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FOREWORD 

This volume contains material based on lectures given 
during the second part of the Colorado Summer Institute for 
Theoretical Physics held during July and August, 1971. 

The portion of the Institute represented here is de­ 
voted to mathematical physics, with topics ranging over 
statistical mechanf.c s , dissipative systems, composite 
particles, algebraic methods and field theory. 

Volumes XIV represent the last of the current series 
of the Boulder Lectures in Theoretical Physics since neces­ 
sary support is no longer available. It is hoped that the 
Institutes have served a useful purpose by stimulating 
young scientists as well as old to work in some of the 
fascinating fields which have been covered. The Institutes 
have certainly played an important role in physics at the 
University of Colorado and at this time I wish to thank all 
who have participated over the years. 

The Institute was sponsored by the National Science 
Foundation. 

I wish to thank the lecturers and the participants for 
their effort for a lively Institute and to the secretary, 
Mrs. Charlotte Walker for her invaluable contribution to 
the organization of the Institute. I would also like to 
extend my appreciation to Mrs. Walker for the typing of 
the manuscript. 

Boulder, August 1973 

Wesley E. Brittin 
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STATISTICAL MECHANICS OF THE XY-MODEL 

Eytan Barouch 
Department of Mathematics 

Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

Introduction 

Spin systems play a major role within the general 
framework of statistical mechanics and many body theory, 
since they provide us with explicit examples for which a 
great deal of exact results are known. 

A spin system is specified by a Hamiltonian whose 
components are spin-spin interactions, and spin-external 
field interactions. Because of mathematical limitations 
we restrict ourselves to nearest-neighbor interactions 
only. 

A famous example of a spin system is the Ising model 
(Ising 1925) introduced by Ising who computed its parti­ 
tion function in one dimension, and Onsager (1944) compu• 
ted the partition function for the two dimensional lat• 
tice with no magnetic field. The Hamiltonian that Onsager 
studied is given by 

_ J._,"\ax. O'x L n,m n,m+l (1.1) 

Onsager found an explicit phase transition as a logarith­ 
mic singularity of the specific heat at a critical temper­ 
ature T9 r 0, and Yang(l952) computed the spontaneous mag­ 
netization by a perturbation theory for T < Tc with the 
famous IT-Tc 1110 result. 

The Ising model represents a "classical" system, 
since every term in (1.1) commutes with each other. An 

1 



2 EYTAN BAROUCH 

obvious generalization of (1.1) to quantum systems with 
nearest neighbor interactions is the generalized Heisen­ 
berg model (in one dimension) 

H xyz (1.2) 

The complexity of Hxyz vs. Hr is very clear since 
even the ground state of (1.2) is highly nontrivial. 
Particular cases of (1.2) were studied for a long time. 
Bethe (1931) found the ground state eigenvector when 
A= B = C, and Hulthen found the ground state eigenvalue. 
Lieb,Schultz and Mattis (1961) and Katsura (1962) studied 
the XY-model for which C = 0, Yang and Yang (1966) stu­ 
died the cases A= B" 

The general case (1.2) was not understood until 
very recently. Baxter (1971) computed exactly the ground 
state of (1.2) and his complicated results contain all 
the other cases as particular limiting cases! 

Two-dimensional "classical" lattices can be studied 
by constructing a "transfer matrix" introduced by Kramers 
and Wannier (1941), and the log of its largest eigenvalue 
gives the free energy per site, in the thermodynamic 
limit. Commutation relations of V with Hamiltonians of 
quantum lattices suggest that the mathematical tools de­ 
veloped for one are very handy for the other. 

McCoy and Wu (1967) demonstrated that a linear Hamil­ 
tonian commutes with V of the general six vertex ferro­ 
electrics, Sutherland (1970) demonstrated that the trans­ 
fer matrix of the eight vertex ferroelectrics connnutes 
with (lo2) for a special choice of A, B, C. Baxter de­ 
rived the ground state energy of (1.2) using the brilliant 
method he developed for the 8-vertex problem" 

Another example is the relation of the XY-model 
with a transverse field to the Ising model. Suzuki (1971) 
shows that the XY-Hamiltonian (Lieb,Schultz and Mattis 
1961, Katsura 1962) given by 
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H = l ((l+y)a;a;+l + (1-y)arar+l - ha;} 
j 

3 

(1.3) 

commutes with the transfer matrix of the Ising model with 
the identification 

K. = J./kT = SJ; 
l. l. L 

(1.4) 

We devote these lectures to the physical properties 
of (1.3), and because of the commutation relations of Su­ 
zuki it is natural to expect an extensive use of the 
mathematics developed for the Ising model. 

There are four major topics we are going to discuss. 

(a) Ground state energy and thermodynamics of (1.3). 

It is well known that a one-dimensional system with 
finite nearest neighbor interactions does not exhibit a 
phase transition at any finite temperature. However, it 
is not at all clear, that the ground state energy, and the 
thermodynamic functions at T = 0 are analytic functions 
of the coupling constants. We wish to study the effect 
of symmetry or lack of symmetry on the analytical proper­ 
ties of the macroscopic averages. Some symmetry breaking 
points are apparent (y=O), some are not (h=l, h2+y2=1). 

The symmetry properties of (1.3) manifest themselves 
in the behavior of the correlation functions Pvu· We 
find a long range order in the x direction of the ground 
state, namely 

R 2 l/4 

• cl) l+y [ya (l-h)2 J h < 1 

lim Pxx (1.5) 
R-oo 

h > 1 
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(b) Dynamical properties of many particle systems 
very near thermal equilibrium are most commonly studied 
in terms of the time delayed correlations 

(1. 6) 

Neimeijer (1967) was able to compute Pzz(R,t) 
exactly,and found that all contributions come from two­ 
particle excitations, with t-1 approach to the infinite 
time limit, instead of the commonly believed exponential 
approach. This result led Mazur (1969) to develop his 
criteria for nonergodicity of a system, and he demonstra­ 
ted that the system is not ergodic. Later on, McCoy, 
Barouch and Abraham (1971) and Johnson and McCoy (1971) 
studied the rest of the Puv<R,t), and found distinction 
between h > 1 or h < 1. For h > 1, contributions to 
Pxx<R,t) come from 1,2,3, ... excitations, where for 
h < 1, we have only even number of excitations contribu­ 
ting to the asymptotic series. The only other exact re­ 
sult known is Pxz(R,t), computed by Johnson and McCoy. 

(c) In 1968, McCoy and Wu presented a detailed 
analysis of the Ising model with random exchange energies. 
They found that the logarithmic singularity of the speci­ 
fic heat rounds off, infinitely differentiable but non­ 
analytic. Smith (1970) introduced these ideas to the 
isotropic (y=O) XY model, and was able to study the in­ 
fluence of these random impurities exactly, using the 
pioneering work of Dyson (1953) on a random chain of har­ 
monic oscillators. He finds that the singularities of 
the ground state functions become infinitely differentiable. 

(d) Our last topic is non-equilibrium phenomenae, 
introduced to the XY-model by Niemeijer (1967). Leth 
in (1.3) be given by 

t s 0 

h(t) (1.6) 

t > 0 
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The system is assumed in thennal equilibrium, and at a 
specified time t = 0 we turn on a time dependent field. 
The natural question is whether the thennodynamic func­ 
tions will approach equilibrium, and what is their asymp­ 
totic behavior for large t. Niemeijer (1967) and Barouch, 
M~Coy and Dresden (1970) studied the z-direction magneti­ 
zation for a step function h(t) namely h1(t) = b. It was 
found that the infinite time limit is a non-equilibrium 
limit. If b = 0, the "zero field" magnetization does not 
vanish. Furthennore, we find a division into regions in 
the long time behavior of mz(t). If h > 1-ya, the long 
time behavior of mz(t) is O(C212) with two oscillating 
frequencies, independent of y. If h < 1-ya, mz(t) is 
O(t-1'' with one frequency dependent on y. On the bound­ 
ary, mz(t) is O(t-314). 

Our approach is exact solution of the Liouville 
equation for the density matrix p(t) 

id~ p(t) = [H(t),p(t) ]. (1. 7) 

We reduce (1.7) to a second order differential equa­ 
tion of the fonn 

V"(t) + [J\2 + Ht) ]V(t) = 0 (1.8) 

and express p(t) in tenns of the solution of (1.8). Do­ 
ing so, we find that no matter how slowly h(t) varies 
with time, lim mz(t) exists, but this is not an equili­ 
brium limit~-00 Another expression of the nonergodicity 
of the system is total destruction of the long range order 
of Pxx• 

It was felt, however, that a~ spin would ther­ 
malize, and it was fotmd (Abraham, Barouch, Gallavotti, 
and Martin-Uif, 1970) that an internal spin thennalizes 
like t-1 where a boundary spin (Tjon 1970) thermalizes 
like t-3. 
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Ground State and Thermodynamics 

The XY Hamiltonian was defined last time by 

H = l [(l+y)s;s;+l + (1-y)srsr+l - hS;] 
j 

(2 .1) 

In order for H to be uniquely defined we choose cy­ 
clic boundary condition, namely ~+l = S~where a= x,y,z, 
and N is the number of spins in the chaih. 

We diagonalize Hin four steps, following LSM and 
Katsura. 

(i) Express S~, sY Sz in terms of creation and de­ 
struction operators~ j' j 

s~ 
J 

Sy - 1 (bt - b) . -2· . . ' J l. J J 
t 

b.b. - \. (2.2) 
J J 

The operators bi satisfy a mixed set of commutation rela­ 
tions 

t t t 
[bi,bj] = 1' [bi' bj] = [bi,bj] 0 i j 

and the anticommutation relations 

t b~ (b :) 2 = o. [bi' bi} = 1 
l. l. 

(2. 3) 

(2 .4) 

(ii) Jordan-Wigner transformation. We express the 
operators bj,bJ in terms of Fermi operators. Let 

t-1 

exp[TTi I t - 
ct bjbj Jb t 

j=l 
t-1 (2 ,5) 

t bt \ t 
C-1, exp[-ni b.b. J -1, L. J J j=l 
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It is an easy matter to verify the identities 

t t t t t t 
blj+l cjcj+l, blj+l cjcj+l 

t t 
exp(in l c :c ) bNb1 -cNc1 

j J J 

t t t t exp(iTT I t 
bNb1 -cNC1 cjcj). 

j 

(2. 6) 

(2. 7) 

Inserting (2.6), (2.7), and (2.2) into (2.1), we obtain 

I t X[l + exp(in c.c.)]} • 
J J 

(2 .8) 

The last term in (2.8) is the onty term that is not 
quadratic in the Fermi operators cj,c., and it comes from 
the imposed cyclic boundary condition~. 

LSM observed that in most of the thermodynamics 
averages, the last term can be dropped and called the 
"modified boundary condition" c-cyclic. This is indeed 
correct in the thermodynamic limit N ~ 00, and we will 
adopt the c-cyclic condition for most of the discussions. 
However, for clarity and completeness we outline here the 
treatment of (2.8) (Katsura 1962). This treatment is need­ 
ed to demonstrate the difficulties that rise in computing 
the transverse time-delayed correlations. 
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Let 

~[l 

N 

~ 
t ±exp(iTT c.c.)J 

j J J 
(2.9) 

The operator P+(P) is the projection operator for states 
with an even (oddJ number of cj excitations. The Hamilton­ 
ian (2.8) then decomposes into 

(2 .10) 

where we assume N to be even, and H± are given by 

N-1 

H± = \ () [c:cj+l 
j~ J 

N 

The decomposition (2.10) is expected, since H commutes 
with the parity operator P+ - P_. Therefore, when acting 
on a state with even (odd) number of cj excitations, H 
may be replaced by H+(H_). Therefore, the c-cyclic condi­ 
tion means replacing H by H+ which is permitted for calcu­ 
lation of expectation values of even operators, like S~, 
SlSJ.+R• but not for odd operators like S2-f' Sj5kSi and J so 
f~rcµ. Those who are interested in utmost rigour are re­ 
ferred to Katsura's paper (1962) who gave a very thorough 
treatment of this recondite point. 

Using the c-cyclic condition we write Has (with the 
understanding that N is very large) 

N 
) . t t t t 

H = ~ j~ [(cjcj+l + ycjcj+l) - 2hcjcj] + \Nh. (2.12) 
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(iii) Fourier decomposition 

Let 
N/2 c; = N-\ ) 

p=~/2 

N/2 

cj = N-\ l 
p=-N/2 

exp(ijcp )at 
p p 

exp(-ijcp )a p p 

(2.13) 

2trp/N 

By direct substitution of (2.31) into (2.12) we obtain 
N/2 

H = ) H (2.14) 
pfu-i p 

where 
t t i t t H = (cos cp -h) (a a +a a ) - 2 y sin cp (a a +a a )+ h p p pp -p -p p p -p p -p 

(2 .15) 

Since one obtains 

(2 .16) 

all H can be diagonalized simultaneously. p 

(iv) Bogoliubov-Valatin transformation. 

To diagonalize H -h, we change the 
by eitt/4, and write 1rnear combinations 

in/4 t 
e ap = cos ap~p + sin ap~-p 

phase of ap, a_p 
of the form 

in/4 e a = cos -p 

(2 .17) 
9 i 9 t 

~ - s n p~p p -p 
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where 

y sin cpp 

cos cp -h ' p 
(2. 18) 

and the transfonnation is cannonical since 9P = -9-p· 
By direct substitution of (2.17) and (2.18) into (2.14) 
we obtain 

H I A(cp )(ntn - \) + ~ 
p p p p 

t 
where npnp is a Fermi number operator, and 

1 
A(cp) = [y2 sin2cp + (cos cp-h)2]2 

(2 .19) 

(2. 20) 

We finally obtain the ground state per particle to be 

E ih - l ' A(cp ) 2N ['p p (2.21) 

which in the thermodynamic limit N - ~ becomes 

1 TT 1 
E = ½h - - J dcp[y2 sin2cp + (cos cp-h)2]2• 

2TT Q 
(2. 22) 

The ground state (2.22) is definitely not an analytic 
function of h, y for all h, y. For instance let h = 0. 
Then 

E 

(2. 23) 

where e(k) is the complete elliptic integral of the second 
kind (GR 8.112), with a singularity proportional to y2logy 
for y ~ 0. (See appendix). 
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The function A(~) is the one particle excitation, 
and it has a gap that disappears at h = 1, So one might 
expect a symmetry breaking point at this value, This 
point will be further discussed later on. 

We now turn to discuss the thermodynamics of the 
system. Since Hin (2.19) is expressed in terms of non­ 
interacting Fermions with "kinetic energy" A(~), the free 
energy per site is then given by 

1 TT 
Sf(h,y,S) = -; J lnf2 cosh [\SA(~)} d~ (2.24) 

0 

The rest of the thermodynamics is then straight­ 
forward. 

The magnetization in the z-direction is given by 

1 TT 1 
mz = 2n J d~(h - cos~) tanh [\SA(~)][A(~)J- (2.25) 

0 

the internal energy U is given by 

-1 1 JTT 
U = - S 2TT 

0 

the specific heat c 

A(~) tanh [\SA(~)] d~ (2.26) 

C = oU = f = k.. JTT A(~) tanh [\SA(~)] d~ + er 2n 0 

-3 k JTT + S 2TT 
0 

and the susceptibility Xz is given by 
om z 
ah 

(2 0 2 7) 

(2,28) 
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It is very clear that there is no 
at any finite temperature, since mz(h) 

phase transition 
0 when h = O. 

At the ground state [T=O or s=00] we have a different 
situation. The interesting functions are mz(h), Xz(h), 
and their singular behavior was studied by Niemeijer. 

For y = 0 the magnetization behaves in a non-analytic 
way, namely 

r 
~ - TT 

h :, 1 

m (h) z 
l arc cosh 

(2.29) 

For y f O, Niemeijer evaluated the magnetization numeri­ 
cally, and found a continuous non-analytic behavior of 
mz(h) at h = 1. 

f 
I 

M 2 
L_ 
M 2 

he 
h- 

Fig.la. (Mz) as function 
of h for T = 0 (solid line) 
and T > 0 (dashed line). 

Fig.lb. Magnetization of the 
ground state as function 

of h for y = O. 

(Th. Niemeijer,Physica ~. 377, 1967) 

The ground state susceptibility x exhibits a loga­ 
rithmic singularity near h = 1. To se~ that rewrite 2.28 
for B = 00: 
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a 1 JTI (h - cos p) dp 
x/h) = clh 2TI [(h-coscp)2 + y2 sin2cp] 

0 

13 

L ( d 
2TI 0 [ (h-c os e) 2 + y2sin2cpJ1/2 

L TI (h-cos p)2 d!:11 - Io 2TI 3/ 2 
[ (h-ccs cp) 2 + y2 sin2 cp] 

L 
TI 

::i:2sin2p 
2TI Io 3/2 dcp 

[(h-cos cp) 2 + y2sin2cp] 
(2. 30) 

TI ll TT 
To evaluate Xz(h) write J = I + J where ll is 

0 0 ll 

small but finite. The susceptibility is given by 

X (h) = 11(1l) +I2(ll) z (2. 31) 

where I2(ll) is a smooth function of h so we need to study 
only 11, for cp ~ ll, namely 

1 ll 
11 ~ - Jr 

2TI Q (2. 32) 

1 - 3/2 -1/2 
11 (ll,h, y) ~ 2TI y2 p (-ll[ll2 + p(h-1)2] 

+ log [ll + (ll2 + (h-1)2p)\] -\ log [p(h-1)2]} (2.33) 

and pis given by p = [y2 + (h-1)2)-1. 

The dominant behavior near h = 1 comes from the last 
term of (2.33), so Xz(h,y) can be written as 

1 -s,2 
X (h,y).~ - -2 Y2[Y2 + (h-1)2] loglh-11 + f(h) (2.34) 
Z TI 
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where f(h) is bounded and continous in h. Graphically, 
X (h) behaves as z 

t 
X 

h- 
Fig. 2a. xz(h) as function 

of h for T = 0. 

t 
X 

he 
h- 

Fig.2b. Susceptibility of 
che ground state for y = 0 

as function of h. 

(Th. Niemeijer,Physica 12,, 377, 1967) 

Appendix 

Using BMP Vol. 1, (318), and Vol. 2 (110, form 12) 
we obtain [O < k = 1 - y2] 

e(k) = %n aFi(-%,%,1,k) = 
r(n~)r(\-+n) 

- .il.:.ll - 2n 

a "'. - r.. \ 
- Zn nfu 

00 

n~ n! (n+l)! 

r(n+ii) r(\-+n) 
a 

n! (n+L) ! 

[h -log(l-k)][l-k]n n 

J 2n [h - 2 lg y y n 

where h is given by n 

h = o/(n+l) + o/(n+2) - t(n+%) - o/(n-1{) n 
and the leading singularity for y ~ 0 is proportional to 
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ya lg y. 

=L "TT 
mz(h, y=O) Jo h - cos cp 2TT 

[h - cos cp I 
dcp = ~ if h :;,1 

0 ,s; h ,s; 1: 
arcos(h) 

m (h, y=O) - L J dcp + L 
Z - 2 TT Q 2TT 

1 1 
- ZTT arcos(h) + ZTT [TT- arcos (h) 

1 = ~ - TT arcos(h) 

TT 

I dcp 
a rcos (h) 

Spin Correlation functions 

Spin correlation functions are very important in 
lattice statistics, since they contain information about 
a possible long range order. 

The equilibrium, equal time correlation functions 
are defined by 

v = x,y,z (3.1) 

LSM write these correlation functions in terms of 
the operators bj' b; as 

p (l,m) t ~) (b tb - ~)> zz <(b,1,b,1, - mm 

p (l,m) \<(bi + b ./,) (b t + b )> (3.2) xx m m 

p (l,m) \<(bl - b./,) (b t - b )> 
yy m m 

Define new operators 
t 

Ai Ci + Ci' (3.3) 



16 EYTAN BAROUCH 

and observe the identity 

. t 
1.TTC.C. 

1. 1. = A.B. -BiAi e 
1. 1. 

We wish to in of the t express Pvv terms cj, c .• 
J 

(3. 4) 

P (-l,m) xx 

p (-l,m) yy 

p (-l,m) zz 

m-1 

\<(c1 - ct) [exp(in-l~ c;cj) ](c; + cm)> 

(3.5a) 

(3.5b) 

(3.5c) 

Fubini and Caianello (1952) show by the use of 
Wick's theorem (1950) that expectation values of the type 
(3.5) are given in terms of Pfaffians. In particular we 
have 

P (m--l) = xx 

\pflsl,l+l 8t,l+2'0••8.i,m-l Gl,l+l G l,m 

8m-2,m-1 Gm-2,l+l 

(3.6) 

~-1 m ' , 
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where 

S <B B > = S (m-z) -t,m -t m 
(3.7) 

G G(m--t) = <B,Am> l,m .,, (3.8) 

An important simplification occurs in (3,6) for the equi­ 
librium case, namely S,t, m = Q,i m = 6,t m• Then the Pfaf­ 
fian is equal to the determina~t formed from its non-zero 
entries G(m--t). 

The three spin-spin correlation functions are given 
in terms of G(R) as 

G_l G_z G_R 

GO G_l G-R+l (3.9a) 

Pxx ½; 

GR-2 ~-3 ... G_l 

Gl GO G_l G-R+2 (3.9b) 

G2 Gl G-R+3 

pyy ½; 

GR GR-1 Gl 

Pzz = m2 
- ½; G G (3.9c) z R -R 

It is clear that Pzz is the easiest to deal with, 
since it involves only simple products of~- However, 
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p and p are much harder to evaluate, since one deals 
w!fll largiYToeplitz determinants [Barouch and McCoy, 
1971]. 

