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ferent levels of DWT smoothing. The blue line which is the reconstructed
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logical model. Cosmological parameters of Model A: Hy = 72,Qy, =
0.246,Q;, = 0.05,Qx = 0.704,7 = 0.06 and the recovered results for this
model gives Ax%, = —18.76. Cosmological parameters of Model B: Hy =
63,0y, = 0.251,0;, = 0.041, Q4 = 0.708, T = 0.06 and the recovered results
for this model gives Ax%, = —4.38. Cosmological parameters of Model C:
Hy = 68,Qy, = 0.229,Q;, = 0.052,Qx = 0.719,7 = 0.06 and the recovered
results for this model gives Ax%, = —2.93. Cosmological parameters of
Model D: Hy = 72, Q4 = 0229, = 0.046,Q, = 0.725,7 = 0.06 and the
recovered results for this model gives Ax%, = —14.52. Cosmological param-
eters of Model E: Hy = 71,Qy,, = 0.226, ), = 0.044,Q, = 0.730,7 = 0.0 and
the recovered results for this model gives Ax2; = —13.40. Cosmological
parameters of Model F: Hy = 50, Qg,, = 0.904,€), = 0.096, Q5 = 0.0, 7 = 0.06
and the recovered results for this model gives Ax%, = —26.70. Model G is the
reference model against which all calculated Ax2.s are with respect to this
model. This represents the best fit power law primordial spectrum in the
whole parameter space. The red error-bars in the middle and lower panels
represents the binned angular power spectrum from WMAP 3 year data.
The black error-bars at the middle panel at the high I, are from ACBAR
experiment [175]. The excess of power and the bump in the recovered P(k)
at the high k (logk/ky, =), seems to be related to the higher measurements of
the angular power spectrum at high I’s in WMAP 3 year data in comparison

with the other experiments suchas ACBAR. . . . . ... ... ... ....
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3.15

3.16

A 1-D slice (Q,, = constant) through the cosmological parameter space
demonstrates that the data retains strong discriminatory power in the cos-
mological parameter space even when there is full freedom in choosing the
primordial power spectrum. Left panel: Plot of Ay, of the reconstructed
results with respect to the reference likelihood of model G in section 3.6.2
by assuming free form of the primordial spectrum, for a flat ACDM model
with g = 0.72, 7 = 0.06 and Qs = 0.70 and Q,, = Qp + Q4, = 0.30 for
different values of (; (blue line). The red curve is for similar models except
for Q,; = Qp + Qg = 0.27. Clearly, ‘optimizing’ over the primordial power
spectrum allows us to get significantly higher likelihood (Ax? = —19.65)
for Q,, = 0.30 compared to Q,, = 0.27 (Ax* = —11.55). This demonstrates
that even though we allow a free form of the primordial spectrum, the data
does show very strong preference for particular values of cosmological pa-
rameters. Right panel: Reconstructed primordial spectrum, P(k), for a flat
ACDM model with Q, = 0.050,Q,, = 0.25,hy = 0.72, T = 0.06(blue line).
For these parameters of (), and €, we could get the best likelihood for
Q,, = 0.30. The red line is the reconstructed P(k) for a flat ACDM model
with Q, = 0.0460,Qy,, = 0.224,hy = 0.72, T = 0.06. For these parameters
of )y and Qyy,, we could get the best likelihood for the Q,, = 0.27. It is
clear that the reconstructed P(k) for these two points in the cosmological
parameter space are very similar. However the resultant Ax? for these two
points in the parameter space shows a big difference. Here we have used
WMAP3yeardata. . . . ... .. ... ...
A coarse resolution and limited volume exploration of the cosmological
parameter space demonstrates that the data retains strong discriminatory
power in the cosmological parameter space even when there is full freedom
in choosing the primordial power spectrum. The resultant —Ax?%, is shown
(in Z axis and also in color indicated by the tool bar in the upper panel)
versus different values of Hubble parameter (X axis in both upper and lower
panel) and ;2 (Y axis in both upper and lower panel). The lower panel
shows the relative values of the Q)5 in our parameter space (indicated by
color in the lower panel). We have assumed here 7 = 0.06. Here we have
used WMAP3yeardata. . . . .. ... ... ... ... . ... ..
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Al

B.1

B.2

C1

C2

Comparison of the reconstructed parameters obtained by using the smooth-
ing method (A.6) with the variable A(z) = 0.2z/(1 +z)? for the ACDM model
(the dotted line in each panel) with the analytical biased result given by
eqn (A.8) (dashed line). The solid line represents the fiducial ACDM model.
Note the excellent agreement between the analytical and numerical results

in the redshiftrange 0.1 <z<1.1. . .. ... ... ... ... .......

The smoothing scheme of eqn (2.2) is used with A(z) = 1.2z/(1 + z)? to
obtain smoothed H(z) and w(z) from 1000 realizations of the SNAP dataset.
The panel (a) represents the form of A(z) used, while panels (b) and (c)
represent the reconstructed H(z) and w(z). The dashed line in panels (b)
and (c) represents the fiducial model with w = —0.5 while the solid lines
represent the mean and 1¢ limits around it. The dotted line is ACDM. . . .
The smoothing scheme of eqn (2.2) is used with a tangent hyperbolic form
of variable A(z) = 0.36tanh% to obtain smoothed H(z) and w(z) from
1000 realizations of the SNAP dataset. The panel (a) represents the form
of A(z) used, while panels (b) and (c) represent the reconstructed H(z) and
w(z). The dashed line in panels (b) and (c) represents the fiducial w = —0.5
model while the solid lines represent the mean and 1o limits around it. The
dotted lineis ACDM. . . . . . . . . . . . . e

Reconstructed h(z) (left panel) and w(z) (right panel) for the Gold dataset
by assuming three different initial guess models. The red solid line is the
reconstructed result by using a flat ACDM model with Qg,, = 0.30 as the
initial guess model. The green dashed line is the reconstructed results by
using a flat ACDM model with Qg = 0.25, and the blue dotted line is the
reconstructed result by using a flat quiessence model with w(z) = —0.8 and
Qo = 0.30 as the initial guess models. We can clearly see that the results are
almost identical which shows the robustness of the method for the different
choices of the initial guessmodel. . . . . . . ... ... 0oL
Reconstructed h(z) (left panel) and w(z) (right panel) for the Gold dataset
by using three different values of A (width of smoothing). The red solid
line is the reconstructed result by using A = 0.60. The green dashed line is
the reconstructed results by using A = 0.90, and the blue dotted line is the
reconstructed result by using A = 0.30. In all these cases we have stopped
the boot-strapping process after reaching to the minimum x2. We can see

that the method is robust against the variation of A in a wide range.
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D.1

D.2

D.3

The figure shows the raw power spectrum recovered using the Richardson-
Lucy algorithm starting from three different initial guesses. The effect of
the initial guess is negligible in the other region k space. As shown in the
next section D.3, the artifacts at low k and high k which are removed by the
reference spectrum have a known dependence on the initial guess.

The left panel plots the variation of x? of C;i) obtained after ith iteration
(w.r.t the binned WMAP spectrum, CF ) with increasing iterations for the
Richardson-Lucy (RL) method and improved version (IRL) we present in
this work. The panel on the right, plots the variation of x2, = —=21In £ of the
C;i) given by the WMAP likelihood, £. In contrast to RL, in the IRL method
X% converges with iteration and to a significantly lower value. . . .. ..
The figure shows the Py.w (k) and Pr.¢(k) obtained from the WMAP binned
data CP for an initial guess P©)(k) oc 1/k*. The dashed straight line labeled
corresponds to the analytical power law form (k=*P© (k) = k=°) that matches
the identical fall in Pray(k) and Pr(k) at low k. The dashed line matching
the rise in Praw (k) and Pye¢(k) at large k corresponds to the analytical power
law form (k”2P© (k) = k>2) expected from the roughly k=7 tail of the kernels
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Abstract

The work related to my Ph.D thesis has been on implementing and applying differ-
ent non-parametric, model-independent statistical methods for analyzing cosmo-
logical data, with the purpose of reconstructing important cosmological quantities
and parameters. These methods have been applied to the most recent cosmological
data sets such as the WMAP data on cosmic microwave background anisotropy, the
GOLD and SNLS supernovae data, and to the results from detection of baryon os-
cillations. My research has been primarily focused on applying some advanced sta-
tistical methods (the improved Richardson-Lucy deconvolution method, wavelet
analysis, smoothing methods) in two important areas in cosmology. The main

questions which I have addressed in my thesis are:

+ Non-parametric recovery of the shape of the primordial power spectrum directly from
observations.

+ Non-parametric reconstruction of the expansion history of the universe and of the
properties of dark energy.

The model-independent reconstruction of cosmological quantities, can be used
to examine different cosmological models against observations without biasing the

results with any initial model assumption.
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The thesis has been organized as follows:

e Chapter 1 provides a brief introduction and background to the field of cos-
mology and focuses in the use of CMB and supernovae data in deriving
cosmological parameters. The outlines of the new developments in this field
over the last decade which motivated the research presented in this thesis are
also provided in this chapter.

e Chapter 2 presents my work on supernovae data and reconstruction of the

properties of dark energy in a model independent and non parametric manner.

e Chapter 3 provides details of my work on direct reconstruction of the primor-
dial power spectrum from CMB WMAP data.

e A summary of the results obtained in this thesis and future directions are

provided in Chapter 4.

e The thesis also contain several appendices.



Chapter 1
Introduction

Astronomy is the oldest of all sciences. It dates back virtually to the origin of
mankind. Bright mysterious points attached to the roof of the night sky have been
a constant source of imagination and amazement for our ancestors. It has taken a
long time for mankind to understand just what these bright objects are. It is also
for few hundred years that we have recognized the sun as a star in the center of our
solar system. It has only been a century since we came to know about the existence
of the galaxies, each of them consisting of millions of stars like our sun.

However in the last few decades, astronomy and in particular cosmology,
has entered into an era of precision science. Progresses in cosmological obser-
vations with highly sensitive instruments and advanced measurement techniques
have opened up many new windows for us to look deeper into the universe with
increasing accuracy. Powerful and fast supercomputers enable us to do huge com-
putations and simulations to analyze the observed data and compare it with the-
oretical models. On the other hand, more precise data also requires more careful
and more advanced statistical methods of analysis to extract maximum amount of
science. There have therefore been many advancements in statistical methods of
data analysis during the last few years.

My thesis concerns two very important areas of modern cosmology - model
independent and non-parametric statistical methods of data analysis applied to (a)
cosmic microwave background data, so as to reconstruct directly the form of pri-
mordial power spectrum, and (b) type Ia supernovae data in order to reconstruct
the properties of dark energy. The overall introduction and motivation of this the-
sis is provided in this chapter. The discussions presented here will be brief; more
detailed material will be contained in the subsequent chapters.
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1.1 Standard model of cosmology

The standard model of cosmology is based on the general theory of relativity.
Einstein’s discovery of general relativity enabled us to develop a theory of the
universe which is testable and can be falsified. So cosmology has become a proper
science which can predict events and explain observations. The Big Bang model
of the universe which is based on general relativity and is in fact the standard
model of the universe at present, has successfully passed several important tests
include the expansion of the universe universe as exhibited by the Hubble diagram;
light element abundances which are in concordance with big bang nucleosynthesis
predictions; observations of the cosmic microwave background which is a black
body radiation left over from the young universe when the latter was only a few
hundred thousand years old, etc.

The standard cosmological model also needs to account for the origins of inho-
mogeneities such as galaxies, stars and planets. In the early 1980’s the inflationary
model was suggested [4-6,56] and subsequently shown to be able to successfully
seed galaxy formation [8-11]. Now this model is being put to several tests by CMB
experiments such as COBE, WMAP and (soon) PLANCK.

Besides the key issues of seed initial conditions for galaxies, the standard model
must also account for dark matter and dark energy. Currently it is felt that the dark
components of the universe, dark matter and dark energy, constitute around 96% of
the total energy density of the universe. However, it could also be that the presence
of an unseen component implies a crises for the standard model of cosmology
and calls for a revision of the general theory of relativity as advocated by some
researchers. To determine which is the correct direction for theory to take one must
develop sophisticated statistical methods and apply these to observational data in
order to get a bias free picture of cosmological observations. This has been a primary
objective of this thesis which has developed model independent and non-parametric
statistical approaches to study two important issues in modern cosmology: (i) the
form of the primordial perturbations spectrum and (ii) the properties of dark energy.
Before embarking on our study of these two topics we briefly review some important

issues in cosmology related to our studies.

1.1.1 The Robertson-Walker Universe

The most general expression for a 4 dimensional metric which contains a 3 dimen-

sional maximally symmetric subspace is the Friedmann-Robertson-Walker (FRW)
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space-time:

ds? = d? - a(t)z[

r 20902 | o2 2
o + (60”4 sin?0dg )] (1.1)

where a(t) is the cosmological scale factor while the curvature constant k has discrete
values of +1, 0 or —1 corresponding respectively, to closed, flat or open geometries.
This formalism holds for a homogeneous and isotropic universe. Different cosmo-
logical observations have shown that our universe is indeed isotropic and homo-
geneous on large scales, so we shall follow this prescription in the whole thesis.
Eqn (1.1) can also be written as

ds? = di* — a(ty[dx* + SPO(d6? + sin®0dg?)], (1.2)
where Si(r) is sin(x),x,sinh(x) for k = +1,0, -1 and y is dimensionless.

1.1.2 The Friedmann equations

The cosmological equations of motion in a FRW metric are derived from the Einstein

equations [1]:
1 .
Ry = 38R = 81G Z T, (1.3)
1

where A is the cosmological constant, G is Newton constant, T, is the energy-
momentum tensor, R, is the Ricci tensor and g, is the space-time metric described
by eqgn (1.1). Assuming the matter content of the universe to be a perfect fluid, we
will have:

Tﬁf)v = —piguw + (pi + pi)uﬁ)u(vi) (1.4)

where p; is the isotropic pressure, p; is the energy density and u® = (1,0, 0, 0) is the
velocity vector for the i isotropic fluid in co-moving coordinates. So, in this case,
by assuming the matter content to be a perfect fluid, the Einstein’s equations lead

to Friedmann equation:

8nGp; k

2 _ 1

H* = E s 3 (1.5)
1

and the Roychaudhury equation:

i 4nG
T TEY (v, (1.6)
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where H = ¢ is the Hubble parameter. For the i" matter component the energy
conservation equation Tf;f =0 leads to

pi = —3H(p1’ + Pl) (1.7)

Now we have a full expression of the evolution of our universe as a function of
different cosmological components and parameters. It is common in cosmology to

define dimensionless parameters, (; = po;/ poc, by comparing them with the critical

density:
2
poc = ﬁ =1.88x 1072 1? g cm™3 (1.8)
where h = W;C/MPC. In terms of the dimensionless parameters Friedmann

equation, eqn (1.5), becomes particularly simple:
k/a2 = Hz(Qtat -1 (1.9)

where Q¢ = Y.; pi/pc. In this new format, one can see that when Q; > 1, k = +1
and the universe is closed, when Q;,; = 1, k = 0 and the universe is spatially flat,
when Oy < 1, k = =1 and the universe is open.

1.2 Cosmological parameters

Within any model proposed to explain a dynamical system there are some pa-
rameters which define the evolution and dynamics of the system qualitatively. In
fact a model suggested to explain any phenomena is a basic frame which only by
defining its parameters can be confronted with observations and tested. A good
model is a model which can explain the evolution of a system, can predict correctly
the events and has also a few number of free parameters. Our standard model of
cosmology (together with its companion theories such as inflation), has also several
free parameters which need to be determined from observations. In the standard
model, the universe is a perturbed FRW space-time with dynamics governed by
the Einstein equations. All cosmological components with different densities and
different equations of state (w; = %, pi is the pressure and p; is the energy density
of the i component) are responsible for the overall dynamics of our cosmological
system. The Friedmann equation, eqn (1.5), expressed in terms of the cosmological
redshift z(f) = % — 1 becomes



1.2: Cosmological parameters

H?
5= 2, Q1+ 2 4 (1= ) 0oL +2)” (1.10)
0 i i

Below we briefly comments on some important cosmological parameters.

Hubble parameter

The value of the Hubble parameter as a function of redshift was given in eqn (1.10).
Its present value Hy = (%)t=t0/ denotes the expansion rate at the current epoch.
A recent measurement of the Hubble constant from the Hubble Space Telescope
KeyProject [2] estimated Hy = 72 + 3(statistical)+7(systematic)km sec™! Mpc™! by
using the empirical period-luminosity relation for Cepheid variable stars to obtain
distances to 31 galaxies. This result is in very good agreement with estimates of
Hy derived from observation of the cosmic microwave background made by the
WMAP satellite [3].

Curvature parameter

The observed value of the curvature parameter Qg = —k/a%H% =1-3,Qpy =
—O.O99J_r8:(1)gg [3] provides strong support for a spatially flat universe as originally
predicted by the inflationary scenario [4-6,56]. This has important implications for

the total matter density of the universe as we discuss later.

1.2.1 Matter density

As noted above, observations of the cosmic microwave background suggest a uni-
verse which is close to being spatially flat. In other words Q;; =~ 1. Big bang
nucleosynthesis constraints imply that the baryon density in the universe is less
than 5% of the total value, the remaining 95% of the dark universe is divided
amongst dark matter (25%) and dark energy (70%). Furthermore there is consid-
erable observational support for the cold dark matter model according which dark
matter is non-baryonic and collision-less. Although interesting alternatives have
also been suggested [40].

In addition to non-baryonic cold dark matter, it is widely believed that our
universe contains a small amount of hot dark matter in terms of ultralight massive
neutrinos with total density not exceeding 1%. Finally we would also like to mention
the important role played by the radiation density which, though is small today,

was large at early times, before recombination.
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1.2.2 Cosmological Constant

The cosmological constant was originally introduced by Einstein in 1917 [1]. The
cosmological constant has a constant equation of state of w = —1. Although
introduced in 1917 the so called A -term has had a checkered history. Its re-
cent prominence in cosmological literature is largely due to supernovae obser-
vations [12,27,41-47] supported by CMB and other datasets [3,100], which points
to the interesting fact that the universe may currently be accelerating. To generate
this acceleration one requires a component with a negative pressure and with a
relatively large value of the energy density as compared with dark and baryonic
matter. Currently it is our belief that the cosmological constant density must be as
least 2/3 of the total energy budget of the universe. However many other theoretical
candidates for a matter component with similar characteristics to the cosmological
constant have been proposed [19,20,37-39]. All these candidates together are called
dark energy. One of the challenges of cosmology is to define which one is in fact

responsible for the acceleration of the universe.

1.2.3 Density perturbation amplitude and spectral index

We need to include a description about deviations from homogeneity to complete
our description about the universe. The curvature perturbation R, describes inho-
mogeneities in the early universe. The curvature perturbation, in fact measures the
spatial curvature of a comoving slice of the space time. Zeldovich and Harrison
suggested a scale invariant form of the curvature power spectrum [13-15] (from
now on we simply call it power spectrum or primordial power spectrum, in other
cases like when we mean the matter power spectrum we specifically bring the full
name). In the Harrison-Zeldovich form of the power spectrum, P(k) = constant, and
the power does not vary for different scales. A more general approximation for the

form of the power spectrum is power law form of the primordial spectrum:
k ns—1
Pr(k) = As[k_] : (1.11)

where 1, is known as the spectral index, A; is the density perturbation amplitude,
and k. is an arbitrarily chosen scale. We can see that in the case of the Harrison-
Zeldovich power spectrum we have n; = 1. It is very interesting that observations
support the power law form of the primordial spectrum and require 7, to be close
to 1, which corresponds to the perturbation in the curvature being almost indepen-
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dent of scale. We should note that the subsequent evolution by the transfer function
(which is a function of our cosmological parameters) will modify the power spec-
trum from its initial form. On the other hand, inflationary cosmology enables us to
have a theoretical mechanism which generates initial perturbations and results in a
power spectrum which is close to being scale invariant [8-11]. It is widely accepted
that inflationary cosmology is now an important part of our standard model which
can answer many basic questions in cosmology and has been very successful in
confronting different cosmological observations.

In cosmological parameter estimation it is very common to assume a power law
form for the primordial power spectrum. Hence A, and 7, are considered as a pair
of cosmological parameters. However we should emphasize here that this is just
an assumption and as we will see later, a considerable part of this thesis is devoted
to the reconstruction of the primordial spectrum directly from observational data
and independently of any assumptions. It is also worth mentioning that a power
law form of the power spectrum is not the only one predicted from inflation and
there are some inflationary scenarios which give rise to features in the form of the
primordial power spectrum [22,23,139-144].

1.2.4 Tensor to scalar ratio

Inflation generates perturbations by amplifying quantum fluctuations and stretch-
ing them to astrophysical scales through rapid expansion. The simplest inflationary
scenarios based on a single scalar field generate both scalar field perturbation as
well as tensor metric fluctuations (gravity waves).

Fluctuations in the scalar field subsequently result in structure formation in the
universe via gravitational instability, while the tensor metric fluctuations give rise
to a relic gravity background. Both tensor and scalar fluctuations perturb the CMB.
The ratio between the tensor power spectrum and scalar power spectrum in the
CMB is characterized by the tensor to scalar ratio, r. This ratio can be derived by
analyzing the cosmic microwave background data and comparing with theoretical
predictions from different inflationary scenarios. In the following we briefly discuss
the tensor to scalar ratio for a single scalar field (slow roll) inflation.

Inflation leads to a period of early acceleration i > 0 during which

d 1

in other words, during the inflationary epoch the comoving Hubble length, 1/aH,
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decreases with time. From eqn (1.6) we find that a necessary (but not sufficient)

condition for inflation is

p+3p<0. (1.13)

So we see that, in order to obtain inflation, we need a material with the very
unusual property of negative pressure (similar to A or any other candidate of dark
energy, but here it must be a dominant agent by a huge factor and also it needs to
decay subsequently to baryons, dark matter and radiation). Scalar fields are good
candidates for our purpose. For the energy density and pressure of a homogeneous
scalar field, ¢ = ¢(t), we find

po = %(152 +V(¢) (1.14)

and ,
Po = 50" V(@) (115)

where V(¢) is the potential of the scalar field and $¢? is its kinetic energy. Next, by
assuming the scalar field to be the dominant component in a spatially flat universe,

we can derive the following equations describing the inflationary era:

2_ 1 1.2
H" = 3le[V((j)) + 2(1) ] (1.16)
and v
¢ +3Ho = _ﬁ (1.17)

where M, = (8nG)™1/? = 4.342 x 107°¢ = 2.436 x 10'8GeV is the reduced Planck
mass. To satisfy the inflationary condition, eqn (1.13) we must have ¢? < V(¢)
which arises for sufficiently flat potentials. It is interesting that even if we start
with a non-flat spatially geometry, a suitably flat potential makes the curvature
term in the Friedmann equation less important as inflation gets underway. In fact
it is one of the predictions of inflation that the geometry of the universe must
flatten towards the end of inflation which is indeed in agreement with recent CMB
observations. The most common approach to studying single field inflation is by
means of the slow-roll approximation. In this approximation we neglect the ¢?2

term in comparison with V(¢) and we also assume that ¢) must be negligible in
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comparison to other terms in eqn (1.17) Hence:

A
H? ~ e, (1.18)
P
and
3Hp = —V'(¢) (1.19)

where V'(¢) = fl—g. The slow-roll approximation translates into the following re-
quirements for the slow-roll parameters, € and 1:

M2,
_ Tl V’\2
() = 7(7) <<1 (1.20)
and

<< 1. (1.21)

V//
— A2
@) = M|

In the slow-roll approximation the scalar and tensor spectra can be written
as [17]

1 v
Pr(k) ~ ———— 1.22
x© 24r2M3, € lk=at (122
2
Pgmv(k) = W]\/F}PZV kgl (123)

where, in each case, the expressions in the right hand side are calculated when the
scale k is equal to the Hubble radius during inflation. The symbol =~ indicates the
slow roll approximation has been used, which is expected to be accurate to a few

percent. As a result one can compute the spectral index in eqn (1.11):

ng =~ 1—6€ +2n. (1.24)
One can also compute ng,, for the gravity waves by defining Pg,(k) =
Agmv(kk)ngmvf
Neray = —2€ (1.25)
and the tensor to scalar ratio [139]

P grav (k.)
Pr(k.)

r= =~ 16€ =~ —8ngrap (1.26)
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which is also known as the consistency equation. The five-year WMAP data has
given the upper limit on the tensor to scalar ratio r < 0.43 (with 95% CL), for the
standard ACDM model assuming a power-law primordial spectrum [3].

1.2.5 Other important cosmological parameters
Optical depth to reionization

In Big Bang cosmology, reionization is the process that reionized the matter in the
universe after the “dark ages” which lasted from z ~ 1000 until z =~ 20. It is the
second of two major phase changes of hydrogen gas in the universe.

The first phase change was recombination, which occurred due to the cooling
of the universe to the point where the CMB temperature dropped to T =~ 3000K
at which point the rate of combination of an electron and proton to form neutral
hydrogen was higher than the ionization rate of hydrogen by photon. This occurred
at zyc = 1089 [3]. Thereafter the universe became transparent to the propagation of
radiation.

The second phase change occurred once gravitationally bound objects started
to form in the early universe. Explosive releases of energy from such objects (pop-
ulation III stars, quasars, etc) were energetic enough to ionize neutral hydrogen.
As these objects formed and radiated energy, the universe went from being neutral
back to being an ionized plasma at a redshift 6 < z <20 1.

The electron-scattering optical depth, known as (i), is an important cos-

mological parameter characterizing this second phase change. In an FRW universe

B Zreion - p1,(z)ordz
T(Zreion) = € j; m (1.27)

it is given by

where 1, is the electron density and o is the Thomson cross-section describing scat-
tering between electrons and CMB photons and z,j,,, is the redshift of reionization.
The most recent results from WMAP 5 year data gives z,ejon = 11+1.4 corresponding
to an optical depth of T = 0.087 + 0.017 for the standard ACDM model with power
law model of the primordial spectrum [3].

!'When protons and electrons are separate, they cannot capture energy in the form of photons.
Photons may be scattered, but scattering interactions are infrequent if the density of the plasma is
low. Thus, a universe full of low density ionized hydrogen will be relatively translucent, as is the case
today.
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Age of the universe

As we have seen in eqn (1.10), the expansion history of the universe is directly
related to the matter-energy components of the universe. Knowing all cosmological
parameters related to the matter-energy components of the universe, we can derive
the expansion history and by knowing the expansion history we can simply calculate

the look back time and age of the universe

® dz/

Assuming our standard ACDM model of cosmology, the WMAP 5 year data derived
the age of the universe equal to 13.69 + 0.13 Gyr [3].

Redshift of matter radiation equality

Shortly before the universe recombined the matter and radiation densities equal-
ized. This occurred at the redshift z.; ~ 3200.

Deceleration parameter and epoch of acceleration of the universe

The deceleration parameter measures the change in the rate of expansion of the
universe. It can be simply derived by taking the derivative of the Hubble parameter
with respect to redshift

_ i _H(@)
T gH?  H(z)

4(z) < 0 corresponds to acceleration and g(z) > 0 to deceleration. The redshift z. at

q(z) 1+z2)-1 (1.29)

which g(z.) = 0 determines the transition epoch. As we will see later in the second
chapter of this thesis, we have introduced a new method of reconstruction which

can calculate z, in a model independent manner.

Acoustic shift parameter and the redshift of the last scattering surface

The acoustic shift parameter R is directly related to the position of acoustic peaks in
the observed angular power spectrum of the cosmic microwave background. The

shift parameter R can be also computed theoretically

As 7!
R = vOmo fo o (1.30)
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from where we see it related to the matter density as well as the expansion history
of the universe right until the redshift of last scattering, zj;. zj; is the redshift where
the radiation starts to freely propagate in the universe after Hydrogen and Helium
recombine. This quantity can also be computed through the fitting function given
in [18]

zjs = 1048[1 + 0.00124(Q %) *738[1 + ¢1(Qomh?)$] (1.31)

where g1 and g, are defined as
g1 = 0.078(Q,1*) 028 [1 + 39.5(Q;,h%)*763] 71 (1.32)

g2 = 0.56[1 + 21.1(Q, 1) 81 (1.33)

where again is a function of some main cosmological parameters: matter density,
baryon density and the Hubble parameter. Results from WMAP 5 year data give
R =1.713 £ 0.020 and z;; = 1087.9 £ 1.2 [3].

