
completely relaxed after a few dynamical timescales (usually
much shorter than the orbital period). Since the star’s orbit is
essentially unchanged, we can determine the mass loss at each
encounter once we know how the stellar structure evolves as a
result of the ensuing mass loss.
Figure 9 shows the predicted evolution of the mass stripping

for stars undergoing multiple tidal encounters with an SMBH.
The different curves correspond to evolved stars (with different
core mass fractions as indicated in the legend) and a Sun-like
star (black curve). In all models, the stars have the same mass.
The vulnerability of stars depends sensitively on the core mass
fraction, with stars without cores being the most vulnerable and
being destroyed rapidly. In all models with an initial core mass
fraction less than 0.5, as the star loses mass to the SMBH, its
radius increases and it becomes increasingly more vulnerable to
tidal disruption. After a few passages, usually when the core
mass is comparable to the envelope mass, the star’s radius
shrinks as the envelope is depleted. A comparison with

Figure 8. Mass fallback rates for all partial disruption models in the STARS
library with β � 1 and ΔM/M � 0.1, where the dM/dE distribution has been
shifted for an eccentric orbit with P = 114 days. These curves are expected to
provide a reasonable description of the bolometric luminosity of TDEs
(Mockler et al. 2019). In the upper (lower) panel, the mass fallback curves are
color coded based on the β ( ¯r rc ) adopted in the corresponding models. As a
reference, the normalized multi-band light curves of the 2018 November flare
are overplotted, though they do not strictly follow the bolometric luminosity
(thus the mass fallback rate). The orange (green) stars correspond to the light
curves in the TESS (ASAS-SN g) band.

11 The spectral energy distribution (SED) of ASASSN-14ko peaks in the UV
(Payne et al. 2021), such that optical photometry only captures radiation on the
Rayleigh–Jeans tail of the SED. As the photosphere cools down, the SED
peaks progressively redward, and thus the light curves from optical filters
would have a slower rise/decay and peak later than the bolometric luminosity,
as well as the mass fallback curve.
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ASASSN-14ko shows that the amount of mass estimated to
have been accreted from passage to passage does not markedly
increase or decrease over the past ∼20 flares, insinuating the
disruption of an evolved star with a high core mass fraction. It
is to this issue that we now turn our attention.

6.3. Constraints on the Structure of the Disrupted Star

In the first 12 flares since ASASSN-14ko was discovered
and identified, ASAS-SN monitored eight of the light curves in
the V band. From the 13th flare on, ASAS-SN started
monitoring them in the g band. Making use of this data we
deduce the accreting mass loss ΔM in each flare, which we
assume is directly related to the mass loss of the star. The
normalized ΔM for each flare is overplotted in Figure 9. To
estimate the bolometric luminosity, we fit the light curve in
either the ASAS-SN V band or g band for each flare in order to
derive the corresponding single band luminosity. We assume
blackbody radiation and a constant emitting photosphere
temperature throughout each flare, T= 104.5 K, which was
derived from the multi-band observation of the 2020 May flare
(Payne et al. 2021). The radiation efficiency is also assumed to
remain constant ò= 0.01 (Jiang et al. 2016; Dai et al. 2018).
But since we focus on the trend of the evolution over multiple
flares in this section, the value of this constant will have no
impact on our results. As shown in the left panel of Figure 9,
the analytical flare evolution models are normalized to the mass
loss estimated from the first flare. The observed ΔM (normal-
ized by the estimated ΔM in the first observed flare to get rid of
the impact due to the uncertainty in ò) clearly oscillates, while
the average ΔM over every six consecutive flares shows no
significant variation. If ASASSN-14ko emerged near the time it
was first detected, the lack of evolution of ΔM from flare to
flare would rule out the disruption of an evolved star with a

core mass fraction 0.3. This is because these models predict
an increase in ΔM by a factor of 2 over the first 20 flares,
which is clearly not observed. Because ASAS-SN was not able
to constrain the emergence of the event (Payne et al.
2021, 2022b), we also show the results for the most
conservative model, in which the evolution of the mass loss
in all the models is the slowest. This corresponds to observing
the event near the peak (right panel of Figure 9). While a higher
core mass fraction is still preferred by the data, for a star with a
core mass fraction of 0.3, ΔM is only reduced by 30% with
respect to its peak, which is in marginal agreement with the
observations. Models with a core mass fraction <0.3 are still
not consistent with the observations. Beyond our simple
adiabatic model, hydrodynamics (see Section 7.2) and potential
relativistic effects (e.g., Gafton et al. 2015) only increase the
fraction of the mass loss ΔM/M in each encounter and thus
accelerate the evolution of the disruption. In conclusion, an
evolved star with a core mass fraction 0.3 is likely needed to
reproduce the flare evolution of ASASSN-14ko.
If ASASSN-14ko originates from an evolved star, it will not

experience strong relativistic effects. Near an SMBH of
≈ 7× 107 Me, the tidal radius rT of a Sun-like star is