To evaluate GR use (2.13) and the translation in­ 
variance to obtain 

+ exp(2;i[j(-p+q) + Rq apa~ - exp(
2
;i[j(p-q) - Rq)a;aq 

(2ni['( ) Rq]) - exp -N J -p-q - a a> p q (3.10) 

Performing the sum over j and taking N - 00 yield 

-G = G = R R 

1 rTT tanh[¼Bll(cp) J . . - ; .
0 

d~ II(~) [-cos~R (cos ~-a)+sinqiRsin~]= 

~TT JTT (\s)?~R T[\Sll(~)J(-cos~ +a+ iy sin~) d~ 
-n 

(3.11) 

with T(x) = tanh x 
X 

Asymptotic results of Pzz for large R, at the ground 
state can be now readily obtained as: 

(a) y = 0 

(sin[R arccosh J)2 
nR h < 1 

(3 .12a) 

h ;;e 1 
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(b) y ! o, h = 1 

(R) 2 - \(TTR)-2[1 + \(yR)-z + O(R-J)] Pzz ~ mz 

19 

(3 .12b) 

(c) h2 = l-y2 

p (R) = ma 
zz z 

y 'f 0 

(3.12c) 

(d) y ,/ 0 0 s h2 < l-y2 

_ 2R_-2 .,.1R [ i*(R+l)[(l-e2H) Ji/a} 
a -"R TT e e -Zi* 

(1-aae ) 
P (R) 
zz 

~ ma z 

where cos * = h(l-y2)-% and a= 1:.Y < 1 l+y 

(e) 1 - y2 <ha< 1 

~ ma - -h z 

(f) h > 1 

(3.12d) 

(3.12e) 

(3 .12f) 

and Aa is given by 

Aa = [h - [ha - (l-y2) ]1/2}/(l-y). 

This correlation ftmction Pzz reveals more structure 
than expected intuitively. We see the boundary ya+ ha= 1 
in which Pzz is R independent. We also see that the ap­ 
proach to the Limit R - 00 is exponential everywhere except 



20 EYTAN BAROUCH 

on the boundaries, where it is algebraic. In particular, 
one would like to interpret the h > 1 region as an "easy 
axis" region. However, in order to be able to say that, 
we need information about vanishing of possible long 
range orders at h = 1. 

It is interesting to note that for 0 ~ h2 <l - y2 

the approach of Pzz to its limit is oscillatory. This is 
also the region for which the equivalence to the Ising 
model does not hold. Suzuki (1971) calls it the "quantum 
region", and the outside of the unit circle h2 + y2 = 1 
the "classical region", with this circle acting like a 
natural boundary. 

The asymptotic expansions for finite temperature can 
be obtained in the same fashion, and are given in Barouch 
and McCoy (1971), eq. (6.1)-(6.11). 

We turn our attention to the transverse correlations 
Pyy(R), Pxx(R) at the ground state S = 00

• We make an ex­ 
tensive use of Szego's theorem about the asymptotic pro­ 
perties of Toeplitz determinants, and refer the reader to 
the paper by Hartwig and Fisher (1969) for a detailed ex­ 
position of this topic, motivated by the analysis present­ 
ed by T. T. Wu (1966). 

Sz~go's theorem: Let CR be the Rx R Toeplitz 
determinant 

co c_l C-R+l 

Cl co C-R+2 

CR 

CR-1 CR-2 co 

where C is given by n 
1 ( e-incp c(ei~ dcp C = - n 2n 

-TT 

(3 .13) 

(3.14) 
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If 
00 

(i) I le I < 00 

n n=-oo 

00 

(ii) I In I le 12 < 00 
n n=-oo 

(iii) c(ei~ IO on the unit circle 
(iv) ln c(ei~ is a periodic function of qi 

with a period 2rr (winding index zero). Then the asymptotic 
value of CR is given by 

koR ( e exp 
00 

n~ 
nk k ) n -n (3 .15) 

where kn are given by 

00 

I n=-oo 
(3.16) 

Conditions (iii) and (iv) are very delicate, and 
have to be tested rigorously. 

These conditions are obeyed for Pxx when h < 1. Con­ 
dition (iv) is violated for yy and Pxx for h > 1. This 
is not too serious, since T.T. Wu designed a method that 
bypasses this difficulty. However, at h = 1 condition 
(iii) is violated, and there we have only partial answers. 

Define GR = CR+l • Then Pxx is given by (3 .13) with 
T Oas 

1 JTT -iq:n -1 iq, -1 iCll,. ]\ en = 2TT e [ (l-:X.1 e _) (1-:X.2 e J dq, 
-TT (l-:X.~le-1.q,) (1-:x.;le-i~ 

(3. 17) 
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with 

(3.18) 

-1 
It is instructive to study the motion of A1,Aa,A1 , 

A;1 in the complex ei~ plane for fixed y 

hµfJ, I 
>--2'' 

I 
I 
I ,, 

.," --- 
(E.Barouch & B. McCoy) 
(Phys. Rev. ~3, 786, 1971) 

Let us tabulate the values of Ind c(ei~: 

Case Eunct Lon Index 

(a) Pxx 1. < 1 0 

(b) Pxx h > 1 +l 

(c) pyy h > 1 -1 

(d) pyy h < 1 -2 



(a) 
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pxx for h < 1 

We can apply Sz~go's theorem directly 

23 

ko = 0 
n · -n -n 

k = (-1) ~(l1 +la) n 

+ 00 
I n=-oo 

k eiqn (3.19) n 

(3.20) 

So 

00 

~
- nk k 

n -n n 

,­ = -½; L 
n 

-2 -2 -1 -1 a = ½; log[(l-l1 )(1-la )(l-l1 la) ] (3 .21) 

Substitution of (3.21) in (3.15) yields for h < 1 

(3.22) 

and the first term in the asymptotic evaluation of Pxx(R) 
is given by 

(3.23) 
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At the boundary value h2 = l-y2 we are able to cal­ 
culate Pxx exactly, and find that Pxx is R independent 

R 
Pxx = .lz;(-1) 2y/(l+y). 

By the same direct method we find that for y Oh~ 1 
Pxx = Pyy = 0. 

The case h = 1 y IO is closely related to Wu's 
T Tc in the Ising model. The result is 

pxx ~ .lz;(-l)R[2y/(l+y) J(yR)_1;4 e3/4 21/l\-3[1+0(R-2)] 

(3.24) 
where A= 1.282 427 130 is the Glaisher's constant. 

The case y = 0 h < 1 has both A on the unit circle. 
We are unable to evaluate Pxx on this line. The only re­ 
sult available is y = h = 0 due to McCoy. 

R 1/2 1/0 -6 _1/2, R 
p = p ~ .lz;(-1) e 2 A R (1-(-1) xx yy 

1 -2 eR + ... ) 
(3.25) 

(b) p for h > 1 xx 

Consider the transpose of (3.13), then the index of 
the resultiHg generating function is -1. We may write 
Pxx ~ .lz;(-l) ~ 

b_l b_2 b_R 

bO b_l b-R+l (3.26) 

BR 
bR-2 bR-3 b_l 
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with 

TT -1 -iqi -i<'fl) 
b = L r e -iqin [ (1 - :>.., e • ) (1 - :>..ae . 
n 2TT J _n (1 :>..;1 el.~ (1 - :>..2e1.qi) 
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r d e 
In order to evaluate~ we follow Wu almost word for 

word. Consider the determinant Da+l defined by 

I 

' ' bR-1 
(3.27) 

Then 

(3.28) 

DR+l is a "good" Toeplitz matrix, whose limit as R - 00 is 
grven by 

lim (-l)R DR+l 
R-"' 

2 -2 -1 2 \ [(l-:>..2)(1-:>..1 )(l-:>..1 :>..2) ] 

and XR is the corner element of the inverse of D~+l' 
is determined by a finite Wienner-Hopf sum equation. 
d(!;) be given by (d(I;) has index = 0) 

[ 
(l-:>..-1!;-1) (1-~ ]\ 

d( !;) = l -1 
(l-:>..1 !;)(1-:>..as) 

and 
Let 

(3.29) 

Then d(!;) has a unique factorization 

(3. 30) 
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for Isl= 1 such that P(s) and Q(s) are analytic 
Isl < 1 and continuous and nonzero for Isl ~ 1. 
citly, P(s) and Q(s) are given by 

P(s) = [ ~::::s]= [Q(s) J-1 

Wu shows that~ is given asymptotically by 

~ _l_ 
Zrri, 

= _l_ 
2TTi 

for 
Expli- 

(3.31) 

(3. 32) 

Performing the tedious asymptotic expansion of (3.3~ 
we find for large R 

(3.33) 

(c) The study of PY.Y with h > 1 is very similar to Pxx 
with h > 1, and is aiscussed in II. 

(d) In the case of Pyy with h < 1 we have a generating 
function with index= -2. We add two rows and two col­ 
umns, and proceed in the same fashion as before, where 
XR is replaced by 

according to Theorem 4 of Hartwig and Fisher. Details and 
results of these considerations are available in II. We 
have also computed the next order terms for h < 1, and 
found a monotonic approach for h2 > l-y2 and oscillatory 
approach for h2 < l-y2• 
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pyy for h = 1. 
Pfeuty (1970) has shown that for y = 1 

Pyy = -(4R2-l)Pxx• Combining this with (5.31) of Wu we 
find for y 'f O, 1 
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(3.34) 

Time delayed correlations. 

Define the time delayed correlations 

p (R,t) = <S~(O) S~+R(t)>. 
v,u J J 

(4.1) 

Dynamical properties of many-body systems very near 
thermal equilibrium are almost uniquely studied in terms 
of time delayed correlations of the type (4.1). 

The importance of (4.1) and its relation to experi­ 
ments (like scattering, NMR, etc.) led theoreticians to 
look for a nontrivial model, for which (4.1) can be com­ 
puted exactly. Niemeijer observed that Pzz(R,t) can be 
computed exactly for the XY-model we are studying. The 
function Pzz(R,t) is conceptually simple to obtain since 
it is the only one which does not contain S~ or sf. 

J J 

Later on, we (McCoy, Barouch and Abraham 1971) stu­ 
died the ground state properties of Pxx<R,t) and Pyy(R,t), 
and Johnson and McCoy (1971) completed the study for 
U 'f V. 

(a) p (R, t) zz 

We wish to compute_BH z iHt z -iHt 
1 \ Tr[e S .f,e S URe J 

p (R, t) "' - l 
zz N .f, T [e-SHJ 

r 
(4.2) 
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In (4.2) we are evolving an even operator, there­ 
fore, one can use the c-cyclic con1ition. Rewriting H 
and S~ in terms of the operators~-, ~j we have (using 
(2.13T, and (2.17)) J 

H = l A ~t~ + const. 
p p p p 

{exp[ij(cp -cp) ][cos 8 ~t + sin 8 ~ J p q pp p -p I p,q 
t 

[cos eq~q + sin 8 ~ ]}-~ q .-q 

and we use 

e 

(4.3) 

(4.4) 

(4. 5) 

By substitution of (4.5), (4.4), (4.3) in (4.2) one ob­ 
tains Neimeijer's result for T = 0 as 

1 TT 
Pzz(R,t) = m: + [4TT J exp[i(Rcp + tA(cp))]dcp]2 

-TT 

~.i_ JTT (cos cp-h) ]3 -L4TT -TT exp[i(Rcp + tA(cp))] A(cp) dcp · 

1 TT 
-[4TT J exp[i(Rcp + tA(cp))] 

-TT 

y sin cp 72 
A(cp) J 

(4. 6) 

It is interesting to note that as t - 00 the approach 
to the limit is~ t-1 and not exponential as several ap­ 
proximation schemes predict. The usefulness of (4.6) as 
an exact result manifests itself in Mazur's approach to 
ergodic theory (1969) who proved that mz is not an ergodic 
variable. 

We now turn our attention to the rest of the correla­ 
tions Puv(R,t), and would like to demonstrate the inappli­ 
cability of the above method. Consider Pvu(R,t) as 

P (Rt) = 1 tr[e-SH 8v eiHt 8u -iHt] 
vu ' Z O R e (4. 7) 
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-BH where Z = tr[e · ] is the partition function, and con- 
sider an expansion in terms of eigenvectors of H, namely 

p (R, t) vu 
z-l l e-~Em <EmlS61En> eit(Em-En) <Enls~jEm> 

m,n 
(4.8) 

Let u = x, v = x. Since Sj is a product of odd num­ 
ber of Fermi operators, the only non-zero matrix elements 
are between eigenstates of H+ and H- defined by (2.11). 
One might add that the difficulty in obtaining these ma­ 
trix elements is similar to Yang's (1952) study of the 
spontaneous magnetization in the Ising model. We bypass 
this difficulty by considering 4-spin correlations 
Cxx(R,t) defined by 

(4.9) 

where we keep the number of sites large but finite. Cxx 
may be evaluated in terms of matrix elements of even 
operators only, and by the use of the cluster property we 
have 

lim 
N ... "' 

C (N,R,t) = [p (R,t) ]2 xx xx (4.10) 

Admittedly this method is a poor man's way of obtain­ 
ing the results, but this is the only one we know. 

To evaluate Cxx(N,R,t) defined by (4.9) we apply 
Wick's theorem once more, and obtain a block Toeplitz de- 
ce rmf.nant 

0 s T u 
X X X 

-s 0 -u V 
c;x(N,R,t) 

X X X (4.11) 
-T u 0 -s 

X X X 

-u -v s 0 
X X X 
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C2 (N,R,t) xx 

EYTAN BAROUCH 

0 s T u 
X X X 

-s 0 -u V 
X X X (4.11) 

-T u 0 -s 
X X X 

-u -v ~ 0 
X X X 

where super~cript ~ means transpose. Each entry is 
(~ - R) x (2 - R) matrix whose elements for T = 0 are 
given by 

(Sx)m n - } l e-i(m-n-l)cp G(cp) 

' cp 

(Tx)m n l l e-i(m+n+R)cp e-iA(cp)tG(cp) 
N ' cp 

(Ux)m n l I i(m+n+R+l)cp -iA(cp)t 
N e e 

' cp 

(Vx)m n - 1 I i(m+n+R+2)cp -iA(cp)t 
N e e 

' cp 

and G(cp) is given by 

G(cp) = e-icp [ {1-)..~leicp} {1-Aa -l!i:icp} t -1 -icp -1 -i~ (l-A1 e )(l-A2 e 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

(4.13) 

To evaluate (4.11) asymptotically we used the scheme 
developed by Cheng and Wu for <SooSM N> in the Ising mod­ 
el. This derivation is long, and we'do not wish to pre­ 
sent it here. Details are available in paper IV (McCoy 
Barouch and Abraham). 

The results are 

(a) h < 1 
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w9ere super~cript ~ means transpose. Each entry is 
(2 - R) x (2 - R) matrix whose elements for T = 0 are 
given by ' 

\ -i(m-n-l)cp L e G(cp) 
cp 

l e-i(m-tn+R)cp e-ii\(cp)tG(cp) 

cp 

1 
N 

(V ) = - 1 x m,n N 

, i(m-tn+R+l)cp -ii\(cp)t Le e 
rp 

, i(m-tn+R+2)cp -ii\(cp)t L e e 
cp 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

(4.13) 

To evaluate (4.11) asymptotically we used the scheme 
developed by Cheng and Wu for <Soo8M N> in the Ising mod­ 
el. This derivation is long, and we'do not wish to pre­ 
sent it here. Details are available in paper IV (McCoy 
Barouch and Abraham). 

The results are 

(a) h < 1 

Pxx(R,t) ~ Pxx("') (1 + (2n)-1 ids idri SR f\-R (s-ri)-2 

e-it[J\(s)+A(ri) ]~[M(s,ri) + M(ri,s) - 1]} 

where the contours are the unit circles and the 
is indented outward at s = 'I'), and 

-1 -1 -1 -1 -1 -1 

[

(l-A1 s )(l-A2 s )(l-A1 s)(l-A2 s) 
M(s,ri) = -1 -1 -1 -1 -1 -1 

(l-A1 'l'l )(l-A2 f\ )(l-A1 ri)(l-A2 ri) 

(4 .14) 

ri contour 

]
~ 

(4 .15) 
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(b) h > 1 

pxx (R, t) * 

EYTAN BAROUCH 

(4.16) 

and the square root is defined postive at s -1. 

(c) h = 1 

We simply don't know what to do. 

These results should be compared with Pzz(R,t) where 
all the contributions are from two particle excitations. 
Here, for h > 1 we get contributions from 1;2,3, ... exci­ 
tations and for h < 1 from 2,4,6, .•. excitations, since 
(4.15) and (4.16) are the first terms in the expansions 
of Pxx<R, t). 

The only other exact result is Pxz(R,t) for h < 1, 
derived by Johnson and McCoy (1971) and is given by 

p (R, t) = -½;(-l)R (~t'2 [y2 (l-h2) ]1/8 (S-A) (4.17) xz l+y 

where 
S = _1_ g dz z-2 [(1-A~lz)(l-A;lz) ]\ (4.18) 

2ni lzl=l (l-A~lz-1)(1-A;lz-1) 

A= W1 - W2 (4.19) 

W1 = 2~i i dz eiAt z-R[(l-A~1z)(l-A;1z)J-\ 

(4.20) 



J.... 
2rri 

X _l_ 
2rri 
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i dz eiAt zR[(l-A;1z)(l-A;1z)J-\ 

If dz '(1-zz ') eiAt (z '/-1[1-A~1z ') (l-A;1z ') ]\ 

(4.21) 

Random Impurities 

It is well known that no physical material is 100% 
pure. There are several kinds of impurities in solids 
like foreign ions, some rare or common isotopes and so 
forth. We will address ourselves to the problem of "fro­ 
zen in" impurities. The impurities, randomly distributed 
with some normalized distribution P(z(m)) have the inter­ 
esting effect that singularities associated with phase 
transitions tend to round off, infinitely differentiable, 
but non-analytic. This statement is primarily based on 
the work of McCoy and Wu (1968) for the Ising model, who 
found rounding of the specific heat near Tc instead of the 
famous log IT-Tc I divergence derived by Onsager (1944). 
McCoy and Wu's paper partially motivated the work of Smith 
which we are about to discuss. 

In this lecture we wish to discuss the thermodynamics 
of an isotropic XY chain with y = 0, but with random coup­ 
ling constants, and study their effect on the singularities 
of the thermodynamic functions discussed earlier. Smith 
introduces the Hamiltonian H 

H = :: {J(m)(s:s;+l + s~s~+l) - hmt s:} (5.1) 

where J(m) are independent random variables. 

Step (i) and (ii) can be carried over, namely 

ctA c 
m mn n (5.2) 
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with 

A -h 
mm A = A m,m+l m+l,m 

J(m) 
(5. 3) 

A = 0 otherwise. mn 

Since (5.2) is quadradic, the transformation 

Ct = \ f* (m) µ t 
m L a. a. 

0, 

yields 

f (m) µ I 
0, 0, 

with free energy 

1 ,· s>.. 
Sf= 2hS - N l ln[l + e O.J 

0, 

(5.4) 

(5.5) 

(5.6) 

Define A= B - hl where I is the unit matrix, and an 
eigenvector of B with eingenvalue 6 is clearly an eigen­ 
vector of A with eingenvalue >.. = 6-h. Our task is to find 
the distribution of the eigenvalues of B for N - 00, and 
this was done by Dyson (1953) in his brilliant analysis of 
the random chain of harmonic oscillators. 

Smith, following Dyson, defines 

O(x) = lim 1 ~­ 
N-oo N a.ft 

00 

ln (l+xoa) = J ln(l+xo) dM (o) 
- 00 

(the branch of the log is taken in (-n,n», where M(o) is 
the limiting distribution function of the eigenvalues of 
B, obtained by the relation 

00 

limRe[-:1- 0(-x+iE:)] = J dM(o) 
E:-0 l. TT 1/x 

1 1 - M(-) 
X 

(5. 7) 

(5.8) 
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Let D(x) = M'(x) be the density of states, then (5.6) be­ 
comes 

Sf 
00 

2hS - J_
00 

ln[l + e-S(x-h)]D(x)dx (5.9) 

So to determine the thermodynamic behavior of the ran­ 
dom system one needs to compute O(x). 