1.3 Cosmological observations

In order to understand our universe we need to find the correct cosmological model
and determine its parameters by testing its predictions against observations. The
standard model of cosmology, namely ACDM with a power law primordial spec-
trum, has been very convincing in explaining many different kinds of cosmological
observations. In figure 1.1 we see the observational constraints on the parameters
of ACDM obtained using type Ia supernovae, cosmic microwave background and
baryon acoustic peak oscillation (BAO) data. In this section we briefly review some
important cosmological observations which have been used in this thesis to de-
termine the cosmological properties of the universe in a quasi-model-independent
manner. Although we shall focus on observations of Type Ia supernovae and the
cosmic microwave background we should note here that beside these two im-
portant cosmological observations, we can also name galaxy clustering, clusters
of galaxies, direct measurements of the Hubble parameter, clustering in the inter-
galactic medium, gravitational lensing and observations of the peculiar velocities
of galaxies as other important cosmological probes.
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Figure 1.1: 68.3%, 95.4% and 99.7% confidence level contours on Q,, and Q5 obtained from
CMB, BAO and the Union supernovae data set, as well as their combination for a ACDM
model ( figure is from [27]).
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1.3.1 Type Ia supernovae

Type la supernovae?

are extremely bright objects which can be seen by current
telescopes from a very large cosmological distance. They also have the unique
characteristic of being a standard candle. The dispersion in their peak luminosity
is very small, Am = 0.3 and their absolute brightness is Mp ~ —19.5. In addition
the light curve of a type la supernova is correlated with its peak luminosity to a
precision of ~ 7% so that brighter supernovae take longer to fade (it takes around
20 days for a Type Ia supernova to rise from relative obscurity to its maximum
light). These characteristics makes a type Ia supernova an ideal astronomical object
to study the universe on very large scales. From the theoretical point of view, the
relation between observed flux, f,s and the intrinsic luminosity of an object, Fj,;

depends on the luminosity distance,

fos = (1.34)
4nd?
In the Newtonian perspective, this luminosity distance is equal to the actual Eu-
clidean distance but in the general theory of relativity, the geometry of space can
be non-Euclidean and the luminosity distance to an object depend to both upon
the geometry of the space as well as the expansion history of the universe. We can
derive the luminosity distance as

1+2)
dL(Z)—H\/Q—kO VI kOfH ) (1.35)

where S(x) = sin(x), x, sinh(x) for a closed, flat and open universe. Specializing to the
case of a spatially and expanding FRW universe, which we focus on in this thesis

(1 1.
+2) f HE@) (1.36)
We therefore find that the luminosity distance is directly related to the expan-

sion history of the universe. As we have seen earlier, the expansion history of the
universe is in turn related to the matter and energy components of the universe

through eqn (1.10). In figure 1.2 one can see how, by varying Q,, and Q, for a

2If a supernova’s spectrum contains a line of hydrogen it is classified Type II; otherwise it is Type
I. Type Ia supernovae presents a singly-ionized silicon (Si II) line at 615.0 nm, near peak light. Type Ib
supernovae have Non-ionized helium (He I) line at 587.6 nm and no strong silicon absorption feature
near 615 nm. In type Ic supernovae there are weak or no helium lines and no strong silicon absorption
feature near 615 nm.
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Luminosity distance d

redshift z

Figure 1.2: The luminosity distance d; (in units of H;') is shown as a function of cosmolog-
ical redshift for spatially flat cosmological models with Q,, + Qs = 1. We can clearly see the
sensitivity of the luminosity distance to the main energy components of the universe ( figure
is from [19]).

flat ACDM model we get different luminosity distances to different redshifts. Since
type la supernovae are standardized candles, we can with their help determine the
luminosity distance up to redshifts of about unity.

By neglecting the small effects of the radiation density in the late universe (and
assuming spatial flatness) we can write the most general form of the equation for the
expansion history of the universe for collisionless (cold) matter and time varying

dark energy as

H(z)
(7o)

Therefore by knowing (or assuming) the current value of the matter density we

1+ w(z))dz]

)2 = Quo(1 +2)° + (1= Qo) exp| f 3 T (1.37)

can derive the theoretical luminosity distance for a given model of dark energy and
confront the latter with the observed luminosity distances of type Ia supernovae. To
be precise, we should mention here that the observed quantity is in fact the distance
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modules, u(z) which has a direct relation to the luminosity distance by
w(z) = 5logioldi(z)] + 25. (1.38)

Since we can observe type la supernovae up to moderately high redshifts,
they have become one of the main sources of information for the cosmological
community to analyze the universe on these scales. In the second chapter of this
thesis we use supernovae data extensively in our analysis. The most recent uniform
catalog of the supernovae type Ia consist of 307 data points up to the redshift of
z =1.4[27].

1.3.2 Cosmic microwave background

The cosmic microwave background was discovered in 1965 by Penzias and Wil-
son [28] but predicted much earlier by George Gamow and his colleagues [29]. The
CMB has the highest background radiation density in the universe. The CMB spec-
trum can be very well described by a blackbody function with T = 2.725 + 0.001 K.
This radiation is one of the biggest pillars of the hot big bang scenario which is the
basis of our standard model of cosmology. Another important observable quantity
is the CMB anisotropy which is the spatial variation in temperature (or intensity)
of the CMB sky. There is a very significant amount of information hidden in
these anisotropies which can help us to understand our universe and compute the
cosmological parameters. Since the first detection of these anisotropies by COBE
satellite [30] (which resulted in a Noble prize for George Smooth and John Mather),
there have been intense activities to map the sky in different angular scales in order
to analyze and study cosmological models and determine the parameters of the uni-
verse. During the last 20 years there have been many ground-based, balloon-borne
and space-based probes of the CMB anisotropy. In combination with other cosmo-
logical observations, CMB anisotropy measurements place quite precise constrains

on the cosmological parameters.

Description of CMB anisotropies

Observations show that after subtraction of monopole and dipole contribution the
CMB contains of anisotropies of the order of 107 over a wide range of multipoles.
These anisotropies are usually expressed by using a spherical harmonic expansion
of the CMB sky:
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T(O,9) = Y a1 Yin(6,9), (1.39)

Im

where Y},,’s are the spherical harmonics. The majority of the needed information
is contained in the temperature 2-point function that is in fact the variance as
function of separation 6. If we assume the Gaussian statistics and if there is no
preferred direction, then what is important here would be the variance of the
temperature field which carries all the cosmological information and the individual
ap,’s would not be so important for us. So we can define the angular power
spectrum which fully characterizes the anisotropies by C; = <|alm|2> and the power
at each [ will be (21 + 1)C;/(4n). However there are some important points that we
should consider. Since we have only one universe that we live in, and we have
only one realization of the CMB sky, then even for an ideal full sky observation
we are still bound by cosmic variance. Cosmic variance is the variance of each
measured C; which is in fact the variance of the variance. Since each C; is x?
distributed with (2/ + 1) degrees of freedom, the cosmic variance for each C; can be
derived as [2/(2] + 1)]C12. We should consider that this cosmic variance is for the
ideal case of the full sky map and if we have a fractional sky coverage, fq,, this
variance is increased by 1/ fg, and the modes becomes partially correlated. So we
see that the cosmic variance is an unavoidable source of uncertainty specifically at
low I’s. This is specifically important when we compare theoretical models with
CMB observations. In the analysis of the CMB anisotropies usually we neglect
the monopole(/=0) and the dipole (I=1) contributions. The monopole of the CMB
maps refer to the mean average temperature of the CMB radiation which is around
2.725+0.001K. The largest anisotropy is in the! = 1 (dipole) first spherical harmonic,
with amplitude 3.346 + 0.017mK [31]. The dipole is usually interpreted to be the
result of the Doppler shift caused by the motion of the solar system relative to
the nearly isotropic blackbody field, as confirmed by measurements of the radial
velocities of local galaxies [32]. The dipole is a frame dependent quantity, and one
can thus determine the ‘absolute rest frame” of the Universe as that in which the
CMB dipole would be zero. Our velocity relative to the Local Group, as well as the
velocity of the Earth around the Sun, and any velocity of the receiver relative to the
Earth, is normally removed for the purposes of CMB anisotropy study.



1.4: Beyond the standard model 18

CMB anisotropies and cosmological parameters

In the previous subsection we have briefly introduced the angular power spectrum
the CMB anisotropies. The observed angular power spectrum can be confronted
with predictions of different cosmological models. Interestingly different cosmolog-
ical models can have very different impacts on the angular power spectrum which
can be easily tested by comparing them with the observations. Even within a single
cosmological model, like our standard ACDM model, the predicted angular power
spectrum at different scales changes significantly by changing the cosmological pa-
rameters. Hence we can perform the cosmological parameter estimation by using
the observed angular power spectrum from CMB maps.

The angular power spectrum can be considered as a vector, C;, which is derived
from multiplication of a matrix, G(I, k) by another vector P(k). P(k), as we have
seen earlier, describes primordial perturbations at the end of inflation and G(/, k)
is the transfer function. The transfer function, G(I, k), depends on the assumed
cosmological model and its parameters. So as we see, the derived angular power
spectrum can be different by assuming different models of primordial spectrum
and also it can be different by assuming different cosmological models or using
different cosmological parameters. In figure 1.3 we see the sensitivity of the angular
power spectrum to four fundamental cosmological parameters. Clearly a precise
measurement of the angular power spectrum can be very useful to estimate different
cosmological parameters.

Physics of cosmic microwave background anisotropy includes many different
effects and consequences which have been studied and understood during the last
few decades. These include Sachs-Wolf effect, Integrated Sachs-Wolf effect, Silk
damping, Sunyaev-Zeldovich effect, CMB polarization, angular resolution and bin-
ning, physics and statistics of non-circular beams, foregrounds and map cleanings,
secondary anisotropies, higher order statistics etc. It is beyond the scope of this
thesis to discuss these effects in detail and we shall focus hereafter only on methods
of reconstructing the primordial power spectrum.

1.4 Beyond the standard model

In this section we briefly discuss extensions to the standard cosmological model.
There are possibilities that our universe may be much more complicated than the
standard model introduced in the previous section. In addition, the standard of
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Figure 1.3: Sensitivity of the angular power spectrum to four fundamental cosmological
parameters (a) the curvature as quantified by €, (b) the dark energy as quantified by the
cosmological constant Q4 (ws = —1) (c) the physical baryon density Q,h* (d) the physical
matter density Q,,/?, all varied around a fiducial model of Q;; = 1, Q4 = 0.65, Qph? = 0.02,
Q1% = 0147, 1 = 1, Zpeion = 0 ( figure is from [33]).
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cosmology assumes an adiabatic and Gaussian initial perturbations. In general
primordial perturbations can be both adiabatic and isocurvature and the possibil-
ity of non-Gaussian fluctuations has also been widely discussed in the literature.
The ionization history of the universe too can be much more complicated than in
the standard model which assumes rapid ionization. But observational evidence
is mixed and maybe we have to improve our analysis with a better and more
complicated approximation which may result in a change to our basic set of cos-
mological parameters. Properties of dark matter can differ from the assumptions of
the standard model where we assume the dark matter has no significant interaction
with other matter and that its particles have a low velocities. Any change in this
assumption will directly effect gravitational clustering and the properties of large
scale structure. Variation of the fundamental constants on cosmological scales can
be another extension to the standard model of cosmology. We can also ask whether
the general theory of relativity is valid at all epochs or not. Braneworld models and
f(R) theories address this important issue. Topology of the universe is another open
question which could add some more parameters to the standard model.

Beside all of the above points, there are two very important extensions to
the standard model which are within our observational reach. The first one is
models of dark energy with different properties in comparison with cosmological
constant, and the second one is non-power law form of the primordial perturbation
spectrum. We will have more detailed discussions about these two topics in the

next subsections.

1.4.1 Dark energy candidates

In the last few years, the acceleration of the universe has been confirmed by many
different cosmological observations including observations of type Ia supernovae,
the cosmic microwave background and large scale structure. To accelerate the
universe, we need an agent with a negative pressure and a positive density. This
element is called dark energy. The cosmological constant, A, seems to be a perfect
candidate for dark energy and indeed it is. Our current standard model of cos-
mology, ACDM consists of cold dark matter and cosmological constant as its main
constituents. However despite the fact that ACDM has a very good consistency
to most cosmological observations, there remain other candidates of dark energy
with a very different theoretical motivation which can also give a good fit to the
data. It is one of the main targets of the current cosmology to be able to distinguish
between these different models of dark energy and to find the real agent of cosmic
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acceleration. Most dark energy candidates have a varying equation of state and in
this sense resemble another form of dark energy encountered in the early universe,
namely inflation. Dark energy models proposed to account for the present cosmic
acceleration include:
(i) Cosmological constant or A with w = —1.
(ii) Quiescence with constant equation of state, w = ppe/ppe = constant, the A
(w = —1) is a special member of this class.
(iii) Quintessence these models are inspired by the simplest class of inflationary
models of the early Universe and employ a scalar field rolling down a potential
V() to achieve late-time acceleration.
(iv) The Chaplygin gas model has the equation of state p «< —1/p and evolves as
p = A + B(1 + z)°. It therefore behaves like dark matter at early times (z > 1) and
like the cosmological constant at late times. Chaplygin gas is a phenomenological
model of dark energy which appears to be the simplest model attempting to unify
dark energy and non-baryonic cold dark matter.
(v) Phantom dark energy (w < -1).
(vi) Oscillating dark energy.
(vii) Models with interactions between dark energy and dark matter.
(viii) Scalar-tensor dark energy models.
(ix) Modified gravity dark energy models in which the gravitational Lagrangian
is changed from R to F(R) where R is the scalar curvature and F is an arbitrary
function.
(x) Dark energy driven by quantum effects.
(xi) Higher dimensional braneworld models in which acceleration is caused by the
effects of the higher dimensions.
(xii) Holographic dark energy, etc.
See the reviews [19,20,37-39] for an exhaustive list of models and references. At
the current state-of-the-art, all these different candidates of dark energy requires at
least one new parameter whose value is set from observations.

In the second chapter of this thesis we introduce a model independent method
of reconstruction of the properties of dark energy. We also propose three diagnostics
of dark energy to distinguish between different dark energy models in a non-

parametric and model independent manner.
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1.4.2 Initial conditions and the primordial spectrum

A power law form of the primordial power spectrum is predicted by some of the
earliest models of inflation [8-11]. Observational evidence also confirms that the
form of the primordial spectrum is fairly close to this power law shape. But there is
also some evidence (like the low power in the observed low I multiples and also some
glitches at [ = 22 and | ~ 42) which suggests the possibility of existence of features
in power spectrum. The non-power law form of the primordial spectrum is not
something unexpected in the context of inflation. In fact there are some inflationary
scenarios which predict features in the primordial spectrum [22,23,139-144]. Any
possible feature in the form of the primordial spectrum would be another extension
to our standard model which would involve changing the set of basic cosmological
parameters. In the following we will point to some of these inflationary scenarios
which result in features in the form of the primordial spectrum. These models have
been intentionally chosen to have a cut off in their power spectrum in order to give
a better fit to the observed CMB data at low multiples.

Exponential Cutoff model(EC)

This model has a monotonic cutoff imposed on a scale-free power law spectrum.
Such an infrared cutoff discussed and motivated by [21] leads to a spectrum of the
form below

P(k) = Ak [1- e W] (1.40)

The value of the parameter @ was fixed (o = 3.35) to approximately mimic the
sharpness of the cutoff in a specific scenario (See KD model described later).

Starobinksy model(SB)

It was shown by Starobinsky [22] that if the effective inflationary potential has
a ‘singularity” in the form of a sharp change in the slope (a ‘kink’), it can create
an infrared suppression in the power spectrum of adiabatic perturbations at any
chosen wavenumber k.. The infrared cutoff is followed by a ‘bump’ that arises
naturally as the first peak of a damped ringing. The effect of a kink at some point on
the inflaton potential can be neatly expressed in terms of the analytic multiplicative

transfer function applied on the underlying power spectrum Py(k) as

P(k) = Po(k) D*(y,R.). (1.41)
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In the simpler form we restrict Py(k) to be a simple power law. However, in general,
Py(k) can be of any form allowed by models of scalar field driven inflation. The

transfer function
1 1 2 9 1 1
D*(y,R.) = [1-3(R.—1)=((1 - =)sin2y + = cos2y) + =(R. = 1)* (1 + =) X
Y y y? Ty YT vy

1+ % +(1- %) cos 2y — %sin2y)] , (1.42)
with y = k/k.. R. is the ratio of the slope dV/d¢ which dictates the shape of the
power spectrum, V(¢) being the inflaton potential of the scalar field ¢. The power
spectrum P(k) in eqn (1.41) has a step-up feature (towards larger k) for R. < 1 and
a step-down feature for R. > 1. An infrared cutoff is created when R. < 1. This
shape of the primordial power spectrum with a Starobinsky step not only mimics
the sharp infrared cutoff but also subsequently produces the localized excess in

power.

Pre-inflationary Kinetic Domination model(KD)

The observable inflationary epoch could be preceded by a period of fast rolling
of the inflaton field, ¢, leading to a pre-inflationary phase of kinetic domination.
The difference of the vacuum in the kinetic domination (fast rolling) phase relative
to the inflationary phase would imprint a feature in the power spectrum at large
scales corresponding to the first modes that crossed out of the Hubble radius at
the onset of inflation [21]. The feature is an infrared cutoff akin to that first shown
by Vilenkin and Ford [23] for a radiation dominated pre-inflationary phase. If the
scale corresponding to the current horizon exited the horizon very soon after the
onset of inflation, then the feature could explain the observed suppression of power
at the horizon scale. The form of primordial perturbations is given by

2

P(k) = H k|A-B (1.43)
272

where

_eMH T o k H \,ofk
4= |W0 (E)_(? “) H (E)]
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Figure 1.4: The class of primordial power spectra with features which have been introduced
in this section are plotted. Here k;, = 2mt/n, ~ 4.5 X 107* Mpc™!, is the wavenumber
corresponding to the Horizon scale for best fit ACDM model. For comparison we also
give the power spectrum recovered from WMAP data by direct deconvolution in the third
chapter of this thesis (“Recovered”) and wavelet smoothed version that retains the most
prominent features (“Recovered(sm)”) ( figure is from [25]).

and

_ T (k) (H Nk
7 = e [ )~ ()7 )

Here H denotes the (physical) Hubble parameter during inflation while H éz) and
7-(1(2) denote the Hankel function of the second kind with order 0 and 1, respectively.

Pre-inflationary Radiation domination model(VF)
For a pre-inflationary radiation dominated epoch the power spectrum was given

by Vilenkin and Ford [23] as follows (referred to as “VF” model here)

P = Ak — |e72¥(1 + 2iy) - 127, (1.44)

1 e
4yt
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where y = k/k.. The VF power spectrum can also provide an infrared cutoff with the
required ‘bump’ after it. The infrared cutoff here is not as sharp as the one arising
from kinetic domination in the pre-inflationary phase. The cutoff scale k. is set by
the Hubble parameter at the onset of inflation. Here too, the current horizon scale
crosses the Hubble radius very close to the onset of inflation.

We emphasize here that there are many other inflationary scenarios that can
generate features in the form of the primordial spectrum and the above examples
are just a small sample for these scenarios. For instance in [26], an inflationary
scenario is proposed which gives rise to a local running of the spectral index. 3

This thesis focuses on reconstruction of the expansion history of the universe
and the properties of dark energy and also direct reconstruction of the primordial
power spectrum. In chapter two we introduce a novel method of reconstruction
of the expansion history of the universe and apply this method to simulated and
real data. In the second chapter we also introduce three diagnostics of dark energy
which help to distinguish between different models of dark energy. Chapter three
relates to our study on direct reconstruction of the primordial perturbation spectrum
from CMB data. We have improved the Richardson-Lucy deconvolution method to
make it suitable for our studies and have applied our method to WMAP CMB data.
Conclusion are drawn in the fourth chapter and the thesis ends with a bibliography.

3In writing this introduction I found the following books and reviews very helpful [17,19,20,34-36].
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Chapter 2

Model Independent
Reconstruction of the Properties of
Dark Energy

This chapter of the thesis includes two major sections. The first section discusses
non-parametric reconstruction of the expansion history of the universe through a
smoothing method which we have developed and successfully applied on simu-
lated and real data. The second part is about three new diagnostics of dark energy
which we have introduced to the cosmological community to distinguish between

different models of dark energy.

2.1 Non Parametric Reconstruction of the Expansion History

of the Universe

The nature of dark energy has been the subject of much debate over the past decade
(for reviews see [19,20,37-40]). The supernova (SNe) type la data, which gave the
first indications of the accelerated expansion of the universe, are expected to throw
further light on this intriguing question as their quality steadily improves. While
the number of SNe available to us has increased two-fold over the past couple of
years (at present there are about 300 SNe between redshifts of 0 and 1.75, with 10
SNe above a redshift of unity) [12,27,41-47], the SNe data are still not of a quality to
firmly distinguish different models of dark energy. In this connection, an important
role in our quest for a deeper understanding of the nature of dark energy has been
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played by the ‘reconstruction program’. Commencing from the first theoretical
exposition of the reconstruction idea — [48-50], and [51] which applied it to an early
supernova data set- there have been many attempts to reconstruct the properties
of dark energy directly from observational data without assuming any particular
microscopic/phenomenological model for the former. When using SNe data for this
purpose, the main obstacle is the necessity to: (i) differentiate the data once to pass
from the luminosity distance d;, to the Hubble parameter H(t) = d(t)/a(t) and to the
effective energy density of dark energy ppg, (ii) differentiate the data a second time
in order to obtain the deceleration parameter q = —ia/d?, the dark energy effective
pressure ppg, and the equation of state parameter w(t) = ppe/ppe. Here, a(t) is the
scale factor of a Friedmann-Robertson-Walker (FRW) isotropic cosmological model
which we further assume to be spatially flat, as predicted by the simplest variants
of the inflationary scenario of the early Universe and confirmed by observational
CMB data.

To get around this obstacle, some kind of smoothing of d; data with respect to
its argument — the redshift z(t) — is needed. One possible way is to parameterize the
quantity which is of interest (H(z), w(z), etc.) by some functional form containing
a few free parameters and then determine the value of these parameters which
produce the best fit to the data. This implies an implicit smoothing of d; with a
characteristic smoothing scale defined by the number of parameters, and with a
weight depending on the form of parameterization. Different parameterizations
have been used for: d; [49,51,52], H(z) [53, 54, 68], w(z) [55-65] and V(z) [66, 67].
In [49], a polynomial expansion of the luminosity distance was used to reconstruct
the equation of state. However, [56] showed this ansatz to be inadequate since it
needed an arbitrarily large number of parameters to fit even the simplest ACDM
equation of state. They proposed instead a polynomial ansatz for the equation of
state which worked somewhat better. In [51] a rational Pade-type ansatz for dj,
was proposed, which gave good results. In recent times there have been many
more attempts at parameterizing dark energy. In [55] and [60] an ansatz of the
form w = wy + w,(1 — a) was suggested for the equation of state. [59] suggested a
four-parameter ansatz for the equation of state. [53] proposed a slightly different
approach in which the dark energy density was expanded in a polynomial ansatz,
the properties of which were examined in [54, 68, 68]. See [69-71] for a summary of
different approaches to the reconstruction program and for a more extensive list of
references. However it is necessary to point out that the current SNe data are not of
a quality that could allow us to unambiguously differentiate ACDM from evolving
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dark energy. That is why our initial focus in this chapter will be on better quality
data (from the SNAP experiment) which should be able to successfully address this
important issue.

A non-parametric smoothing procedure involves directly smoothing either
dr, or any other quantity defined within redshifts bins, with some characteristic
smoothing scale. Different forms of this approach have been elaborated in [72-77].
One of the advantages of this approach is that the dependence of the results on the
size of the smoothing scale becomes explicit. We emphasize again that the present
consensus seems to be that, while the cosmological constant remains a good fit to
the data, more exotic models of dark energy are by no means ruled out (though
their diversity has been significantly narrowed already). Thus, until the quality of
data improves dramatically, the final judgment on the nature of dark energy cannot
yet be pronounced.

In this thesis, we develop a new reconstruction method which formally belongs
to the category of non-parametric methods, and which is complementary to the ap-
proach of fitting a parametric ansatz to the dark energy density or the equation of
state. Most of the papers using the non-parametric approach cited above exploited
a kind of top-hat smoothing in redshift space. Instead, we follow a procedure which
is well known and frequently used in the analysis of large-scale structure [78,79];
namely, we attempt to smooth noisy data directly using a Gaussian smoothing func-
tion. Then, from the smoothed data, we calculate different cosmological functions
and, thus, extract information about dark energy. This method allows us to avoid
additional noise due to sharp borders between bins. Furthermore, since our method
does not assume any definite parametric representation of dark energy, it does not
bias results towards any particular model. We therefore expect this method to give
us model-independent estimates of cosmological functions, in particular, the Hub-
ble parameter H(z) = 4(t)/a(t). On the basis of data expected from the SNAP satellite
mission, we first show that the Gaussian smoothing ansatz proposed in this the-
sis can successfully distinguish between rival cosmological models and help shed
light on the nature of dark energy. Then we apply our method on the current avail-
able supernovae data and we reconstruct the properties of dark energy in a non

parametric and model independent manner.

2.1.1 Methodology: Smoothing Method

It is useful to recall that, in the context of structure formation, it is often advanta-

geous to obtain a smoothed density field 5°(x) from a fluctuating ‘raw’ density field,
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6(x’), using a low pass filter F having a characteristic scale R ¢ [78]

8°(x,Ry) = f S()F(x = X'|; Ry) dx’ . 2.1)

Commonly used filters include: (i) the ‘top-hat’ filter, which has a sharp cutoff
Fr o ©(1 — |x — x’|/RtH), where © is the Heaviside step function (®(z) = 0 for
2 <0,0(z) = 1 for z > 0) and (ii) the Gaussian filter Fg o exp(—|x — x'[*/2RZ,).
For our purpose, we shall find it useful to apply a variant of the Gaussian filter to
reconstruct the properties of dark energy from supernova data. In other words, we
apply Gaussian smoothing to supernova data (which is of the form {Ind(z;),z})
in order to extract information about important cosmological parameters such as
H(z) and w(z). The smoothing algorithm calculates the luminosity distance at any
arbitrary redshift z to be

In? izz’
Ind;(z,A)® =1n dp(2)® + N(Z)Zi‘ [Indy(z;) — In dr(z;)%] X exp —% ,
In? %
N@E) ! = Z exp —% (2.2)

Here, Ind(z, A)® is the smoothed luminosity distance at any redshift z which
depends on luminosity distances of each SNe event with the redshift z;, and N(z) is
a normalization parameter. Note that the form of the kernel bears resemblance to
the lognormal distribution (such distributions find application in the study of cos-
mological density perturbations, [80]). The quantity Ind; (z)¢ represents a guessed
background model which we subtract from the data before smoothing it. This ap-
proach allows us to smooth noise only, and not the luminosity distance. After noise
smoothing, we add back the guess model to recover the luminosity distance. This
procedure is helpful in reducing noise in the results. Since we do not know which
background model to subtract, we may take a reasonable guess that the data should
be close to ACDM and use d; ()¢ = d1(z)"“PM as a first approximation and then use
a boot-strapping method to find successively better guess models. We shall discuss
this issue in greater detail in the section 2.1.2. Having obtained the smoothed lu-
minosity distance, we differentiate once to obtain the Hubble parameter H(z) and
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Table 2.1: Expected number of supernovae per redshift bin from the SNAP experi-
ment

Az 01-02 0203 0304 0405 05-06 0607 0708 0809
N 35 64 95 124 150 171 183 179

Az 09-10 1.0-11 1.1-1.2 12-1.3 13-14 1415 15-16 16-1.7
N 170 155 142 130 119 107 94 80

twice to obtain the equation of state of dark energy w(z), using the formula

H) = |£ (dL(Z))

dz\1+z

-1

, (2.3)

_ [20+2)/3]H'/H-1
"1 — (Ho/H)PQ,, (1+2)3

The results will clearly depend upon the value of the scale Aineqn (2.2). Alarge

w(z)

(2.4)

value of A produces a smooth result, but the accuracy of reconstruction worsens,
while a small A gives a more accurate, but noisy result. Note that, for [z—z;| < 1, the
exponent in eqn (2.2) reduces to the form —(z — z;)?/2A%(1 + z)?. Thus, the effective
Gaussian smoothing scale for this algorithm is A(1 + z). We expect to obtain an
optimum value of A for which both smoothness and accuracy are reasonable.

To check our method, we use data simulated according to the SuperNova
Acceleration Probe (SNAP) experiment. This space-based mission is expected to
observe close to 6000 supernovae, of which about 2000 supernovae can be used for
cosmological purposes [81]. We propose to use a distribution of 1998 supernovae
between redshifts of 0.1 and 1.7 obtained from [81]. This distribution of 1998 su-
pernovae is shown in table 2.1. Although SNAP will not be measuring supernovae
at redshifts below z = 0.1, it is not unreasonable to assume that, by the time SNAP
comes up, we can expect high quality data at low redshifts from other supernova
surveys such as the Nearby SN Factory . Hence, in the low redshift region z < 0.1,
we add 25 more supernovae of equivalent errors to the SNAP distribution, so that
our data sample now consists of 2023 supernovae . Using this distribution of data,
we check whether the method is successful in reconstructing different cosmological
parameters, and also if it can help discriminate different models of dark energy.

http://snfactory.lbl.gov
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2.1.2 Results from simulated SNAP data

In this section we show the results obtained when our smoothing scheme is applied
to data expected from the SNAP experiment. We simulate 1000 realizations of data
using the SNAP distribution with the error in the luminosity distance given by
Omnd, = 0.07 — the expected error for SNAP. We also consider the possible effect of
weak-lensing on high redshift supernovae by adding an uncertainty of 7.,5(z) =
0.46(0.00311 + 0.08687z — 0.00950z2) (as in [77]). Initially, we use a simple model
of dark energy when simulating data — an evolving model of dark energy with
w = —a/ag = —=1/(1+z) and Q,, = 0.3. It will clearly be of interest to see whether this
model can be reconstructed accurately and discriminated from ACDM using this
method. From the SNAP distribution, we obtain smoothed data at 2000 points taken
uniformly between the minimum and maximum of the distributions used. Once we
are assured of the efficacy of our method, we shall also attempt to reconstruct other
models of dark energy. Among these, one is the standard cosmological constant
(ACDM) model with w = —1. The other is a model with a constant equation of state,
w = —0.5. Such models with constant equation of state are known as “quiessence
models” of dark energy [69]. These three models are complementary to each other.
For the ACDM model, the equation of state is constantat w = —1, w remains constant
at —0.5 for the quiessence model and for the evolving model, w(z) varies rapidly,
increasing in value from wy = —1 at the present epoch to w =~ 0 at high redshifts.

The first issue we need to consider is that of the guess model. As mentioned
earlier, the guess model in eqn (2.2) is arbitrary. Using a guess model will naturally
cause the results to be somewhat biased towards the guess model at low and high
redshifts where there is paucity of data. Therefore we use an iterative method to
estimate the guess model from an initial guess.

Iterative process to obtain Guess model

To estimate the guess model for our smoothing scheme, we use the following
iterative method. We start with a simple cosmological model, such as ACDM, as

our initial guess model- In dfo =In dz\CDM

. The result obtained from this analysis,
Ind}, is expected to be closer to the real model than the initial guess. We now
use this result as our next guess model- In dil = Ind] and obtain the next result
In di. With each iteration, we expect the guess model to become more accurate, thus
giving a result that is less and less biased towards the initial guess model used. A

few points about the iterative method should be noted here.
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Using different models for the initial guess does not affect the final result
provided the process is iterated several times. For example, if we use a
w = —1/(1 + z) ‘metamorphosis” model to simulate the data and use either
ACDM or the w = —0.5 quiessence model as our initial guess, the results for

the two cases converge by few iterations.

