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FOREWORD

This volume contains material based on lectures given
during the second part of the Colorado Summer Institute for
Theoretical Physics held during July and August, 1971.

The portion of the Institute represented here is de-
voted to mathematical physics, with topics ranging over
statistical mechanics, dissipative systems, composite
particles, algebraic methods and field theory.

Volumes XIV represent the last of the current series
of the Boulder Lectures in Theoretical Physics since neces-
sary support is no longer available. It is hoped that the
Institutes have served a useful purpose by stimulating
young scientists as well as old to work in some of the
fascinating fields which have been covered. The Institutes
have certainly played an important role in physics at the
University of Colorado and at this time I wish to thank all
who have participated over the years.

The Institute was sponsored by the National Science
Foundation.

I wish to thank the lecturers and the participants for
their effort for a lively Institute and to the secretary,
Mrs. Charlotte Walker for her invaluable contribution to
the organization of the Institute. I would also like to
extend my appreciation to Mrs. Walker for the typing of
the manuscript.

Boulder, August 1973

Wesley E. Brittin
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STATISTICAL MECHANICS OF THE XY~MODEL

Eytan Barouch
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Introduction

Spin systems play a major role within the general
framework of statistical mechanics and many body theory,
since they provide us with explicit examples for which a
great deal of exact results are known,

A spin system is specified by a Hamiltonian whose
components are spin-spin interactions, and spin-external
field interactions., Because of mathematical limitations
we restrict ourselves to nearest-neighbor interactions
only,

A famous example of a spin system is the Ising model
(Ising 1925) introduced by Ising who computed its parti-
tion function in one dimension, and Onsager (1944) compu-
ted the partition function for the two dimensional lat-
tice with no magnetic field, The Hamiltonian that Onsager
studied is given by

= 1. \sX X - X 4
Hy = ~31)0% nOadi,m J5)0 e (1,1)

Onsager found an explicit phase transition as a logarith-
mic singularity of the specific heat at a critical temper=-
ature T, # 0, and Yang (1952) computed the spontaneous mag-
netization by a perturbation theory for T < T, with the
famous lT-TCI“8 result,

The Ising model represents a ''classical' system,
since every term in (1.1) commutes with each other. An

1



2 EYTAN BAROUCH

obvious generalization of (1.1) to quantum systems with
nearest neighbor interactions is the generalized Heisen-
berg model (in one dimension)

N

X X vy Z 7
= § F
nyz L {Aojoj 1 + Bojcj 1 + Cojoj 1} . (1.2)

The complexity of Hyy, vs. Hy is very clear since
even the ground state of (1.2) is highly nontrivial.
Particular cases of (1.2) were studied for a long time.
Bethe (1931) found the ground state eigenvector when
A =B = C, and Hulthen found the ground state eigenvalue.
Lieb,Schultz and Mattis (1961) and Katsura (1962) studied
the XY-model for which C = 0, Yang and Yang (1966) stu-
died the cases A = B,

The general case (1.2) was not understood until
very recently. Baxter (1971) computed exactly the ground
state of (1.2) and his complicated results contain all
the other cases as particular limiting cases!

Two~dimensional 'classical'' lattices can be studied
by constructing a "transfer matrix" introduced by Kramers
and Wannier (1941), and the log of its largest eigenvalue
gives the free energy per site, in the thermodynamic
limit. Commutation relations of V with Hamiltonians of
quantum lattices suggest that the mathematical tools de-
veloped for one are very handy for the other.

McCoy and Wu (1967) demonstrated that a linear Hamil-
tonian commutes with V of the general six vertex ferro-
electrics, Sutherland (1970) demonstrated that the trans-
fer matrix of the eight vertex ferroelectrics commutes
with (1.2) for a special choice of A, B, C. Baxter de-
rived the ground state energy of (1.2) using the brilliant
method he developed for the 8-vertex problem.

Another example is the relation of the XY-model
with a transverse field to the Ising model. Suzuki (1971)
shows that the XY-Hamiltonian (Lieb, Schultz and Mattis
1961, Katsura 1962) given by
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TS X X LoselyL g Sl ez
H Z{(l—f-y)ojcj+1 + (1 Y)0j0j+1 hoj} (1.3)
J

commutes with the transfer matrix of the Ising model with
the identification

Ki = Ji/kT = BJi

-2K,

b

1

tanh K¥ = e cosh 2K = Y™, and tanh 2K2=(1-Y2fﬁ7h

(1.4)

We devote these lectures to the physical properties
of (1.3), and because of the commutation relations of Su-
zuki it is natural to expect an extensive use of the
mathematics developed for the Ising model.

There are four major tépics we are going to discuss,
(a) Ground state energy and thermodynamics of (1.3).

It is well known that a one-dimensional system with
finite nearest neighbor interactions does not exhibit a
phase transition at any finite temperature. However, it
is not at all clear, that the ground state energy, and the
thermodynamic functions at T = Q0 are analytic functions
of the coupling constants. We wish to study the effect
of symmetry or lack of symmetry on the analytical proper=~
ties of the macroscopic averages. Some symmetry breaking
points are apparent (v=0), some are not (h=1, h®+y®=1),

The symmetry properties of (1.3) manifest themselves
in the behavior of the correlation functions py,. We
find a long range order in the x direction of the ground
state, namely

508 7 [v?(1-h)21 h <1

lim p = 3 (1.5)
Row XX



4 EYTAN BAROUCH

(b) Dynamical properties of many particle systems
very near thermal equilibrium are most commonly studied
in terms of the time delayed correlations

Pog(Rot) = <Sg(0)Sp(t)> . (1.6)

Neimeijer (1967) was able to compute p,,(R,t)
exactly,and found that all contributions come from two-
particle excitations, with t-1 approach to the infinite
time limit, instead of the commonly believed exponential
approach, This result led Mazur (1969) to develop his
criteria for nonergodicity of a system, and he demonstra-
ted that the system is not ergodic. Later on, McCoy,
Barouch and Abraham (1971) and Johnson and McCoy (1971)
studied the rest of the puv(R,t), and found distinction
between h > 1 or h <1, For h > 1, contributions to
pxx (R,t) come from 1,2,3,... excitations, where for
h < 1, we have only even number of excitations contribu-
ting to the asymptotic series. The only other exact re-
sult known is pxz(R,t), computed by Johnson and McCoy.

(¢) In 1968, McCoy and Wu presented a detailed
analysis of the Ising model with random exchange energies,
They found that the logarithmic singularity of the speci=~
fic heat rounds off, infinitely differentiable but non-
analytic. Smith (1970) introduced these ideas to the
isotropic (y=0) XY model, and was able to study the in-
fluence of these random impurities exactly, using the
pioneering work of Dyson (1953) on a random chain of har-
monic oscillators., He finds that the singularities of
the ground state functions become infinitely differentiable.

(d) Our last topic is non-equilibrium phenomenae,
introduced to the XY-model by Niemeijer (1967). Let h
in (1.3) be given by

a t<0
W(E) = (1.6)

h, (t) t >0
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The system is assumed in thermal equilibrium, and at a
specified time t = 0 we turn on a time dependent field.
The natural question is whether the thermodynamic func-
tions will approach equilibrium, and what is their asymp-
totic behavior for large t. Niemeijer (1967) and Barouch,
M:zCoy and Dresden (1970) studied the z-direction magneti-
zation for a step function h(t) namely h, (t) = b. It was
found that the infinite time limit is a non-equilibrium
limit, If b = 0, the "zero field" magnetization does not
vanish, Furthermore, we find a division into regions in
the long time behavior of m,(t). If h > 1-v?, the long
time behavior of m,(t) is 0(t™*?) with two oscillating
frequencies, independent of v. If h < 1-v®, m,(t) is
0(t™*'® with one frequency dependent on y, On the bound-
ary, m,(t) is O(t™%*),

Our approach is exact solution of the Liouville
equation for the density matrix p(t)

i ft— o(t) = [H(E), o(t) 1. (1.7)

We reduce (1.7) to a second order differential equa-
tion of the form

V() + [A% + () Iv(t) = 0 (1.8)

and express p(t) in terms of the solution of (1.8). Do-
ing so, we find that no matter how slowly h(t) varies
with time, lim my(t) exists, but this is not an equili-
brium 1limitft™® Another expression of the nonergodicity

of the system is total destruction of the long range order
of Pyx.

It was felt, however, that a local spin would ther-
malize, and it was found (Abraham, Barouch, Gallavotti,
and Martin-L&f, 1970) that an internal spin thermalizes
like t'% where a boundary spin (Tjon 1970) thermalizes
like t~~,
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Ground State and Thermodynamics
The XY Hamiltonian was defined last time by
- XoX ey e 7
H z [(1+Y)Sj3j+l + (1 «()sjsj_l_1 th] 2.1
J
In order for H to be uniquely defined we choose cy-
clic boundary condition, namely Sﬁ+1 = 8% where o = x,y,2z,

and N is the number of spins in the chain,

We diagonalize H in four steps, following LSM and
Katsura.

(i) Express S, S7, S” in terms of creation and de-
struction operators, J

+ 1 + z +
S* = ¥(b, + b, sY == (b, - b, s =b.b. - % (2.2
i 5 ( 5 J), bxi ( i J), j 3P ¥. (2.2)

The operators bj satisfy a mixed set of commutation rela-
tions

t T B : .
[bi,bj] = [bi,bj] = [bi,bj] =0 i#3 (2.3)

and the anticommutation relations

bbl1 =1 b2 = @H? -0, 2.4)

(ii) Jordan-Wigner transformation. We express the
operators bj,bg in terms of Fermi operators. Let

-1
p e
c, = exp[mi .Za bjijbL
7 1 (2.5)

i il = ¥ +
c, = b, exp[-ni -Li bjbj]
j=
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It is an easy matter to verify the identities

t o R
bjbj+1 = cjcj+l’ bjbj+1 = cjcj+1 (2.6)
T . 1
bNb1 = -—cpc1 exp(im Z cij)
3
g A A0 A t
bybi = =cyea exp(im Z cjcj)° 2.7
J

Inserting (2.6), (2.7), and (2.2) into (2.1), we obtain
1 t e
. -
H s {jzi [cjcj_‘_.1 + cj+1cj + Y(cjcj+1+cj+lcj)]
o t t T
- 2h jz& (cjcj-%) = [eger +eiey + vleyertercy) IX

v _h
x[1 + exp(im E.Cjcj)]} o (2.8)

The last term in (2.8) is the on}y term that is not
quadratic in the Fermi operators C4sC1s and it comes from
the imposed cyclic boundary conditloné.

LSM observed that in most of the thermodynamics
averages, the last term can be dropped and called the
"modified boundary condition' c-cyclic. This is indeed
correct in the thermodynamic limit N - «  and we will
adopt the c-cyclic condition for most of the discussions.
However, for clarity and completeness we outline here the
treatment of (2.8) (Katsura 1962). This treatment is need-
ed to demonstrate the difficulties that rise in computing
the transverse time~delayed correlations,
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Let
N

= 3[1 + exp(in Zl AR (2.9)
b T30

P
+

The operator P+(P ) is the projection operator for states
with an even (odd5 number of c¢; excitations. The Hamilton-
ian (2.8) then decomposes into

H=HP +HP (2.10)

where we assume N to be even, and Hi are given by

T
=& {Zl ! 50t J+1J+Y(C cynateyacy) -
-2 ) (cfc %) =+ [c c, + cfc + (cfcf+c c.) 13.(2.11)
jz‘l jj Nl 1N YNI 1N . .

The decomposition (2.10) is expected, since H commutes
with the parity operator P, - P_. Therefore, when acting
on a state with even (odd) number of c; excitations, H
may be replaced by H4(H.). Therefore, the c-cyclic condi-
tion means replacing H by H, which is permitted for calcu-
lation of expectation values of even operators, like &'
S¥s¥. g, but not for odd operators like S¥ gsgs and J so
fgr . Those who are interested in utmogt rigour are re-
ferred to Katsura's paper (1962) who gave a very thorough
treatment of this recondite point.

Using the c-cyclic condition we write H as (with the

understanding that N is very large)

t t 0
H=% Zi [(egey4q * veyey +1) - Zheje ] + BN, (2.12)
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(iii) Fourier decomposition

Let
N/2
=% : f (2.13)
. =N exp(ijo )a
J p=- /2 P P
N/2
=X
cj =N 2 z exp(-ijcpp)ap mp = 2mp/N
==N/2

By direct substitution of (2.31) into (2.12) we obtain

N/2
H = 21 H, (2.14)
p=
where
Hp = (cos w -h) (a ap+~aT a_ ) - i y sin wp(apafp+apa p)+ h
(2.15)
Since one obtains
H,H]1=0 2.1
E o q] 5 (2.16)

all Hp can be diagonalized simultaneously.

(iv) Bogoliubov=~Valatin transformation.

To diagonalize Hy-h, we change the phase of a5, a-p
by elm 4, and write 1 near combinations of the form
ein/4a =cos 6 n_ -+ sin 6 nf
P pp P -P
(2.17)
elﬂ/aa =cos 6 M =~ sin 6 n?
-pP P -p PP
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where
Y sin %p =
tan 29p oo .= 0 8 2 (2.18)
P
and the transformation is cannonical since 6, = -6_

P

By direct substitution of (2.17) and (2.18) into (2 14)
we obtain

T
H= ; Meg) (nin, = %) + 3h (2.19)

where n;np is a Fermi number operator, and

AMo) = [¥® sin®e + (cos cp-h)al% (2.20)

We finally obtain the ground state per particle to be

B = dn - gy ), Moy (2.21)

which in the thermodynamic limit N - « becomes

L oanp” gl
E =32h - T I de[v? sin®¢ + (cos @-h)?1%, (2.22)
™o

The ground state (2.22) is definitely not an analytic

function of h, vy for all h, y. For instance let h =

Then

m/2
E =~ % Jo do [1 - (1-v®) sin2¢]% = - %8[(1‘Y2)%]

(2.23)

where €(k) is the complete elliptic integral of the second

kind

(GR 8.112), with a singularity proportional to y®logy

for v ~ 0, (See appendix).
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The function A(y) is the one particle excitation,
and it has a gap that disappears at h = 1, So one might
expect a symmetry breaking point at this value., This
point will be further discussed later on.

We now turn to discuss the thermodynamics of the
system. Since H in (2.19) is expressed in terms of non-
interacting Fermions with 'kinetic energy’ A(y), the free
energy per site is then given by

m
BE(h,v,8) = -+ | 1n({2 cosh [38A(x)} do (2.24)
0

The rest of the thermodynamics is then straight-
forward.
The magnetization in the z-direction is given by
1 g -1
m_ =2= [ do(h - cos v) tanh [38A(s) AT (2.25)
0

the internal energy U is given by

CRpE
U=-8" 3= [ A tanh (3M®)] de  (2.26)
0

the specific heat ¢

i
o = '2-% = (- -zk-; jo Ae) tanh [%8A(0)] do +

T
+82 5 [ M@ 1+ tank®[hen(@) lde]  (2.27)
0

and the susceptibility X, is given by

Z 3h (2.28)
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It is very clear that there is no phase transition
at any finite temperature, since my(h) = 0 when h = 0,

At the ground state [T=0 or g==] we have a different
situation. The interesting functions are my,(h), ¥,(h),
and their singular behavior was studied by Niemeijer.

For vy = 0 the magnetization behavesin a non-analytic
way, namely h>1

%
m, (h) = (2.29)
3 - i arc cosh 0 <h =<1
For v # 0, Niemeijer evaluated the magnetization numeri-

cally, and found a continuous non-analytic behavior of
my(h) at h = 1,

D —
L —>

R R N z[ "~
2 e
//,
‘4
1 |
he he
h—» h —»
Fig.la. M%) as function Fig.lb, Magnetization of the
of h for T = 0 (solid line) ground state as function
and T > 0 (dashed line). of h for v = 0.

(Th, Niemeijer,Physica 36, 377, 1967)

The ground state susceptibility X, exhibits a loga-
rithmic singularity near h = 1. To see that rewrite 2,28
for g = =
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T

L. DA (h - cos ®) do

Xz(h) " dh 2nm j [(h-cos®)® + v® sin®o]
0

m
J do
™ J T (h-cos®)?® + y?sin®gl/?

(h-cos _©)? de -
0 [(h-cos w)? + y®’sin®¢)

5]

3

ul 2 2
Y.gin @ 5 do (2.30)
0 [(h-cos )% + y?’sin®o]

m 8 i
To evaluate ¥x,(h) write J = J + I where 6§ is
0 0 )

small but finite. The susceptibility is given by

x, (1) = 1,(8) + I5(6) (2.31)

where I;(8) is a smooth function of h so we need to study
only I,, for ¢ ~ 6, namely

8
Y?0® dow

2 Y2
0 [Y'¢® + (h-1)2 + ¢?(h-1)] (2.32)

ke
L 2m J

1, (8,h, V) ~%; ¥ op T -eret + pa-1)* T
+ log [6 + (8% + (h-1)p)?] -} log [p(a-1?1} (2.33)
and p is given by p = [y + (h-l)zj-l.

The dominant behavior near h = 1 comes from the last
term of (2.33), so x,(h,y) can be written as

~ 33
X, (0,1~ = 3= V[¥ + 0-1)°]  loglh-1| + £(h)  (2.34)
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where f(h) is bounded and continous in h. Graphically,
xz(h) behaves as

O ki o e e o () i e
S| e s &S

< c

h —» h —»
Fig. 2a. ¥?(h) as function Fig.2b. Susceptibility of
of h for T = 0. che ground state for v =0

as function of h,
(Th, Niemeijer,Physica 36, 377, 1967)
Appendix

Using BMP Vol. 1, (318), and Vol. 2 (110, form 12)
we obtain [0 <k =1 - y?]

e(k) = ¥ oF; (-%,%,1,k) =
T(n+3)T (3+n)
_ -k : ) . o
- 2m HZO n! (nt+1)! (h -log(l~k) I[1-k]
£ T(n+2) T (54n)
i DT E W ) -
S 2 =0 n! (n+l)! th -21g v1y

where hn is given by

h = y(otl) + ¥(0+2) - ¥ty - V(a+d)

and the leading singularity for vy ~ 0 is proportional to
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v? lg v.
R
m_(h, v0) =2~ | _h-cose dp=%ifh =2l
9 |h - cos ol
0 <h=<1:
arcos (h) ™
il 1
m_(h, y=0) = = do + 5— dep
& s JO 2y arcos (h)

= %F arcos(h) + %F {m=- arcos (h) ]

It
[N

]
3 =

arcos(h)

Spin Correlation functions

Spin correlation functions are very important in
lattice statistics, since they contain information about
a possible long range order.

The equilibrium, equal time correlation functions
are defined by

pvv(&,m) = <SXS¥> v = Xx,y,2 (3.1)

LSM write these correlation functions in terms of
the operators bj’ bj as

t t

= - L -

o, (tm) = <(bjb, = B (b - B>

o (4,m) = 3<(b) +b,) (b +b)> (3.2)

xx ? 1 4 m m :
_ t o

Pyy(tm) = B<(by = b)) (b = b)>

Define new operators
— A
Ai =c; + s Bi =c; -y (3.3)
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and observe the identity

P

itc,c,

e ' =AB, =-BA, (3.4)
a1l TS 11

We wish to express p___ in terms of the cT, .
v J )

pxx(L,m) = %<(c1 - CL) [exp(injii c;cj)](c; + cm)>

= 4<(BA, B, g A 1B 1A (3.5a)
pry(tom) = XCD™ T  AB A LB A B> (3.5b)
b, (tm) = %<4,B.A B > (3.5¢)

Fubini and Caianello (1952) show by the use of
Wick's theorem (1950) that expectation values of the type
(3.5) are given in terms of Pfaffians. In particular we
have

Py (m=2) =
WEIS, 111 Sy g Spmer Ceeen v 0 Shg
Sm-2,m-l Gm-2,L+1 L g Gm-2,m
Cu-1, 441 Bu=1, 442 *"Cu-1,m
(3.6)

U1 14 o Uty o

Qm-l,m
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where
SL,m = <B&Bm> = S(m-1)
3.7
QL,m = <ALAm> G i)
G, 5 G(m-4) = <B{Am> (3.8)

An important simplification occurs in (3.6) for the equi-
librium case, namely Sy . = Qg o = 8¢ . Then the Pfaf-
fian is equal to the determinant formed from its non-zero
entries G(m-4).

The three spin-spin correlation functions are given
in terms of G(R) as

CE LD G
G0 G_1 - G_R+1 (3.9a)
Peg = % :
Cpeg GR-Z ° e
¢ %o 64 - C.r+2 (3.9b)
Gy 6y C.R+3
pyy=%
Cg . %1 &
P, = m: - % GG _p | (3.9¢)

It is clear that p,, is the easiest to deal with,
since it involves only simple products of Gg. However,
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and p are much harder to evaluate, since one deals
w1§h 1arg¥ Toeplitz determinants [Barouch and McCoy,
19711,

To evaluate Gg use (2.13) and the translation in-
variance to obtain

= L o + ot
Cr = 7 5 ; ; <exp (7[5 (p+q) +Rq]apaq
e

2y s (o s T S t
+exp(GUli(-pt) +Rq a2, - exp(5~li(p-a) - R)a e

- expI(5 (-p-a) - RqDa a > -

Performing the sum over j and taking N -~ = yield

1
[2]
]
[}
1]

R R
1" tanh[%BA ]

= T h JO de o) [-cosgR (cos ¢-a)+singRsingl=
m q

=) &= %; I (%B)éle T[%BA () 1(~cosgp +a + iy sin o) do
-m

(i kily)
with T(x) = aERX

Asymptotic results of p,, for large R, at the ground
state can be now readily obtained as:

@ v=0
sinfR arccosh !
m; (31n R aﬁ; )2 h <1
pzz(R) = (3.12a)
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() v#0, h=1

o, (B n2 - KR 201+ (R 2 + 0] (3.12b)
(¢) h® =1-v* v +#0
p,, (R) = m: (3.12¢)

(@ v#0 0s<h®<l1-y°

: 2iy 1/3
o (R) ~m? - azRR-zn-lRe{elw(R-H') ['CL:L':%W] }
ZZ z (l_age )

. 2 -2i¢
x Refel¥(®-1) [(1""—e2ﬂ—)-]1/a 3 (3.12d)
(1-e"7 1)

where cos | = h(l-Yg)_% and o = ﬁ <1

() 1-y2<h? <1

o (R) ~m -3 x;ZR R°2 7l + oY) (3.12¢)
(£) h>1
0, (B ~ % - o AER g2 n’l{l + o(R'l)} (3.12£)

and Az is given by

‘e = {h - [h® - (1-v?) I¥P}A1-v).

This correlation function p,, reveals more structure
than expected intuitively. We see the boundary Y°+ h® = 1
in which p,, is R independent. We also see that the ap-
proach to the Limit R - » is exponential everywhere except
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on the boundaries, where it is algebraic. In particular,
one would like to interpret the h > 1 region as an "easy
axis" region. However, in order to be able to say that,
we need information about vanishing of possible long
range orders at h = 1.

It is interesting to note that for 0 < h® <1 - ¥
the approach of p,, to its limit is oscillatory. This is
also the region for which the equivalence to the Ising
model does not hold. Suzuki (1971) calls it the ''quantum
region"”, and the outside of the unit circle h® + y? =1
the ''classical region', with this circle acting like a
natural boundary.

The asymptotic expansions for finite temperature can
be obtained in the same fashion, and are given in Barouch
and McCoy (1971), eq. (6.1)-(6.11).

We turn our attention to the transverse correlations
pyy(R), pxx(R) at the ground state B = ®, We make an ex-
tensive use of Sz&go's theorem about the asymptotic pro-
perties of Toeplitz determinants, and refer the reader to
the paper by Hartwig and Fisher (1969) for a detailed ex-
position of this topic, motivated by the analysis present-
ed by T. T, Wu (1966).

Sz¥c0's theorem: Let Cg be the R X R Toeplitz
determinant

¢ e el e
B Sy C_r+2

cp =| : : ; (3.13)
Coel s v sle 6,

where <, is given by

™ ; .
€, = g; J e 11® c(e1q5 do (3.14)
-
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1f

() [l wea

n=-©

©

)y ) Ialle | <=

==

(iii) c(e1¢5 # 0 on the unit circle

(iv) 1n c(elqb is a periodic function of o
with a period 2m (winding index zero), Then the asymptotic
value of CR is given by

ol koR °°‘
CR : e exp( ni nknk-n) (3.15)
where kn are given by

ln c(eiq5 = kneimp (3.16)

n=s=o

Conditions (iii) and (iv) are very delicate, and
have to be tested rigorously.

These conditions are obeyed for pyy when h < 1. Con-
dition (iv) is violated for and pyy for h > 1. This
is not too serious, since T.T. Wu designed a method that
bypasses this difficulty. However, at h = 1 condition
(iii) is violated, and there we have only partial answers,

Define GR = Cr+1. Then pxx is given by (3.13) with
T =0 as

L . . %
c = %; J e R [ (1-l11e1¢)(1-xglel¢5 J de

n - - — = -
m Gl g ) a5
@.17)
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with
L
Maye = T [H° = G- 7)) I90/(1=v) (3:18)
1 It is instructive to study the motion of xl,xz,xil,
Az~ in the complex el® plane for fixed v
hie/9=0 A =i e’ b
% Sso Lo =,L1Z
\\ ety i,
UNH’URij///’—h\\\\\\ \L{f#/J:JT?;E
it /0> /o=
\x;. Jers
’
/
4
//
" S 7 B
hpe /=0 Ap=-i W-»—
(E.Barouch & B. McCoy) Fig, 3

(Phys. Rev. A3, 786, 1971)

Let us tabulate the values of Ind c(elw):

Case Function Index
(a) Prsc b1 <1 0
(b) P s h>1 +1

c h==1 -1
(c) 2]
d p h<1 -2
(d) 3
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(a) Py for h <1

We can apply Sz&go's theorem directly

1 - n et - g te ™) nEee

-1 i -1 i +w ;
. L= M eHa - xTe® ] 0 ket ™ (3.19)

ko=0
k= GDT BN + 3T (3.20)
k_ = =CDT 505 +3h

So

N Y LaH™ + D™ + 20000 7Y
= n

% logl(1-A%) (1-332) (-x1ah21 (3.21)

Substitution of (3.21) in (3.15) yields for h <1

Lim € = [(1-30) (1-22) (- 1azhy= 1% -
R—.oa

= 2(1+y) "Ly (1-n?) 1F (3.22)

and the first term in the asymptotic evaluation of pxyx(R)
is given by

o ® 2 D20 Tl v 15 (3.23)
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At the boundary value h® = 1-y® we are able to cal-
culate p,, exactly, and find that pgy is R independent

b = XD 2v/(+y)

By the same direct method we find that for vy = 0 h 21
Pxx = pyy = 0.
The case h = 1 y # 0 is closely related to Wu's

T = TC in the Ising model. The result is

113 _ A

72 a3 1140®2) 3
(3.24)

where A = 1.282 427 130 is the Glaisher's constant,

o # ECDR2y/ At IR 2

The case vy = 0 h < 1 has both A on the unit circle,
We are unable to evaluate pxyx on this line. The only re-
sult available is vy = h = 0 due to McCoy.
/3 1fe  _ -1 =
27 478 kDR w7

= (3.25)

R
= & =7l e
P P %(-1)
(b) Res for h > 1
Consider the transpose of (3.13), then the index of

the resultiﬁg generating function is -1, We may write

P ¥ 51T By

by by b_r

b, b_, B v (3.26)
B =
R

b2 B g B
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with
b oL " im0 - eTTNa - aeTt % 4y
B A g e = g ot PG S ety
In order to evaluate we follow Wu almost word for

word. Consider the determinant Dp,y defined by

b,
]
DR+1 = : BR 3.27)
bp-1 bpog +++ b
Then
B, = (=1 D (3.28)
R R+ TR .

Dy, is a "good" Toeplitz matrix, whose limit as R = « is
ggven by

lim (-1)R LA [(1-x%)(1-x§2)(1-x§1x3)21%
R

and Xp is the corner element of the inverse of Dp,., and
is determined by a finite Wienner-Hopf sum equation. Let
d(€) be given by (d(g) has index = 0)

-2 ltehaoeh 1®
(1-371e) (1-1.8)

ace) = { (3.29)

Then d(§) has a unique factorization

ta(e) 17t = pe)Q(e™h (3.30)
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for |6] = 1 such that P(£) and Q(E) are analytic for
|€| < 1 and continuous and nonzero for |§| < 1, Expli-
citly, P(€) and Q(g) are given by

1-x7 e .
P(8) = [I:KZE—}= Qs ] (3.31)

Wu shows that XR is given asymptotically by

L 1 R-1,,.-1 -1
B oy |§|il dg € "P(E ) [Q(&)]

a-rteha-atey 13
J (3.32)

L g g Rl [ -
(1' Az §) (1">\a§ )

2mi ‘g I=1

Performing the tedious asymptotic expansion of (3.32)
we find for large R

ot (DR xR R E D ol Tty e gk

XX

x {1+ 0®R DI (3.33)

(¢) The study of p,, with h > 1 is very similar to pyy
with h > 1, and is discussed in II.

(d) 1In the case of pyy with h < 1 we have a generating
function with index = =2, We add two rows and two col-
umns, and proceed in the same fashion as before, where
XR is replaced by

YR YR+1

Yr-1 R

according to Theorem 4 of Hartwig and Fisher. Details and
results of these considerations are available in II. We
have also computed the next order terms for h < 1, and
found a monotonic approach for h® > 1-y® and oscillatory
approach for h® < 1-v%,
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p for h = 1,
Vo4

Pfeuty (1970) has shown that for v = 1
Pyy = - (4R%-1) pyy. Combining this with (5.31) of Wu we
find for v # 0,1

pyy®) # 2DR v+ 2R Y e 223 oY .

(3.34)
Time delayed correlatioms.
Define the time delayed correlations
= PV u
Py, uRE) = <ST(0) Sy, (£)>. (4.1)

Dynamical properties of many-body systems very near
thermal equilibrium are almost uniquely studied in terms
of time delayed correlations of the type (4.1).

The importance of (4.1) and its relation to experi-
ments (like scattering, NMR, etc.) led theoreticians to
look for a nontrivial model, for which (4.1) can be com-
puted exactly. Niemeijer observed that p,,(R,t) can be
computed exactly for the XY-model we are studying. The
function p,,(R,t) is conceptually simple to obtain since
it is the only one which does not contain S? or Sg.

Later on, we (McCoy, Barouch and Abraham 1971) stu-
died the ground state properties of pyx(R,t) and pyy(R,t),
and Johnson and McCoy (1971) completed the study for
u # v,

(@) »,,(R,t)

We wish to comgu%:_BHszeth = e_th]
I L3 R

Tr[e-BH]

S

0 = ) 4.2)
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In (4.2) we are evolving an even operator, there-
fore, one can use the c-cyclic con?ition. Rewriting H
and S% in terms of the operators 7., m. we have (using
(2.13f, and (2.17)) 30

H = z:Apn;np + const. 4.3)
P
g5 = Y {exp(ij(w -v ) 1[cos 6 nf + sin 8. n_ ]
i N L P q PP p -p
P,q
T
e + sin 06 - 4
[cos qnq sin qn-q]} % (4.4)
and we use

itA d -ith 1= 3 5
expli a1y exp[ Rl e s (4.5)

By substitution of (4.5), (4.4), (4.3) in (4.2) one ob-

tains Neimeijer's result for T = 0 as

m
pzz(R,t) = mz + [%F J exp[i(Roy + tA(w))]dw]z
-7

-[%; I exp{i(Ro + tA(w)) ] ngg_@;hldm]B

T
. A)

il i B
-4 j_nexp[i(mp a1 T Ge

It is interesting to note that as t - = the approach
to the limit is ~ t~1 and not exponential as several ap-
proximation schemes predict. The usefulness of (4.6) as
an exact result manifests itself in Mazur's approach to
ergodic theory (1969) who proved that m, is not an ergodic
variable.

We now turn our attention to the rest of the correla-
tions p,,(R,t), and would like to demonstrate the inappli-
cability of the above method. Consider py,;(R,t) as

_1 -pH v iHt Lu -iHt
pvu(R,t) =5 trle So e Ch ] (4.7)
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-BH, . a o .
where Z = trle B ] is the partition function, and con-~
sider an expansion in terms of eigenvectors of H, namely

-1 = it(E -E
QVU(R,t) =Z m}ge PEn <Em|SX|En> et ( m n) <EnlS;‘Em>
b4

(4.8)

Let u = x, v = x, Since s¥ is a product of odd num-
ber of Fermi operators, the only non-zero matrix elements
are between eigenstates of ut and H™ defined by (2.11).
One might add that the difficulty in obtaining these ma-
trix elements is similar to Yang's (1952) study of the
spontaneous magnetization in the Ising model. We bypass
this difficulty by considering 4-spin correlations
Cxx(R,t) defined by

c._(N,R,t) = <s* (¢) s¥ (t) s* (0)> 4.9y
XX 1+g 1-RHN 1-R+%

where we keep the number of sites large but finite. Cyy
may be evaluated in terms of matrix elements of even
operators only, and by the use of the cluster property we
have

: — 2
é:ﬁ CXX(N’R’C) - [pXX(R’t):] (4-10)

Admittedly this method is a poor man's way of obtain-
ing the results, but this is the only one we know.