Expanding the lir in (5.7) before 
together with tr B2n = 0 yield 

N oo N 

~ 
\ 1 2n 2n ~ ln(l+x6a) = -~ L ~ x TrB = 

a n=l m= 

taking the limit, 

ln(l-cr(m,x)} (5.10) 

and cr(m,x) is a continued fraction with recurrence 
relation 

cr(m,x) 
x2J2(m) 

[1-cr(m+l,x)] (5 .11) 

Setting p(m,y) = -cr(m,iy) we have 

_ y2 J2 (m) 
p(m,y) - [l+p(m+l,y) J 

and O(iy) is given by 

O(iy) 

N 

lim 1 ' ln[l+p(m,y) J 
N-00 N m~l 

(5 .12) 

(5. 13) 

In the limit of large N, p(m,y) tends to the limiting 
distribution f(p) obtained by 

D f(p) = fdp' ff(p')o(p - l+p')P(z) dz (5 .14) 

where P(z) is the distribution of the random variables 
\J2(m). Carrying out the z integration we obtain an inte­ 
gral equation for f(p) 
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f ( p) 

and the explicit P(z) we choose is given by 

P(z) 
n n 

(n-1) ! 
n-1 -nz z e 

Dyson solved (5.15) exactly!! 

with the nonnalization Kn given by 

"' 
K (y2) __ j' n-1 -n n..e) P (l+p) exp(- y2 dp 
n 0 

(5.15) 

(5 .16) 

(5.17) 

(5. 18) 

and O is found to be 

-1 
0 (iy) = [K (y2)] n n 

"' J n-1 -n n..e 
0 

p (l+p) ln(l+p) exp(- y2) d p 

(5. 19) 

In order to compute Mu and hence Dn for large none 
needs to analytically continue On(iy), compute the discon­ 
tinuity from the negative real axis, and study the result 
asymptotically. Smith has done that and his asymptotic 
results are (for large finite n) 

1 _1/2 1 _3/2 -2 
D (y) ~ -2 ( (l-y2) + -

4 
(l-y2) + 0 (n ) } n TT n y < 1 

D (y) ~ i h 8(2n8(cosh 9-1) + 9-l}exp[-9-2n(sinh9-9)] n TT s n 

y > 1 

with 9 arc cosh (y2-l) 
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D (y) ~ n113(a1- aaCn213(y2-l) ]2 + o(Cn2l3(y2-l) ]3} n 

37 

y ~ 1 
and 

211a371sr2 ( !2. 
nr2(1/a) ~ .18 aa ~ .53 (5. 20) 

a o 
In the limit n - 00, the Poisson distribution becomes 

function, and the density of states Doo(y) becomes 

l L(l-y2) _1/2 
2n 

0 

Doo (y) 
y < 1 

(5. 21) 
y > 1 

and is shown in Fig. 4 

Once Dn(y) is obtained, we can study the thermodynam­ 
ic functions. We find that mz tends to smooth up at the 
ground state 

>, 

C 
Cl 

0·18n113 

1/211" 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
10[expj-n(y-2llJ 
I 
I 
I ,, 

0 
y 

Fig. 4. Sketeh of density of states Dn(y) for n-00 and for 
n very large. Full curve, n-00; Broken curve, n very large. 
(E.R. Smith, J.Phys. C.: S.S. Phys., Vol. 3, 1419, 1970.) 

-2 2 
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To compute the susceptibility for T = 0 we have 

\i (h) = lim 13 J00 

a-oo -co 

dµ(µ-h)a (l+e-S(µ-h)}-2 e-13(µ-h)D (µ) 
n 

D (h) n (5. 21) 

and D (h) is infinitely differentiable. n 

A recent study is in the process of being completed. 
We study the Hamiltonians with random magnetic moments 
where the resulting integral equation is too hard to solve 
exactly, and we study the smoothing of the transition near 
h = 1. 

Non-equilibrium. 

Most studies of nonequilibrium phenomenae start from 
the Liouville equation for the density matrix p(t) 

i :t p(t) = [Hs(t), p(t) J (6 .1) 

It is not at all clear which approximations, if any, are 
appropriate in given circumstances. Existence of non­ 
trivial examples for which (6.1) is exactly solved, en­ 
ables us to evaluate the effectiveness and legitimacy of 
such approximations. In the following lecture we solve 
(6.1) exactly for the XY-model, where we allow the magnet­ 
ic field to depend on time explicitly. Below we follow I 
(Barouch, McCoy and Dresden 1970). 

Since stages (i), (ii), and (iii) are independent of 
the field, we may start from the Hamiltonian 

H = l H 
p p 

N/_.2 t t t t 
~ ) (o. (t) [a a +a a ]+ ~iii [a a + a a J + 2h(t)} 
p>O P Pp -p -p P p P pp 

(6. 2) 
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with 

a (t) p 2 [cos cp -h(t) ], 
p 

0 p -2 y sin cpp (6. 3) 

As we saw before, each H in (6.2) commutes with each 
other, which means that the sgace upon which H acts, de­ 
composes into non-interacting subspaces. 

Let (JO>; a tat Jo>· at lo>) be the basis for the 
pth subspace in ~hepHet~enbe~g picture. The Hamiltonian 
then becomes a matrix H(t) 

ii(t) =I [I® I®···® H (t) ® I ... ®I] (6 .4) 
p p 

where® is the direct product, I the 4 X 4 unit matrix and 

h(t) ~i&p 0 0 

-~iO 2 cos cp -h(t) 0 0 
ii (t) p p 
p 

0 0 cos cpp 0 

0 0 0 cos cpp 

(6. 5) 

Let Ul?(t) be the time evolution matrix in the pth 
subspace given by 

idd u (t) = u (t)H (t) t p p p 
U (0) = I 
p (6. 6) 

The Hamiltonian Hs(t) is then given by 

Hs(t) = l [I® I® ... ® Hs(t) ® ... ® I] 
p p 

(6. 7) 
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where 

(6.8) 

Because of (6.7) or (6.4), the density matrix at 
t = 0 is given by 

This particular algebraic form, together with (6.7) 
suggests that a solution of (6.1) with boundary condition 
(6.9) would have a similar form 

p(t) = P1 (t) ® Pa (t) ® , •• ® PN/Z (t) 

This is indeed true, if 

i ddt P (t) = [Hs (t), p (t) ], p p p 

-13Hps (0) = e 

(6.10) 

(6 .11) 

In other words, all we have to do in order to obtain 
p(t) is to solve (6.6). The only nontrivial part of (6.6) 
is the upper left block, and U11, U12, U21, Uaa can be 
easily determined if one of them is known. 

Let 

0 (6.12) 

and 

U11(t) = V(t)e-it cos (6.13) 
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The same algebra yields 

v·ct) + [A2(b) + t(t)]V(t) = 0 

41 

(6. 14) 

with b.c. V(O) = 1, V'(O) = i[cos~ - h(O)], with two in­ 
dependent solutions W1(t), W2(t), and t(t) is given by 

Ht) =br(t) - 2(cos ~-b)h1(t) +ih{(t) 

Example l• 

h (t) 
t s: 0 

t > 0 

V(t) i cos cp:b sin[tA(b)] + cos[tA(b) J A(b) 

Example£.• 

h(t) = l: + (a-b)e -Kt 

where 

~ -Kt W1(t) = exp[iA(b)t + i K e ] 

lF 1[½[A(b)+b-cos¢,]; 1+ 2i~(b); - Zi(~-b) e -Kt] 

( ~ -xe W2 t) = exp[-iA(b)t + i K e ] 

F i ) ] l + 2iA(b), _ 2i(a-b) e-Kt] 1 lLK[A(b +b-cos~; K , K 

(6 .15) 

(6 .16) 

(6 .17) 

t s: 0 
(6 .18) 

(6. 19a) 

(6 .19b) 

(6.19c) 
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and the constants Ai, A2 are given by 

Ai = w;(o) - i(cos q:i-a)W2(0) (6 .19d) 
Wi(O)W;(O) - W2(0)W{(O) 

Aa = iWi(O)(cos qi-a) - W{ (0) (6 .19e) 
Wi(O)W~(O) - W2 (O)Wi'(O) 

The first question we want to study is the approach 
of mz(t) to its infinite time limit. 

To compute mz(t), we observe that k l-S~ can be 
written as ~ J 

and 

-1 \ -1, t t N L,M = N L [a a +a a -1] pp p pp -p -p 

t 
1 l Tr[M U (t) p (O)U (t) 

m (t) = - pp p p 
z N Tr p (0) p 

(6.20) 

Using (6.19a), mz(t) can be expressed in terms of Wi(t) 
and W2(t) as 

-1 \ 
m/t) = N L 

p 
tanh[¾SA(h(O))] F [ ( ) W ( ) J 

J\(h(O)) Wi t , 2 t (6. 21) 

and F[Wi(t),W2(t)] is given explicitly in (4.7) of I. 
Example 1 yields for the step function (6.16) 

(t) = l, tanh[\sA(alJ 
mz N L J\(a) J\'J (b) 

p 
[cos[2A(b)t]y2(a-b) sin2q:i p 

- (cos e -b) [(cosq:i -a) (c os e -b) + y2 sin2q:i]}(6.22) p p p 

It is clear from (6.22) that if N is finite and 
large and t - 00, the limit does not exist, and one may 
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wish to compute the Poincare cycle as an explicit func­ 
tion of N. 

In the thermodynamic limit N - 00, the sum becomes an 
integral 

(t) = L jrnd tanh[¾SA(a) J (cos[2A(b)t]ya(a-b) sinacp- 
mz 2n 

0 
cp A(a)A2(b) 

- (cos cp-b)[(cos cp-a)(cos cp-b) + ya sinacp]} (6.23) 

This result was derived earlier by Niemeijer. There 
are several interesting limits to check. 

(i) t = 0: m (0) becomes the equilibrium result 
given by (2. ) z 

(ii) y = 0: Since [ljSj' is;s;+l+ S~S~+l] = 0 
J 

oneexpects no time dependence of <l.Sjz>, and in (6.23) 
the time dependent term is :l proportional to ya. 

(iii) a= b: No jump, and again mz(t) = mz(0). 

(iv) t - 00: 

1 JTT m (00) = - dcp z 2n 0 

tanh[\SA(a)](a - cos cp) 
A(a) 

(6.24) 

This is not the equilibrium magnetization, since b = 0 
doe_s not yield mz(00) = 0. The system, even after infinite 
time, remembers that it was subjected to an external field 
a, through the nonzero function in the curly brackets of 
(6.24). This is an explicit expression of the non-ergodi­ 
city of the system. 
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One might raise the suspicion that the nonergodic 
behavior of mz(t) is due to the special discontinuous 
case (6.16). In other words, one might hope that a con­ 
tinuous very slow change of h(t) would yield an equili­ 
brium limit. To demonstrate this hope to be false we 
went through the pain of playing the same game with 
example (6.18), and computed mz(K,t). We found that tak­ 
ing the limit k!m e!m mz(K,t) gives back (6.24) and k!m 
l!m mz(K,t) gives a complicated expression 
t [I (6.14)], that shares with (6.24) the unpleasant 
feature of failing to vanish at b = 0. We can safely 
conclude that a global change of the magnetic field re­ 
sults in a nonergodic magnetization mz(t). 

It is interesting to study the long time behavior 
of mz(t) (6.23). We find (I) one more division into 
regions. 

-~2 
(i) h > l-y2: mz(t) approaches its limit like t , 

and oscillates with two interfering frequencies, exchange 
type and larmor type. 

(ii) h < l-y2: The leading term of mz(t) deca~s 
t-~ with a single frequency 2y[l-b2(l-y2)-1J1/2, In 

next term all three frequencies are present. 
-~ (iii) h = l-y2: Boundary case for which mz(t)~t . 

like 
the 

This division to regions rises from the number of extremal 
points of the one particle spectrum A. If we consider 
cos~= y, A is given by 

-1 ~ y ~ 1 

In the case (i) A is monotonic and has two extremal 
points at the boundaries y = ± 1, in case (ii) A has 3 ex­ 
tremal points at the botmdaries and at Yo= b/(l-y2), and 
in the botmdary case (iii), one of its endpoints coincides 
with Yo• 

In figure ( 5) we show a numerical and asymptotic 
study of mz(t) for case (i), where the interference of the 
two frequencies is quite clear. 
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487 

486 

485 

484 
N 
E 

483 

482 

481 

--- m,(t) from asymptotic 
expansion values 

- mz(t) exact numerical values 

4 8 12 16 20 24 28 32 36 

TIME 

Fig. 5. m2(t) exact (numerical) and asymptotic for large t. 
a = 10, b 2 
y = ~. f3 = 1 

(E. Jarouch, B. McCoy, M. Dresden) 
(Phys. Rev, AZ, 1075, 1970) 

We wish to investigate more of the nonergodic fea­ 
tures of the system by examining the spin correlation 
functions. 

By a similar method of evaluating m2(t) we find for 
the step function case (6.16) 

G = - l 
R 'TT J'!T dM cos R (tanh[¾SA(a) ])f[ 2 i 2 + 0 ..,, cp A(a) A2 (b) y s n cp 

+(cos cp-a)(cos cp-b)](cos cp-b) - (a-b)y2sin2cp 

:J. J'!T . tanh[jSA(a) J 
cos [2A(b)t]} + 'TT 0 dcp sin cpR sin cp ( A(a)A2(b) ) 
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x ([y2sin 2~ + (cos ~-a)(cos ~-b) J + 

+ (a-b)(cos ~-b) cos [2A(b)t]} (6. 25) 

and SR is given by 

y(a-b) 
TT 

TT J d~ sin~ sin ~R 
0 

sin[2tA(b) J 
A(a) A(b) 

(6. 26) 

In the equilibrium (a= b or t = 0) SR vanishes iden­ 
tically. Furthermore, when t - 00 SR - 0. In these two 
cases the correlations are Toeplitz determinants. Howeve~ 
for finite t, we have a full Pfaffian, which forces us to 
try to evaluate a block Toeplitz determinant. This we 
are unable to do (III), and we can just estimate the most 
dominant term, up to an unknown multiplicative constant. 

Since the analysis is conceptually simple and quite 
tedious, let me summarize our conclusions, and refer you 
for details to III. 

(1) lim p (R, t) 1' Equilibrium p (R) zz zz 
t-00 

(2) At the ground state iim lim Pxx(R, t) = 0 
namely there is a destruction -00 t-00 of the long range 
order. 

(3) For finite long time, the correlation functions 
approach their nonergodic limits with the same power laws 
and same frequencies as mz(t). 

After the conclusions that fundamental thermodynamic 
functions like magnetization and correlations are noner­ 
godic, one might believe that all thermodynamic averages 
are nonergodic, and do not tend to their equilibrium 
values. This question was studied by Girardeau (1969). 
He cons.idered the Fourier component Mq = I:jSj cos qi, 
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and proved that <Mq(t)> - 0 as t - 00 when h = o which is 
the equilibrium values if O < q < TT, where <Mq(t)> is 
given by 

( itH._ -itHJ <M t)> = Tr[p(O)e -~ e q q 

p(O) = exp(-[SH + AM ]}/Tr(-[SH +AM]} q q 

(6.27) 

(6.28) 

and the parameter A measures the prescribed initial val­ 
ues, and its deviation from an equilibriun state. The 
cases q = 0, TT are different, since their limit f 0. 
Note that q = 0 corresponds to our example (6.16) with 
b = 0, a= A, and q = TT corresponds to the staggered case. 

When one convinces himself that the system is noner­ 
godic, the natural question to ask is why. Is it because 
of the decomposition of the system into noninteracting 
subspaces? Is it because of the low dimensions of the 
system? Is it because the system is isolated and is not 
coupled to a heat bath? 

At this stage it is not too wise to point at a spe­ 
cific "reason" and claim its responsibility for the noner­ 
godic behavior of the system. So to gain some insight 
into the meaning of these questions we studied the time 
behavior of a single magnetic impurity at the botmdary 
(Tjon 1970) using the weak coupling approximation, and 
exactly inside the chain (Abraham, Barouch, Gallavotti 
and Martin-Lo£ 1970). In both cases thermalization was 
obtained, namely mz(t) approached its correct limit, but 
as a power law t-1 (for internal spins) or t-3 (for a 
boundary spin). 

We present now the analysis of ABGM for the isotropic 
case y = 0 and h = 0. The Hamiltonian is given by 

H + h(t)crz - H0 + h(t)crz (6.29) m m 
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with 

t ,;; 0 

h(t) (6. 30) 
t > 0 

Thermalization occurs if 

lim lim <crz(t)> = 0 
t->CO N->oo n 

(6.31) 

The difficulty involved in this problem is breaking 
of the translation invariance, thus Fourier decomposition 
does not yield decomposition to noninteracting subspaces. 
Furthermore, we can look at the rest of the chain acting 
on the single spin like a heat bath. 

We proceed with the standard stages (i), (ii), (iii) 
and obtain 

Ho (6. 32a) 

(6. 32b) 

and q are the solutions of 

(6.32c) 

We study the expectation value 

(6. 33) 
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Using (6.32) one obtains 

49 

iHo t Z - iHo t 2 \ . t e (l+crn)e =NL exp{i[n(q'-q) + t(cos q+cos q' ]}aqaq' 
qq / 

(6.34) 

t Since His quadratic in the Fenni operators aq,aq, 
it may be written as 

(6. 35) 

where a; are Fenni operators related to aq by the unitary 
transformation 

aj = i Ujqaq 
Combining (6.36), (6.34) and (6.-33) we obtain 

(6.36) 

<l + crz(t)> = n 

= ~ l exp([n(q~q)+t(cos q-cos qJ]} lJ u;qujq' <a;aj> 
qq' 

(6.37) 

where <a'.a.> is the Fenni occupation number given by 
J J -1 

[l + exp(13>..j) J • 

The coefficients Ujq are detennined from the eigen­ 
value problem 

(6.38) 

and there are two possibilities 

(i) >... = cos q0 for some q0 that solves (6.32c) 
J 
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U = 2-~(& ' eiqm - & ' e -iqm) 
jq q qo q -qo 

(ii) 

u. Jq 

11.. f cos q 
J 

eiqm/N(11..)(11.. - cos q) 
J J 

where 11.. are the zeros of 
J 

F (11.)=l - 2h \ (A - cos q)-l 
N N L.q 

and the normalization is given by 

cos -2 N oF I 
q) = 2h ~ 

11.=11. 
j 

(6. 39) 

(6 .40) 

(6.41) 

(6.42) 

Combining (6.39) - (6.42) and taking the thermodynam­ 
ic limit we finally obtain 

n-m, t) G(11., m-n, -t) dA 

(1 + es")F(11.) 
(6.43) 

where the contour c in the complex A plane avoids the 
zeros of 1 + eS"-, enclosing the zeros of FN("-), and the 
functions G, Fare given by 

= 21TT JTT exp(i[:lq_ + t cos q]} dq G(11.,l,t) A cos q 
<rr 

(6.44a) 

(6.44b) 

and asymptotic study of (6.43) for large t shows approach 
to 0 like t-1. This power law also governs the approach 
of the correlation functions to their equilibrium nonzero 
limit. We have also studied y f 0, hf 0, and obtained 
similar results. 
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The last question we mention is that if we turn on 
a field, the magnetization does not approach equilibrium 
(ABGM) no matter how slowly the field rises with time 
from its initial zero value. The result is given by 

n 
<cr~(t) = Re[ J dk(l + eS cos k)-l 

-n 

Jn ] x dp exp{i[t(cos k - cos p)] 
-n 

n 
+ (k-p)(n-m)µ(k,p,t) + 2J dk(l+eS cos k)-1 

-n 

n 2 

x IJ dp exp{i[t cos p - p(n-m)µ(k,p,t) I 
-n 

(6.45) 

with 

µ(k,p,t) 2 Jt eit' cos P h(t') X, (t') dt' 
0 p 

(6.46) 

and xp(t) is to be determined from the Volterra equation 

t 
x (t) = e-it cos p - i J dt1J0(t-t') h(t') X (t') 
p O p 

(6.47) 

which can be solved exactly for h(t') = h ~ O. 
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COMPOSITE PARTICLES IN MANY-BODY SYSTEMS 
METHOD OF STOLT AND BRITTIN 

Wesley E. Brittin 
University of Colorado 

Boulder, Colorado 

I. Introduction 

Many situations exist in astrophysics, plasma physics, 
chemical physics, etc. where it would be meaningful and 
useful to have theories dealing with equilibrium and trans­ 
port properties relating to various bound or composite 
particles (atoms, molecules, ions) as well as to "free" or 
"unbound" particles (nuclei, electrons) and to electromag­ 
netic radiation (photons). A variety of special techniques 
has been invented to treat some specific problems in the 
above categories. These treatments range from very crude 
empirical and theoretical guesses to very sophisticated 
field-theoretic procedures. From the standpoint of basic 
physics these problems pose certain difficulties and there 
exists at present no unified approach to them. It would 
be very desirable to have a theory that would be as com­ 
plete for these problems as is the kinetic theory of gases 
for a tenuous system composed of classical stable mole­ 
cules. 

An important first step in the desired direction was 
taken in 1963 by M. Girardeau, who showed that 

" ... a second-quantization representation for many­ 
atom systems·can be developed in which the atomic 
annihilation and creation operators satisfy elemen­ 
tary boson or fermion commutation relations, i.e., 
the atoms behave like point particles. In this rep­ 
resentation the Hamiltonian, expressed as a function 
of the local atomic field operators, takes the famil­ 
iar form of a sum of a quadratic part representing 
independent-particle (here independent atom) energies 
and a quartic part representing two-body inter­ 
actions." 

55 
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In order to take account of the fact that composites can­ 
not be actual bosons or fermions, a subsidiary condition 
imposed on the overall state vector enforced correct sym­ 
metry for the elementary particles which built up the com­ 
posites. In the expression for Girardeau's *lementary 
destruction and creations operators Aa and Aa the index a 
labels the atomic states and includes the center of mass 
motion as well as the internal motion of the particles 
making up the atom. In addition, the atomic ·states in­ 
clude all continuum (ionized) states of the atom as well 
as bound states. The question of how to introduce only 
bound state composites was not treated at that time. 