≈2.8 rg, indicating a highly relativistic encounter even for
grazing interactions (β 0.5). But for an extended star, the
tidal radius can be much greater. MacLeod et al. (2012) used
MESA to simulate a solar-metallicity star of 1.4Me and found
that the core mass fraction will not reach 0.3 until the star
evolves and reaches the tip of the red giant branch. The core
mass fraction then keeps increasing following the star’s
evolution track through the horizontal branch (HB) and the
asymptotic giant branch (AGB), and for most of the time when
the core fraction is 0.3, the star stays in the HB and has a
typical radius of ≈10 Re. The characteristic tidal radius is then
a factor of ≈10 larger than that of a Sun-like star, or more

Figure 9. Evolution of mass-loss rate for stars experiencing multiple tidal disruption episodes. The models evolve the stellar structure adiabatically and calculate the
degree of mass loss at each passage based on the results of hydrodynamic simulations. The mass loss in the models is normalized to the first flare (left panel) and the
strongest predicted flare (right panel). The curves correspond to the episodic mass transfer from evolved stars with different core mass fractions and a Sun-like star
(black curve). All stars have the same mass. The evolved stars are modeled with nested polytropes while the Sun-like star is modeled as a single polytrope (black
curve). The polytropic index γ of the envelope is set to be γ = 5/3. We overplot the normalized mass-loss rate in each flare of ASASSN-14ko, obtained by fitting the
light curves in the ASAS-SN V band or ASAS-SN g band as gray dots. The red dots correspond to the average of the consecutive four flares. To estimate the overall
mass loss, for simplicity, we assume blackbody emission, no temperature evolution, and a constant energy conversion efficiency ò.
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specifically, rT≈ 28 rg. And for grazing encounters with small
β, as expected for ASASSN-14ko (β 0.5), the actual rp
would be 50 rg. We thus argue that for ASASSN-14ko, the
relativistic effects are not significant.

AGB stars have an even higher core mass fraction (≈0.5)
and more extended envelopes (∼102 Re). But such a large
stellar radius would be problematic because rT would be
comparable with the semimajor axis of a 114 day orbit
(rT≈ a≈ 3× 1015 cm), which means the orbit is nearly
circular. In this case, the mass transfer would resemble Roche
lobe overflows in stellar binaries, and we would expect
continuous emission instead of periodic flares.

6.4. Constraints on the Stellar Mass

An estimate for the total mass of the disrupted star can be
obtained by summing over all of the ΔM from past flares,
although the outcome will depend sensitively on radiation
efficiency. Adopting a typical value of ò= 0.01, the mass
fallback to the SMBH is about 0.04–0.08Me for each flare,
which is consistent with that expected for grazing encounters of
evolved stars with tenuous envelopes. The total mass loss
deduced from all observed individual flares is thus 1Me,
which provides us with a rough lower limit on the stellar mass.

Such a low mass-loss rate may draw concerns that there
might not be sufficient material surrounding the SMBH in
order to effectively reprocess the energetic photons from the
accretion disk and generate the observed optical emission. To
estimate the optical depth, we adopt the accretion disk-powered
wind model presented in Roth et al. (2016; and similar to the
calculations in Dai et al. 2018), which provides an estimate for
the opacity needed to effectively reprocess the high-energy
radiation. This reprocessing model also qualitatively applies to
flares whose emission is powered by stream collision (e.g., Lu
& Bonnerot 2020; Bonnerot et al. 2021). The density profile in
such a wind-driven outflow is assumed to be proportional to
1/r2,12 such that the optical depth through the wind can be
written as