To evaluate Cyy(N,R,t) defined by (4.9) we apply
Wick's theorem once more, and obtain a block Toeplitz de-
terminant

0 S T U
X X X
-§x 0 = v,
c;x(N,R, t) = (4.11)

~T U -8

X X X
-U -V g 0

p.4 X X
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0 S T U
X X X
-§X 0 -U, v,
xx = U -S
X X X
-U -v g 0
X X X

where superﬁcrlpt ~ means transpose. Each entry is

( - R) x (— -~ R) matrix whose elements for T = 0 are
given by
SJnn = 50t (4.122)
’ @
e + —in
y = 2 Jotmie i@y (412
’ ®
. AR+ g
(Ux)m e % Z. el(mﬁn &0 e 1Me) e (4.12¢)
? )
_ .1 i(min+R+2)e -iA(p)t (4.124)
(Vx)m,n a N Z e S
©
and G(y) is given by
(o) = o7i® [ LA e””)(l ) 13
® =i -i .
(-7t ) (1-azte 1D

To evaluate (4.11) asymptotically we used the scheme
developed by Cheng and Wu for <S,,Sy N> in the Ising mod-
el. This derivation is long, and we’do not wish to pre-
sent it here. Details are available in paper IV (McCoy
Barouch and Abraham).

The results are

(a) h <1
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w ere super cript means transpose. Each entry is

- R) X (— - R) matrix whose elements for T = 0 are
glven by )
s)_ =g ) e tmmDe g, (4.12a)
’ ®
_1 U -i(mntR)yp -iA(e)t 9
(TX)m n - N e e G(w) (4.12b)
’ ®
) n Ak E ei(m+n+R+1)cp e-iA(w)t (4.12¢)
x'm,n N
®
1 i(mtn+R+2) o -iA(o)t (4.12d)
(Vx)m,n TN ; 5 &

and G(p) is given by i
Gle) = o 19 (1= elw)(l Az 1m)
(1-171e19) (1-1;1e"19)

%
} (4.13)

To evaluate (4.11) asymptotically we used the scheme
developed by Cheng and Wu for <SOOSM N> in the Ising mod-
el. This derivation is long, and we’do not wish to pre-
sent it here. Details are available in paper IV (McCoy
Barouch and Abraham).

The results are
(a) h<1
0 - R =R -
b (RE) £ o (=) {1+ @m" fag dan &8 1% (e

e TEIAFAD) Ty e oy + M(m,8) - 173 (4.16)

where the contours are the unit circles and the 1 contour
is indented outward at € = 7, and

(1-33 ey s le ) aatey (- aate

M(E,n) = e o = = v } (4.15)
a-ainha-ginh aaaite -t
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(b) h>1
b RE) 5 (DX 3-8 a-32 a2 7

RS PSS DS N
§ de gR-1 -1tA(E) (B, BN TG, ) (4.16)
2n1 (1-258) (1-15E871)
and the square root is defined postive at & = -1.

(¢) h=1
We simply don't know what to do.

These results should be compared with pzz(R,t) where
all the contributions are from two particle excitations.
Here, for h > 1 we get contributions from 1,2,3,... exci-~
tations and for h < 1 from 2,4,6,... excitations, since
(4.15) and (4.16) are the first terms in the expansions
of pyu(R,t).

The only other exact result is pxz(R t) for h <1,
derived by Johnson and McCoy (1971) and is given by

o, ®,t) = 5(-D} 2= 1v2 (1-0®) 1Y° (s5-a) (4.17)
Xz 1+
h
vhere L 0 (1-x§12)(1-x;12) %
Sir= pry § dz z [ 1 1 (4.18)
|z {=1 a-3taha-ath
A=W, - W, (4.19)

W, 2n1 s e N ) (- ) 1

s § a2’z 'z-1) 7 M @y Bty it ) 1
(4.20)
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Wz = E%I d dz etht zR[(l-Xglz)(l-xglz)]"%
' ’ i  R- -1 - P AL
X '271;; § dz’(1-22") M (2R L1ty (-azlzy 17

(4.21)

Random Impurities

It is well known that no physical material is 100%
pure., There are several kinds of impurities in solids
like foreign ions, some rare or common isotopes and so
forth. We will address ourselves to the problem of "fro-
zen in" impurities. The impurities, randomly distributed
with some normalized distribution P(z(m)) have the inter-
esting effect that singularities associated with phase
transitions tend to round off, infinitely differentiable,
but non-analytic. This statement is primarily based on
the work of McCoy and Wu (1968) for the Ising model, who
found rounding of the specific heat near T, instead of the
famous log|T-T.| divergence derived by Onsager (1944).
McCoy and Wu's paper partially motivated the work of Smith
which we are about to discuss,

In this lecture we wish to discuss the thermodynamics
of an isotropic XY chain with y = 0, but with random coup-
ling constants, and study their effect on the singularities
of the thermodynamic functions discussed earlier. Smith
introduces the Hamiltonian H

N-1
_ XX V¥ - z
H mzl (I (X8, + 8787 ) hmzl s} (5.1)

where J(m) are independent random variables.

Step (i) and (ii) can be carried over, namely

- t
H = XNh +z cA ¢ (5.2)
m,n
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with
Amm = Am,m+1 - Am+1,m = J(m)
(5.3)
A = 0 otherwise.
mn
‘Since (5.2) is quadradic, the transformation
c =Y £ @u . o =) Xmul (5.4)
m J ol a m o4 a :
a a
yields
_ +
H = Const. + Eaxaua“a (5.5)
with free energy
Bt = 208 - & ) Ia[l + e*’a] (5.6)
a

Define A = B - hl where I is the unit matrix, and an
eigenvector of B with eingenvalue 6 is clearly an eigen-
vector of A with eingenvalue A = &-h, Our task is to find
the distribution of the eigenvalues of B for N - «, and
this was done by Dyson (1953) in his brilliant analysis of
the random chain of harmonic oscillators.

Smith, following Dyson, defines

@

RGO i e e 1n(1+x6) dM (8) (5.7)
N e o

N -0

(the branch of the log is taken in (-m,m), where M(3) is
the limiting distribution function of the eigenvalues of
B, obtained by the relation

lim Re[;%; Q(-x+ie)] = J

aM(s) = 1 - MED) (5.8)
€-0 1/x
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Let D(x) = M'(x) be the density of states, then (5.6) be-

comes
@

pf = 206 - [ In[1 + e PG 1y ax (5.9)

So to determine the thermodynamic behavior of the ran-
dom system one needs to compute Q(x).

Expanding the 12% in (5.7) before taking the limit,

together with tr 20+l - ¢ yield
N o 1 N
QZA ln(1+x6a) Z = x TrB mZ& in{l-o(m,x)} (5.10)

and o(m,x) is a continued fraction with recurrence
relation

%% J% (m

o, %) =TI eail ey ] (5.11)
Setting p(m,y) = -o(m,iy) we have
_ 2 3% (m
p(m,y) = [1+p(m+l,y) ] (51l
and Q(iy) is given by
N
(iy) = lim & ° In[l+p(n,y)] (5.13)
N~o © m=l

In the limit of large N, p(m,y) tends to the limiting
distribution f£(p) obtained by

£(o) = Jdp’ JECo (o - TEIP(2) d (5.14)

where P(z) is the distribution of the random variables
%J®(m). Carrying out the z integration we obtain an inte-
gral equation for £(p)
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£() = | £(p" Ll;f L p [(1;3')] de’ (5.15)
0

and the explicit P(z) we choose is given by

n
n n-1 -nz

B() = GipT Z e (5.16)

Dyson solved (5.15) exactly!!

£ = KR GDTH A ™ exp(- 2 (5.17)

with the normalization Kn given by

K (y?) = J‘o oL (140) ™ exp(- ;—g) dp (5.18)

and Q is found to be
a (y) = (K )77 [ P ha+n ™ 1n(i+e) exp(- 2f) do
n n 0 y

(5.19)

In order to compute M, and hence D, for large n one
needs to analytically continue Q,(iy), compute the discon-
tinuity from the negative real axis, and study the result
asymptotically. Smith has done that and his asymptotic
results are (for large finite n)

- -3 -
D) ~37 ((1-y) 7 + =y +0@} y<1

~ —L = = -6- LD
Dn(y) ey e{2n9(cosh 8-1) + 6~1}exp[-0-2n(sinh6-6)]
y>1

with 6 = arc cosh (y®-1)
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37
Dn(y) ~n'{a;~ a,[n?(y2-1) 1* + 0(la?”P(y?-1) 1°}
ln®/%y*-1) | <1 y ~1
and
21/337/51-«9! 2
ag, | = nrg (1/3) ~ .18 as ~ 253 (5.20)

In the limit n - =, the Poisson distribution becomes
a & function, and the density of states Dw(y) becomes

! -1/a
S=(t=5D <1
D_(y) = {27 7 (5.21)

0 y>1

and is shown in Fig. 4

Once D, (y) is obtained, we can study the thermodynam-
ic functions.

We find that m, tends to smooth up at the
ground state

]
\
|
1
|
[}
|
[}
|
|
[}
|
|
:O[exp*-n(y—Z)}]
1
\

\

~

Fig. 4. Sketeh of density of states D,(y) for n-» and for
n very large, Full curve, n-«=; Broken curve, n very large.
(E.R. Smith, J.Phys. C.: S.S. Phys., Vol. 3, 1419, 1970.)
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To compute the susceptibility for T = 0 we have

Lim 8 j duueh)? (Lae PR y2 7By ()

R—o

X, (h)

D_(h) (5.21)
and Dn(h) is infinitely differentiable.

A recent study is in the process of being completed.
We study the Hamiltonians with random magnetic moments
where the resulting integral equation is too hard to solve
exactly, and we study the smoothing of the transition near
h=1

Non-equilibrium.

Most studies of nonequilibrium phenomenae start from
the Liouville equation for the density matrix p(t)

150 e = (), 0(0) ] (6.1)

It is not at all clear which approximations, if any, are
appropriate in given circumstances. Existence of non-
trivial examples for which (6.1) is exactly solved, en-
ables us to evaluate the effectiveness and legitimacy of
such approximations., In the following lecture we solve
(6.1) exactly for the XY-model, where we allow the magnet-
ic field to depend on time explicitly. Below we follow I
(Barouch, McCoy and Dresden 1970).

Since stages (i), (ii), and (iii) are independent of
the field, we may start from the Hamiltonian

H=)H
P P
el o2 t —— A
= {a (t)[a a+a a ]+ %id [a a +a.a ]+ 2h(t)}
psop PP =P -p p-op%p T TP

(6.2)
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with

ap(t) = 2[cos mp-h(t)], ép = -2y sin wp (6.3)

As we saw before, each H_ in (6.2) commutes with each
other, which means that the sBace upon which H acts, de-
composes into non-interacting subspaces.

g
Let (|0>; a a |0>; a

y f [0>) be the basis for the
pth subspace in Bhepﬂeisenbegg picture. The Hamiltonian
then becomes a matrix H(t)

ﬁ(t)=2 [I®1®...®ﬁp(t)®1...®I] (6.4)
P

where ® is the direct product, I the 4 X 4 unit matrix and

h(t) Lidp 0 0
-%is 2 cos @ _-h(t) 0 0
H (t) = P E
0 0 0
cos wp
0 0 0
cos cpp
(6.5)

Let Up(t) be the time evolution matrix in the pth
subspace given by

. d - i 3 =
don Up(t) Up(t)Hp(t) Up(O) I (6.6)

The Hamiltonian H®(t) is then given by

Hs(t)=2[I®I®...®Hz(t)®...®l] (6.7)
P
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where
s - +
H (t) = U (t)H (£)U (t .
p( ) p( ) p( ) p( ) (6.8)

Because of (6.7) or (6.4), the density matrix at
t = 0 is given by

p(0) = e-sﬁl(o) ® e'Bﬁa(O) ® ... e-BﬁN/Z(O) (6.9)

This particular algebraic form, together with (6.7)
suggests that a solution of (6.1) with boundary condition
(6.9) would have a similar form

p(t) = p(t) ® pa(t) ® ... ® pN/Z(t) (6.10)

This is indeed true, 1if

d - s
il = pp(t) [Hp(t),op(t)],

(6.11)
pp(O) = e-BﬁP(o) = e—BHg(O)

In other words, all we have to do in order to obtain
p(t) is to solve (6.6). The only nontrivial part of (6.6)
is the upper left block, and Uiy, Uiz, Uz1, Uzz can be
easily determined if one of them is known.
Let
h =b + h;(t) with %ig hy(t) =0 (6.12)

and

Uy, (£) = V(t)e 1t ©O8 (6.13)
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The same algebra yields
V(L) + [A%(b) + ¥(t)Iv(t) =0 (6.14)

with b.c. V(0) =1, V'(0) = i[cosep - h(0)], with two in-
dependent solutions W, (t), W;(t), and y(t) is given by

y(t) = h2(t) - 2(cos ©-b)h, (t) + ih,(t) (6.15)
Example 1.
a t<0
h(t) = (6.16)
b t >0
V(t) = i % sin[tA(b) ] + cos[tA(b) ] (6.17)
Example 2.
© a t <0
h(t) = i (6.18)
B Ga-b)e =
V(t) = AW, (t) + AgWs(t) (6.19a)
where

Wy (t) = exp[iA(b)t + iiéihl e-Kt]

1F1[E0A () #b-cosp]; 1+ ZLAEL,  ZLB) KET (g gy
Wa(t) = expl-iA(b)t + 1—%@- ) ]

1 lLK[A(b)+b TR iA(b) Zi(;-b) e-Kc] (6.19¢)
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and the constants A;, A; are given by

A = W (0) - i(cos p-a)W,(0) (6.19d)
W, (0)W5(0) - W5 (0)W,'(0)
A, = 1¥1(0)(cos g-a) - Wy(0) (6.19e)

W, (0)W5(0) - W5 (0)Wy'(0)

The first question we want to study 1s the approach
of my(t) to its infinite time limit,

To compute m,(t), we observe that % Z.S? can be
written as 33
-1 -1 fal
N M_ =N aa+a a -1]
gp ;Epp -p -p

and ¥
Tr[MPUp(t) pp(O)Up(t)

1
m,(t) =¥ ), TE 5, (0] (6.20)

Using (6.19a), m,(t) can be expressed in terms of W, (t)
and W, (t) as

= tanh[%gA(h(0)) ]
m () =yl tanh ;A/(\hlzo?) p (o) Wa(e)]  (6.21)
b

and F[W, (£),W,(t)] is given explicitly in (4.7) of I.
Example 1 yields for the step function (6.16)

mz(t) = % %J EE%%&%%#%%%l {cos[2A(b) t Jv®(a-b) sinacpp

- (coswp-b)[(coswp-a)(cosmp-b) + v® sin®w]}(6.22)

It is clear from (6.22) that if N is finite and
large and t = «, the limit does not exist, and one may
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wish to compute the Poincare cycle as an explicit func-
tion of N.

In the thermodynamic limit N - «, the sum becomes an
integral

1 " tanh[}pA(a)] g s
mz(t) =0 Jod A(a) A% (b) {cos[2A(b) t 1y (a-b) sin®y
- (cos 9-b)[(cos g-a)(cos ¢-b) + ¥* sin®¢l} (6.23)

This result was derived earlier by Niemeijer. There
are several interesting limits to check.

(i) t = 0: mz(O) becomes the equilibrium result
given by (2. )

(ii) v = 0: Since [Eds§, e s¥s§+1] =0

233 )
3

oneexpects no time dependence of %Z.S;>, and in (6.23)
the time dependent term is proportional to Y2

(iii) a = b: No jump, and again m,(t) = m,(0).

(iv) t - =

S} T tanh(%gA(a) 1(a - cos ©)
m, (%) =55 Jo ) 1)
(b-a) y® sin®o
X { L= (a-cos @) [(b-cos ¢)*+y°sin®w] } (6.24)

This is not the equilibrium magnetization, since b = 0
does not yield m,(=) = 0. The system, even after infinite
time, remembers that it was subjected to an external field
a, through the nonzero function in the curly brackets of
(6.24). This is an explicit expression of the non-ergodi-
city of the system.
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One might raise the suspicion that the nonergodic
behavior of mz(t) is due to the special discontinuous
case (6.16). In other words, one might hope that a con-
tinuous very slow change of h(t) would yield an equili-
brium limit. To demonstrate this hope to be false we
went through the pain of playing the same game with
example (6.18), and computed m,(K,t). We found that tak-
ing the limit kyg lim m,(K,t) gives back (6.24) and rim
lim m, (K, t) gives a complicated expression
™% [T (6.14)1, that shares with (6.24) the unpleasant
feature of failing to vanish at b = 0. We can safely
conclude that a global change of the magnetic field re-
sults in a nonergodic magnetization m,(t).

It is interesting to study the long time behavior
of my(t) (6.23). We find (I) one more division into
regions.

-2

(1) h > 1-v?: m,(t) approaches its limit like t ,

and oscillates with two interfering frequencies, exchange
type and larmor type.

(i%) h < 1-y®: The leading term of m,(t) decays
like t™2 with a single frequency 2Y[l-b3(1-vz)'1]1/g. In
the nextterm all three frequencies are present.

- 34
(ii1) h = 1-v®: Boundary case for which m,(t)~t

This division to regions rises from the number of extremal
points of the one particle spectrum A, If we consider
cos ¢ =y, A is given by

Ay,b) = [¥*(1-y®) + (b-9)21Y° 1=y =<1

In the case (i) A is monotonic and has two extremal
points at the boundaries y = + 1, in case (ii) A has 3 ex-
tremal points at the boundaries and at yo = b/(1-v®), and
in the boundary case (iii), one of its endpoints coincides
with yo.

In figure ( 5) we show a numerical and asymptotic
study of mz(t) for case (i), where the interference of the
two frequencies is quite clear,
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4871

486

4851

* as4f
N I

E 483} === my(t) from us.ymp'o'ic

expansion values

1
|
482 ‘l ~—— m,(t) exact numerical values
1
I

L 1 1 L 1 1 1 i

4 8 12 16 20 24 28 32 36
TIME

Fig. 5. m,(t) exact (numerical) and asymptotic for large t.
a=10, b =2
Yy = %, g =1
(E. .iarouch, B, McCoy, M. Dresden)
(Phys. Rev. A2, 1075, 1970)

We wish to investigate more of the nonergodic fea-
tures of the system by examining the spin correlation
functions.

By a similar method of evaluating mz(t) we find for
the step function case (6.16)

n
- - l tanh 5@/\‘&2 1 2 2
GR hal= Io dy cos gR ( A(a) A2 (b) Y {[¥?sin®e +

+(cos @-a) (cos o©-b) 1(cos ©-b) = (a~b)y®sin®y

i
o 103+ [ o v i o RS



46 EYTAN BAROUCH
X {[y®sin 20 + (cos ¢-a)(cos w-b) ] +

+ (a-b) (cos @-b) cos [2A(b)t]} (6.25)

and SR is given by

w
it

= <
S et e E Bo s

it

y(a-b) " . sin[2tA(D) ]
= Jo dy sin ¢ sin oR Aa) A(b) (6.26)

In the equilibrium (a = b or t = 0) Sy vanishes iden-
tically. Furthermore, when t - = Sp -~ 0, In these two
cases the correlations are Toeplitz determinants. However,
for finite t, we have a full Pfaffian, which forces us to
try to evaluate a block Toeplitz determinant. This we
are unable to do (III), and we can just estimate the most
dominant term, up to an unknown multiplicative constant.

Since the analysis is conceptually simple and quite
tedious, let me summarize our conclusions, and refer you
for details to IIIL.

(1) lim ¢, (R,t) # Equilibrium o (R)

tre

(2) At the ground state &1m Lim pxx (R, t) =
namely there is a destruction of the 1ong range
order.

(3) For finite long time, the correlation functions
approach their nonergodic limits with the same power laws
and same frequencies as m,(t).

After the conclusions that fundamental thermodynamic
functions like magnetization and correlations are noner-
godic, one might believe that all thermodynamic averages
are nonergodic, and do not tend to their equilibrium
values. This question was studied by Girardeau (1969).
He considered the Fourier component Mq = Zij cos q;,
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and proved that <Mq(t)> - 0 as t » » when h = o which is
the equilibrium values if 0 < q < m, where My(t)> is
given by

o (£)> = Tr[p(O)eitHqu-itH] (6.27)
p(0) = exp{-[pH + mq]}/Tr{-[aH + mq]} (6.28)

and the parameter X\ measures the prescribed initial val-
ues, and its deviation from an equilibrium state. The
cases q = 0, m are different, since their limit # O.

Note that q = 0 corresponds to our example (6.16) with

b =0, a =21, and q = 1 corresponds to the staggered case,.

When one convinces himself that the system is noner-
godic, the natural question to ask is why. Is it because
of the decomposition of the system into noninteracting
subspaces? 1Is it because of the low dimensions of the
system? Is it because the system is isolated and is not
coupled to a heat bath?

At this stage it is not too wise to point at a spe-
cific "reason'" and claim its responsibility for the noner-
godic behavior of the system. So to gain some insight
into the meaning of these questions we studied the time
behavior of a single magnetic impurity at the boundary
(Tjon 1970) using the weak coupling approximation, and
exactly inside the chain (Abraham, Barouch, Gallavotti
and Martin-L&6f 1970). In both cases thermalization was
obtained, namely m,(t) approached its correct_limit, but
as a power law t~' (for internal spins) or t~2 (for a
boundary spin).

We present now the analysis of ABGM for the isotropic
case Yy = 0 and h = 0. The Hamiltonian is given by

N
a X X vy ZN z
H %j;cojcjﬂ +ofoly) +h(t)er =H, +h(e)ol (6.29)
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with
h(t) = (6.30)

Thermalization occurs if

1im lim <oZ(£)> = 0 (6.31)
o N n

The difficulty involved in this problem is breaking
of the translation invariance, thus Fourier decomposition
does not yield decomposition to noninteracting subspaces.
Furthermore, we can look at the rest of the chain acting
on the single spin like a heat bath,

We proceed with the standard stages (i), (ii), (iii)
and obtain

Ho = E, + Z\cos qaa (6.32a)
q
q
z _2 § _in(@’-q) ¢4
1+ o N ., ¢ aqaq, (6.32b)
qq
and q are the solutions of
e1qN =1 (6.32¢)
We study the expectation value
<1l + oz(t)> = [Tr e-BH]-1 Tr[e-BH alfcE (1+0§)e-iH°t]

(6.33)
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Using (6.32) one obtains

-iHot _ 2

eiH°t(1+0§)e =3 exp{iln(q’-q) + t(cos q-cos qﬁ]}é% i
qq’ £

(6.34)

Since H is quadratic in the Fermi operators a ,a*/
it may be written as 119

H=E, + zskja;a (6.35)

3

where o. are Fermi operators related to a_, by the unitary

transfo}mation q

aj = . quaq (6.36)

Combining (6.36), (6.34) and (6.33) we obtain

z -
<l + on(t)> =

*

) % E“exP{[n(qLQ)+t(°°s q-cos q) ]} Z v U, , <ala,>
q9q :

ja id’ 3%
(6.37)

where <aTa.> is the Fermi occupation number given by
1+ exp(BXj)]-l.

The coefficients U., are determined from the eigen-

value problem 34
- - 2h i(q-q)m
(Xj cos q)Ujq = 7 Z, ujq/e (6.38)

“and there are two possibilities

(i) Xj = cos 4, for some q, that solves (6.32c)
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- iqm -iqm
b =2 2(8 ’ -8,
ja (8q7q,° Q'-0.% ) (6553
(ii) Xj # cos q

L eiqm/N(xj)(kj - co8 q) (6.40)

where Xj are the zeros of
(V=1 - %? z;(x - cos )t (6.41)

and the normalization is given by
2 - - L il U
NG 12 = )4y - cos @)™ =50 551 _ (6.42)

Combining (6.39) ~ (6.42) and taking the thermodynam-
ic limit we finally obtain

6 G(A, n-m, t) G(X, m-n,

; o P
1 + e F(A

Z
< > =
Gn(t)

where the contour ¢ in the complex X plane avoids the
zeros of 1 + eP* enclosing the zeros of Fy(}), and the
functions G, F are given by

"
expf{i[-1q + t cos q]}
61, 1,8) = 4= J_n e (6.44a)

F()) =1 - 2h(k2-1)-% (6.44b)

and asymptotic study of (6.43) for large t shows approach
to 0 like t™+, This power law also governs the approach
of the correlation functions to their equilibrium nonzero
limit. We have also studied vy # 0, h # 0, and obtained
similar results,
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The last question we mention is that if we turn on
a field, the magnetization does not approach equilibrium
(ABGM) no matter how slowly the field rises with time
from its initial zero value. The result is given by

m
|
<oZ(t) = Re[ j_n dl e s ks

T
X J dp exp{i[t(cos k - cos p)]]
-

m
+ (k-p) (am) ulle, p,£) + 2] dk(l+e® ©°% 71
-

™ 3
X IJ dp exp{ilt cos p - p(n-m)u(k,p,t) |
-7

(6.45)

with

t L.
ul,p,t) =2 [ &' %% Pn(e’) X, (¢) at’  (6.46)
0

and xp(t) is to be determined from the Volterra equation

;. t
_ =it cosp _, ¢
xp(t) =e i J

dt’ Jo (t-t’) h(t’) X (t')
0 P

(6.47)

which can be solved exactly for h(t’) = h # 0.
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COMPOSITE PARTICLES IN MANY-BODY SYSTEMS
METHOD OF STOLT AND BRITTIN

Wesley E. Brittin
University of Colorado
Boulder, Colorado

1. Introduction

Many situations exist in astrophysics, plasma physics,
chemical physics, etc. where it would be meaningful and
useful to have theories dealing with equilibrium and trans-
port properties relating to various bound or composite
particles (atoms, molecules, ions) as well as to '"free' or
"unbound' particles (nuclei, electrons) and to electromag-
netic radiation (photons). A variety of special techniques
has been invented to treat some specific problems in the
above categories. These treatments range from very crude
empirical and theoretical guesses to very sophisticated
field-theoretic procedures. From the standpoint of basic
physics these problems pose certain difficulties and there
exists at present no unified approach to them. It would
be very desirable to have a theory that would be as com-
plete for these problems as is the kinetic theory of gases
for a tenuous system composed of classical stable mole-
cules.

An important first step in the desired direction was
taken in 1963 by M. Girardeau™, who showed that
"... a second-quantization representation for many-
atom systems can be developed in which the atomic
annihilation and creation operators satisfy elemen-
tary boson or fermion commutation relations, i.e.,
the atoms behave like point particles. 1In this rep-
resentation the Hamiltonian, expressed as a function
of the local atomic field operators, takes the famil-
iar form of a sum of a quadratic part representing
independent-particle (here independent atom) energies
and a quartic part representing two-body inter-
actions."

55
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In order to take account of the fact that composites can-
not be actual bosons or fermions, a subsidiary condition
imposed on the overall state vector enforced correct sym-
metry for the elementary particles which built up the com-
posites. 1In the expression for Girardeau's glementary
destruction and creations operators A, and A, the index «
labels the atomic states and includes the center of mass
motion as well as the internal motion of the particles
making up the atom. In addition, the atomic states in-
clude all continuum (ionized) states of the atom as well
as bound states, The question of how to introduce only
bound state composites was not treated at that time.

In the spring of 1971 R. H. Stolt and W. E. Brittin
found a way of introducing bound composites for relatively
simple systems 2, Subsequently A. Y. Sakakura> and
M. Girardeau* found other methods. Although there are
many unresolved (even in principle) problems, the subject
has reached a certain maturity. My lectures have only to
do with the methods discovered by Stolt and Brittin, since
Sakakura® and Girardeau® give accounts of their important
work elsewhere in these lecture proceedings.

II. Preliminary

We consider a system containing N protons and N elec-
trons® which interact through Coulomb forces., Let
Vo= y(x co Xyl Y1eeeY ) be an arbitrary square integrable
function (wave function) of the proton and electron coordi-
nates x,y (x,y includes positions and spins). The set
of all such functions forms a Hilbert space which we label
¥. The space ¥ contains functions belonging to all sym-
metry classes and not only those which represent physical
states. The physical states are represented by functions
¥, which are completely antisymmetric with respect to per-
mutations of proton (electron) coordinates. The subspace
A © X of physical states is obtained from ¥X by projection
with A, the total antisymmetrizer given by

a 1 Py ~
S e R L (2.1)

% It is straightforward to generalize these considerations
to situations where there are different numbers N_, Ne of
protons and electrons, P
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where P (P’) goes over all proton (electron) coordinate
permutations and

(ﬁP¢)(xl...xN;yl...yN) = w(xal...xaN;yl...yN) (2.2)

where P(l...N) = (al...aN), and
Fpoh) (- oxyiyy oy = W0y coyp ) (229)
where P’'(1...N) = (Bl...BN)

Thus s
A=A% (2.4)

where A is the projector* defined by expression 2.1. The
condition that |y, represent a physical state is that

Bry = ¥y (2.5)

We wish to describe situations in which some of the
electrons and protons have combined to form bound hydrogen
atoms. Naturally in the general situation, where the sys-
tem might be in a highly condensed phase, for example, it
may not be useful to ask for a description of the system
in terms of atoms. Perhaps other '"clusters' or 'compos-
ites'" may be more useful in that case. However as an ex-
ample of our method, let us think of physical situations
where it is meaningful to speak of the system as '"having"
"bound'" atoms and ''free" electrons and protons., I wish to
emphasize at this point that our treatment has no approxi-
mations in it in so far as the description of physical
states is concerned, although its utility may depend on
whether or not the physical situation approximates the
description we choose to use,

Let the system be placed in a box of volume V where
V is large but finite. Then we may introduce a complete
orthonormal set of one-proton states ¢;(x), i = 1,2,3
and a complete orthonormal set of one- electron states
W (v), 3 = 1,2,3,... so that any ¢(X1.. K3y yN) €EX

* The conditions that an operator Abea projector are
that A2 = A = A These can be verified for A defined
above.

g0 e
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may be expanded as
y ; = =
v(xl...xN,yl...yN) W(XNYN)

= T C,

i e 1o el 3 () o e (DL (e . 20 (A
il"'i . N1 N i 1 iy N L in N
N

jl...jN (2.6)

In fact, because of the orthogonality of the ¢s and Vs,

C. s % e =
SRR S5 PR I ij
=jdx1..dedy1..dmeil(xl)..wiN(XN)le(Yl)--WjN(YN)¢(XNYN)~

(2.7)

if w(xNyN) is a physical state C; is complete-

1---igiq---dy
ly antisymmetric in i,...1i, rsp. jl...jN, and conversely.
If ¢,4’ are any two functions in X

(4,4 =[x () dy ()T (x(N) ,y (M) ¥ ' (x(N) ,y (W) )=F Eijcij‘

Let us now introduce two-particle bound states
@, (x,y). These states are to represent isolated bound
electron~proton states (including the center of mass mo-
tion). They are taken to be orthonormal

[o (xy)o  (xy)dxdy = & y (2.8)
& &) Ciie?

but not complete. We have
— o) S IS Nty
oy (xy)o, (xy") = Pp(xy;x’y’) (2.9)

where P (xy;x’'y’) is the coordinate space representation
of Pp the 2-particle bound state projector. That is

(Bp¥) (xy) = [Py(xysx’y Yi(x'y)dx'dy’  (2.10)
Further
IBghll < Ny (2.11)

where [lWll 2 = [¥(xy) ¥ (xy)dxdy, which expresses the fact
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that the projector onto bound states is less than the unit
operator,

Let us introduce 'bound'" many particle functions
through the 2-particle states 9 by defining the functions

M
a

y (kp 33y Ty = Yoy (KOY D)

1w Ity
o (Xy)e (X,y,)..0 (X y,00. ( ).l (%)
RN R TRGv ST M 5 1 i ON

Xy, (Vpppp?) - ¥

(¥.) » (2.12)
Im+1 L

J'N
These functions are orthonormal for a given M

G IR OL O TN IO OM O

= éaalﬁii_l&../Eé el a;...éa ’ 61 'Y
LS Il L) MM vl ML
06 . M0 | e oinBlme
N VD VR VTR RN (& 1)
where the integral fdx(N)dy(N) . is extended over all
N’ including summation over spin variables.
Tﬁese %unctlons span a subspace Py of ¥ defined by

-{wwzc VLo et )2
ja

il - finite}. (2.14)
ij Taij’oyy oij

Py may be considered to correspond to those states having
M (or more) bound atoms, although PM contains functions
that are not completely antisymmetric in electron and pro-
ton coordinates. The subspace Py contains Pyyj since

waM+1(xM+1YM+1) can be expanded.in.terms of wiM+1(xM+l)
and ¢jM+l(yM+l). We express this in the customary manner,
Py ® Pyppe Im particular P, is the entire space X since
®; Vj; are complete one-particle states, thus

X = P, = P1 Dy 2 PM 2.2 PN (2.15)
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The projector for ﬁM is expressed as

13M Ay [Moij> <Maij] (2.16)
which means that
By (%75, .- Xy )= a?.jwziij (xp. . oy<Muijlv> (2.17)
with
<weif|y> = [axdy § My =My (2.18)

The relationship (2.15) is reexpressed in terms of the
projectors Py as

~

i=0p

~

0 > P1 > Py PM >,..> PN (2.19)
1f P(l) = =|a> <al, is the single atom bound gﬁatelprgjec-
tor, i.e. cf. (2.9) (B(LV) (x151)=F 9, (%151 /%y 51y ")

X w(xl'yl')dxl'dyl', we may express Py as

P =P(l) ® P(2) ® B(3) ®...® P ® 1

M N-M  (2.20)

where iN-M is the unit operator for functions of the vari-
ables XMylsYmele - XN Yy Hence Py maybe written,

B, = B(LoB()e. ePellielan2)e. 81 (2.21)
where 1(R) refers to the unit operator for functions of
the variables XRHYR- The subspaces Py although not physi-
cal, or at least not entirely so, do somehow correspond to
states having M or more bound atoms. Indeed if the ''real"
atoms in the system are far enough apart the functions in
P,, may represent physical states very closely. However,
this is not what we seek. We would like to find functions
corresponding to precisely M bound atoms. This is done
rather simply. Since Py > Pyl

~ ~

PPy = PuPmel = Pmere (2.22)

S0
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a

N N N 5 AL a1 5
R P Par 1 P PP PM(l PM+1) PrPr1 " Pra 1Py (2.23)

has the property that functioms lying in Ry = Ry ¥ are in
Py but orthogonal to Pyyj. Hence Ry '"has' M or more bound
atoms but not M+l or more bound atoms —i.e. R,, "has' pre-
cisely M bound atom states or more precisely is the sub-
space for functions corresponding to M 'bound'" atoms, N-M
"free' electrons, and N-M '"free'" protons. The entire
function space ¥ may be decomposed directly into orthogo-
nal subspaces according to the scheme

X =RyDR D..DR;D.. DR, (2.24)
which corresponds to the identity
1= ﬁo = (§0-§1)+(§1-ﬁ2)+...+(§M-ﬁM+1)+...+§N
= §O§i+§1§§+...+§M§§+1+...+§N
= ﬁ0+ﬁ1+...ﬁM+..‘+ﬁN. (2.25)

~

It is easy to see that ﬁM Ry’ = Syy’ ﬁMs e.g. if §(€Ry=P]
then Y, is orthogonal to Py and hence to Py,Pj,...which
are contained in Py, etc. Therefore we may decompose any
¥ € X into orthogonal components Yy = Ry¥. If

N
=%
4 M=0¢M
and
v'= Eowg ,
then the orthogonality of Ry implies
N
1 _ 7
(b0’ = MﬁO (Vs Ve (2.26)

Explicit expressions for R,, are obtained directly if
we use the decomposition of Py given in equation 21:

=

=P(1)®B(2)®. . .®P (M)®B(M+L) ‘Bl (M+2)® . . .01(N)
)

M M+l

where ]?’(IVH-l)‘L = i(M+1)-§(M+1) is the projector onto the
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single atom unbound states;
(POMHL) 1) (L) = ¥ (1) S (ML) <a|¥> = ¢F (e+1)

(recall (M+1) here refers to the variables xy.1,Ypmp1) -
Since Ry & Py we may write

g M M
Y = iy Catg Yaist (£ize8)
Then
M _ .M .M 4 PP 't
Cuij = Uaiz'n = UagsR?) = Byasyh
. (2.29)
= (X(‘Lij’q’)
with
A _ .M
alJ RM¢a13 = M PM+1)¢aij - lllaij-PM—l-lwaij P D)
which can also be written as
M
X .. =9 (Do (2).. (M)CP . (M o ( )
aij ay a, M e dvat M+2 F2
A SEPLE 21337,
mlN(xN)WJM+2(yM+2) \l!JN(yN) (2.31)
where, as above,
2,500 = 0, (¥ () (B ¥ 1. (2.32)

Unfortunately the coefficients (el i3 in the expansion
of {y do not have all the properties requlred for a de-
scriptlon of the system in terms of "bound'" atoms and
"free' particles. Such coefficients for physical states
wA should be completely symmetric in ay-- QM and complete-
ly antisymmetric in ipyq...1iy and in JM+1 For phys-
ical states, M ; are zg@etrlc in ag...0y but the pres-
ence of o B 1n t e M+l th entry spoils complete antisym-
metry for M., in the indices i iy and Jyq. - dye
(The CM ] arg completely antlsymmetrlc in dpy., iy -
lN and" 1 Jpens JM+3,...,JN however) .