In the spring of 1971 R.H. Stolt and W. E. Brittin 
found a way of introducing bound composites for relatively 
simple systems 2. Subsequently A. Y. Sakakura3 and 
M. Girardeau4 found other methods. Although there are 
many unresolved (even in principle) problems, the subject 
has reached a certain maturity. My lectures have only to 
do with the methods discovered by Stolt and Brittin, since 
Sakakura5 and Girardeau6 give accounts of their important 
work elsewhere in these lecture proceedings. 

II. Preliminary 

We consider a system containing N protons and N elec­ 
trons* which interact through Coulomb forces. Let 
* = *(x1·•·xN; Y1•••YN) be an arbitrary square integrable 
function (wave function) of the proton and electron coordi­ 
nates xk,Yl (x,y includes positions and spins). The set 
of all such functions forms a Hilbert space which we label 
:ic. The space 3C contains functions belonging to all sym­ 
metry classes and not only those which represent physical 
states. The physical states are represented by functions 
*A which are completely antisymmetric with respect to per­ 
mutations of proton (electron) coordinates. The subspace 
Ac :KA of physical states is obtained from :IC by projection 
with A, the total antisymmetrizer given by 

A = i 
N!2 (2.1) 

~< It is straightforward to generalize these considerations 
to situations where there are different numbers N, N of 
protons and electrons, P e 
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where P (P') goes over all proton (electron) coordinate 
permutations and 

$ (x ... x ;yl ... yN) 
a,l a,N 

where P(l. .. N) = (a.1 ... a.N), and 

(Vp1$)(xl ... xN;Y1···YN) = $(xl .. -~;yS .. •Ys) 
1 N 

where p'(l ... N) = (S1 ... SN) 

Thus 

(2. 2) 

(2.3) 

A=A'JC (2.4) 

where A is the projector* defined by expression 2.1. The 
condition that $A represent a physical state is that 

We wish to describe situations in which some of the 
electrons and protons have combined to form bound hydrogen 
atoms. Naturally in the general situation, where the sys­ 
tem might be in a highly condensed phase, for example, it 
may not be useful to ask for a description of the system 
in terms of atoms. Perhaps other "clusters" or "compos­ 
ites" may be more useful in that case. However as an ex­ 
ample of our method, let us think of physical situations 
where it is meaningful to speak of the system as "having" 
''bound II a toms and "free II e lee trans and protons. I wish to 
emphasize at this point that our treatment has!!£ approxi­ 
mations in it in so far as the description of physical 
states is concerned, although its utility may depend on 
whether or not the physical situation approximates the 
description we choose to use. 

Let the system be placed in a box of volume V where 
Vis large but finite. Then we may introduce a complete 
orthonormal set of one-proton states cpi(x), i = 1,2,3, ••. 
and a complete orthonormal set of one-electron states 
$j(Y), j = 1,2,3, ... so that any $(x1 ... ~;y1 ... yN) E 'JC 

* The conditions that an operator A be a projector are 
that A2 =A= A*. These can be verified for A defined 
above. 
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may be expanded as 
$(x1···~;Y1•·•YN) = $(~yN) = 

E 

il ... iN 

j 1 · .. jN 

cil · · · iNj 1 ·. 'jNcpil (xl)' .. cpiN (xN)il, j 1 (yl) ... $ jN (yN) 

(2. 6) 

In fact, because of the orthogonality of the cps and $s, 

ci1···iNjl •.• jN = cij = 

=Jdxl .. d~dyl .. dyN~il (xl) .. ~iN(~)fjl (yl) .. $jN(yN)$(~yN). 

(2. 7) 
If $(x..yN) is a physical state C. . . . is complete- 

N 1.1•••1.NJ1•••JN 
ly antisymmetric in i1 ... iN rsp. j1 ... jN' and conversely. 
If$,$' are any two functions in :IC 
($,$~)=fdx(N)dy(N)$(x(N),y(N))$1(x(N),y(N))2E C .. C'. .. 

l.J l.J 
Let us now introduce two-particle bound states 

cpo.(x,y). These states are to represent isolated bound 
electron-proton states (including the center of mass mo­ 
tion). They are taken to be orthonormal 

but not complete. We have 

E cp (xy)~ (x'y') = PB(xy;x'y') a a a 

(2. 8) 

(2.9) 

where PB(xy;x'y') is the coordinate space representation 
of PB tfie 2-particle bound state projector. That is 

( 2. 10) 

Further 

IIPB$II < 11$ II (2.11) 

where II $II 2 = JT (xy) $ (xy) dxdy, which expresses the fa.ct 
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that the projector onto bound states is less than the unit 
operator. 

Let us introduce "bound" many particle functions 
through the 2-particle states cpa by defining the functions 

WM . . . . . . (xl .. xN;yl .. yN) = $M .. (x(N)y(N)) 
al .. aM,1.M+l""1.N'JM+l••JN a1.J 

(2. 12) 

These functions are orthonormal for a given M 

M M I -:-M M ($ .. ,$ ,.,.,)= dx(N)dy(N)w .. (x(N)y(N))w ,.,.,(x(N)y(N)) 
a l.J a 1. J a l.J a 1. J 

(2. 13) 

where the integral J dx(N)dy(N) ... is extended over all 
x1 ... xN;y1 ... yN, including summation over spin variables. 
These functions span a subspace PM of J-C defined by 

PM=($;$= ~ CM .. $M .. ; ~ I CM .. J 2 finite}. (2.14) 
a ij a l.J a l.J a ij a l.J 

PM may be considered to correspond to those states having 
M (or more) bound atoms, although PM contains functions 
that are not completely antisymmetric in electron and pro­ 
ton coordinates. The subspace PM contains PM+l since 
CflaM+l(xM+lYM+l) can be expanded in terms of cpiM+l(xM+l) 

and WjM+l(YM+l). We express this in the customary manner, 

PM :::i PM+l• In particular P0 is the entire space J-C since 
cpi *i; are complete one-particle states, thus 

(2. 15) 
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The projector for PM is expressed as 
A 

p = ~ IMlij> <M:tijl 
M a.ij 

(2 .16) 

which means that 

(2.17) 

with 

The relatio11ship (2.15) is reexpressed in terms of the 
projectors PM as 

A A A A A 

1 =PO> Pl> P2 ... > PM> ... > PN (2 .19) 

If P(l) '= ~la.> <a.I, is the single atom bound state projec­ 
tor, i.e. cf. (2.9) (P(l)o/)(x1y1)=& ~a(x1y1)Jciia.(x1'Y1') 

( 
' / ' / #\ x * x1 y1 )dx1 dy1 , we may express PM as 

PM = P(l) ® P(2) ® P(3) ® .. ·® P(M) ® iN-M (2.20) 

where iN-M is the unit operator for functions of the vari­ 
ables xM+l•YM+l · .. xN,YN" Hence PM maybe written, 

PM = P(l)®P(2)® .. ®P(M)®l(M+l)®i(M+2)® .. ®l(N) (2. 21) 

where l(R) refers to the unit operator for functions of 
the variables xR,YR· The subspaces PM although not physi­ 
cal, or at least not entirely so, do somehow correspond to 
states having Mor more bound atoms. Indeed if the "real" 
atoms in the system are far enough apart the funct Lons in 
PM may represent physical states very closely. However, 
this is not what we seek. We would like to find functions 
corresponding to preci~ely ~ bound atoms. This is done 
rather simply. Since PM> PM+l 

(2.22) 

so 
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¾f=PM-PM+l=PM-PJM+l=PM(i-PM+l)=PJ~+l=P~+lpM 

61 

(2.23) 

h 

has the property that functions lying in RM= RM :Kare in 
PM but orthogonal to PM+l• Hence RM ''has" Mor more bound 
a toms but not M+ 1 or more bound atoms - i.e. RM "has II pre­ 
cisely M bound atom states or more precisely is the sub­ 
space for functions corresponding to M "bound" atoms, N-M 
"free" electrons, and N-M "free" protons. The entire 
function space :K may be decomposed directly into orthogo­ 
nal subspaces according to the scheme 

(2. 24) 

which corresponds to the identity 

i =Po= (Po-P1)+(P1-P2)+ ... +(PM-PM+l)+ ••. +PN 

P0Pt+P1Pz+ ... +PJ-i'.i.+-1+ ... +PN 

and 

( 2. 25) 

It is easy to see that ¾f RM'= oMN' RM, e.g. if wOER0=Pt 
then Wo is orthogonal to P1 and hence to P2,P3, ... which 
are contained in P1, etc. Therefore w~ may decompose any 
$ E :K into orthogonal components WM= RM$. If 

N 
$ = ~ $ 

M=O M 

N 
$'= ~ $' ' 

M=O M 
then the orthogonality of RM implies 

N <w.w ') = ~ <wM,wM') 
M=O 

(2.26) 

Explicit expressions for RM are obtained directly if 
we use the decomposition of PM given in equation 21: 

¾i=PM-PM+l =P(l)®P(2)® ... ®P(M)®P(M+l) .l.©l(M+2)® ... ®l(N) 

(2. 27) 

where P(M+l).1. = i(M+l)-P(M+l) is the projector onto the 
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single atom unbound states; 

(P(M+l)LW)(M+l) = W(M+-1)-~~a(M+l)<alw> = WF(M+l) 
a 

(recall (M+-1) here refers to the variables xM+l•YM+-1). 
Since RM c PM we may write 

(2. 28) 

Then 

M ($ .. ,WM) aLJ 

M 
(Xaij ,$) 

with 

(2. 29) 

X :ij = ¾*:ij = (PM-PM+lH:ij 

which can also be written as 

M F 
X aiJ' = ~a (l)~ (2) .. -~ (M)~. . (M+l)~M+2 (~2) 

l a2 aM LM+lJM+l 

(2. 30) 

where, as above, 

(2. 31) 

(2.32) 

Unfortunately the coefficients C~ij in the expansion 
of $M do not have all the properties required for a de­ 
scription of the system in terms of "bound" atoms and 
"free" particles. Such coefficients for physical states 
$A should be completely symmetric in a1 ... aM and complete­ 
ly antisymmetric in iM+l· .. iN and in jM+l· .. jN. For phys­ 
ical states, c"fli· are synnnetric in a1,,,aN but the pres­ 
ence of ~il in t~e M+l th entry spoils complete antisym­ 
metry for c~i' in the indices iM+l' .. iN and jM+l· .. jN. 
(The cMiis arJ completely antisymmetric in iM+z• iM+3 ... , 
iN andaLn jM+Z' jM+3, ... ,jN however). 

The decomposition 2.28 for physical states may be 
useful in chemical problems because of its simplicity. 



COMPOSITE PARTICLES 63 

However, see appendix B which gives additional reasons for 
not using this representation. We may at this point men­ 
tion a similar decomposition first used hy A.Y. Sakakura3 
From the expansi~n for RM (Eq. 2.27) we note that the 
M+l st entry is P(M+l)i, so if cpS(x,y) form a complete set 
of states for the "unbound" proton-electron system, we may 
expand any$ using the orthogonal basis 

- ijiMS .. = cp (l)cp (2) ... cp (M) 
a iJ a1 a2 aM 

which for fixed M spans the 

~ 
a1 aM,S 

iM+2 iN 

jM+2'' .jN 

subspace RM. In fact 

1 iji~sil q~Sij I (2.34) 

For physical states the coefficients CM s· 
al.· .aM iM+2, · · .jN 

are completely symmetric with respect to interchanges of 
a1 ... aM and S and completely antisymmetric with respect to 
interchanges of iM+2· .. jN. In physical terms the system 
may be thought of in terms of a given number M of "bound" 
atoms, one "unbound" atom, and N-(Mt-1) "free" electrons 
and N-(M+l) "free" protons. In later work Sakakura has 
managed to eliminate this "crazy" S-boson. 

In conclusion to this section it is to be noted that 
we have achieved an orthogonal expansion 2.28 similar to 
but distinct from that used by Girardeau6, i.e.* 
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which for a physical state$= Aw has coefficient func- 
tions fr a which are completely symmetric in a1 ... aM, 

l· · • M 
but which are not completely antisymmetric in xi ••• xi 

- fill N 
and in y. • •• y .• Of course, since for physical states, 

A ]fill JN 
w = M' 

(2. 36) 

and in AwM the coefficient functi~ns f~ are antisymme­ 
trized. However projection with A spoils the orthogonal­ 
ity: AWM + WM and (A$M, AWM') + 0 for M + M'. 

III. The Stolt-Brittin Method 

We have mentioned that projection in general spoils 
orthogonality, that is if H 1, $ 2) = 0 and P is some pro­ 
jector, then (P$1,N2) = (P$1,w2) f o, in general. On 
the other hand if P2 is a closed subspace of :i-c which is 
contained in the A closed subspace P1 ~f :i-c, and if A is a 
projector, then AP* is contained in AP1, e.g. 
P1 ::::J P2 = > AP1 ::::J AP2.* The subspaces PM introduced in 
II have the property""'JC Po ::::J P1 ::::J •• _:::; PM ::::J ••• ::::J PN, there­ 
fore 

A = A:i-c (3 .1) 

which means that we may decompose A, the subspace of physi­ 
cal wave functions into an orthogonal set of physical sub­ 
spaces AM, 

A (3. 2) 

where 

(3.3) 

is the direct difference of the subspaces APM and APfill" 
The subspace AM consists of those states $A which are in 
APM but which are orthogonal to all elements of APM+l· 

* We really are talking about the cl2sed subspaces AP1,AP2 
obtained by forming the closures of AP1 and AP2, but to 
keep the notation simple we simply write AP for AP. 
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We define AM to be the physical subspace corresponding pre­ 
cisely to M "bound" atoms and N-M "free" protons and N-M 
"free" electrons. Thus any$= A$ may be expanded into 
orthogonal components $M 

*=A$ 
N 

~ $M, 
M=O 

(3.4) 

and ($M,$M1) = PMliMM' where ~ = ($M>$M) may be regarded 
as the probability that an observation of the system will 
result in finding precisely M "bound" atoms present. The 
average number (M) of bound atoms present is just 

(M) = ~ M'pM, 
M' 

(3. 5) 

which, of course, in general changes with time. The pro­ 
jectors AM for the subspa~es AM are not nearly so easy to 
compute as, for example, RM• In fact we know of no ways, 
except those requiring infinite processes, of actually 
computing $M, given$. Let us, however, proceed with the 
problem, since in practice we will use approximation pro­ 
cedures in any case. 

The result of projecting the subspace PM. with A re­ 
sults in a subspace APM for which '::'e~would like to find 
the projector (which we denote by A0PM). It is so desig­ 
nated because we anticipate that it may be compounded in 
~ome fashion from the project<_?IS A and PM• We can form 
APM by taking the closure of AP~. We now observe that 

(3. 6) 

i.e. AOFM is a left projector of APM. In fact it is the 
left projector oTAPM, which means that 

'i,.opM =inf[~; Q a projector; QAPM = APM}. (3.7) 

Knowing what .A0PM is, however, does not offer much guid­ 
ance for computing it. In order to find an expression for 
'i,.opM let us split A into two orthogonal subspaces 

(3.8) 

where (APM)t is the orthogonal compliment of APM in A 
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which means (AP )A= A - (AP). If$ is contained in 
(APM)A it is or~ ogonal to afl vectors of the form APMx, 
x EK , in addition to being in A. Th erefore 

which shows that$ E pML and$ EA, hence$ E 
the subspace comm on to A and pML' Therefore 

' ' ' ' ' ' ' ' ' L(*) 
AopM = A-AA(l-PM) = A-AAPM. . 

(3. 9) 

(3. 10) 

The intersection AAPML of the projectors A and PML can be 
expressed (see Appendix A) as 

A Ai AA n AA An A AA An 

AAPM = lim-s(APML) = lim-s(APMLA) = lim-s(A-AP A) 
n-oo n-oo n-oo K- 

(3.11) 
where lim-s is meant limit in the strong sense: i.e. 
lim II (APML)m$-(APML)n$II - 0 for all $ EK. The sub- 
mn-c:o 
spaces AM may now be constructed from the projectors A0P; 

(3.12) 

We now have the necessary tools to treat situations in­ 
volving changing numbers of bound atoms. From the orthog­ 
onal decomposition 

w = A$ 
N N 

}: AM$ = }: *M' 
M=O M=O 

(3. 13) 

and the Schrodinger equation i h !t = H$ for the N-proton, 
N-electron system 

ih$ = }:Nih~ H$ 
M=O M 

where (H$)M ea ~H$. Therefore 

ih !t *M = Ajw = t)JAM'* = t,~'*M' = t,~'*M' 
(3.15) 

*,3,!0,can a!so,be,written A~P~A-A1P L~AA(l-AAPML) 
=AA(AAPM:}L~AA(ALVPM) where PiVP2;(P1~Ap2LlL,fo~ two pro­ 
jectors P1,P2, We may also express AM as AOPMAPM+lL (see 
appendix C). 

(3. 14) 
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where the Hamiltonian operator~,~ AMHAM, maps the M'­ 
bound atom subsoace into the M-a't,.om subspace. We note 

A* A ~A * A A A A 

that HMM,= (AMHAM,) = AM,HAM = HM'M' so that on A, H has 
the correct Hermitian character 

H - AHA (3.16) 

For some problems, it may be useful to use the formalism 
as developed to this point. One can easily introduce 
"atomic" and "free" particle observables and carry out a 
quantum mechanical treatment for them. However, we have 
lost much of the sim~licity which we had when we dealt 
with the functions Waij• We would like to transform our 
theory back to the simpler subspaces PM. How cai;_i this be. 
done? Well, we notice that AM is a subspace of APM and a 
non zero vector$ E AM is of the form$= APMX for some X, 
xEK. Let.us !~ok at those x0E~M which are mapped into 
zero ~y,APM: APMXQ = 0 = > (~,APMXo) = 0, $EK so 
0 = (PMM,Xo), and hence Xo is in the orthogonal compli­ 
ment of PM0A in PM. T~~s it follows that non zero vectors 
in pMOA are mapped by APM into non-zero vec~OfS in,~opw, 
and non zero vectors in AOPM are mapped by P~ = (APM) 
into non zero vectors in pMot· The following simple dia­ 
gram illustrates our result:' 

Figure I 

* This result is well-known to some mathematicians (e.g. 
those who know it well). 
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""' "' "'"' ... ,., * A AA The ~appin~,APMA = APM(APM) is 1-1 on AOPM and 
PMAPM = (APM)*(APM) is,1:1 on PM0A (see Fig I). Hence on 
AoPM we may normalize Pw\ (which maps AOPM onto pMOA) and 
introduce* 

(3. 17) 

WM maps AOPM onto pMOA and 
' '* ' ' -k A A '' ' '' -k 
WMWM = (P~PM) 2 P~ APM(P~PM) 2 

_ j 1 (on PMOA) 
-(0 on (PMOA).L 

= f,~J. 

Similarly 

(3 .18) 

'*' WM WM= AoPM (3.19) 

thus WM,(wM*) is a (partial) isometric mapping of AOPM on­ 
to P~A (Pt-fA onto AoPM). 

More technically, WM is the essenti~l!Y unique factor 
appearing in the polar decomposition of Pt/- 

Pji = jP)P~ WM= WM p.p;' (3.20) 

Similarly** 
(3.21) 

* To ~e mor~ m~an!n~ful,ki~ i~ ~eih~p~ better toAr~fognize 
that WM= (Pt-fA)(PMAPM)-2(P:t-fA)Pt-f>(AOPM) since (P~PM)-~ 
has meaning only on PM°A. 
** On AOPM, l?J has an inverse (PJ)-1 acting on pMoA, so 

PMAPM = Pt,tA APM•PJ•(PMA)-1, (P~, A
2
=A) 

PJ JAPJ(P~)-l(P~) JAP~(i\tA)-1 
= [PJ. ✓APMA \PJ.)-1)2 

thus /pJpM '= PMA JAf,~ (PJ)-1 and Jf>JPM PJ=Pt,tA Ji&J. ~ 
or PMA(APMA)-\ = (PJPM)-\ Pt,tA = WM. 
(See Appendix A for a more technical presentation.) 
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By "essentially" unique, I mean that WM is unique in the 
sense that an); WM' satisfying,3.20 having the~ domain 
~nd range as WM, is equal to WM, The (partial) isometry 
WM maps AOPM onto PM0A it therefore maps the subspace AM 
of AOPM onto a subspace CM of PM0A c PM. By our definition 

(3. 22) 

(3.23) 

The projector CM onto CM can be written 

" ' " " * 
CM= W~MWM. (3. 24) 

~learl); ~M,ai,d~f!n;d a~oyeJs,s~lt-adj«?i11tz, rurther c~i:2 = ~~Mwl::1 w~MWM = W-r-J,~ O Pw\MWM = w~M WM = CM, 
since AM < Ao :PM. Thus CM is a projector. We now show 
that CM is stabTe under CM: 

ci~ = wJi1M *w~M 

i\Afoi>~ 
wJ~M = w~M = CM. 

• ,_ ,._ -/( A. A 

Eq. 2.24 can be inverted to yield~= WM CMWM. 

Any physical state$ may now be decomposed into or­ 
thogonal M-atom states: 

, N , N 
$=A$=~ A$=~$, 

M=O -"M M=O M 

and the $Min AM may be related to SM in CM by 

* 

(3. 25) 

' * Since WM is 

($, $) 

a partial isometry ($M, $M) 

11$11 2 = _ _I;N 1l$MII 2 = ~N 
M=O M=O 

(3.26) 

(sM,sM), and 

llsMII 2 (2.27) 
A A " A * ~ Note th~t,if CM$~ Q,,W~MWM $= 0, or for any x E ~. 