( )t
k
p

=
M

r r4
. 9T

T env

in out

where κT is the Thomson opacity for electron scattering,
Menv≈ΔM is the mass of the outflow, and rin and rout are the
inner and outer radius of the wind. Payne et al. (2022a)
estimated the blackbody radius of the photosphere during a
single flare using UV data, which expands from 1014.2–1014.9

cm as the luminosity rises to its maximum. This means rin of
the reprocessing layer where the wind originates is 1014.2 cm
and rout≈ 1014.9 cm when the UV luminosity reaches its peak
value. This yields τT≈ 20(ΔM/0.05Me), which is sufficient to
reprocess a significant fraction but not all of the radiation
emanating from the hotter disk (τT 20; Roth et al. 2016).
This is consistent with the detection of the accompanying X-ray
emission in this event (Payne et al. 2022b). While we do not
seek to model the radiative transfer process in detail, this
simple estimate shows that such a low stripped mass per
encounter is broadly consistent with the observations and
implies that our assumption for the radiation efficiency ò= 0.01

is also reasonable. If ò is significantly higher, we would expect
a much smaller ΔM, which will be insufficient to reprocess the
high-energy radiation.

6.5. Constraints on the Mean Stellar Density

The central concentration and average density of the
disrupted star have a strong impact on the duration and shape
of TDE light curves (Law-Smith et al. 2020). Similarly, in the
repeating TDE case, the duty cycle (defined as the ratio of the
flare duration and the recurrence period) depends sensitively on
the stellar density. According to the hydrodynamic simulations
presented in Law-Smith et al. (2020), given the SMBH mass,
the mass fallback timescale depends mainly on the impact
parameter β and on the central concentration of the star ¯r rc .
Practically, we can approximate the duration of the flare as the
timescale between the peak and when the least bound material
returns to the pericenter (given that the rise timescale is very
short). And since the least bound material returns to the
pericenter at about an orbital period, P, the duration for each
flare can be approximated as P−tpeak. The duty cycle D is
roughly given by

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

-

= - +
- -

D
t

P

t

P

1

1 1 , 10

peak

peak,0
2 3 3 2

where tpeak,0 is the corresponding peak timescale for a star in a
parabolic orbit with the same pericenter distance. Since, on
average, each flare lasted for 55 days (Payne et al. 2021), D
has a lower limit of ∼0.48. Law-Smith et al. (2020) provided
an analytical formula for tpeak at any β 0.5 and ¯r r  10c

3.
Adopting β= 0.5, we find the estimated duty cycle using
Equation (10) increases for higher ¯r rc because the mass
fallback rates of more centrally concentrated stars tend to peak
earlier. Increasing ¯r rc from the solar value (≈102) to the
maximum in the STARS library (≈103), D increases from 0.32
to 0.38, still fairly far from the observed quantity. Since Law-
Smith et al. (2020) did not perform simulations for evolved,
giant stars, their empirical fitting formula might be inaccurate
for ¯r r  10c

3. Nevertheless, this unusually high duty cycle
again indicates an evolved star whose envelope has bloated by
a factor of few when compared to a mildly evolved Sun-like
star ( ¯r r » 10c

2).
The possible delay due to circularization also influences the

flare (e.g., Guillochon et al. 2014). The stripped material bound
to the SMBH falls back to the pericenter at a rate given by
Equations (3) and (5). The returning gas does not produce a
flare immediately, but needs to be circularized and form an
accretion disk before falling into the SMBH (e.g., Ramirez-
Ruiz & Rosswog 2009; Bonnerot et al. 2017, 2021; Andalman
et al. 2022). Once the gas enters a quasi-circular orbit, which is
drastically aided by general relativistic effects (Guillochon &
Ramirez-Ruiz 2015; Bonnerot et al. 2021), it will be accreted
within a viscous timescale. The viscous timescale is usually
short compared to the typical orbital timescale of the bulk of
the stellar debris (Rees 1988; MacLeod et al. 2012). However,
when the delay due to circularization is comparable to the
fallback timescale, the resulting TDE light curve will be
drastically flattened (Mockler et al. 2019), resulting in a much