The decomposition 2.28 for physical states may be
useful in chemical problems because of its simplicity.
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However, see appendix B which gives additional reasons for
not using this representation. We may at this point men-

tion a similar decomposition first used by A.Y. Sakakura3,
From the expansion for Ry (Eq. 2.27) we note that the

M+l st entry is P(M+l)*, so if ws(x,y) form a complete set
of states for the '"unbound'" proton-electron system, we may
expand any | using the orthogonal basis

3 =

. s . = (Do (2)...0. M)
al...aMﬁlM+2...1NJM+2...JN ay ay a

M
§onBij M

Mo,  Gguo) -0, V. Faao) .- V. () (2.33)
wB CPLM+2 M+2 QplN XN JM+2 yM+2 JN yN

which for fixed M spans the subspace Ry. In fact

- M M
- > <
Ry e Lo 815” <Ppij! (2.34)
al... M,
lmz...lN
VTR

For physical states the coefficients cgl"‘aMBiM+2""j
are completely symmetric with respect to interchanges o¥
ap...0y @nd B and completely antisymmetric with respect to
interchanges of iyyo...jy. In physical terms the system
may be thought of in terms of a given number M of '"bound"
atoms, one ''unbound" atom, and N-(M+l) 'free' electrons
and N-(M+1) ''free" protons. In later work Sakakura has
managed to eliminate this 'crazy' B-boson.

In conclusion to this section it is to be noted that
we have achieved an orthogonal expansion 2.28 similar to
but distinct from that used by Girardeau6,

M
=y, = T £ ( RSV g Y0 ®. (Do (2)..0 (M)
M Qg Oy @ge Oy b VTS Rk (TR VIS | N ay a, Oy
% = (2.35)
fal...aM(xM+2""’yN) o 2
R
I 3w
M
C . Lo Yoeeeb, (yy)
al"'aMiM+1"'1NJM+1"'JN v A1 iy N
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which for a physical state § = Ay has coefficient func-

tions f D which are completely symmetric in ay...ay,
. M

but which are not completely antisymmetric in Xj S &t

and in y. ¢e.¥: . Of course, since for physical states,

Vo= AV,

Ay = | =73 AWM =h WM’ (2.36)
and in A¢ the coefficient functions fIl are antisymme-
trized. However projection with A sp01ls the orthogonal-
ity: Avy ¥ ¥y and (Avy, Auy) # 0 for M £ M

IITI. The Stolt-Brittin Method

We have mentioned that projection in general spoils
orthogonality, that is if (¥;,¥5) = 0 and P is some pro-
jector, then (PY ¥y) = (PV ,wz) + 0, in general., On
the other hand 1% P2 is a closed subspace of X which is
contained in the closed subspace P1 of ¥, and if Ais a
prOJector then APZ is contained in APl, e.g.

= > AP 2 AP The subspaces Py introduced in
I% have the property%K =Py 2P 2.2 Py>...2 PN, there-
fore
= TATE (= A AP% 2ianAP. Sn.sio A
A= B = AP) 2 AP 2...AP .2 AP (3.1)

which means that we may decompose A, the subspace of physi-
cal wave functions into an orthogonal set of physical sub-
spaces Ay,

A=A0%A133...9AM39...EBAN (3.2)
where

(3.3)

is the direct difference of the subspaces APM and APM+1
The subspace Ay consists of those states VM which are in
APM but which are orthogonal to all elements of APM+1

* We really are talking about the closed subspaces AP, ,AP Py

obtained by forming the closures of APl and APz, but to
keep the notation simple we simply write AP for AP.
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We define Ay to be the physical subspace corresponding pre-
cisely to M "bound' atoms and N-M 'free" protons and N-M
"free' electrons. Thus any | = AY may be expanded into
orthogonal components ¢M

(3.4)

and (Vy,V¥y’) = pydmy’ where Py = (Vyp¥y) may be regarded
as the probabllity that an observatlon of the system will
result in finding precisely M 'bound' atoms present. The
average number (M) of bound atoms present is just

(M) =§[, M (345

which, of course, in general changes with time. The pro-
jectors A, for the subspaces Ay are not nearly so easy to
compute as, for example, Ry. %n fact we know of no ways,
except those requiring infinite processes, of actually
computing wM’ given V. Let us, however, proceed with the
problem, since in practice we will use approximation pro-
cedures in any case.

The result of projecting the subspace Py with A re-
sults in a subspace APy for which we would like to find
the projector (which we denote by Aop M) - It is so desig-
nated because we anticipate that it may be compounded in
some fashion from the projectors A and PM. We can form
APM by taking the closure of APMK We now observe that

(A°P )AP (3.6)

APM

i.e. A°P is a left projector of AP In fact it is the
left: prOJector of APM, which means that

Aoh

A PM
Knowing what Aoﬁ is, however, does not offer much guid-
ance for computlng it In order to find an expression for
AOPM let us split A into two orthogonal subspaces

inf {Q; Q a projector; QAPM = APM}. (3.7)

A= (APM) &) (APM)Z (3.8)

where (IA&PM K is the orthogonal compliment of APM in A
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which means (AP K = A - (APy). 1If ¥ is contained in
(AP )K it is or%hogonal to all vectors of the form APyx,
X % ¥, in addition to being in A. Therefore

W,AB ) = By,Bx) = (1B = B0 =0 (3.9
which shows that | € PMl and § € A, hence | € AAPML,
the subspace common to A and PM*. Therefore
o I _ % na L(%)
A Py A-AA(L PM) A AAPM. " (3.10)
The intersection AAP," of the projectors A and ?ML can be
expressed (see Appendix A) as
"~ ~ Il = . r AN 1 n - . N AA J-A n " . - A—AA A n
AAPM %&g s(APM ) %ﬁg s(APM A) %ig s(A APMA)
(3.11)
where lim-s is meant limit in the strong sense: i.e.
lim (| (APy™" )™ - (AP )™l ~ 0 for all § € X. The sub-
mn-® N
spaces Ay may now be constructed from the projectors AOP;
2 o %oh . s _ s L a8
g =NERB S NoE = e ARyt (3.12)

We now have the necessary tools to treat situations in-
volving changing numbers of bound atoms. From the orthog-
onal decomposition

g =Ay = zAV= 3y (3.13)

and the Schrddinger equation i h %% = ﬁw for the N-proton,
N-electron system

. N. . ~ N A~
ihy = 7ihy = HY = £ (HY 3.14)
M=0 M M=0( )M (
where (ﬁW)M = AMﬁ¢. Therefore
i 9 =1 A B = A fIA - A HA = 0
1h3E Vi T A = RARAY = B AR Yy = T e Y
(3.15)

# 3,10 can also be written AQ?MTA—AQﬁ *=§A(1—AA§ML)

=AN{ANPy}t=AA(A*VPy) where P{VP,=(Pq*AP,*)L for two pro-
jectors P),Pp. We may also express %M as AO?MA§M+1* (see
appendix C).
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where the Hamiltonian operator ﬁ¥M' = A ﬁAM' maps the M'-

bound .agom subspace into the M-atom subspace. We note

that B,/ = (& HA N* = A /HA =0 so that on A, fl has
MM M M M M>

the correct Hermltlan character

~ PNPPN

-2 & e 2 L. A
AHA = M]}ZIII H_MM/ (1\41):,1'HMMI) mz/:[’HMIM‘ (3.16)

For some problems, it may be useful to use the formalism
as developed to this point. One can easily introduce
"atomic'' and ''free'" particle observables and carry out a
quantum mechanical treatment for them. However, we have
lost much of the 51m§11c1ty which we had when we dealt
with the functions ¥ We would like to transform our
theory back to the simpler subspaces P How can this be
done? Well, we notice that Ay is a su space of APM and a
non zero vector ¥ € Ay is of the form | = APMX for some X,
X€X. Let us look at those X which are mapped into
zero by, APM APMXO =0=> (3 A M0 ) =0, €€ so

= (PyAY XO), and hence X is in the orthogonal compli-
ment of Py OA in P Thus it follows that non zero vectors
in PMOA are mappeg by APM into non-zero vectors in A°P¥
and non zero vectors in AOPM are mapped by PMA (APM)
into non zero vectors in PM The following simple dia-
gram illustrates our result:”

Figure 1

* This result is well-known to some mathematicians (e.g.
those who know it well).
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. .. The mappingaﬁﬁMﬁ = A?M(AﬁM)* is 1-1 on A9Py and
PyAPy = (APy)*(APy) is 1-1 on PyCA (see Fig I). Hence on
AOPy we may normalize PyA (which maps AoPy onto PMOA) and
introduce®

o B A AA ..lé
Wy = (ByAPy)

QM maps A°PM onto PyCA and

13MA. (3.17)

}2, IS

AMIA WA A W o2
* 2
P A ABG(R APD

Wty = PPy
1 (on PMOA)
10 on (PMQA)*

i

B oA (3.18)

Similarly

N e

WM WM = AOPM (3.19)
thus W ,(QM*) is a (partial) isometric mapping of AOPy on-
to PMO% (P0A onto AoPy).

More technically, WM is the essentially unique factor
appearing in the polar decomposition of PyA

ﬁMA = /ﬁMfAﬁM W, = W, /Af»MA (3.20)
an TN g s g FEEN
AR, = JApA W F =W JPNlAPM (3.21)

* To be more mganingful,;it is perhaps better to recognéze

that Wy = (PyoA) (BydPy) “Z(BypeB) PA (RoBy) since (PAP))-
has meaning only on PyoA.

*% On AOPy, ?MX has an inverse (ﬁMﬁ)'l acting on PyOA, so

Similarly**

A AaA A

PyAPy = ByA APy DA (PyA) 1, (f’f,I =p,,, A°=A)
b /AR ) (1) AR U1
[bA JARA (BA)112
thus JﬁMﬁﬁM = ?MA JZ?;z‘(ﬁMA)'l and J@&KFQ‘?MA=§MA JA?MA
or BABBA)TE = (BABE BA = Wy
(See Appendix A for a more technical presentation.)
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By "essentially" unique, I mean that WM is unique in the
sense that any wM satisfying 3.20 having the same domain
and range as Wy, is equal to WM. The (partial) isometry
WM maps AOPy onto PMOA it therefore maps the subspace Ay
of AOPy onto a subspace Cy of PyfA < Py. By our definition

CM = WMAM (3.22)
- oyt
AM = wM CM (31.23)
The projector éM onto CM can be written
- WMAMv?JM* ) (3.24)

Clearly CM as, deflned above is self-adjoint, Further

* _ A
CM = Wiy Wy = By o Byl = My i = Gy,
since AM < A‘)P Thus M 1s a projector. We now show
that Cy is stab%e under ﬁM

A A

CvCy = CM"MPm

A oa K
iy Ty
By
Wity = My = Gy
Eq. 2.24 can be inverted to yield AM = AM MAM

Any physical state | may now be decomposed into or-
thogonal M-atom states:

N . N
= A = % = 5 , 3.25
R N N A (3.25)

and the Yy in Ay may be related to %M in Cy by
o %

€M = waM’ UV VI v (3.26)
Since &M* is a partial isometry (¢M,wM) = (%M,ﬁM), and
_ 2 BN N 2
L) = vl = = Mzo HWMH = 150 flemll =, (2.27)

* Note that if Cpv = Q, W *¥= 0, or for any x € X,

0 = (x, WMAMWM V) =(WMAMWM W%— 0, so if x is an arbitrary
element of Cy, 0 = (x,¥) => ¢ECM which establishes CM as
the projector for Cy.
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Further if {’ is another physical state,

N ’ N '
W0 = = (b)) = = (55" (3.28)
M=0 MM M=0 MM
ﬁﬁ??e §M € CM c PMOA C Py, we may expand §y in terms of
aij’
_ M M
EM =L Caij quj, (3.29)

aij
and since §M € PMoA §M = ﬁMﬁw for some € ¥, which means

This means that the CM are completely symmetric™ in
: M completely an% symmetric in ippq,...1y and com-
p%etely antisymmetric in jyyj,...Jy. The scalar product
3.28 becomes
=M M

N
Ay =mosi (S I Crs BEE 3.30
(v, 10 oij oii Ceij ( )

We have now demonstrated a correspondence between physical
states § and a collection [CglJ} of coefficients

W= {calJ} (3.31)
Further the coefficients have the symmetry corresponding
to "bound' bose atoms and ''free'' fermi protons and elec-
trons. Not every set {Cgij} having the correct symmetMy
corresponds to a physical state however. Only those COLl
which through 3.29 give rise to a E €C,, correspond to a J
physical state. The restriction on CMM that they repre-
sent physical states is that § —CM€M, or

M M M

Caij = (¢aij) M) = (waij ) - (CMw(llJ M)' (3‘32)
We may write
~ M _ M eI S TATRA o
CMwaij = a/?_lj’ ¢a/i/j/ (Mo "1 |CM|M£11J>
Hence
M s
Cy1j = (€ Mc)OLlJ aIEIJ <Mn13|c Mo 173 >ca 1750 (3:3%)

is the additional required restriction on the Caij-



COMPOSITE PARTICLES 71

If we use 3.17 for ﬁM, the expression 3,24 for &M
becomes

w = (PfPy) Py Ay APy (PP
(B AR % A B AR (3.34)

(@33
1

since AyPy = (A A By q* - A A BytlPy = (A A Py *)Py, the
above expression becomes

&, = (B AR)TE (A A B 4y (B AP (3.35)
M MA M M+1 MA M ) )

The coefficients C re

M L 4
@Le e Oy il N dMil. - dN
completely symmetric in aq...0y, and completely antisym-
metric in ipy;p...iy and in jM+1"'jN‘ We may introduce
aNpNe )
1...(1Mall..;‘lNP Jl...JNe
define operators a_, aa*, aj, a;, b.,bj through expres-
sions of the type: J

M
more general state vectors Cg and

MN N, M +1, NN,
(a_C) 0 P . =/M+1 C . ¥ 3
a ooy Ageedy 3y 3y a LI VI TE SRR SeUN PR [
a 12 e a P e
(3.36)
% MN N
(aa C)a .?.a o geles Jaw o -
1 M, 1 Np 1 W
Ma-l,N Ne
A/Ma 2 Ca ap i i ] j Gan
- = i am 5
CPRRRL il Ma 171 Np 1 Ne
(3.37)
where S symmetrizes the indices Wye - Oy i.e.
a....a
1 1 M
S = Frﬁ'z P(a) where P(a) permutes (al...aM) and the
(11. . .(X,M a’ (G)
sum goeg over all M_! permutions of aq...0y . The opera-

tors a;, by etc. are defined similarly exceft that in a"y,
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*
B*, the symmetrizer is replaced by an antisymmetrizer.
The operators a_, a* are adjoint to each other and satis-
fy the usual BoSe commutation relations

=% (3.38)

Similarly a ,8%. and B, b satisfy the usual Fermi
anticommutation relaEion

{ai,aj} - {Bi,sj} =0 (3.39)
{ai,a*j} = {Bi,ﬁ*j} 10 (3.40)
{ai,Bj} = {a*i,ﬁ*j} = 0 (3.41)

With the aid of the destruction operators a,, aj, Bj
we may define the field operators:

i(x,y) =3 éama(x,y), "Bound" atomic field, (3.42)
a
o(x) = b éiwi(x), "Free' proton field, (B134:3)
i
and ﬁ(y) = E ijj(y), "Free" electron field. (3.44)

These operators obey the commutation (anticommutation) re-
lations

[X(xy) ;X (x'y")] = 0, [R(x,y) ¥ (x'y")] = (xy| Bplxy )
(3.45)

[]

{§(y),8(y")} = 0,etc.,(3.46)

8 (x-x"), (3.47)
6(y-y’). (3.48)

{o(x),0(x)} = {ox),i(N)}

@) ,0" (x)}
i (y) 1%y}

E3 TE 3 finitions of aj, ai have an additional factor

(- 1) so as to require that a,, b. have the standard
anticommutation relations 3.41 for distinct fermions. i.e.
M_N N N M N +1, N

ape _— ap
@1y 1y @) T P TR LA 1)

and with no factor (-1) P in the definition of
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We are dealing now with a Eo%stpace 3 whose vectors
v a'pe
¥ are sequences of functions {{ (zl...zM O SRS I
Yy Yy )1, 2y =X Vs Ma’Np’Ne=0’1’2“ with the scalar prod-
e
uct (¥,¥’) of two elements of & expressed as

] o MONON,
¢,¥Hh = ¢ JY (zl...z Oy o M /e oA )|
M 1 15 1 N
MaNpNe a Np e
w'MaNpNe(z z X Xinw G}y Yy )
1°° Ma, R iN B |lo 0 Ne
P
dz....dz, dx,...dx dy....dy (3.49)
1 Ma 1 iN 1 Ne

P
The state Y may be generated from the vacuum |0) through

1
W = T SN TR T dx,...dx dy,...dy_ dz....dz
Mg Ny N VTN TR | 1 pr 1 N1 M,
M NN

b AP Ry ey ) X (2" Gy ) ()
e a

x ¥y ).l 0) (3.50)
e

The results up to this point have been rigorous, with
no approximations of any kind. We observe that in order
to transform the usual quantum mechanical basis to our new
“"eomposite particle' basis we must be able to compute ex~
pressions of the form Pl A ?2 which involve limiting pro-
cesses (Py A Pp)¥ = lim (PyP7)Ny. We would like to find
an expression for H, the Hamiltonian, in the new basis,

We first expand the physical wave function ¥:

A 2 _ ) e
b= A= T Ad = E oy = R e (3.51)

where @M = &M¢M = WyAyV. Similarly

M

~ _ "~ A _ ~ ~ - “ - ~ *N
HY = AHY = ﬁ AMH¢ ﬁ (H¢)M ﬁ W (HE)M
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where

L N e
(He)y, = Wy (D) = WAEY = 2 WA FA W T, (3.52)

or

A An

(—i‘—lg)M = %}1, -ﬁm’ng’ with .ﬁMM/ = ‘:’MAM{]Z\MI&MI*= WMHWM/*.

The terms H,,‘’, M+ M', in the Hamiltonian correspond to
transitions Sy = &y in which the number of bound atoms
changes. Therefore, if we can find reasonable expressions
for the H, ., , we will be able to look at questions relating
to chemic§¥ reactions, rates of ionization, etc., from a
many-body point of view. The existence of the composite
particle basis has now been established, at least for the
rather simple system 'bound Hs', 'free protons" and

"free electrons'. The theory is complete in that it does
not distinguish between tenuous ionized hydrogen at high
temperature and dense solid hydrogen at low temperature.
It is to be expected, therefore, that the general formal-
ism be very complex. However, it was not designed to be
useful in the general case. (It would not be very useful
to describe solid H in terms of "bound' atoms and ''free'
electrons and protons, even though it is in principle pos-
sible). On the other hand, if it is sensible to think of
the system as being composed of composites and free parti-
cles, our method should be useful, once we are able to in-
troduce appropriate approximations to our general formulae.
For example suppose that the system is sufficiently tenu-
ous that only those electron-proton pairs which have formed
bound atoms contribute to the bound state component. For

such states
«/PMAPM §M =)\ £

MM (3.53)
whete xMz = M em-m 2 o2

Further, in this approximation
Mo M’ M qaan M
(il B %57 175 = (Xgq 3 AHALX g v ) My

The yamiltonian can now be expressed in second quantized
form™ as

* First established by R. S. Stolt
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H = ji*(x,y)(Tp+Te+vep)§(x,y)dxdy + [o* (T B (x) dx
PO TIdy + [T 0" (07, 6T (y) dxdy
+ RN T (VT (7)N(x,y) dxdydy”
+ IR, y)07 () (V) 4V )6 (xR (x, y) dx” dxdy

ok Skt A I
+ HXTECE YD) (U VAV AV IR (x Y DR (%, y) dxdx"dydy

PP P

+ T OBV S )P (x) dxdx
+ IV, i () () dydy’
> e, 4 ~ e 1
- X G et (D) TR, Bx)R (x,y) dx’dxdy
- [T TR TR, y) dxdydy”
- XY T, Ky )R (x,y) dxdxdydy
e ks o
+ Jo* VT (9) (T ATV, X (x,y) dxdy
i ol
+ X, 9) (T AT 4V, ) ()6 (x) dxdy
HXE G F TGV, by, ) IRy )R (x,y) dxdx dydy’
Sk " 1o ] K> "W ’ ’
HXE XYY V- hy o 0¥ ()9 (") X (xy) dxdx dydy
+ [e* T (¥ (v )V, T (y)R(x,y) dxdydy’
+ [ TV, I () ()6 (x) dxdydy
+ [T )TV 2 (IR (x,y) dxdx'dy

R R COMMTOTICOTICOT L
(3.54)
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In the above expression V is the single electron-proton
interaction, Vg, the singig atom-proton interaction, Ig
the electron pagr exchange operator, h2e the 2-electron
2-proton interaction, etc. This approx1ma€e Hamiltonian
is probably sufficient for many problems. The terms all
have direct physical significance. The first three terms
represent free bound atoms* free protons, and free elec-
trons. The next term (¢ ©*Vg ¢m) represents the unbound
electron proton interaction. Continuing we have the elec-
tron-atom interaction, the proton atom interaction, etc.
It may be instructive to write the approximate Hamiltonian
3.54 as

H=Ta+T +Te+vep+vea+vpa+vaa+Vee+vpp

=il oo

+ Eea + pa + Eaa + V(ep ~ a) + V(a ~ ep)

+‘V(epa < aa) +‘§(aa < epa) +‘§(eep < ea)
+-V(ea - eep) +'§(epp - pa) +‘§(pa < epp) , (3.55)

where we list below expressions for the various terms:
(using éa,éi,ﬁj etc. instead of the fields ¥,%,%)

T, =1, 3 a|T +T +v_|a">a ,;
& gl © p e 'ep a

™ PO '\ a
Tp E & (1|Tp|i Yl
N X S s I\ D
Te - ?JI bj <J|Te|J )aj’
o~ . ke

=D A h,

N :
ep  i3i’j’ i 7]

. [N EH a N
(iJ'Vepli j >bJ Iail,
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ee
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aja’jjy’ e d

o N .
(aJ]Vee+Vep|a j >bj'aa"

. N
a a
ea’it’ o i

(aiIV +V |a'i')é./é ol
pe Pp 1 a

5 , , & 'a
ajonag 0y %1 %

I 7 ~
(alazlvee+vpp+vep+vpe|a1 a, ,

A s
5z

&g anlaat J J
J]_JZJ1 J2 1 2
5Ls D ATEN & .
<3132|Vee|J1 J2 )bjzlbjl"

%E ’ ’
2 . i i
111211 12 1 2

-z a
’eol
aa ji

3 e 1ol R 2
(ajlI heepla j >bj'aa'

PO P
-z e ai
acii” @

p 75 hwm w0
{ailI heppla i )ai,aa/,
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~ . K. %
E = -3% a ‘a

1t g o
oty fO 1 2

a A

Ya_ 48 i3
a, oy

o
S N\O/

Q\'I(ep'-a)= £ .48, b

e ’ ’
(o.lon2| I hee—pplal ay

aij 173 .
J
il T +1T +v Jada
P e ep a
~ ~ % . %
V(arep)= V(ep-a) = T a
aij @

a|T +T 4V 135,48 ;
| p e epl o el

V(aep-aa)= % a a, b,
(aep ) alcxl'az'ij Ll Emd

ol € ’ I\ A
(a113|Vaa-I hee-pplal a, Ya

-;I(aa*aep)= V(aep*-aa)*=

A a *
¢+ a ’

E ? ’ s a
0104 Oy iy oy 0]

’ ’ e P
<0"1 4a |Vaa-I hee-pp|a11J>

A oA A

b.a.a_
jiay
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~ W K, ke ok
V(epprpa)= L . 8. a, b,
ijiydai f1 t2 J

(i112j|Vpala1) 4,8

= (V(pa—ppe))”

V(eep-ea)= T a, b, g
13,3,03" T J1 J2

(ij1j2|Vea|aj)bjaa

= (V(ea-epe))™

It must be emphasized that the diagrams shown above corre-
spond to terms in the Hamiltonian and are not representa-
tive of any perturbative scheme. The last seventeen terms
represent the basic vertices representing interaction and
exchange in this approximation. It is hoped that even
this simplified Hamiltonian will prove to be a useful aid
toward the treatment of elementary chemical kinetics etc.
from the standpoint of basic quantum theory.

APPENDIX A

Projectors, Partial Isometries, Polar De-
composition

T Definition of Projectors and Elementary Properties

It is sufficient for our purposes to consider pro-
jectors defined on a Hilbert space . We assume known
that if P; € X is a closed vector subspace of 3, then P;*,
the set of all vectors in ¥ which are orthogonal to P,, is
also a closed linear subspace of ¥, Further, the direct
sum P; D Pyt is X itself;

x=pPp" (a.1)
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which means that for every X € X we may write uniquely

= + =
X =Xy Xl

with e, xzepl* and

i 2= o;0 = g 2 ouxgn

We define projection operators or projectors ﬁl’ ﬁll
by

a L Ak

P1X = le Pl X = Xl = X‘Xl

It then follows’ that ﬁl,ﬁll are bounded linear operators
acting on ¥ having norm one and having the properties

ﬁ.l.ﬁ 1%

% _ 1
2 T RT T B 2

PlPl =R

o5

P."=0 ,
and
L

1 1.

is a decomposition of the unit operator om . _ Conversely
if P is any bounded ogerator on ¥ satisfying PP* = P (or
equivalently P = P¥, P), then PX = P is a closed
linear subspace of K and P projects vectors of ¥ onto P,
Further Pl = 1-P 1s the projector onto P+ =X - P

i=5 +p

We now consider some elementary properties of projec-
tors related to various combinations of projectors. We
state these properties as theorems with proofs.

Theorem 1: If Pl and P2 are prOJectors on ¥, the
product B, is a projector iff P18, = P2P1'

Proof: (P p ) P2 P, ¥ = PZP so the condition is
necessary. It is also sufficient for
a BI 2 Le il 2A 2 Ao
B yBp? = BBy E, = 8%, = BB,
An important special case obtains when P In this
case the subspaces Py and P, are orthogona% For let

1ep1 and XZEPZ
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Then

(%) = (B1X1:BoXy) = (q,P1Pyxy) = 0

The closed subspace corresponding to the prOJect0£
BBy = PyPy is that which is common to Py and Pp ~ and
which we denote by Py A P,. That is
P, AP, = xee; Byx = x, Pyx = xi.
We denote the projector onto Py A Py by Pl A P2 We note
that the projector Pl A P2 is defined independently
whether P; and P2 commute. However only if P1 P2 commute
do we have .
P A P = PlPZ, (P P = B,,).
Theorem 2: The sum P1 + P2 of two projectors Pl and
Pz is a projector iff P1P2 = 0,

Proof: The sum is Hermitian since each term is.
Therefore we need only to have

” A 2 A a a2 aa A -«
(B, + B)" = B, + B, + BB, + BB, =B, 4 B,
or 2 a A A
P,P, + P,P, = 0

This latter expression when multiplied on the left and
right by Pl yields

and

ByPyPy + ByBy = 0
Hence P Pz = P2P1’ and by the first line 2P1P2 0 or
P1P2 =

Theorem 3: The difference ﬁl-ﬁz is a projector iff

A A __X—""—
Ple = Py.
% ﬁlX = ﬁlﬁlﬁzx =l ﬁ1?2X =X
Pox = P2P1Pox =P P2 X = PlPZX =X

1
conversely if x€Py and X€Pjy, PlPZX—Plx-x, P2P1X=P2X
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Hence

a

2P2 = PlPZ + P2P1 .

If we multiply this equation on left (right) by ﬁl’ we
find

2P1P2 = 1P2 + P1P2P1
and
2P2P1 = P1P2P1 + P2P1
Hence P1P2 = P2P1 and 2P2 = 2P1P2 or P2 = P1P2 = P2P1.

If ﬁl-fz is a projector we have Py 2 P,, since x€P2=>§2x=

>

and ?1(§2X)=§1x=P1P2X=§2¥=X: which shows that x is in P.

Conversely if Pl 2 Pg, (Pl-Pz)x=xl-x2€Pl further
Py (X1 -X) =By X1 -PoX1=PpX 1 -X3=X 5 -X =0
Whenever Py 2 Py or equivalently whenever P,=P{P,, we

write ﬁl E ﬁz, which introduces a partial ordering '="
into the set of all projectors. That is

(a) P> B,
(b) if ﬁl 2 ﬁz and ﬁz = ﬁl’ then ﬁl = ﬁz
(c) if P1 e P2 and P, = P, then Pl e P3.

We note that 0 < P = 1 for all projectors P. We can now
see the consequences of commutativity for two projectors
Py,Py, fgr giyen P1P,=P,Py, then the three quantities
Pl—P1P2=P1(1-P2)=?1P2l, P,-PP,=P,(1-P{)=P,P;*, and PP,
are mutually orthogonal projectors. Hence their sum
PlPZ*+P2P1*+P1P2=P1+P2-P1P2 is a projector. Further this
projector corresponds to the smallest closed subspace
Py V Py containing Py and Py). We write, therefore,

Pl \ P2 = Pl o P2 - P1P2, AL P1P2 = PZPl

However Py V P, is defined for any two closed subspaces
Pl’PZ’ bu% ?1 % ?2 is given by the above if and only if

ﬁ1P2=P2P1.
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In general we may define

B AP, =g.1b (B3 PP, Ps P,
and
P,VE, =1ubd {P; P = Pl, BP=pl

The existence of ?1 A ﬁz, and P, V ?2 for every pair ?1,?2
of projectors means that the set of all projectors with
the partial ordering as defined above forms a lattice, the
lattice of all projectors on ¥ or equivalently the lattice
of all subspaces of ¥. We would like to find the projec-
tors Pp A Py and Py VP for general pfojecgors Py,Py,
However, we need only an expression for Py A Py, since we
shall show below that

A Al A gy ol
Py VB, = (B;" A By)
We now find an expression for ﬁl A P,. Note that if

xE?lAﬁz, then P;x=x and ﬁ2x=x so that (P,Py)Mx=x. This
suggests that we explore the properties Of (Ple) . Let
Zy = (P1P2)Nx for any x€X. Then

*

2 N Cuf o A 2
WP, 2 1" = (kg + 1 - Pl)PzzNH
PSS 2 A I A 2
HPlPZZNH + (1L - Pl)PZZNH
2 SR 2
= iz . 1H + (1 - Pl)PZZNH
Similarly
2 P 2 PN 2
Nz = = HPZZNH + (1 - PZ)ZNH )
SO
2 2 2 A a4 2
12y - 1l| HPzzNH - (1 - Pl)PzzNH
and
A 2 2 5 2
e, Zgh= = HZNH - lir - PZ)ZNH .