0 = (x,WMJ\MWM $) =(WMAMWM x,$J= 0, so if xis an arbftrary 
element of CM, 0 = (x,$) => $ECMi which establishes CM as 
the projector for CM, 
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Further if$' is another physical state, 

($,$ ') = (3.28) 

I; = 
M (3. 29) 

and since SM E pMoA, SM= PM.A$ for some ij,€ :K, which means 
M M A A AA M A M 

that Caij=(iJ,aij sM)=(wrij PMM)=(APMlJ,aij ,iJ,)=(Maij ,$). 
This means that the cM. are completely symmetric in 
a1 ... aM, completely a%!isymmetric in iM-f-l•···iN and com­ 
pletely antisymmetric in jM+l• ... jN. The scalar product 
3.28 becomes 

N 
(L lJI ') = ~ ~ 

M=O aij 
~ .. c'~. 
a1.J a1.J 

(3.30) 

We have now demonstrated a correspondence between physical 
states 1J, and a collection (Ctiij} of coefficients 

lJI - (c:ij} (3.31) 

Further the coefficients have the symmetry corresponding 
to "bound" hose atoms and "free" fermi protons and elec­ 
trons. Not every set (crij} having the correct symmetw 
corresponds to a physical state however. Only those C .. 
which through 3.29 give rise to a !;ME~ correspond to ~l.J 
physical state. The restrictionAon Caij that they repre­ 
sent physical states is that l;M=CMsM, or 

M M M A A M 
Caij = (iJ,aij'sM) (iJ,aij'CiM) (CMlJ,aij'sM). (3.3Z) 

We may write 

A M 
CMij,aij 

Hence 

~ 
I• I• I a i. J 

wM,.,., <M:t'i'j'lcMIM:tij) 
a l. J 

(CMC)M .. - ~, ,(Mo.ijjcM!M:t'i'j')cM,.,., 
al.J a'i j al. J 

is the additional required restriction on the Ctiij• 

(3.33) 
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If we use 3.17 for WM, the expression 3.24 for CM 
becomes 

71 

, •• -k • • • ,. , •• -k 
CM = (P~PM) 

2 
P~ ~ APM(P~PM) 

2 

, •• -k • • •• -k 
(P~PM) 2 ~(P~PM) 2 (3.34) 

Since AMPM = (A A PM+lL - A A pML}pM =(AA PM+lL)PM, the 
above expression becomes 

(3.35) 

The coefficients c~1 a . i J' . are 
· · · M 1-M+l· · · N M+l· · •JN 

completely symmetric in 0.1 ... o.M, and completely antisym- 
metric in iM+l·· .iN and in jM+l" .. jN. We may introduce 

MaNpNe 
more general state vectors CN N 1.· . J. J. and 

~ l · · · ~Ma 1 · · · 1.Np 1 · · · Ne 
define operators a , aa,*, ai, a.*, b.,b.* through expres- 
sions of the type:o. 1. J J 

Ji1"' s 
a 

(3.37) 

where S symmetrizes the indices a.1 ... o.M, i.e. 
al ... o.M 

1 S = M'(~)P(o.) where P(o.) permutes (o.1 ... aM) and the 
a 1 ... o.M a . a 
sum goe~ over all Ma! permutions of a1 ... aM . The operi­ 
tors ai, bj etc. are defined similarly exce~t that in a i• 
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A* * b . the symmetrizer is replaced by an antisymmetrizer. 
ThJ operators aa, a*a are adjoint to each other and satis­ 
fy the usual Bose commutation relations 

(3.38) 

A A* ~ A* Similarly ai,a . and o.,b j satisfy the usual Fermi 
anticommutation relation J 

(ai'aj J (1\ ,bj J = 0 (3. 39) 

( A A* } A A* 
ai,a j (bi,b j} = 0 •• (3.40) 1.J 

(ai,£jJ 
* A* 

(a i'b j} = 0 (3.41) 

With the aid of the destruction operators aa, ai, oj 
we may define the field operators: 

x (x j y) = ~ aacpa (x,y), "Bound" atomic field, (3.42) 
a 

~(x) = ~ aicpi (x)' "Free" proton field, (3.43) 
i 

and $ (y) = ~ 6j$/y), "Free" electron field. (3.44) 
i 

These operators obey the commutation (anticommutation) re­ 
lations 

[ A ( ) A ( / / ] [ A '* / / ] ( I A I / / > X xy ,Xx y) = O, x(x,y) ,X (x y) = xy PB x y 
(3.45) 

(~(x),~(x')} = (~(x),$(y)} (*(y),~(y')} O,etc.,(3.46) 

(~ (x) ,~* (x ')} 
(*(y),**(y')} 

o (x-x'), 
o(y-y'). 

(3.47) 

(3.48) 

* * The definitions of ai, ai have an additional factor 
Ne 

(-1) so as to require that ai, bj have the standard 
anticommutation relations 3.41 for distinct fermions. i.e. 

MN N N M N +1, N 
(a .C) a p e . = (-1) e JN +1' C a P . e . . 

1. (a)i1 ... iN/J) N p (a)il ... 1.N/(J) 
and with no factor (-1) pin the definition of bj. 
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* * I x ijl (yN ) ... ijl (yl) O) 
e 

The results up to this point have been rigorous, with 
no approximations of any kind. We observe that in order 
to transform the usual quantum mechanical basis to our new 
"composite particle" basis we must be able to compute ex­ 
pressions of the form P1 A P2 which involve limiting pro­ 
cesses (P1 A P2)1j, = !!? (P1P2)Nij,. We would like to find 
an expression for H, the Hamiltonian, in the new basis. 
We first expand the physical wave function ijl: 

(3. 50) 

A A A * 
ijl = Aijl = ~ J\iijl = ~ ijl M = ~ WM l;M 

where l;M = WMlj,M = WMAMijl. Similarly 

Hijl =AH$=~ Y* = ~ (Hijl)M = ~ wM*<Hs)M 

(3.51) 
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where 

(iis)M - wM(Hljr)M (3.52) 

or 

The terms H ', M + M', in the Hamiltonian correspond to 
transitions~M' ~ SM in which the number of bound atoms 
changes. Therefore, if we can find reasonable expressions 
for the HMM,, we will be able to look at questions relating 
to chemical reactions, rates of ionization, etc., from a 
many-body point of view. The existence of the composite 
particle basis has now been established, at least for the 
rather simple system "bound Hs", "free protons" and 
"free electrons". The theory is complete in that it does 
not distinguish between tenuous ionized hydrogen at high 
temperature and dense solid hydrogen at low temperature. 
It is to be expected, therefore, that the general formal­ 
ism be very complex. However, it was not designed to be 
useful in the general case. (It would not be very useful 
to describe solid Hin terms of "bound" atoms and "free" 
electrons and protons, even though it is in principle pos­ 
sible). On the other hand, if it is sensible to think of 
the system as being composed of composites'and free parti­ 
cles, our method should be useful, once we are able to in­ 
troduce appropriate approximations to our general formulae. 
For example suppose that the system is sufficiently tenu­ 
ous that only those electron-proton pairs which have formed 
bound atoms contribute to the bound state component. For 
such states 

JpJpM SM= AMSM 

where AMZ = M!((N-M) !)2/(N!)2 

Further, in this approximation 

M ,~ I M' M I A A A I M' 
<xaij ~' xa'i'j') = <xaij AHA xa'i'j')/AMAM' 

(3.53) 

The ~amiltonian can now be expressed in second quantized 
form as 

* First established by R. S. Stolt 
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H = Jx*(x,y)(T +T +v )x(x,y)dxdy + J~*(x)T ~(x)dx p e ep p 

+ J$*(y)T $(y)dy + J$*(y)~*(x)V ~(x)$(y)dxdy e ep 

+ Jx*(x,y)$*(y')(V +V )$(y')x(x,y)dxdydy' ee ep 
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+ Jx*(x,y)~*(x')(V +V )~(x')x(x,y)dx'dxdy pp pe 

+ V·x"°'(x,y)x*(x'y') (V +v +V +V )x(x'y')x(x,y)dxdx'dydy' ee pp pe ep 

+ \f~*(x)~(x')V ~(x')~(x)dxdx' pp 

+ \f$*(y)$*(y')vee*(y')f(y)dydy' 

- Jx')"(x,y)~*(x')I h ~(x')x(x,y)dx'dxdy p epp 

- Jf1'(x,y)$*(y')I h ~(y')x(x,y)dxdydy' e eep 

- Vx*(x,y)x*(x'y')I h2 2 x(x'y')x(x,y)dxdx'dydy' e e, p 

' '* ' + fcp'>''(x)ll, (y) (T +T +v x(x,y)dxdy p e ep 

+ Jx*(x,y)(T +T +V )$(y)~(x)dxdy p e ep 

+Jx.,.'(x,y)q/'(x')f'(y') (V -I h2 2 )x(x'y')x(x,y)dxdx'dydy' aa e e, p 

+Jx*(x,y)x(x'y')(V -I h2 2 )$(y')~(x')x(xy)dxdx'dydy' aa e e, p 

+ J~*(x)$*(y)$*(y')V $(y')x(x,y)dxdydy' ea 

+ Jx'>'' (x,y) $* is'v» $ (y') f (y)~(x)dxdydy I ae 

+ J~'>''(x)~*(x')f'(y)V ~(x')x(x,y)dxdx'dy pa 

+ Jx*(x,y)~*(x')V $(y)~(x')~(x)dxdx'dy. ap (3.54) 
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In the above expression V is the single electron-proton 
interaction, Vap the singlg atom-proton interaction, le 
the electron palr exchange operator, hze 2 the 2-electron 
2-proton interaction, etc. This approxirila~e Hamiltonian 
is probably sufficient for many problems. The terms all 
have direct physical significance. The first three terms 
represent free bound at~m~* fr~e protons, and free elec­ 
trons. The next term ($*cp V ep$cp) represents the unbound. 
electron proton interaction. Continuing we have the elec­ 
tron-atom interaction, the proton atom interaction, etc. 
It may be instructive to write the approximate Hamiltonian 
3.54 as 

H = T + T + T + V + V + V + V +Vee+ V a p e ep ea pa aa pp 

+ Eea + Epa + Eaa + V(ep .- a)+ V(a .- ep) 

+ V(epa .- aa) + V(aa .- epa) + V(eep .- ea) 

+ V(ea .- eep) + V(epp .- pa)+ V(pa .- epp) , (3.55) 

where we list below expressions for the various terms: 
(using aa.,ai,Sj etc. instead of the fields x,c$,;) 

T ~ a +<a.IT +T +v la.'>a ,; a a.a. , a. p e ep a. . 

T = ~ a/<il TPI i'>ai; p ii' 

T ~. I b.+<jJT lj'>a., e ]] J e J 

V ep 
~ ' *' * 
ij i 'j' ai bj 

< ij Iv I i 'j '> i;. , a i, ; ep J 
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- a*bA.* 
V = ~ ' ' ea ala jj a J 

(aj!V +V la'j')b_;; ,; ee ep J a 

..._ h *h * 
V ~ ' ' aa ai pa eta ii 

<a1lv +v la'1'>a.,a ,; pe pp 1 a 

~ 
V aa 

½~ • • I• I 

J 1 J zl 1 J 2 

( j 1 j 2 I Vee I j 1 'j 2') b j 2 'b j 1' ; 

E ea 1. • I aa JJ 

E pa -t a *a* 
aaii' a i 

(aillh la'i')ai,a ,; epp a 



\ 
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<a.10.zlieh la.1'a.2'>a ,a ,; ee-pp a.2 a.l 

. *· * V(ep ... a)= ~ . a
1
. bJ. 

a.iJ 

(ijlT +T +v la.>a ; p e ep a. 

~ ~ * * . V(a ... ep)= V(ep ... a) = ~ a 
a. ij a. 

<a. I T +T +v I ij > S . a .. ; p e ep J J 

(a.lijlV -Ieh la.1'a.2'>a ,a , aa ee-pp a.2 a.1 

* V(aa ... aep)= V(aep ... aa) = 

<a.1'a.2'1v -Ieh la.1ij) aa ee-pp 

f .a.a ; 
J 1 a.l 
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*A* b. 
J 

a.a 
l. 0, 

* (V(pa-ppe)) 

(ij lj21 V I 0,j)b -~ ea J a 

~ * = (V(ea-epe)) 

It must be emphasized that the diagrams shown above corre­ 
spond to terms in the Hamiltonian and are not representa­ 
tive of any perturbative scheme. The last seventeen terms 
represent the basic vertices representing interaction and 
exchange in this approximation. It is hoped that even 
this simplified Hamiltonian will prove to be a useful aid 
toward the treatment of elementary chemical kinetics etc. 
from the standpoint of basic quantum theory. 

APPENDIX A 

Projectors, Partial Isometries, Polar De­ 
composition 

1. Definition of Projectors and Elementary Properties 

It is sufficient for our purposes to consider pro­ 
jectors defined on a Hilbert space :K. We assume known 
that if P1 c :K is a closed vector subspace of :K, then p1L, 
the set of a.11 vectors in :K which a.re orthogonal to P1, is 
also a closed linear subspace of :K. Further, the direct 
sum P1 ;fl P1 L is :K itself; 

(A.1) 
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which means that for every x EK we may write uniquely 

with x1 EP1, 

IIXII 2 = (x,x) 

J. x2EP1 and 

IIX1l1 
2 + 11x/11 2 

by 

• • J. 
We define projection operators or projectors P1, P1 

It then follows7 that P1,P1J. are bounded linear operators 
acting on K having norm one and having the properties 

and 
i 

is a decomposition of the unit opera.tor on K. Conversely 
if Pis any b~und~d OJ?erat2r on K s~tisfying pp*= P (or 
equivalently P = p~<, P2 = P), then F,lC = P is a closed 
linear subspace of K and P projects vectors of K onto P. 
Further PJ. = i-P is the projector onto pJ. = :K - P 

We now consider some elementary properties of projec­ 
tors related to various combinations of projectors. We 
state these properties as theorems with proofs. 

Theorem 1: If 1\ and P2 a.re projectors on :K, the 
product 1\ P2 is a projector iff P1P2 = f>2f>1 • 

. . * • *· * .. Proof: (P1P2) = P2 P1 = P2P1, so the condition is 
necessary. It is also sufficient for 

(P1P2)2 = P1<f>2f>1)f>2 f>12P22 = f,1f,2· 

An important special case obtains when f>1f,2 
case the subspaces P1 and P2 are orthogonal. 
x1Epl and x2EP2. 

0. In this 
For let 
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Then 

'!'hf clo~e1 subspace corresponding to the projecto}; 
PiPz = PzP1 is that which is connnon to P1 and Pz and 
which we denote by P1 A Pz. That is 

P1 A P2 = (xec; P1x = x, P2x = xJ. 

We denote the proje~tor ~nto Pi A Pz by P1 A Pz. We note 
that the,projec~or P1 A Pz is defined indepe~de~tly 
whether P1 and Pz commute. However only if P1,Pz commute 
do we have 

P1 A Pz = P1Pz, (P1P2 = PzP1)· 

, Theorem 2: The sll111 f 1 + Pz of two projectors i\ and 
Pz is a projector iff P1P2 = O. 

Proof: The sum is Hermitian since each term is. 
Therefore we need only to have 

or 

This latter expression when multiplied on the left and 
right by P1 yields 

and 

P1P2P1 + P2P1 = o 

~e~ce P1P2 P2P1, and by the first line 2P1P2 = 0 or 
P1Pz = O. 

Theorem 3: The difference P1-Pz is a projector iff 
P1P2 Pz. 

* fix P1P1P2x !i!zX = x 
P2x P2P1P2x P1P2 x = P1P2~: x, 
conversely if xEP1 and xEPz, P1Pzx=P1x=x, PzP1x=PzX. 
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Proof: 

(Pl - P2) 2 

Hence 
2P2 P1P2 + P2P1 

If we multiply this equation on left (right) by P1, we 
find 

2i>1:e2 
and 

Hence P1P2 PzP1 and 2:e2 = 2PiP2 or :e2 PiP2 P2P1. 

If P1 -P2 is a projector we have P1 ::. P2, since X EP2=>P2x=x 
and P1(P2x)=P1x=P1P2x=P2~=x! which shows that xis in P1. 
~onversely,if Pl::. P*, (P1-P2)x=x1-x2EP1 further 
P2 <x1 -x2) =P2 Xi -Pzx 1 =P2X1 -x2=x2-x2=0 
Whenever PL=. P2 or equivalently whenever P2=P1P2, we 
write Pi 2: P2, which introduces a partial ordering ";;?:" 
into the set of all projectors. That is 

(a) p 2: P, 

(b) if !1 2: !2 
and :2 2: :1' 

then 
:1 :2 

(c) if pl.,, p2 and p2.,, P3, then pl .,, P3. 

We note that O ~ P ~ i for all projectors P. We can now 
~ee,the consequen~e~ of ~onunutativity for two projectors 
~1•~2~ f~r ~i~en P1~2:P2~1,_t~en,the ~hre~ 1u:ntitie~ • 
P1-P1P2=P1(l-P2)=P1P2 , P2-P1P2=P2(l-P1)=P2P1 , and P1P2 
are mutually orthogonal projectors. Hence their sum ••.1.".1.••.. •• . . P1P2 +P2P1 +P1P2=P1+P2-P1P2 is a proJector. Further this 
projector corresponds to the smallest closed subspace 
Pi V P2 containing P1 and P2. We write, therefore, 

P1 v P2 =Pl+ P2 - P1P2, if f,1:f,2 = P2P1 

is defined for at? two closed subspaces 
P2 is given byte above if and only if 
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In general we may define 

and 

P1 v P2 = l•u·b {P; P ~ :f>1, P ~ P2} 
The existence of P1 A P2, and P1 V P2 for every pair P1,P2 
of projectors means that the set of all projectors with 
the partial ordering as defined above forms a lattice, the 
lattice of all projectors on :Kor equivalently the lattice 
of aq sub~paces 9f :K. h We would like to find the l?roj ec­ 
tors P1 A P2 and P1 V P2 for general p:ojec:ors P1,P2. 
However, we need only an expression for P1 A P2, since we 
shall show below that 

h h h l h l l 
pl V p2 = (Pl A P2) . 

h ~e now fi~d an expr;ssion for P1 Ah :i\. Note that if 
xEP1AP2, then P1X=X and P2x=x so that (P1P2)~X'.:'X· This 
sug~es~shth~t we explore the properties of (P1P2)N. Let* 
ZN = (P1P2) X for any xE:K. Then 

IIP2ZNll
2 

= II (Pl + i - Pl)P2ZNll
2 

A A 2 
IIP1P2ZNII + II (i 

IIZN + 111
2 + II (1 

A A 2 
P1)P2ZNII 

A A 2 
P1)P2zNII 

Similarly 

IIZNll
2 A 2 

II (i A 2 
IIP2ZNII + P2)ZNII 

so 
112 A 2 

A h 112 
IIZN + 1 IIP2ZNII 11(1 Pl)P2ZN 

and 
Z 112 IIZNll

2 P2)zNll
2

. IIP 2 II (1 - N 

i< I am indebted to Peter Breitenlohner for suggesting 
this argument, which will show the existence of 
lim IIZNII lim IIP2ZNII. N-oo N-oo 
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this shows that lim IIZNII = a0 exists, and also that 
N-"' 

lim 11P2ZNII exists and is equal to a0• Similarly 
N-"' 
lim 1\(1 - P1)f>2zNII = 0. To prove that lim-s(P1P2)N N-"' N-"' 
exists, we must now establish that lim II ZM - ZNII , as M 
and N tend independently to infinity, exists and is zero. 
This proof is not quite as simple as we might like*, 
although it is straightforward. It is patterned after the 
proof of von Neuman7, who established the existence of 
}im:S(P1P2P1)NAa~d,lim-S(P2P1P2}N~ ~nd showed that 
P1APz = lim-S(PiPzPz)N = lim-S(PzPiPz)N. We have 

N-"' N-"' 

so if we can show that each of the four scalar products 
has a common limit, the existence of lim ZN is established. 

N-"'· 
Consider 

- 8M+N-l 

So 

If we can now show that l~~ gK exists, the lim-S(P1P2)N 
exists. The quantity g/= (P2(PiP2)¾,x)=((PzPiPz)¾,x) 
is real and non negative. This follows from the fact that 
i>2i>1f>2 is a non-negative self-adjoint operator. Hence 

* Prof. B. Misra constructed a proof based on the spec­ 
tral resolutions of the self-adjoint operators P2P1P2 and 
P1P2P1. However, I prefer a more elementary proof which 
I give here. 
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Now gK+l 
so 

, , , , , , K/2 
((P2P1P2)y,y) where y - (P2P1P2) X, 

gK+l (P1P2Y,P2y) = (P1P2Y,P1P2y), 
or 

so gK is a non-increasing sequence of non-negative reai 
numbers, and hence the sequence has a limit, lim gK = g. 

K-+"' o 
Therefore IIZM-ZNII -+ g0 + g0 - 2g0 = 0. It is no? ~im§le 
to establish that the limiting vector Z0 = lim (P1P2) X 

N .. "' 
has the properties P1Z0 = Z0, P2z = Z ,,and that Z is 
obtained from X by a projector, aRd th~t this projegtor is 
P1AP2. Thus 

, , , N 
= k~~ts<P1P2P1) 

, , , N 
= ~~~-S(P2P1P2) . 