Using a very small value of A will result in a accurate but noisy guess model,
therefore after a few iterations, the result will become too noisy to be of any
use. Therefore, we should use a large A for this process in order to obtain
smoother results.

The bias of the final result will decrease with each iteration, since with each
iteration we get closer to the true model. The bias decreases non-linearly with
the number of iterations M. Generally, after about 10 iterations, for moderate
values of A, the bias is acceptably small. Beyond this, the bias still decreases
with the number of iterations but the decrease is negligible while the process

takes more time and results in larger errors on the parameters.

It is important to choose a value of A which gives a small value of bias and also
reasonably small errors on the derived cosmological parameters. To estimate
the value of A in eqn (2.2), we consider the following relation between the
reconstructed results, quality and quantity of the data and the smoothing
parameters. One can show that the relative error bars on H(z) scale as [82]

OH o

where N is the total number of supernovae (for approximately uniform dis-
tribution of supernovae over the redshift range) and o is the noise of the data.
From the above equation we see that a larger number of supernovae or larger
width of smoothing, A, will decrease the error bars on reconstructed H, but as
we shall show in appendix A, the bias of the method is approximately related
to A2. This implies that, by increasing A we will also increase the bias of the
results. We attempt to estimate A such that the error bars on H be of the same
order as 0, which is a reasonable expectation. If we consider a single iteration
of our method, then for N ~ 2000 we get Ag =~ N -1/3 ~ 0.08. However, with
each iteration, the errors on the parameters will increase. Therefore using this

value of A when we use an iterative process to find the guess model will result

32
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in such large errors on the cosmological parameters as to render the reconstruc-
tion exercise meaningless. It shall be shown in appendix A that at the M-th
iteration, the error on Ind; will be approximately op(Indy) =~ \/Z\_/I(So(ln dr).
The error on Ind; scales as 1/A. We would like the errors after M iterations
to be commensurate with the optimum errors obtained for a single iteration,
Ag, so we require Agptimal = VMA,. Therefore, if we wish to stop the boot-
strapping after 10 iterations, then Agptimal = 3Ag = 0.24. This is the optimal
value of A we shall use for best results for our smoothing procedure.

Considering all these factors, we use a smoothing scale A = 0.24 for the smooth-
ing procedure of eqn (2.2) with a iterative method for finding the guess model (with
ACDM as the initial guess). The boot-strapping is stopped after 10 iterations. We
will see that the results reconstructed using these parameters do not contain notice-
able bias and the errors on the parameters are also satisfactory.

Figure 2.1 shows the reconstructed H(z) and w(z) with 1o errors for the w =
-1/(1 + z) evolving model of dark energy. From this figure we can see that the
Hubble parameter is reconstructed quite accurately and can successfully be used to
differentiate the model from ACDM. The equation of state, however, is somewhat
noisier. There is also a slight bias in the equation of state at low and high redshifts.
Since the w = —1/(1 + z) model has an equation of state which is very close to
w = -1 at low redshifts, we see that w(z) cannot discriminate ACDM from the
fiducial model at z < 0.2 at the 10 confidence level.

Age of the Universe

We may also use this smoothing scheme to calculate other cosmological parameters
of interest such as the age of the universe at a redshift z:

a7 dz/
Hz) = H; f Trhes 2.6)

In this case, since data is available only up to redshifts of z =~ 1.7, it will not be
possible to calculate the age of the universe. Instead, we calculate the look-back
time at each redshift—

T(z) = Kz = 0) — (z) = Hy" fo # 2.7)

()

Figure 2.2 shows the reconstructed T(z) with 1o errors for the w = —1/(1 + z)
‘metamorphosis” model using the SNAP distribution. For this model the current
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Figure 2.1: The smoothing scheme of eqn (2.2) is used to determine H(z) and w(z) from
1000 realizations of the SNAP dataset. The smoothing scale is A = 0.24. The dashed line
in each panel represents the fiducial w = —1/(1 + z) ‘metamorphosis’ model while the solid
lines show the mean Hubble parameter (left), the mean equation of state (right), and 1o
limits around these quantities. The dotted line in both panels is ACDM. Note that the mean
Hubble parameter is reconstructed so accurately that the fiducial model (dashed line) is not
visible in the left panel.

age of the universe is about 13 Gyrs and the look-back time at z =~ 1.7 is about 9 Gyrs
for a Hubble parameter of Hy = 70 km/s/Mpc. We see that the look-back time is
reconstructed extremely accurately. Using this method we may predict this param-
eter with a high degree of success and distinguish between the fiducial look-back
time and that for ACDM even at the 100 confidence level. Indeed any cosmological
parameter which can be obtained by integrating the Hubble parameter will be re-
constructed without problem, since integrating involves a further smoothing of the
results.

Looking at these results, we draw the conclusion that the method of smoothing
supernova data can be expected to work quite well for future SNAP data as far as the
Hubble parameter is concerned. Using this method, we may reconstruct the Hubble
parameter and therefore the expansion history of the universe accurately. We find
that the method is very efficient in reproducing H(z) to an accuracy of < 2% within
the redshift interval 0 < z < 1, and to < 4% at z = 1.7, as demonstrated in figure 2.1.
Furthermore, using the Hubble parameter, one may expect to discriminate between
different families of models such as the metamorphosis model w = —1/(1 + z) and
ACDM. This method also reproduces very accurately the look-back time for a given

model, as seen in figure 2.2. It reconstructs the look-back time to an accuracy of
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Figure 2.2: The smoothing scheme of eqn (2.2) is used to determine the look-back time of
the universe, T(z) = #(0)—t(z), from 1000 realizations of the SNAP dataset foraw = —1/(1+z)
‘metamorphosis’ model. The smoothing scale is A = 0.24. The solid lines show the mean
look-back time and the 1o limits around it. The look-back time for the fiducial model
matches exactly with the mean for the smoothing scheme. The dotted line shows the
ACDM model.

<02%atz=1.7.

Reducing noise through Double Smoothing

As we saw in the preceding subsection, the method of smoothing supernova data
to extract information on cosmological parameters works very well if we employ
the first derivative of the data to reconstruct the Hubble parameter. It also works
reasonably for the second derivative, which is used to determine w(z), but the errors
on w(z) are somewhat large. In this section, we examine a possible way in which
the equation of state may be extracted from the data to give slightly better results.
The noise in each parameter translates into larger noise levels on its successive
derivatives. We have seen earlier that, using the smoothing scheme eqn (2.2), one
can obtain H(z) from the smoothed dp(z) fairly successfully. However, small noises
in H(z) propagate into larger noises in w(z). Therefore, it is logical to assume that
if H(z) were smoother, the resultant w(z) might also have smaller errors. So, we
attempt to smooth H(z) a second time after obtaining it from d(z). The procedure
in this method is as follows — first, we smooth noisy data Ind; (z) to obtain Indy (z)°
using eqn (2.2). We differentiate this to find H(z)® using eqn (2.3). We then further



2.1: Non Parametric Reconstruction of the Expansion History of the Universe 36

3.5

2.5

H/Hq
W

-1.5

0.5 1 1.5

Figure 2.3: The double smoothing scheme of eqns (2.2) and (2.8) has been used to obtain
H(z) and w(z) from 1000 realizations of the SNAP dataset. The smoothing scale is A = 0.24.
The dashed line in each panel represents the fiducial w = —1/(1 + z) ‘metamorphosis” model
while the solid lines represent the mean and 1o limits around it. The dotted line in both
panels is ACDM. In the left panel H(z) for the fiducial model matches exactly with the mean
for the smoothing scheme.

smooth this Hubble parameter by using the same smoothing scheme at the new
redshifts

2 (14z;
In (1+z)

2A?

7

H(z, A = H(z)% + N(z) 2 [H(z)® — H(z:)$] X exp

1+z

2A?

2(14z
N@E)! :Zexp ln(—) .

1

(2.8)

We then use this H(z, A)*? to obtain w(z) using eqn (2.4). This has the advantage of
making w(z) less noisy than before, while using the same number of parameters.
However, repeated smoothing can also result in the loss of information.

The result for the SNAP distribution using this double smoothing scheme for
thew = —1/(1+z) model is shown in figure 2.3. We use A = 0.24 for smoothing both
Ind; (z) and H(z). Comparing with figure 2.1, we find that there is an improvement
in the reconstruction of H(z) as well as w(z). Thus, errors on the Hubble parameter
decrease slightly and errors on w(z) also become somewhat smaller.

We now explore this scheme further for other models of dark energy. We first
consider a w = =1 ACDM model. In figure 2.4, we show the results for this model.

We find that the Hubble parameter accurately reconstructed and even w is well
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Figure 2.4: The double smoothing scheme of eqns (2.2) and (2.8) has been used to obtain
H(z) and w(z) from 1000 realizations of the SNAP dataset. The smoothing scale is A = 0.24.
The dashed line in each panel represents the fiducial ACDM model with w = —1 while the
solid lines represent the mean and 1¢ limits around it. In the left panel H(z) for the fiducial
model matches exactly with the mean for the smoothing scheme.
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Figure 2.5: The double smoothing scheme of eqns (2.2) and (2.8) has been used to obtain
H(z) and w(z) from 1000 realizations of the SNAP dataset. The smoothing scale is A = 0.24.
The dashed line in each panel represents the fiducial quiessence model with w = —0.5 while
the solid lines represent the mean and 1o limits around it. The dotted line is ACDM.
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reconstructed, with a little bias at high redshift. The next model we reconstruct
is a w = —0.5 quiessence model. The results for double smoothing are shown in
figure 2.5. There is a little bias for this model at the low redshifts, although it is still
well within the error bars.

We note that in all three cases, a slight bias is noticeable at low or high redshifts.
This is primarily due to edge effects— since at low (high) redshift, any particular
point will have less (more) number of supernovae to the left than to the right.
Even by estimating the guess model through an iterative process, it is difficult to
completely get rid of this effect. In order to get rid of this effect, we would require
to use much larger number of iterations for the guess model, but this would result
in very large errors on the parameters. However, this bias is so small as to be
negligible and cannot affect the results in any way.

Looking at these three figures, we can draw the following conclusions. The
Hubble parameter is quite well reconstructed by the method of double smoothing
in all three cases while the errors on the equation of state also decrease. At low
and high redshifts, a very slight bias persists. In appendix B we have shown that
by using a proper variable width of smoothing it is possible to decrease the bias
at the two tails significantly. Despite this, the equation of state is reconstructed
quite accurately. Also, since the average error in w(z) is somewhat less than that in
the single smoothing scheme (figure 2.1), the equation of state may be used with
better success in discriminating different models of dark energy using the double
smoothing procedure.

2.1.3 Cosmological Reconstruction applied to other physical models of
Dark Energy

In this subsection we draw the readers attention to the dangers encountered during
cosmological reconstruction of a typical dark energy models. There are currently
two plausible ways of making the expansion of the universe accelerate at late times.
The first approach depends on changing the matter sector of the Einstein equations.
Examples of this approach are the quintessence fields. A completely different
approach has shown that it is possible to obtain an accelerating universe through
modifying the gravity sector (see, for instance, [83-91] and references therein). In
these models, dark energy should not be treated as a fluid or a field. Instead, it may
be better dubbed as ‘geometric dark energy’. Indeed the DGP model [91] can cause

the universe to accelerate even in the absence of a physical dark energy component.
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Figure 2.6: The reconstructed Hubble parameter H(z) for the braneworld model, eqn (2.9)
for 1000 realizations of the SNAP dataset. We use the double smoothing scheme of eqns (2.2)
and (2.8) with A = 0.24. The dashed line represents the fiducial Q,, = 0.3,(; =1,Q;, =0
braneworld model while the solid lines represent the mean and 1o limits around it. We
note that the Hubble parameter is very well reconstructed for the braneworld model.

As pointed out in [69,90], the equation of state is not a fundamental quantity for
geometric dark energy. E.g., using w(z) in the reconstruction of such models may
result in very strange results, including, for instance, singularities in the equation
of state. 2

As an example, we consider the braneworld dark energy model proposed
in [85] described by the following set of equations for a flat universe :

H?(z)
2
Hj

= Q142 +Qy + 20 — 240 \/Qm(l 12+ QO+ O,

2A very simple model which has a well-behaved g(z) but singular w(z) is a model which has,
in addition to the cosmological constant, a second dark energy component disguised as a spatial
curvature term— H*(z)/H; = Qu(1 +2)* + Qx(1 + 2)*> + Q. If we assume that Q,, = 0.3,Qx =
—0.05,Q, = 0.75, then w(z) becomes singular when Qx(1 + z?+Q) =0,ie,atz ~28. Although
this property of w(z) can be easily understood physically and rests in the fact that it is an “effective’
equation of state for the combination of DE fluids, nevertheless any reasonable parameterization of
w(z) will clearly experience difficulty in reproducing this behavior. An effective equation of state with
a similar “pole-like” divergence is frequently encountered in braneworld models of dark energy [85,92]
as well as in holographic models [93].
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Qo =1-0y+2Q1+Qy), (2.9)

where the densities Q are defined as :

Pom o 1 ib

= = — Ay = —— (210)
2/ *%0 212’ b 27
3m2H? 2H? 6H?

= S o 1

" 3m2Hg ’

l. = m*/M?® being a new length scale (m and M refer respectively to the four
and five dimensional Planck masses), 1, the bulk cosmological constant and ¢ the
brane tension. In this section we have used /i = ¢ = 1. On short length scales r < [,
and at early times, one recovers general relativity, whereas on large length scales
r > I, and at late times brane-related effects become important and may lead to the
acceleration of the universe. The ‘effective’” equation of state for this braneworld
model is given by

3H? H? -1/2
P=gc—Om@) p=7-=0()-1/2) we= % - 1812 (211)

31-0m(@)

It is obvious that the effective equation of state in this braneworld model may
become singular if QO (z) = Q,, (1 + z)3Hg /H?(z) becomes unity. This does not signal
any inherent pathologies in the model however. We should remember that the
acceleration of the universe in this model is due to modification of the expansion
of the universe at late times due to extra-dimensional effects. Hence it is not very
appropriate to describe dark energy by an equation of state for such a model.
However, it would be interesting to see if the singularity in the effective w for this
model can be recovered by our smoothing method.

We attempt to reconstruct an Q,, = 0.3, = 1,0y, = 0 braneworld model
which is a good fit to the current supernova data [94]. We simulate data according
to SNAP and obtain results for the double smoothing method with A = 0.24. In
figure 2.6, we show the reconstructed Hubble parameter for this reconstruction. We
see that the Hubble parameter is very well reconstructed and shows no pathological
behavior.

We now obtain the equation of state of dark energy for this model. For this
purpose, we also use an ansatz for the equation of state as suggested by [55] and [60]
(the CPL fit)

w(z) = wo + T2 (2.12)

The results are shown in figure 2.7. We find, as expected, that it is impossible
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Figure 2.7: Reconstructed equation of state for the braneworld model, eqn (2.9), for 1000
realizations of the SNAP dataset. The left panel shows results for the double smoothing
scheme of eqns (2.2) and (2.8) with A = 0.24 while the right panel uses the ansatz eqn (2.12)
to reconstruct the equation of state. The dashed line in each panel represents the fiducial
Q,, =0.3,0; = 1,0y, = 0braneworld model while the solid lines represent the mean and 1o
limits around it.

to catch the singularity in the equation of state at z ~ 0.8 using an equation of state
ansatz. Of course, one may try and improve upon this somewhat dismal picture
by introducing fits with more free parameters. However, it is well known that
the presence of more degrees of freedom in the fit leads to a larger degeneracy
(between parameters) and hence to larger errors of reconstruction [56]. In contrast
to this approach, when we reconstruct the equation of state using the smoothing
scheme (which does not presuppose any particular behavior of the equation of state),
the Hubble parameter is reconstructed very accurately and hence the ‘effective’
equation of state for this model is also reconstructed well, as shown in figure 2.7.
From this figure we see a clear evidence of the singularity at z =~ 0.8. Thus to obtain
maximum information about the equation of state, especially in cases where the
dark energy model is very different from the typical quintessence-like models, it
may be better to reconstruct the Hubble parameter or the dark energy density first.

Therefore, we find that the smoothing scheme, which performs reasonably
when reconstructing quintessence models of dark energy models, can be also ap-
plied to models which show a departure from general relativistic behavior at late
times. 3 This section illustrates the fact that, in general, reconstructing H(z) and its

*Note, however, that most reconstruction methods including the present one may have problems
in reproducing the rapidly oscillating equation of state predicted to arise in some models of dark
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derivatives such as the deceleration parameter g(z) may be less fraught with diffi-
culty than a reconstruction of w(z), which, being an effective equation of state and
not a fundamental physical quantity in some DE models, can often show peculiar

properties.

214 Applying smoothing method on the real data

In the previous subsection we have suggested a non-parametric method based on
smoothing the supernova data over redshift in order to reconstruct cosmological
quantities, including the expansion rate, h(z), and the equation of state of dark
energy, w(z), in a model-independent manner. In this approach, the data are dealt
with directly, and one does not rely on a parametric functional form for fitting any
of the quantities dy(z), h(z) or w(z). The result obtained by using this approach
is, therefore, expected to be model-independent. As we have seen in the previous
section, this method was shown to be successful in discriminating between different
models of dark energy if the quality of data is commensurate with that expected
from the future SuperNova Acceleration Probe (SNAP). In this section we slightly
improve the smoothing method and apply it to two recent sets of supernovae
data: Gold [46] and SNLS [47]. We then compare the derived expansion history
of universe with the results of baryon acoustic peak observations [96]. Specifically,
we use the improved smoothing method to reconstruct the Hubble parameter, h(z),
and then derive the distance factor, A, up to a redshift of 0.35 independently of the
assumption of any cosmological model. This derived value, based on supernovae
data, is then compared with the distance factor A (which is also claimed to be
relatively independent of dark energy model) being determined by the detection
of the baryon acoustic oscillation peak. One of the main results of this section is
that there is a good agreement between supernovae data (both Gold and SNLS)
and baryon acoustic peak observations for the values Qg, = 0.276 + 0.023. The
derived value of gy, is then used to reconstruct the equation of state of dark energy
for both supernovae datasets. We should emphasize here that all the results are
only based on observational data and no theoretical model has been assumed. This
is an advantage of this method over the functional fitting methods in which the
reconstructed results are biased by an assumed functional form or a theoretical

model.

energy [95].
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Defining the basic parameters in the smoothing method

As we have seen earlier, it is important to choose a value of A which gives a
small value of the bias and also reasonably small errors on derived cosmological
parameters. To estimate the value of A in eqn (2.2), we consider the eqn (2.5)
relation. We also know that the bias of the method is approximately related to A2
(see appendix A). This implies that by increasing A we will also increase the bias
of the results. If we attempt to estimate A such that %H o« 30, then for N = 182 data
points (which is the number of data points in the Gold sample), we get A = 0.084
for a single iteration of our method. However, with each iteration, the errors on
the parameters will increase. Therefore, using this value of A when we use an
iterative process to find the guess model will result in such large errors on the
cosmological parameters as to render the reconstruction exercise meaningless. We
see in appendix A, that at the M-th iteration, the error on In d;, will be approximately
dm(Indy) =~ VMOby(Indy), and the error on Indy scales as 1/A. We would like the
errors after M iterations to be commensurate with the optimum errors obtained
for a single iteration, 6o, so we require Agptimal = VMA,. Therefore, if we wish to
stop the boot-strapping after 50 iterations, then Agptimal = 0.6. However, after this
rough estimation of the values of A and M, we can still play around these values
to find the best combination, by minimizing the likelihood of the reconstructed
results to the data. In the following, we use A = 0.6 and we calculate the x?2 of the
reconstructed distance moduli to the data after each iteration, and we stop the boot-
strapping process after reaching the minimum value of x2. This effect, that x? of the
reconstructed results goes to a minimum value and increases again with iteration is
areflection of the problem of some iterative reconstruction algorithms which are not
error-sensitive. In these cases the noise will be added to the reconstructed results
after certain number of iterations and the iterative process should be stopped after
reaching the minimum value of x? to get the best result. Similar effect has been
studied in the next chapter in the Richardson-Lucy deconvolution algorithm to
reconstruct the form of primordial power spectrum from CMB data .

In appendix C we show that the results are not sensitive to the chosen value of
A and also to the assumed initial guess model.

2.1.5 Results from the Gold Dataset

The recently released Gold sample [46], consist of 182 supernovae type la which
have been gathered from five different subsets of data, observed during the last 16
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Figure 2.8: Computed x? for the reconstructed results at each iteration, using Gold sample.

years. The range of redshift for these supernovae are between 0.024 and 1.75. In
this section we use this dataset to reconstruct h(z), estimate the value of Q,,, and
then reconstruct w(z). We choose a flat ACDM model with Qg,, = 0.30 as the initial
guess model in our calculation and we fix the value of A (width of smoothing) to be
0.6. After each iteration, we compute the y? and we stop the boot-strapping process
once x? reaches its minimum value. The x? at any iteration is calculated from the

formula(see appendix E),

(Frec, '(H0/ Zi) - ‘uobs(zi))2
Xoee j(H0) = Zi—= . (2.13)

o
i

and is followed by marginalizing over Hy. We have marginalized over Hy by
integrating over the probability density p o exp(—x?/2) for all values of Hp. In
eqn (2.13), trec,j(Ho, z;) is the reconstructed result at the jth iteration for the distance
moduli at redshift z;, assuming the value of Hy, and p,ps(z;) is the Gold sample data
given by [46]. In figure 2.8 we show the x? of the reconstructed results at different
iterations, after marginalizing over Hy. As we see, the x> has a minimum around
j = 89 and after this, x? is slowly increasing. So we stop the boot-strapping process
at this iteration and determine /(z). We can also see that for the initial guess ACDM
model, the Ay? of the best recovered result is less than 4 which means that the flat
ACDM model is in agreement with the Gold sample within 2o.

By marginalizing over the Hubble parameter, we carry out a similar treatment
on the data as it has been done by [46] to calculate the x? for different cosmological
models. As the Gold data are based on a Hubble parameter of 65 km/sec/Mpc, the
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Figure 2.9: Probability density of the best reconstructed result from Gold data for different
values of Hubble parameter.

reconstruction method should be able to recover this value for the Hubble constant.
In fact the peak of the probability density of the reconstructed result for different
values of the Hubble parameter should be close to Hy = 65 km/sec/Mpc. In figure 2.9
we show the probability density of the best reconstructed result from Gold data for
different values of the Hubble parameter. We see that the probability density has a
sharp peak around Hy =65 km/sec/Mpc.

We should also note here, that the reduced x? of the reconstructed results seems
to be consistently below 1 (however it is not trivial to define the degree of freedom in
our smoothing method and hence the reduced x?, but we can see that the resultant
x? of the reconstructed results is around 25 less than the number of data points). We
can also see in figure 2.8 that the reduced x? of the first initial guess model, which is
a ACDM model, is also below 1. It shows that the error-bars of the supernovae data
points are quite large and many different reconstructed results may have a reduced
x? of less than 1. In this analysis we only calculate the x? of the reconstructed results
and we compare different results by calculating the Ax? to the best result with a
minimum x2.

In figure 2.10, left panel, we show the reconstructed h(z) for the Gold data
set. The red solid line has the highest likelihood and is our best reconstruction.
All the other lines are within 10 away from the best recovered result. These lines
are recovered results from our smoothing method by using different numbers of
iterations in the boot-strapping process. The Ax? for all of these lines is less than
1, and so we can consider them to lie within 1o of the best result. We should note
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Figure 2.10: Reconstructed /(z) (left) and g(z) (right) by using Gold dataset. Red solid line
is the best recovered result and the green dashed lines are within 1o away from the best
result. Based on our results, the transition between deceleration and acceleration phases of
the universe occurs at 0.38 < z < 0.48 within 1o error-bar from the best recovered result. In
the left panel we can also see 3 uncorrelated and independent measurements of h(z) from
the Gold sample (blue dotted crosses from [46]) for comparison with our reconstructed
results.

that these green dashed lines in figure 2.10 are in fact a non-exhaustive sample of
results which are within 1o away from the best recovered result. As we see in the
figure 2.10, the reconstructed h(z) at high redshift has a very big degeneracy. This
is expected since there is only a single supernova beyond redshift 1.4!

In this figure we can also see 3 uncorrelated and independent measurements
of h(z) from the Gold sample (blue dotted crosses from [46]) for comparison with
our results. We can see that these two results are consistent with each other within
their 1o limits. However we should mention here that in the [77] method used
by [46] for uncorrelated estimates of the expansion history, there is a slight bias
in the reconstruction of h(z) and the higher derivatives of the data. It is mainly
because of using the average of the measured quantity /(z) ™!, which typically is not
a straight line. So as it has been mentioned in [77], the measured average of h(z) !
(and hence h(z)) over a redshift bin will generally lie either slightly above or below
the actual curve at the bin center. This can be the reason that why the centers of the
crosses in figure 2.10, left panel, for uncorrelated estimates of the expansion history,
are slightly above or below our reconstructed curve for the h(z).

To reconstruct the Hubble parameter, /1(z), we do not need to know the value
of Q. Another important cosmological quantity which we can derive from the
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Figure 2.11: Left panel: The derived value of A/ vQ,, from supernovae Gold data within
its 1o error-bars (red solid line and green dashed lines) in comparison with its measured
value from observation of LRGs within its 1o error-bars (blue dotted lines) for different
values of Q. Right panel: Reconstructed w(z) for the Gold dataset. Red solid line is the
best recovered result and the green dashed lines are within 10 away from the best result.
To get these results, we have marginalized over Qy,, = 0.277 + 0.022.

reconstructed h(z) (independent of the value of (), is the deceleration parameter,
q(2),

H'(z)
Ho

In figure 2.10, right panel, we show reconstructed g(z). For the Gold data our

q(z) = (1 +2) (2.14)

method shows that the transition between deceleration and acceleration occurred
at 0.38 < z < 0.48 (at 10). The best reconstruction shows the redshift of transition to
be z, ~ 0.42. This is in agreement with results obtained using parametric methods
[97,98].

To derive the equation of state of dark energy w(z), one needs to know the
value of g, as we see in eqn (2.4). To estimate the value of (),,, without using
any parameterization and in a model-independent way, we can use the results of
the detection of the baryon acoustic oscillation peak [96,99]. The distance factor
A up to redshift 0.35, measured by observation of luminous red galaxies (LRG)
in detection of baryon acoustic oscillation peak (which have been claimed to be
relatively independent of the model of dark energy), can be derived directly for
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different values of Q,, by using the reconstructed h(z),

A=

Qo | 1 fOZI dz ]2/3/ 215)

hz)B Lz h(z)

where the measured value of A is A = 0.469(&)‘0‘35 +0.017 at z; = 0.35. The 3-
year WMAP results, when combined with the results of baryon acoustic oscillations,
yield n = 0.951 for the spectral index of the primordial power spectrum [100,101]. By
using the best reconstructed results for h(z), we get A/ VQ,, =0.901. In figure 2.11,
left panel, we see the derived value of A/ \VQ,, from supernovae data in comparison
with its measured value from observation of LRGs for different values of Qg,,. It
is clear that these two independent observations which are completely different by
nature, are very much in agreement if 0.255 < Q,, < 0.299. This derived value
of Qo,, is completely independent of any dark energy model assumption (within
the framework of standard general relativity) and is in very close agreement with
the results from large scale structure measurements from 2dF [102] and SDSS [103].
This derived value of Q,, is also in good agreement with the results from [104],
where a different model-independent method of reconstruction has been used.

Now by marginalizing over Q,, = 0.277 + 0.022, which is the range of agree-
ment between the two observations, we can reconstruct w(z) from our previously
reconstructed h(z). In figure 2.11, right panel, we show the reconstructed w(z),
marginalized over Qg for the Gold dataset. We see that the data prefer evolving
dark energy to the cosmological constant. The degeneracy for the equation of state
of dark energy at high redshifts is very large and it is almost impossible to say much
about w(z) at high redshifts.

2.1.6 Results from the SNLS dataset

In this section we use the same procedure as we used in the previous section to
deal with SNLS supernovae data [47]. The SNLS dataset contains 115 data points
in the range of 0.1 < z < 1.0. We use this dataset, first to reconstruct the Hubble
parameter, i(z), and the deceleration factor, 4(z), up to redshift 1. Then by using the
results of detection of baryon acoustic oscillation peak we derive the value of Qy,,
following which we recover the form of w(z). We use the distance modules of the
supernovae available in Tables 8 and 9 in [47] as our dataset in this section.

In figure 2.12 we see the computed x? for the reconstructed results using
smoothing method at each iteration. As we see, the x? diverges to its minimum
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Figure 2.12: Computed x? for the reconstructed results at each iteration for the SNLS
dataset.

value very fast at just the 5th iteration. In figure 2.13 we show the reconstructed
h(z) (left panel) and g(z) (right panel) for the SNLS dataset. The red solid line has
the best likelihood, which is our best reconstructed result. All the other lines are
within 1o away from the best recovered result. We should like to emphasize here
that these results (green dashed lines) are not representative of all the possibilities
which give the likelihood within 1o of the best recovered result. However they can
show the overall behavior of the quantities which we have studied. Our results
for SNLS data show that the transition from deceleration to acceleration phase of
the universe occurs at redshifts higher than 0.7. The fact that we cannot put an
upper limit to the redshift of the commence of acceleration is due to the absence of
supernovae data at z > 1 in SNLS dataset.

As we have discussed earlier in the previous section, we use the results of
detection of baryon acoustic oscillation peak to determine the value of Q,,. Then
by marginalizing over the recovered value of {),,, we derive the dynamics of w(z).
In figure 2.14 we see the derived value of (¢, and the reconstructed form of w(z).
We see that the ACDM model is in much better agreement with SNLS data than
with Gold data.