* I am indebted to Peter Breitenlohner for suggesting
this argument, which will show the existence of
I}I_J;Q HZN” =I:‘LT§21 ||P22NH-
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Therefore

Nzgl = UBZyl = Nzl
this shows that &Eg HZyll = a, exists, and also that
é}g 1P5Zll exists and is equal to a,. Similarly .
lim L - ﬁl)ﬁzzNH = 0. To prove that &Eg-s(ﬁlﬁ2)
exists, we must now establish that lim [IZy - Zyll , as M

and N tend independently to infinity, exists and is zero.
This proof is not quite as simple as we might 1ike*,
although it is straightforward. It is patterned after the
proof of von Neuman7, who establlshed the existence of
1im—S(P1P2P YN and 1im-S(P and showed that

PyABy = 1im S(P1P2P2)N = 1 %PZPIPZ) We have

12y 2l =(gymZygs g2 = Eogs 2y )+ (2 2o = s 20D - (220 »

so if we can show that each of the four scalar products
has a common limit, the existence of éim_ZN is established.

Consider
By = (ZypsZy) =((B,P e, 28,00
MN M?TN 1= PA 12

= (BB B B N0 = By BB N0
= &un-1
So
lzy - 2yl = gy + By = 2By

I1f we can now show that lim gk exists, the lim- S(ﬁlﬁz)N

K-
exists. The quantity gy = (PZ(PlPZ)Kx X)= ((PzPle)KX X)

is real and non negative. This follows from the fact that
P2P1P2 is a non-negative self-adjoint operator. Hence

* Prof. B. Misra constructed a proof based on the spec-

tral resolutions of the self-adjoint operators P2P1P and
P1P2P1 However, I prefer a more elementary proof which

1 give here,
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(ﬁzﬁlﬁz)% exists, and

= (BB BN 2, (B33 2 = R/2, 2
gg = ((PyP1Py) ™ "X, (PP P)) ™ %) 18,88 % 10
= (B K/2
Now gy g = ((ByP 1P5)¥,y) where y = (pz ) ey
or
A ~ 2 s 2 2
Bep1 = NEPHYIT s NEyI° = yll® = gy

so gy is a non-increasing sequence of non-negative real
numbers, and hence the sequence has a limit, %im 8K = 8o
s

Therefore [|Zy-Zyll - g, + 8, - 28, = 0. It is now simple
to establish that the limiting vector Z, = 1im (Ple) X,
has the properties Plz =Z,, PZZ = Zo,,and that Z, is
obtained from X by a projector, and that this projector is
P, AP Thus

12 o . A & N
By AREgE Lies )

S
=8 (E PoEa)

A A A N
1lim-S(P,P,P
e BISEA B Byp)

By the subspace P is meant, the closed subspace
obtained by forming all 1inear comblnation of x1€P1 and
X9€Py together with limits of sequences of such linear
combinations. Any vector y in (Py V Pp)* has the property
that

(y,Zl) =0, thPl

0, ZZEP

(y,25) 2
that is yEPll and yEPZL, hence y€P;* A le. Therefore

- y % L
Py VPR, =% - (" np0Y,

and

or - a

d
=

<

3/
N
1

=1- d-8p A (d-Bp).
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, =1 - d-P)(i-p,)
= ﬁ +P, - P P as before.

1 2 1°2?
The above result may be generalized to

>

<3

o
]

[0 PN A L4
Vi, - @ pY
for any collection {ﬁ } of projectors.

We may apply a projector P2 to each vector in the sub-
space Py = Pl
|
The result is in general not a closed subspace. However,
we may close it FzﬁfK = P, o P, and ask what is the pro-

jector P2 o ? for this subspace. In order to find
Py o Py we con31der the symbolic diagram:

B R

Let X be in the complement of P, 0 Py in P,. Then

(x,PzPlZ) =0 vZex
or
(P,P,x,2) = (Bjx,2)  vzex,
Hence .
Plx = 0, so
XEP and xEP P2. Thus the complement of Py, o Py in
}S Pl A P2
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Therefore

o
L)
il

P, - P, A Pll, or

4

=3 Bop il P1

2 2
Support: Closed Range (cf. Dixmiers)*

P, oB, =P

Consider now a bounded operator A. We define the
null space N(A) of A by

N(A) = {x,xex,dx = 0}

The support of A is defined to be the orthogonal comple-

ment of N(A) o » )
s(d) = N(A)

with projector §(A). Clearly

§(A) = inf {§;(88%= §) A = A8}.
is therefore called the right projector of A.
RP(A) If x + 0, x€S(A) then AX f O _for otherwise
= > Y€EN(A) which is orthogonal to S(A).

i
0

We define K = R(A), the closed range of A with pro-
jector R(A)

A~

e.g. R(A)X = R(A) = AKX

clearly ﬁ(A)A = A

and in fact

"

R(A) = inf {R,RR* = R,RA = A}

So ﬁ(ﬁ) = LP(A), the left projector of A.

Theorem: R(A)

S(A*), or in terms of projectors

% The remainder of material presented in this appendix fol-
lows Dixmier8 very closely. It is included because we
need the results to more firmly establish our own.
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Proof:

A = R(AHASA)
Therefore . O

A% = S(A)A*R(A)
and hence .

S(a) = R(A™),
and

R(A) = §(&%)
Therefore . =~ e .

R(A) = S(A") = R(A),

and

S(A™y = R(A)

Partially Isometric Operators (Cf Dixmier 8)

Let G be a bounded operator on X, S(ii) its support,
G is said to be partially isometric if G is isometric on
S(0) = S(1)X. Then R(d) = & = GS(d). The range of G is
a closed subspace of ¥ and G maps S({i) isometrically on
R(G).

S(0) is called the initial projector of & and S(&)
the initial subspace of u.

R(G) is called the final projector of G and R(G) the
final subspace of . Let X€S({), then y = Gx€R(() and for
all 7Z€X, we have

(x,2) = (8(®)x,2) = (x,5()2),

and since both ¥, and $(Q)Z are in S(O),

(x,2) = (bx,08()2) = (4x,uz)
= (y,02) = (§y,2) VZEK
x = &y

Now from (X,2) = (&*0x,Z)
follows %y = X ¥XES(Q)
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and therefore since Gy = 0 implies y€S(G)*,
%0 = §()

Now S(&™) = R({), R(G*) = S(&), and if yeR(D) = S(0™),

%y = x, G is isometric:
yER(Y) = S(U*) since y = G x is isometric.
Again . A
(y,2) = R(wy,2) = (y,R(0)Z)
= (&, TR®2)= (%, 5%2) ([@s(E)=0)
= (4b%y,2) vz
w®y =y yyerR(d),
Hence 40* = R(&).
Conversely:

Suppose WY =8 1s a projector
W2 = (A, Ex) = (W, X)

Gx) = G0 = 18a?

Thus W is isometric on S = 8K and zero elsewhere

Further il =
WW" = R(W).

1f VV* =R 1s a projector then ¥ is partially isometric

on R(V) = S(V ) and V is partially isometric on $(¥).

Polar Decomposition:

Let A be a bounded operator on ¥, and §(A) be the
projector on S(A), and R(A) be the g iector on R(A).
Let us deflne the operator |A| = )%. Then for VZEK

Azi? = (Az,Az) = (A*Az,z)

N ~ a N 2
= (|4l %z,2) = (l&|z,|A|z)y = Il |&lz 0
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Hence S(A) = S(|A|) and R(|A|) = S(|A|), since
= |A|. Further the correspondence

IAI*
[Alx ~ A

is a linear and isometric mapping W' from S(A) to R(A):
Ax = W'1Alx

We extend it by closure to all R(A):

A =Wwa4l.

S = sy,
R = R(A).

The expression A = WA] is called polar decomposition of
A. We state the important results:

S(&)

=
=
]

WW* = R(A)
We now adopt Dixmier's notation to fit our needs. ﬁM’ A

are projectors with subspaces Py and A.
We have seen that

ﬁ(AﬁM) =Ao ﬁM = A - AN ﬁM

= 3(AB™ = 3¢ M
R(AR) = S(BA) =B o B =4 -An ﬁM*
R(BA) = §(A§M) = ﬁM o A= ﬁM . ﬁM A A

We know therefore thgt there exist§ an isgmetric
mapping Wy from S(PyA) = KPM to R(PMA) = PA
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Further

BA = RIBAl = |4B|%

AA* A A A ~ ~
My = R(RA) =Py oA =Py - Py

Thus wM € APM is mapped

il
J
'
o]
=S

into

Sy = Wby SSPA =Py oA
and . . e 5 "
Y Sy = Yy Wyl = Sy 0 Ay
= R(APM)llJM (Ao PM)WM = WM
Similarly
€p A =
EM PMA PM oA
is mapped into i
Yo =1 Wiz By
M MM
and " B o
waM MM s
R(PMA)EM
= (PM o A)";M = §M
APPENDIX B

Additional Comments on RM

Let us introduce the unitary permutation operator
4 (P,Q) defined by

(ﬁ(P,Q)w)(Xl"'XN;yl'“yN) = ¢(xd L S A8



92 WESLEY BRITTIN

where P is the permutation (a;...a,) of (1...N) and Q is
the permutation (Bl ..By) of }1 With this defini-
tion

N 1
A= 33 %% te,0

where the sums extend over all possible permutations P,Q,
and €p,€q are the signatures of P and Q respectively, We
now write ?M in the form

P

B(1)®P(2)®. .. P®I(M+1) .. .01 (W)

13M P(1,1)®P(2,2)®P(3,3)...9P(M, M
(supressing the unit operators on the remaining N-M elec-
tron and proton variables) in which the first number K of
K,K in P(K K) refers to proton coordinates and the second
to electron coordinates, With this notation

. % e P N
Ry = P8P (M+1,41) PP (MHL, M)

P

x Ix...x1x1 except at

>

where ﬁ(M+1,M+1) etc. includes
the (M+l)st position.

A first objection to the use of ¢ . might be that,
since the electrons and protons are idenélcal and W
assigns the first M electrons and first M proton to t%e
bound atoms, s could not be a good basis. This objec-
tion is not vallé however, for suppose we use a new basis
in which a permuted order for the electron and proton is
used:

Y Moo Mo
(6 (o) Sy (P,Q) "aij

aij

Then for a physical state ¥, G(P,Q)w = §P€Q¢,

(P Q)” = *p°gh

T |y

. M
Pe, oij' ! (BQ)

AM. ¥

M B
g el T 8,0 k.0

ﬁ(M+l) AM+1A*

AMA
@0 = Gk, Segr ™ Re g = 4 o i
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In the new basis § = % ¢%} Q) where
I

M

M s Ma _ -

e, Se,0f S’ T CrieoR ¥ = St
thus the coefficients C(P Qal] in the new basis have the
form

M = o )
(P,Q)ai] (PQ)aij’ (PQ)
= U M G
‘“<p @ Yaij ’ePeQu(PQ)wM)
2o, o150, 0 W
_ M
= Q(‘l‘aiJ,‘yM) = €P€Qcaij.

Therefore for a physical state the new coefficients differ
from the old by a single overall factor epey * 1, so the

description in terms of C for the orthog nal subspace
aij P

Ry is essentially independent of which electrons or protons
we label 1,...,N.

A further objection might be that although we may ex-

pand a physical state ¥y into orthogonal (non physical)
states wM

and although

the Ay, are not orthogonal and therefore do not correspond
(dlrecgly) to physical M-atom states.

This disadvantage can be further elucidated by con-
sidering that

ﬁM < P(M,M)
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and R cannot be considered directly as the physical M-
atom subspace since if we examine RM A we note that

f’(M,M)f{M AA = RM A A
Further since

P(M,M) = P(PM,QM){

S, (,Q

and A is invariant under 4(P,Q), we have
f>(PM,QM)f<M AA =Ry A A

But we know that f’(M+1,M+1)RM = 0, and hence

f{MAA=o,

s0 Ry does not contain any physical states.

This result is not as disturbing as it may seem. We
are using a decomposition of a physical states § into non-
physical components Ry, which, although strange in appear-
ance, is not 1ncorrect It becomes somewhat a matter of
taste whether or not to use the simple RMw s with COLlJ s
not having the symmetry we would like.

Finally we mention that not all cM, . having the cor-
rect symmetry* represent physical statesT Only those
satisfying a subsidiary condition can be states. The sub-
sidiary condition is determined from

M M sy _ 4 M
C(.ij ( CLlJ’qJ) ( CLlj ,A‘J’) o (Axaij:‘b)-
M M’ M’ Ay

However we may expand Ax 1 ﬁ g'i'j'xm’i'j/(xa'ilj alJ)
to obtain

M M M’

S o
Caij Ty i’i’j'(xalJ’Axa' . ')Ca L3

wCorrect symmetry here means that

(¢} . PR . are completely s etric in
e Oy Ay dpgr eIy P Y Symm
Qg e Qs completely antisymmetric in i

. and

M2
o e

N’
completely antisymmetric in jM+2"
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In the above result Xgij are just those defined by Eq. 31:
M _aM _a M s M _ .M _a M
Xo1j = Raij = PMlats - Pwi’ais = Yaij T PwrrVaij
F
=0 (x,y)..0 (xyI 0. . o, .0, V. b, (v,
ag VT W S Pl Yy e N
APPENDIX C
Proof that
A, =(AobP) AP, .~
Ay = (Ao by APy
We start with expression 3.12 for AM
N " ~ KW ~ A L
AM = A A PM+1 - A A PM
A L, a A L oL
A A PM+1 (A A PM )
Y A LA A 4
since A A PM <A A PM+1

~ 1 a Ay by L
SePei A A (AA B )
since (A A B)AC = A A@B A O)
~ all ~ ~ ~
=B g o {AANAO PM}
BU't ~ ~ A A a ~ A L
AobP, =A-AANP =AANAANP, ) and
M M M
AN (Ao PM) = Ao PM since A o PM < A, and therefore
A, =P . "AAopP)=(@Ao0b)AD *
M- By NA 0By = (AoPBy M+l
(or) . 2 .
s {A - 24 L 1A Bl ’
(ox)

AM = {A -4 NGRS RY (G
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SOME HEURISTIC REMARKS ON ALGEBRAI? TECHNIQUES
IN STATISTICAL PHYSICS

Joseph Dreitlein®
University of Colorado
Boulder, Colorado

Introduction

The introduction of _sophisticated algebraic techniques
into statistical physics® has divided physicists into two
non-communicating groups - those who categorically denounce
them and those who view the techniques as a door opening to
a view which could lead to the formulation and even solu-
tion of some of the outstanding problems of statistical
physics. The barrier which separates the two groups of
physicists is the language, arcane to the average physicist
and Shakespearian to the devotee. The main purpose of
these lectures is to attempt to bridge the gap between the
two groups of physicists by wording familiar situations in
both the secular and the professional mathematical language.

Physicists have been faced more than once before with
mathematigal refinements, Even Einstein reacted somewhat
adversely~ to the mathematical reformulation of special
relativity with the statements ''Since the mathematicians
have attacked the relativity theory, I myself no longer
understand it any more" and "The people in Gottingen some-
times strike me, not as if they wanted to help formulate
something clearly, but as if they wanted only to show us
physicists how much brighter they are than we'. Neverthe-~
less, Einstein went on to develop the general theory of
relativity using the highly mathematical theory which
sprang from Minkowski's formulation,

Briefly stated, the algebraic approach is designed to
handle the peculiarities which arise when a system is con-
sidered infinite in the sense of having an infinite number
of particles in an infinite volume but with finite density.
The peculiarities encountered include non-equivalent

*This work was supported by the National Science Foundation
under Grant number NSF GP-19479
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representations of the commutation relations and, most
spectacular of all, a breakdown of the symmetry™ which the
Hamiltonian of the finite system possesses. This symmetry
breakdown is the tocsin of a phase transition.

Two issues cognate to the subject are worth noting.
The first is that not all statistical phenomena are ex-
plained by taking the thermodynamic limit (N-w, V-=, 5 =p)
for which the algebraic method is specifically designed.
For example, thermal conductivity is volume dependent for
highly purified solids, such as solid He™, at low tempera-
tures. There are also conjectures5 that near the critical
point of fluids, certain observables may depend upon the
number of particles N in the system.

The second observation is that the algebraic tech-
niques used in statistical physics are also appropriate to
the quantized relativistic field problem. Indeed, the only
exact analysis to date of such fields, the %,  superrenor-
malizable model, uses heavily the algebraic and analytic
apparatus of the genre discussed here. The status of such
investigations is nicely reviewed by Jaffe”. Questions
such as uniqueness of the vacuum (called cyclic state be-
low) and symmetry breaking are shared by both relativistic
and non-relativistic theories.

Compared to the problems of formulating and under-
standing quantum electrodynamics, the non-relativistic many
body problems appear almost insignificant. Yet a hope is
that a thorough understanding of the latter case will serve
as a springboard for taking off into relativistic domains.
For some, this may be reason enough for formulating statis-
tical physics algebraically,

I. Algebraic Description of Discrete Finite Systems

For quantum systems described by a finite dimensional
Hilbert space (C"), the measurement of a dynamical variable
associated with the self-adjoint operator A involves re-
peated measurements on states concocted each in an identi-
cal manner. The measurements yield up a number <A> which
can be theoretically calculated from the expression

<A> = tr p A
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The density matrix p is hermitian, of trace unity and non-
negative. It describes a mixed state unless trp = trp

In none of the considerations in section I need p be con-
sidered to describe an equilibrium situation,

It is useful to redescribe this simple picture in a
more formidable algeraic language with the goal of formu-
lating a scheme which carries over to description of sys-
tems with an arbitrarily large number of particles (ideal-
ized to systems with infinite number of particles). With
an appropriate algebraic language, one can hope at least
to state clearly such important physical questions as what
is meant by multiple phases in the thermodynamic limit, by
symmetry breaking and by the development of irreversibility
from microscopically reversible finite systems.

1. The Space of Observables and States

Certainly in the set of observables ¥ all her-
mitian operators should be included. Furthermore, if
it be realized that any operator on cN can be written
as the 1inear iomblnatx n of two hermitian operators

A

(viz, (A+ )+ 1(A A )), there is little point in

not extendlng the set of operators under consideration
to include all N x N matrices., The restriction of the
algebra of observables to purely hermitian operators
has, howevsr been investigated by Jordan, von Neumann
and Wigner’., The question of observables becomes more
acute for a spatially infinite system because of the
finiteness of measuring instruments,

The set of all N x N complex matrices forms the
complete matrix algebra ¥ on cN. 1t is an N? dimen-
sional vector space and closed under matrix multipli-
cation. This means, if A€Y and B€Y then

(XlA + XZB)EM (vector space property)

(1)
ABEY

where Xl and XZ are complex numbers. The algebra

possesses an involution-hermitian conjugation- and
can be normed by setting
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= 2

where |||l is the norm of the vector ¥ in CN
The norm has the defining properties

(N.1)  llal = 0; JlAl=0 1ff A=0 3)
(N.2)  A+BIl = liAll + Bl

(N.3) Al = M| Al r€C

(N.4)  11AB|l < Al |IBI!

(N.5) I =1 (I=identity)

(§.6) At = Al

The normed algebra with these properties is called a
C*-algebra, It is closed with respect to this norm,
Further mathematical details can be found in refer-

ence 8.

A state on the algebra determines the results of
any physical measurement on an ensemble prepared in a
way described by the state. It is an assignment of a
complex number (real for hermitian operators) w(A) to
every element A€Y, These numbers should agree with
the rules of interpreting quantum theory and, of
course, describe the experiment. To be a state, the
functional w must be linear (superposition principle)
and non-negative for positive observables. Require
therefore

(s.1) w(klA1 + XZAZ) = xlw(Al) + xzw(Az) %)
(s.2) w(ata)y = 0

(8.3) w(I) =1

The last requirement (S.3) means that if the identity
I be resolved into mutually orthogonal projectors
(physical alternatives); I =%p , p. p_=8_p , then

one of the mutually exclusive pgssigiTities associated
with these projectors is sure to occur,
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What are the possible states and how can they be
classified? To answer this question, a geometric
picture of state space 8 may be heuristic. The set
of all (bounded) linear functionals on ¥ itself forms
a space, here of dimension N“ over the complex num-
bers. This follows because the combination A f1+X2f2
of two linear functionals is itself a linear func-
tional because it satisfies S.1. 1In this so called
space dual to ¥, the set of non-negative functionals
form a convex subset which is geometrically a cone.

A set § is convex if f,£,€S implies that

lel + (1-2)f,€8 for A réal and between 0 and 1. The
set of all states satisfying S.1, S.2 and S$.3 is a
cross section of this cone and itself a convex set.

For the finite dimensional case under considera-
tion, the linear functionals representing states have
the representation

w(A) = tr(pA) (5)

where the density matrix p 1s any positive hermitian

matrix normalized to tr p = 1 (Hermiticity of p fol-

lows automatically from linearity and non-negativity

of w), States realized with the density matrix con-

struction are called normal states. Every state of a
finite discrete system being considered in this chap-
ter is normal.

2, Symmetry and the Classification of States

The set of all physical states 8 ordinarily does
not come into consideration when studying a physical
system. The reason is that the admissible states are
restricted by the prearranged experimental conditions.
For example, the system studied may be in equilibrium
or it may be spatially homogeneous. Both these con-
ditions are brought about by allowing the system to
interact with itself and the environment for a suf-
ficiently long period of time. In addition then to
specifying the observables and the possible states,
physical systems have imposed upon them various sym-
metry properties.
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To describe a symmetry of a system, the auto-
morphisms of the algebra of observables ¥ are used.
An automorphism of ¥ is a mapping of the elements of
2% into themselves

a: A - a(A) (6)

which preserves the algebraic properties

(A.1) a(rpA) + My8,) = ha(A) + ha(ay) (7
(8.2) a(A)8,) = a(A)a(b,)
(A.3) fa(a)ll = llall

(a.4) a(a™y = o)1t

In particular, the set of automorphisms considered may
form a group., Let {g.g,...} be elements of the group.
Then the group property is

agl[agz(A)] 5 Gglgz(A) (8

An example of a symmetry group of a system is the
group of time displacements at(A)

o (o W] = o o @ ©

By definition, a state is invariant under the group G
if
w[ag(A)] = w(A) for all A€¥ and g€G. (10)

States invariant under the group of time displace-
ments are called equilibrium states, The states of
interest may be restricted by demanding that w belong
to the set of states invariant under some symmetry.

Suppose that the set of admissible states is re-
stricted to some subset R of & which is convex. Every
convex set possesses a set of extreme points E(R) with
the defining property
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(E) If w€E(R) and w=kw1+(1-k)w2, then w,=w,=v

1
for real N between 0 and 1, (11)

The states in E(R) are the pure states. All other
states are mixed states (For a finite system, a pure
state in the set of all possible states & entails

tr p“=1)., Remember that this terminology is relative
to the set ® being considered.

When the states of a system are restricted to
those invariant under a group G, the subset of states
will be called 8,, the set of G-invariant states.
States which cannot be decomposed into a mixture of
two differing states invariant under G are called
extremal invariant with respect to G and will be de-
noted by E(SG).

For the mixed states of the system, it is always
possible to decompose the state w as a linear combina-
tion of other states in an infinite variety of ways.
For example, let the set St be the states invariant
under the time displacement group T of some Hamilton-
ian., Let the spectral decomposition of the density
matrix p be §papa then,

w(A) = Zp w (A) (12)

wa(A) = tr paA

Even this decomposition is not unique if any two of
the p, are equal (Try p=1!). 1In this case the state

w has been written as a linear combination of extremal
states. 1In order that all points of a convex set in
N dimensions be a unique combination of extrfmal
pointsN Ehe convex set must be a simplex oN-1, (A sim-
plex 08" % is the Nth element of the sequence: point,
interval, triangle, tetrahedron ...). The physical
import of these considerations on extreme points will
become clear only when infinite systems with multiple
coexisting phases are considered,

It is clear that the symmetry properties of a
system do not restrict the set of admissible states
to a degree sufficient enough to specify the state,
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Besides homogeneity and statiomarity, ordinarily the
temperature is set and suffices to determine the
state, While this restriction cannot be imposed as a
symmetry, it can be imposed as a condition on the
state, Consider

tr e-BK(AB) L tr o B o Py P

= -BK
tr e PX ELje P

w(AB) = @3)

Define

-BX B3¢ (14)

aB(A) =e Ae
The above devslopment motivates the imposition of the
KMS condition” on the state

w(AB) = w(BaB(A)) (for all A and B in %) (15)

This condition suffices to prescribe the state of any
finite discrete system uniqely. The proof goes as fol-
lows:

BK BK

=tr(e Bxkeﬂx

(1) tr p(AB) = tr p Be
-B}CAeBKp)B =0

P)B (16)
so tr(pA-e
(11) Since B is arbitrary, choose it equal to the

hermitian adjoint of the exgre %on in paren-
theses and conclude pA = e

(1i1) Premultiply by eP¥ and observe eBKp commutes
with all A, hence is a multiple of the ideg-
tity. Normalization yields p = e~ BX/tr e

For infinite systems, while &ig ePYN will not exist

Kﬁ=N part&cel Hamiltonian), it is often true that

%33 e P¥pe" N w111 exist and offer a means of compu-

3. The GNS Representation

The most familiar realization of the linear func-
tionals w and the algebra of observables has already
been cited, viz the specification of the state by a
density matrix and the representation of the algebra
by the N x N matrices with w(A) = tr(pa).
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Another possibility is to represent the algebra
of observables by matrices acting in a Hilbert space
CM(M.>N) and obtain the state functional w as a single
matrix element of the observables represented. The
GNS (Gelfend, Naimark, Segal) constructionl0 leads to
such a representation both for finite and for infinite
systems.

To see the main feature of the GNS representa-
tion, consider a pure density matrix which is neces-
sarily of the operator form

p = |8> <§| <¢le> = 1 (17)
The observable A records as the number
w(A) = <A> = <8 |alE> (18)

One might wonder if there 1s always a representation

of any w of this type even for mixed states to be pre-
cise, does there exist a representation of observable
operators 9 (A) acting in a Hilbert space I(, such that

w(a) = (2,9,(8)¢%) (19)

The GNS construction leads to such a representation,
Furthermore, the representation of this form is ren-
dered unique if we demand that |&> be cyclic. A vec-
tor ¢ 18 cyclic relative to the algebra ¥ if the set
{D,(A)? |AcU} 1s dense in the space ¥, that is, for
any vector ¥ in the space X |]y-D,(A)%|] can be made
as small as desired by a suitable choice of A, In
other words, the space ¥, has a set of operators D (%)
which are not too sparse, The cyclic vector ¥ is of-
ten called the vacuum,

Recall first the defining properties of a representa-
tion

(R)) O, (1144 8,) = A 0 (A))41,0 (A)) (20)
(R)) B,(AA,) = B (A0, (Ay)

(Ry) o, (") = [0, (A)]*
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To see what is involved in the construction, the
details will be worked out first for systems whose de-
fining representation operates in C“. The algebra of
observables % in the space (physically realized as the
space of a spin % particle or of photon polarizations)
consists of elements ¢ of the form

c = a°00+a101+3202+a303 (21)

with o, as the identity and the multiplication law

ciaj = 61j+ieijkdh 1 105 [T () B S (22)
With no loss of generality, the density matrix may be
chosen as
eYcB
PREe——ri (23)
tr(e'’3)

The linear functional thereby defined has the action

w(oo) =1 w(ol) = w(cz) =0

(24)
w(c3) = tanh vy
Seek a representation of the form
w(@) = <¢|9 (9) 2> (25)

Clearly O (0) cannot be an irreducible representation
of the algebra for vy + ©, (There is only one irreduc-
ible representation of the complete matrix algebras.)
The next simplest representation is the 4-dimensional

one
2(0) =[‘(’, 2] (26)

Setting ¢ = (¢1@2@3§4)T (T is the transposition to
colunm form), seek ¢ such that
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2 2 2,112
<é|a( ) (8> = o] +|§2| g |+ 19] %=1 (27)
<tlo@)) |8 = (8,008, 1)+(§3 i 3) it
<t[0(0,) 18 = 1(3)",-2,%8 )41(8,78,-8,70 ) = 0

2 2
<@]n(c3)|@> = l¢1| -f¢2| +f¢3[ -|@4| = tanh v

The solution is

1+tanh v _ | l1-tanh vy
oy = JLHEERY g | o f1EEIRY (o
le,| = 12,1 =0

It is convenient to take instead a related representa-
tion

9(0) = [% g] ¢ =000, (29)

for then we have (with a phase choice) the product
form
J 1+tanh vy
2

¢ = ® (3
?/ 1l-tanh Yy
2

1+03 1--03
Q@) = | —-—|® ¢ + ®0c (30)
2 2
N N’
Recall that if @€C” and ¥€C, then ¥®x, the direct

product is a vector in C with components ©, xJ

While the representation is reducible, ¢ is cy-
clic (if v 4 «) since =

140 1+tanh o
D[c[ 5 3]]@ =«/__2‘"'— ® v(é)

1-03 P 0 1
n[a[T]w =| l-tanh 9| ® 0(0) (31)
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1
clearly spans the space C4 since 0(0) generates the
space C-,

To summarize, the GNS construction provides us
with a representation of the algebra of observables
% such that the state w is represented by the matrix
element of a cyclic vector

w(A) = (%,9_(A)%) (32)

Formally, this insures that all calculations at fi-
nite temperature ''look like' calculations at zero
temperature,

Given a linear positive functional (a state) w
and a C*-algebra of observables, GNS have proved the
existence of such a representation with a cyclic vec-
tor &, The representation is irreducible if and only
if w is a pure state, Note that in the representation
constructed above, the state is pure at y== (zero tem-
perature) and that ¢ 1s no longer cyclic, The GNS
construction then leads to the two dimensional repre-
sentation

L) = (2,08) 5 & = (p) (3%

4, The Representation of Finite Dimensional Algebras

The explicit construction of the GNS representa-
tion for the finite dimensional discrete systems pro-
vides a concrete case illustrating the structure and
properties of such representations.

With no loss of generality, the density matrix
specifying an N level system may be assumed diagonal
with eigenvalues p.p,...Py. Let E'™ be the matrix
with entry 1 in thé fith row, mth column and zero
elsewhere. Then

nm
tr p E = pnénm (34)
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The GNS representation then must have

<e |9 (E™) |e> = o8 (35)

All elements of the algebra are obtainable from EM™®
since

A=% a_E°
rs IS

(36)

where of course the bases EYS are dictated by the
state p. The multiplication law in ¥ is determined by

mn._rs ms
EE" = 6an (37)
Introduce the transposition operators P oper-
ating on CN. These have the defining propergy
T T
Pn(cch"'Cn"'cN) =(CnCZ”’C1"'CN) (38)
p=p p %1
n n n
Write
rs, _ mn rs
QE ") = X E © P E 128 (39)
Clearly,
mn s, _ ms
O(E HD(E) GnrD(E ).
(L E™ Hy=[o(e™]* (40)
Set ¢ = (AlAZ"'An)T ® (100...0)T. Then since
rs T_ (1l n=r=s
(100...O)PnE Pn(100...0) = {0 otherwise (41)

only the terms with r=s in <% |O(E'®) |¢> are non-zero
But 8 %
<e|9(E™) 8> = A _"A_ (42)

Selection of Ar*Ar=p yields a representation, The
phase can be selecteﬁ arbitrarily, say
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A, =p, (43)

Is ¢ cyclic? 1If no ps=0, simple considerations show
that ¢ is cyclic. 1In this non-degenerate case, cycli-
city follows immediately from the expression

T

Ay) (44)

’Als"' NS

D(A)E=Z(0. . .Ag-..) @Ay Ay -

The fact that A =Jp #O for all s and the entries A
A—Z Ap E 1nsures that 9(¥)?% spans the space. Of

course, the representation is reducible in the general
case since (E™®1)%¢ is a space invariant under 9(¥%)

1f PN o -=p =0, the GNS representation is
in a space o¥ &R dimensions. Write in the degenerate

case
R
o(E™®) = L, E" @ P E°P_
_ T T
§ = (Ap...AQ)" @ (10...0)
A = o @5)

The vector ¢ is cyclic. In particular for a pure
state (5 poos
QET) = E .

As expected and the representation is N dimensional.

Thezreduction of the dimension of the Hilbert

space cY" as the "mixed state becomes purer'" can be
described more formally. A left ideal 3. of an alge-
bra % is a subspace of the algebra with %he property

ABEUL for all A 4, B JL (46)
One particular way of constructing a left ideal is to
consider the set of all elements B such that

tr o (B B)=0 The set so formed is a left ideal as a
simple calculation shows. To xeduce the dimension of
the representing space from CN“ to C™, find a projec-
tion operator m such that
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0 for BEJ

mo(BtB)m X

w(TO(A)T) = w(a)  for A4T Y))

The GNS construction then leads to the Hilbirt space
c¢MR spanned by the vectors in Ty where y€cN“, This is
what was done in the previous paragraph,.

To conclude the discussion of the algebras acting
in CN, it is interesting to note that although the GNS
representation is generically reducible for finite T,
the algebraic representation is economical in the fol-
lowing sense. Let 9(¥)' be the set of operators in 3(;
which commute with all 9(¥). Then

D) N D) = AD(E) (48)
Q(E) = representation of the identity

Such a representation is called primary. In addition,
the property

Q@) = [0(A) '] = 0(¥) 49)

can be verified. This last property defines the repre-
sentation algebra as a von Neumann algebra. A von
Neumann algebra is a factor if it satisfies the condi-
tion of Eq. (48). To prove these statements it suf-
fices to exhibit the elements of 9(¥)' explicitly.

B belongs to 9(¥)' if it is of the form

R

m
m‘f} bn (E ®PP) (50)

for arbitrary complex b .