12 If the reprocessing layer is fully supported by radiation pressure, the density
profile would be proportional to 1/r3 (e.g., Loeb & Ulmer 1997), leading to
slightly higher opacity.
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shallower rise in luminosity than the one observed in
ASASSN-14ko. In addition, the bright, fast evolving X-ray
emission in ASASSN-14ko (Payne et al. 2022a, 2022b) also
indicates efficient disk formation. Hence, for ASASSN-14ko,
the circularization delay and the viscous timescale are both
expected to be negligible. Since the pericenter distance rp is
expected to be 50 rg, the relativistic precession is likely not
effective in driving the circularization process. Dissipation with
disrupted material from previous passages accumulated near
the pericenter might accelerate disk formation. The ratio of the
viscous timescale to the orbital period of the progenitor
(P= 114 days) is given by MacLeod et al. (2012) as

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
*¯

¯
( )b a r

r
-

- - -




t

P
10

0.5 0.1
, 11vis 2

3 2 1 1 2

where we have adopted a standard α-disk model (Shakura &
Sunyaev 1973) and assume a geometrically thick disk
(H/R)2≈ 0.1 as expected for a TDE (e.g., Dai et al. 2018).
For an evolved star with only one percent of the solar density,
the viscous delay should still be relatively short, provided
circularization occurs promptly. An even lower mean density
might be difficult to reconcile with the observations, and a
lower limit of the rise timescale would then be set by the
viscous delay rather than the mass fallback timescale.

7. Synopsis and Conclusions

7.1. Summary

1. A star in an eccentric orbit around an SMBH can be
tidally stripped at each pericenter passage, leading to a
repeating TDE. Making use of both analytical and
hydrodynamical methods, we show that the overall tidal
deformation of a star is similar for both eccentric and
parabolic orbits, when the orbital eccentricity is above a
particular critical value (Figure 1). This allows one to
directly calculate the mass fallback rate using existing
simulation results for parabolic TDEs (Figure 6).

2. The structure of flares in repeating TDEs is studied here
using models for the disruption of Sun-like stars from the
STARS library (Law-Smith et al. 2020). Unlike parabolic
TDEs, whose peaking timescale with respect to the
disruption is µMBH

1 2, eccentric TDEs show more
complicated light curves, with tpeak depending on both
MBH and P. Still, tpeak monotonically increases with q,
but cannot exceed the orbital period of the star. For stars
orbiting SMBH in relatively short orbital periods, tpeak
will approach P, and the mass fallback will be
significantly squeezed. As such, we expect rather short
duration flares for a given SMBH, whose light curves will
be clearly distinguishable from parabolic TDEs. The
presence of such short-lived flares can then be used to
predict repeating sources for SMBH whose mass can be
independently measured (Figure 7).

3. The evolution of the structure of a star experiencing
multiple disruptions is studied by assuming mass loss
takes place adiabatically, which we argue provides a
robust upper limit to the survivability of the star. Using
this formalism we conclude that only evolved stars are
able to produce more than tens of flares before full
disruption. The survivability of stars depends crucially on
the core-to-envelope mass ratio, with stars with tenuous

envelopes being able to persist for up to hundreds of
passages (Figure 9).

4. The repeating TDE candidate ASASSN-14ko (Payne
et al. 2021) is discussed within the theoretical framework
outlined in this paper. ASASSN-14ko shows recurrent
flares every ∼114 days since its discovery in 2014
November. Our mass fallback rate libraries adapted to
eccentric orbits (MOSFiT and STARS library) are able to
qualitatively describe the bolometric luminosity of the
best sampled flare (Figure 8). Yet, these unperturbed
models are not able to effectively capture the steep rise of
the best sampled flare. This is not surprising as we expect
the outer layers of the stars to be drastically altered from
previous encounters and be highly vulnerable to grazing
encounters. Since stars with lower β show steeper rises,
we expect rapidly raising light flares from these inflated
stars on fairly grazing orbits. In addition, the survival
after over 20 flares, the observed mild flare luminosity
evolution (Figure 9), and the relatively long duty cycle all
favor a moderately massive (M 1Me), extended (most
likely ∼10 Re), evolved star as the progenitor of this
repeating TDE.