By comparing the recovered results from the SNLS and Gold datasets, we
can clearly see an inconsistency between these two supernovae datasets. This
inconsistency is obvious by looking at the reconstructed q(z) and w(z) in the middle
and high redshift ranges. Gold data suggest the redshift of the commencement of
acceleration at z, ~ 0.42 while SNLS data suggest z, ~ 0.80. The reconstructed w(z)
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Figure 2.13: Reconstructed h(z) (left) and g(z) (right) by using SNLS dataset. Red solid line
is the best recovered result and the green dashed lines are within 1o away from the best
result. Based on our results, the transition between deceleration and acceleration phases of
the universe occurs at z > 0.70 within 1o error-bar from the best recovered result.

from these two datasets also shows a very different behavior in the middle and
high redshift ranges. The discord between Gold and SNLS supernovae datasets
has been reported and studied earlier by [105], and a similar discord between
Gold supernovae data and other cosmological observations like CMB observations
from WMAP and observations of cluster abundance, has also been reported earlier
by [106]. However SNLS supernovae data seem to be in good agreement with the
other cosmological observations. Based on all these results and analysis, we may
conclude that some significant systematics in the Gold data (or in a part of the data)
might be the reason for these inconsistencies.

Interestingly, the recovered values of Q,, from Gold and SNLS data (by using
the results of detection of baryon acoustic oscillation peak), are in very close agree-
ment. In both cases the derived value of Qg,, is around 0.276 + 0.022. We should
note here that the two data sets rely on pretty much the same nearby supernovae
samples and that is why the results are similar in this range. It is something which
we logically expect to get. But in fact it shows one of the advantages of this method
over the functional fitting methods. By using a functional fitting method, the recov-
ered results at any redshift would be equally dependent on the data set in the whole
redshift range. But here, by using our smoothing method, we can clearly see that
despite the significant differences between the reconstructed results from Gold and
SNLS datasets in the middle and high redshift regions, the reconstructed results



2.2: Diagnostics of dark energy 51

AQY, S

-05

w(z)
=

-15

L L L L L L L L L L L L L L L h
0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Qom

Figure 2.14: Left panel: The derived value of A/ V{)y,, from supernovae SNLS data within
its 1o error-bars (red solid line and green dashed lines) in comparison with its measured
value from observation of LRGs within its 1o error-bars (blue dotted lines) for different
values of Q. The consistency of this result with the result from the Gold sample is
obvious. Right panel: Reconstructed w(z) for the SNLS dataset. Red solid line is the best
recovered result and the green dashed lines are within 10 away from the best result. To get
these results, we have marginalized over Qg = 0.276 + 0.023.

for the expansion history at low redshifts (which we use to estimate the value of
matter density), are not affected by the big differences between the two datasets at
the higher redshifts.

2.2 Diagnostics of dark energy

Theoretical models for DE include the famous cosmological constant, A, suggested
by Einsteinin 1917 [1] and shown to be associated with the vacuum energy (T jx)vac
Agix several decades later [107,108]. Indeed, the cosmological constant appears
to occupy a privileged position amongst DE models by virtue of the fact that its
equation of state w = —1 is Lorentz invariant and so appears the same to any inertial
observer. However, within the context of cosmology, an explanation of DE in terms
of A faces one drawback, namely, in order for the universe to accelerate today the
ratio of the energy density in the cosmological constant to that in radiation must
have been minuscule at early times, for instance p, = 3 X 107 pgw at the time of
the electroweak phase transition. Although vacuum energy may conceivably be
associated with small numbers such as the neutrino mass (p5 ~ m:) or even the fine

structure constant (pp o m% X exp (—2/a)), a firm theoretical prediction for the value
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of A is currently lacking, allowing room for alternatives including models in which
both the DE density and its equation of state (EOS) evolve with time. Alternatives
to the cosmological constant include scalar field models called quintessence which
satisfy w > —1, as well as more exotic ‘phantom” models with w < 1.

Although most recent studies show that a cosmological constant + cold dark
matter (LCDM) is in excellent agreement with observational data, as we have
seen in the previous section, dynamical dark energy can explain the data too
[12,19,20,27,46,47,54,61,64-68,76,97,100,104,105,109-115]. Indeed, the enormous
variety of DE models suggested in the literature has been partially responsible for
the burgeoning industry of model independent techniques aimed at reconstructing
the properties of dark energy directly from observations [20]. It is well known that
model independent methods must be wary of several pitfalls which can subvert
their efficacy. These relate to priors which are sometimes assumed about funda-
mental cosmological quantities such as the EOS and the matter density. As first
pointed out in [58], an incorrect prior for the EOS can lead to gross misrepresen-
tations of reality. The same applies to the value of the matter density. Indeed, as
we shall demonstrate later in this section, an incorrect assumption about the value
of Q; can lead to dramatically incorrect conclusions being drawn about the nature
of dark energy. Clearly the need of the hour, then, is a diagnostic which is able to
differentiate LCDM from ‘something else” with as few priors as possible being set
on other cosmological parameters.

In this section we introduce three new diagnostics. The first diagnostic, —
Om, is constructed from observations of the Hubble parameter and provides a null
test of the LCDM hypothesis. We show that Om is able to distinguish dynamical
DE from the cosmological constant in a robust manner without reference to the
value of the matter density, which can be a significant source of uncertainty for
cosmological reconstruction. The Om diagnostic is in many respects the logical
companion to the statefinder r = @ /aH® [53,69]. We remind the reader that r = 1
for LCDM while r # 1 for evolving DE models. Hence r(z1) — r(z2) provides a
null test for the cosmological constant. Similarly, the unevolving nature of Om(z)
in LCDM furnishes Om(z1) — Om(z2) as a null test for the cosmological constant.
Like the statefinder, Om depends only upon the expansion history of our universe.
However, while the statefinder r involves the third derivative of the expansion
factor, Om depends only upon 4 and is therefore much easier to reconstruct from
observations, as we demonstrate in this section.

The second diagnostic — Acceleration probe, is constructed out of the Hubble
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parameter and the lookback time. (Like Om it does not depend upon the current
value of the matter density.) We apply Acceleration probe to current data and show
that it provides an independent test of an accelerating universe.

The third diagnostic — w-probe, is calculated from the first derivative of the
data, Hubble parameter, and is a weighted average of the equation of state of dark
energy which can provide us some direct information about the equation of state of
dark energy without calculating the second derivative of the data. We find that this
diagnostic is reconstructed accurately for different reconstruction methods even if
Q,, is marginalized over. Om and w-probe can be used to successfully distinguish

between ACDM and other models of dark energy to a high degree of accuracy.

2.21 Influence of (), on properties of dark energy

Given the many alternative models of dark energy it is useful to try and understand
the properties of DE in a model independent manner. An important model inde-
pendent quantity is the expansion history, H(z), whose value can be reconstructed
from observations of the luminosity distance, Dy, via a single differentiation [48-52]
eqn (2.3). The equation of state, w(z), of DE is more cumbersome to reconstruct
since it involves two derivatives of Dy (z) and is therefore a noisier quantity than
H(z). An additionally source of uncertainty relating to w(z) is caused by the fact that
the value of the matter density, (o, enters into the determination of w(z) explicitly,
through the expression in eqn (2.4). Clearly an uncertainty in Q,, propagates into
the EOS of dark energy even if H(z) has been reconstructed quite accurately. This
fact has been emphasized in several papers [20, 58,97,116,117] and is illustrated
in figure 2.15, which shows how an erroneous estimate of (3,, adversely affects the
reconstructed EOS by making a LCDM model appear as if it were quintessence (if
Qerroneotss < ()f1ie) or phantom (if Qgroneous > (yfrue),

The influence of dark matter on dark energy persists if a parametric ansatz
such as CPL [55,60], eqn (2.12),

w(z) = wy +w z
-0 1+z

is employed in the determination of

H?(z) = Hj[Qu(1 + 2)° + QpE]

Qpe = (1 - Q) exp {3 fo ) “—“’(Z’)dz'}. (2.16)

1+z
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Figure 2.15: The equation of state of a fiducial LCDM model (w = —1,Q5" = 0.27)
is reconstructed using an incorrect value of the matter density. For Q¢""% = (.22 the
resulting EOS shows quintessence-like behavior and its 1 — ¢ contour is shown in green.
In the opposite case, when Q77°"% = (.32, the EOS is phantom-like and its 1 — ¢ contour
is shown in blue. Note that in both cases the true fiducial model (red) is excluded in the
reconstruction. (The parametric reconstruction scheme, eqn (2.12), suggested in [53,69] was
applied to SNAP-quality data to construct this figure.)

In this case, if Q,, is wrongly specified then, in a maximum likelihood approach,
the DE parameters w, w; will adjust to make H(z) as close to its real value as possible,
leading once more to an erroneous reconstruction of the cosmic equation of state.

These two factors: the larger errors caused by the double differentiation of a
noisy quantity (D;) and the strong dependence of w(z) on an uncertain quantity (€2,,,)
adversely impact the cosmological reconstruction of the EOS making it difficult to
differentiate a cosmological constant from evolving DE from an analysis of w(z)

alone.

2.2.2 The Om diagnostic

In this section we suggest an alternative route which enables us to distinguish LCDM
from other DE models without directly involving the cosmic EOS. Our starting point
is the Hubble parameter which is used to determine the Om diagnostic

2(x) —
=M, x=1+z, (2.17)
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where h(x) = H(x)/Ho.

¢ +z]3

Figure 2.16: The Hubble parameter squared is plotted against the cube of 1 + z for
Quintessence (w = —0.7, dashed), LCDM (w = -1, solid) and Phantom (w = —1.3, dot-
dash). The universe is assumed to be spatially flat and Qpg = 2/3 in all models. For
LCDM the plot 1% vs (1 + z)? is a straight line whereas for P and Q this line is curved in the
interval —1 < z < 1. This forms the basis for the observation that Om(x1, x;) = 0 in LCDM,
while Om(x1, x2) > 0 in quintessence and Om(xy, x;) < 0 in Phantom. (At z < 0 the Hubble
parameter for Phantom diverges at a ‘big crunch’ future singularity, while for Quintessence
h(z) = 0 as z = —1. LCDM approaches de Sitter space at late times.)

For dark energy with a constant equation of state
h2(x) = Qox® + (1 = Qom)x®, a =31 +w), (2.18)

(we assume that the universe is spatially flat for simplicity). Consequently,

x* -1
Ww-1'

Om(x) = Qo + (1 — Qo) (2.19)
from where we find

Om(x) = Qo , (2.20)

in LCDM, whereas Om(x) > Qg in quintessence (@ > 0) while Om(x) < Qq,, in

phantom (@ < 0). This is a simple consequence of the fact that h?(x) plotted against

x3

results in a straight line for LCDM, whose slope is given by (g, as shown in
figure 2.16. For other DE models the line describing Om(x) is curved, since the

equality
dn?

I8 constant , (2.21)
X
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(which always holds for LCDM) is satisfied in quintessence/phantom type models
only at redshifts significantly greater than unity, when the effects of DE on the
expansion rate can safely be ignored. As a result the efficiency of the Om diag-
nostic improves at low z < 2 precisely where there is likely to be an abundance of
cosmological data in the coming years !

In practice, the construction of Om requires a knowledge of the Hubble pa-
rameter, h(z), which can be determined using a number of model independent
approaches [53,69,77,116]. In figure 2.17 we show the Om diagnostic reconstructed
from SNAP-quality data using the non-parametric prescription of [115,116]. One
clearly sees that for quintessence as well as phantom the line describing Om(x) is
curved, which helps distinguish these models from LCDM even if the value of the
matter density is not accurately known.

We have reconstructed the Om diagnostic and the cosmic EOS for two Sne data
sets: SNLS [47] and Union [27].

The Union dataset [27] is a new compilation of SNe Ia and consists of 307 SNe
after selection cuts, includes the recent samples from the SNLS [47] and ESSENCE
Surveys [12], older datasets, as well as the recently extended dataset of distant
supernovae observed with HST [46].

Results for the SNLS dataset, shown in figure 2.18, indicate that while the EOS is
quite sensitive to the value of the matter density, the Om diagnostic is not. Note that
the three distinct models of dark energy in figure 2.18 result in virtually the same
luminosity distance since: (i) x> = 110.93 for Q,, = 0.32 (Phantom), (ii) x> = 110.99
for Q,, = 0.28 (LCDM), (iii) x> = 111.02 for Q,, = 0.22 (Quintessence). This shows
that different values of (), and w(z) can provide an excellent fit to the same set
of data, as originally pointed out by [58]. The Om diagnostic is unaffected by this
degeneracy (between (), and w) since its form appears to be virtually independent
of the input value of Q,, (and is suggestive of LCDM) as shown in the upper panel
of figure 2.18. This leads us to conclude that Om is a robust indicator of DE.

Figure 2.19 shows results for the more recent Union dataset. Again we see that
the behavior of the EOS can range from being quintessence-like (for ), = 0.22) to
being phantom-like (for (3,, = 0.32). The behavior of Om is less sensitive to the value
of the matter density and leads us to conclude that while a cosmological constant
appears to be strongly preferred by SNLS, constraints from the Union dataset allow
evolving DE as well as A.

Clearly, differencing the value of Om at two independent redshifts can lead to
insights about the nature of DE even if the value of Q,, is not accurately known.
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Figure 2.17:  The left panel shows the Om(z) diagnostic reconstructed for a fiducial
quintessence model with w = —0.9 and Q,, = 0.27 (black line, green shaded region shows
1o CL, the red line is the exact analytical result for Om). The horizontal blue line shows
the value of Om for a ACDM model with the same value of (),, as quintessence. Note that
any horizontal line in this figure represents ACDM with a different value of (3,,. For instance
ACDM with Q,, = 0.32 is shown by the horizontal magenta line. As this figure shows,
the negative curvature of quintessence allows us to distinguish this model from (zero-
curvature) ACDM independently of the current value of the matter density. The right panel
shows the Om(z) diagnostic reconstructed for a fiducial phantom model with w = —1.1 and
Q,, = 0.27 (black line, green shaded region shows 1¢ CL). The positive curvature of phan-
tom allows us to distinguish this model from (zero-curvature) ACDM independently of the
current value of the matter density. For instance, phantom can easily be distinguished from
ACDM both with the correct Q,,m = 0.27 (horizontal blue) as well as incorrect Q,, = 0.22
(horizontal magenta) ! (The non-parametric smoothing reconstruction scheme suggested
in the previous section has been employed on SNAP quality data for this reconstruction.)
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Figure 2.18: Reconstructed Om(z) and w(z) from SNLS supernovae data using the CPL
ansatz eqn (2.12) and assuming three different values Q,, = 0.22,0.27,0.32 for the matter
density. Notice that while the best fit value of Om(z) is virtually independent of the redshift
(top panel, red curve) and is therefore consistent with LCDM (green line), the reconstructed
EOS strongly depends upon the value of the matter density. Thus, for the same data set,
the best fit value of w(z) is suggestive of quintessence for Q,, = 0.22, LCDM for Q,, = 0.27
and phantom for Q,, = 0.32, while Om(z) favors LCDM throughout. Note that the small
variations in Om(z) in the three upper panels are a consequence of the CPL ansatz which
requires, as input, the value of the matter density ),,. Anon-parametricansatz suchas[116]
would have led to a uniquely reconstructed Om(z) with no dependence on €),,. Blue lines
show 1o error bars.

Thus
-1 x5-
Omfx1,x2) = Om(x) = Om(x) = (1= Qo) | 5— = 5—|,  (222)
-1 x-1

can serve as a null test of the cosmological constant hypothesis, since
Om(x1) = Om(xp) (A — term). (2.23)

In contrast, for DE with a constant EOS, Om(x1) > Om(xz) for quintessence while
Om(x1) < Om(xz) for phantom (x; < x7). Thus the value of Om determined at two
redshifts can help distinguish between DE models without reference either to the value
of the matter density or Ho !
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Figure 2.19: Reconstructed Om(z) and w(z) from recent Union supernovae data using the
CPL ansatz eqn (2.12) and assuming three different values (3,, = 0.22,0.27, 0.32 for the matter
density. Om(z) appears to be much more robust against variation in Q,, in comparison with
w(z). The horizontal green line in the top panel indicates value of Om(= Q,,) = 0.32 for
LCDM model. The blue lines show 1o error bars. Though LCDM is still consistent with the
Union data, this consistency is not quite as strong as it was for the SNLS data shown in the
previous figure. The top panel clearly indicates that evolving DE is also perfectly consistent
with Union data.

One can also hone the efficiency of the Om diagnostic eqn (2.22) by determin-
ing it selectively in regions where there is better quality data. The error in the
reconstructed value of the Hubble parameter is [82]

%H(z) o W (2.24)
where N(z) is the number of supernovae in a given redshift interval and o is the noise
of the data. Since N(z) is never likely to be a perfectly uniform distribution, there will
always be regions where N(z) is larger and H(z) better reconstructed. Consequently,
by determining Om(z1, z) selectively in such regions, one can improve the efficiency
of this diagnostic by ‘tuning it to the data.



2.2: Diagnostics of dark energy 60

Dark Energy Metamorphosis

An important example of quintessence is provided by tracker models, which give
rise to cosmic acceleration at late times while earlier, during the radiative and mat-
ter dominated epochs, the density in the tracker remains proportional to the back-
ground matter density [95,118]. This last property leads to piack/pB = constant < 1
at z > z;, where pp is the background density of matter or radiation and z; is
the redshift when tracking ends. As an example consider the double exponential
model [118] V(¢) = M*[exp (-a¢) + exp (—f$)] with @ > B, B < 1, which has
the attractor solution Qg = 3(1 + wp)/ a?, wy = wg, at high redshift z > z;, while
wg =~ —1 + a?/3 at the present time. Since these models behave like quintessence
at late times, their behavior is similar to that shown in figure 2.17 for a typical
quintessence model. Consequently these models may be distinguished from LCDM
by applying the Om diagnostic shown in figure 2.17. An interesting limiting case
corresponds to metamorphosis models which have wy ~ -1 today and w — 0 at
earlier times [68,119].
For such models Om(x) = Qq,, for x < x; and Om(x) = Qy,y, for x > x; where

Qom = Qo +

(2.25)

Consequently, the Om diagnostic applied to data at low and high redshift, may
help distinguish between tracker DE and LCDM as shown in figure 2.20. Tracker
behavior can also arise in modified gravity theories such as Braneworld models
[85,120] and scalar-tensor cosmology [121]. The growth of density perturbations
provides a complementary means of distinguishing these models from LCDM.

Animportant property of the Om diagnostic is that the value of the cosmological
density parameter €2, does not enter into its definition eqn (2.17) explicitly. As a
result the diagnostic relation Om(x1,x2) = 0 (LCDM) does not require an a-priori
knowledge of the matter density and therefore provide a means of differentiating
the cosmological constant from evolving DE models even if uncertainties exist in
the value of . (Current observations suggest an uncertainty of at least 25% in the
value of Q,, [110].) For a constant EOS the dependence of Om on the value of the
matter density can be altogether eliminated by constructing the ratio

I:x‘l"—l xg—l]
O , 3_1 3_1
m(xl x2) — xl x2 , (2.26)
Om(x3,x4) -1 xg-1
xg—l -1
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Figure 2.20: The Om diagnostic is shown for two tracker models which mimic LCDM at
low redshift and dark matter at high z > z;. The horizontal blue line shows LCDM. The
inset shows the EOS for the tracker’s as a function of redshift.

from where we see that the EOS encoded in the parameter a = 3(1 + w) can be

determined from R without any reference whatsoever to the value of Q,, !

Influence of spatial curvature on Om

The preceding analysis, which showed how the Om diagnostic could distinguish
between alternative models of DE, was based on the assumption that the universe
was spatially flat. While this may well be true, especially within the framework
of the inflationary scenario which predicts an exponential decline of the curvature
term during inflation leading to a vanishingly small value of ) today, it is also
worthwhile to consider the opposite possibility, namely that the curvature is small
but finite, such as Q; ~ —0.0175, which is in marginal agreement with WMAP5
results —0.0175 < Q; < 0.0085 at the 95% CL [110]. In this case eqn (2.22) is
modified to

2 2
xﬁ‘—l xg‘—l]_'_ k|x1—1 x2—1]

3 3 3 3
x—1 x2—1 xl—l x2—1

Om(xq,x2) = QDE[
1

x=1+z (2.27)

and we assume xp > Xq.
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The influence of the curvature term can be estimated by a simple ‘back of the
envelope’ calculation which we carry out for quintessence (Q) and phantom (P). We
assume Qpg = 0.7, Q, = —0.0175,z1 = 0.1,z = 1 and w = —0.9 for Q while w = —1.1
for P. In the case of Quintessence we find Om(x1,x2) = 0.042 when the curvature
term is included in eqn (2.27) and Om(x1,x2) = 0.038 when it is excluded. Thus
the inequality Om(x1,x2) > 0, which generically holds for quintessence models,
appears to be quite robust, since the contribution (read ‘contamination’) from the
curvature term is only a fraction (9%) of the ‘signal” from DE. Similar results are
obtained for Phantom: Om(xq,x;) = —0.037 when the curvature term is included
and Om(x1,x2) = —0.041 when it is not. The presence of curvature leads, once more,
to a 9% change in our estimation of Om leading us to conclude that the phantom
inequality Om(x1,x2) < 0 is robust. (Of course, as wpg — —1, the relative influence
of curvature in eqn (2.27) becomes significant and can dominate the ‘signal” from
DE models which are very close to LCDM; see also [122].)

2.2.3 The Acceleration probe

In the previous section we saw how the difference between the value of the Hubble
parameter at nearby redshifts could be used to construct a null diagnostic for the
LCDM model. In this section we construct another dimensionless quantity which
could prove useful for determining the onset of cosmic acceleration in DE models
which has also been the focus of other studies [123-125].

Our diagnostic, acceleration probe, is the mean value of the deceleration param-

eter
1 f
j= —f qg(t)dt . (2.28)
t1 —t2 Jy,
Since i1
==(=])- 2
10 =% (5)-1 2.29)
it follows that acceleration probe can be written in the following simple form
11 1
ri=5 (Hl Hz) / (2.30)

where At = t; — tp = (tg — tp) — (tp — 1), and

© dz
to — t(Z) = ‘ﬁ m ’ (231)
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Figure 2.21: The diagnostic § is plotted in 4 bins using the recent Union supernovae data.
The CPL ansatz has been used for three different values of the matter density. Error-bars in
y-axis show 1 — ¢ CL. Note that the value of the acceleration redshift 0.4 < z, < 0.8 appears
to be robust.

is the cosmic look-back time (also see [66,124—129]).

Equation (2.30) expresses the mean deceleration parameter in terms of the
look-back time and the value of the Hubble parameter at two distinct redshifts.
From expressions eqn (2.30) and eqn (2.31) we find that, like the Om diagnostic, the
acceleration probe 7 does not depend upon the value of ),,, and is therefore robust
to uncertainties in the value of the matter density.

In figure 2.21 we show j obtained using Union supernovae and the CPL ansatz.
The behavior of j suggests 0.4 < z, < 0.8 for the redshift at which the universe began
to accelerate. This result is independent of the value of the matter density. Close to
the acceleration redshift, § ~ 0, and one obtains a very simple relationship linking
the look-back time with the Hubble parameter

1 1

At=—— — 2.32
0 (2.32)

where H and H; lie on ‘either side’ of the acceleration redshift z,. Since both the

look-back time and the Hubble parameter can be reconstructed quite accurately
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(see for instance [20,66,126]), it follows that one might be able to obtain the redshift
of the acceleration epoch in a model independent manner using eqn (2.32).

It is worth noting that the value of § can also be obtained from an accurate
determination of galactic ages. In this case we do not require a continuous form of
H(z) to compute the look-back time. We simply subtract the galactic ages at two
distinct redshifts bins to determine At. The same information can also be used to
derive H(z) since

H@) = 7=, (2.33)

which is then used to determine 7. However at present the errorbars on the observed
galactic ages are large and the number of data is small, so it is unlikely that this
method will be useful for determining 7 at this stage. In the future, with the better
quality and quantity of data, § can be used as a model independent probe of the
acceleration of the universe using distinct and uncorrelated cosmological data.

Note that the acceleration epoch is quite sensitive to the underlying DE model.
For DE with a constant equation of state

1

1+ 3w|Qopp \ P
1+Za:(| 3w| ODE) ,

o, (2.34)

and so an accurate determination of z, using eqn (2.32) could provide useful insights

into the nature of DE.

2.24 w-probe

In this subsection we explore the possibility of extracting information about the
equation of state of dark energy from the reconstructed Hubble parameter by con-
sidering a weighted average of the equation of state, which we call the w-probe.
An important advantage of this approach is that there is no need to go to the sec-
ond derivative of the luminosity distance for information on the equation of state.
Instead, we consider the weighted average of the equation of state [68]

. 1 dz
1+w:mf(l+’(U(Z))m, (235)
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Table 2.2: The reconstructed w-probe (@), determined using eqn (2.36) (and its 1o
error) is listed for 1000 realizations of SNAP data. Three fiducial models are used
tw=-1/1+2), w=-1(ACDM) and w = —-0.5. We deploy the method of double
smoothing with A = 0.24 to determine @.

w=-1/(1+2) w=-1 w=-05 |
AZ w ZDeXﬂCt ZD wexacf ZD wexacf
0-0414 | -0.839+£0.019 -0.845 | —1.001 £0.017 -1.0 | —0.489+0.025 -0.5

0.414-1 | -0.595+0.033 -0.598 | —1.009 +0.038 -1.0 | -0.506 +£0.039  -0.5

1-17 -0.471+0.069 -0432 | -1.017+0.087 -1.0 | -0.493+£0.075 -0.5

which can be directly expressed in terms of the difference in dark energy density
PDE = pDE/poc (Where po, = 3H§ /8nG) over a range of redshift as

51np 2(2) - 3
1+ Dz, ) = L2 PoE Ly W HAE) = Qo +21) ]/m(“zl) (2.36)

T35tz 3 |H2z) - Qom(1 + 2 1+ 2

where 0 denotes the total change of a variable between integration limits. Thus,
even if the equation of state is noisy, the @ parameter may be obtained accurately
provided the Hubble parameter is well constructed.

The parameter @ has the interesting property that for the concordance ACDM
model, it equals —1 in all redshift ranges while for other models of dark energy it is
non-zero. For (non-ACDM) models with constant equation of state, this parameter
is a constant (but not equal to —1), while for models with variable equation of state,
it varies with redshift. The fact that ACDM is a fixed point for this quantity may be
utilized to differentiate between the concordance ACDM model and other models
of dark energy. Therefore the parameter @ may be used as a new diagnostic of dark
energy which acts as a discriminator between ACDM and other models of dark
energy. We call this diagnostic the w-probe.

We now calculate the w-probe for the three models described in the previous
sections using the method of double smoothing. In table 2.2, we show the values of
W obtained in different redshift ranges after applying double smoothing on SNAP-
like data. The ranges of integration are taken to be approximately equally spaced in
In(1 + z). Two points of interest should be noted here: a) @ is very close to Wexact at
all redshifts for all three models of dark energy; and b) as expected, this parameter
is good at distinguishing between ACDM and other dark energy models.

In the above analysis, we have assumed that the matter density is known
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Figure 2.22: The w-probe is reconstructed for the unevolving ACDM model with w = -1
(left panel) and an evolving DE model with w = —=1/(1 + z) (right panel). 1000 realizations
of SNAP-like data have been used. The thick dashed line in both panels indicates the
exact value of @ for the fiducial model, the dark gray boxes in each panel indicate the
1o confidence levels on @ reconstructed for the two models using the double smoothing
scheme with A = 0.24 and marginalizing over Q,, = 0.3 = 0.07. This figure illustrates that
the w-probe works remarkably well for both ACDM (left panel) and for evolving DE (right
panel). The details for this figure are given in table 2.3.

exactly, QO,, = 0.3. As noted before a small uncertainty in the value of (3, may affect
the reconstruction exercise quite dramatically. The Hubble parameter is not affected
to a very high degree by the value of matter density, because it can be calculated
directly as the first derivative of the luminosity distance, which is the measured
quantity. However, when calculating the equation of state of dark energy, the value
of Q,,, appears in the denominator of the expression (2.4), hence any uncertainty in
Q,, is bound to affect the reconstructed w(z). We have seen this effect in figure 2.15.

One of the main results of this chapter is that, although the equation of state
w(z) may be reconstructed badly if €),, is not known accurately, the uncertainty in
Q,, does not have such a strong effect on the reconstruction of the w-probe(w). This
is because @ in eqn (2.36) is a difference of two terms, both involving Q,,. As a
result, uncertainty in €),, does not affect @ as much as it affects w(z). Therefore,
even when (), is not known to a high degree of accuracy, the w-probe may still be
reconstructed fairly accurately.

We now demonstrate this by showing the results obtained using our smoothing
scheme after marginalizing over the matter density. We simulate SNAP like data
for two models: (a) ACDM and (b) a w = —1/(1 + z) ‘metamorphosis” model.
When applying the smoothing scheme, we assume that (,, follows a Gaussian
probability distribution with mean Q,, = 0.3 and variance o = 0.07 (the error being
commensurate to that expected from the current CMB and Large Scale Structure
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Table 2.3: The reconstructed w-probe @ (eqn (2.36)) over specified redshift ranges
(and its 10 error) is shown for 1000 realizations of SNAP data. Two fiducial models
are used : the w = —-1/(1 + z) ‘metamorphosis’ model and w = -1 (ACDM). We
deploy the method of double smoothing with A = 0.24 and marginalize over Q,, =
0.3 £ 0.07.

w=-1/(1+2z) w=—-1 |
AZ w ZDeXﬂCt ZD wexacf
0-0414 | -0.837 £0.025 -0.845 | —1.003 +£0.021 -1.0

0414-1 | -0.618 +0.042 -0.598 | —-1.018 +0.052 -1.0

1-17 -0.461 £0.127 -0.432 | -1.051 £0.147 -1.0

data[103]). In figure 2.22 and table 2.3, we show the results for the w-probe calculated
for the two models. We find that the w-probe (@) is determined to a high degree of
accuracy for both the models even when we marginalize over (),,! The value of @ for
the ACDM model is approximately equal to —1, while that for the metamorphosis
model shows clear signature of evolution. Thus, even if the matter density of the
universe is known uncertainly, this uncertainty does not affect the accuracy of the
reconstructed w-probe significantly. This is a powerful result since it indicates that
unlike the equation of state, the w-probe is not overtly sensitive to the value of Q,,
for SNAP-quality data.