I11. Algebraic Treatment of Infinite Lattice Systems

The remaining presentation will be concerned with in-
finite systems of a special type - lattice systems. A lat-
tice z9 is the set of all elements indexed by a d-tuplet
of integers (nl,nz...n ) = n. Physical lattices occur
naturally in crystals %here d=3, of course and n locates
an elementary atomic grouping from which the crystal is
made. A subset A of the lattice is defined to be any sub-
set of the lattice points.
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To each point n€zd of the lattice, associate an s-di-
mensional Hilbert sapce Cns. For example, if the lattice
is the idealization of a crystal with spin % particles on
each site then the space CnS is the two dimensional complex
space describing the spin at site n on the d=3 dimensional
lattice. Direct products (also called tensor products) of
these spaces

n€A B
® Cn (51

are the spaces of interest here. From now on, s is taken
to be 2. For A a finite subset, the Hilbert space of the
direct product is finite dimensional and the analysis of
operators in this space is straight forward. On the other
hand, when A is taken to be d itself, the infinite tensor
product has novel properties™ . It leads to an inseparable
Hilbert space.

1. Infinite Tensor Products

Nothing topologically or algebraically eventfully
happens if a set of N spins is described by the tensor
roduct of their Hilbert spaces. The tensor product

ﬂ Cﬁ is defined to be the 2N dimensional Hilbert space
obtained by forming all linear combinations of the N

tuplet
(wl,wz,...mN) = ¢ with cprECr2 (52)
with the properties
(wl,mz,...xlmrl+ kzwrz...mN) = kl(mlw3..wrl..mN) (53)
+ xz(cplcoz...cprz...cpN) (0,%) = (@5%q) -+ (PpaXg)

Upeon this space operate all the bounded operators

N
B(¢® an) which are generated by taking sums and products
of the basic operators

181®,..® 0'®1®,..® 1 (abbreviated o )

(54)
reas aér)+ a{r)air)+ aér)cér)+ agr)cg
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(r)

The action of o is defined by its action on a g~vector

(r) _ (r)
g = (mlwz...c wr...qh)
(55)
r . r r
o (xlw + sz)— MO0 + A0
In statistical physics, the simplified thermodynami-
cal properties of systems are expected to be exhibited
only when N - « ., Something mathematically eventful does

happen when the number of spins is assumed infinite.

The complete tensor product @ C 4 is defined to be
the Hilbert space constructed by takiﬁg all finite linear
combinations of vectors of the form

® = (0;0,05...) v EC (56)

and completing the space with the help of an inmer
product defined by

(2,0 = T (95,%) (57)

The value of this inner product is defined to be finite
only when the product converges. It is zero otherwise
by definition. The Hilbert space so constructed

@

® C Z is non-separable since uncountably many vectors
can be made mutually orthogonal. Such a space is not
useful to represent the physics of quantum systems.

To obtain a physically relevant Hilbert space for the
infinite dimensional system, select a vector o of the
form given above. A vector ¥ = (xlx X3 ...) is defined
to be equivalent to ¢ 1if only a fln%te number of Xi
differ from the corresponding ¢, . The usual inner
product 1s formed and is well de%ined for all finite
linear combinations of vectors of the form ¢ . A
separable Hilbert space X(9) results by taking all
finite linear combinations of vectors in the same equi-
valence class and completing the space with the help of
the norm formed from the inner product. The Hilbert space
%(p) is called the incomplete tensor product.
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+)

As a specific example, let & represent a vector
with all spins up, All victors with a finite number of
spins down belong tg #(%®"). Another equivalence class
is generated by Q(' representing all spins down. In
%(%") are all vectors with a finite number of spins up.
One notable peculiarity of infinite systems is discern-
ible here - every vector of y(@g) is orthogonal to every
vector in %(&~).

The representation of algebras in K(§+) and (&)
can be unitarily inequivalent representations as the
following example shows. Suppose that in the algebra
under discussion, there is the bounded operator

N
A=tin § 3 o) (58)
Now n=1
On K(w+), this operator is represented by 1, on (e ) it
is represented by -1. Clearly there is no unitary trans-
formation such that

G, =18 = (s
VANV = A (59)

PRI\ R |

There is a class of Hilbert spaces which should be
considered as physical equivalent to 3(¢™). All such
spaces are generated from vectors X which are called
weakly equivalent to o' . The definition of weakly
equivalent vectors is motivated as follows. Consider
a transformation V acting on #(+), which has the action

i i? id
D
5 0 0%

+ _ 1 2
V& = (e G, e oy, e

+ (60)

Lo (alaazyaga--)

Physically, the choice of the phases should make no diff-
erence in the state., V may be written formally as

V=8&e (61)
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but the matrix element
i
+ ook @
(T ,v8) =me ° (62)
may be ill defined if Z¢_ is unbounded. Instead of V
the ''renormalized" form may be used

L i Do
vie8, 2 R (63)

+ +
Then V'§( ) = & . However, the effect of V' on operator
is not completely trivial. For example,

bl

ip
o™y = ¢ R (64)

Clearly, V' is a unitary operator in the separable space
M(m+) and yields an equivalent representation of the
algebra.

The criterion for weak equivalence of two vectors
¢ and x is that

Flt-lCe, x )l <=, (65)

For vectors in the same equivalence class, the analogous
criterion is

ZIL- Gop, )l <= (66)

One advantage of working with the algebra of opera-
tors rather than with the vectors in a Hilbert space
follows from the above discussion. Rays, not vectors,
are uniquely associated with physical states. For infi-
nite systems, the phase arbitrariness leads to the
necessity of classifying vectors in weak equivalence
classes. The algebraic formulation of the structure of
infinite systems is, in this sense, strongly motivated.
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2, Algebra of Observables on lattices

For the ideal infinite system, the algebra of
observables should be somewhat restricted to accord with
the finiteness of the apparati of observation. A second
practical demand is that the infinite system be mathemati-
cally tractable. Among the other requirements, surely one
needs a simple device for constructing and specifying
states of an infinite dimensional system., 1In order to
carry over most of the ideas developed in section I for
finite s;stems, it suffices to assemble the observables
into a C"-algebraic structure called a quasi-local

algebra.

Consider any finite subset A of the lattice. On
the subset, the algebra of observables #(A) is taken to
be the algebra of all bounded operators. For lattice
systems of spin % particles, ¥(A) is simply the algebra
of all operators in a finite dimensional Hilbert space

& C2n of dimension ZN(A) where N(A)is the number of points
in “A, The set of all such algebra

fu(n): A finite, ne 2%} (67)

provides plenty of observables. The super-algebra formed
by the union of all these algebras Y %(A) is the
algebra of local observables. In the algebra U %(A)

a particular operator A(A;) acts as the unit oﬁerator on
the sublattice which is tﬁe complement of A, and has, of
course, its original action on the Hilbert Space

3(Ay)

The set of observables is conveniently made slightly
larger by completing the algebra in the norm topology.
The resultant algebra TUAY N is called the quasi-

local algebra of observﬁbles. The reason for completing
the algebra is two-fold. One is physical. For most
Hamiltonians driving the operator A (A), the time

evolute of A(A) will be contained in the quasi-local
algebra but not in the local algebra. The explanation

for this behavior is essentially the reason why a strictly
localized wave packet in ordinary quantum-mechanical
Hilbert space becomes non-localized as soon as the time
evolution operator works on it even though its norm is
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preserved. The second reason for completing the local
algebra is to obtain a C" -algebra. For C"-algebras
with a state defined on the system, the GNS construction
yields a Hilbert space with a cyclic vector.

3. States of Infinite Lattice Systems

Given the algebra ¥ of quasi-local observables,
the states of a physical system can be defined just as
was done for the finite system. A state w 1s a positive
normalized linear form (or functional) satisfying
s.1l, s.2, s.3 of section I.

To construct a state by the canonical procedure,
first take any observable in the local algebra, say,
A € M(A}). Form the linear functional w, (A) on the alge-

bra U(A}y where A > A, ., The limit is now taken as
2 i
A - 2. Define.
w(d) = lim v, (A) (68)
A= Zd

The question of the existence of this limit involves the
nature of the Hamiltonian of the system. Extensive in-
vestigations have recently shown Eng such limits exist.
In particular, Lebowitz and Lieb have shown the
existence of the thermodynamic limit of the free energy
for quantum systems with Coulomb interactions. Therefore,
assume w(A) exists for all A of the local algebra. To
define the state on the quasi-local algebra extend the
functional to the algebra completed in the norm. Such an
extension exists and is unique.

*
The specification of the C -algebra and the state w
then provides the basic ingredients for the GNS con-
struction,

4. Symmetries and the Classification of States

The realization of a symmetry on the algebra %
is given by specifying the automorphisms of the algebra
induced by the symmetry group. It is assumed that the
state is invariant under the automorphism
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w [a(A)] = w(a) (69)

which means that the physical system admits the symmetry.
When the algebra is realized as a set of bounded operators
acting on the Hilbert space obtained from the GNS construc-
tion, it turns out that the automorphism is implemented

by a unitary operator which leaves the cyclic vector
invariant.

States invariant under the symmetry group G are
called G-invariant states.

Instead of introducing more definitions and classifi-
cation schemes at this point, specific examples of infi-
nite lattice systems will now be used to clarify the
properties of infinite systems.

I1II. Simple Models of Infinite Lattice Systems

To illustrate the rather abstract formulation of
section II, two specific models of infinite lattice sys-
tems will be described in some detail. The first model
is the one dimensional Ising model; the second the Ising-
Weiss model: the latter exhibits a phase transition at
finite temperature.

A, e=Di ional Isi Mod.

The one dimensional Ising model consists of a
set of spin # particles on a one dimensional lattice
interacting via nearest neighbor interaction. The
characteristic feature is that the interaction depends
only upon the third component of the spin on each
lattice site, a limiting case of the Heisenberg one
dimensional spin system where the interaction becomes
highly anisotropic.

1. Hamiltonian of the Finite System

For an N-spin system, the Hamiltonian is

3% = _anlo3(n)03(n+1); 03(N+1)E 03(1) 70)

Cyclic boundary conditions have been chosen.
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The Hamiltonian is invariant under the cyelic group
whose action is to translate the spins on the sites in a
cycle. Another symmetry admitted by the Hamiltonian is
the symmetry group of a disc 9w. All elements are genera-
ted by rotations about the z axis through an arbitrary
angle ¢ and rotation of all spins through w radians
about any axis in the 1-2 plane. In the infinite limit
N - «  the group Ow will be broken at T = 0 .

The partition function for the finite Hamiltonian
N is evaluated by introducing the transfer matrix

BJij
Tij = e (71)
which takes on the form
v =Y
T=e 7 +te T (72)

where T, are Pauli matrices in the transfer space and
T 1s the unit mafrix. Then, a simple observation yields
o N
BYKE c(n+1) - &
n=l 3 N eV e Y\
ZN S e spEel T = 66
c(n)= 1 (T.8) e ¥el
3 (73)

Y = BJ
(T.S.) = transfer space

2. States of the System for Arbitrary T

To determine the state of the system, the
limiting functional

w(a) = tim u (4) (74)
N

will be computed. It is sufficient to compute
@) @) @),

e @ (75)
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(n))

ke .

where © is an element of the complete matrix algebra
at site n, . It even proves sufficient to compute an
even more Specialized form

(n, ) (n,) (n)
(o Paioy ) @, > ony ) e

since these alone are non-zero as a symmetry argument
shows ,

The basic observation needed to evaluate the
correlation function
Sosliinns ] ( c n +m1 (n1+ml+m2)..
N 12 1 ‘N3 93
7
(n1+m1+m2 + mr)>
o

is that

CN(m m,

17 'mr) -

1 (78)
tr M T T =TT i T
(T.5)

tr TN
(T.S)

where T is a matrix in the transfer space (T.S). It
is an eaS8y matter to evaluate the expression by utilizing
the identity

Tlg

, *
aE (2sinh"y) e

(79)

A

-
tanh( e ; € = (tanh Y)

and the state functional becomes
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w(g (ml)o (nl+ml)(7 (n,+m, +m,) ] (n1+m1~hn3+..-hnr)>
3 3 3 )
0 (r even) (80)
= m1+m3+'-+m
(tanhY) T(r odd)

Observe that the correlation functions have the factori-
zation property

W <0' (nl)c(nl-hnl)o (nl-*m:l-.,-mZ) o .) =
’ ( )3( )3 ( ) ( b
B SRR o (ngtmptmy) (o) 4wy 4, 4my)
= W <0'3 (o3 ) w KO3 0'3 > S
so that all that is needed is
(n) (n,4m;) m
w <c3 L Oy 171 ) = (tanhY) 1 (82)

Note that the Griffith's inequalities are clearly
satisfied.

To evaluate the expectation value of any element of

the algebra of quasi-local observables, the state func-
tional is extended to the elements of the norm closure

of

the generating elements whose state functional has

been evaluated above.

to

As an example, the energy per particle e is found

be
y (n) n+l
=W 4im -J T o c
<N—«>° No=1 3 3
=W < gim -J w (0§1)°§2))> = -Jw<93(1)03(2)> (83)

~-J tanhBJ
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3. Cluster Properties

The cluster properties of a system provide a
means of studying properties of the state w. To define
the cluster property, start with a group G under which
the state is invariant w [a (A)] = w(A) . For the one
dimensional Ising model, theggroups of interest are F
the direct product of the translation group T and the
group D and the time displacement group U .

A state is strongly clustering if

lim w (ag(A) B) =w (A) w (B) (for all A and B) (84)
g

It suffices to che%k the clustering properties for the

model for w(o3nd3 ). Consider the translation group
. n m . m-nta

tim 0 (5, (03"05") = ¢m (ganh) T @ o)

(85)
n, _ n+a
S oyl a=oy
For non-zero temperature
. n,  m\ _ £ n m
:i‘: w (o (03M0,") = 0 = w (63" w (95" (86)

On the other hand, for zero temperature, tanhy= 1
ny, .M
but w(c3 ) w(c3 Y =0 .
For zero ltemperature, the system fails to cluster

strongly, an indication of long range order.

The extremal invariant states now possess the
strongly clustering properties on account of the trivial
nature of the long range order properties.
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4, The KMS Condition

123

Finally, the KMS condition may be applied to the

determination of the state of the system. Demand

w (AB) = w (B og (4))

-8 - BIC
Lim QB A) = e yﬁA e MN
N =
Then
n n
st
(n+1) (n-1)]
i (G(n)_ 28Jlog +g ERrar L e
B+ € + R 1 2
+1 (n-1)
28300, 40 ]
aB(Ufn)= e E 3 o_(n) 3 0 = cl-ic2

Use now .relations such as:

) (cié)o_(n) = w(o_nas(o+é))

w (ofn)cié)) =w (a+éa5(cfn))

o [P0 = o [0 ] = el

and translational invariance to obtain

2w(ogc3n+1) cosh2y - w(cgog+2) sinh2y = sinh2y

(87)

(88)

(89)

(90)

The validity of this relationship can be checked.against
known results. This illustrates how the KMS condition

can be used as a calculational tool.
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B. The Ising-Weiss Model

In a sense the Ising-Weiss model is the opposite ex-
treme from the nearest neighbor interaction just con-
sidered. Each spin now couples equally but weakly with
all spins with interaction Hamiltonian

N I N C VR
N (aFL %3 ) (2]

Clearly the space dimension of the lattice is irrelevant.

1. The Canonical Construction of the State

To evaluate the partition function, it is easiest
to use a basis in which Zo3n is diagonal, for then

- %y R’
ZN = tr e =L IM) e
i (92)
M=N, N-2,-++, -N

(M) is the multiplicity of orthogonal states in the
space of fixed M . A simple calculation yields

non = r«!/ Eoy E (93)

As N-=, T(M) sharply peaks around M = o because
of the voluminous phase space. Indeed, an asymptotic
evaluation of (M) yields 2

1 M
ne - ——e N (94)
/27N

On the other hand, in the partition function the
energy favors large M2 again exponentially. The con-
flict between the demand of large phase space and low
energy is resolved at high temperatures by the domination
of the phase space. To see this, use Eq. (94) tentatively

in Eq. (92). Then 28J-1 MZ
(my

(95)
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If 2BJ<1l, then indeed ths approximation (Eq. 94) is self-
consistent since< M

(/) 20

The situation changes at the critical temperature

28 J =
i (96)

for now Eq. (94) can no longer be used self-consistently.

Write 2
wmn) Ef M

Z, ==L e e 97)
i M

and seek the maximum of the function

I + pJ M2 (98)
N

Stirling's approximation can be used for I(M) for all
cases except T=o. The condition for an extreme value is
then

1 1tm -
) in < 1o ) + 28Jm = 0
(99)

m - tin ()

That this is the Weiss expre331on for magnetization follows
from the identity Baah X Tl in (

Below T the m=o solution must be excluded as shown above.
Above Tz, m=0.

The state of the system is now easily determined.
Above Tc’ the state is independent of T and is given by
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(n) () (o)
w(d) = w(o M o) "2 cee0 " = 0 (A#1)

w(A) = w(l) =1

Below T , again all observables not of the form of
11? a§ comblnatlons (and their limits) of

(100)

03 2)--- have w(A) = o. Otherwise, the state is
determléed by

() (@,) (n)
w(03 og SR ) =o (r odd)

M) (@) @) ROy
w(03 04 ee Oq = m (r even)

where it is assumed that no two of the indices ni are
equal,

The ground state needs separate investigation but
again leads to the above result with m=1.

2., Symmetry Breaking

Below T , the state of the system can be written
as the linear cofibination of two states, each extremal
invariant under lattice translations. In each of the two
states the spins are all aligned in the same direction
with

wy (o4 ®)y = ul
(102)

= |m|

wz (0.3 (n))

Further considerations run along the same line indicated
in part A of this section.

3. The Cywlic Vector of the GNS Comnstruction

For T=o, the GNS construction leads to the cyclic
vector

g Dela@] oS
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and the observables are represented by

) (n,) DS 1+0 (n) (n,) (n )
lgw(:a(nl - n, ."c(nr S <_§_§) o n, = n, I By

1-0. (n;)) (n,) (n)

Sk AN A N2 -

+<2 )@o o) o0 2 (104)
The only non-obvious fact is the cyclicity of ¢. Consider

(n) (n,) ()
1+o "1 140 2 i

(nl) (nz) (n.) 3 - 3 X 1+03 =
o Yo .o (= ) (= ) J. (105)

Applied to ¢, this yields

(@) () (n)
%5 (3) ® g = g Z - ; é)
Similarly,
(n;) (n,) (n)
(nl) (n2) (n) 1-03 gl 1—03 2 1-03 X
o o o (s ) (5 )= )
(106)
applied to ¢ yields
() () ()
%7 (g) ® o 1 il g é) (107)

From these relations, it is clear that the algebra gener-
ates a dense set when applied to ¢.

The extremal invariant states can be obtained by
writing

e 1- o, @
¢={<To:—3-)®gl}¢+{<—2—o—3\)®gl}¢z7%.+7% (108)

The state w then decomposes

|
2

w
2
+ 5= (109)
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For o < T < T_ , the GNS representation is different and
1Sy of course? reducible since the state is not pure.
However, the explicit construction is again easy to carry
out (mainly because the system is separable). Suppose
the state is extremal invariant with respect to transla-
tions. Then let

(n,)

() ( o, & ()
AL AL J e P
(n,) (110)

PG e

The representation of the algebra yields a vector repre-
sentation of the state with the cyclic vector

™ J.LﬁB 1
¢ =9 2 |e
J 1-m o
2

where m is the solution of Eq. (99).

(111)

Above T o’ the same GNS construction is realized but
with m=o.

Finally, the remaining case to be considered is the
representation of the state obtained by the thermodynamic
limiting procedure for o < T < T . At first sight, it
might seem that all that it is necessary to do is to com-
bine the +Iml and -|ml representation in the following

manner

@) @) ()

8(o o e G ) =

1 1 (ni)(

+o +0 n 1 [of

kel ] i 3
- b ® ® 0 ®

(Do SR

n (n,)
1-0 +o, * (n,) 1-o (n,)
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with the cyclic vector given by

R [ N2 il
Rl [1 '

== ®[° (113)

@

L @

J

This construction yields a representation but ¢ is not
cyclic. Thus the representation space is '"too big'".
It can be reduced in half by observing that if
() (n)  (n))
I=1®mnl ® 7y (114)
® ®]

then IDw(A) I is also a representation with the cyclic
vector

7 AL

()

(¢,1+L ¢)é
2

¢! = (115)

This is the correct GNS representation for the case
considered,

Conclusions and Outlook

The purpose of these simple considerations was to
put the algebraic formulation of statistical physics in
concrete terms. Of course, the whole power of the alge-
braic approach is the general conclusions which can be
drawn from abstract generalities. There is a wealth of
literature and reviews now on the abstract structure of
the algebraic properties of infinite system. 13) what
has been attempted here is the most elementary treatment
of the principles involved in the hope of broadening the
class of physicists who might find these techniques
useful and constructive.
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BROKEN SYMMETRY IN RESTRICTED {‘:EOI*‘D.':‘.'I‘RIES'r

J. C. Garrison and J. Wong
Lawrence Livermore Laboratory, University of California
Livermore, California 84550
and
Harry L., Morrison
Dept, of Physics, University of California
Berkeley, California 94720
and
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

I, INTRODUCTION

2 The subject of these talks will be an application of
C"-algebra techniques to the problem of broken symmetry
and long-range order in systems with restricted geometries,
We will try to make the discussion more concrete by talk-
ing about thin-film systems; that is, physical systems that
are constrained to lie between two infinitely extended
parallel planes with separation L. This problem has been
studied by a number of people'~® using the methods of con-
ventional, '"finite-volume,'" statistical mechanics. There
are, however, drawbacks to these proofs, 1In the first
place, the arguments only apply to the small number of or-
der parameters that have been considered so far; and, in
the second place, the proofs use the method of Bogoliubov
quasi-averages, which has not been established within the
algebraic approach, The purpose of these talks is to pre-
sent a new proof that avoids the use of quasi-averages and
does not require the specification of an order parameter.

Since Professors Haag and Hugenholtz are giving a
series of lectures on the foundations of the algebraic

t This work was performed under the auspices of the U.S,
Atomic Energy Commission,
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approach, we shall mention only a few points that are of
importance for this application. We shall take the con-
crete view that the algebra of observables ¥ is realized
by bounded operators on the canonical Fock space bp(T)
corresponding to the configuration space I' relevant to the
problem. In the present case, T is the space between the
two bounding planes. The groups of physical symmetry op-
erations (e.g., time translations, space translations, ro-
tations, etc.) will be represented by automorphisms on %
we assume, in addition, the following local structure:
Each continuous one~parameter automorphism group F = {ax}
is locally generated; that is, for each finite volume V&T
there is a self-adjoint operator Q(V) acting on 5 (T) and

axA = %iﬂ exp[ixQ(Vn)] A exp[-iXQ(Vn)],VAem,axeF,

where V19> V, and Y V, = T. We will assume that physi-
cally admissable states w on ¥ can be extended to act on
the unbounded operators Q(V). More precisely, we require
that the local algebra (V) includes the spectral projec-
tions of Q(V) and that the state w is locally normal; that
is, the restriction of w to U(V) is given by a density ma-
trix, The precise assumption is then that the local den-
sity matrix gives well-defined average values for unbound-
ed operators like Q(V), This is a reasonable assumption
since w is supposed to be the thermodynamic limit of local
Gibbs density matrices.

The groups of particular interest are those that
leave the Hamiltonian invariant; their infinitesimal gen-

erators are usually defined by a density q(r) which satis-
fies a continuity equation:

QW) = | d°r a(o),
v

ES%ELEL + v « I(r,t) = 0,

where I is the current associated with q.

Finally, we will need the Kubo-Martin-Schwinger (KMS)
condition, A state w is said to be a KMS state if
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Jar £(c - ipu(Ba()) = [ar £()w(A(r)B) VECD, A, B € 1,

where A - A(t) denotes the time~translation authomorphism
and ® is the space of C” functions with compact support.

With this background in mind, we can go on to con-
struct the necessar; ! for the study of long-range
order and broken symmetry in thin films,

II. LONG-RANGE ORDER AND BROKEN SYMMETRY
We have so far discussed the action of symmetry opera-
tions on the algebra of observables %; now it is necessary
to consider the symmetry properties of the states, Let G
be a group represented by automorphisms {ag tg € G}, then
a state w is said to be G=invariant if w(c A)—w(A)VAEM, geG
and to be G-ergodic if it is an extremal Point of the con-
vex set of G~invariant states. Recall that a state is ex-
tremal in a convex family if it cannot be represented as a
nontrivial convex combination of two members of the family,

Let G be the invariance group of the Hamiltonian,
then Professor Ruelle has argued that a state w describing
a pure phase of the system should be G-ecrgodic. We now
want to show that this property of being G-ergodic leads
to the relation between long-range order and broken sym-
metry. For homogeneous systems, G will contain a spatial
translation subgroup T, for which we shall use the special
notation

A(x) =0.XAVA ELUl . T TERTS,
A T-invariant state w is said to be stromgly clustering if

lim (A(x)B) = w(A)w(B) VA, B € ¥,
X |~
and weakly clustering if

lim
V=0

<=

J‘V d” x w(A(x)B) = w(A)w(B) VA, B € U ,
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where v is the dimension of T, I will say that a state

w exhibits long-range-order if it is not weakly cluster-
ing. The intuitive idea of long-range order is that some
pair of observables is correlated for large separations;
that is, the strong cluster property is violated. The
definition I have adopted is more stringent, since it ex-
cludes cases where weak clustering is satisfied but
strong clustering is not., The strong definition agrees
with the definitions customarily employed in discussions
of Bose condensation, superconductivity, crystal forma-
tion, etc.; and it has the further advantage of yielding
the usual relation between long-range order and broken
symmetry., To see this, we need some results that are
conveniently gathered together in Professor Ruelle's book’

Theorem 2,1, A T-invariant state w is T-ergodic if
and only if it is weakly clustering. In other words, a
state exhibits long-range order if and only if it is not
T-ergodic. The next step is to use the existence of in-
tegral decompositions for states on a C*-algebra. The
principal result is:

Theorem 2.2. Every T-invariant, locally normal, KMS
state w is given by a unique integral decomposition into
T-ergodic, locally normal, KMS states; i.e.,

w(a) = J' dp(o)o(a) V A € U

where y is a probability measure on states carried by the
T-ergodic, locally normal, KMS states., The published ver-
sion of this theorem does not involve the KMS condition,
but it can be included with a simple modification of the
proof,

Now, suppose that we are given a state W, describing
a pure phase so that it is G-ergodic. If w, exhibits
long-range order, theorems 2.1 and 2.2 tell us that it
has a nontrivial decomposition into T-ergodic states, If
these states are G-invariant, we face a contradiction
with the original assumption that w, is G-ergodic; there-
fore, the T-ergodic states cannot be G-invariant. This
is the precise statement of the relation between long-
range order and broken symmetry.
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II. THE BOGOLIUBOV INEQUALITY

The last piece of machinery I need is the infinite-
volume form of the famous Bogoliubov inequality; in the
present context, this result is based on the following:

Theorem 3.1 Let w be a KMS state, then the bilinear
form

B
(A,B) = % j dr w (AT(-iT)B>
0

defines a norm-continuous inner product on U,

To make sense of the statement of this theorem, I
first have to explain what is meant by a complex time-
translation A - A(z). The concept is defined in the paper
of Haag, Hugenholtz, and Winnink® as follows: Let A(e) be
the Fourier transform of A(t) and assume that A(e) has com-
pact support [as an operator-valued distribution], then
A(z) is defined by

A(z) = j de e"1%% &(e)

for any complex z. It can be shown that the subalgebra
{A°A has compact support} is norm-dense in %, and that
A - A(z) is an automorphism on % satisfying

a1t = At @),
For A, B € ¥, (A,B) is well defined.

To show that (A,B) is an inner product, it is neces~
sary to recall that the KMS condition automatically implies
invariance under time translations® For A € ¥ this extends
to invariance under complex time-translations; that is
w(A(z)) = w(A). Using the properties already established,
it is easy to verify the defining properties for an inner
product,
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B

@a,B* = -;—J dr w@e'a@n),
0
B
- %j ar w(B'(~ima),
0
= (B,A).
B . rar}
(a,A) =% j ar w (A <_-12—T) AGZ—T))
0
B I e,
-1 s ar w@GD) (L) = 0.
0

So far I have only used the KMS condition to obtain
time-translation invariance, which, in turn, implied that
(A,B) is an inner product on ¥; I now have to use the KMS
condition explicitly to get a special property of the inmer
product. We can estimate (A,A) as follows:

B
(A,A) =-;- s ar w aTa@n)
0
8
<5 j dr J'de e™ w@'A(e))
0

ge
esa= . iha
J de oo w(A A(e)).

The last _line is justified by the fact that the first
factor is a C function of ¢ and the second is a distribu-
tion with compact support. Furthermore, one can easily
see that w(A'A(t)) is a positive-definite function, which
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means, by Bochner's theorem, that w(ATA(e)) is a positive
distribution, The combination of this remark with the ele-
mentary inequality

yields

B 2
(AA) < Jﬂde g—iai—L w(ATA(e)),

% tw@a'asy +watay 7,

]

-r
ofsaan)
To get the last line, I had to use the KMS condition in the
form:
w(BA(t + 1)) = w(A(t)B),
which is valid for A,B € ¥, Finally, the Schwartz inequal-

ity and the last estimate yield the norm-continuity of the
inner product by

@1 < @o@n < [3mah) olamsh)s el sl

Thus (A,B) extends to all of ¥ by continuity, and the proof
of theorem 3.1 is complete.

The Bogoliubov inequality itself is obtained by choos-
ing B = i §Ec(t)|t=0; then

B
1 e 200 :
(A,B) = B IO dr wlA 1atC(t + iT) le=0 )

Replace id/3dt by d/37 in the integrand and perform the in-
tegral to get
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w = =

(4,B) tw@a’ c(ip)) - wa'le)l
w(re,aty,

where the KMS condition was used to get the last line,
Next, use the Schwartz inequality again, together with the
previous extimate of (A,A) to get

w(ia,a") u(te, iy 'y = 2

w(rc,at ) |2,

where C = %E C(t)|t=0° This is the well-known Bogoliubov
inequality.,

IV, _ABSENCE OF BROKEN SYMMETRIES IN THIN FIIMS

The construction of machinery is now finished, and I
can proceed to the real topic of this talk, which is the
absence of long-range order in thin films. I choose coor=-
dinates so that the bounding planes are given by z = 0 and
z = L; also, I should remark that hard-wall boundary con-
ditions are to be imposed on these two planes. The Hamil-
tonian for a homogeneous thin film is evidently invariant
under rotations and translations in the x-y plane; there-
fore, I will take G to be the product of the two-dimension-
al Euclidean group and whatever internal symmetry group is
present (e.g., gauge transformations, spin rotations, etc.).

Let wo, be a G-ergodic state describing a pure phase
of the film; I want to know if w, can exhibit long-range
order, We have already seen that this is equivalent to
asking if w, can be decomposed into T~ergodic states with
a broken continuous symmetry, A negative answer to this
question is provided by the following theorem, which is
the central result of this whole discussion,

Theorem 4,1, Every T-invariant, locally normal, KMS
state w for a thin film system is necessarily invariant
under any one-parameter group FCG locally generated by a
conserved density q(r).
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That is, there are no states with broken continuous

symmetries and consequently no states exhibiting long-
range order,

The proof consists of choosing suitable operators to
substitute into the Bogoliubov inequality. I will take

K =f d® x e-ik.x Ex),
S

X

A - w(A),
and

M ij- d%p g TEX q(x),
SxL

where A € % and q(r) is the density generating F. I have
adopted the convention that x,x‘, etc. are vectors with
vanishing z-component while r,r’ are general vectors, also,
the momentum k has no z-component. The integral defining
M is taken over a cylindrical region with height L and
cross~section S, The next step is to substitute K and M
into the Bogoliubov inequality

2
B

2
b

w((&, K" w(m, @7 = 2 Jo(r,M')

divide by V® = (S:L)?, and let S - », I will just sketch
the calculations involved.

lim w({K,K*}) = Jﬂdax R w({A(x), by

S=e
= &,

This result follgws from the translation invariance of w.
I will refer to Cp(k) as the correlation function for A,
In a similar way, we find

lim % w([K,Mf]) = 1lim ./‘dsr eikor w(lA,q(x)]).
S~ Voo v
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Since A € ¥j,; that is, A € %(V,) for some finite V,, the
integrand in the last equation vanishes for r outside V,.
This means that the limit k - 0 and the limit V - = are
interchangable; consequently,

lim lim < w((K,M']) = lim fdsr w([A,q(r) 1)

S
k-0 S~ va

-1
= igy o) -

The last line follows from the fact that q(r) is the local
generator for Oy e

The last calculation is more complicated and involves
the use of the continuity equation,

1im g%i? w([M,(iM)*]) = lim ‘%%l d®r ‘[dar'e-ik"(r-r )
S0 V= Vv v

xufa@), 3 atLoD, .

The continuity equation and some integrations by parts
yield

V2

Lingr w0, @0') =k, [ x T w3, L0,

L
where q(x) = L-ljg dz q(x,z) etc., and the summation con-
vention applies to vector indices., In obtaining this re-
sult I had to drop various surface terms arising from the
integration by parts. The contributions from the top and
bottom of the cylinder S X L vanish by virtue of the hard-
wall boundary conditions, and the contributions from the
sides are eliminated, in the limit, by the factors ssl, 1
am really only interested in this result for small k.
If the interparticle potential is reasonable; for example,
if it is short-ranged and has a well-behaved Fourier trans-
form, then the integrand will fall off rapidly at large lxl
and the integral can be expanded as a series in k,
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Assuming this to be the case, we have, for small k

i il e it s
éf: s WD, (DD =k W ok, s WK,

where W < = is the largest eigenvalue of WQB.