7.2. The Need for Hydrodynamic Simulations of Multiple Tidal
Interactions

While we can use a periodic mass stripping model of an
evolved star to qualitatively describe both the single flare
behavior and the long-term evolution of ASASSN-14ko, we are
not yet able to reproduce all observational aspects quantita-
tively. This fact suggests the need for conducting hydrody-
namic simulations of multiple tidal interactions and
understanding the evolution of the stellar structure over
multiple passages.
In this paper, we calculate the mass fallback rate for

unperturbed stars using hydrodynamic simulations of single
eccentric passages, and trace the evolution of stellar structure
assuming mass stripping occurs adiabatically. As the star
experiences mass stripping, it re-accretes the majority of the
stellar material. During this re-accretion, the free-falling
material builds a standing accretion shock when it encounters
the star’s unperturbed surface, and kinetic energy is effectively
converted into thermal energy (Guillochon et al. 2011). A hot
outer layer is formed in the star’s envelope, which extends
significantly beyond the initial stellar radius (MacLeod et al.
2013). On the other hand, the marginally bound material also
transfers a significant amount of angular momentum toward the
star when it is re-accreted. This leads to a rapid spin-up of the
star’s outer layers (Guillochon et al. 2011).
The influence of shock heating produces an extended

atmosphere with a low mean density, which is then more
vulnerable to tidal disruption in subsequent encounters. Simple
analytical adiabatic models, like the ones used here, cannot
effectively reproduce the buildup of such a diffuse layer. While
tpeak should not vary too significantly from passage to passage,
we expect the light curve to differ from the ones calculated
using undisturbed stellar models, such that the flare luminosity
should evolve more rapidly as was predicted by our analytical
models. In addition, the disrupted star should survive fewer
orbits when the tidal dissipation is self-consistently included.
Radiative cooling is also expected to be important in the most
tenuous outer layers of the hot atmosphere before the
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subsequent strong tidal encounter and should not be neglected
in simulations. These effects on stars experiencing multiple
disruptions remain an open question and they should be
included in future simulations. Unfortunately, modeling the
disruption of stars in multiple orbits hydrodynamically is not
currently computationally affordable because the corresp-
onding orbital periods are too large when compared to the
dynamical timescale of stars. For ASASSN-14ko,
P≈ 3× 103 tdyn.

Our understanding of TDEs has come a long way since their
prediction more than 30 yr ago (Rees 1988), but these nuclear
sources continue to offer major puzzles and challenges.
Repeating TDEs, such as ASASSN-14ko, provide us with an
exciting opportunity to study new regimes of tidal interactions.
Space- and ground-based observatories over the coming years
should allow us to uncover the detailed physics of these most
remarkable sources.
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Appendix
Stellar Disruption Over Multiple Passages

Following MacLeod et al. (2013), we estimate the overall
mass stripped by the SMBH, ΔM, after a given encounter by
adopting the approximating formula derived from simulation
results (MacLeod et al. 2012; Guillochon & Ramirez-
Ruiz 2013),
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In the first encounter, we set β= 0.501. This formalism can be
applied to both MS stars and giants. MS stars are modeled as
single polytropes. Evolved stars have a condensed core of

various sizes and a cool, convective envelope, so we treated
them as nested polytropes with initial core mass fractions
Mc/M* ranging from 0.1–0.5. For nested polytropes, the mass–

radius relation can be written as * *µ xR M ad, where ξad is given
by the approximate formula (Hjellming & Webbnik 1987)
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The polytropic index was taken to be γ= 5/3 (n= 1.5), which
corresponds to a fully convective atmosphere.
A disrupted star in an eccentric orbit loses mass on a

timescale faster than the thermal timescale but slower than the
dynamical timescale of the star. In these cases, the structure of
the star will evolve adiabatically as assumed by the model
outlined above. The validity of this assumption was studied by
MacLeod et al. (2013). These authors calculated the changes to
stellar properties as the star loses mass using the MESA stellar
evolution code, where they allowed the star to adjust to the
mass loss continuously. Their simulation results showed that
only for highly extended giant star models the outer layers of
the star would evolve faster than what nested polytropes would
predict. These models, however, are still incomplete as they do
not take into account the energy injection from tides, which are
shown to be important in altering the structure of the object.
This was clearly illustrated by Guillochon et al. (2011) in the
context of planet disruption. These authors performed hydro-
dynamic simulations of a tidally stripping giant planet (n= 1)
tidally stripping around a Sun-like star. For a similar initial
impact parameter β≈ 0.5, the authors showed that the planet
would be completely destroyed in roughly a few orbits, during
which the mass-loss rate increases by orders of magnitude at a
rate that is much larger than the one predicted by our simple
adiabatic polytrope model. In this paper, we remain mindful of
the limitations of these models.
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