From the above results, we see that the w-probe is very effective as a diagnostic
of dark energy, especially in differentiating between ACDM and other models of
dark energy. We summarize some important properties of the w-probe below:

1. @(z1,22) is determined from the first derivative of the luminosity distance.
Its reconstructed value is therefore less noisy than the equation of state w(z)
(which is determined after differentiating d(z) twice; compare eqn (2.4) and
eqn (2.36) ).

2. W(z1,22) = —1 uniquely for concordance cosmology (ACDM). For all other dark
energy models @ # —1. This remains true when @ is marginalized over ;.

3. @ is robust to small uncertainties in the value of the matter density. As we
saw earlier this uncertainty can induce large errors in determinations of the
cosmic equation of state w(z). The weak dependence of @ on the value of
Q),, in the range currently favored by observations 0.2 < Qy,, < 0.4 implies

that the w-probe can cope very effectively with the existing uncertainty in the
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value of the matter density for SNAP-quality data. Furthermore, since @ is
constructed directly from ppg, any method which determines either the dark
energy density or the Hubble parameter from observations can be used to also
determine @. Note that several excellent methods for determining ppg and
H(z) have been suggested in the literature [54,61,68,75-77], and any of these

could be used to great advantage in determining the w-probe.

Thus we expect that the w-probe may be used as a handy diagnostic for dark
energy, especially in discriminating between ACDM and other models of dark
energy. Its efficacy lies in the fact that it is not very sensitive to both the value of the
present matter density and also the reconstruction method used.

2.2.5 Determining Om and the acceleration probe from SNe, BAO and
CMB

In this section we determine two of our new diagnostics, Om and g, from a com-
bination of: (i) the Union supernovae data set [27], (ii) data from baryon acoustic
oscillations (BAO) [96], (iii)) WMAP5 CMB data [3].

Acoustic oscillations in the photon-baryon plasma prior to recombination give
rise to a peak in the correlation function of galaxies. This effect has recently been
measured in a sample of luminous red galaxies observed by the Sloan Digital Sky
Survey, (see eqn (2.15)), and leads to the value [96] A = 0.469 (0.”@)_0'35 +0.017. The
5 year Wilkinson Microwave Anisotropy Probe (WMAP5) results, when combined
with the results from BAQO yield n = 0.961 for the spectral index of the primordial
power spectrum [3,101].

We also use the following value for the CMB ‘shift parameter” (the reduced
distance to the last scattering surface) deduced from WMAP5

Zls
R=+a, [ 2 17154002, (2.37)

0o h@)
where zj; = 1089. We use the two constraints, A, R together with the Union SNe
data set to determine Om(z) and §. The CPL ansatz eqn (2.12) has been used to
parametrize the expansion history, and all three parameters in this ansatz Q,,, wo
and w; are treated as free in our maximum likelihood routine. Our results are
summarized in figure 2.23. We find that LCDM is in excellent agreement with the
data but other DE models fit the data too. These include quintessence and phantom

models, some of which are shown in figure 2.24.
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Figure 2.23: Two new diagnostics, Om(z) (left panel) and j (right panel) are plotted using
combination of supernovae, BAO and CMB data. CPL ansatz have been used here assuming
matter density also as a free parameter. Blue lines in left panel and red crosses in right panel
show 1o errorbars.

2.3 Summary and Conclusion

This major chapter of the thesis, presents a new approach to analyzing supernova
data and uses it to extract information about cosmological functions, such as the
expansion rate of the universe H(z) and the equation of state of dark energy w(z).
In this approach, we deal with the data directly and do not rely on a paramet-
ric functional form for fitting any of the quantities dy(z), H(z) or w(z). Therefore,
we expect the results obtained using this approach to be model independent. A
Gaussian kernel is used to smooth the data and to calculate cosmological functions
including H(z) and w(z). The smoothing scale used for the kernel is related to the
number of supernovae, errors of observations and derived errors of the parameters
by a simple formula, eqn (2.5). For a given supernova distribution, the smoothing
scale determines both the errors on the parameters and the bias of the results (see
appendix A). A cannot be increased arbitrarily as this would diminish the reliabil-
ity of the results. We use a value of A which gives results which have reasonably
small bias as well as acceptable errors of H(z) for the SNAP quality data used in our
analysis (see section 2.1.2). As can be seen from eqn (2.5), when the data improves
(i.e., the number of data points increases and/or measurement errors decrease), we
expect that the same value of A would result in smaller errors on H(z).

We demonstrate that this method is likely to work very well with future SNAP-
like SNe data, especially in reconstructing the Hubble parameter, which encodes the
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Figure 2.24: The blue lines in the main figure show 1o constraints on Om(z) from a
combination of Sne, BAO and CMB data. Also shown are values for Om(z) from three DE
models all of which are consistent with the data at the 10 level. The green line is DE with
Q= 0.3, wp = —1.2, w; = 1.1, this model crosses the phantom divide at w = —1. The red line
shows a metamorphosis model with Q,, = 0.255, wy = —1.0, w; = 0.5, while magenta shows
quintessence with Q,, = 0.27, wy = —0.9,w; = —0.3. In all cases the CPL ansatz eqn (2.12)
has been used and the bottom-right corner of the figure shows the EOS for these diverse
DE models.

expansion history of the universe. Moreover, our successful reconstruction of the
Hubble parameter can also be used to distinguish between cosmological models
such as ACDM and evolving dark energy. The method can be further refined,
if one wishes to reconstruct the cosmic equation of state to greater accuracy, by
double smoothing the data— smoothing the Hubble parameter, after it has been
derived from the smoothed luminosity distance, so as to reduce noise in w(z) (as in
section 2.1.2). The results obtained using the smoothing scheme compare favorably
to results obtained by other methods of reconstruction. Another quantity which
may be reconstructed to great accuracy is the look-back time of the universe.

We therefore conclude that the proposed reconstruction method by smoothing
the supernova data appears to be sufficiently accurate and, when applied to SNAP-
type observations, should be able to distinguish between evolving dark energy
models and a cosmological constant.

The method proposed by us can also be used for other forms of data which
deliver the luminosity (or angular size) distance.

In the next step of our studies in this chapter of the thesis, we have shown that by
improving the efficacy of the smoothing method, we can reconstruct the expansion
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history of the universe in a model-independent way, using current supernovae data.
We have used the smoothing method to reconstruct the expansion history of the
universe, h(z), the deceleration parameter, g(z), the value of Q,, and the equation
of state of dark energy, w(z), independently of any assumption of the theoretical
model of the universe, within the framework of standard general relativity. This is
an advantage of this method over the functional fitting methods where the results
are usually biased by the form of the functional fitting or the assumed theoretical
model. We dealt with two recent datasets, Gold and SNLS in our analysis. In
determining the value of Q,,, we found excellent agreement between Gold and
SNLS datasets. This determination is directly related to the supernovae data points
at redshifts lower than z = 0.35 and also the results from baryon acoustic oscillation.
We have got Q,, ~ 0.276 + 0.023 for both Gold and SNLS datasets, which is in good
agreement with results of SDSS and 2dF large scale structure observations, and
also with results of Chandra X-ray observations of the relaxed galaxy clusters [130].
This derived value of Q,, also agree with the recent WMAP 5 years CMB data,
if we assume the broken scale invariant spectrum for the form of the primordial
spectrum [180](as we will see in the next chapter). In the derivation of g4(z) and the
stage of transition from deceleration to acceleration in the dynamics of the universe,
we found disagreement between Gold and SNLS datasets. Gold data suggest the
redshift of the commence of acceleration at z, ~ 0.42 while SNLS data suggest
z, =~ 0.80.

After marginalizing over the derived value of (),,, we have reconstructed w(z).
The inconsistency between Gold and SNLS supernovae datasets is also obvious by
looking at the reconstructed w(z) from these two datasets. The derived form of w(z)
from SNLS dataset, is in good concordance with ACDM model, while Gold dataset
prefers an evolving form of dark energy (however ACDM is still in agreement
with the Gold dataset to within 2¢). This discrepancy between Gold and SNLS
datasets has been reported earlier by other groups ( [97,105]). As the Gold sample
is also relatively in disagreement with the other cosmological observations like CMB
and observations of cluster abundance ( [106]), we may conclude that the effect of
systematics in the Gold dataset (or at least in a part of the data) is significant.

The large error-bars at the high redshifts for the reconstructed results, reflect
the significant lack of data points. This effect may not be seen if we use some of the
parametric methods of analysis, but as we deal with the data directly here, we notice
that the lack of data points at high redshifts limits our ability to say much about
the behavior of the Universe at the early stages at high redshifts. This is another
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important feature of our smoothing method in which the reconstructed results at
any redshift rely mostly on the supernovae data points at the same redshift range.

In the second major section of this chapter of the thesis, we proposed three new
diagnostics for determining the properties of dark energy. The first of these, Om(z),
is constructed from the Hubble parameter and results in the identity Om(z) = Q,,
for LCDM. For other DE models Om(z) is a function of the redshift. This allows
one to construct a simple null test to distinguish the cosmological constant from
evolving DE. The second diagnostic, acceleration probe (), is the mean value of the
deceleration parameter over a small redshift interval. The acceleration probe depends
upon the value of the Hubble parameter and the look-back time. We use the current
SNe data in conjunction with BAO and CMB results to estimate the values of Om(z)
and §. We find our results to be consistent with LCDM as well as evolving DE
models including phantom and quintessence.

Another important result of this chapter of the thesis is the discovery that the
w-probe provides us with an excellent diagnostic of dark energy. We summarize
some of the attractive features of this diagnostic below.

(a) The w-probe defined in eqns (2.35) and (2.36) is obtained from the luminosity
distance by means of a single differentiation. Therefore, it avoids the pitfalls of w(z)
which is obtained from the luminosity distance through a double differentiation —
see eqn (2.4), and hence is usually accompanied by large errors (see also [132]).

(b) The w-probe is robust to small uncertainties in the value of Qq,. This
attractive property allows us to get around observational uncertainties in the value
of Qo currently known to an accuracy of about 30%. Indeed, when marginalized
over (o, the w-probe can be used to great advantage to distinguish between ACDM
and other dark energy models.

We therefore conclude that the proposed reconstruction method by smoothing
the supernova data appears to be sufficiently accurate and should be able to dis-
tinguish between evolving dark energy models and a cosmological constant. The
three new proposed diagnostics of dark energy, Om, § and w-probe also seem to be
very versatile and could help distinguish between ACDM and other models of dark
energy with least dependency on the value of dark matter density. These diagnos-
tics can be used by any reconstruction method (parametric or non-parametric) with

a very good accuracy.
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Chapter 3

Primordial power spectrum from
cosmic microwave background
data

3.1 Introduction

Increasingly accurate measurements of the anisotropy in the temperature of the
cosmic microwave background (CMB) have ushered in an era of precision cosmol-
ogy. A golden decade of CMB anisotropy measurements by numerous experiments
was topped by the results from the data obtained by the Wilkinson Microwave
Anisotropy Probe (WMAP) [3,109, 110, 133-138]. Under simple hypotheses for
the spectrum of primordial perturbations, exquisite estimates of the cosmological
parameters have been obtained from the angular power spectrum measurement by
WMAP combined with other cosmological observations [3,109,137]. Although the
assumed, scale free (with mild deviations), initial power spectra may be a generic
prediction of the simplest scenarios of generation of perturbations during inflation,
initial spectra with radical deviations are known to arise from very reasonable ex-
tensions, or, refinements to the simplest scenarios [22,23,139-144]. Consequently,
cosmological parameter estimation from the CMB anisotropy and the matter power
spectrum obtained from redshift surveys, weak gravitational lensing and Ly-a ab-
sorption, depends sensitively on the dimensionality, nature and freedom in the
parameter space of initial conditions [145].

The angular power spectrum, C;, is a convolution of the initial power spec-
trum P(k) generated in the early universe with a radiative transport kernel, G(/, k),
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that is determined by the current values of the cosmological parameters. The re-
markably precise observations of the angular power spectrum C; by WMAP, and
the concordance of cosmological parameters measured from different cosmological
observations opens up the avenue to directly recover the initial power spectrum of
the density perturbation from the observations.

The direct numerical deconvolution has clear advantages over the other preva-
lent approach of obtaining the most likely parameter values for a parametric model
primordial spectra !. First, as emerges from our work, the direct method can reveal
features that are not anticipated by the parametric model spectra, hence would be
completely missed out in the latter approach. Second, in the absence of an accepted
early universe scenario (more narrowly, a favored model of inflation), it is difficult
to a priori set up and justify the chosen space of initial conditions. The complex
covariances between the cosmological and the initial parameters are sensitive to
the parameterization of the space of initial spectra adopted. Efforts along these
lines are further obscured by issues such as the applicability of the Occam’s razor to
dissuade extension of the parameter space of initial conditions. Such deliberations
have been recently framed in the more quantitative language of Bayesian evidence
to evaluate and select between possible parameterizations [152]. However, this
approach cannot really point to a preferred parameterization. Whereas, in the di-
rect approach we can evade the issue of appropriate parameterization of the initial
power spectrum.

In this chapter we show that the Richardson-Lucy(RL)deconvolution method
is a promising and powerful method to measure the power spectrum of initial per-
turbations from the CMB angular power spectrum [146]. We have also devised and
implemented an improvement to the RL scheme, whereby the iterative deconvolu-
tion algorithm is designed to converge and match the measurements only within
the given error-bars.

Then we apply the method to the CMB anisotropy spectrum measured by
WMAP. For a given set of cosmological parameters, our method obtains the pri-
mordial power spectrum that ‘maximizes’ the likelihood. Hence, the space of
parameters remains that of the (more widely accepted and agreed up on) cosmo-
logical parameters alone. The most prominent feature of the recovered spectrum
is a sharp infra-red cut-off on the horizon scale. It also has a localized excess just
above the cut-off which leads to great improvement of likelihood over the simple

!Estimate of the power spectrum in k space ‘bins’ carried out with WMAP data is a somewhat model
independent [147-149]. Direct deconvolution with different method [150] has been attempted [151].



3.1: Introduction 75

monotonic forms of model infra-red cut-off spectra considered widely in the post-
WMAP-1 literature. Interestingly, similar features were also detected by method
of regularized least squares [153]. The significant improvement in the likelihood
clearly shows the importance of features in the primordial power spectrum.

Then, in the fifth section of this chapter, we demonstrate the application of
wavelets in identifying the statistically significant features in a deconvolved power
spectrum. We use Discrete Wavelet Transform (henceforth DWT) to identify features
in the recovered primordial power spectrum at different resolutions and at different
locations in k space. Starting from the coarsest primordial power spectrum we
systematically add variations on different resolutions and obtain the angular power
spectrum. We then compute the likelihood of the reconstructed primordial power
spectrum by comparing the angular power spectrum with the WMAP data. The
improvement in the likelihood allows us to quantify the significance of different
features.

In the last part of this chapter we apply the method to the CMB anisotropy
spectrum given by WMAP 3 year data. We employ Discrete Wavelet Transform
(DWT) for smoothing the raw recovered spectrum from the binned data. In this
work we first present detailed results of an automated computation of the primor-
dial power spectrum for 6 distinct points in the cosmological parameter space for
flat ACDM models using WMAP 3 year data. Each of these 6 points in the param-
eter space has specific characteristics of interest. We also present the preliminary
results of the cosmological parameter estimation optimized over the form of the
primordial spectrum in a coarsely sampled volume of the parameter space. In this
case, instead of simply computing the likelihood for a given model of initial power
spectrum, one obtains the initial power spectrum that maximizes the likelihood
at a point and assigns that likelihood to that point in the space of cosmological
parameters. However our results for the cosmological parameter estimation, have
a coarse resolution in spacing of the parameters and is also limited in volume of the
parameter space covered. In principle it is possible to extend this work to explore
the “entire” space of cosmological parameters with high resolution along the lines
being done routinely 2.

2t is possible that very unlikely cosmological parameters get picked out due to suitably tailored ini-
tial power spectrum. In this case, one can employ appropriately strong priors from other observation
or beliefs to ensure that unlikely, unphysical, ill-motivated are down weighted.
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3.2 Method of reconstruction

3.2.1 Integral equation for CMB anisotropy

In this subsection we recall the integral equation for the angular power spectrum of
CMB anisotropy and set up the inverse problem that we solve using a deconvolution
method. The observed CMB anisotropy Ar(n) is one realization of a random field
on the surface of a sphere and can be expressed in terms of the random variates ay,,
that are the coefficients of a Spherical Harmonic expansion given by

co  m=l

Artm) = Y Y i Yin(n) (3.1)
1

=2 m=-—
where Y},,(n) are the Spherical Harmonic functions. For an underlying isotropic,
Gaussian statistics, the angular power spectrum, C; defined through

Aty ) = Crow Omm , (3.2)

completely characterizes the CMB anisotropy.
In a flat universe the temperature fluctuation in the CMB photons at the location

x at the present conformal time 7y propagating in a direction n is

A(m) = A(xp,n, 1) = f ke’ ** A(k,m, ). (3.3)

For globally isotropic cosmology, the temperature fluctuation A(k, n, ng) = A(k-
n, 1)9) can be expanded in terms of Legendre polynomials leading to

Ar(x,n,19) = f A3k o'k Z(—i)l (21 + 1)A(k, no)P;(k - ). (3.4)
1=0

The angular power spectrum C; given by the coefficients of Legendre expansion

is then expressed as

G = @ [ PO lant P 65)

where P(k), the power spectrum of the primordial (scalar) metric initial perturbation

Yprim, is given by

P(k)

—5 k=K (3.6)

<¢prim (k) gb:)rim (k, ) > =
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because the k space modes are uncorrelated in a homogeneous space. The spectrum
P(k) represents the r.m.s. power in the scalar metric perturbations per logarithmic
interval dk/k at a wavenumber k. It is related to power spectrum of the primordial
modes of density perturbations, 6y, as P(k) o« |6¢|?/k. For the conventional scale free
parameterization, the spectral index n; is defined through |5;[> = Ak". The power
spectrum P(k) is a constant for the scale invariant Harrison-Zeldovich spectrum
(corresponds to n; = 1).

The harmonics of the temperature fluctuations at the current epoch, Ar(k, no),
is obtained from the solution to the Boltzmann equation for the CMB photon dis-
tribution. In this work we use Ar(k, 179) computed by the CMBfast software [154].
Numerically, a suitably discretized space of wave-numbers, k; is used where the

following discrete version of integral eqn (3.5) is applicable

Cr =Y G(,k)P(k)

Gl k) = % At o). 67)

In the above equation, the ‘target’” angular power spectrum, C; = CZD, is the
data given by observations, and the radiative transport kernel, G(I, k) is fixed by
the cosmological parameters of the ‘base” model. (The kernel G(/, k) also includes
the effect of geometrical projection from the three dimensional wavenumber, k,
to the harmonic multipole, / on the two dimensional sphere.) For a given G(/, k),
obtaining the primordial power spectrum, P(k) from the measured C; is clearly a
deconvolution problem. An important feature of our problem is that C ID , G(,k) and
P(k) are all positive definite. However, to get reliable results from the deconvolution,
we require high signal to noise measurements of C;’ over a large range of multipoles
with good resolution in multipole, preferably, from a single experiment to avoid
the uncertainties of relative calibration 3.

Ideally, it will be best to measure each CF independently. In practice, incom-
plete sky coverage and other effects limit the resolution in multipole space. All
experiments provide band power estimates, Cy(leff) = Y Wl(b) C; which are aver-
aged linear combinations of the underlying C;. Since eqn (3.7) is linear, a similar

3Binned CP data that combined the heterogeneous CMB band power obtained from different
experimental data sets are not always as reliable due to relative calibration uncertainties. Application
of our method to binned data of [155] did not give robust or convincing results [146]. However, in
principle nothing rules out using binned data from heterogeneous data sets that have good cross-
calibration.
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equation holds for all the band powers with a kernel, G(leg, ki) = Y Wl(b) G(l, k;). For
simplicity and brevity of notation, we retain the notation C” and G(l, k) for band
power estimates with / denoting the bin center. We also implicitly assume a discrete
wavenumber k instead of carrying the clumsy notation, k;.

As mentioned in more detail in section 3.3.1, the CMB angular power spectrum
from WMAP ranges from the quadrupole, I = 2 to 1000. Moreover, the ‘full sky’
coverage of WMAP implies good resolution in multipole space. We use WMAP
TT (temperature-temperature) binned power spectrum as C ID in eqn (3.7). We
use CMBfast software to compute the the G(/, k) matrix for the post-WMAP ‘best
fit" cosmological parameters. We emphasize that although the P(k) is recovered
using binned data, the significance (performance) of the recovered spectrum is
evaluated using the WMAP likelihood of entire unbinned C; properly accounting
for covariances. The likelihood is computed using the numerical code, data and its
error covariance provided by the WMAP collaboration with the release of the first
year and three year data.

In this work we limit our attention to the angular spectrum of the temperature
anisotropy, CZTT. Including the polarization of CMB photons, equations similar to
eqn (3.5) can be also written for the three additional angular power spectra, CIE,
CfE and C?B involving their corresponding kernels. It will certainly be interesting
to include these when more complete polarization data is available in the future. At
present, the CITE and CZEE spectrum published by the WMAP team are not of a very
good quality hence, not ideally suited for our method. However, once C fE data is
made available with a high quality, our method can readily accommodate both C/*

and CfE together since combinations such as CITT + ZCITE + CfE are positive definite
4

3.2.2 Deconvolution method

The Richardson-Lucy (RL) algorithm was developed and is widely used in the
context of image reconstruction in astronomy [156, 157]. However, the method has
also been successfully used in cosmology, to deproject the 3-D correlation function
and power spectrum from the measured 2-D angular correlation and 2-D power
spectrum [158,159]. We employ an improved RL method to solve the inverse
problem for P(k) in eqn (3.7). The advantage of RL method is that positivity of the

“Recently the “QUAD” CMB data [202] got released which provides a high resolution polarization
data and it seems to be proper for our purpose as a future work.
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recovered P(k) is automatically ensured, given G(/, k) is positive definite and C;’s
are positive.

The RL method is readily derived from elementary probability theory on dis-
tributions [156]. To make this connection, we consider normalized quantities °

Y G=1 Y Pl=1 Y GLhk=1. (3.8)
1 k 1

This allows us to view the functions, P(k) and C; as one dimensional distributions,
and G(I, k) as a conditional probability distribution. Further, for convenience (not
necessity) of writing an infinitesimal measure dl we view [ to be continuous. The
integrand in the integral eqn (3.5) suggests defining two other probability distribu-
tions Q(l, k) and L(l, k), such that

G(, k) P(k) didk = QU k)dldk = L(k,1)C, dldk (3.9)

Dividing the both side of eqn (3.9) by C, dldk we obtain

L(k, 1) = %];)G(l,k). (3.10)
The normalization conditions imply
P(k) = fQ(l,k)dl = fCl L(k,)dl, (3.11)
which in the discrete [ space reads
P(k) = Z QLK) = Z Lk 1) C;. (3.12)
] ]

The RL method iteratively solves the eqns (3.10) and (3.12). Starting from an
initial guess P)(k), L is obtained using eqn (3.10) as the first step. The second step is
to obtain a revised P()(k) using eqn (3.12). These two steps are repeated iteratively
with the P% (k) obtained after iteration i feeding into the iteration i + 1. In principle,
the final answer could depend on the initial guess but in practice, for a large variety
of problems, RL is known leads to the correct answer even a crude estimation of
the initial guess. In particular, for our problem the RL rapidly converges to the
same solution P(k) independent of the initial guess P (k). This is demonstrated in

°In what follows we assume that the quantities are normalized and omit the overhead tilde in the
notation. The normalization to unity not required and it is possible to use other normalizations, such
as, y.,(21 + 1)C; = constant.
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Appendix D.1.
The iterative method can be neatly encoded into a simple recurrence relation.
The power spectrum P (k) recovered after iteration (i + 1) is given by

cD _
PED k) — PO(k) = PO (k) Z G(, k) l—()’ (3.13)
I Cl
where CF is the measured data (target) and ng’) is the angular power spectrum at
it jteration obtained from eqn (3.7) using the recovered power spectrum P®(k).
Eqn (3.13) with eqn (3.7) for obtaining ng’) from P?(k) completely summarizes the
standard RL method.

Due to noise and sample variance, the data CF is measured within some non-
zero error bars 0;. The standard RL method does not incorporate the error infor-
mation at all. Consequently, a well known drawback of the standard RL method
is that at large iterations the method starts fitting features from the noise. Modi-
fied forms of RL that address this issue have been proposed (e.g., see damped RL
method in [160]). In our problem, this problem manifests itself as very non-smooth
deconvolved spectrum P(k) that has poor likelihood with the full WMAP spectrum
data. We devise a novel method to make the RL method sensitive to the error o; by
modifying eqn (3.13) to

| ‘ ‘ C — C(i)
P(z+1)(k) —P(l)(k) — P(l)(k) z G(l, k) —Z B L tanh?
C 1
l l

(CP -y

.14
- (3.14)

The idea is to employ a ‘convergence’ function to progressively weigh down the
contribution to the correction P(*1) — PO from a multipole bin where Cgi) is close
C? within the error bar 0;. This innovation significantly improves the WMAP
likelihood of the deconvolved spectrum. For certain G(/, k), the improvement is so
dramatic that using IRL becomes very crucial to successful recovery of the spectrum
(see section 3.3.3). The final results are not sensitive to the exact functional form
of the convergence function. The choice given in eqn (3.14) works well but is not
unique in any sense.

At every iteration of the IRL scheme, we compute the x? of the Cfi) with respect
to the binned data ClD . We have found that the IRL iterations (as well as the RL)
march almost monotonically toward improved (smaller) x2. We halt the iterations

when the x? does not change appreciably in subsequent iterations of IRL.
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Figure 3.1: The curves are G(J, k) versus wavenumber k used in our work. G(/, k) is averaged
over G(l, k) within multipole bins used by WMAP. The two vertical lines roughly enclose
the region of k-space strongly probed by the kernel where the primordial spectrum can be
expected to be recovered reliably. The k-space sampling used is indicated by the line of ‘+’
symbols at the top of the plot.

3.2.3 Post processing the deconvolved spectrum

The deconvolution algorithm produces a ‘raw” P(k) that has to be processed fur-
ther. The raw deconvolved spectrum has spurious oscillations and features arising
largely out of the k space sampling and binning in / space. These numerical artifacts
are common to all recovered spectra recovered with same G(/, k). Figure 3.1 shows
the plot of the binned kernel G(/, k) for the [-space bins used by WMAP [134,135].
The wavenumbers are scaled by horizon scale, k;, = 27/(19 — 1rec). The sampling
of k space used here is also indicated in the figure. We find that removing these
artifacts and smoothing the resultant spectrum improves the WMAP likelihood of
the corresponding C;.

We illustrate the steps of removing the numerical artifacts and smoothing with
test case examples of synthetic C; from known test primordial spectrum. The first
column of figure 3.2 shows the ‘raw’ spectrum obtained. A comparison with the
known spectra shows similar numerical noise and artifacts in all the cases, especially,
the rise at very low and very high wave numbers. As shown in appendix D.3,
the main artifacts at the low and high k ends can be understood and modeled
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Figure 3.2: Each of the three rows in the panel of figures illustrates the recovery the pri-
mordial power for a test case using C; arising from a known non-scale invariant primordial
spectrum. The first column compares the raw deconvolved spectrum with the input spec-
trum. Note the similar artifacts in the all the raw spectra at the low and high k end discussed
in the text. The feature is outside the range of G(/, k) and is completely missed in the third
case. The second, column is the differenced spectrum obtained by dividing out by a raw
reference spectrum. The differenced spectrum resembles the input spectrum (top two cases)
with small oscillations. The third column shows that the final recovered spectrum obtained
by smoothing the differenced spectrum matched the input spectrum very well.
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analytically. However we find it easier to remove them constructing a numerically
generated template reference spectrum that also takes care of small features which
appear due to changes in the k spacing. To remove these numerical artifacts, we
generate a synthetic C; using a Harrison-Zeldovich spectrum and then apply the
deconvolution method to recover a ‘reference’ spectrum P..¢(k). We divide every
‘raw’ spectrum by P(k) to obtain a ‘differenced” spectrum that does not have
numerical artifacts as seen in middle column (“diff.”) of figure 3.2.

The difference spectra are a noisy version of the test spectra. Hence, the exercise
with the test spectra suggests that the differenced spectrum needs to be ‘suitably’
smoothed to recover the true power spectrum. A simple smoothing procedure with
simple fixed width window function leads to a satisfactory recovery of the test
spectrum. (A ‘Bowler hat” window constructed with hyperbolic tangent functions
is used for smoothing.)

The last column in figure 3.2 shows the remarkably successful recovery of the
test spectra in the top two case. As expected, the P(k) is recovered best in the k
space (within the vertical lines in bottom row of figure 3.2) where the kernel G(/, k)
is significant (marked by the vertical lines in figure 3.1 and 3.2). In the bottom
row, the feature in the test spectrum is outside the range of the kernel G(/, k), and,
as expected, the recovery process misses it completely. For the top row, if we
ignore the region where there is no power for G(/, k) the recovered spectrum is well
matched with the test spectrum. The match may be further improved by using
more elaborate, adaptive smoothing procedure.