Putting all this together, we finally have

32

20h 2| 8
k CA(k) > sl 3x w(a)\A))FO 5

The Bogoliubov inequality thus gives information about the
small- k| behavior of the correlation function for any
local observable A, Now §, is the Fourier transform of
Cp(x) = w({A(x), AT}), which is a continuous positive defi-
nite function satisfying

Theorem 4.2, (Bochner) The Fourier transform of a con-
tinuous, positive definite function RY is a finite, posi-
tive measure.

We now integrate the inequality over a sphere of
radius ko centered at the origin. TIf C, contains a delta
function concentrated at k=0, it can be dropped without
changing the result and we denote the resulting measure by
du. For a v-dimensional configuration space we have

; 2 2 v
ko® duk)zx[kzduk > 2 | S w(e,a), _, [Pe(M)ke
5 S0 = gy 1 AT (A e

where g(V)kov is the volume of the v-gphere and
f <1 A4 (k)~0 as ko-0; therefore, if v=2 we get a contradic-
tion unless

ol e
wx @(0,A), ) = OVAE u .

I can replace A by auA, in which case this result implies

)
5 w(auA) =0VA ¢ ﬂlL,auE F
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But this is the same as w(a A)=w(A); in other words, w is
F-invariant., This completes the proof of Theorem 4,1,

The simplest example of a forbidden broken symmetry
is Bose condensation. 1In this case F is the gauge group
generated by the particle density p(r). One easily finds
W = w(p(0)). Since the whole argument is independent of
statistics, I can equally well conclude that superconducti-
vity is forbidden in thin films. The formation of a crys-
tal lattice is more complicated since there is a two-stage
decomposition involved. In the first stage the fully in-
variant state w, is decomposed into states with a fixed
orientation of the crystal axes but no fixed location of
the lattice; in the second stage these states are further
decomposed into states having a fixed location for the
lattice, Our general result forbids the broken rotational
invariance encountered in the first stage so the second
stage can never be reached.

V. DISCUSSION

The situation as I have outlined it in these talks
would be eminently satisfactory if it were not the case
that real thin films exhibit behavior commonly ascribed
to long-range order, Thus, thin films of helium exhibit
superflow and thin-film superconductors are well known,
Consequently, there is an apparent contradiction between
theory and experiment. Since the theoretical arguments
only require a few quite general assumptions, the most
probable explanation is that the concept of long-range
order appropriate to bulk systems is not applicable to thin
films, One promising candidate for a new definition of
long~range order is the idea of 'weak" long-range order,
Briefly, one assumes that the generalized susceptibility
or response function for some observable diverges. This
behavior is consistent with weak and even strong clustering.
In any case, it is clear that there is at present no funda-
mental theoretical explanation for the behavior of thin
films,
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FORMULATION OF THE MANY - BODY PROBLEM
FOR COMPOSITE PARTICLES

M, D, Girardeau
Institute of Theoretical Science and Department of Physics

University of Oregon
Eugene, Oregon 97403

I. Atomic Second-Quantization Formalism

A. Motivation

There are two distinct problems in treating a system
of interacting particles each of which is composite in the
sense of being composed of several more elementary consti-
tuents, The first is the very difficult problem of find-
ing reasonably accurate approximate solutions of any non-
trivial quantum-mechanical many-body problem, The second
problem, with which these lectures will deal, is that of
even formulating the problem in such a way as to take ac-
count of the existence of the composite particles. It is,
of course, well known that composite particles behave like
elementary bosons or fermions when they are (in some rea-
sonable sense) well separated or when the interparticle
interactions are small compared to the internal excitation
energies'). However, there are many problems in which
these criteria are violated, yet the composite nature of
the particles remains important, Examples are high-tem-
perature gases and partially ionized plasmas, chemical re-
actions in general, and systems such as superconductors
containing electron pairs or other complexes. Even in li-
quid helium at low temperatures, virtual excitation of the
atoms is by no means negligible, since it is responsible
for the van der Waals attraction which binds the system
into a liquid., In these and other problems, a method of
formulation in which the existence of the composite par-
ticles is treated kinematically, through use of appropri-
ate composite-particle dynamical variables, is desirable.

147
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It turns out to be possible, starting out from the
usual Schrédinger representation of states and observables
of the system of interacting "elementary" constituents
(electrons and nuclei in the case of systems of atoms),
to completely eliminate the explicit dependence on the
dynamical variables of the constituents, representing the
states and observables in terms of dynamical variables re-
ferring only to the atoms (for example, the translational
wave vectors and internal excitation quantum numbers of
the atoms). Once this has been done, one can introduce a
second-quantization formalism in an elementary manner, in
which the states and observables are represented in terms
of composite particle annihilation and creation operators
satisfying elementary Bose or Fermi commutation relatiomns,
in spite of the fact that the composite particles are not
elementary. The price one pays for the complete elimina-
tion of dynamical variables of the constituents is that,
in the first place, subsidiary conditions ensuring the
correct symmetry under interatomic* exchange of constitu-
ents must be imposed in order to set up a one-one corres-
pondence between states in the many-atom state space and
those in the state space of the constituents; in the sec-
ond place, all single-atom states, including the continuum
states, must be included in order to obtain a complete
many-atom state space, Although the many-atom representa-
tion thus obtained is exactly equivalent to a conventional
representation in terms of the constituents, both the sub-
sidiary conditions and the continuum atomic states intro-
duce great difficulties in practical calculations, For
this reason, my description of this representation, in
Secs. I and ITI of these lectures, will be quite abbrevi-
ated, I think that the main value of this representation
is that it serves as a useful preliminary to the formally
more complicated representation which will be developed in
Sec. III (which will occupy most of these lectures), in
which only the bound states of the composite particles are
represented in terms of atomic dynamical variables, leav-
ing the unbound states to be described in terms of

*From now on our terminology and notation will be

adapted to the special case where the composite particles
are atoms, for the sake of definiteness., Nevertheless,
the method is quite general,
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dynamical variables of the constituents rather than the
(essentially unknown) continuum atomic states. I think
that such representations will be more useful and tract-
able in practical calculations in spite of being superfi-
cially more complicated. 1In the remainder of Secs, I and
II of these lectures I will describe some of the salient
features of the original work on representations in terms
of both bound and continuum atomic states. Further de-
tails can be found in the literature®),®).

B. Expansions in Terms of Atomi¢c Product States

For the sake of definiteness, consider a system of n
identical atoms each composed of one nucleus and 4 elec~
trons, Let {wq(Xx,...%4)} be a set of single-atom wave
functions, orthonormal and complete in the sense

./ga*(xxl---XL)¢B(XX1..-XL)dXdX1--ode = GGB’

* z ’ ’
2; cpa(Xxl...xL)cpOL (04 xl...xL)

= (L!)_lé(X-X')ZI € NP [0 %) .. 8(x mx ) ]
’ (.1

where x. = (r:,%:) denotes both the position and spin
z-compoﬂent variable (=t or ) of elctron j, X the position
of the nucleus and also its spin z=-component variable in
case its total spin is not zero, f means integration over
positions and summation over spins, 8455 is a Kronecker
delta with respect to discrete and a Dirac delta function
with respect to continuous quantum numbers, L is a sum over
discrete and integral over contimuous quantum numbers, and
8(X-X') and 8(x-x') are Dirac delta functions of position
and Kronecker delta functions of spin., The form of the
completeness relation takes into account the antisymmetry
of the ¢ in the electron variables; I, denotes a sum over
all permutations P ' of the primed P variables, € ) be-
ing +1 for even and -1 for odd permutations. Note that

the inclusion of the continuum atomic states in the set
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{o } is quite essential for completeness; if only the
bound states are included, no such completeness relation
holds. It is this feature which leads to difficulties in
applying this formalism to practical calculations,

A system of nuclei and electrons whose numbers are
appropriate to an integral number n of such atoms has a
wave function § which can be expanded as follows:

]
w(xl-.-xnx1---an) » L c(“l---an)

G.]_...G.n
X @al(X1X1---X&) <Py (X X tn- L+1"°X{n)’ (1.2)
with coefficients

= *
clanna) = o x@m . x). 0 O g g1+ )

X W(Xl...anl...xin) Xm...andxl...den. (1.3)

It might be thought that such an expansion is unphysical
because we have picked one particular assignment of nuclei
and electrons to atoms, i.e., nucleus 1 and electrons
1...% to atom 1, etc. However, it follows from (I.3),
antisymmetry of ¥ in its electron coordinates, and its
symmetry or antisymmetry in nuclear coordinates, that
either all of the coefficients ¢ are unchanged or else
all simultaneously change sign under a permutation of

the assignment of nuclei and electrons to atoms, depend-
ing on the parity of the permutation, Thus the expansion
(I.2) is in fact independent of the particular assignment,
apart from physically unobservable constant + 1 phase
factors,

In order to transform to a representation ix
dynamical wvariables of the nuclei and electrons are e11m1-
nated in favor of those of atoms, one can consider the
coefficents c(m...0,) as new wave functions and the argu-
ments 0,,.,0, as the atomic dynamical variables, Part of
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the permutation symmetry of | under exchange of identical
constituents (nuclei and electrons) appears explicitly in
c, in that it follows from (I.3) that c is either a sym-
metric or an antisymmetric function of o;...a,, depending
on whether 2J + 4 is even or odd, where J is the nuclear
spin (at this point we are applying the spin-statistics
theorem). On the other hand, the symmetry of ¥ under
interatomic exchange of constituents (not exchange of
whole atoms) appears in ¢ in a concealed form. If one
compares the expansion (I.2) with one differing only by
interatomic exchange of an electron between the pth and
qth atom, one finds®) that the wave functions ¢ must sat-
isfy the linear relation

;(upaq T 10 l28)eCon .. L ML NPT

S -c(al...an) (1.4)

where the electron exchange matrix is defined as

(apaqlleleclaa)

Ejfma:(Xxl...xL)wa*(X'xf ...xé)wa(Xx{x2...xL)
X ws(x’xlx;...xé) dXdxy . . odx dX ‘dxy...dx /. (L.5)

The relation (I.4) for one particular value of p and q,
say p = 1 and ¢ = 2, together with the symmetry or anti-
symmetry of c(al..,an), implies the relation for all val-
ues of p and q. Hence it is convenient to state (I.4) in
the symmetrized form

n

(o o |I laB)e (o oo @ 100 o vus0 JRO L....0)
;{ OLZB p q' elec p-1""p+l q-1" "q+1 n

= “-De(u...a).  (1.6)



152 M. D, GIRARDEAU

Similarly, the symmetry or antisymmetry of { under per-
mutations of the nuclear arguments X,...X, implies that
¢ must satisfy the linear relation

n

2{: :E:(a a |T_ lag)e(or...a oo ..o _Ba o...q)
p<a “op p q ' nuc p-1""p+l q=1""q+1 n

= (D m@-De(m...q) (1.7)
where the nuclear exchange matrix is defined as

(apaqllnuclas)

= o~ £ ‘o ’ 1] ¢ ’
fwaP(Xxl...xL)waq(X xoox ) R'xoox ) o, (Xxa oo ux )

XdXdx, ...dx, dX'‘dx/...dx]

L (1.8)

£

The subsidiary conditions (I.6) and (I.7), together with
the condition of symmetry or antisymmetry and c(oy...a ),
are in fact necessary and sufficient conditions?®) that™
the space of wave functions c¢ be in one-one correspond-
ence with the space of properly antisymmetric and sym=-
metric §'s. They can be interpreted as saying that the
‘'physical state space' of c's is not the entire space of
symmetric or antisymmetric c's, but the subspace of the
simultaneous eigenstates of the two linear, hermitian
operators defined by the left sides of (I.6) and (I.7),
with eigenvalues =%n(n-1) and (-1)29%n(n-1), respectively.
If we had started with an expansion differing from (I.2)
by the inclusion of prefactors of explicit antisymmetriz-
ing and symmetrizing or antisymmetrizing operators with
respect to the electronic and nuclear variables, we would
have found that the simple explicit expression (I.3) for
the expansion coefficients c¢ would have been replaced by
an implicit equation for ¢ with a nonunique solution,

The same conditions (I,6) and (I.7) would nevertheless
have appeared as conditions picking out a unique
solution®),



COMPOSITE PARTICLES 153

The correspondence between the space of {'s and
the space of c¢'s is such that inner products are pre-
served®), i.e,

(‘L’,WI) = ¢*(X1...anl...an)W'(Xl...anl...xm)
X Xm...an dXJ,...dX'{/n
= (e,c’) = z c*(al.o.an)C'(a1...an). (1.9)
Cli...an

The subsidiary conditions (I.6),(I.7) play an essential
role in the proof of (I.9).

C. Representation of Observables

Let T be any single-particle operator, e.g. the
kinetic energy operator, which has the structure

n in
TH(Ky o0 K Fraoux, ) = [ZT(X.) +2T(x.>]
3=1 ] j=1 ]

X W(Xl...XnX1...x (I.10)

Ln)
on the space of y's., The form of T as an operator on

the space of c's is easily found by expanding T{ in the
manner (I.2); the result is ?)

n
Te(or...a) =;; ; (o, |Tl@ye (e o, qoa guea)

(L.11)

where the atomic kinetic energy matrix elements have the
expected form
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4
((X.p |Tla) =fcpa:(Xx1 o .xL) [T(X)+ jé:l T(xj) ]cpa(Xxl o 'XL)

X ddel...de. (1.12)

Similarly, a two-particle operator, of which interaction
potentials are the most important examples, has the
structure

Vi (X; .. .anl .. .an)
-
= V(X.X )+ Vix.x, ) + VX.x, ) |
[j<k Jxk = ik =1 %=L Ik

X g X xye00x, ) (1.13)

on the space of y's, When transformed into the space of
c's, it decomposes®) into an interatomic part V, and an
intra-atomic part V':

Vc(ai...an) = (Vo +V')c(a1...an),

n
VoC(al...ctn) =E Z (Otprla)c(al...ap_laap+l...an)
p=1 a
n
v c(al...an) = E Z (apaqlvlo.s)
p<q o
X c(al...ap_laapﬂ...aq_lsaq+l...an) (1.14)

with
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vl (3, Svo)]
(a_|Via) =/cp *(Xxy...X%,) Vix.x, ) + V(Xx.)
P o 1 ¢ leg K & i’
X @a(Xxl...xL) ddel...de, (I.15)

&

(o, [V a9) =/cpa:(Xx1,,_xL) ogr O nl o)

[V(xx')+z: Zv(x )+ Z V(Xx )+E V(X %, )]

j=1 k=1

P 17 ’ ’ ’ /
X wa(Xxlg..xL)ws(X xl...xL)ddel...de dX ‘dxy’. . .dx .

(1.16)

D. Atomic Second-Quantization Representation

A quantized field representation can now be intro-
duced by any of the usual methods used for systems of
elementary particles. We choose the Fock representation
in which state vectors |c) are represented as

le) = Co

ey (ay)

°

cn(al...an)

. (1.17)

with inner product
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o
N =1 oo * .
(cle’) = co*ed *-52: 2: e (al...ah)cn(al...an).

=l 01...0
& n

(1.18)

Here co is the vacuum amplitude, ¢, the one-atom ampli-

tude, etc. The atomic annihilation and creation opera-
tors are defined by *)

co cy (@)
aa Cl(al) 2%c5 (a1 a)
. -+1 ;é ( )
cn(al...an) (n+1) e yplmr...aa
L " E 4
and (1.19)
r 1T n
Co 0
a T ci (o) & ¢
a 1\ o o
- o 1
2 ¥
c (o o) (n /r»)EpE(P)P[éaohcn_l(al A “n—l)]
= X (1.20) -

where P runs over all permutations of Weon 0 and €(P)
is to be taken as +1 for all p if 2J+¢ is even, whereas
if 2J+4 is odd, then €(P) is +1 or -1 depending on
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whether P is even or odd. At this point it is customary
for someone to object that the two definitions (I.19) and
(I.20) should be interchanged. However, the definitions
are gorrect as stated, as can be seen by referring to
Fock™) or considering the special case of a state with
only a vacuum amplitude c,, which is then annihilated by
ay, whereas it is changed by a, into a state with only a
one-atom amplitude. It follows directly from their defi-
nitions that these atomic annihilation and creation oper=
ators satisfy elementary Bose or Fermi commutation or
anticommutation relations

23+ ~
a,ag (-1) aga, = 0,

+ 234+
a,ag - (-1) aBaa = éaB : (I.21)

These simple relations are to be contrasted with the more
complicated relations

t 2J+4 B
AaAs-(-l) ABAa =0,

PR LS P f oot
AASCDTTAA =6+ [ Oy

1z z
factors factors
.1-
O Ny (1.22)

satisfied by the more naive atomic annihilation and cre-
tion operators defined by

Als faxa, ...ax g G )V @ @) Ty 123

where Wf(X) and wf(x) are the usual quantized-field crea-
tion operators for a nucleus and an electron.

In terms of this atomic second-quantization represen-
tation, the state (I.17) can be represented as
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n=1 Fieets O
B n

ley=[cot = (al) 7 Z c(al,,.an>aaf...aa;]|0) (1.26)

where lO) is the normalized atomic vacuum state,

The Ham-
iltonian (I,10)-(I.16) becomes
H=T+V, +V’,
T = (a|T|B)a Ta Vo = (a|V|B)a fa
g O °e a “p?
as a8
v =% E (a8 |V]yd)a RN (1.25)
3 f o %p 3%y %

aByd

which is of the familiar form except that the matrix ele-
ments are between states of atoms rather than of 'elemen-
tary' particles. If the ¢, are chosen to be free-atom
energy eigenstates with eigenvalues €,, then it is not

difficult to show that ®) the single-atom part of H be-
comes diagonal:

H=H, +V',
Ho =), € N,
a
N =a la (1.26)
o o a ° ¥

The subsidiary conditions (I.6) and (I.7) become in
this representation

sgaate) = =min-1)le),
L. lo = (D@1 le) (1.27)
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where

t 1
Talee = % :E: (aBlIeleclYé)aa Gg @58y
By

Q

ot
(aﬁllnuclYé) a, ag aga, . (1.28)

= %
s 4 Y

apyd

The zero-temperature n-atom problem is that of finding
the simultaneous eigenstates of H, of the total atom- num-

ber operator
N =z:NOL (1.29)
a

with eigenvalue n, and of the operators (I.28) with eigen-
values -3n(n-1) and (~1)2J%4n(n-1).

In practice, however, exact satisfaction of (I1.27)
is out of the question, since Igjge and Ipye have the
structure of interatomic interactions, and even strong
ones, Furthermore, the continuum matrix elements are im-
portant in (I,27). It is possible to define projection
operators for these subsidiary conditions which effective-
ly replace them by additional exchange interaction terms
in the Hamiltonian®), which could in principle then be
treated in the same approximation as the true interatomic
interaction V', However, the continuum atomic matrix ele-
ments still cause difficulties in practice. Therefore, I
shall not discuss this projection operator formalism,
However, I understand that Professor Sakakura will have
something to say about it next week, in connection with an
approach to the formulation of a hybrid representation for
systems of composite and elementary particles different
from the approach which I will discuss in Sec. III of
these lectures,
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I1. One Atom Plus One Extra Electron

A, Motivation

It is useful to examine a representation, for a sys-
tem of one atom plus one extra electron, which is closely
related to the many-atom representation just described,
since, together with that representation, it can serve as
a prototype for the more complex but also (hopefully) more
useful hybrid representations which will be described in
Sec, III.

B. Formulation

Consider first a single atom with ¢ electrons, des-
cribed by the same complete orthonormal set f{o (Xxi...xg)}
of atomic wave functions as used in Sec. I. If one extra
electron is added to this system, the resultant system of
one nucleus and ¢ + 1 electrons is described by Schr&din-
ger wave functions ¢(Xx1...xL+1)which are antisymmetric
in all 4+l electron variables. Any such wave function can
be expanded as follows:

TCI =;ca(‘x o) P K. x,) (I1.1)

where

ca(xL+1) =J[§a*(Xx1.o.xL)w(Xxl...xL+l) dde1"'de' (I1.2)

¥ is automatically antisymmetric in x;...xy since the Vg,
are. However, the condition that it also be antisymmetric
under exchanges of x4+] with any of the other x; imposes

a subsidairy condition on the amplitudes c anaiogous to
(1.6) and (I.7). To derive it, note that

w(xx&-l']_xQ"'x,{,xl) £3 -w(Xxla.oxH_l). (11.3)

Inserting the expansion (II.1l) in both sides, multiplying
by w*(Xxlo..x£), and integrating, one findsthat the cy must
satisfy
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s 7 1 =5
E;Jkaﬁ(x,x )CB(X ydx* = ca(x) (I1.4)

where
4 = % 2
KdB(x,x ) —./ba (Xx xg...xé)mQ(Xxxa...xL)ddea.wde.
(1IL.5)

If we define Eﬂx) as the column vector with components
co(x) and K (X,x’) as the matrix with elements Kaa(x,x'),
then (II1.4) can be written as

SRG,x) ¢ (=) dx' = —c (), (1L.6)

i.e. c(x) must be an eigenvector of the hermitian
"exchange kernel” K with eigenvalue -1. Any c(x) derived
from a totally antisymmetric Y{(Xxi...xg4]) according to
(II,2) is automatically an eigenfunction with eigenvalue
-1, i.e. (II.6) is a necessary condition for total anti-
symmetry of §. Conversely, if c satisfies (II.6) then it
follows from (IL.1) and (II.2) that (II.3) is satisfied,
i,e, ¥ is totally antisymmetric. Thus the eigenvalue
equation (II.6) is both necessary and sufficient for com-
plete antisymmetry of . Furthermore, the space of total-
ly antisymmetric {'s is in one-one correspondence with the
space of c¢'s satisfying (II,6), and this correspondence
preserves inner products:

(q”w')Efw*(xxl"'xfﬁl)w,(xxl"°XL+1)dXdX1"'dX&+1
= (g E/gT(X) ¢ '(x)dx

Ezaj::a*(x) c(i(x)dx. (11.7)

I leave the proof to you as an exercise. AS in the case

of (I.9), the subsidiary condition (II1.6) plays an essen-

tial role in simplifying the expression for the inner pro-
duct in the space of state vectors c. It might seem
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surprising that the vector function c(x) of a single
electron variable x can contain precisely the same physi-
cal information as the Schrddinger wave function § which
depends on the codrdinates of a nucleus and 4+l electrons.
The point is, of course, that the extra information is
built into ¢ via its dependence on the vector index a,

the set of Single-atom quantum numbers.

C. Representation of the Hamiltonian

In Schrddinger representation the Hamiltonian has
the general form

4+1 4+1 4+1

= TX) + ZT(xj) +Zv(xxj) +ZV(xjxk). (1I1.8)
j=1 3=1 i<k

To find the representation of H as an operator on state
vectors c, let H operate on (IL,1), multiply by

(Xxl...x ) and integrate. In this way one finds that
H acts as a matrlx operator @(x)

Hc(x) = E‘x)g(x) (1I1.9)

where the notation g(x) means that the matrix operator }
acts on the x dependence of g(x), and the elements of this
matrix operator are given by

Has(x) = [eOL + T (%) ]°a5 + Va,s(x) (1I1.10)
where the potential matrix operator Y(x) is defined as
2

(x) Ejrcpa*(xxl . 'X*C) [V(Xx) +ZV(XjX) ]
j=1

VaB

vy (Xxa o0 ox ) dXdx, .. dx, . (I1.11)
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For simplicity it has been assumed that the ¥, are chosen
to be the free-atom energy elgenstateS'

[T +j§ T(x,) =Z V(xjxk)J% V%) Jo Gxaenx )

j=1

e wa(Xxl.,.xL) (11.12)

as was assumed in (I.26)., This assumption is not essen-
tial; if it is not made then the term N in (II1.10) is
replaced by (al|T|g)+(a|V|g), with matris e%ements defined
by (I.12) and (I.15).

D. Definition of Projected Hamiltorian

I would like now to sketch a method of satisfying the
exchange subsidiary condition (II.6) through construction
of an appropriate projection operator, The method is simi-
lar to the projection operator formalism®) alluded to in
Sec., I, which was not discussed there because of lack of
time, Here the system is simpler, so the projection oper=-
ator is also simpler and I can at least very briefly
sketch the ideas without giving any details of the proof.

We want to find the simultaneous eigenvectors ¢ of
the Hamiltonian matrix {Eq.(I1.10) ] and the exchange ma-
trix kernel K [Eq.(IL.6)], with elgenvalue -1 for the lat-
ter. One can reduce this to the problem of finding the
elgenvectors of a suitable projected Hamiltonian, in
which (II.6) is exactly replaced by an additional electron-
atom exchange interaction. Let P be the projection oper-
ator onto the space of all eigenvectors c(x) of (II.6)
with the stated eigenvalue -1. This space is closed under
the action of I since the Schrddinger Hamiltonian is sym-
metric under permutations of electrons. Hence

[P,H] =0 (11.13)

where H is defined by (II.9)-(IL.11)., Define a ''project-
ed Hamiltonian" ¥ by
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% = PH, (11.14)

Suppose that ¢ is an eigenvector of ¥ with eigenvalue E:

}CE, = EE.' (11.15)
Then if E # 0,
Pc = E 'Bic = E™lpene
-1 -1
=E PHc = E 3 = (I1.16)
and
EE,= M§l= PHg = HPi = Hg (1IL.17)

Thus any eigenvector of ¥ with a nonzero eigenvalue is
necessarily also an eigenvector of P with eigenvalue 1,
i,e, it satisfie (IIL.6); furthermore, it is also an
eigenvector of H with eigenvalue E. On the other hand,
the eigenstates of ¥ belonging to the eigenvalue zero are
in general linear combinations of eigenstates of H with
eigenvalue zero and arbitrary states lying in the sub-
space orthogonal to the physical subspace, i.e, states
annihilated by P, Thus we shall assume E # 0., This is
no great loss of generality, since in application,
states with E=0 will usually be of measure zero. E.g.,
in a scattering problem,E will be zero only if the in-
coming electron has kinetic energy precisely equal to the
binding energy of the isolated atom, Nevertheless, we
should bear in mind that when we work with the projected
Hamiltonian ¥, its eigenstates with eigenvalue zero will
in general be physically meaningless,

E. Construction of the Projection Operator and
Projected Hamiltonian

Let K be the integral operator with kernel K, i.e.
K c(x) Ef;g(x,x’) c(xdx ', (11.18)

K'=1+K (1I1.19)
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where 1 is the unit operator, Then (IL.6) can be
written as

K'g(x) =0, (11.20)
Construct (K')?:

(K2 =1 + 2K + K2, (11.21)
Using the completeness relation (I.1) and some permuta-
tion algebra which I do not have time to go into here,

one can show that the iterated kernel K? is linear in K,
and in fact that

ZYﬁ(aY(X,X")KYB(x”,x')

= O [o, 8Gex )= (=DR  (x,x) ] (11.22)

or in terms of the notation (II.,18)

k2 = £7l1 - (e-1)K]D. (11.23)
Hence
(k)2 = 1+ Hk’ (11.24)
or '
R[R‘= @+ 5 1 =0, (11.25)

from which it follgws that K’ has precisely two eigenval-
ues, zero and 1+4”1; only the eigenvectors with eigenval-
ue zero satisfy the subsidiary condition (II.6).

We can now easily write down the desired projection
operator P:

B =l TS LRl e i S e e T (11.26)
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Then one easily verifies that

P2 =P K'P = PK’' =0 (11.27)

2

so that (IL.26) is indeed the projection operator for
the subsidiary condition (IL.6).

An explicit expression for the projected Hamilton-
ian (IL1.14) can then be constructed by multiplying
(I1.10) and (II.26) and again making use of the complete-
ness relation for the L We give only the result:

Ko ()= (4+1) ") ¢ (x)
z (1+L-1)-1./~g(x,x’)gﬂx')dx' (L1.28)

with

LaB(X’XI) Kaﬁ(x,x') [EB + T(x")] + Vas(x,x/),

1

‘{15 (x,x')Efcpa*(XX "Xa...x,) [V(Xx NV (xx )+ E V(xjx')]
=2
X mB(Xxxz...xL)ddez...de. (11.29)

This provides a formulation of such problems as
electron-atom scattering which is in principle exact.
However, the necessity of including continuum states
of the atoms leads to difficulties in practical calcula-
tions. Hence this representation should be considered
as the prototype of a more complex but more useful rep-
resentation of the type to be discussed in Sec. III,
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ITI, Systems of Elementary and Composite Particles

A, Historical Remarks

The representations to be discussed in this section
are of very recent origin; in fact, most of the results
I will describe have been obtained in the last month, and
some of them are only a few days old. I apologize for ex-
posing you to such undigested results. My excuse is that
this area is currently being investigated more or less
independently by several people, and the representations
thus developed are likely to be applicable to a number
of problems, not only such problems as partially ionized
plasmas and superconductors, but also to such problems
as atomic scattering and chemical and nuclear reactions.
I tried many years ago, without success, to develop a
hybrid representation in terms of bound states of atoms
plus free-particle states of the unbound constituents
(rather than continuum states of the atoms), but at the
time I did not succeed. I am very much indebted to Pro-
fessor Brittin for informing me of his recent work with
Stolt on such a representation®), which convinced me that
the problem is indeed soluble and motivated me to take it
up again, The approach of Brittin and Stolt, based on
correspondences between various Hilbert subspaces, is
quite different from mine, and I do not know what the
precise relationship is. I suspect, however, that the
two approaches will eventually be found to be essentially
equivalent, Perhaps Professor Brittin will shed some
light on this in his forthcoming lectures., T have also
recently learned that Professor Sakakura is working on
the same problem from still a different point of view®),
which he will describe in his lectures. Again, I suspect
that his representation is essentially equivalent to mine,
but this remains to be shown,

B, Motivation

As already mentioned in Sec. I, describing the un-
bound constituents in terms of continuum atomic states,
though possible in principle, leads to difficulties in
practical calculations since very little is known about
such continuum states, and even when they are known (as
for the hydrogen atom) they are still difficult to deal

-e
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with sufficiently accurately to provide a good approxima-
tion to the subsidiary conditions (I.6) and (I.7). Thus
one is motivated to try to develop a hybrid representation
in which only bound atomic states (and not necessarily
even all of these bound states) are described in terms of
atomic variables, with the remaining dependence of the
wave functions described explicitly in terms of the con-
stituents (e.g., in terms of plane-wave products).

C. Some Simple Cases

Start with the simplest case, n = 2 identical fer-
mions. Let {ma(xlxz)} be an orthonormal (but not com-
plete) set of antisymmetric bound-pair functions, We
wish to expand a general, antisymmetric y(xi1%s) in terms
of bound pairs and unbound fermions, i.e, we seek an ex-
pansion of the form

¥axa) = Y e(a) ¢ (xixa) + c(xxz) (II1.1)

where c(a) is the amplitude for finding a bound pair of
fermions in the state g, and c(xi1x3) is the amplitude for
finding an unbound pair in the configuration (xi1x3). It
is obvious from the physical interpretation of amplitudes
that one should choose

c(a) EfCPa*(xlxa) Y (x1%Xz)dx;,dxs. (111.2)

Then c(x:%3) 1s uniquely determined as the residue, i.e.
the result of subtracting off the "bound part' of y:

c(x1x3) = Y(x1%x3) - Zc(a)wa(xlx:,), (1I1.3)

a

and (II1.1) is satisfied as a trivial identity. Eq. (IIL.,3)
bears a strong resemblance to the definition of orthogon-
alized plane waves., This is no accident; one easily veri-
fies that c(x3x3) is indeed orthogonal to all the s

fcpa*(xlxg) c(x,1x3)dx,dx, = 0, all a, (I11.4)
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as it ought to be if c(a) and c(x;xz) are to be inter-
preted as the amplitudes for bound pairs and unbound
fermions, respectively.