By the subspace P1 V P2 is meant, the closed subspace 
obtained by forming all linear combination of x1EP1 and 
x2EP2 together with limits of sequences of such linear 
combinations. Any vector yin (P1 V P2)L has the property 
that 

(y ,Zl) 0, z1EP1 
(y ,Z2) 0, z2EP2 

that is yEP1L and yEP2L' hence yEPlL J\ p L Therefore 2 
L L 

pl V p2 = :IC - (Pl J\ p2 ) ' 
and 

or 

A j_ A J. l_ 

(Pl A P2 ) , 

i - (i-P1) A (l-P2)- 
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0, 

' ' 
Pl+ Pz - P1P2, as before. 

The above result may be generalized to 

~ pa, = (/1 :f, .I.) .I. a, a, 

for any collection (pa,} of projectors. 

We may apply a projector Pz to each vector in the sub­ 
space P1 = I\:K: 

The result is injSgpneral not a closed subspace. However, 
we may <::lose it 2 1:ic = Pz o P1 and ask what is the pro­ 
jector Pz o f>1 for this subspace. In order to find 
Pz o P1 we consider the symbolic diagram: 

Let x be in the complement of P2 o P1 in P2. Then 

vzoc 
or 

vzec. 
Hence 

.I. .I. 
xEP1 and xEP1 II P2. Thus the complement of Pz o P1 in 
Pz is P1.1. /I Pz. 
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Therefore 

A .l 
Pz o pl Pz - Pz pl ' or 

A A p 1 .l Pz o pl Pz Pz A 

SuEEort: Closed Range (cf. DixmierB) ;, 

Consider now a bounded operator A. We define the 
null space N(A) of A by 

N(A) = (x,xEX,Ax = o} 

The SUEEort of A is defined to be the orthogonal comple­ 
ment of N(A) 

S(A) = N(A) .l 

with projector S(A). Clearly 

A= 'A s(A) 

Further 
s(A) = inf (s;(ss*= s):A = 'As}. 

S(A) is therefore called the right Erojector of A. 
S(A) - RP(A) If x f 0, xES(A) then Ax f O for otherwise 
AX= 0 = > xEN(A) which is orthogonal to S(A). 

We define kc= R(A), the closed range of A with pro­ 
jector R(A) 

e.g. 

clearly 

and in fact 

R(A):K R(A) 

R(A)A = A 

R(A) inf (ft,AA;' R,RA = Al 
So R(A) = LP(A), the left Erojector of A. 

Theorem: R(A) = S(A;'), or in terms of projectors 

-t, The remainder of material presented in this appendix fol­ 
lows DixmierB very closely. It is included because we 
need the results to more firmly establish our own. 
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R(A) = s (A*) 

Proof: 

Therefore 

and hence 

A R(A)As(A) 

A* s(A)A*R(A) 

s (A) ;e R(A*) ' 
and 

Therefore 

and 

R(A) ;e S(A*) ;e R(A), 

s (A*) = R(A) 

Partially Isometric Operators (Cf Dixmier 8) 

Let u be a bounded operator on :i-c, S(u) its support, 
u is said to be partially isometric if u is isometric on 
S(u) = S(u):K. Then R(u) = uK = uS(u). The range of u is 
a closed subspace of :Kand u maps S(u) isometrically on 
R(u). 

S(~) is called the initial projector of u and S(u) 
the initial subspace of u. 

R(u) is called the final projector of u and R(u) the 
final subspace of u. Let xES(u), then y = uxER(u) and for 
all ZE:l-C, we have 

(x,z) (s(u)x,z) = (x,s(u)z), 

and since both X, and S(u)Z are in S(u), 

(X ,Z) (ux,us(u)z) = (ux,uZ) 

(y,uZ) = (u*y,Z) VZE:l-C 

• h* .. X = u y 

Now from (X,Z) = (u*ux,z) 

follows u*ux = X VXES(u) 
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and therefore since uy = 0 implies yES(u)l, 

u*u = scu) 

Now S(u*) R(u), R(u*) = S(u), and if yER(u) = S(u*), 

u*y = X, u is isometric: 

yER(u) = S(u*) since y = u Xis isometric. 

Again 
(y,Z) cilcu)y,z) (y,Il(u)z) 

cu*y, u*ll(u) z)= cu*y, u*z) cu''<s cu*)=u*)) 

(uu*y,z) 

uu''<y = y 

vz 

Hence uu* = R(u). 

Conversely: 

'*' Suppose WW= Sis a projector 

cwx,wx) = cw*wx,x) 
(SX ,x) = (sx ,sx) = 11 sx112 

Thus Wis isometric on S =~and zero elsewhere 
Further ww* = R(w). 

If W* = R is a projector then v'' is partially isometric 
on R(V) = scv*) and Vis partially isometric on S(V). 

Polar Decomposition: 

Let A be a,bounded,orerator on~. and S(A) be.the 
projector on S(A), and R(A) ~e the.protector on R(A). 
Let us define the operator IAI = (A*A) 2, Then for VZ~ 

IIAZll2 (AZ,AZ) = (A~'AZ,Z) 

(IAl2z,z) = (IAlz,IAIZ) II I Al z 11
2 
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Hence S(A) = s(IAI) and R(IAI) = S(IAI), since 
I Al.,, = I Al . Further the correspondence 

IAlx - Ax 
is a linear and isometric mapping w' from S(A) to R(A): 

AX = w'I Alx 
We extend it by closure to all R(A): 

A = wlAI. 

S(W) S(A)' 

R(w) R(A). 

The expression A= w!AI is called polar decomposition of 
A. We state the important results: 

w.,'w = s(A) 

W' = R(A) 
We now adopt Dixmier's notation to fit our needs. PM, A 
are projectors with subspaces PM and A. 
We have seen that 

R(APM) 

ii<Pj) 

AO PM= A A A PML 

PM O A= PM - PM A AL 
We know therefore that there exists an isometric 
mapping WM from S(P~) = APM to R(PJ) = P0 

WM: APM - Pr/' 

WM APM~*M - SM= WM$MEPr/' 

wM
1
'wM = S(Pj) = A O PM= A - A /I PML 
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Further 

Pj = wlPjl = IAPMlw 

A A A k A 

(P~PM) 2 W 

wiM* R(Pj) = PM o -;,. = PM - PM 11 -;,..L· 

Thus $ME APM is mapped 

into 

and 
A~ A *A A A A 

WM"l;M = WM WM$M = S(PM o A)wM 

= R(APM)$M =(AO PM)$M = *M 

Similarly 

is mapped into 

and 

= R(P~)l;M 

= (PM O A)l;M = SM 

APPENDIX B 

Additional Comments on RM 

Let us introduce the unitary permutation operator 
u(P,Q) defined by 
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where Pis the permutation (o.1 o.) of (1 ... N) and Q is 
the permutation (S1 ... SN) of (1 ~). With this defini- 
tion 

A
A , 1 A 

=--r,;~~e:e: u 
N.2 p Q P Q (P,Q) 

where the sums extend over all possible permutations P,Q, 
and e:p,e:Q are the signatures of P and Q respectively. We 
now write PM in the form 

P = P(l)®P(2)® ... P(M)®l(M+l) .. ,®l(N) M 

PM= P(l,l)®:P(2,2)®:P(3,3) ... ®P(M,M) 

(supressing the unit operators on the remaining N-M elec­ 
tron and proton variables) in which the first number K of 
K,K in P(K,K) refers to proton coordinates and the second 
to electron coordinates, With this notation 

A A L 
P~(M+l,M+l) 

where P(M+l,M+l) etc. includes 1 x 1 x .. ,x 1 X 1 except at 
the (M+l)st position. 

A first objection to the use of $~i' might be that, 
since the electrons and protons are identical and w~ij 
assigns the first M electrons and first M proton to tfie 
bound atoms,~ could not be a good basis. This objec­ 
tion is not valia however, for suppose we use a new basis 
in which a permuted order for the electron and proton is 
used: 

$ M 
(P,Q)o.ij 

A M 
- u(P,Q) *aij 

Then for a 
* I u (P,Q)W 

-M 
p(P,Q) - 

:f,(M+l) - 
(P ,Q) 
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M In the new basis$=~ $(P,Q)' where 

M A •M,* A •M 
$(P,Q) = u(P,Q)R u(PQ)$ = ePeQu(PQ)R $ = ePeQu(P,Q)$M 

thus the coefficients CM in the new basis have the 
(P,Q)aij 

form 

M 
c(P,Q)aij 

M M 
($ (PQ)aij ,$ (PQ)) 

(u(p,Q)$~ij'ePeQu(PQ)$M) 

ePeQ(u(P,Q)$~iju(P,Q)$M) 

M M 
= ePeQ($aij ,$M) = ePeQCaij 

Therefore for a physical state the new coefficients differ 
from the old by a single overall factor ePeO ± 1, so the 
description in terms of C~ij for the orthogdnal subspace 

RM is essentially independent of which electrons or protons 
we label 1, ... ,N. 

A further objection might be that although we may ex­ 
pand a physical state$ into orthogonal (non physical) 
states $M 

$ = ,:N $ 
M=O M 

and although 

A N· 
iJi=M=,:M 

M M 

the A$M are not orthogonal and therefore do not correspond 
(direccly) to physical M-atom states. 

This disadvantage can be further elucidated by con­ 
sidering that 

A 

~ < P(M,M) 
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and l\f cannot be considered directly a~ the physical M­ 
a.tom subspace since if we examine RM A A we note that 

P(M,M)i\i A A ¾i A 'f,.. 
Further since 

u<P,Q)P(M,M) = P(PM,QM)u<P,Q) 

and A is invariant under u(P,Q), we have 

P(PM,QM)¾i A A= ¾1 A A 
But we know that P(M+l,M+-l)RM = 0, and hence 

A 

~AA= 0, 

so RM does not contain any physical states. 

This result is not as disturbing as it may seem. We 
are using a decomposition of a physical states$ into non­ 
physical components RM$, which, although strange in appear­ 
ance, is not incorrect. It becomes somewhat a matter of 
taste whether or not to use the simple RM$1s with C~'ij 's 
not having the symmetry we would like. 

Finally we mention that not all cM .. having the cor- * a~ rect symmetry represent physical states. Only those 
satisfying a subsidiary condition can be states. The sub­ 
sidiary condition is determined from 

M M M A 

caij = (xaij'$) = (xaij'M) 
A M 

(Axaij'$). 

d A·xM .. ="' M' ( M' • M ) However we may expan ,_. ~, , ,X , . , . , X , . , . ,Ax .. 
aiJ M' a i j a 1 J a 1 J aiJ 

to obtain 

M M M' M' c .. = ~ ~,, ,(x .. ,Ax ,.,.,)c ,.,., 
o.i.j M' a i j a1J a 1 J a 1 J 

* Correct symmetry here means that 
cM . . • • are completely symmetric in 
al·· .aM1M+-l ... 1N'JM+l ... JN 

a1 ... aM, completely antisymmetric in iM+-2, ... iN' and 

completely antisymmetric in jM+-2, ... jN" 



COMPOSITE PARTICLES 95 

In the above result X~ij are just those defined by Eq. 31: 
M •M •M h M M h M 

Xaij = ~$aij = PM$aij - PM+l*aij *aij - PM+l*aij 

F = cp (xlyl) .. cp (~yM)qi. . cp. ..cp. $. ..$. (yN). 
al aM 1M+1JM+l ¾f+2 1N JM+2 JN 

APPENDIX C 

Proof that 

We start with expression 3.12 for AM 

AM= A A PM+-lL - A A PML 

... ... l. ,. ,.. .l 
since A A PM <A A PM+l 

PM+-lL A A/\ (A/\ PML)L 

since (A/\ B)/\ C = A /\(B /\ C) 

PM+lL /\ (A/\ AO PM}. 

But 

A/\ (Ao PM)= Ao PM since Ao PM< A, and therefore 

(or) 

(or) 
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SOME HEURISTIC REMARKS ON ALGEBRAir TECHNIQUES 
IN STATISTICAL PHYSICS 

Joseph Dreitlein* 
University of Colorado 

Boulder, Colorado 

Introduction 

The introduction of sophisticated algebraic techniques 
into statistical physics2 has divided physicists into two 
non-communicating groups - those who categorically denounce 
them and those who view the techniques as a door opening to 
a view which could lead to the formulation and even solu­ 
tion of some of the outstanding problems of statistical 
physics. The barrier which separates the two groups of 
physicists is the language, arcane to the average physicist 
and Shakespearian to the devotee. The main purpose of 
these lectures is to attempt to bridge the gap between the 
two groups of physicists by wording familiar situations in 
both the secular and the professional mathematical language. 

Physicists have been faced more than once before with 
mathemati3a1 refinements. Even Einstein reacted somewhat 
adversely to the mathematical reformulation of special 
relativity with the statements "Since the mathematicians 
have attacked the relativity theory, I myself no longer 
understand it any more" and "The people in Gottingen some­ 
times strike me, not as if they wanted to help formulate 
something clearly, but as if they wanted only to show us 
physicists how much brighter they are than we". Neverthe­ 
less, Einstein went on to develop the general theory of 
relativity using the highly mathematical theory which 
sprang from Minkowski's formulation. 

Briefly stated, the algebraic approach is designed to 
handle the peculiarities which arise when a system is con­ 
sidered infinite in the sense of having an infinite number 
of particles in an infinite volume but with finite density. 
The peculiarities encountered include non-equivalent 

*This work was supported by the National Science Foundation 
under Grant number NSF GP-19479 
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representations of the commutation relations ang, most 
spectacular of all, a breakdown of the symmetry which the 
Hamiltonian of the finite system possesses. This symmetry 
breakdown is the tocsin of a phase transition. 

Two issues cognate to the subject are worth noting. 
The first is that not all statistical phenomena are eit 
plained by taking the thermodynamic limit (N-""', V .... 00, V .... P) 
for which the algebraic method is specifically designed. 
For example, thermal conductivity is vol~e dependent for 
highly purified solids, such as solid He, at low tempera­ 
tures. There are also conjectures5 that near the critical 
point of fluids, certain observables may depend upon the 
number of particles N in the system. 

The second observation is that the algebraic tech­ 
niques used in statistical physics are also appropriate to 
the quantized relativistic field problem. rngeed, the only 
exact analysis to date of such fields, the ~2 superrenor­ 
malizable model, uses heavily the algebraic and analytic 
apparatus of the genre discussed here. Thi status of such 
investigations is nicely reviewed by Jaffe. Questions 
such as uniqueness of the vacuum (called cyclic state be­ 
low) and symmetry breaking are shared by both relativistic 
and non-relativistic theories. 

Compared to the problems of formulating and under­ 
standing quantum electrodynamics, the non-relativistic many 
body problems appear almost insignificant. Yet a hope is 
that a thorough understanding of the latter case will serve 
as a springboard for taking off into relativistic domains. 
For some, this may be reason enough for formulating statis­ 
tical physics algebraically. 

I. Algebraic Description of Discrete Finite Systems 

For quantum systems described by a finite dimensional 
Hilbert space (CN), the measurement of a dynamical variable 
associated with the self-adjoint operator A involves re­ 
peated measurements on states concocted each in an identi­ 
cal manner. The measurements yield up a number <A> which 
can be theoretically calculated from the expression 

<A>= tr p A 
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The density matrix p is hermitian, of trace unity and non­ 
negative. It describes a mixed state unless trp = trp2. 
In none of the considerations in section I need p be con­ 
sidered to describe an equilibrium situation. 

It is useful to redescribe this simple picture in a 
more formidable algeraic language with the goal of formu­ 
lating a scheme which carries over to description of sys­ 
tems with an arbitrarily large number of particles (ideal­ 
ized to systems with infinite number of particles). With 
an appropriate algebraic language, one can hope at least 
to state clearly such important physical questions as what 
is meant by multiple phases in the thermodynamic limit, by 
symmetry breaking and by the development of irreversibility 
from microscopically reversible finite systems. 

1. The Space of Observables and States 

Certainly in the set of observables !l.l all her­ 
mitian operators should be included. Furthermore, if 
it be realized that any operator on cN can be written 
as the linear fombina:i~n of two hermitian operators 
(viz, A=(~)+ i(1LA....)), there is little point in 
not extending the set

2
~f operators under consideration 

to include all N x N matrices. The restriction of the 
algebra of observables to purely hermitian operators 
has, howev7r, been investigated by Jordan, von Neumann 
and Wigner . The question of observables becomes more 
acute for a spatially infinite system because of the 
finiteness of measuring instruments. 

The set of all N x N complex matrices forms the 
complete matrix algebra !l.l on cN. It is an N2 dimen­ 
sional vector space and closed under matrix multipli­ 
cation. This means, if AE!l.l and BE!l.l then 

(\1A + \2B)E!l.l (vector space property) 

ABE!l.l 
(1) 

where \1 and \2 are complex numbers. The algebra 
possesses an involution-hermitian conjugation- and 
can be normed by setting 
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IIAII = sup IIMII 
l)rECN lll)rll 

(2) 

where II i)rll is the norm of the vector 1)r in cN 
The norm has the defining properties 

(N. l) IIAII ~ 0; IIAII = O iff A= 0 

(N.2) IIA+BII :;; IIAII + IIBII 
(N.3) 11"-AIJ = I"- I IIAII "-EC 

(N.4) JIABII :s: IIAII IIBII 
(N. 5) IIIII = 1 (!=identity) 

(N. 6) IIA+II = IIAJI 

(3) 

The normed algebra with these properties is called a 
C*-algebra. It is closed with respect to this norm. 
Further mathematical details can be found in refer­ 
ence 8. 

A state on the algebra determines the results of 
any physical measurement on an ensemble prepared in a 
way described by the state. It is an assignment of a 
complex number (real for hermitian operators) w(A) to 
every element AE!ll. These numbers should agree with 
the rules of interpreting quantum theory and, of 
course, describe the experiment. To be a state, the 
functional w must be linear (superposition principle) 
and non-negative for positive observables. Require 
therefore 

(S.1) w(A.lAl + "-2A2) = "lw(Al) + "-2w(A2) 

(S.2) w(A+A) ~ 0 

(S.3) w(I) = 1 

(4) 

The last requirement (S.3) means that if the identity 
I be resolved into mutually orthogonal projectors 
(physical alternatives); I= LP , pp = o p , then 
one of the mutually exclusive pgssd~d'.itie-wna~sociated 
with these projectors is sure to occur. 
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What are the possible states and how can they be 
classified? To answer this question, a geometric 
picture of state space g may be heuristic. The set 
of all (bounded) linear func2ionals on Ql itself forms 
a space, here of dimension N over the complex mun­ 
bers. This follows because the combination :X. 1 f1+:x. 2f2 
of two linear functionals is itself a linear func­ 
tional because it satisfies S .1. In this so called 
space dual to Q.t, the set of non-negative functionals 
form aconvex subset which is geometrically a cone. 
A set g is convex if f1 f2rn implies that -- 
\ 1 f1 + ( 1-:X.) fzES for :X. real and between O and 1. The 
set of all states satisfying S.l, S.2 and S.3 is a 
cross section of this cone and itself a convex set. 

For the finite dimensional case under considera­ 
tion, the linear functionals representing states have 
the representation 

w(A) = tr(pA) (5) 

where the density matrix p is any positive hermitian 
matrix normalized to tr p = 1 (Hermiticity of p fol­ 
lows automatically from linearity and non-negativity 
of w). States realized with the density matrix con­ 
struction are called normal states. Every state of a 
finite discrete system being considered in this chap­ 
ter is norma 1. 

2. Symmetry and the Classification of States 

The set of all physical states g ordinarily does 
not come into consideration when studying a physical 
system. The reason is that the admissible states are 
restricted by the prearranged experimental conditions. 
For example, the system studied may be in equilibrium 
or it may be spatially homogeneous. Both these con­ 
ditions are brought about by allowing the system to 
interact with itself and the environment for a suf­ 
ficiently long period of time. In addition then to 
specifying the observables and the possible states, 
physical systems have imposed upon them various sym­ 
metry properties. 
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To describe a symmetry of a system, the auto­ 
morphisms of the algebra of observables~ are used. 
An automorphism of~ is a mapping of the elements of 
~ into themselves 

a• A - a, (A) (6) 

which preserves the algebraic properties 

(A.l) 0.(AlAl + AzAz) = A.10.(Al) + A.20.(Az) 

(A.2) a(A1Az) = a(Al)a(Az) 

(A. 3) Ila (A) II = IIAII 

(A.4) a(A+) = [a(A)]+ 

(7) 

In particular, the set of automorphisms considered may 
form a group. Let {g1g,: .. } be elements of the group. 
Then the group properey is 

(8) 

An example of a symmetry group of a system is the 
group of time displacements at(A) 

a,t +t (A) 
1 2 

(9) 

By definition, a state is invariant under the group G 
if 

w[a, (A)] = w(A) for all AE~ and gEG.(10) g 
States invariant under the group of time displace­ 
ments are called equilibrium states. The states of 
interest may be restricted by demanding that w belong 
to the set of states invariant under some symmetry. 

Suppose that the set of admissible states is re­ 
stricted to some subset R of g which is convex. Every 
convex set possesses a set of extreme points E(R) with 
the defining property 
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for real A between O and 1. 
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(11) 

The states in E(~) are the pure states. All other 
states are mixed states (For a finite system, a pure 
stat~ in the set of all possible states g entails 
tr p =l). Remember that this terminology is relative 
to the set~ being considered, 

When the states of a system are restricted to 
those invariant under a group G, the subset of states 
will be called gG• the set of G-invariant states. 
States which cannot be decomposed into a mixture of 
two differing states invariant under Gare called 
extremal invariant with respect to G and will be de­ 
noted by E(gG). 