For application to real data, the phrase ‘suitable smoothing procedure” may
appear ambiguous. But the smoothing is in fact very well defined for real data
by demanding that the smoothed P(k) produces a theoretical C; that has higher
likelihood given the data. We find that this approach works extremely well. The
deconvolution algorithm uses the binned C; data, hence the theoretical C; corre-
sponding to the recovered P(k) fits the binned data very well. However, the WMAP
likelihood of the theoretical C; suffers owing to spurious oscillations in the differ-
enced spectra. The WMAP likelihood improves as the differenced spectra, P (k)
is smoothed. We smooth the differenced spectrum so that WMAP likelihood of the
corresponding theoretical C; is maximized. Although it is difficult to establish that
the final result is the unique solution with maximum likelihood, in practice, our
simple scheme does lead to a well defined result (no distinct degenerate solutions
were found). Since our smoothing procedure is simple minded, possible avenues

for improvement with more elaborate smoothing procedure remain open. Work is
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in progress to employ wavelet decomposition for the smoothing procedure.

3.3 Application to the WMAP CMB anisotropy spectrum

In this part we apply the method described in the previous section to the angular
power spectrum obtained with the first year of WMAP data publicly released in
February 2003 [133] to recover the primordial power spectrum. In section 3.3.1, the
publicly available WMAP data and how it is used in our work is discussed. We
also describe the choice of the ‘base’ cosmological model. The recovered primordial
power spectrum for this model is presented in section 3.3.2. The next section 3.3.3
presents the effect of varying the cosmological parameters (within 1 ¢ error bars)
on the recovered primordial power spectrum. We also present the primordial spec-
trum for a set of cosmological models with large optical depths (7 = 0.1,0.17,0.25)
corresponding to possible the early reionization scenarios suggested by the WMAP
temperature-polarization (TE) cross-spectrum.

3.3.1 WMAP anisotropy spectrum and the cosmological model

Accurate measurements of the angular power spectrum of CMB anisotropy was
derived from the first year WMAP data [134]. The spectrum obtained by averaging
over 28 cross-channel power measurements is essentially independent of the noise
properties of individual radiometers. The power at each multipole ranging from
I = 20 to 900 was estimated together with the covariance . The instrumental errors
are smaller than the cosmic variance up to I ~ 350, and the signal to noise per mode
is above unity up to / ~ 650.

The angular power spectrum estimate and covariance matrix are publicly avail-
able at the LAMBDA data archive 7. The WMAP team has also made available a
suite of F90 codes that computes the likelihood for a given theoretical C; spec-
trum given the full angular power spectrum included the covariance measured by
WMAP. We use the TT likelihood code for computing the likelihood of C; obtained
from the recovered power spectrum and refer to these numbers as the “"WMAP
likelihood’.

In addition, the WMAP team has also obtained a binned angular power spec-

trum where an average C; is defined over bins in multipole space. The binned C;

6The C,; are uncorrelated for an ideal full-sky map, but in practice, the covariances between
neighboring multipole arise due to non-uniform/incomplete sky coverage, beam non-circularity, etc..
"Legacy Archive of Microwave Background DAta - http://lambda.gsfc.nasa.gov/
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estimates can be treated as independent data points since the covariance between
binned estimates is negligible. We use this binned spectrum as C ZD in the deconvo-
lution of eqn (3.7). (We are aware of but do not consider the revised estimates of
the low multipoles made by other authors after the WMAP results [161,162])

The variance of C; measurements is given by

2 2
0] = 57—
! (21 + 1)fsky

where oy is the noise per pixel, @, the angular pixel size, fgy is the fraction of sky

2
[c] +3@2B?], (3.15)

covered and B is the transform of the experimental beam [163]. It is important
to note that contribution to the error from cosmic variance is proportional to the
underlying theoretical/true CIT spectrum. To obtain the total error bars o; used in the
IRL deconvolution eqn (3.14), we should add the cosmic variance for the theoretical
C;i) to the the statistical error bars given with the binned data. However, C ;i) rapidly
iterates to CP’ within the error bars in the IRL method and the simpler option of
using CF instead C;i) for computing the cosmic variance works equally well since
o7 in eqn (3.14) simply regulates the convergence of IRL 8,

We consider a flat A-CDM universe, with Hubble constant, Hy = 71 km.s™!/ Mpc.
Baryon density, Q15 = 0.0224, a cosmological constant corresponding to Q5 =
0.73, with the remaining balance of matter to critical density in cold dark matter.
This is the ‘concordance” cosmological model suggested by the WMAP parameter
estimation. While we mainly focus attention on a cosmological model without early
reionization (optical depth to reionization, 7 = 0) we do present in section 3.3.3 the
recovered primordial spectra for models with early reionization with opacity going
up to 7 = 0.25. The case for a large optical depth 7 comes from the temperature-
polarization cross correlation. For simplicity, we limit ourselves to the temperature
anisotropy spectrum and avoid undue attention to the cosmology suggested by
the yet incomplete polarization data. The polarization spectrum is expected to be
announced by WMAP soon. It is then easy to extend our method to include both
the temperature and polarization anisotropy spectra.

8The contribution to the error from cosmic variance given in the WMAP binned power data is
computed using the C[ for the best fit A-CDM model with a power law primordial spectrum. Our
error bars are computed using CP.
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Figure 3.3: The three stages leading to the final recovered spectrum for a base cosmological
model (7 = 0.0, h = 0.71, Qp h? = 0.0224 and Q, = 0.73) is shown. The lower dashed line
is the raw deconvolved power. The upper dashed line is the differenced spectrum obtained
by dividing out by the reference spectrum shown as a dotted line. The solid line is the final
result after smoothing that gives the best likelihood. Here we have used WMAP 1 year
data.

3.3.2 Primordial power spectrum from WMAP

We apply the method described in the previous section to the WMAP data. Fig-
ure 3.3 shows the raw deconvolved spectrum, the reference spectrum, the differ-
enced spectrum and the final recovered spectrum after smoothing obtained at each
step of our method outlined in section 3.2.2.

We discuss the advantage of using improved Richardson-Lucy (IRL) in ap-
pendix D.2. The effect of IRL method is also evident in figure 3.4. The C; from
the recovered P(k) matches the binned ClD only within the error-bars. The C; spec-
trum corresponding to the differenced and smoothed P(k) is shown in figure 3.4.
Although, the former has better x? for the binned data, the WMAP likelihood of the
latter is much better. The poor likelihood of the differenced spectrum arises because
there is no check on fluctuations in C; at intermediate multipoles between the bin
centers arising from the spurious numerical effects of k-space and [-space sampling.
Better WMAP likelihood is more relevant than good x? for the binned data since the
former incorporates the estimation of each C; and the full error covariance. Thus the
smoothing step our method is carried out with a well defined goal of maximizing
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Figure 3.4: The recovered C; corresponding to the raw P(k) are shown in the upper row
and that corresponding to the final smoothed P(k) spectrum are shown in the lower row.
The left panels show the full range of multipole, while the right hand panels zoom into the
low multipoles. The C;’s from the raw as well as final P(k) fit the binned CF well (2 ~ 10
and x? ~ 20, respectively for 38 points). However, the jagged form of the C; between the
I bins (apparent in the low multipoles on the right) leads to poor WMAP likelihood for
the C; from the raw P(k). The differencing and smoothing procedure irons out the jagged
C; dramatically improving the WMAP likelihood for the final smoothed P(k). The WMAP
likelihood is more relevant since it incorporates the estimation of each C; and the full error
covariance. Here WMAP 1 year data have been used.

(a)

(b)



3.3: Application to the WMAP CMB anisotropy spectrum 88

log1g P(K)

-1 -0.5 0 0.5 1 1.5 2

logyg kikp,

Figure 3.5: The final recovered spectrum for the base cosmological model (t = 0.0,h = 0.71,
Qy h?* =0.0224 and Q, = 0.73) is compared with set of P(k) with WMAP likelihood within
~ 2 0. The thick line gives the best likelihood equal to —478.2 and the other lines gives
the likelihood bigger than —480. We can see that the sharp infra-red cut off is common to
all these recovered spectra. The infra-red cutoff is remarkably close to the horizon scale
and appears to be a robust feature. Another significant and robust feature is the bump
just above the cut-off (reminiscent of the oscillation from under-damped transient). The
difference between these spectra are in the smoothing and removing the noises from the
raw deconvolved spectrum. Here WMAP 1 year data have been used.

the WMAP likelihood.

The primordial spectra recovered from WMAP data is again shown in fig-
ure 3.5. The dark solid line is the primordial spectrum that has the best WMAP
log-likelihood of In £ = —478.20 for the base cosmological model described in
the previous section. The other lines have likelihood In £ > —480, i.e., roughly
within 2 o of the best one. For comparison, the same cosmological model with a
scale invariant (Harrison-Zeldovich) primordial spectrum has In £ = -503.6, and,
with a tilted scale free primordial spectrum n = 0.95, the likelihood improves to
In L = —489.3. (A comparison of likelihood numbers for various primordial spectra
is given in table 3.1.) The improvement in likelihood for the recovered spectra is
striking.

The most prominent feature of the recovered spectrum is the infra-red cutoff in
the power spectrum remarkably close to the horizon scale (k. ~ k, = 21t/ng) chiefly
in response to the low quadrupole measured by WMAP. Another notable point is
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Table 3.1: The effective chi-square, ngf = -2In L, of the C; corresponding our
recovered spectrum is compared with a number of model primordial spectrum
(with or without the infra-red cutoff. Limited attempt has been made to search for
the best parameter values and the 2 for the model spectra should be treated as
indicative and are strictly upper bounds.

Power spectrum X =—2InL ke/k’
(k;, = 4.5 x 10~*Mpc.™ 1)

Direct Recovered 956.76 0.71

Flat Harrison Zeldovich 1007.28 -

Power Law 978.60 -

(ns = 0.95)

Exponential cutoff 978.08 0.64

(ns = 0.95, a = 3.35)

Exponential cutoff 977.84 0.64

(ns =0.95, a = 10)

Starobinsky break 973.86 0.32

(ns =0.95,r=0.01)

Vilenkin & Ford (VF-I) 976.88 0.43

(ns =0.95)

Vilenkin & Ford (VF-II) 978.66 0.96

(15 = 0.95)
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Figure 3.6: Comparison between our recovered P(k) and exponential form of infra-red cut
off to explain the suppressed quadrupole of WMAP angular power spectrum [21,164]. We
note that the infra-red cut-off of the recovered spectrum is very steep. The power excess
just above the cutoff in the recovered is extremely significant in the remarkably enhanced
likelihood. The power spectrum (1 = 0.95) shows that our method does recover the pre-
ferred tilt obtained by WMAP team parameter estimation with power law spectrum [109].
The recovered P(k) is based on WMAP 1 year data.

the slight tilt (n ~ 0.95) of the plateau in the recovered spectrum at large k which is
consistent with the best fit n obtained by WMAP for power law primordial spectra.
After the WMAP results, model power spectra with infra-red cutoffs of the form

P(k) = Ak [1—e 0k (3.16)

invoked to explain the suppressed low multipoles of WMAP have had limited
success [21,164]. While the effective x2, = —2In £ improved by at least 22 over
a power law model, the model infra-red cutoff eqn (3.16) could improve the )(gff
merely by ~ 3 [164]. Figure 3.6 compares the recovered spectrum with these model
infra-red spectra. The power law spectrum shown in the figure also highlights the
small tilt (n ~ 0.95) recovered by our method.
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Figure 3.7: The panel of figures shows the robustness of the recovered P(k) for variations
in the cosmological parameters. Each parameter is varied within the 1 ¢ range indicated
by the WMAP parameter estimates [109]. In figure (), the Hubble constant /iy = 0.68,
hyp = 0.71 and hg = 0.75 in the three curves. In figure (b) the values of vacuum density
Qa = 069, Qx = 0.73 and Qp = 0.77 in the three curves. In figure (c), the Baryonic
density Qp = 0.040, Qp = 0.044 and Qp = 0.048 in the three curves. The figure (d)
combines all the distinct curves in other figures to give a consolidated perspective on the
dependence of the recovered spectrum on cosmological parameters. Note that the x-axis is

the wavenumber is scaled in units of the k;, = 27t/1y which reduces the scatter considerably
in the curves for variations in Hy and Q4.

(b)

(d
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Figure 3.8: The recovered P(k) for different values of optical depth (7 = 0.00,0.10,0.17 and
0.25). The width of smoothing used is different for different cases. This is the main cause
of the small shift in the location of the infra-red cutoff. Here we have used WMAP 1 year
data.

3.3.3 Dependence on the cosmological parameters

The primordial spectrum is recovered for a set of ‘best fit" cosmological parame-
ters defining the ‘base” model. We have varied each cosmological parameter by
the quoted 1 ¢ error-bars of the WMAP estimates [109]. Figure 3.7 shows the
dependence of the recovered power spectrum on small changes to cosmological
parameters varied one at a time keeping the others fixed at their central value.
We find that recovered spectrum is insensitive to variations Hubble constant, Hy,
modulo an overall shift due to the change in the horizon size, 9. The WMAP likeli-
hood of the corresponding C; are In £ = —477.79 and —478.83 at hy = 0.68 and 0.75,
respectively. The variation of Baryon density around its middle value Qp = 0.044
yields almost identical primordial power spectra with a minor change in likelihood
—-InL = —477.97 and —478.53 for Qp = 0.040 and Qp = 0.048, respectively. The
variation of Q4 (or equivalently, Q,,, for flat models) modulo a shift due to change
in 1, affects only the amplitude of the infra-red cut-off. The WMAP likelihood of
the corresponding C; are In £ = —478.93 and —478.25 for O, = 0.69and Q, = 0.77,
respectively.

We note that the likelihood at the central values are not necessarily the best.
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This suggests that, as it will be discussed later, one can explore the entire space of
cosmological parameters and compute the likelihood after optimizing with ‘best’
recovered primordial spectrum.

Finally, we also consider the effect of a cosmological model with significant
optical depth to reionization, T = 0.17, such as suggested by the angular power
spectrum of the temperature-polarization (TE) cross correlation from WMAP [136].
It has been pointed out that the estimated 7 increases when the primordial spec-
trum has an infra-red cut-off. We compute the primordial power spectrum for
base cosmological models with T = 0.10, 0.17, 0.25. The standard RL deconvolu-
tion performs poorly for these models, and, the improved RL method was crucial
for these models. Figure 3.8 compares the recovered primordial spectra for early
reionization models which all show an infra-red cutoff at the horizon scale 1°.

3.4 Theoretical implication of the recovered spectra

The direct recovery of the primordial power spectrum has revealed an infra-red
cutoff of a very specific form. Model spectra with monotonic infra-red cutoff such
as that in eqn (3.16) do not improve the WMAP likelihood significantly. While,
to match the low value of the quadrupole, a very sharp cut-off (such as @ ~ 10,
see figure 3.6) is required, such a steep monotonic cut-off tends to pull down the
power in the next few higher multipoles above the quadrupole and octopole as
well. Our recovered spectrum has a compensating excess which allows a steep
cut-off to match the low quadrupole and octopole without suppressing the higher
multipoles. Naively, one would think that a designer infra-red cutoff would ‘cost’
in the language of Bayesian evidence due to the introduction of extra parameters.
That is is not necessarily so. An infra-red cut-off of the form we recover does not
necessarily have more parameters than an infra-red cut-off of the form in eqn (3.16).
Moreover, it is striking that the location of the cut-off is close to a well known scale
— the horizon scale.

In this section we show that infra-red cut-off of the form we recover arises from
very simple scenarios in inflation. We explicitly mention two of them. Starobin-
sky [22] has shown that a kink (sharp change in the slope) in the inflaton potential
can modulate the underlying primordial power spectrum Py(k) with a step like

feature at a wavenumber k., eqn (1.41),

OFor simplicity and consistency, we use the same smoothing for these cases. Better result can be
obtained for T = 0.17 with different smoothing.
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P(k) = Po(k) D*(y,R.).

In the simpler form we restrict Py(k) to be a simple power law. However, in
general, Py(k) can be of any form allowed by models of scalar field driven inflation.
The transfer function, eqn (1.42),

1 1 2 9 1 1
D*(y,R.) = [1-3([R. -1)=((1 - =)sin2y + =cos2y) + =(R. - 1)> (1 + =) x
/ y y? YTy TS VAR

1 1 2
(1+— +(1-—)cos2y — —sin2y)],
Ua g Ty

with y = k/k.. R. is the ratio of the slope dV/d¢ before and after kink in the inflaton
potential. The power spectrum P(k) in eqn (1.42) has a step up (going to larger k )
for R. < 1 and a step down feature for R. > 1. An infra-red cut off is created with
R. < 1. Figure 3.9 shows a spectrum with a Starobinsky step eqn (1.42) that can not
only mimic the sharp infra-red cutoff but also produces the required bump after it.
Table 3.1 shows that a introducing an appropriate Starobinsky step gives a very good
WMAP likelihood compared to eqn (3.16). Besides the location of the break, k., the
Starobinsky step spectrum has only another parameter R. that fixes the slope and
the depth of the cut-off as well as the size of the bump. We have not systematically
searched through the parameter space to arrive at a ‘best-fit' model. Hence, it
may be possible to get even better match to the WMAP data with Starobinsky
breaks. Similar scenarios have been studied earlier [165] and has also been pointed
to in the post-WMAP literature [166]. Multiple scalar field inflation provide ample
scope for generating features in the primordial spectrum [22,23,139-144] and has
been been invoked to model a sharp cut-off at horizon scale (see eg., [167, 168]).
More exotic origin of an infra-red cut off in the scalar spectrum have also been
investigated [169,170].

Another compelling theoretical scenario for generating a feature of the form we
have recovered is well-known. Itis well known that radiation, or matter dominated
era prior to inflation does affect the primordial power spectrum on scales that
‘exit the horizon” soon after the onset of inflation. For a pre-inflationary radiation
dominated epoch the power spectrum was given by Vilenkin and Ford (VF) [23],
eqn (1.44),

P(k) = A k' ﬁ |72 (1 + 2iy) — 1 - 29 2
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Figure 3.9: Comparison of our recovered P(k) (solid) with the predictions two simple
theoretical scenarios that remarkably match the gross features of the infra-red cutoff in
the recovered spectrum. The ‘staro” curve is the primordial spectrum when the inflaton
potential has a kink- a sharp, but rounded, change in slope [22]. Fine tuning is involved
in locating the kink appropriately. The ‘VF curves are the modification to the power
spectrum from a pre-inflationary (here, radiation dominated) epoch [23]. This requires
that the horizon scale, kj, exits the Hubble radius very soon after the onset of inflation.
Although, it appears fine tuned there is corroborating support for this within single scalar
field driven inflation [171]. The theoretical P(k) leads to C; that enhanced WMAP likelihood
given in table 3.1. The values of the parameters for the theoretical curves are given in the
same table. The recovered P(k) is based on WMAP 1 year data.

where y = k/k.. Figure 3.9 shows that the VF spectrum eqn (1.44) can also provide
an infra-red cutoff with required bump after it. Table 3.1 shows that a VF spectrum
can give better WMAP likelihood compared to model spectra of the form eqn (3.16).
The infra-red cut-off (o k?) here is not very sharp. However, if the epoch prior to
inflation is dominated by matter with some other equation of state, the slope would
be different. A more complete analysis may give rise to spectra closer to the kind
we have recovered. The scale k. is set by the Hubble parameter at the onset of
inflation. For this scenario to applicable to our results, the k;,-mode corresponding
to the horizon scale must have crossed the Hubble radius very close to the onset of
inflation. In a single scalar field inflation this would happen naturally [171].
Another possibility is that the infra-red cutoff arises due to non-trivial topology
of the universe. A dodecahedral universe model that matches the low multipoles
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of WMAP angular spectrum has been proposed [172]. However, non-trivial cosmic
topology is expected to also violate the statistical isotropy of the CMB anisotropy
and give rise of correlation features which are potentially detectable [173].

3.5 Wavelet analysis of the features in the recovered spec-

trum

In this section we analyze the features of the reconstructed primordial spectrum by

using discrete wavelet transform.

3.5.1 Discrete wavelet transform

Wavelet transforms provide a powerful tool for the analysis of transient and non-
stationary data and is particularly useful in picking out characteristic local variations
at different resolutions. This linear transform separates a data set in the form of
low-pass or average coefficients, which reflect the average behavior of the data, and
wavelet or high-pass coefficients at different levels, which capture the variations at
corresponding resolutions. As compared to Fourier or window Fourier transform,
wavelets allow optimal “time-frequency” localization simultaneously in the real, as
well as, Fourier domain. The vocabulary of DWT stems from applications in one
dimensional time-stream signal trains, but has found wide application in signal in
other domains and dimensions. Specifically in our case, the ‘signal” being trans-
formed is the power spectrum, P(k), a one dimensional function of wavenumber,
k.

Wavelets are an orthonormal basis of small waves, with their variations primar-
ily concentrated in a finite region, which makes them ideal for analyzing localized
‘transient” signals. Wavelets can be continuous or discrete. In the latter case, the
basis elements are strictly finite in size, enabling them to achieve localization, while
disentangling characteristic variations at different frequencies [174]. This is the
primary reason for us to employ discrete wavelets for our analysis.

In the construction of the basis set for discrete wavelet transform, one starts
with the scaling function ¢(x) (father wavelet) and the mother wavelet 1)(x), whose
height and width are arbitrary: f pdx = A, f Ydx =0, f pidx =0, f lpl? dx =
1, f [>dx = 1, where A is an arbitrary constant. In addition to the scaling and
wavelet functions, their translates v, = 22 (2/x —m), @ = 2/2¢(2/x — m), are
also square integrable at different resolutions. Here, m and j respectively are the



3.5: Wavelet analysis of the features in the recovered spectrum 97

translation and scaling parameters, both taking integral values with —co < m < +oco.
We start with the resolution value j = 0 and increase it by integral units. The original
mother wavelet corresponds to g0, and the father wavelet is given by ¢ 0. Higher
values of j lead to the so called daughter wavelets which are of a similar form as the
mother wavelet, except that their width and height differ by a factor of 2/ and 2//2
respectively, at successive levels. The translation unit m/2/ is also commensurate
with the thinner size of the daughter wavelet at resolution j. In the limit j — oo,
these basis functions form a complete orthonormal set. It needs to be pointed out
that for a discrete data set with a finite number of points N the maximum value of
j is the largest integer less than or equal to log, N.
A signal f(x) can then be expanded as

fx) = i €0,mPo,m(x) + i Zdj,mkbj,m(x) . (3.17)
pi=—oo ni=—co j20

Here, c¢;,’s are the low-pass coefficients and d;,,’s are the high-pass or wavelet
coefficients, respectively capturing the average part and variations of the signal at
resolution jand location m. In practice, for a finite data set one starts with the highest
level of resolution and progressively moves to resolution on grosser scales keeping
in mind the physics of the problem and the size of the data set. The lowest level of
resolution one chooses then corresponds to j = 0 and the higher levels correspond to
larger values of j. For the discrete wavelets, the property of multi-resolution analysis
(MRA)leadstocj,, = Y., h(n—2m)cjy1,, and djy, = 3, h(n —2m)cjy1,,, Wwhere h(n) and
h(n) are respectively the low-pass (scaling function) and high-pass (wavelet) filter
coefficients, which differ for different wavelets. Thus, both low-pass and high-pass
coefficients at a resolution j can be obtained from the low-pass coefficients at a
higher resolution j + 1. The low-pass coefficients cj.1,, are obtained though the
convolution of the signal f(x) with the scaling function ¢ 41, = 20*/2(2/*1x —m).
For a fixed m, in the limit j — oo, the scaling function becomes a Dirac delta function
and hence the corresponding low-pass coefficient is the signal itself at point m. This
implies that, starting from the finest resolution of the signal, one can construct
both scaling and wavelet functions, by convolution with the corresponding filter
coefficients. Hence one can carry out the wavelet decomposition, as also the inverse
transform, with the help of h(n) and h(n), without explicitly knowing the basis set. In

this respect, wavelet transform is significantly different from the Fourier transform.
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For the Haar wavelet, h(0) = k(1) = % and 1(0) = —h(1) = % The Haar

basis is unique, since it is the only wavelet which is symmetric and compactly
supported. In a level one Haar wavelet decomposition, the level-I low-pass (av-

erage) and high-pass (wavelet or detail) coefficients are respectively given by the
1
V2
the subsequent step, the average coefficients are divided into two parts, containing

nearest neighbor averages and differences, with the normalization factor of —=. In
level-II high-pass and level-II low-pass coefficients. The high-pass coefficients now
represent differences of averaged data points corresponding to a window size of
two. Thus higher level coefficients represent lower frequency features. Wavelets
belonging to the Daubechies family are designed such that the wavelet coefficients
are independent of polynomial trends in the data. We have carried out a 10-level
decomposition using Daubechies-4 wavelets for isolating fluctuations at different
resolutions. Daubechies-4 wavelet satisfies f xp(x)dx = 0, in addition to all other
conditions. Because of this the wavelet coefficients capture fluctuations over and
above the linear variations. Simple models of inflation predict that log P(k) vs log(k)
will have a linear relation. The choice of Daubechies-4 wavelets is the minimal (sim-
plest) wavelet that allows us to study variations about linear behavior in a window
whose size increases with the level of decomposition.

Furthermore, to study the significance of features located at different wavenum-
bers and at different resolutions, fluctuations associated with wavelet coefficients
of different levels are added to the average behavior captured by the low-pass co-
efficients in order to reconstruct a smoothened power spectrum. Then a likelihood
analysis with respect to the WMAP data is performed.

If the data set is of size 2N a maximum of N level decompositions can be
carried out. In the case of fewer data points, one needs to supplement the data with
additional points to carry out an N level decomposition. Due to the finite size of
the filter coefficients, one also encounters boundary artifacts due to circular or other
forms of extensions. In our case, for minimizing these boundary artifacts, we have
carefully padded the data with constants at both ends, which were then removed
after reconstruction. We worked with a data set of 8192 points for log P(k) vs log(k)
recovered from WMAP-1 observations. The data set was arranged to be equally
spaced, as required by wavelet programs.

3.5.2 Features of the primordial power spectrum

One of the most challenging questions of the modern cosmology is to find an
inflationary scenario satisfying all the cosmological observations. The shape of the
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primordial power spectrum has the key role in this investigation. In the previous
sections we have used Richardson-Lucy deconvolution algorithm to find the shape
of the primordial power spectrum using the cosmic microwave background data.

By using DWT, we decompose the recovered primordial power spectrum lo-
cally at different resolutions. We then calculate the angular power spectrum after
including the variations in the primordial power spectrum at different resolutions.
We subsequently compute the likelihood of the primordial power spectrum at each
of these stages so as to quantify the effect of different features on the recovered an-
gular power spectrum. We use WMAP-1 likelihood code available at the LAMBDA
site and quote our likelihood L in terms of ngf =-2InL.

The original primordial power spectrum which we use in this part is the fi-
nal recovered primordial power spectrum obtained in the previous section (see
figure 3.3) for a flat ACDM cosmological model with 7=0.0, h=0.71, Q,h%=0.0224
and Q5 =0.73. The resultant C; spectrum using this recovered spectrum has a like-
lihood far better than a scale invariant or a best fit power law spectrum. In this
section we investigate how the features of this spectrum contribute to improving
the likelihood.

First, we smooth the spectrum using DWT, and then we systematically include
features at different resolutions and calculate the likelihood with respect to the
WMAP data.

In figure 3.10, left panel (step A), we show the coarsest behavior of the data
reconstructed using only the 10th level low-pass coefficients. The right panel shows
the resultant C; compared with the observed binned data CY, and its error bars. The
likelihood of the C] at this stage corresponds to ngf = 994.4 which is better than
the ngf for the H-Z spectrum. In the right panel (step B) we see that if we include
‘low frequency’ features as captured by the 10th level high-pass coefficients shown
in the left panel (step B) to the previous spectrum at step A, the resultant C] will be
closer to the observed data. Hence we expect the likelihood to be improved. In fact
this improves the likelihood significantly and the ngf = 974.1 at this stage. This ngf
is better than the best fit power law spectrum with the ngf = 978.6.

As we progressively add back more features at ‘higher frequencies’ to the
spectrum the likelihood improves significantly. The 9th, 8th, 7th and 6th level
wavelet coefficients are shown in the left column of figure 3.10 (steps C, D, E and F).
The plots in the right panel of figure 3.10 show how we get closer to the observed
data within the error bars as we include more wavelet coefficients. The likelihoods
at these steps correspond to are x2, = 964.8 at step C, x%; = 961.0 at step D,
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Xﬁff =957.4 at step E, and ngf =956.5 at step F.

In figure 3.11 we compare the coarsest spectrum of step A and the spectrum
after adding the features of step B, C and D. The local features which are responsible
for the significant improvement of the likelihood are clearly seen. We note that most
of these features are localized around the horizon scale. In figure 3.12, we see that
after few stages of adding the more detailed features to the spectrum, the likelihood
does not improve anymore and agreement with the observed data is not sensitive

to these features.

3.6 Estimation of the primordial spectrum with post-WMAP
3 year data

The error-sensitive Richardson-Lucy (RL) method of deconvolution was shown in
the previous sections to be a promising and effective method to recover the power
spectrum of primordial perturbations from the CMB angular power spectrum. In
this section, we have improved the deconvolution method by factoring out the
normalization factors from the iteratively recovered primordial spectrum, P(k), in
the algorithm to remove the artifacts that were present at the two ends of the
recovered spectrum in our previous work(corrected by template subtraction). For
a given set of cosmological parameters, this method obtains the primordial power
spectrum that ‘maximizes’ the likelihood to data.

In this part we apply the method to the CMB anisotropy spectrum given by
WMAP 3 year data. We employ Discrete Wavelet Transform (DWT) for smoothing
the raw recovered spectrum from the binned data. In this work we first present
detailed results of an automated computation of the primordial power spectrum
for 6 distinct points in the cosmological parameter space for flat ACDM models
using WMAP 3 year data. Each of these 6 points in the parameter space has
specific characteristics of interest. In continuation in the next section, we present
the preliminary results of the cosmological parameter estimation optimized over
the form of the primordial spectrum in a coarsely sampled volume of the parameter
space. In this case, instead of simply computing the likelihood for a given model
of initial power spectrum, one obtains the initial power spectrum that maximizes
the likelihood at a point and assigns that likelihood to that point in the space of
cosmological parameters. However our results for the cosmological parameter
estimation, have a coarse resolution in spacing of the parameters and is also limited

in volume of the parameter space covered. In principle it is possible to extend this
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work to explore the “entire” space of cosmological parameters with high resolution

along the lines being done routinely.