In applications, however, it is desireable to turn
the problem around, regarding c(a) and c(x1xz) as the
given wave functions; if one knew | already there would
be little point in trying to explicitly introduce dynan-
ical variables of the composite particles, The problem
is then to show that the conditions that c(x1xs) be
antisymmetric and satisfy (ILI.4) (which we shall call
the condition of bound state-continuum orthogonality)
are both necessary and sufficient to uniquely determine
the c(a) and c(x1x%3), thus establishing a one-one corre-
spondence between the space of c's and the space of anti-
symmetric ¥'s. In other words, we want to establish that
the solution (ILI,2), (IIL,3) for the c's is the only
one compatible with the antisymmetry of c(xi1x;) and its
orthogonality to all the bound states. The demonstration
is trivial: multiplication of (III.1) by 9, ¥, integration,
and use of (IIL.4) yields the explicit (hence unique) ex-
pression (III.2) for c(a); then (IIL.1) yields the expli-
cit and unique expression (III.3) for c(x;x3). Finally,
it follows from (IIL,1) that the inner product in the
space of wave functions ¢ is equal to the usual inner
product in the space of {'s:

b, ¥ )= fu* (%) ¥ (x1%5) dxy dxe=(c,c )

EZC*((I) c '(en)+fc*(x1x9)c "(%x1%2)dx,dxz.
a
(I1I.5)

Having understood the trivial case n = 2, we can
proceed to the less trivial case n = 3., We seek a unique
expansion of a general antisymmetric y(x;Xzx3z) of the
form
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¢(X1XSXa)=AaZ c(o,x3) 0 (x2%3) + c(x1Xz%3)
[

= % f/::[c (a,x1) cpa(XEXs) ~e(a,x3) 0 (x1xs) te (a,x5) @, (x1%2) ]
+ c(X1%2%X3) (I11.6)

where A; is the case n = 3 of the n-fermion antisymmetri-
zer

A= @h }PZE(P)P, (111.7)

the sum runs over all n! permutations P of x;...x_, and
€(P) is +1 or -1 depending upon whether P is even or odd.
The bound state-continuum orthogonality constraint analo-
gous to (III.4) is

./}hf(xgxa)c(xlxaxa)dxgdxs= 0, all o and x;. (XIIL.8)

In the language of quantum chemistry we would say that
c(x1XzX3) is required to be "'strongly orthogonal to all
the bound states ¢ . Provided that we restrict ourselves
to antisymmetric ¢, and c(x1X2X3), the similar relations
obtained by permutation of the subscripts 1,2, and 3 are
already implied by (III.8). This condition ensures that
the c(a,x) represent only those configurations where two
of the fermions are bound together, whereas c(x;XzXs) re=-
presents only those configurations where all three are
unbound.,

Multiplication of (III.6) by ¢ *(xsxs), integration,
and use of (III,8) and the antisymmetry of the ¢ and of
c(x1x%x3%p) yields the following set of equations %or the
determination of the c(a,x):

Jo* (raxs) b(mxsxe) drsdxe

= 5 [e@x)2X [Ra,mi0,0 c(p,0ax]. (111,9)
B
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Here the hermitian kernel K, which we shall call the
"bound state-continuum exchange kernel" in view of the
physical origin of its occurrence in (IIL,9), is defined
as

K(a,m38,%0) = [ o % (xaxs) 9 (raxa)dxa. (111.10)
Defining
Ke(a,x) =2 K(a,x;8,y) c(8,y)dy, (I11,11)
-

one can write (III,9) as

%(1-2K) c(o,x) = _/ba*(xaxe)W(xxgxs)dxzdxa. (I11.12)

This has a unique solution for c(a,x), denoted by

c(a,x) = 3(1-2K)-1 @ *(%zx3s) V(xXaXs)dxadxs , (IIL,13)
a

provided oan that K does not have the eigenvalue l, so
that (1-2K)~* is non-singular. Then c(x;Xzxs) is unique~
ly determined by (IIL.6) as the residue

c(x1%Xa%5) = w(xlxaxa)'AaE C(C‘«,Xl)qﬁa(xaxa)
a

= §(X1X2X3) -% Z [e(a,x1) ga (x2%3)
o

—e(o,xa) @ (x1%3) + c(a,xa) @ (x1x5) 1. (II1.14)

It is easy to verify that (III1.8) is indeed satisfied with
these choices of c(a,x) and c(x1%X3Xa):
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ftpa* (xa%3)c(x1X2X3) dxodxa

=f¢>a*(xaxa) V(X1X2Xa)dRadxs - %‘(1-2K)c(a,x1) = 0,

(III.15)

The inner product of two wave functions ¥ and V' can be
expressed in terms of the corresponding wave functions c¢

and c¢’, using (III.6), (XIIL.8), (III.10), and (III.11),
as

A V= [k (x,%2%5) V(X XoXa)dxy dxpdx,

(c,e’)

%Zalfc*«x %) (1-2K)8 *(o %) dx

+ fe*(x1xaXs)e (X xa%s)dx, dxadx,, (II1.16)
Given an antisymmetric ¢ and antisymmetric ¢., the c(a,x)
and c(x;X3X3) are uniquely determined by (IIf.lB) and

(I11.14). Conversely, given c(a,x) and an antisymmetric
c(x1x3x%s) satisfying the bound state-continuum orthogon-
ality constraint (III1.8), an antisymmetric {§ is uniquely
determined via (III,6). There cannot be more than one
such set of c's giving rise to a given ¢ via (III,6) for
suppose that there were two such sets, denoted by ¢, and
¢z. Then

Ag [ECS (G,X1)Cpa(x2xa):l + ¢y (x1x2%3)
a

= A, [z:cz(a,xl)maqua)] + ¢z (X1xpx5) . (IIL.17)
a
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Then multiplication of both sides by @, *(xzx3), integra-
tion, and use of (IIL.8) yields

3 (1-20) e, (a,%1) = 3(1-2K) e, (a,x) (111.18)
which, in view of the nonsingularity of the operator
(1-2K)"1, implies

ci (0,%1) = cz(a,x;). (111.19)

Then by IIL.14) and the fact that both c; and c; corres-
pond to the same ¥, one has

c1(X1XaX3) = cz(X1XsXa). (1I11.20)
It follows that the space of wave functions c(o,x) and
antisymmetric c(x;%;Xs) satisfying (III.8) is in one-one
correspondence with the space of physical (antisymmetric)
i's.

We proceed next to the case n = 4, since some new
features appear there. The generalization of (III.6) is

Y(Xy.eXe) = A4[Z C(alaa)w (x1xa)

03 Qg

X CP-agan:t)"'Z C(a,xlxa)ma(xax4)] + (X ..%a)

a

-3 :E: caraa) [0, (1%a)w, (xaXe)=@y (x2Xa) @y (xaxa)

Q) Qg

+ 9y Gaxe) g, (xs%a) |

+ %aZ[c(a,mxz)cpa(xaxa.) - C(@,Xlxa)tpq(xam.)
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+ e(a,x1%s) g (¥eXa) + c(a,xzxs) v, (x1%4)

= c(a,x2x4) @ (%1%3) + c(a,XaXs) o (x1%3)
o o

+ e(x1..%4). (I11.21)

There are now two bound state-continuum orthogonality
constraints, one on the c(a,x1x,) and one on c(xy..Xa):

./@a*(xlxa)c(B,xlxz)dxldxa =0, all a and B;
./ﬁh*(xlxg)c(x1x2x3X4)dx1dx2 = 0, all a,xs, and x4.

(I11.22)

The c(a,x1%5) are required to be antisymmetric in x; and
xz,and c(X1...Xs) in X;..Xs; also, since exchange of a
fermion pair produces two sign changes, c(a,az) is re-
quired to be symmetric in o, and a,., Multiplication of
(III.21) by g, *(x1X5) 9, *(xsx4), integration, and use of

(I11,22) and the antisymmetry and symmetry properties of
the c's yields

SokGax,) ok Grsxe) 4G xa) dxs o s
1 2

= % [C(On(lz)'Z; (alaglIqu)c(aB)]
o %Za fK(alaz;a,Xy) C((I,Xy)dxdy (III°23)

where
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(002 |T|as)= fcpa*(MXz) 9, ¥ (xaxa) o, (KaXa) @, (XaXe) dX1 .+ . dxe
1 2 3

(111.24)

and

R(a10230,%7) = [ %G ) 9 ¥ (yxa) 9y Gaxa) dadns . (I11.25)

Similarly, multiplication of (III.21) by ¢ *(xsXs) and in-
tegration yields

ftpa*(XaX4) Y (xy . .%4)dxadx,

[Zwal(x1xz)c(a1a) =2 Z K(G,X1Xz;0-10«e)c((110-a)]
Qs

01 Qg

Wi

N

[C(a,xlx2)-2 /K(a,x;x;B,Xa)C(B,X1Xa)an
B8

+ 2§ ;.[K(a,xl;B,xa)c(e,xaxa)dxs] (1I11.26)
B8

where

K(a,xyj;oag) = K¥(oyazja,xy) (111.27)

and K(a,x;;B,%xz) is defined by (III1.10). The matrix
(I11.24) is the analog of the "exchange matrix" defined
previously in Eq. (I.4), except that now it refers only to
fermion exchange between bound states ¢.,, whereas in (I.4)
the ¢y included continuum states as welil° The kernel
(II1.25), (III.27) corresponds to exchange of a pair of
electrons between the continuum and a product of two bound
states, one electron exchanging with each of the two bound
states, It is analogous to a dynamical matrix element re-
presenting collision of two bound pairs, with one breaking
up into two continuum fermions and the other remaining
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bound (but in general changing its state), and the in-
verse process. Similarly, (III,10) is analogous to a
dynamical matrix element representing collision of an
unbound (continuum) fermion with a bound pair without
breakup of the pair, whereas (ILI.24) is analogous to a
dynamical matrix element representing collision of two
bound pairs without breakup of either. In fact, we shall
see later that these purely kinematical exchange effects
give rise to terms in the second-~quantized Hamiltonian
which are quite analogous to dynamical terms,

Equations (III.23) and (III.26) are coupled linear,

inhomogeneous equations for c(oyaz) and c(a,x;%X3) in
terms of |y, which can be denoted symbolically by

Nl (111.28)

where ¢ is a many~component wave function which can be
denoted by

c(ay0z)

C(a,X1Xa) (111.29)

]

C

~

and d is the inhomogeneity, denoted in the same represent-
ation by

g = d(oy az)

d(a,X1XQ) (111.30)

with

d(oyaz) =./;hf (Xlxa)wa:(xax4)¢(x1o.X4)dX1..dX4,
d(a,x1%5) =f€pa*(xax4)W(xl..x.a,)dxadx,z,. (111,31)

The linear matrix-integral operator L is defined by the
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right sides of (IIL,23) and (II1.26). When we write down
the expression for the inner product (c,c’), it will be
easy to show, moreover, that L is hermitian, Equations
(I11.23) and (IIL.26) possess a unique solution for
c(oy0z) and c(o,x,%3) provided only that L does not pos-
sess the eigenvalue zero, so that k;l is nonsingular,

The existence of such a zero eigenvalue would be an acci-
dent arising through an umfortunate choice of the ¢, and
we shall assune that they are chosen so that [, does not
have a zero eigenvalue. Then c(0;a;) and c(a,x;%x3) are
uniquely determined by ¢, and c(x,..xs) subsequently fol-
lows uniquely from (III.21). By analogy with the veri-
fication of (III,22), one can show from (II1.21), (III.23),
(I11.25), (I11.26), and (III.10) that the bound state-con-
tinuum orthogonality constraints (II1.22) are actually
satisfied by the c(uoyaz) and c(a,x,x;) satisfying (III,23)
and (I11.26). Finally, the proof that there cannot be
more than one choice of the c¢'s satisfying (III.23) and
(I11.26), the constraints (I1I.22), and the proper anti-
symmetry and symmetry conditions and leading to the same

§ via (III.21) can be carried out in analogy with (IIL,17)
-(I11.20). Thus the space of wave functions ¢ is in one-
one correspondence with the space of physical (antisymmet-
ric) ¢'s. The inner product in the space of the c's is
found to be b

(‘U,ll!')Ef\b*(xl..,m.)llf'(xl..x‘;)dxl.‘,dx,;

= (c,e’) = (e, Le) + fek(r..x)e (.. %) dxs. dxa
= E : C*(alaz)[icl(alaz)'Z'E ka1a3|I|GB)C'(aB)
3 )
oy Qg aB

- % Z[K(al oz 3a,xy)c ‘(a,xy) dxdy]
a

+§ deldXQC*(G,X1X3) ['61' (¢] ,((L,X1X3)

[s3
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- % Zﬁ((a,xa;ﬁ,xa) c'(B,x1x3)dxs
B

2 -
= 32 K(a,x1%530,03) ¢ '(0a0a5) |
Qq Og

+fc*(xl--X4) C'(Xlu.X4)dX1o.dX4. (111.32)
It is easy to verify from this expression that the opera-
tor L is hermitian, as previously stated.

As a simple example of the physical interpretation
of the formalism, let us compute the c's for the case
that § is a four-fermion function built from products of
two-fermion bound states, with both pairs in the same

state oo

Y(x1.oxe) = A [ (X1 %3) o (X2%4) ]

= ':]; (oo (xlxa) o (XaXa) =epo (X1X3) o (X3X4)

+po (X1%4) o (XX 3) il (1I11.33)

Such a state is, in fact, of BCS form, with ¢, playing the
role of the Cooper pair wave function, Then

S0, (raxa) o *(xoxa) §(xa . xa) s . odxa
1 3

1 )
= 3[5a106a20 2(ay 0, |1100) 13,

./;a*(x3X4)W(xl..xa)dxst4

[
o

[5ao%(xlxz)'2K(0t,x1xg;00)]° (111.34)
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It is easily verified by substitution that the solutions
of Eqs, (I11,23) and (III.26) are then

c(oyay) = Galoéaao’

c(a,x1x3) = 0, (I1I.35)
Then by (IIL.21)

c(xy..%4) = 0. (I1I1.36)

The state'(III.33) is therefore one in which the probabi-
lity of finding two bound pairs both in the state « is
unity, the probability of finding two bound pairs not both
in the state ¢, is zero, and the probabilities of finding
only one bound pair or no bound pairs is zero. This is
exactly what one would naively expect for a state built
only from the single pair state ¢,. The formalism is such
that the complications arising from the antisymmetrization
in (IIL,33) do not upset this naive expectation, This is
not a trivial point, since an exchanged product such as

@o (X1X3) o (x2%4) is not orthogonal to unexchanged products
P (x1%2) g (xsxe) with o # 0 and/or B # O.

More generally, suppose that y(x;.. x4) is built
purely from bound pairs with no continuum amplitudes, i.e.

P(x1..xa) = Ag 2 : C(alaa)wa (x1%2) 9 (x3x%4)
1 o5
Qq Qg

1
= 5;12 c(azaz) [Cpal (x1%x3) (paz (Xaxq.)"toal (x1X3) cpaz (x2%4)

+ Cpal (X1X4)Cpa2 (XQX;;) ]. (III.37)

Then it is easily verified that (III.21), (III1.23), and
(I1L1.26) are satisfied for arbitrary symmetric c(ayaz) in
(I11,37) and the same c(ayaz) in (III.21),(IIL,23), and
(I11.26), provided that
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C(G,X:LXQ) = 0,

0. (1I11.38)

i

c(Xy..Xs)

For two such {'s, denoted by ¥ and ¥’, the inner product
expression (III,32) reduces to

(4,4 = (c,e”)

= %Z c¥*(oyag) ¢’ (ogap)

Q3 O3

) % Z Z; c*(030,) (a1 a5 |T]ag)c ' (aB). (III.39)

Or0g Q

The norm of a single state { can thus be written as

(L1 = (c,0) =2, Plaras),

Qg Qg
P(ayos) = % [lc(alaa)la - c*(ayas) Zg(alazlllaﬁ)c(aB)
Q
- e(a ) %: (a8 | |z az)c*(a) | e

so that if the state | is normalized, then P(ay,0z) has an
obvious physical interpretation as the probability of
finding the two bound pairs in the pair states ¢y and Pg-
This probability differs from le(ayaz) |? due to the effects
of antisymmetrization in (IIL.37). The distribution func-
tion n(a), the mean occupation number of the pair state

©q in the state {, is then

n(a) = 2 2 P(aB)
B

= %Z["’(“B) |2'°*(GB)Z<as Ik e ety iy
:

Ay Qg
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-c (a8) Z (102 |I|0.B)c*(a1a3)] (I11.41)

aj Qg

where the factor 2 arises from the requirement that if
four fermions are bound into two fermion pairs in various
states of excitation, then one must have

Zn(a) =2, (II1.42)

63

In the case where there are nonvanishing amplitudes for
finding only one bound pair or no bound pairs present, so
that the more general wave function (III.21) must be used,
the expressions for mean occupation numbers are more com-
plicated. The discussion of such cases is best postponed
until after introduction of second quantization, in terms
of which occupation numbers are more simply expressed.

D. Systems of Atoms, Electrons, and Nuclei

We are now in a position to deal with more realistic
cases. In a gas, liquid, or solid, there are present
atoms and/or molecules in various states of real or virtu-
al excitation and translational and rotational motion., In
a plasma, there are in general several species of compo=-
site particles plus 'elementary" particles, namely neutral
atoms and/or molecules in various states, singly-ionized
ions, doubly-ionized ions,..., and unbound electrons and
(at sufficiently high temperatures) nuclei, In order to
avoid unnecessarily complicating the formalism before
understanding the essential features, we shall restrict
ourselves here to the case that the composite particles
are of a single species, each composed of one nucleus,
whose spin and position variables are denoted by X, and
one electron, whose spin and position variables are de-
noted by x., Thus we have an orthonormal set {¢_} of
bound states, where gy=9y(X x). Such a description would
be applicable, e.g. to hydrogen at high enough tempera-
tures that virtually all H; molecules are dissociated,
There is no upper limit on the temperature, since we
shall explicitly include the possibility of dissociation
of the atoms, The notation for the @, is the same as
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the case 4=1 of Sec. I, except for the important differ-
ence that the set {wa} is now undercomplete, since it con-
tains only bound states, Nevertheless, it may still be

an infinite set, Thus, e.g. the atomic quantum numbers

a include not only the internal quantum numbers n,4{,m,

and s, but also the translational quantum number k, re-
lated to the total momentum p of the atom by =h§7 In
realistic cases it will be necessary to consider a large
number of k values, proportional to the volume of the sys-
tem and hence becoming infinite in the thermodynamic
limit. Since the set {wa} is nevertheless undercomplete
as are products of such bound states, the overcomplete-
ness problems that plagued us in Secs. I and II will now
be absent, being prevented here by the constraint of

bound state-continuum orthogonality. The overcompleteness
problems in Sec. I arose because the set of all atomic
product states is overcomplete (as a result of the effects
of exchange) provided that all continuum states of the
atoms are included., Here, however, we shall include only
bound states, treating the continuum states in terms of
their "elementary' constituents (here nuclei and electrons).

Suppose that we are dealing with a system of n pro-
tons and n electrons, described by Schr&dinger wave func-
tions y(X;...X %1...x.). The obvious generalization of
the expansion ?IIIOZT? is

V& X Xk )

= ! An(nuc) An(elec) {(n!)-% :E: C(al...an)

al...ctn
n=-1
x o (Xx)...0 (X x )+ Z (j')—l[(n-’)']"%
e e o o “n'n . 1.
j=1
X
Z c(a1...an_j,Xn_j_,_l...ann_j+1...xn)
C(-la..(ln_j
X Cpal (Xlxl)-..cpa (Xn-jxn-j)} <k C(Xl.ooxn)h...xn)

n=j (I11.43)
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where A (nuc) and An(elec) are the proton and electron
antisymmetrizers defined as in (II.7), and the combina-
torial factors are inserted so as to simplify the inner
product expression which will be derived subsequently,
The c's are required to be antisymmetric in the X's,
antisymmetric in the x's, and symmetric in the a's. 1In
addition, they are required to be strongly orthogonal to
the bound states, i.e.

[coa*(ann) cloa.o.a o ,X x ) dX dx =0,

1’

X ) dX dx =0,

%
Jf¢a (ann) c(OLI"‘OLn-Z’Xn ¥*a%a-1%

°

% =
j@h (ann) C(Xl.o.anl...xn) dX dx =0 (11L.44)

as identities in the a's and the unintegrated X's and x's,
These requiremeunts are the obvious generalization of
(I11.22) and ensure that the dependence of the c's on the
X's and x's refers only to continuum (unbound) nuclei and
electrons; furthermore, they will serve to make the solu-
tion for the c¢'s in terms of ¢ unique.

The equations determining the amplitudes c can be de-
rived in analogy with the derivation of (III.23) and
(III 26), by multiplying (ITI.43) by ¢a*(X1X1) wau_
Xq- Xn-J) and integrating over X,. Xn-j,
for each value of j from 0 to n-1, In tﬁls way oné ob-
tains a set of n coupled linear, inhomogeneous equations
for the n amplitudes c(al.o.an), clog.oetn-1,%% ), 00,
c(o,Xz. .. XpXa...x,) of the form

L

Moe(or...0)=(n!) chpavf(xlxl).,.cpa:<xnxn>w(x1.,..xnxl.,..xn>

s X Xm...andxl...dx

M C((I]_ ok .G,n_j ,Xn_j+1o . oxnxn_j+lo . oxn)

n’
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T ! . -%
= a!(GH @7 fcpq;*(xlxl)...qoan_;xxn_jxn_j)

b

X W(Xl o .XnX1 . .xn)dX1 .o .dxn"jdXI' . .an_j

3
°

M c(ay,Xz., -ana H0 .xn)= nfcpai“(xlxl) lll(Xl,.,anl N ,,xn) dX,dx; .

(II1.45)

Here M is a linear, hermitian operator on the c's whose
explicit form* is to be obtained by substitution of
(1I11,43) into the right sides of the equations and evalu-
ation of the integrals, dropping terms which vanish as a
result of (III.44). At this point we do not need the ex-
plicit expressions; it is sufficient to realize that as
before, the solution for the c's is unique, i.e. M * is
non-singular** and uniquely defined. Hence, imposition
of the requirements that the c's have the proper symmetry
and antisymmetry and satisfy the bound state-continuum
orthogonality constraints (III.44) serves to uniquely de-
termine the c's and establish a one-one correspondence be-
tween the space of physical {'s and the space of c's.
Eqs. (IIL,45) only determine the c's with 0 < j s n - 1;
as before, c(Xl...anl...xn) is then uniquely determined
by (III.43).

We shall require, however, explicit expressions for
the most important terms in the inner product (c,c')° In

* Note that the explicit expression for
M C(al"'an-j’xn-j+1"'ann-j+1xn) consists of terms

linear in the various C(al°"’nn-k’xn-k+l"‘xnxn-k+1

°..xn), not merely k = j.

*% Note that if the constraints (II1.44) were not imposed,
thenthe solution would not be unique, i.e. M would have
a zero eigenvalue,
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evaluating (¥, V'), one need include only one factor of
A, (nuc) and one factor of Ap(elec) in the integrand,
since these antisymmetrizing operators are projection

operators and hence idempotent, ' Thus by (IIL.43), the
inner product is

(c,c’) = (4,¥")

=de1...,dKndx1 dx_{@h* >>

0.1..oan
n-1
= =%
X c*(al...an)cpaf(xlxl)... P F (X x )+ nlz(j!) 1[(n-j)!] 2
n s
j=1

*
X Z c (al'”an-j’Xn-j+1'"xnxn-j+l'°'xn)
al.o.an_j

* * *
X gt (Xlxl).,.q)an-j(Xn_jxn_j)+ c*(Xy.. X X1...x )}

L
X An(nuc)An(elec) {(n!) s Z

c(BreeeB YO, (Kixidewo o &K x )
Breee B ne ke Bn na

n-1 =

t R ] '%
+n.2 1) [n-t)!] 2

1=1 81...8

Bt

’
X e "(Bree B poX o pqee XX ppe %)

X chl(Xlxl)...°9B L(Xn-&xn-£)+CI(Xl""’XnXl"'Xn)}

(I11.46)
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This inner product is conveniently decomposed as follows:

(e3c ) =) enetVer ! e )alt inl = (I11.47)

Here (c,c ) arises from all those terms in (III,46) in
which the arguments (XJx ) of the various ¢u factors are
either not permuted at all, or else the pairs (Xj xJ) are
permuted bodily between qh s without breakup. Also, the
X and x arguments of the c's may be permuted freely, but
permutations exchanging arguments of the c's with those
of the ¢y's are excluded. Taking proper account of the
combinatorial factors arising in this way, one finds

(c,c’)o = Z c*(oy... 0 )e (0. ..a)

Pl
: n

E E *
= (al“’an-j’xn-3+1 n n-3+1'°xn)

j=1 01w 0

I
X ¢ (al”’an-j’Xn=j+l"‘xnxn-j+1'"xn)dxn-j+1"°dxn

ARy

c*(Xl.“XnX1..nxn)c'(Xlnoxnxluoxn)dxh..andxlu.dxn.

(I11.48)

The combinatorial factors in (IIL.43) were chosen so that
such prefactors do not appear in (IIL.48).

The term (c,c’): in (III.47) is defined to be the
sum of all terms in (III.46) expressible solely in terms
of exchange matrices and kernels arising from single ex-
change of protons or electrons between atoms, or single
exchange of a proton or electron between an atom and the
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continuum, Such exchanges may be depicted schematically
as in Fig. 1, in which the circles represent atoms, the
heavy dots protons, the light dots electrons, and the
lines with arrows permutation cycles of length 2 (single
interchanges). In addition, arbitrary permutations of
proton-electron pairs between atoms, and arbitrary permu-
tations of protons and electrons entirely within the con-~
tinuum, are allowed. These are not indicated in the fig-
ure since they do not change the value of the matrix ele-
ments (although they do contribute to the combinatorial
factors).

<:::E§§;ﬁéégg:j:> "|||IIIII||III"
Fig. 1. Permutations contributing to (c,c )i.

Their contribution is only appreciable when atoms overlap
each other or a continuum particle.

All such terms are expressible linearly in terms of
the exchange matrix

(alazlIlaB)E./@a*(Xlxl)¢h*(xzxz)¢a(xlxe)¢ (X2x,)
1 2 B
X Xmd.XQdX]_an (III-Z"())

and the exchange kernels
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K(a,Xl;B,Xg)E‘fma*(ng)¢B(X1x)dx,
K(a,x; ;8,%3)= f@a*(XXa)ws(xxl)dX,
K(ay05;a,Xx)= Iwa?(xxl)wa:(xlx)¢a(xlx1)dxldx1)

K(a,Xx;0502) 8 K¥(0, 05 ;0,Xx) (I1I1.50)

analogous to (III,24), (III.10), (III.25), and (IIL.27).

a, (ala2|1|6152) 82

a B8 a

K(a,X,38,X,) K(a,x38,x,)

X1 1 2 X2 1 2R es))
ay a a
X X

o, K(alaz;a,Xx) = - K(a,Xx;alaz)

Fig. 2. Dynamical analogs of binary exchange process

a

contributing to (c,c’)y. Heavy lines denote atoms;

light lines, protons or electrons.
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Non=negligible contributions to the exchange matrix
(IIL.49) arise only from those regions of configuration
space where two atoms collide (a binary collision).
Similarly, non-negligible contributions to K(a,X;;B,Xz)
and K(a,x; ;B,x;) arise only from regions of configuration
space where one atom collides with one proton or one elec-
tron, and non-negligible contributions to K(a,Xx;aa3)
arise only from regions of configuration space where two
atoms collide, with one breaking up into a proton and an
electron (exchange cannot induce simultaneous breakup of
both of the colliding atoms, although such terms will be
found to occur in the Hamiltonian as a result of true dy-
namical interaction). The representation of these contri-
butions to (c,c’), in terms of diagrams is shown in Fig.
2, Note that K(a,0;;a,Xx) corresponds to three-body col-
lisions (one atom, one proton, and one electron). Never-
theless, we have chosen, rather arbitrarily, to include
its contribution in (c,c’):, since the inverse process,
corresponding to K(a,Xx;0,0;), corresponds to only binary
collisions (two atoms). The conbinatorics required to
evaluate the coefficients of these exchange matrices and
kernels are rather involved, so we give only the results:¥*

(c,c”)y = -m(n-l) 2 Z c*(or...0 ) (eaz [IB282)

o--(ln B1Ba2

X c (3183(13.. .Qn)

- Z DY EIED M

Q]_..oa "j 81 B2

X v/;*(alo..an_j,xn_j+1...ann_j+1...xn)

*Some errors in the combinatorial coefficients have been
corrected since the lectures were presented, and the dis-
cussion of (III.51) has been modified accordingly.
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x (o, Az ‘I l B1Bz)c '(B1BzOs. . 'an-j ’Xn-j'i‘l' s °ann-j+1' $ .Xn)

X an_j+1. - ‘dxndxn—j+l' Lodx

n~1
=2 i Y VB
j=1— 0y ool 5 B

X /c*(al L ’Xn-j+l‘ . 'ann-j+1' X))

x[fK(al X 38,X)c ‘(Boz ST ’Xn-j+1" .Xn_lXxn_j+1...}<n)dX

7
+fK(C(.1 ,xn;B,x)c (Baz... an-j ’Xn-j+1'°°Xan-j+1'”Xn-lx) dXJ

* dXn-j+1' . 'dxndxn-jﬂ.' : 'dxn

n-2
- T G @D @) YD =

3=0 al..o%_j_l B1B=

X fc‘n‘(al 0 °°Ln-j-1’xn-j g 'ann—j cedX )

X K(an_j_l’xn_jxn_j ;Bl BB)

!
X ¢ (al...an_j_zBlﬁa,Xn_jﬂ...ann_j+1.. -

x dX ,...dX dx ....dx
n-j n n-j n
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n-2
- 3 ) e-HEa-j-ny X 3
j=0 Ay eeol 8

n-j

X %
./}‘(al"'an-j’Xn-j+l"'ann-j+1"'xn)

x Koy 0z38,X X J.)c'(saa...a X L XX LX)

>’n-3i n- n-j’ n-j n n-j n
x dX__,...dX dx__....dx_. (111.51)
n-j n n-j n

The next term, (c,c ')z, in (III.47) is more compli-
cated. It arises from both ternary exchange and singly-
iterated binary exchange. By 'ternary exchange' we mean
terms in (IIL.46) arising from permutation cycles running
through three atoms; such terms only become effective up-
on ternary collisions of atoms. An example of such a
contribution, arising from permutation cycles of length
three running through three atoms involved in the ampli-
tudes c(aloo.an), is

i i (8
AR @2 SN B o, ) (ars0a |18, 8280)
¥ M1 +e00 B1BaBa

n

X 01(515263G4n.oan) (II1.52)

where the ternary exchange matrix is defined as

(alazaaIIlBlBzBa)E./ba*(xlxl)wa*(xaxz)w *(X3%a)
40 2 o5}

X(@ (Xixz)op, (Xaxa)o, (Xaxi) +
LB Ba Bs
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+ g, Kixa)o, Kaxi)e, (Xaxz) :l dX; dX5dX zdx; dxzdxs.
B1 Bz Ba

(I11,53)

The contribution (III,.52) includes the combinatorial fac-
tor, i.e, it has already been summed over all electron
and proton cycles of length three.

The''singly-iterated binary exchange' contributions
to (c,c)s arise from terms in (III,46) involving two
disjoint permutation cycles of length two. As an example,
such contributions involving only the amplitudes c(a; ... )
and arising from two disjoint exchanges of electrons e
and/or protons sum to

n(n-1) (n-2) (n-3)

(R =

Opes. 0 Bi...Ba
X C*(U«l-..an) (a,az |I|3132) (asas |I|BaBa)

X ¢'(Bri.oBa Og...0 ) (I11.54)

Let us next estimate the magnitudes of these various
contributions. To simplify the discussion, assume that
cae..op)=c’(on...0y) = 8q g...8q 0, With all other c's
and ¢ ''s vanishing*, Then ¥c,c’), is unity, whereas
(c,c ), reduces simply to -3n(n~1)(00|1]00). To estimate
this exchange matrix element, note that if the system is
subject to periodic boundary conditions with periodicity
volume Q, then the bound states ¢y (Xx) can be labelled by
a wave vector k and internal quantum numbers v, i.e.

a = (k,v), where, e.g. v = (n,2,m,s). Then the o, will
have ~ range ~a, as a function of |R-r|, where ao is the
Bohr radius, and will be of order ~ ~ as®?® Q% within
this range. Then it is easy to see from (III.49) that
(oaaz |I]aB) will be of order (ao®/Q) when nonvanishing,
whereas it will vanish unless the sum of momenta on the

* This is the case of extreme Bose-Einstein condensation,
for which one expects exchange effects to be largest.
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left is equal to the sum of momenta on the right. Thus
in the special case a; = 0z = a = 8 = 0, (00|1]00)~(ao?/Q)
and (c,c’)y ~ - inpa®, where p = n/n and we are assuming
that n and Q are large but with ratio p independent of n
and Q@ (macrospcopic system). By a similar argument one
estimates that the ternarZ exchange contribution (III,53)
is of order (3!)"*n(pao?®)?, whereas the singly-iterated
binarg exchange contribution (I1I.54) is of order
(21°°n®(pas®)®. More generally, any connected contribu-
tion, i.e. one arising from a single permutation cycle of
length £, is expected to be of order n(pa,®)*"', whereas
a disconmected contribution, arising from a permutation
decomposable into more than one disjoint cycle, will be
of order of the products of such factors, one for each
cycle, and will hence be proportional to n™ where m is
the number of disjoint cycles.

It is clear from the above estimates that the series
(I11.47) is seriously divergent* for a macroscopic system
(n ~ 10°%), terms of higher order in exchange involving
higher powers of n. The situation in this respect is sim=-
ilar to the behavior of the Rayleigh-Schrédinger pertur-
bation expansion for the ground state energy of a many-
body system, or the similar expansions for the equilibrium
statistical mechanics (Mayer expansion in classical statis-
tical mechanics or quantum-statistical perturbation
theory.) There useful expansions are obtained by appro-
priate reordering, through introduction of Ursell func-
tions or some equivalent (linked cluster perturbation
theory) ., One expects that by the use of similar methods,
one can represent the sum of all connected and disconnect-
ed contributions to (ILI.46) as the exponential of a sum
of connected contributions only., Then the inner product
(II1.46) will depend exponentially on n for large n. In
fact, there are very general arguments’) that this is the
case for well-behaved many-particle wave functions,

Since such a rearrangement of the series (IIL.47) has
not in fact yet been accomplished, we shall content our-
selves here with a more pragmatic approach. It is known

* Strictly speaking, the series is not divergent for fin-
ite n, since it terminates. However, it 'converges
abruptly.”
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that after such Ursell rearrangements have been performed
in the case of statistical mechanical or quantum mechanic-
al perturbation theory, the results®* obtained by use of
the rearranged series agree with those obtained from the
original one to lowest (first) order in the density, the
rearrangement only affecting the higher-order contribu-
tions. We shall assume that the same is true of the ser-
ies (III.47). More specifically, we shall assume that in
calculating the contribution of exchange to many-body
energies, the first two terms of the series may be used,
and the results obtained will then be correct to first
order in the density. The actual way in which this will
be done will be through introduction of an appropriate
"metric operator' which generates the various terms in
(I11.47) and will also be found to be amenable to second
quantization. This will be evaluated only up to binary
exchange temms, i.e., those terms which contribute to
(c,c’)1. We shall call this the "binary exchange approxi-
mation'". The contributions of exchange to the second-
quantized Hamiltonian will be evaluated only up to binary
exchange terms.