For the mixed states of the system, it is always 
possible to decompose the state was a linear combina­ 
tion of other states in an infinite variety of ways. 
For example, let the set gT be the states invariant 
under the time displacement group T of some Hamilton­ 
ian. Let the spectral decomposition of the density 
matrix p be ~PaPa then, 

w (A) (12) 

wa(A) = tr paA 

Even this decomposition is not unique if any two of 
the Pa are equal (Try p=l!). In this case the state 
w has been written as a linear combination of extremal 
states. In order that all points of a convex set in 
N dimensions be a unique combination of extr1mal pointsN 1he convex set must be a simplex aN- . (A sim­ 
plex a - is the Nth element of the sequence: point, 
interval, triangle, tetrahedron •.. ). The physical 
import of these considerations on extreme points will 
become clear only when infinite systems with multiple 
coexisting phases are considered, 

It is clear that the symmetry properties of a 
system do not restrict the set of admissible states 
to a degree sufficient enough to specify the state, 
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Besides homogeneity and stationarity, ordinarily the 
temperature is set and suffices to determine the 
state. While this restriction cannot be imposed as a 
symmetry, it can be imposed as a condition on the 
state, Consider 

Define 
-a:ic a:ic ~a(A) • e A e 

The above dev§lopment motivates the imposition of the 
KMS condition on the state 

(14) 

(for all A and Bin ij) (15) 

This condition suffices to prescribe the state of any 
finite discrete system uniqely. The proof goes as fol­ 
lows: 

(!) tr p(AB) • tr p Be-fl:KAea:i<:=tr(e-fl:KAefl:Kp)B (16) 
so tr(pA-e-fl:KAeflX.p)B = 0 

(11) Since Bis arbitrary, choose it equal to the 
hermitian adjoint of the expression in paren­ 
theses and conclude PA= e-~:K Ae~:KP 

( 111) Premultiply by eS:K and observe efl:Kp commutes 
with all A, hence is a multiple of0the idep­ 
tity. Normalization yields p • e-":K/tr e-1':K, 

For infinite systems, while ~!m e-fl:KN will not exist 
(~•N partkcel Hamiltonian), it is often true that 
lim e-a:i<:Ae :KN will exist and offer a means of compu- N .. co 

3. The GNS Representation 

The most familiar realization of the linear func­ 
tionals wand the algebra of observables has already 
been cited, viz the specification of the state by a 
density matrix and the representation of the algebra 
by the N x N matrices with w(A) a tr(PA). 
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Another possibility is to represent the algebra 
of observables by matrices acting in a Hilbert space 
cM(M >N) and obtain the state functional w as a single 
matrix element of the observables represented, The 
GNS (Gelfand, Naimark, Segal) construction10 leads to 
such a representation both for finite and for infinite 
systems. 

To see the main feature of the GNS representa­ 
tion, consider a pure density matrix which is neces­ 
sarily of the operator form 

p .. it> <ti <tit>• 1 (17) 

The observable A records as the number 

w(A) = <A> • <t \A\t> (18) 

One might wonder if there is always a representation 
of any w of this type even for mixed states to be pre­ 
cise, does there exist a representation of observable 
operators 000 (A) acting in a Hilbert space :lluJ such that 

(19) 

The GNS construction leads to such a representation, 
Furthermore, the representation of this form is ren­ 
dered unique if we demand that \t> be cyclic. A vec­ 
tor tis cyclic relative to the algebra Ul if the set 
(000(A)t IAEUJ} is dense in the s1;>ace :lluJ, that is, for 
any vector W in the space :K;., I lw-000(A)t \\can be made 
as small as desired by a suitable choice of A. In 
other words, the space :lluJ has a set of operators 000(!1.1) 
which are not too sparse, The cyclic vector tis of­ 
ten called the vacuum. 

Recall first the defining properties of a representa­ 
tion 

Ow(A1A2) m Ow(Al)Ow(A2) 

0 (A+) c [O (A)]+ w w 
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To see what is involved in the construction, the 
details will be worked out first for systems whose de­ 
fining representation operates in c2. The algebra of 
observables ru in the space (physically realized as the 
space of a spin~ particle or of photon polarizations) 
consists of elements cr of the form 

O' = a o cr o +alcr 1+a2cr 2+a 30' 3 (21) 

with O' as the identity and the multiplication law 
0 

O' O' = Ii ij+iEijkO'h i,j ,h = 1,2,3. (22) 
i j 

With no loss of generality, the density matrix may be 
chosen as 

yo 3 
P • _e _ 

tr(eyc,3) 
(23) 

The linear functional thereby defined has the action 

(24) 
tanh y 

Seek a representation of the form 

w(o) = <I \o (O') \I> w (25) 

Clearly Ow(o) cannot be an irreducible representation 
of the algebra for y + 0). (There is only one irreduc­ 
ible representation of the complete matrix algebras.) 
The next simplest representation is the 4-dimensional 

~e [ ] O(a) = ~ ~ (26) 

Setting I = (11121314)T (Tis the transposition to 
column form), seek I such that 
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<t \o(0'
0
) \t> = \t1\2+\t2\2+\t312+1t\2 - 1 
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(27) 

* * * * <tlo(a2) \t> = i(t1 t2-t2 t1)+i(t3 ,4_,4 t3) = o 

<t I 0(0' 3) If> = It 1 I 2 - It 212 +It 3 I 2 - It 4 I 2 = tanh Y 

The solution is 

\tl \ = J l+t;nh y , lt
4 

I = J 1-t;nh y (28) 

It is convenient to take instead a related representa­ 
tion 

(29) 

for then we have (with a phase choice) the product 
form 

[_~ l+t~hyl t ® (1) 
1-tanh y O 

2 

[l+c ~ [l-0' ~ 0(0') - z2 ® O' + z2 ® O' (30) 

Recall that if tECN and xEc~' then t®x, the direct 
product is a vector in cNtN with components ~.x .. 

l. J 
While the representation is reducible, t is cy­ 

clic (if y + ~) since 

ora[';'ji, + l+tr.] • •(~) 
O[a[';• 3]i, •[ 1-t~;h •] • 8 (~) (31) 
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clearly spans the space c4 since a(6) generates the 
space c2• 

To sunnnarize, the GNS construction provides us 
with a representation of the algebra of observables 
!I.I such that the state w is represented by the matrix 
element of a cyclic vector 

(32) 

Formally, this insures that all calculations at fi­ 
nite temperature "look like" calculations at zero 
temperature. 

Given a linear positive functional (a state) w 
and a c*-algebra of observables, GNS have proved the 
existence of such a representation with a cyclic vec­ 
tor I, The representation is irreducible if and only 
if w is a pure state. Note that in the representation 
constructed above, the state is pure at v•= (zero tem­ 
perature) and that I is no longer cyclic. The GNS 
construction then leads to the two dimensional repre­ 
sentation 

w(o-) .. (l,o-1) ; 
1 

I • (o) (33) 

4. The Representation of Finite Dimensional Algebras 

The explicit construction of the GNS representa­ 
tion for the finite dimensional discrete systems pro­ 
vides a concrete case illustrating the structure and 
properties of such representations. 

With no loss of generality, the density matrix 
specifying an N level system may be assumed diagonal 
with eigenvalues p1p2, •. PN, Let Enm be the matrix 
with entry 1 in the nth row, mth column and zero 
elsewhere. Then 

tr p Enm • pnonm (34) 
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The GNS representation then must have 

<t!o (Erun) It>= po w n run 
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(35) 

All elements of the algebra are obtainable from Erun 
since 

A = E a Ers 
rs rs 

(36) 

where of course the bases Ers are dictated by the 
state p, The multiplication law in ij is determined by 

(37) 

Introduce the transposition operators PN oper­ 
ating on cN. These have the defining proper~y 

T T Pn(C1c2 •.. Cn ... CN) =(Cnc2 .•• c1 ... CN) (38) 

P =P + P 2=1 n n n 

Write 

(39) 

Clearly, 

O([Emn]+)=[O(Emn)]+ (40) 

T T Sett= (A1A2 •.. An) ® (100 ... 0) . Then since 

rs · T {l n•r=s 
(100 ••• 0)PnE Pn(l00 .•. 0) = 0 otherwise (41) 

only the terms with r--s in <t !O(Ers) It> are non-zero 
But 

Selection of Ar*Ar""P:r yields a representation. 
phase can be selected arbitrarily» say 

(42) 

The 
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A = Jp r r (43) 

Is <Ii cyclic? If no p =O, simple considerations show 
that <Ii is cyclic. Insthis non-degenerate case, cycli­ 
city follows immediately from the expression 

T T 
O(A) <Ii=~ (0 ... As ... ) <lil (Ass A2S A3s ... Als ... ANS) ( 44) 

The fact that A =Jp +o for alls and the entries A 
rs s s rs 

A=fsArsE insures that O(~)<li spans the space. Of 
course, the representation is reducible in the general 
case since (Elllll\81l)<li is a space invariant under O(~) 

If PN=PN_1=•-=PR+l=O, the GNS representation is 
in a space or NR dimensions. Write in the degenerate 
case 

(45) 

The vector <Ii is cyclic. In particular for a pure 
state 

As expected and the representation is N dimensional. 

The
2
reduction of the dimension of the Hilbert 

space cN as the "mixed state becomes purer" can be 
described more formally. A left ideal J of an alge­ 
bra~ is a subspace of the algebra with the property 

(46) 

One particular way of constructing a left ideal is to 
consider the set of all elements B such that 
tr p(B+B)=O. The set so formed is a left ideal as a 
simple calculation shows. To 2educeNihe dimension of 
the representing space from cN to C , find a projec­ 
tion operator n such that 
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0 

w (rrO(A)rr) w(A) 
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(47) 

The GNS construction then leads to the Hilb2rt space 
cNR spanned by the vectors in TT~ where ~EcN. This is 
what was done in the previous paragraph. 

To conclude the discussion of the algebras acting 
in cN, it is interesting to note that although the GNS 
representation is generically reducible for finite T, 
the algebraic representation is economical in the fol­ 
lowing sense. Let O(il)' be the set of operators in~ 
which commute with all O(il). Then 

~(ii) 1 n O(il) = \O(E) 

O(E) = representation of the identity 

(48) 

Such a representation is called primary. In addition, 
the property 

O(il)" = [O(A)']' = O(il) (49) 

can be verified. This last property defines the repre­ 
sentation algebra as a von Neumann algebra. Avon 
Neumann algebra is a factor if it satisfies the condi­ 
tion of Eq. (48). To prove these statements it suf­ 
fices to exhibit the elements of O(il) 1 explicitly. 
B belongs to O(il)' if it is of the form 

R 
~ b (Enm ®PP) 

nm nm n m 

for arbitrary complex bnm 

(SO) 

II. Algebraic Treatment of Infinite Lattice Systems 

The remaining presentation will be concerned with in­ 
finite systems of a special type - lattice systems. A lat­ 
tice zd is the set of all elements indexed by a d-tuplet 
of integers (n1,n2 ... nd) = n. Physical lattices occur 
naturally in crystals wbere d=3, of course and n locates 
an elementary atomic grouping from which the crystal is 
made. A subset A of the lattice is defined to be any sub­ 
set of the lattice points. 



112 JOSEPH DREITLEIN 

To each point nEZd of the lattice, associate an a-di­ 
mensional Hilbert sapce en8• For example, if the lattice 
is the idealization of a crystal with spin\ particles on 
each site then the space ens is the two dimensional complex 
space describing the spin at site non the d=3 dimensional 
lattice. Direct products (also called tensor products) of 
these spaces 

nEA 
® e s 

n (51) 

are the spaces of interest here. From now on, sis taken 
to be 2. For A a finite subset, the Hilbert space of the 
direct product is finite dimensional and the analysis of 
operators in this space is straight forward. On the other 
hand, when A is taken to be zd itself, the infinite tensor 
product has novel properties11. It leads to an inseparable 
Hilbert space. 

1. Infinite Tensor Products 

Nothing topologically or algebraically eventfully 
happens if a set of N spins is described by the tensor 
~roduct of their Hilbert spaces. The tensor product 

TT e~ is defined to be the 2N dimensional Hilbert space 
~btained by forming all linear combinations of the N 
tuplet 

(q:,1,q:,2, ... q:,N) = q:, with q:,rEe/ 

with the properties 

(52) 

(53) 

Upon this space operate all the bounded operators 
N 2 

B(® e ) which are generated by taking sums and products 
of th~ basic operators 

l®l® ..• ® crr®l6!1, .. ® 1 

or a~r)+ air)air)+ 

(abbreviated or) 

(r) (r) + (r) r 
a2 a2 a3 a3 

(54) 



ALGEBRAIC TECHNIQUES 

The action of cr(r) is defined by its action 

(r) _ (r) 
cr ~ = <~1~2···cr ~r···~) 
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on a e-vec t o'r 

(55) 

In statistical physics, the simplified thermodynami­ 
cal properties of systems are expected to be exhibited 
only when N - =. Something mathematically eventful does 
happen when the number of spins is assumed infinite. 

m 2 
The complete tensor product ® C is defined to be 

the Hilbert space constructed by takiRg all finite linear 
combinations of vectors of the form 

~ E C J 
r s (56) 

and completing the space with the help of an inner 
product defined by 

<~. x) (57) 

The value of this inner product is defined to be finite 
only when the product converges. It is zero otherwise 
by definition. The Hilbert space so constructed 

® C 2 
is non-separable since uncountably many vectors 

cannbe made mutually orthogonal. Such a space is not 
useful to represent the physics of quantum systems. 

To obtain a physically relevant Hilbert space for the 
infinite dimensional system, select a vector ~ of the 
form given above. A vector x = (x1x2x3 •.. ) is defined 
to be equivalent to ~ if only a f1nlte number of xi 
differ from the corresponding ~ . The usual inner 
product is formed and is well de!ined for all finite 
linear combinations of vectors of the form ~. A 
separable Hilbert space ~(~) results by taking all 
finite linear combinations of vectors in the same equi­ 
valence class and completing the space with the help of 
the norm formed from the inner product. The Hilbert space 
~(~) is called the incomplete tensor product. 
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As a specific example, let~(+) represent a vector 
with all spins up. All victors with a finite number of 
spins down belong(tQ :K(~ ). Another equivalence class 
is generated by~ -J representing all spins down. In 
:i<:(1-) are all vectors with a finite number of spins up. 
One notable peculiarity of infi!l_ite systems is discern­ 
ible here - every vector of :K(~') is orthogonal to every 
vector in :K( ~-). 

The representation of algebras in :K(~+) and :i<:(~-) 
can be unitarily inequivalent representations as the 
following example shows. Suppose that in the algebra 
under discussion, there is the bounded operator 

1 N n 
A: tim N t a3 (58) 

N--,oo n=l 

On :K(~+), this operator is represented by 1, on :K(~-) it 
is represented by -1. Clearly there is no unitary trans­ 
formation such that 

VA(+)V-l = A(-) 

A(+) = 1 A(-) = -1 
' 

(59) 

There is a class of Hilbert spaces which should be 
considered as physical equivalent to :K(~+). All such 
spaces are generated from vectors X which are called 
weakly equivalent to ~+ The definition of weakly 
equivalent vectors is motivated as follows. Consider 
a transformation V acting on~(+), which has the action 

(+) i~l i~2 i~3 
v~ = (e a1, e a2, e , ... ) 

(60) 

Physically, the choice of the phases should make no diff­ 
erence in the state. V may be written formally as 

. n 
"' 1.0' 3 ~n 
® e V (61) 
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but the matrix element 

115 

= TT e 
icp n (62) 

may be ill defined if Ecpn is unbounded. Instead of V, 
the "renormalized" form may be used 

n 
00 i(a3 -l)cpn 

V' = <81 e (63) 

Then V't(+) = ,+. However, the effect of V' on operator 
is not completely trivial. For example, 

icp 
(v,)+ (n)V, = n (n) (J+ e CT+ (64) 

Clearly, V' is a unitary operator in the separable space 
~(cp~ and yields an equivalent representation of the 
algebra. 

The criterion for weak equivalence of two vectors 
cp and xis that 

E 11 - I (cp , y ) 11 < a, n n ·n (65) 

For vectors in the same equivalence class, the analogous 
c rite rion is 

E 11 - (rp ' y ) I < a, n n ·n (66) 

One advantage of working with the algebra of opera­ 
tors rather than with the vectors in a Hilbert space 
follows from the above discussion. Rays, not vectors, 
are uniquely associated with physical states. For infi­ 
nite systems, the phase arbitrariness leads to the 
necessity of classifying vectors in weak equivalence 
classes. The algebraic formulation of the structure of 
infinite systems is, in this sense, strongly motivated. 
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2. Algebra of Observables on Lattices 

For the ideal infinite system, the algebra of 
observables should be somewhat restricted to accord with 
the finiteness of the apparati of observation. A second 
practical demand is that tl:e infinite system be mathemati­ 
cally tractable. Among the other requirements, surely one 
needs a simple device for constructing and specifying 
states of an infinite dimensional system. In order to 
carry over most of the ideas developed in section I for 
finite sistems, it suffices to assemble the observables 
into a C -algebraic structure called a quasi-local 
algebra. 

Consider any finite subset A of the lattice. On 
the subset, the algebra of observables ij(A) is taken to 
be the algebra of all bounded operators. For lattice 
systems of spin½ particles, m(A) is simply the algebra 
of all operators in a finite dimensional Hilbert space 

~ c
2
n of dimension zN(A) where N(A)is the number of points 

in A. The set of all such algebra 
J d' L m(A): A finite, AE z j (67) 

provides plenty of observables. The super-algebra formed 
by the union of all these algebras R m(A) is the 
algebra of local observables. In the algebra U m(A) 
a particular operator A(Al) acts as the unit oierator on 
the sublattice which is tfie complement of A1 and has, of 
course, its original action on the Hilbert space 
:K(Al) . 

The set of observables is conveniently made slightly 
larger by completing th~ algebra in the norm topology. 
The resultant algebra u m(A) N is called the quasi- 

local algebra of observ~bles. The reason for completing 
the algebra is two-fold. One is physical. For most 
Hamiltonians driving the operator A (A), the time 
evolute of A(A) will be contained in the quasi-local 
algebra but not in the local algebra. The explanation 
for this behavior is essentially the reason why a strictly 
localized wave packet in ordinary quantum-mechanical 
Hilbert space becomes non-localized as soon as the time 
evolution operator works on it even though its norm is 
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preserved. The second riason for completi~g the local 
algebra is to obtain a C -algebra. For C -algebras 
with a state defined on the system, the GNS construction 
yields a Hilbert space with a cyclic vector. 

3. States of Infinite Lattice Systems 

Given the algebra~ of quasi-local observables, 
the states of a physical system can be defined just as 
was done for the finite system. A state w is a positive 
normalized linear form (or functional) satisfying 
s.l, s.2, s.3 of section I. 

To construct a state by the canonical procedure, 
first take any observable in the local algebra, say, 
A E ~(At). Fonn the linear functional wA(A) on the alge­ 
bra ~iA where A> A1 • The limit is now taken as 
A .... Z • Define. 

w(A) limd wA (A) 
A ... Z 

(68) 

The question of the existence of this limit involves the 
nature of the Hamiltonian of the system. Extensive in­ 
vestigations have recently shown thaf such limits exist. 
In particular, Lebowitz and Lieb lll have shown the 
existence of the thermodynamic limit of the free energy 
for quantum systems with Coulomb interactions. Therefore, 
assume w(A) exists for all A of the local algebra. To 
define the state on the quasi-local algebra extend the 
functional to the algebra completed in the norm. Such an 
extension exists and is unique. 

* The specification of the C -algebra and the state w 
then provides the basic ingredients for the GNS con­ 
struction. 

4. Symmetries and the Classification of States 

The realization of a symmetry on the algebra~ 
is given by specifying the automorphisms of the algebra 
induced by the symmetry group. It is assumed that the 
state is invariant under the automorphism 
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w [a(A)] = w(A) (69) 

which means that the physical system admits the symmetry. 
When the algebra is realized as a set of bounded operators 
acting on the Hilbert space obtained from the GNS construc­ 
tion, it turns out that the automorphism is implemented 
by a unitary operator which leaves the cyclic vector 
invariant. 

States invariant under the symmetry group Gare 
called G-invariant states. 

Instead of introducing more definitions and classifi­ 
cation schemes at this point, specific examples of infi­ 
nite lattice systems will now be used to clarify the 
properties of infinite systems. 

III. Simple Models of Infinite Lattice Systems 

To illustrate the rather abstract formulation of 
section II, two specific models of infinite lattice sys­ 
tems will be described in some detail. The first model 
is the one dimensional Ising model; the second the Ising­ 
Weiss model: the latter exhibits a phase transition at 
finite temperature. 

A. One-Dimensional Ising Model 

The one dimensional Ising model consists of a 
set of spin½ particles on a one dimensional lattice 
interacting via nearest neighbor interaction. The 
characteristic feature is that the interaction depends 
only upon the third component of the spin on each 
lattice site, a limiting case of the Heisenberg one 
dimensional spin system where the interaction becomes 
highly anisotropic. 