3.6.1 Modification in the deconvolution method

In this section we have improved the IRL method that we used the previous section
to directly remove the artifacts at the two tails of the spectrum. Compared to our
earlier implementation, we have eliminated the need to subtract a known model
from the recovered spectrum to remove the artifacts at the two ends of the spectrum.
We have achieved this by a slight change in the normalization procedure in the
method, that corrects for the effect of very low amplitude of G(I, k) at very small
and very large k. In the previous section, the normalization factor y in eqn (3.18),
was hidden in the finally deconvolved P(k) and it was factored out at the end of the
process. As we are dealing with an iterative process, every small artifact will affect
the higher iterations more strongly. To avoid this, we separate the normalization
factor Cx from the P(k) from the beginning. This small modification gives rise to a
big improvement in the method where the final form of the recovered spectrum is
free from the artifacts at the two ends. Thus we do not need to use any template
to remove these artifacts (as in the previous section). So in our revised iterative

process we have modified eqn (3.14) to

CD C(l)

P(i+1)(k) _p(i)(k) — p(l) Z G( k) G ———— ) l tanh?
1 l

(CD _ C(i))z

—L 11, (1)
15}
I

where the normalization factor, (j, is explicitly present in the main iterative
equation and we do not need to remove it from the final form of the P(k) at the end
of the process,

P(k) = P (k). (3.19)

The final form of the recovered spectrum was obtained after smoothing the spectrum
by using Discrete Wavelet Transform.

In this part of our work, we use DWT to smooth the raw recovered spectrum
obtained from the deconvolution using binned CMB spectrum data. The raw de-
convolved spectrum has spurious oscillations and features arising largely due to
the k space sampling and binning in / space. The main goal is to reconstruct the
primordial spectrum which lead to an angular power spectrum with a high like-
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lihood to the entire C; data at each multipole including the covariance between
them. The WMAP likelihood of the C; suffers owing to the spurious oscillations in
the spectra on scales smaller than [ multipole space bins. The WMAP likelihood
improves as the spectra, P(k) is smoothed. We use DWT to smooth the recovered
spectrum so that WMAP likelihood of the corresponding theoretical C; is maxi-
mized. Strictly speaking, the best likelihood obtained in our method is a lower
bound leaving open a mathematical possibility of obtaining a superior likelihood
at the given point of the cosmological parameter space with a different primordial
power spectrum !!. Although it is difficult to establish that the final result is the
unique solution with maximum likelihood, but numerous variations we have ex-
plored does suggest that it is perhaps very close to the best possible result. So we
can claim that the improved reconstructed likelihoods which we drove for different
points in the parameter space by assuming a broken scale invariant form of the
primordial spectrum, put an upper limits for the best possible results.

For our smoothing purpose, we use DWT in a systematic way to separate the
features of the raw recovered spectrum. We map the raw recovered spectrum which
has 1400 discrete points to an array of 2!! points by padding at the two ends. By
applying the discrete wavelet transform to the input file, we get corresponding 21!
wavelet coefficients. If we apply the inverse wavelet transform to whole set of
derived wavelet coefficients, the orthonormality of the wavelet basis will lead back
to the raw recovered spectrum. But if we exclude wavelet coefficients above a given
level of resolution, then the inverse wavelet transform, leads to a smoothed power
spectrum compared to raw deconvolved spectrum essentially filtering out spurious
high resolution structures arising due to numerical effects 2.

At the first step, we use the original raw recovered spectrum to calculate the
likelihood to the WMAP-3 data. It is in fact the inverse wavelet transform of the
whole wavelet coefficients which has 2", n = 11 coefficients. We call it the recovered
spectrum at level 11. In the next step, we cut half of the coefficients and we use
only the first 210 coefficients. The derived results (recovered spectrum at level 10)
would be smoother than the original spectrum. We continue the procedure for
all different levels (n=2 to 11), and at each level we calculate the likelihood of the
recovered results. The recovered result at a level which gives the best likelihood

'There are some indications that the RL method can be related to a zero-noise limit of ML estimation.

121t is important to note that the deconvolution is based on the binned C; angular power spectrum,
implying a finite resolution in multipole (2D wavenumber) space. Hence is clear from information
theoretic/physical intuition that all structures in the (3-D) power spectrum on scales smaller than the
corresponding size of the wavenumber bin are bound to be spurious.
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would be our final result. Using discrete wavelet transforms has this important
advantage of being a well defined smoothing procedure that also retains identify
localized features in P(k) that contribute a significant improvement to the likelihood.
Figure 3.13 shows the reconstructed P(k) for a sample point in the cosmological
parameter space, smoothed up to different wavelet levels. The inset of the likelihood
as a function of smoothing resolution shows that there exists an ‘optimal” level of
smoothing which ‘maximizes’ the likelihood with respect to data. The blue line in
figure 3.13 is related to the 9th wavelet level where the best likelihood to the data is
achieved. We reiterate that this allow the entire procedure to be automated so that

an “optimal” primordial spectrum is recovered given the cosmological parameters.

3.6.2 Primordial spectrum from WMAP 3 year data

In this section we reconstruct the primordial power spectrum optimized to get the
best likelihood for six different sample points in the cosmological parameter space
where each of these points has a special importance. We assume a flat ACDM model
and the differences between these 6 cases are just in the values of the background
cosmological parameters within this sub-space of parameters. In the next section
we use our automated routine to perform the cosmological parameter estimation
and explore a coarsely sampled but reasonable sized contiguous volume of the
parameter space. In this part, we chose to compare all the reconstructed results
with the best fit power law form of the primordial spectrum in the whole parameter
space, referred to as “model G” (see “Reference model” in this section), rather than
comparison with the result from the power law form of the spectrum for the same
point in the parameter space. This highlights the effect of assuming the free form
of the primordial spectrum and emphasizes on the significant improvement of the
global likelihood.

Model A: Cosmological parameters from SDSS

In this case we consider a flat ACDM cosmological model with cosmological pa-
rameters motivated by, and consistent with, the results of large scale structure
observations from Sloan Digital Sky Survey (SDSS) [102]. We use h = 0.72 (Hubble
parameter), Qz, = 0.246 (dark matter density), O, = 0.050 (baryonic matter den-
sity), Qp = 0.704 (A energy density) and 7 = 0.06 (optical depth). These parameters
are consistent with the best fit results from SDSS with hQ),, = 0.213 + 0.023 and
/Oy = 017 ( where Q,, = Qg + ) for a flat ACDM cosmological model. We
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Table 3.2: Different points in the parameter space and the resultant effective likeli-
hood from the reconstructed primordial spectrum using WMAP 3 year data. The
Ax2 is twice the logarithm of the relative likelihood with respect to the best re-
sult in the whole parameter space by assuming power law form of the primordial

spectrum.
Model Hy Qi Q Qa T A
Model A (compatible with SDSS) 720 0.246 0.050 0.704 0.06 -18.76
Model B (compatible with 2df) 63.0 0.251 0.041 0.708 0.06 -4.38
Model C (compatible with BAO) 68.0 0229 0.052 0.719 0.06 -2.93
Model D (compatible with SN Ia + BAO) 72.0 0.229 0.046 0.725 0.06 -14.52
Model E (compare to WMAP1) 71.0 0226 0.044 0730 0.0 -13.40
Model F (compatible with flat CDM) 50.0 0.904 0.09% 00 0.06 -26.70
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have chosen 7 = 0.06 throughout this section, as it is one of the most reliable values
for the optical depth at the present from observations of Lyman-« forest [176,177].
We reconstruct the primordial power spectrum for this point in the parameter space.
The reconstructed result for P(k) and the resultant CZTT and CZTE are shown in fig-
ure 3.14 (Model A). The resultant C; (including TT and TE polarization spectra)
for this point in the parameter space given by the reconstructed primordial power
spectrum, can improve the effective likelihood by A ngf = —18.67 with respect to the
reference likelihood of model G.

Model B: Cosmological parameters from 2DF Galaxy Redshift Survey

In this case we choose parameters consistent with the results from 2df galaxy redshift
survey [103]. We use h = 0.63, Q,, = 0.251, O, = 0.041, Q, = 0.708 and 7 = 0.06.
These parameters are consistent with the results from 2df with hQ,, = 0.168 + 0.016
and Q;,/Q,, = 0.185 + 0.046 for a flat ACDM cosmological model. However here we
have used a marginally bigger value of matter density and marginally lower value
of Hubble parameter in compare with the best fit result from 2df, but still these
parameters are consistent with the 2df constraints within 1o. The reconstructed
result for P(k) and the resultant CITT and CITE are shown in figure 3.14 (Model B).
The resultant C; for this point in the parameter space, can improve the effective
likelihood by A)(gff = —4.38 with respect to the reference likelihood of model G.

Model C: Cosmological parameters from the results of detection of baryon acous-
tic peak oscillations

In this case we consider a flat ACDM cosmological model with cosmological pa-
rameters consistent with the results of measurements of the baryon acoustic os-
cillations(BAQO) [96]. We use h = 0.68, Q;,, = 0.229, 3, = 0.052, QO = 0.719 and
7 = 0.06. These parameters are consistent with the best fit results from BAO with
Q,,h? = 0.130 + 0.011 and Q,#? = 0.024 for a flat ACDM cosmological model. The
reconstructed result for P(k) and the resultant C ITT and CITE are shown in figure 3.14
(Model C). The resultant C, for this point in the parameter space given by the re-
constructed primordial power spectrum, can improve the effective likelihood by
AX2; = —2.93 with respect to the reference likelihood of model G.
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Model D: Cosmological parameters from observational constraints on the matter
density using SN Ia and BAO data

Model independent estimation of the matter density by using supernovae [46,47]
and BAO [96] data by [115] is used in this section to set the cosmological parameters.
The total matter density, independent of the model of dark energy is found to be
Q,, = 0.276 + 0.023. This value is, in fact, the total sum of dark matter density
and baryonic matter density. We can also choose the value of baryon density
in a way to be consistent with the prediction of big bang nucleosynthesis where
Qph? = 0.02[178,179]. Weuseh = 0.72, Qg = 0.229, Q) = 0.046, Q = 0.725and 7 =
0.06. These parameters are consistent with the two constraints mentioned above.
The resultant C; for this point in the parameter space driven by the reconstructed
primordial power spectrum, can improve the effective likelihood by A ngf = —-14.52
with respect to the reference likelihood of model G. The reconstructed result for
P(k) and the resultant CITT and CITE are shown in figure 3.14 (Model D).

Model E: Cosmological parameters from comparison with the results from WMAP
1 data

In this case we use the same parameters as we used before in section 3.3), where
we introduced the improved Richardson-Lucy method and analyzed the WMAP 1
data. This is for comparison between our results from WMAP 1 and WMAP 3 years
data. As in the section 3.3, here also we use h = 0.71, Qg ,, = 0.226, Qp,,, = 0.044,
Qp = 0.730 and 7 = 0.0 for the parameters of our background cosmology. The
reconstructed primordial power spectrum for this point in the parameter space,
can improve the effective likelihood by A)(gff = —13.40 with respect to the reference
likelihood of model G. This result is consistent with the result by using WMAP 1 data
and there is no significant difference in features of the reconstructed results. The
reconstructed result for P(k) and the resultant C ITT and CITE are shown in figure 3.14
(Model E).

Model F: Cosmological parameters from Standard Cold Dark Matter (SCDM)
model

In this case we assume a Cold Dark Matter universe (CDM) where the energy
density of the dark energy is assumed to be zero. For h = 0.50, Q4, = 0.904,
Qp = 0.096, Qp = 0.0 and 7 = 0.06, we could improve the effective likelihood

by A)(gff = —26.70 which shows that by assuming a free form of the primordial
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spectrum, the standard CDM model of a flat universe can be very well fitted to the
CMB data alone. Studies by [181] have shown that a CHDM model of the universe
(which there is also no dark energy) also can have a good fit to the WMAP 3 years
data. It is very interesting that for this point in the parameter space we could get a
big improvement in the effective likelihood. We should note here that for this point
in the parameter space, we have set Q;h* = 0.024 which is in agreement with big
bang nucleosynthesis however this point in the parameter space is not well fitted
with other cosmological observations, like large scale structure observations or the
supernovae data. Results are shown in figure 3.14 (Model F).

Model G (Reference model): cosmological parameters from best fit power law to
the WMAP 3 year data

Interestingly, for this point in the parameter space, we could not significantly im-
prove the effective likelihood by considering the free form of the primordial spec-
trum where we used h = 0.732, Qg ,, = 0.1967, O, = 0.0416, Q, = 0.7617 and
7 = 0.089. In fact adding features to the form of primordial spectrum for this point
in the parameter space could not improve the resultant effective likelihood. We
interpret this to arise from the fact the cosmological parameters themselves adjust
with a large number of degrees of freedom to the fit comparable to the freedom in
the primordial power spectrum (encoded in a finite number of wavelet coefficients).
In short, all the cosmological parameters have been chosen in way to give us the best
likelihood by strong assumption of power law form of the primordial spectrum. In
this section (and also in the next section), the resultant ngf of different models
are compared with this model as the reference model.

Different assumed models with their parameters and their resultant likelihoods
are shown in table 3.2.

3.7 Toward cosmological parameter estimation

It is very important to note that despite of allowing a free form for the primordial
spectrum, not all cosmological models (i.e., all points in the parameter space) can be
fitted to the data equally well. We clearly show that some points in the cosmological
parameter space fit the WMAP 3 year CMB data better than the other points,
by ‘optimizing’ the likelihood over a free form of the primordial spectrum. We
conjecture that the positive definiteness of the primordial spectrum does not allow
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us to fit all the points in the parameter space to the data equally well, and some
points will have a better fit to the data. In this section we would like to present
strong evidence that despite of allowing a free form of the spectrum, the derived
likelihoods do strongly discriminate between different neighboring points in the
parameter space. As an example, for a flat ACDM model, we fix the values of
Hp =72, 7 = 0.06 and Q) = 0.70 and we vary the values of ), and Q,, keeping
the total fixed at QQ,, = Qp, + Qg, = 0.30 and calculate the likelihood. We find a
minimum in the value of the ngf around Q; = 0.050 and Qy,, = 0.250 which shows
that the data prefers this combination among the models with Q,, = 0.30.

In parameter estimation, other cosmological observations can be used to put
constraints on the parameter space. For example, some region of the parameter
space may be in agreement with CMB data, but being ruled out strongly by other
observations. However in our example, the best result seems to be well in agreement
with all other cosmological observations, including large scale structure observa-
tions from SDSS [102], supernovae data by SNLS [47] and Gold [46], detection of
baryon oscillations [96] and it is also in agreement with big bang nucleosynthesis.
In figure 3.15 we see the resultant A)(Z_ff versus different values of baryonic matter
(left panel-blue line) and the reconstructed P(k) for the best combinations of Q
and Q,, assuming €, = 0.30 (right panel-blue line). The red curves in figure 3.15
have the same characteristic but Q5 = 0.73 and Q,, = 0.27. Clearly, ‘optimizing’
over the primordial power spectrum allows us to get significantly higher likelihood
(Ax? = —19.65) for Q,; = 0.30 compared to Q,, = 0.27 (Ax? = —11.55).

Here we have only considered two limited 1-D slices in the cosmological pa-
rameter space, but our main aim is to do the cosmological parameter estimation
for the whole volume of the parameter space. However as it has been mentioned
before, doing a cosmological parameter estimation in the whole parameter space
would be computationally very expensive. Recently few new methods of parameter
estimation have been proposed which are claimed to be much faster than the usual
methods of Monte Carlo Markov Chain or grid sampling. These new methods may
be suitable for our purpose but they are still applicable for a one dimensional space
and they need to be modified to be applied in our problem [182-185]. Though it
is still difficult and beyond our abilities to do the cosmological parameter estima-
tion in the whole parameter space and with a high resolution, still we can do it
for a reasonably large contiguous volume of the parameter space. In this part, we
present the results for the cosmological parameter estimation by fixing the value of
T = 0.06 (which we have chosen throughout this section) and varying the values
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of (3, Qg and & in a large volume of the parameter space. In our analysis we use
the following priors: 35 < Hp < 85, 0.012 < Qph? < 0.030, 0.04 < Qo_;n < 0.30 and
0 < Q) < 1. Any of the given priors for ), Qy, and h has been divided by eight
equally-spaced points whose combinations will generate our assumed initial sam-
pling in the parameter space. Q, is derived from the other parameters assuming a
flat universe. Our motivation to choose these wide priors are from the strong limits
from other astronomical and cosmological observations. In figure 3.16 we see the
resultant —A)(gff (in Z axis and also in color indicated by the tool bar in the upper
panel) versus different values of Hubble parameter (X axis in both upper and lower
panel) and Q4% (Y axis in both upper and lower panel). The lower panel shows the
relative values of the (2, in our parameter space (indicated by color in the lower
panel).

The best likelihood has been derived for Q;, = 0.084, Qg4,, = 0.764, QO = 0.152
and Hy = 50 with A ngf = —29.282 with respect to the reference likelihood of model G
in section 3.6.2. Another point in the parameter space with Q;, = 0.058, Q4,, = 0.416,
Qp = 0.526 and Hp = 60, which is more compatible with the other cosmological
observations, also has a very good optimized likelihood with A)(Z_ff = —29.014 with
respect to the reference likelihood of model G in section 3.6.2 , which is very close
to our best result.

Results also show that for a very wide range of 5, even when its density
is close to zero, we can have a very good fit to the WMAP 3 year data which is
expected, as CMB data alone are not very much sensitive to the A density.

3.8 Summary and Conclusion

The CMB anisotropy is usually expected to be statistically isotropic and Gaus-
sian [186]. In that case, the angular power spectrum of CMB anisotropy encodes
all the information that may be obtained from the primary CMB anisotropy, in
particular, the estimation of cosmological parameters. It is very important to note
that cosmological parameters estimated from CMB anisotropy (and other similar
observations of the perturbed universe) usually assume a simple parametric form
of spectrum of primordial perturbations. It is clear, however, that estimation of
cosmological parameters depends on the extent and nature of parameterization
of the primordial (initial) perturbations included into the parameter space consid-
ered [145].

We proceed on a complimentary path of determining the primordial power
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spectrum directly from the CMB anisotropy for a set of cosmological parameters.
Assuming cosmological parameters, our method applied to the angular power
spectrum measured by WMAP yields interesting deviations from scale invariance
in the recovered primordial power spectrum. The recovered spectrum shows an
infrared cut-off that is robust to small changes in the assumed cosmological param-
eters. The recovered spectrum points to the form of infra-red cut off that matches
the low multipoles of WMAP. We also show that the such forms of infra-red cut-off
can arise from simple well-known effects with inflation. It is important to recall
that the angular power spectrum from the ‘full” sky CMB anisotropy measurement
by COBE-DMR [30] also indicated an infra-red cutoff [187]. Although we mostly
emphasize the infrared cutoff, the final recovered spectrum shows a damped os-
cillatory feature after the infra-red break (‘ringing’). It has been pointed out that
such oscillations improve )(gff and could be possibly a signature of trans-Planckian
effects [151,188]. We have not assessed the significance and robustness of the fea-
tures at large k/k;, that may be consistent with features deduced in the analysis of
recent redshift surveys [189] 2.

In this work, we have used only the angular power spectrum of WMAP mea-
sured temperature fluctuations (TT). Once the E-polarization power spectrum (EE)
is announced by any CMB polarization survey, our method can be extended to
include TE and EE angular power spectra in obtaining the primordial power spec-
trum. For instance, the very recent “QUAD” data [202] can be used for this purpose.
It is also possible extend our recovery of the primordial spectrum to larger wave-
numbers by using the matter density power spectrum measured by large scale
redshift surveys such as the Sloan Digital sky survey SDSS and 2degree Field sur-
vey, measurement from Ly-a absorption, and possibly, weak gravitational lensing
in the near future [200,201].

In this chapter we also present a detailed analysis of the recovered primordial
power spectrum. The recovered spectrum has a likelihood far better than a simple
scale invariant or a scale free spectra. In [153], similar features for the primordial
spectrum have been detected by using a completely different method and the signif-
icance of the features have also been evaluated. We use Discrete Wavelet Transform

BQur analysis here is limited to flat models cosmological models. We have also ignored the
contribution from tensor perturbations and assumed adiabatic perturbations in this theis. Although,
inflation generically predicts a geometrically flat universe, the power spectrum of perturbations in
non-flat universe models has been studied [190-193]. The effect of tensor perturbations on the CMB
anisotropy spectrumis well studied [194-197] and so is the role of isocurvature perturbations [198,199].
Hence, it is straightforward to remove these limitations in a more comprehensive future analysis.
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to decompose the features of the spectrum to quantify and understand their role in
improving the likelihood. In addition to the infra-red cut-off around the horizon,
which was proposed by many groups to explain the lack of power in very low mul-
tipoles of the observed angular power spectrum, we show that the features around
the horizon are playing a crucial role in improving the likelihood. In fact, the effect
of these features on improving the likelihood, are very significant (figure 3.11). We
find that these strong features are localized around the horizon.

In the last part of this chapter, we present the reconstruction of an "‘optimal’
primordial power spectrum for flat ACDM cosmological models for different sam-
ple points in the parameter space by using WMAP 3 year data. We have chosen
these sample of points to be consistent with different independent cosmological
observations, or consistent with special theoretical models. Almost in all cases the
recovered spectra improves the resultant effective likelihood significantly in com-
parison with the best fit power law form of the primordial spectrum in the whole
parameter space. We also generalized our study to a much bigger sample of points
where we performed the cosmological parameter estimation in a large volume of
the parameter space.

There are some important conclusions that can be drawn from our results.
Though the published results from WMAP team after release of WMAP 3 year data
suggests the lower value of matter density in comparison with the other cosmo-
logical observations like large scale structure observations from SDSS, supernovae
and detection of baryon acoustic peak oscillations, our analysis shows that by as-
suming a free form of the primordial spectrum, CMB data can be well fitted to the
models with the higher value of matter density compatible with the other cosmo-
logical observations. Our preliminary studies in the parameter space, show some
evidence that by assuming the free form of the primordial spectrum models with
higher value of matter density are better fitted to the WMAP 3 year data than mod-
els with low value of matter density. Another important result is that a standard
CDM (Cold Dark Matter) model of the universe, can also be very well fitted to the
WMAP 3 year data by assuming the free form of the primordial spectrum. In fact
for a SCDM model, we could get one of our best recovered results by improving
the likelihood around A ngf = —27 with respect to the best result for the power law
form of the spectrum in the whole parameter space(reference likelihood of model
G in section 3.6.2). The features of the recovered results for all these points in the
parameter space have something in common. They all show a sharp cut of around
the horizon and some significant features after the horizon scale. We have seen that



3.8: Summary and Conclusion 112

the effect of these features around the horizon are very important in improving the
likelihood.

Assuming a free form of the primordial spectrum, we derived the best like-
lihood for a ACDM model at ), = 0.084, Q4, = 0.764, Q, = 0.152 and Hy = 50
within the explored region with A ngf = —29.282 with respect to the reference like-
lihood of model G in section 3.6.2. Another point in the parameter space with
Q) = 0.058, Oy, = 0.416, Qp = 0.526 and Hp = 60, which is more compatible with
the other cosmological observations, also has a very good optimized likelihood
with A)(ﬁff = —29.014 with respect to the reference likelihood of model G.

The differences between our results in parameter estimation and the results
from WMAP team assuming a power law form of the primordial spectrum moti-
vates us to work towards precise cosmological parameter estimation allowing full
freedom to the form of the primordial spectrum, with a higher resolution in the
spacing of the parameters and also considering the whole parameter space.

In this work, we use the modestly determined quality of CMB polarization
spectra from WMAP (TE and EE) simply as a consistency check. However, CMB
polarization (EE) spectra from Planck Surveyor is expected to be good enough to
allow us to extend our deconvolution method simultaneously to CMB temperature
and polarization.
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Figure 3.10: The left panels show the DWT decomposition of the features of the primordial
power spectrum. Step A shows the reconstructed primordial power spectrum using the
10th level low-pass coefficients. Steps B, C, D, E and F show the localized variations due
to the wavelet coefficients at the 10th, 9th, 8th, 7th and the 6th levels respectively. These
variations in the primordial power spectrum are most prominent close to the horizon scale
and are significant only in the first few panels, corresponding to ‘low frequency’ variations.
The panels on the right compare the resultant angular power spectrum, Cj with the binned
WMAP-1 angular power spectrum data. Going down from the top we progressively add
features from different levels of wavelet coefficients (left) to the primordial power spectrum
and show the difference, Cj] — C;l and error bars for C;l (right).
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Figure 3.11: The primordial power spectrum reconstructed with the low-pass coefficients
is shown in the top panel. Addition of features of steps B, C and D is shown in the middle
panel. The combination of both these panels is shown in the bottom panel. Note the
significant effect of the features on the likelihood. Results are based on WMAP 1 year data.
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Figure 3.12: The likelihood values improve as detailed features are added to the primordial
power spectrum reconstructed with low-pass coefficients. A corresponds to the primordial
power spectrum reconstructed with low-pass coefficients only. B — K correspond to the
primordial power spectrum with the contribution of wavelet coefficients of levels 10-1
progressively added to the coarse spectrum A. There is no significant improvement in
the likelihood beyond level 6 (step F). Green-dashed lines mark the Gaussian equivalent
o-levels of the likelihood relative to the best recovered spectrum. Results are compared
with the best likelihood given by Power Law and Harrison-Zeldovich spectrum. N. is the
number of coefficients (low-pass and high-pass) used to define the primordial spectrum at
each step. Results are based on WMAP 1 year data.
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Figure 3.13: Resultant P(k) for a sample point in the cosmological parameter space is
shown in the blue curve. The other curves show the P(k) recovered at different levels of
DWT smoothing. The blue line which is the reconstructed result obtained by retaining all
wavelet coefficients up to the 9th wavelet level has the best likelihood with Ax2. = —18.76
with respect to the best fit power-law primordial spectrum in the whole parameter space. We
used Hy = 72, Qy, = 0.246,0), = 0.05,Q4 = 0.704, T = 0.06 as the cosmological parameters.
The plot in the inset shows the resultant Ax%, of the reconstructed results at different
wavelet levels. The ‘optimality” of the n = 9 level DWT smoothing in this case is clearly
demonstrated. Here we have used WMAP 3 year data.
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Figure 3.14: Reconstructed primordial spectrum (top panel) and the resultant C/ (middle
panel) and CJ* (lower panel) angular power spectra are plotted for 6 different points in
the parameter space assuming a flat ACDM cosmological model. Cosmological parameters
of Model A: Hy = 72,0y, = 0.246,Q;, = 0.05,Q, = 0.704,7 = 0.06 and the recovered
results for this model gives Ax2, = —18.76. Cosmological parameters of Model B: Hy =
63,04, = 0.251,Q; = 0.041, Q5 = 0.708, 7 = 0.06 and the recovered results for this model
gives A)(gff = —4.38. Cosmological parameters of Model C: Hy = 68,Qy, = 0.229,Q, =
0.052,Q5 = 0.719,7 = 0.06 and the recovered results for this model gives A)(gff = -2.93.
Cosmological parameters of Model D: Hy = 72, Qy,, = 0.229, (), = 0.046, Q5 = 0.725,7 = 0.06
and the recovered results for this model gives A)(gff = —-14.52. Cosmological parameters
of Model E: Hy = 71,Qy, = 0.226,Q;, = 0.044,Q, = 0.730,7 = 0.0 and the recovered
results for this model gives Ax%, = —13.40. Cosmological parameters of Model F: Hy =
50,04, = 0.904,Q; = 0.096,Qx = 0.0,7 = 0.06 and the recovered results for this model
gives Ax2, = —26.70. Model G is the reference model against which all calculated Ax?;s are
with respect to this model. This represents the best fit power law primordial spectrum in
the whole parameter space. The red error-bars in the middle and lower panels represents
the binned angular power spectrum from WMAP 3 year data. The black error-bars at
the middle panel at the high [, are from ACBAR experiment [175]. The excess of power
and the bump in the recovered P(k) at the high k (logk/k;, =), seems to be related to the
higher measurements of the angular power spectrum at high I’s in WMARP 3 year data in
comparison with the other experiments such as ACBAR.
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Figure 3.15: A 1-Dslice (Q,, = constant) through the cosmological parameter space demon-
strates that the data retains strong discriminatory power in the cosmological parameter
space even when there is full freedom in choosing the primordial power spectrum. Left
panel: Plot of Ax%, of the reconstructed results with respect to the reference likelihood of
model G in section 3.6.2 by assuming free form of the primordial spectrum, for a flat ACDM
model with iy = 0.72, T = 0.06 and Q, = 0.70 and Q,, = O + Qy,, = 0.30 for different values
of (), (blue line). The red curve is for similar models except for Q,, = ) + Qg = 0.27.
Clearly, ‘optimizing’ over the primordial power spectrum allows us to get significantly
higher likelihood (Ax? = —19.65) for Q,, = 0.30 compared to Q,, = 0.27 (Ax* = —11.55).
This demonstrates that even though we allow a free form of the primordial spectrum,
the data does show very strong preference for particular values of cosmological parame-
ters. Right panel: Reconstructed primordial spectrum, P(k), for a flat ACDM model with
Qy = 0.050, Qg = 0.25,hp = 0.72, T = 0.06(blue line). For these parameters of Q; and Qgyy,,
we could get the best likelihood for Q,, = 0.30. The red line is the reconstructed P(k) for a flat
ACDM model with ), = 0.0460, Q4 = 0.224, hy = 0.72, T = 0.06. For these parameters of
and (4, we could get the best likelihood for the Q,, = 0.27. Itis clear that the reconstructed
P(k) for these two points in the cosmological parameter space are very similar. However
the resultant Ax2, for these two points in the parameter space shows a big difference. Here
we have used WMAP 3 year data.
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Figure 3.16: A coarse resolution and limited volume exploration of the cosmological
parameter space demonstrates that the data retains strong discriminatory power in the
cosmological parameter space even when there is full freedom in choosing the primordial
power spectrum. The resultant —Ax?2; is shown (in Z axis and also in color indicated by
the tool bar in the upper panel) versus different values of Hubble parameter (X axis in both
upper and lower panel) and Q,/? (Y axis in both upper and lower panel). The lower panel
shows the relative values of the Q, in our parameter space (indicated by color in the lower
panel). We have assumed here 7 = 0.06. Here we have used WMAP 3 year data.
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Chapter 4
Conclusions

The work related to my PhD thesis has been on implementing and applying different
non-parametric and model-independent statistical methods to the reconstruction
of important cosmological quantities and parameters. These methods have been
applied to the most recent cosmological data sets such as the WMAP data on cosmic
microwave background anisotropy, the GOLD, SNLS and Union supernovae data,
etc.