We now introduce notation which will motivate the
definition of the metric operator and will also prove
useful in the subsequent transition to second quantization,
Define the "state vector' |c) as the set of all amplitudes
c; this may be conveniently thought of as a column vector:

o~ ~

C(Gl...(ln)

clor.oo ,X x )

& = c(al"°an-j’xn-j+1"'ann-j+1"'xn)

.
.

c(al,Xa...anQ...xn)

C(X]_ .o 'anl .o .Xn)

N
(II1.55)

* This statement is, of course, only true for some results,
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Define the inner product of two such state vectors as

(ele ) = Z C*(al-o.an)c'(al.o.an)

o ...
1 n
n-1
%
+ }: >, _/h (al"'an-j’xn-j+1"'ann-j+l"‘xn)
j=1 al...an_j
Xcl(al...a X

n-j’ n-j+1"°xnxn-j+l"'xn)

X an_j+1...andxn_j+1...dxn

+ c*(Xl...anl...xn)c’(Xl...anl...xn)dxl...andX1...dxno
(II1.56)

This inner product is not equal to the inner product
(c,c’), Eqs. (III.46)-(IIL.48) and (III,51), although we
see from (III,48) that it is equal to the direct term,
(c,c Vo, in (c,c’). However, there exists a linear, her-
mitian operator M on the space of state vectors Ic), such
that

(c,c’) = (cM|c) (I11.57)

For obvious reasons, we shall call M the "metric operator!
It is defined implicitly by (III.46) and (III.56). 1In
fact, it follows from (III.45) and (IIL.46) that M is the
same operator as occurs in (III.45), provided that Egs.
(II1.45), which define M only for 0 < j < n-1, are sup-
plemented by

Mc (x1 o -anl o] ) .Xn) £ C(X1 o] (o] .anl ‘e .Xn) . (111.58)



196 M. D. GIRARDEAU

It follows from (III.47), (I1I.48), and (IIL.51) that M
is given up through binary exchange temms by

M=1-B+ ... (111.59)

where the "binary exchange operator' B is defined by

n

Be(a...0) =3 3 (apaql1|<x6)
p<q ap

X c(oy .. RGeS ’aq-lsaq+l' e0)

n
411'% Z Ef [K(apqu;a,)(x) + K(aqap;o.,Xx)jj
pP<q «

x c(og.. (0101t %101 .a_a,Xx)dXdx, (IIL.60)

Be(a .. Oy ’Xn-j+1' c .ann_j+l. cex)

n-j
= Z E (apanIIaB)

p<q aB

x c(a.. L I L N T N

xn-j+1' : ‘ann-j+l' ¢ 'xn)

n-j
HED @Y T
pP<q a

X f[K(apaq;a,Xx) + K(quap;on,Xx)]
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X c(tyo. a,

o B e ey

X

Koogare s KR e xR dXdx

n-j n
+ Y3 Z[fx(ap,xq;a,x)
p=l1 g=n-j+l1 «

X c(al...ap_laap+1..oan_j,

Xn-j-f-l"'Xq-lqu+1°"ann-'j+1'"Xn)dX

+ fK(ap,xq;oc,x)c(al...a ao.

p-1 p+1"'an-j’

Xn_j+1...ann_j+1...xq_lqu+1...xn) dx]

n=-j n n
+ j'l(n-j+1)% }: Z Z E K(ap,quS;aB)

p=l g=n-j+1 s=n-j+1 aB

X c(al...ap_lap+1...an_ja8,

Xn—j+1"'xq-1xq+l'"ann-j+1'"xs-lxs+1"°xn)’
1 =j<n-1, (I11.61)

and
Bc(Xl...anlo..xn) =205 (111.62)

where care has been taken to ensure that B preserves the
proper symmetry and antisymmetry of the c's.
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E. Representation of Observables

We wish to determine how operators representing phy-
sical observables transform into the space of state vec=-
tors |c). This can, in principle, be done in two steps,
first finding how the operators act on the space of ampli-
tudes ¢ and then transforming them into the space of state
vectors |c) with the aid of (IIL.57). Let A be any oper-
ator defined on wave functions y. Then A can be defined
as an operator on the amplitudes c by use of (III.43),
(I11.44), and appropriate algebraic manipulations. De-
noting the amplitudes thus determined by Ac, one has by
(I11.57)

(c,Ac) = (c|Male’. (I11.63)

The metric operator M is the representation, in the space
of state veitogs |c), of the antisymmetrizing operator

Ay (nuc) Ay €¢) in (III.46). Thus, since Schrddinger oper-
ator representlng physical observables are invariant under
permuta 1on§ f 1de§t1ca1 particles (i.e., they commute
with A, elec) ' the corresponding operators on ampli-
tudes c commute with M.* Thus one can also write (II1.63)
as

(c,Ac”) = (claMlc) (111.64)
provided that A really corresponds to a physical observ-

able, For such an operator, one can combine (III,63) and
(IIL,64) into

(c,Ac”) = (c|fle ) (111.65)

where A, the operator on the space of state vectors lc)
corresponding to the operator A on the amplitudes c, can
be written in several equivalent forms:

EIR !
A = MA=AM=L(MAHAM) = MPAMZ = ., (I11.66)

*This is not a trivial matter, i.e. it is not valid for
arbitrary operators A invariant under permutations of

a's, X's, and x's. Instead,it is a special property of
those particular A's derived from a Schr&dinger operator
invariant under all permutations (including atom-breaking
ones). For such A's, there are relations between the terms
Ac(01c0. Opy=j,Xn=j = Xn)with various j's, such that [A,M]=0.
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Thus defined, [l 1s hermitian, since both M and A are.

Defining Ac to be the expansion coefficients of Ay,
in analogy with the procedure used for transforming ob-
servables into the space of c's in Sec. I, one can obtain
formal expressions for these amglitudes by multiplication
of (IIL.45) from the left by M™*:

-
AeCosnnm) = @DAT forOum) . ok @ xy)

x Ap(X;.. .XnX1 . ..Xn) dX; .. .andxl .- .dxn,

Ac(ay .. “%m ’Xn-j+1° ; 'ann-j+l' . ox)

)

- —1 -
=0l M TE T fo xam) e, R

n-j

X Aﬂ;(Xl .o 'anl .o .Xn)d-X1 . .an_jdx1 . .dxn_j o

-1
Ac(o ,Xz---xnxa...xn) = nM fq)af(xlxl)AW(Xl”'anl"'xn)

x dXydx;. (III.67)

Then by (III,.66) the metric operator M cancels out of the
equations determining the operation of f}:

Ac(al..,.an) = (nf);2 fcpaf(xlxl)...cpa*(xnxn)
n

X APy X xy...x ) dKg L. dK dxgLLldX

Ac(al oa .an_an_j+1. : 'ann-j+l‘ ex)

- nlGH™ [(n-j)!J'%fcoaf(xlxl)...cpa ME )
n-j

X Allf(Xl .o .anl o .Xn)d.X]_ P .dxn_jdX1 00 .an_j,
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Ac(al,xz---xnxa---xn) = n/wai‘(XJ.XﬁAW(Xl-o-anl...xn)
X dX;dx, (I11.68)

To determine Ac X;...Xp%1.,..X ) we note that in the
first place, by (III.58), Alg equal to A when acting

on c(X;. <X X1...%x,), and in the second place Ac(X;...X,
xl...xn) is the residue left after subtracting from ASch"l’
the sum of all its bound and partially bound parts.

Here ASch is the Schrddinger operator, i.e. the operator

on the space of y's. Then by (III.43) and (III.66) one
finds

A ... Kxx) = Agc(h. X XL )

o n:An(nUC)An(eleC) { (n!)_% E [C (al = 'O'n)

o8} ...(ln

Aot 0as) -0y Coxg)

- 9y, Tax)eeeg, K x) M Rca.ia)]

n

n-1

Ly -1 N1k

+ 3, G @31

j=1
S [Aschc(“1°"“n-j’xn-j+1'°'ann-j+1'°°xn)
Aroool

n-j

x wal(Xlxl)...wa X
n-j
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-9y, Cama) oy K _x OM el

- n-3"n-j

Xn-j+1"'xnxn-j+1"'xn)]}

(1I1.69)

Here the‘h: involved are to be substituted after evalua-
ting the expressions (III.68); then multiplication by M~
can be effected by taking the -1 power of the series
(IIL.59), which, in the binary exchange approximation
gives

e e (1II1.70)

As a preliminary to obtaining more explicit general

expressions for the kinetic and potential energy operators
and‘,, it is helpful, as before, to first consider a
ew special cases of small values of n.

For n = 1, one
has

B =3 e(0) g, (Xx) +e(X0).

(111,71)
o

Any single-particle operator T on | has the structure

Ty(Xx) = Tschw(xX) = [(T(X) + T(x) Jy(Xx). (I11,72)

Then by (III.71)

Ty (Xx) =§:c(a)[T(X)+T(x)] ma(Xx)+[T(X)+T(x)]c(Xx)

¥ (111.73)
Putting n=1 in (III.68), one finds
Te@= Yaltloet  + fox000 100460 Je (o) axax
B

(I11.74)
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where the atom-atom matrix elements are
al7ls) = fo @0 T® + 16 o (0 akax, (II1.75)

as in (I.12). For the case n=1, M=1, so that (IILL.69)
gives

Texx) = [(T(X) + T(x) le (Xx)
- /A(Xx,X'x')[T(X')ﬂf(x')]c(X'x')dX'dx'
+3xx|T|a)c(a) (111.76)
a

where the "bound state kernel" A is defined as

AXx,X'x ")

3 0, (Fx) o ¥ (X 'x ) (111.77)
a

and the atom-continuum matrix elements* as
&x|Tlo) = [T(X)+T (x) Jo (Xx)
-ﬁ(m,x'x NYITED+T(x ) Jo, (X ‘*x)dX‘'dx’.  (ILL.78)
It follows from (III,77) and (III,78) that
ﬁpa*(Xx) (Xx|T|g)dXdx = 0, all a and B. (I11.79)

Then it is easy to see that ];(Xx) is orthogonal to all
the ¢ , as it ought to be, It is also easy to verify that
the amplitudes (IIL.74) and (I1I.76) do in fact generate
Ty when substituted into (III,71). Any two-particle

* We shall see later that such matrix elements cancel
between T and in the special case that ¢, are taken
to be energy eigenstates., However, in the general case

can induce breakup of an atom,
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operator V on { has the structure

Vi(Xx) = Vg o 1(Xx) = V(Xx) §(Xx) (TII.80)

where the notation means that V(Xx) operates on both the
X and x dependence of ¥ (it is not necessarily an ordi-
nary potential, i.e. it may be a nontrivial operator). One
finds in analogy with the derivation of (III,74) and
(I11.76)

Ve(@= 2 @lvlmee) + fox0mvemme tuates,
B

Ve (ko) =V () e () - [ (R, X % V(K "% Yo (K 'x Y dX ‘dx ’

+ 2 &x|V]a)e(a) (III.81)
a

where the atom-atom matrix elements are

(alV1e) = flog5 (v (R0 v, (k) axax (111.82)

in analogy with (I,15), and the atom~continuum matrix
elements are

(Xx[V]a) = V(Xx) o (Xx)
_[A(XX,x’x NE 'x ')cpa(X 'xHdX ‘dx’ (111,83)
in analogy with (IIL.78). Again, one easily verifies
fcpa*(XX) (Xx |V|g)dXdx = 0, all o and B, (1I11.84)

and checks that VC (X x) is orthogonal to the ¢ and
that the amplitudes (III.81) do in fact generate Vi,
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Next consider the case n = 2, Eq. (II1.43) reduces
to

P(KaKaxyxs) = 24, PU)a, (10O )7% 50 (0,0,

Ay Og

X CPal (X1X1)CPOL2 (Xax3) +E C(a,xaxs)wa(xlxl) ]"‘C(Xlxlexa)
a

=27 T clman) o, Kum)e, (Kaxa)

QA Qg

"fpal (X1x3) w(xg (Xax1) ]

+ %Z [C(a,xzxa)@a(xlxﬂ = C(Q,X9X1)QOQ(X1X2)
a

- c(a,Xlxa)cpa(szl) + c(a,Xlxl)cpa(Xaxg)]
+ ¢ (X, Xax1X3) (I11.85)

where the amplitudes satsify the strong orthogonality con-
straints (I1I1.44):

fcpa*(Xx)c(S,Xx) dXdx = 0, all o and B;

/Cpa*(XQXQ)C(X1X3X1Xz)dx3d}(g = 0, all a, xl, and x,.

(111.86)
A single-particle operator T has the structure

TY(XyXax1%x2) = TschW(xlxlexa)

= [T(X) 4T (X) #T (x2)+T (xa) ¥ (RaKoxixo) D
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on the space of y's. Then by (III.S85)

Ty (X, Koxyx5) = 27 A, (€D, (elec)

x 2 elaaa) {n, (Kexa) [TG)HT(0) Jo (Kaxa)

Q1 Q2

+ oy (Kaxa) [T(Xa) 4T (xa) Jo (Kaxa) }

+ 24,0005, (€180 570 (0, Xoxa) [T(X)) + T(xs) Iy (Kaxa)
o

+ o (%) [T(Xz) + T(xa) Je(,Xa%2) }
+ [T(Xy) + T(Xz) + T(xa) + T(xa) le(X1Xoxixz) (II1.88)

since T commutes with Ag(“uc) and Aa(eiec)_ Then on put-
ting n = 2 in (IIL.68) one finds*

Te(wma) =Y 1o ITl0) e (aas) +(oa T |y e (on ) I

o

= > (w0 |IT]aB)c(aB)
ap

+ 2—%f[(a1 IT| (Xx) ‘c (az,Xx) +(az |T |Xx) ‘c(a; ,Xx) ldXdx

- 27% Zf{(alazllTla,Xx)’ + (050, |IT |a,Xx) *
¢ (I11.89)

+ [K(alaa;a,Xx)+K(aga1;a,Xx)][T(X)+T(x)]}c(a,Xx)dde

*
Note that the operators Az(nuc)and As(elec) may be

shifted so as to operate on the product of wa* factors.
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where

(o200 [17 1080 = g, () 9,3 (aa) [T00) +T.0) 4T Gra 4T Gco)]
X cpa(Xlxz)ch(ngl)dxldXdeldxz
=_/[K(a1Xa;B,Xl)T(Xl)K(az,Xl 30,Xz)
+ K(az,X;38,X) T(X2)K(0y , X5 50,X1) JdX, dX,

+/[K(a1 X2 3B,%1 )T (%) K(oz, %y 50,%35)

+ K(az, %) ;8,%2)T(x2)K(0q ,x230,%1) Jdx:dxz,
Xx|T|a) ‘=[TX)+T (x) ]cpa(xX) ,(a]T |Rx) =[ (Xx |T|a) ' I*,
(a1 05 |IT |0, Xx) ‘= fcoa*(Xx Vo XX R [TEDHT(x) Jo (X 'x")
1 2
x dX ‘dx ‘. (111.90)

Similarly, one finds

Te (e, %0=3 (alT]p)e (B, Xx) + [TEO+T(x) Je (o, %)
B

-Zﬁ@,xlm |6, X )+KR(@,X;38,X YT(X ") Je(8,X 'x)dX ’
8

L Z/[(q,xlIT|B,x')+K(a,x;B,x NYT(x ") e(p,Xx Hdx’
8

+Zch(Xx)f(oc|T‘X ‘x‘) ‘c(B,Xx )X ‘dx’
g
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+ Z%Z(XMTIB)'C(BOL)
B

+2% 3 {(alTla) o, (- (o,xx]1T] a05) °

Q1 &g
- [T(X)+T(x) K(a,Xx30102) } c(araz)

+ Zf(alTlX'x ") e (XX ‘xx ) dX ‘dx ’ (I1I.91)
with
(a,XlITlB,X’)E/wa*(X %) [TCOAT () Jopg (Kx) dx,
(% T2 |8, )= fo #(Xx ) [T () oy (Kx) dX,

(o, Xx |IT| oy a2) * = [(op oz |IT|o,Xx) ‘17, (I1I.92)

Finally, for completeness we should exhibit the express-
ion for c(X;Xz%x:%3). This is not determined by
(I1I.68), but by the more involved expression (III.69).
However, even for this simple case of n = 2, there are so
many terms that it hardly seems worthwhile to write out
the expression explicitly. Actually, in a macroscopic
system (n ~ 10?®) the probability of finding all atoms
dissociated is negligibly small, so one may safely re-
strict oneself to a subspace in which the totally unbound
amplitude is zero, and neglect matrix elements of observ-
ables connecting this restricted subspace with the "total-
ly unbound" subspace.

Next consider the form of the operatorv for the
case n = 2, where V is a two-particle operator:

V\II(X]_XQX;LXQ) = [V(XIXQ)+V(x1x2)+V(X1x1)+V(Xax3)

+ V(X1x2) W (Xexy ) JW(X 1 Xax1x2) . (I11.93)

Derivations similar to those of (IIL.89) and (III.91)
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give the form of " on the space of state vectors le).
As in Sec, I, is convenient to separate Anto
a single-atom part " and an interaction part

One finds that

V-V + 'K (111.94)

where

V c@mad=d e lVio)e(aas) +(oz [Vla) e (oa0) ]

@ a

% f[(a1 [V [Xx) ‘c(az,Xx)

+ (o2 |V|Xx) ‘c (01 ,Xx) JdXdx (I11.95)
and¥*
Ex[V]e) * = V) @ (Xx), (a|V[Xx) "=l (Xx |V ]a) “T*.
(I11.96)
Similarly, one finds

vlc(a1a3)=2 [ (o, a, ]V|0LB)--(0L10L2 [ Iv]aB) Jc (aB)
aB

T f{teas V19,30 + (ones [V, %x) °

a

- (alaz‘IV‘a,Xx)' - (azallIV|a,Xx)'

*The prime distinguishes this matrix element from the
previously-defined one (IIL.83), which contains an ad-
ditional orthogonalization term. The same remark applies
to the distinction between (III1,90) and (III,78).
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~[K (a1 05 50, X%) (005 30, %) W(Xx) } ¢ (o, Xx) dXdx
i
+2 2 f((xl Az |V |X1ng1x3) IC (Xlxgxlxa)dxldxadxldxz (111.97)
where
(a1 az IVlGB)E[@af(xlxl)CPa:‘(xzxz) [V(X1X5) +V(x1%3)
+ V(X1X2)+V(X2X1)]ma(xlxl)@B(Xaxa)dxldxadxldxz

(I11.98)
as in (I.16), and

(onae [TV aB)= fo * (i) o * (Xaxa) [V (X2 Xo) +V (x1%5)
HV (X1 X1 )V (Kox3) W Ky x2) HV (Xax,) ]cpa(Xlxa) ws(xgxl)
X dX,dX,dx, dxs,
(0202 |V]a,Xx) "= /cpafcbc) ¥ (X % ) [V (KK ") (o )40 (R )
+(X %) ] v, (X 'x Yax ‘dx ’,
(alaBIIV|a,Xx)'E‘[waf(Xx')maj(X'x)[V(XX')+V(xx')+V(X'x')
+wkﬁwakn%mkﬁauf,
(X1 Xzx1%3 |V]ogas) '=[V(X1X2) +HV (x1%2) HV (Xy x5) HV (Xax%,) ]

X @al (Xa1xy) fpaa Xax2) s

*
{ayaa |V|X1XsX1Xa) "= [ (X Xax1%5 ‘Vl(h az) 1) o
(I11.99)
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Similarly, the following separation of VC(on,Xx) will
prove convenient:

V cox) =3 (alvip)e(s,xx)
B

+ 3 0, (Kx) f(alv|x’x Y 'c(8,X 'x ")dX ‘dx ’
8

+2 f(oc\V\X'x )1 o (XX ‘xx ) dX ‘dx (III.100)
and

¥ cla,xx) = V(Ex)c(a,Xx)

+ 2 [(a,X|V]8,X)+(a,x|V]|8,x) Jc (8, Xx)
B

Y vy (%) f(a,Xx|V|XX'xx') ‘e(8,X 'x 'y dX ‘dx '
B

- Ef(a,Xx|IV|B,X'x) ‘e (B,X'x)dx’
B

2 Ef(a,Xx|IVls,Xx’) ‘c(B,Xx )dx’
B

+ 2 fl@,X|V|IX %K) " + (a,x|V]|X'x %)

+ (o, Xx |V|XX ‘xx /) ‘Je (XX ‘xx YdX ‘dx '

+2% 5 (#x|Vlp) ‘e(po)
B
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i 2% Z {("*lvhl)waa (XX)"'(O‘,xle'Gl%) '-(a,XxIIV|a10c2) !
Qg Qg

- V(Xx)K(a,Xx30, 05) fe (a1 0p) (I11.101)
with
(a,XlV‘B,X)Efcpa*(X % /) IV (X 'K) 4V (X ) Jopg (X 'x /) aX ‘ax
(o, 1V ], 0= f o0 #(X % /) [V G )V (X %) Joog (X' /Y X ‘i

(XX ‘xx ' |V]a,Xx) ‘=[V(XX ) +V(xx )+ (Xx ) +V (X 'x) Jo, (X 'x b

(o, Xx |VIXL xx ) * = [ (XX 'xx ' |V]o,Xx) ' 1%,
(o, Xx |1V |8,X 'x) * Efcpa*(X "% 1Y [V (XX ) +V (xx )V (Rx) V(X 'x 1)

+ V(Ex )+ (X 'x) ]cps (Fx )dx’,
(o, Xx |V |B,Xx ") "= *(X = ") [V (XX ) +V G 4V () V(X 'x )
+ V(Ex )+ (X %) ]ch(X ‘x)dx’,
(a,X[V|Xx'xX) " = {[v(xx ')+v(xx\’) Jo, (X 'x ’)}*
(o V1% %) 7 = {0V G )+ ) Jo w0 1

(I1I,102)

For completeness, we also define

vOC(XIng:LXg) 0, (1110103)

4
i.e, V = v when acting on c(X;Xsx;%3),

!
with v determined implicitly by (III,69).
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These expressions simplify in the special case that
the ¢_ are chosen to be single-atom energy eigenstates,
i€
[TE)HT (x)HV (Xx) Jo (Xx) = ¢ o (Xx). (I1I.104)

Then decomposing T in a manner analogous to V .

T- T, +7T1,

Te(ma) = £ [ lT|e)elons)+(as [Tla)e(or0) ]

a

+ 272 [ 101 1T 1K) ‘e (0, X)+(ap |T[Xx) ‘e (ar ,Xx) JaXdx,

To c(a,Xx)= ¥ (a|T|8)c (B, Xx)+[T(X)+T (x) Je (o, Xx)
B

+ z:ch(xX)f(oclTlx’x')‘c(a,x'x’)dx’dx'
B
+2 el e wxyax dx’ (I11.105)
and for completeness*

T c(Xlxlexg)=[T(X1)+T(X3)+T(x1)+T(x3) le (X1X3x,%3) s
© (I1I.106)

*
It is clear from (III.69) that T c(XXaxixs) is
o

7

one term in Tc(Xlxaxlxz), with T c(X1X3x1%,)

being the sum of all other terms,
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one finds with the aid of (IIX,104) and (I1I.86) that ||
simplifies: 2

H- T + vV .

HOC(Glaz) - (€a1+ 5(13) C(Qla:a),

Hoc(a,Xx) =] [ea+T(X)+T(x)] c(a,Xx),
Hoc (X1X2X1%z) = [T(Xy)+T(Xa)+T (%, ) 4T (x2) Je (X1 Xax1%a) .
(I11.107)
Ho has three types of eigenstates:
c(o,0z) = 6a1a6a36 + 6a166a3a’
c(o,Xx) = c(X;Xexy%3) = 0, (II1.108)
with energy eigenvalue O + eB;
c(a,Xx) = éaao fe (Xx),
c(opag) = c¢(XiXoxix3) = O, (II1,109)

with energy eigenvalue ¢, + ¢, where f¢ is a product of
free proton and free electron orbitals (plane waves) with
total energy e€;

c(X1Xax:%5) = fe(x1xlexa) >

c(a0z) = c(a,Xx) = 0, (I11.110)
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with energy eigenvalue ¢, where f. is an antisymmetrized
product of free proton and free electron orbitals with
total energy ¢. Only the eigenstates of type (III,108)
satisfy the bound state~continuum orthogonality con-
straints (III.86), and hence lie in the space of physi-
cally allowed states, The failure of the eigenstates of
types (III.109) and (III.110) to satisfy these constraint®
is an inescapable consequence of the fact that products

of free-particle orbitals are not orthogonal to the bound
states, and the related fact that the interactions between
continuum particles cannot be turned off without also
turning off the intra-atomic interactions, causing the
atoms to disintegrate. Nevertheless, a decomposition of

H = T + V into Ho i H/ would be useful in

a perturbation treatment in which atom=-atom and atom=con-
tinuum exchange effects are treated perturbatively along
with the actual atom-atom, atom-continuum, and continuum-
continuum interactions. Such a treatment is expected to
be useful at low densities., An interesting aspect of the

decomposition (III.105) is that [ , like V¥

1
tains an interaction part T . It is clear from (II.89)

and (I1I.91) that T' contains atom-atom, atom-proton,
and atom-electron interaction parts. These arise from
coupling between exchange and kinetic energy.

, con-

If one undertakes the exercise of verifying that
'I' c(a,Xx) and v c(aXx) satisfy the orthogonality

constraint (III.86), one may be shocked to discover that
in general they do not, even if c(a,Xx) does. More gener-

ally, A car vty X¥n=j+1 - -Xn¥n-j+1- ¢ .xy), for general
n and a general A derived from a Schrédinger operator

Ag.p» does not in general satisfy (IIL.44) even if c

* In fact, we shall see in the next paragraph that the

eigenstates of the full H also fail to satisfy these
constraints.



COMPOSITE PARTICLES 215

does, The point is that the metric operator M in (IIIL,63)
and (III.66) in general takes a state satisfying (III.44)
into one that does not, except in the trivial case n = 1,
when M = 1; this is clear from (IIL.45), since the right
sides of these equations are in general not zero. Thus
it is convenient to make a distinction between extended
and restricted state spaces, We shall call the space of
all state vectors |c), restricted only by proper symmetry
and antisymmetry under permutations of the arguments of
the c's, the "ideal state space" d. The subspace of d
consisting of state vectors |c) satisfying (III.44) will
be called the '"physical subspace' P. Observables A act

on P and leave P invariant®, but M and operators = MA
act on J and in general take a state vector in P into
ame having a physical component (the component in P) and
an unphysical component (the component in the orthogonal
subspace J-P, the ''totally unphysical" subspace.) Far
from being a drawback, this is an advantage, since it
will enable us to introduce second quantization easily
without worrying about the fact that products of free
atom, free proton, and free electron states are in gener-
al not in , We shall see in Sec. III.F. how observables
can be projected onto the physical subspace £, in analogy
with the procedure used in Secs. II.D. and II.E. Finally,
we note that the fact that A c(X;.. KX X1...%,) in gener-

al contains many more terms than do the other A c's may
be regarded as a result of the fact that M=1 on the

"completely unbound” subspace, so that f}c(Xi...Xux:.. oXy)
is strongly orthogonal to all the o, if ¢ is; hence
it automatically contains all of the many orthogonalization
terms necessary to achieve this orthogonality.

It is now a fairly straightforward matter (although
algebraically tedious) to generalize the previous deriva-
tions so as to obtain the representation of an observable
A acting on Schrddinger wave functions | as an operator

A on the ideal state space §, for arbitrary n. If we

* This is a consequence of relationships between the ef-
fect of A on c's with different values o% j, following
from the fact that Asch commutes with An nuc) ang An(31902
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restrict ourselves to the binary exchange approximation,
i.e. consider, in the evaluation of the integrals (III,68)
after substitution of Ay, only the same type of permuta-
tions as were included in evaluating (II1.46) up to the
binary collision term (c,c’):, then the terms arising for
general n are rather obvious generalizations of the ones
occurring already for n = 2, Even if one restricts one-
self to the binary exchange approximation, terms repre-
senting collisions of arbitrary numbers of atoms, protons,
and electrons occur (note that even for n = 2, some of
the matrix elements represent 3-body collisions). It is
in the spirit of the binary exchange approximation to al-
so drop matrix elements representing true dynamical col-
lisions of more than two particles*, so we shall hence-
forth do so. We shall call this approximation, in which
matrix elements representing multiple collisions, whether
truly dynamical, exchange, or both, are omitted, the
"binary interaction' approximation,¥¥

We shall, as before, consider one and two-particle
observables

T\p(Xl .o .XnX]_ e .Xn) = Tsch‘v(xl £o .an1 . .Xn)

n n
> T + X T(xj):]l VKX KL x ),
j=1 i=1

V(KX KX ) = Vg WKL K XL k)

n n n n
L )+ S vax+ T T ovEx) i X wx)
j<k i<k j=1 k=1

(I11.111)

Here 'particle' means atom, unbound proton, or unbound
electron,

%
Note that even with only single binary collision terms
in the Hamiltonian, iterated collision effects occur in

its eigenstates.
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The explicit expressions for ]' and \’ up to the bi-

nary interaction approximation then follow upon substitu-
ting (III.43) and III,111) into (III,68), retaining only
direct and binary exchange terms, and also dropping many-
body interaction terms, The combinatorics are rather in-
volved, so we state only the results. One finds*

H=T+V=H°+H'+H

spont

(1I11,.112)

where

ci(@awisr il wnde | : arfe ek | nats k)
“o n-j’ n-j+l n n-j+l n

n=j

=2E k [(ap|T|a)+(aplv|a)] x
p=l «a

X x.

X C(ql"'ap-1““p+l‘"an-j’xn-j+1"' = n_j+1...xn)

n
+ ¥ LT(Xp)+T(xp)] c(al.OQan_j,Xn_j+1...Xn
p=n-j+1

X xn-j+1"°xn)

In the actual lectures only a schematic description of
was given, The expressions given here, and all of the
subsequent analysis and discussion, are more complete,
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o
q |- ’ I
HED @n™2 5 | [T * +a VX 7]
p=1

x c(ay.. o G s 20 ’Xn-j+1' . .XnXxn_j+l. o .xnx)

X dXdx + h.c.}. (I1I.113)

Here "h.c.' denotes the hermitian conjugate; for the case
of the term coupling the (n-j)-atom amplitude to the
(n-j-1)-atom amplitude, its hermitian conjugate couples
the (n-j)-atom amplitude to the n-j+l-atom amplitude.

The inc1u§ion of such off-diagonal terms in ll rather
than H is purely a convention; we have chosen
to do so since they vanish by (III.44) in case the

¢y are chosen to be single-atom energy eigenstates, Eq.
(II1.104). Then (ITII.113) reduces to

Hoc(al...an_j,Xn_j+l...ann_j+1...xn)

n-j n
= I 1 x
1% et I tT(XP)+T(xp)]j
p=1 p=n-j+1
X °(“1"'“n-j’xn-j+1"'ann-j+1"'xn)' (III1.114)
The interaction part H' contains a large number
of terms even if terms beyond the binary inter-

action approximation are discarded. One finds

!
Hc.. .an_j,Xn_j+1. . ‘ann-j+1‘ cex )
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= ¥ Z‘éapaq|V|ocB)-(apaq|IT|aB)-(apaq|IV|0LB)]
1<p<q<n-j 0B

x e(ay.. £ SR ’aq-leo’qﬂ' : .an_j,Xn_j+1. X

xn-j+l" *“n

n
+Hx [v(xpxq)+V(xpxq)]+ 3 V(X x )}

n-j+l<p<qsn p=n-j+l q=n- J+l

X
c(ay.. 'an-j’xn-j+1‘ o 'ann-j+1‘ X

n-j n
S I 1
+ 3 2 o {L(ap,xq|Vla,Xq)+(ap,xq|V|a,xq)J
p=1l g=n-j+l «

X
c(az.. LR ITRTRL. N ’Xn-j+1‘ . .ann_j+1. X

f [(ap,xqIITla,x)+K(apxq;a,X)T(X)]
x e{ay.. LT STETRL ’Xn-j+1' : 'Xq-1XXq+l' X
X x L..x )dX
n

n-j+1

- f [(ap,xq |IT |a,x)+K(ocp,xq;a,x)T(x) ]
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xc (g ...0_ 00

! p+1'"an-j’Xn-j+1'"ann-j+1'”xq—1qu+1"'xn)

xdx}

n-j n
+ {G+) @ty T f[(ap,quVlXqu) '
p=1 g=n-j+1

+ (ap,quVlXqu)']

X X

X c(al'"ap-lap+l'”an-j’Xn-j+1" el

”xnx)dde+h.c.}

% ’ “wot
HODED[@DE-3D T T floa VIR )
]_SP<an-j
x c(oy ... 051041 U1 %+1 " -3

X XX 'x
n

' ’ ’ 2
A e & 2 )dXdX ‘dxdx " + h.c.r

’Xn-j+1'

-%
+ G @3N Y Zf{(apaq\VIa,Xx)’+ (e V10, Xx)"
1€p<qsn-j a

-(apaquTIa,Xx)’-(aqapIITIa,Xx)ﬁ(apanIVIa,Xx)'

-(aqap\lVla,Xx)'

-[K(onpaq;a,Xx)+K(aqap;a,Xx) j [T(x) T (x) 4V (¥x) |}
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XC(O.;L... a,

L L T SRV SRR

X X

’xn-j+1"' " xn_j+1...xnx)dde + h.c.}

+ ... (I11.115)

where "..." indicates terms beyond the binary interaction

approximation, and all the matrix elements occurring have

been defined previously. 1In the terms beyond the binary

interaction approximation there occur "disconnected" con-
’

tributions to “ , 1L.e. contributions in which the ma-

trix elements factorize. The following 3-body term, rep-
resenting coupling between kinetic energy of unbound par-
ticles and interatomic exchange, is one example:

n
-3 Z(apaq [T{ag) 3 [T(Xr)+T(xr) ]
l<p<qs=n-j oB r=n-j+1

X g “es ol o
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