My research has been primarily focused on applying these advanced statistical
methods (the improved Richardson-Lucy deconvolution method, wavelet analysis,
smoothing methods) to two very important areas in cosmology. The main issues

which I have addressed are:

+ Non-parametric recovery of the shape of the primordial power spectrum directly from

observations.

+ Non-parametric reconstruction of the expansion history of the universe and of the

properties of dark energy.

These model-independent techniques can be used to examine different cosmolog-
ical models against observations, without biasing the results through any initial
model assumption. In what follows, I briefly summarize the specific cosmological
problems which I have studied and the methods that have been employed.
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* Primordial power spectrum from CMB data:

Precision measurements of anisotropies in the cosmic microwave background,
and also of the clustering of large-scale structures, suggest that the primordial
density perturbation is dominantly adiabatic and has a spectrum that is nearly
scale-invariant. This is in good agreement with the simplest inflationary sce-
narios which predict power-law or scale-invariant forms of the primordial
perturbation spectrum. However, despite the strong theoretical appeal and
simplicity of a featureless primordial spectrum, it is important to determine
its shape directly from observations with minimal theoretical bias. This is
especially so in view of some inconsistencies that appear to have been no-
ticed between the data and the quasi-scale-invariant form of the primordial
spectrum. One such inconsistency is the observed lack of power in the low-/
multipoles of the CMB angular power spectrum determined by WMAP (and
also by COBE).

In my work, I have tried to reconstruct the shape of the primordial power
spectrum, independently of any assumption about the model of inflation.
The next logical step was to analyze the recovered features and study their
effects on the resultant angular power spectrum, to match it with the observed
data for consistency. And the final step was to do with parameter estimation

by optimizing over the unknown primordial spectrum.

Very precise measurements of the angular power spectrum over a wide range
of multipoles obtained by WMAP have opened up the possibility to decon-
volve the primordial power spectrum for a given set of cosmological parame-
ters. In studying this particular problem, I have implemented a method using
a Richardson-Lucy algorithm (improved to suit my research objectives), to
deconvolve the primordial power spectrum from the angular power spectrum
of CMB anisotropy, as measured by WMAP. After this method was applied to
the WMAP first-year data, the most prominent feature of the recovered pri-
mordial power spectrum was found to be a sharp, non-monotonic, infra-red
cut-off on the horizon scale. This proved to be a much better fit to WMAP
data than the most naive of monotonic infra-red cut-offs, which has been
widely discussed in the post-WMAP-1 literature. Non-monotonicity in the
cut-off accommodates a localized and compensating excess power below the
cut-off. Most interestingly, similar features for the shape of the primordial
spectrum (including the cut-off and the excess power below the cut-off) have
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been obtained by other researchers using a completely different method, after
our results were published. This confirms the robustness of our method.

The significance of the features in the recovered primordial power spectrum
has been quantified by using Discrete Wavelet Transforms. We have found
that, in addition to the infra-red cut-off around the horizon, which was pro-
posed by many groups to explain the lack of power in very low multipoles
of the observed angular power spectrum, the features around the horizon play a
crucial role in improving the likelihood of the resultant angular power spec-

trum.

After release of the new set of data from WMAP mission, have applied the
modified Richardson-Lucy method to the WMAP three-year data. We have
improved the earlier method, notably in employing wavelet decomposition
for identifying and retaining significant features. The primordial power spec-
trum has been reconstructed for different sets of cosmological parameters.
The recovered spectrum for most of the points in the cosmological parameter
space has a likelihood far better than a “best fit” power law spectrum up
to AX?f ;& —27. We use Discrete Wavelet Transform (DWT) for smoothing
the raw recovered spectrum from the binned data. The results obtained here
reconfirm and sharpen the conclusion drawn from our previous analysis of
the WMAP 1st year data. A sharp cut-off around the horizon scale and a
bump after the horizon scale seem to be a common feature for all of these
reconstructed primordial spectra. We have shown that although the WMAP
3 year data prefer a lower value of matter density for a power-law form of
the primordial spectrum, for a free form of the spectrum we can get a very
good likelihood to the data for higher values of matter density. We have even
shown that a flat CDM model, with a free form of the primordial spectrum,
can give a very good likelihood fit to the data. Theoretical interpretation of
these results are left open to the cosmology community.

The final objective of this aspect of the project was to make an estimation
of the cosmological parameters by optimizing over the unknown primordial
spectrum. In this case, the likelihood is to be assigned to a point in the
cosmological-parameter space by first obtaining the primordial spectrum that
maximizes the likelihood. Our preliminary studies in the parameter space,
show some evidence that by assuming the free form of the primordial spec-
trum models with higher value of matter density are better fitted to the WMAP
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3 year data than models with low value of matter density. The features of the
recovered results for all these points in the parameter space have something
in common. They all show a sharp cut off around the horizon and some
significant features after the horizon scale. Assuming a free form of the
primordial spectrum, we derived the best likelihood for a ACDM model at
Q, = 0.084, Qy,, = 0.764, Qp = 0.152 and Hy = 50 within the explored region
with A ngf = —29.282 with respect to the best fit power law spectrum. Another
point in the parameter space with Q) = 0.058, Q4,, = 0.416, Q5 = 0.526 and
Hy = 60, which is more compatible with the other cosmological observations,
also has a very good optimized likelihood with Ax2, = —29.014 with respect
to the best fit power law spectrum.

The differences between our results in parameter estimation and the results
from the WMAP team (who assume a power law form of the primordial
spectrum) motivates us to work towards precise cosmological parameter es-
timation allowing full freedom to the form of the primordial spectrum, with
a higher resolution in the spacing of the parameters and also considering the
whole parameter space.

Non-parametric reconstruction of the properties of dark energy:

The nature of dark energy has been a subject of much debate over the past
decade. Supernovae data, which gave the first indication of the accelerated
expansion of the universe, are expected to elucidate this interesting question
further, as the quality of the data steadily improves. Different parameteriza-
tions that have been used for the luminosity distance d;, Hubble parameter
H(z), and the dark-energy equation of state w(z), in modeling the proper-
ties of dark energy, are known to lead to different results for the same set of
data. I have contributed to this effort by proposing a non-parametric method
of smoothing the supernova data over redshift, using a Gaussian kernel, in
order to reconstruct important cosmological quantities, which include H(z)
and w(z), in a model-independent manner. In this approach, the data are
dealt with directly, without having to rely on a parametric functional form
for fitting any of the quantities dr(z), H(z) or w(z). The result obtained by
using this approach is, therefore, expected to be model-independent. This
method is shown to be successful in discriminating between different models



124

of dark energy if the quality of data is commensurate with that expected from
the future SuperNova Acceleration Probe (SNAP). By using this method, the
Hubble parameter can be reconstructed to an accuracy of better than 2%, while
the look-back time can be reconstructed to an accuracy of 0.2%.

In continuation of this work, I have improved significantly upon the method
of smoothing supernovae data to reconstruct the expansion history of the
universe, h(z), using two latest datasets, Gold and SNLS. The reconstruction
process does not employ any parameterization and is independent of any dark
energy model. The reconstructed h(z) is used to derive the distance factor “A"
up to redshift 0.35 and the results are compared with the given value of “A"
from the detection of baryon acoustic oscillation peak (BAO). We find very
good agreement between supernovae observations and the results from BAO
for Qo = 0.276 £ 0.023. The estimated values of Q,, are completely model-
independent and are only based on observational data. The derived values
of Qy,, are then used to reconstruct the equation of state of dark energy, w(z).
Using our smoothing method we can demonstrate that while SNLS data are in
very good agreement with LCDM, the Gold sample slightly prefers evolving
dark energy. We also show that proper estimation of the equation of state
of dark energy at high redshifts would be impossible at the current status of

observations.

We have also introduced three new diagnostics of dark energy, “Om”, “g-
probe” and “w-probe". All these three diagnostics of dark energy can be
calculated from the first derivative of the data. It has been found that these
quantities can be reconstructed extremely accurately using different recon-

struction methods even if the value of (), is not known accurately.

The Om and w-probe can be used to distinguish between ACDM and other
models of dark energy to a high degree of accuracy and g-probe can be used to
probe the acceleration of the universe at different redshifts. We have applied
these diagnostics to the most recent cosmological data, Union supernovae
data and WMAP 5 year CMB data and we have shown that the ACDM model
is in good agreement with the data but so are some evolving dark energy
models. I am confident that the techniques developed in this thesis will shed
further light to the nature of dark energy when applied to more precise future

cosmological observations.
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Appendix A

Smoothing errors and bias

In this section we explore the errors on the cosmological parameters due to the

smoothing scheme, as also the bias which enters the results.

A.1 Smoothing errors

The smoothing scheme used in this paper is of the form :

N
= yo(@) + ) [y - ye(z)IS zl,A>/ZS<zl, : (A1)
i=1 i=1

where the quantity S(z;; A) represents the smoothing function with a scale A and
yG(z) is the subtracted guess model. The quantity being smoothed (in this case
Ind;) is represented by y, while y° represents the smoothed result. Let the errors in
the data at any redshift z; be given by 0,(z;) and the errors in the guess model be
0y.(zi). If we look at the second term on the right hand side of eqn (A.1), we see that
the errors on this term would be approximately given by the errors on y weighted
down by the smoothing scale A and the number of data points N. Therefore the
error on the smoothed result is:
2

04 (2) = G;G(Z) +

YG
2 e (A.2)

We now consider the errors for an iterative method. The first guess is an exact
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model, ACDM. Therefore the error on the result of the first iteration is simply

03(2)
2 ~ Y
oy, (z) = NA (A.3)
The next guess model is y1(z). Therefore the error on the result is
2
19,

2 ~ Yy

(@) = (2 " NA) NA (A4)

From this we can show that the errors on the result for the M-th iteration is :

M-1

aiM(z) = [1 + Z (1 + ﬁ)l

i=1

05(2) MM -1)] 5@
WZ|M+ 2NA ]NA '

The second term on the right-hand side is small for a reasonable number of iter-
ations, since N ~ 2000 and A > 0.01 usually. Therefore we may approximate the
errors on the log luminosity distance after M iterations for the guess model as

oy, @) = Mo}, (2) (A.5)
where a?n i (z) is the error for a simple smoothing scheme where the data is smoothed

without using a guess model.

A.2 Smoothing Bias

In any kind of a smoothing scheme for the luminosity distance, some bias is intro-
duced both in it and in derived quantities like H(z) and w(z). To illustrate the effect
of this bias, we calculate it for the simplest Gaussian smoothing scheme for Ind;(z)
with the width A(z) < 1:

= (z = z)
Indy (2)° = N(z)ZlndL(zi)exp |— . ] ,
=1
M _ )2
N@z)™ = Z exp [—%] , (A.6)
i=1

where M is the total number of supernovae data points. The bias at each
redshift (B(z) = Indr(z)° — Ind[(2)) is the difference between the smoothed In dy(z)
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Figure A.1: Comparison of the reconstructed parameters obtained by using the smoothing
method (A.6) with the variable A(z) = 0.2z/(1 + z)? for the ACDM model (the dotted line in
each panel) with the analytical biased result given by eqn (A.8) (dashed line). The solid line
represents the fiducial ACDM model. Note the excellent agreement between the analytical
and numerical results in the redshift range 0.1 <z < 1.1.

and the exact value of Indy(z) :

M RV
B(z) = N(z);(ln d1(z:) — Indi(2) exp [-%} . (A7)

Expanding Indy (z;) in terms of Ind; (z) and its derivatives by Taylor expansion, we
get:

(zi — 2)?

M
B(z) = N(z) Z [(ln dr(z)) (zi —z) + (Indy(z))" ———
i=1

X exp [_ (z - Zi)z] /

2 2A?

where the prime denotes the derivative with respect to z and we neglect higher
derivatives. To see the effect of this bias at low and high redshifts where the
number of supernovae on both sides of each z are not equal, we rewrite eqn (A.8)
in another way. Let 6 be the spacing between two neighboring data points, so that
z = md. For m < M/2, we have:
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B(z) =
NG 2 [ﬂnd o™ m)z] exp [‘%]
y- 0% (i — m)?
+N(2) 2 [(ln dy(2)) (i — m) + (In dL(z))”T]
i=2m+1
8(i — m)?
X exp [—%} ,
and for m > M/2:
B(z) =
Y ” 62(1 - m)Z 62(1 - m)Z
o, 5, [ 2o 220
2m-M )
+N(2) |(1n d(2))8( — m) + (Ind(z))” ‘52(1;—’”)2]
i=1
8(i — m)?
X exp [—%]

The first term in the above equations is the general bias of the method, while
the second term is the bias arising due to an asymmetric number of data points
around each supernova. For m = M/2, the number of data points is the same from

both sides and we have:

,,52(i—m)2] [ 62(i—m)2]
T exXpl—————— |-

M
B(z) = N(z) Z [(ln dL(2)) A2
i=1

In the continuous limit where x = i — m is assumed, we get:

2.2
- N(z) f (lndL(z))"— xp|—%]dx,

N(z) = fexp [—%]dx.
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Therefore, the bias has the simple form

_ (Indi(2))"6* A2

B() =5y = 5 (nd@) . (A.8)

This is a good analytical approximation for the bias at redshifts in the middle range,
where we do not encounter the problem of data asymmetry. To see the effect of
this bias, let us assume that the real model is the standard ACDM, add the bias
term to this model and then calculate the biased H(z) and w(z). The result from
this analytical calculation can be compared to the result of smoothing the exact
ACDM model using our method. The figure A.1 simply illustrates that the results
obtained using Gaussian smoothing and by the use of formula eqn (A.8) are in good
agreement in the middle range of redshifts. However, we do not expect the formula
eqn (A.8) to work properly at very low (z < 0.1) and high (z > 1) redshifts where
the above mentioned asymmetry of points adds a further bias.

Also, it appears that the smoothing bias has a tendency to decrease w(z) below
its actual value in the middle range of z. Thus, ACDM may appear to be a ‘phantom’
(w < -1) if too large a smoothing scale is chosen.
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Appendix B

Exploring smoothing with variable
width A(z)

In order to deal with the problem of data asymmetry and paucity at low and high
redshifts we may consider using a variable smoothing width A(z) in eqn (2.2). (i)
Low z (z. < 1) : in this case, there are many more supernovae at z > z. than there
are at z < z.. The error-bars are also small in the low redshift region. Therefore, a
smaller value of A appears to be more appropriate at low z. (ii) High z (z. > 1) : in
this case, there is considerably more data at z < z. than at z > z.. However, at high
z the errors are considerably larger than at low z, which suggests that in order to
avoid a noisy result we must use a larger value of A in this region. In this section,
we investigate two different functional forms of A(z) with the above properties and
show how they result in the reconstruction of the equation of state.

B.1 A(z) = Agz/(1 + z)?

In section 2.1.1 we mentioned that, for |z—z;| < 1, the exponent in eqn (2.2) reduces to
the form —(z — z;)?/2A%(1 + z)? and the effective Gaussian smoothing scale becomes
A(1 + z). So if we use a variable A(z) = Agz/(1 + z)? then the effective Gaussian
smoothing scale approaches a constant at large z and tends to a small value at small
z. The results obtained using this method are shown in figure B.1 for SNAP data,
using the model w = —0.5. We find that, the result for the Hubble parameter does
not change much. However, the equation of state is somewhat better reconstructed,

but noisier at low redshift because of the small width of smoothing.
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Figure B.1: The smoothing scheme of eqn (2.2) is used with A(z) = 1.2z/(1 + z)? to obtain
smoothed H(z) and w(z) from 1000 realizations of the SNAP dataset. The panel (a) represents
the form of A(z) used, while panels (b) and (c) represent the reconstructed H(z) and w(z).
The dashed line in panels (b) and (c) represents the fiducial model with w = —0.5 while the
solid lines represent the mean and 1o limits around it. The dotted line is ACDM.

B.2 tan-hyperbolic form of A(z)

Tangent hyperbolic form for A(z) is another form of the variable A(z) which can
simultaneously satisfy both the low and high z requirements. It has a small value
at low redshifts and a bigger value at the higher redshifts. An additional important
property of this function is that it changes smoothly from low to high z, which
translates into a smoother second derivative w(z) — see eqn (2.2) - eqn (2.4).

A drawback of this method is that the tangent hyperbolic function introduces a
number of free parameters into the problem. However the role of these parameters
can be understood as follows. The tangent hyperbolic function can be written in

the general form
A) = atanh¥ . (B.1)

As we saw earlier, if A is held constant, then optimal results are obtained for
Ao = 0.24 in eqn (2.2) when we use bootstrap iterative process. We therefore
determine a,b and ¢ in eqn (B.1) so that A(z) = %Ao at z ~ 0, and A(z) = %Ao at

z = 1.7; consequently
023 +z

0.64

The results obtained using this method are shown in figure B.2 for SNAP data
for the fiducial model w = —0.5. We find that this variable form of A(z) leads to
a slight improvement of results at low redshifts by getting rid of the small bias

A(z) = 0.36tanh

(B.2)

which remains in the bootstrap iterative process. This improvement of the results

is expected especially for the cosmological models whose equation of state at low
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Figure B.2: The smoothing scheme of eqn (2.2) is used with a tangent hyperbolic form of
variable A(z) = O.36tanh% to obtain smoothed H(z) and w(z) from 1000 realizations of
the SNAP dataset. The panel (a) represents the form of A(z) used, while panels (b) and (c)
represent the reconstructed H(z) and w(z). The dashed line in panels (b) and (c) represents
the fiducial w = —0.5 model while the solid lines represent the mean and 1o limits around

it. The dotted line is ACDM.

redshiftis very different as compared to the ACDM model, which is our initial guess

model.
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Appendix C

Examining the robustness of the
smoothing method

In this section we show that the results of the smoothing method are robust against
the choice of the initial guess model and also to the chosen value of smoothing
width A.

We assumed three different cosmological models as our initial guess model and
we applied our smoothing method on the Gold dataset. The final results by using
these three different initial guess models are almost identical with Ax? < 0.01. We
have got x? = 157.40 by using a flat ACDM model with Qg,, = 0.30 as the initial
guess model after 89 iteration, while we have got x? = 157.40 for a flat ACDM
model with Qp,, = 0.25 after 91 iteration, and y? = 157.39 for a flat quiessence
model with Qg,, = 0.30 and w(z) = —0.8 after 104 iteration. In figure C.1 we can
see the reconstructed h(z) and w(z) for the Gold data set by assuming these three
different initial guess models. As we see, the robustness of the method for the
choice of the initial guess model is obvious.

We have also used different values of A (width of smoothing in eqn (2.2), in
our reconstruction process to check the reliability and stability of our results against
the changes in the value of A. We have used three values of A equal to 0.30,0.60
and 0.90 in our smoothing method and we have applied it on the Gold dataset.
By using A = 0.30 we have got x> = 157.38 after 9 iteration, while we have got
x? = 157.40 by using A = 0.60 after 89 iteration, and x* = 157.41 by using A = 0.90
after 407 iteration. In figure C.2 we can see the reconstructed h(z) and w(z) for the
Gold dataset by using these three values of A. We can clearly see that the results are

not sensitive to the given value of A. These two examinations confirm the overall
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Figure C.1: Reconstructed h(z) (left panel) and w(z) (right panel) for the Gold dataset by
assuming three different initial guess models. The red solid line is the reconstructed result
by using a flat ACDM model with Qg,, = 0.30 as the initial guess model. The green dashed
line is the reconstructed results by using a flat ACDM model with Qg,, = 0.25, and the blue
dotted line is the reconstructed result by using a flat quiessence model with w(z) = —0.8
and Qy,, = 0.30 as the initial guess models. We can clearly see that the results are almost
identical which shows the robustness of the method for the different choices of the initial

guess model.

robustness of the method for different initial assumptions.



45

35

25

15

0.5

135

w(z)
o

L L L L L L L L L L L L L L L L
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure C.2: Reconstructed h(z) (left panel) and w(z) (right panel) for the Gold dataset by
using three different values of A (width of smoothing). The red solid line is the reconstructed
resultby using A = 0.60. The green dashed line is the reconstructed results by using A = 0.90,
and the blue dotted line is the reconstructed result by using A = 0.30. In all these cases we
have stopped the boot-strapping process after reaching to the minimum x2. We can see that
the method is robust against the variation of A in a wide range.
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Appendix D

Some aspects of the
Richardson-Lucy deconvolution
method.

In this appendix, we provide support and justification for some steps in our method
for recovering the primordial power spectrum. In section D.1 we demonstrate the
robustness of the iterative Richardson-Lucy deconvolution to changes in the initial
guess. The next section (D.2) discusses the advantage of the improved Richardson-
Lucy method used in our work. In the last section (D.3), we model the broad
features of reference spectrum analytically and show that it is well understood.

D.1 Effectoftheinitial guessinthe Richardson-Lucy method

The effect of the initial guess is negligible in the Richardson-Lucy method of de-
convolution for our problem. We find that the result for various different initial
guesses come very close to each other after a few iterations. Here we demonstrate
the robustness of our method by convolving using the C; from a test spectrum (with
a step) using different initial guesses. In figure D.1 deconvolved raw P(k) arising

from different forms of the initial guess spectra

P(k) = constant, P(k) =1/k, P(k) = 1/k?, (D.1)

are shown. The effect of the initial guess is absent in the portion of the k space
probed well by the kernel. The deconvolved spectra are almost identical for all
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Figure D.1: The figure shows the raw power spectrum recovered using the Richardson-
Lucy algorithm starting from three different initial guesses. The effect of the initial guess is
negligible in the other region k space. As shown in the next section D.3, the artifacts at low
k and high k which are removed by the reference spectrum have a known dependence on
the initial guess.

these different initial guesses in that region of k space. As discussed in section D.3,
the dependence of deconvolved spectrum at the small and large k ends is well
understood and get largely removed when divided by the reference spectrum. In
a previous work we have checked a large variety of initial guesses and concluded
the RL method applied to our problem of recovering the primordial spectrum from
the CMB anisotropy is independent of the initial guess. [146].

D.2 The Improved Richardson Lucy method

In this section we show the advantage of the improved Richardson Lucy algorithm
given by eqn (3.14) over the standard method given by eqn (3.13). We compare the
raw power spectrum P?(k) and the corresponding angular spectrum Cfi) obtained
from the WMAP binned angular power spectrum, C ? using RL and IRL algorithm
as the iterations progress. In figure D.2, the left panel shows the x? of C;i) w.rtC F . As
expected, the RL method leads to a lower (better) x? than the IRL method. However,
we are interested in a recovering a P(k) which give C; that has better likelihood with
respect to WMAP data. The right panel of figure D.2 plots the WMAP likelihood
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Figure D.2: The left panel plots the variation of x? of Cl(i) obtained after ith iteration (w.r.t
the binned WMAP spectrum, CP ) with increasing iterations for the Richardson-Lucy (RL)
method and improved version (IRL) we present in this work. The panel on the right, plots

the variation of )(iff = —2In L of the Cl(i) given by the WMAP likelihood, £. In contrast to
RL, in the IRL method x2; converges with iteration and to a significantly lower value.

given in terms of ngf = -21In L. This figure justifies the ‘improved” label to the IRL
method. For the RL case, the value of ngf is seen to bounce and increase at large
iterations. (This bounce is more pronounced and happens at a lower iteration for
certain cosmological model, e.g., one with high optical depth to reionization, 7.)
This is a reflection of the problem of the RL method fitting the noise in the data. In
contrast, in the IRL case the ngf converges with iterations and to significantly better
(lower) value that for the RL case.

D.3 Reference spectrum

In this subsection, we show that the reference spectrum used to remove numerical
artifacts from the raw power spectrum recovered by the deconvolution is analyti-
cally well understood. The reference spectrum reflects the sensitivity of the kernel
IA(L k)? to the k space. (Here, the over-bar in |A(], k)| alludes to the binned version
related to G(I, k) following eqn (3.7)). In the regions of k space where the kernel
probes P(k) weakly, there is scope for changing the power spectrum without chang-
ing the C;. In such degenerate regions, the Richardson Lucy method (both RL and
IRL) pushes the power spectrum up to the extent possible changing the C;.

(a)
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Figure D.3: The figure shows the Py, (k) and Pre¢(k) obtained from the WMAP binned data
CP for an initial guess P)(k) o 1/k?. The dashed straight line labeled corresponds to the

analytical power law form (k™*P©(k) = k~°) that matches the identical fall in Py, (k) and
Prei(k) atlow k. The dashed line matching the rise in Praw (k) and Pre(k) at large k corresponds
to the analytical power law form (k”2P©O (k) = k>2) expected from the roughly k=72 tail of
the kernels for the last few multipole bins.

Figure D.3 shows that the strong features at the low k and high k are well fitted
by analytically obtained power law forms. At the low wavenumbers (k/k, < 1),
the CMB anisotropy is dominated by the Sachs-Wolfe effect. The sensitivity of the
CMB anisotropy to the power at very small wavenumbers is dominated by the
lowest multipole as |A(Lk)|* o« k%. This is the well known Grishchuk-Zeldovich
effect [203]. When the quadrupole is included, |A(], k)? o k* is the strongest probe
of the P(k) at low wavenumbers. Hence, there is no change to C; (here, chiefly the
quadrupole) caused from this region of k space from the initial guess P (k) onward
if P(k) oc k=**¢ PO)(k) for € > 0. In our work we have used an initial guess of the form
PO(k) o 1/k*. Hence, the slope of P(k) at low k is driven to the ~ k¢ form shown in
figure D.3.

At the large k end, the |A([, k)|? is governed by the power slope of the tail in the
sensitivity of the highest few multipole bins shown plotted in figure D.3. The slope
of these tails are well fitted by a power law form k=72. Using the same argument, it
is clear that there will be no change to the C; caused from this region of k space from
the initial guess onward if P(k) oc k72~€ PO(k). For the initial guess PO (k) o« 1/k?,
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the rise at high k end is driven to a ~ k>2 form.

The division of reference spectrum used here is a simple numerical recipe for
estimating and removing the artifacts of the deconvolution method for a given
kernel. We have shown that the gross features of the P,.f(k) can be understood
analytically. The finer features of P(k) are likely linked to the details of the
structure of |A(l, k)|> and will be explored in future work.
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Appendix E

Least squares method

In parametric methods of reconstruction usually we use the method of least
squares to determine the unknown parameters of a given model. The principle of
the least square method can be derived from the principle of maximum likelihood,
if the measurements follow a Gaussian distribution. We use this method to find the
parameters of a given model when we fit the functional form of the model to the
given data.

For a set of data with N data points we define 2 as

K2 = Z[yl - f(J'Clr Am) 12 (B.1)
i=1 9
where y; is the measured value of the observed quantity for the ith data point at
x; and o; is its measured uncertainty. f(x;;a,,) is the predicted theoretical value of
the quantity at x; by using the given set of a,, parameters. In this method we try to
minimize x? by changing the values of a,, parameters.
If the derivatives of f with respect to a,, are known then we can find the solution
(the value of the parameters) by

dx? B
E =0 (E.2)
which results in L df )
Xi; Am _
Y gy = fan)] = 0 (E3)

i Vi
If there are more than one unknown parameter in the a,, set, then we will have n

simultaneous equations where 7 is the number of unknown parameters in set of ,,.
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We should note that in many cases we solve these equations numerically. In fact we
vary the values of a,, parameters to get the minimum x2. In many cases by using
the available computational facilities it is much more trivial and faster to minimize
the x> numerically rather than find the a,, parameters by analytically solving the
above equations.

If y measurement errors are correlated, then the x? will become
=G-Hviy -5 (E.4)

where V is the covariance matrix of the y; measurements and i and f are transpose
of y and f [34].

Goodness of fit

Now what is very important here is to make judgment and decision about the
goodness of fit. In fact we need to check that the chosen model or the assumed
functional form really does describe the observed data. Making a right decision is
very crucial to test a theoretical model against observations. There is a mathematical
basis on which we can relate the derived minimum x2, number of data points,
number of the free unknown parameters of the model and the goodness of fit. The
probability distribution for x? is given by

-N/2
T(N/2)

P(x*;N) = XN exp(-x*/2) (E.5)
where N is the number of data points minus the number of free unknown parameters
of the assumed functional form. So to make decision about the goodness of fit for a
functional form to a set of data we can calculate the relevant y? probability function

N) = P(x*; N)dx>. (E.6)
)(2

2,
Prob(x;,;,;
It simply means that for N degree of freedom (N=number of data points—number
of free parameters of the assumed theoretical model) if we derive the minimum 2 to
be )(i1 ., then Prob()(fnin ; N) would be the probability of getting the value of x? greater
2 2 .
than or equal x° . . If Prob(x; . ; N) be very small, then we can say that we have a
bad fit to the data or the derived x? is very much improbable for a correct assumed
theoretical model. If Prob(x> .

mm;N) be considerable large, we can conclude with a

high confidence that we have a good fit to the data and the assumed theoretical
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model explain the data satisfactorily.
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