1. Hamiltonian of the Finite System 

For an N-spin system, the Hamiltonian is 
N 

'.If._ -J ~ 0 (n)a (n+l); (N+l)_ (1) 
-~ n=l 3 3 o3 = o3 

Cyclic boundary conditions have been chosen. 

(70) 
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The Hamiltonian is invariant under the cyclic group 
whose action is to translate the spins on the sites in a 
cycle. Another symmetry admitted by the Hamiltonian is 
the symmetry group of a disc Doo. All elements are genera­ 
ted by rotations about the z axis through an arbitrary 
angle ~ and rotation of all spins through TT radians 
about any axis in the 1-2 plane. In the infinite limit 
N - 00, the group Doo will be broken at T = 0 • 

The partition function for the finite Hamiltonian 
is evaluated by introducing the transfer matrix 

SJ .. 
T .. = e iJ (71) 
1] 

which takes on the form 

(72) 

where r. are Pauli matrices in the transfer space and 
r is th~ unit martrix. Then, a simple observation yields 
0 

SJ LE a (n+l.) N 
n=l 3 

tr TN 
( .-v, 

ZN E e tr ) 
a(n)= (T.S) 

-y y 
=fl e e 

3 (73) 

y = SJ 

(T.S.) = transfer space 

2. States of the System for Arbitrary T 

To determine the state of the system, the 
limiting functional 

w(A) (74) 

will be computed. It is sufficient to compute 
( (nl) (n2) (nr). 

~\(j O ·••(j ) (75) 
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(n.) 
where cr i is an element of the complete matrix algebra 
at site ni . It even proves sufficient to compute an 
even more specialized form 

(n
1
) (n

2
) (n ) 

w..(cr cr • • • cr r ) (Nzn >n >· • • >n ~1) (76) 
N 3 3 r r-1 1 

since these alone are non-zero as a symmetry argument 
shows. 

The basic observation needed to evaluate the 
correlation function 

nl nl-tml (nl-tml-tm2) 
CN(m1m2•·•mr) = wN(cr3 cr3 cr3 ... 

0 
(n1-tm1-tm2•· + mr)) 

is that 

CN (ml m2 .. ·mr) 

n
1 

m
1 

m2 N-n
1
-m1-m2 ... 

T T3T T3T T3''' T tr 
(T ,S 

(77) 

(78) 

tr TN 
(T .S) 

where T3 is a matrix in the transfer space (T.S). It 
is an easy matter to evaluate the expression by utilizing 
the identity 

T 

tanhC 

2 ½ 
(2sinh y) 

(79) 

and the state functional becomes 
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( (nl) (nl -+ml) (nl -+ml +m2) (nl +ml +m3 + .. +mr) 
w~o3 o3 o3 ••. o3 ) 

\ 

o (r even) 
m +m +••-tm 

(tanh Y) 1 3 r (r odd) 

Observe that the correlation functions have the factori­ 
zation property 

(80) 

so that all that is needed is 

w (a3 (nl) o3 (nl+ml)) = (tanhY)ml (82) 

Note that the Griffith's inequalities are clearly 
satisfied. 

To evaluate the expectation value of any element of 
the algebra of quasi-local observables, the state func­ 
tional is extended to the elements of the norm closure 
of the generating elements whose state functional has 
been evaluated above. 

As an example, the energy per particle 
to be 

e is found 

N 

( 
~ (n) n+l) e = w .f,im -.J .., o 3 o 3 

N-00 N n=l 

-J tanhSJ 
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3. Cluster Properties 

The cluster properties of a system provide a 
means of studying properties of the state w. To define 
the cluster property, start with a group G under which 
the state is invariant w [a (A)]= w(A) . For the one 
dimensional Ising model, theggroups of interest are F 
the direct product of the translation group T and the 
group D

00 
and the time displacement group U . 

A state is strongly clustering if 

lim w (a (A) B) = w (A) w (B) g 

For non-zero temperature 

(for all A and B) (84) 

It suffices to check the clustering properties for the 
model for w(cr3na3

m). Consider the translation group 

lim w (aa(cr3n)cr
3
m) = lim (tanhy)(m-n+a) (m >n) 

a-m a~oo (85) 

(86) 

On the other hand, for zero temperature, tanhy= 1 
( n) '( m) but w cr3 w o3 = 0 . 

For zero temperature, the system fails to cluster 
strongly, an indication of long range order. 

The extremal invariant states now possess the 
strongly clustering properties on account of the trivial 
nature of the long range order properties. 
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4. The KMS Condition 

123 

Finally, the KMS condition may be applied to the 
detennination of the state of the system. Demand 

w (AB) = w (B aS (A)) 

- s"'N - s~ 
tim aS (A) = e A e 
N-co 

(87) 

Then 

n 
as (a 3 ) 

a (l/n) = s + 

n = 03 
2SJ[ajn+l)+a3 (n-1)] 

e 
(n) 

O'+ 

(n) O' 

Use now.relations such as: 

n n 
w(a_ as(O'+ )) 

w (er na (a(n)) 
+ s - 

(88) 

(89) 

and translational invariance to obtain 

n n+I n n+2 . 2w(a
3
a
3 

) cosh2y - w(cr3cr3 ) sinh2y sinh2y (90) 

The validity of this relationship can be checked.against 
known results. This illustrates how the KMS condition 
can be used as a calculational tool. 
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B. The Ising-Weiss Model 

In a sense the Ising-Weiss model is the opposite ex­ 
treme from the nearest neighbor interaction just con­ 
sidered. Each spin now couples equally but weakly with 
all spins with interaction Hamiltonian 

(91) 

Clearly the space dimension of the lattice is irrelevant. 

1. The Canonical Construction of the State 

To evaluate the partition function, it is easiest 
to use a basis in which Ecr3n is diagonal, for then 

-~~ ~~M2 
ZN= tr e E TI(M) e 

M (92) 

M = N, N-2,·· ·, -N 

Il(M) is the multiplicity of orthogonal states in the 
space of fixed M. A simple calculation yields 

.n (M) = N ! / (N;M)! ~~! (93) 

As N-~, TI(M) sharply peaks around M = o because 
of the voluminous phase space. Indeed, an asymptotic 
evaluation of TI(M) yields 

TI(M) 
1 --e 

-M2 
2N (94) 

On the other hand in the partition function the 
energy favors large M~ again exponentially. The con­ 
flict between the demand of large phase space and low 
energy is resolved at high temperatures by the domination 
of the phase space. To see this, use Eq. (94) tentatively 
in Eq. (92). Then

1 
( 2S~-l) ~2 

z -~nnN e 
(95) 
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If 2SJ<l, then indeed th~ approximation (Eq. 94) is self­ 
consistent since( ( ~) ) -+ 0 • 

The situation changes at the critical temperature 

2S J = 1 
C 

2J 
k 

(96) 
T 
C 

for now Eq. (94) can no longer be used self-consistently. 
Write 2 

tnll(M) ~ M 
E e 
M 

e (97) 

and seek the maximum of the function 

tnTI(M) + fil: ~ 
N 

(98) 

Stirling's approximation can be used for Il(M) for all 
cases except T=o. The condition for an extreme value is 
then 

l tn ( l+m ) + 2SJm 0 2 1-m 
(99) 

m = tim (Ml 
N N ,' 

-+00 

That this is the Weiss expression for magnetization follows 
from the identity tanh-lx = ½ tn( i!;). 
Below T the m=o solution must be excluded as shown above. 
Above Tc, m=o. 

C 

The state of the system is now easily determined. 
Above Tc, the state is independent of T and is given by 
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w(A) (Ml) 
(100) 

w(A) = w(l) = 1 

Below T, again all observables not of the form of 
li~ear combifiations (and their limits) of 

\nlJ (n2) 
a a ••• have w(A) = o. Otherwise, the state is 
d~termirled by 

(nl) (n2) 
w(cr3 cr3 

(nl) (n2) 
w(cr3 cr3 

(n ) 
cr3 r ) = 0 (r odd) 

(101) 
r = m (r even) 

where it is assumed that no two of the indices 
equal. 

are 

The ground state needs separate investigation but 
again leads to the above result with m=l. 

2. Symmetry Breaking 

Below T, the state of the system can be written 
as the linear coilibination of two states, each extremal 
invariant under lattice translations. In each of the two 
states the spins are all aligned in the same direction 
with 

(102) 

Further considerations run along the same line indicated 
in part A of this section. 

3. The Cyclic Vector of the GNS Construction 

For T=o, the GNS construction leads to the cyclic 
vector 

¢ =A CD ® [ ~ C) J (103) 
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and the observables are represented by 

( 
(nl) (n2) (nr), - (lf-0' 3', (nl) (n2) (nr) 

~w o o ... o ) - -2-) © o o ... a 

127 

(104) 

The only non-obvious fact is the cyclicity of ¢. Consider 

Applied to¢, this yields 

Similarly, 

(n) (n) (n) 1-cr (nl) 1-cr (n2) 1-a (nr) 
1 2 r C 3 J' C 3 ) C 3 -) a a ... a -2- -2- ... -2- 

(106) 

applied to ¢ yields 

(107) 

From these relations, it is clear that the algebra gener­ 
ates a dense set when applied to¢, 

The extremal invariant states can be obtained by 
writing 

The state w then decomposes 
"i w2 w=r+r 

(108) 

(109) 
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For o < T < T , the GNS representation is different and 
is, of course: reducible since the state is not pure. 
However, the explicit construction is again easy to carry 
out (mainly because the system is separable). Suppose 
the state is extremal invariant with respec~ to transla­ 
tions. Then let 

(n.) 
l+cr l. ( ) 

[ 
3 o ni -2- ® 

TT 
® 

(n.) ( ) 
(
1-cr 1.) n. 7 + 3 ®cr1., - J 2 

+ 
(110) 

The representation of the algebra yields a vector repre­ 
sentation of the state with the cyclic vector 

¢ (111) 

where m is the solution of Eq. (99). 

Above T, the same GNS construction is realized but 
w:lth m=o , c 

Finally, the remaining case to be considered is the 
representation of the state obtained by the thermodynamic 
limiting procedure for o < T < T . At first sight, it 
might seem that all that it is negessary to do is to com­ 
bine the +Im\ and - [m\ representation in the following 
manner : 

(n) 
cr r)= 

(112) 
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with the cyclic vector given by 
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(113) 

This construction yields a representation but¢ is not 
cyclic. Thus the representation space is "too big". 
It can be reduced in half by observing that if 

(n.) (ni) (ni) 
I= 1 ® TI 1 1 

® TI ql (114) 
® ® 

then IOw(A) I is also a representation with the cyclic 
vector 

¢ I 
( l+I) ¢ 
\. 2 (115) 

This is the correct GNS representation for the case 
considered. 

Conclusions and Outlook 

The purpose of these simple considerations was to 
put the algebraic formulation of statistical physics in 
concrete terms. Of course, the whole power of the alge­ 
braic approach is the general conclusions which can be 
drawn from abstract generalities. There is a wealth of 
literature and reviews now on the abstract structure of 
the algebraic properties of infinite system.(l3) What 
has been attempted here is the most elementary treatment 
of the principles involved in the hope of broadening the 
class of physicists who might find these techniques 
useful and constructive. 
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I. INTRODUCTION 

The subject of these talks will be an application of 
c*-algebra techniques to the problem of broken symmetry 
and long-range order in systems with restricted geometries. 
We will try to make the discussion more concrete by talk­ 
ing about thin-film systems; that is, physical systems that 
are constrained to lie between two infinitely extended 
parallel planes with separation L. This problem has been 
studied by a number of people1-6 using the methods of con­ 
ventional, "finite-volume," statistical mechanics. There 
are, however, drawbacks to these proofs. In the first 
place, the arguments only apply to the small number of or­ 
der parameters that have been considered so far; and, in 
the second place, the proofs use the method of Bogoliubov 
quasi-averages, which has not been established within the 
algebraic approach. The purpose of these talks is to pre­ 
sent a new proof that avoids the use of quasi-averages and 
does not require the specification of an order parameter. 

Since Professors Haag and Hugenholtz are giving a 
series of lectures on the foundations of the algebraic 

t This work was perfonned under the auspices of the U.S. 
Atomic Energy Commission. 
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approach, we shall mention only a few points that are of 
importance for this application. We shall take the con­ 
crete view that the algebra of observables lll is realized 
by bounded operators on the canonical Fock space lJf (I') 
corresponding to the configuration spacer relevant to the 
problem. In the present case, r is the space between the 
two bounding planes. The groups of physical syrmnetry op­ 
erations (e.g., time translations, space translations, ro­ 
tations, etc.) will be represented by automorphisms on lll; 
we assume, in addition, the following local structure: 
Each continuous one-parameter automorphism group F = faA} 
is locally generated; that is, for each finite volume vcr 
there is a self-adjoint operator Q(V) acting on 9F(r) and 

a,A = lim exp[HQ(V ) ] A exp[-HQ(V ) ],VAE!ll, a, EF, 
"- n .... "' n n "- 

where Vn+l~ Vn and N Vn = r. We will assume that physi­ 
cally adrnissable states won lll can be extended to act on 
the unbounded operators Q(V). More precisely, we require 
that the local algebra lll(V) includes the spectral projec­ 
tions of Q(V) and that the state w is locally normal; that 
is, the restriction of w to lll(V) is given by a density ma­ 
trix. The precise assumption is then that the local den­ 
sity matrix gives well-defined average values for unbound­ 
ed operators like Q(V). This is a reasonable assumption 
since w is supposed to be the thermodynamic limit of local 
Gibbs density matrices. 

The groups of particular interest are those that 
leave the Hamiltonian invariant; their infinitesimal gen­ 
erators are usually defined by a density q(r) which satis­ 
fies a continuity equation: 

Q(V) = J d3r q(r), 
V 

oq(r,t) + v • I(r t) = o, 
C\t ' 

where I is the current associated with q. 

Finally, we will need the Kubo-Martin-Schwinger (KMS) 
condition. A state w is said to be a KMS ~ if 
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ldt f(t - i~)w(BA(t)) = Jdt f(t)w(A(t)B) VfE~, A, BE~. 
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where A~ A(t) denotes the time-translation authomorphism 
and~ is the space of c°' functions with compact support. 

With this background in mind, we can go on to con­ 
struct the necessary mach rnery for the study of long-range 
order and broken symmetr, in thin films. 

II. LONG-RANGE ORDER AND BROKEN SYMMETRY 

We have so far discussed the action of symmetry opera­ 
tions on the algebra of observables ij; now it is necessary 
to consider the symmetry properties of the states. Let G 
be a group represented by automorphisms (ag:g E G}, then 
a state w is said to be G-inyariant if w(a A)=w(A)VAE~, gEG 
and to be G-ergodic if it is an extremal oint of the con­ 
vex set of G-invariant states. Recall that a state is ex­ 
tremal in a convex family if it cannot be represented as a 
nontrivial convex combination of two members of the family. 

Let G be the invariance group of the Hamiltonian, 
then Professor Ruelle has argued that a state w describing 
a pure phase of the system should be G-ergodic. We now 
want to show that this property of being G-ergodic leads 
to the relation between long-range order and broken sym­ 
metry. For homogeneous systems, G will contain a spatial 
translation subgroup T, for which we shall use the special 
notation 

A(x) a AVA s u , x ET. 
X 

AT-invariant state w is said to be strongly clustering if 

lim (A(x)B) = w(A)w(B) V/ A, B E ij, 
Ix 1~00 

and weakly clustering if 

1 j' \) lim V V d x w(A(x)B) = w(A)w(B) VA, B E ij , 
v~., 
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where vis the dimension of T. I will say that a state 
w exhibits long-range-~ if it is not weakly cluster­ 
ing. The intuitive idea of long-range order is that some 
pair of observables is correlated for large separations; 
that is, the strong cluster property is violated. The 
definition I have adopted is more stringent, since it ex­ 
cludes cases where weak clustering is satisfied but 
strong clustering is not. The strong definition agrees 
with the definitions customarily employed in discussions 
of Bose condensation, superconductivity, crystal forma­ 
tion, etc.; and it has the further advantage of yielding 
the usual relation between long-range order and broken 
symmetry. To see this, we need some results that are 
conveniently gathered together in Professor Ruelle's book: 

Theorem 2.1. AT-invariant state w is T-ergodic if 
and only if it is weakly clustering. In other words, a 
state exhibits long-range order if and only if it is not 
T-ergodic. The next step is to use the existence of in­ 
tegral decompositions for states on a C*-algebra. The 
principal result is: 

Theorem 2.2. Every T-invariant, locally normal, KMS 
state w is given by a unique integral decomposition into 
T-ergodic, locally normal, KMS states; i.e., 

w(A) = J dµ(cr)cr(A) VA E ij 

whereµ is a probability measure on states carried by the 
T-ergodic, locally normal, KMS states. The published ver­ 
sion of this theorem does not involve the KMS condition, 
but it can be included with a simple modification of the 
proof. 

Now, suppose that we are given a state Wo describing 
a pure phase so that it is G-ergodic. If w0 exhibits 
long-range order, theorems 2.1 and 2.2 tell us that it 
has a nontrivial decomposition into T-ergodic states. If 
these states are G-invariant, we face a contradiction 
with the original assumption that Wo is G-ergodic; there­ 
fore, the T-ergodic states cannot be G-invariant. This 
is the precise statement of the relation between long­ 
range order and broken symmetry. 
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III, THE BOGOL!UBOV INEQUALITY 
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The last piece of machinery I need is the infinite­ 
volume form of the famous Bogoliubov inequality; in the 
present context, this result is based on the following: 

Theorem 3,1 Let w be a KMS state, then the bilinear 
form 

-- 113 '013 (A, B) J 

defines a norm-continuous inner product on~, 

To make sense of the statement of this theorem, I 
first have to explain what is meant by a complex time­ 
translation A - A(z). The concept is defined in the paper 
of Haag, Hugenholtz, and Winnink8 as follows: Let A(e) be 
the Fourier transform of A(t) and assume that A(e) has com­ 
pact support [as an operator-valued distribution], then 
A(z) is defined by 

A(z) = j de e-iez A(e) 
for any~complex z, It can be shown that the subalgebra 
~ (A:A has compact support} is norm-dense in~. and that 
A - A(z) is an automorphism on~ satisfying 

[A(z)Jt = At(z*). 
For A, BE~, (A,B) is well defined, 

To show that (A,B) is an inner product, it is neces­ 
sary to recall that the KMS condition automatically implies 
invariance under time translations~ For A E i this extends 
to invariance under complex time-translations; that is 
w(A(z)) = w(A). Using the properties already established, 
it is easy to verify the defining properties for an inner 
product, 
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13 

(A,B)* = ¼ f d,- w(BtA(i'T")), 
0 

=¼JS d,- w(Bt(-i,-)A), 

0 

(B,A). 

(A,A) 1 ( d,- w (At (- ~!_) A(1,-)) = - 
13 

0 

1 J' d,- w~(~,-)t (r))., 0. = - 
13 

0 

So far I have only used the KMS condition to obtain 
time-translation invariance, which, in turn, implied that 
(A,B) is an inner product on ij; I now have to use the KMS 
condition explicitly to get a special property of the inner 
product. We can estimate (A,A) as follows: 

(A,A) =l ( d,- w (A tA(i'T")) 
13 

0 
13 

d,- f de =l t 'T"E: w(A tl(e)) 
13 

e 

The last line is justified by the fact that the first 
factor is a C

00 

function of e and the second is a distribu­ 
tion with compact support. Furthermore, one can easily 
see that w(AtA(t)) is a positive-definite function, which 
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tA 

means, by Bochner's theorem, that w(A A(e)) is a positive 
distribution, The combination of this remark with the ele­ 
mentary inequality 

X X 
e - 1 :s: e + 1 

X 2 

yields 

(A,A) ,;; f de eSe2+ 1 

~ [w(A tA(iS)) +w(A tA) J, 

tA 
w(A A(e)), 

To get the last line, I had to use the KMS condition in the 
form: 

w(BA.(t + iS)) = w(A(t)B), 

which is valid for A,B E ~' Finally, the Schwartz inequal­ 
ity and the last estimate yield the norm-continuity of the 
inner product by 

i(A,B)l2 :s: (A,A)(B,B) :s: w (~(A,At}) wl~(B,Bt}):s:iiAll2liBli2• 

Thus (A,B) extends to all of~ by continuity, and the proof 
of theorem 3,1 is complete. 

The Bogoliubov inequality itself is obtained by choos­ 
ing B = i ft-C(t) lt=O; then 

(A,B) - ¼ J: d, wf t 10~ C(t + h) lt•O). 

Replace io/ot by o/o~ in the integrand and perform the in­ 
tegral to get 
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(A,B) = t [w(A t C(iS)) - w(A tC)] 

= ¼ w([C,At]), 

where the KMS condition was used to get the last line. 
Next, use the Schwartz inequality again, together with the 
previous extimate of (A,A) to get 

• 0 
where C = ot C(t) lt=o· This is the well-known Bogoliubov 
inequality, 

IV, ABSENCE OF BROKEN SYMMETRIES IN THIN FILMS 

The construction of machinery is now finished, and I 
can proceed to the real topic of this talk, which is the 
absence of long-range order in thin films. I choose coor­ 
dinates so that the bounding planes are given by z = 0 and 
z = L; also, I should remark that hard-wall boundary con­ 
ditions are to be imposed on these two planes. The Hamil­ 
tonian for a homogeneous thin film is evidently invariant 
under rotations and translations in the x-y plane; there­ 
fore, I will take G to be the product of the two-dimension­ 
al Euclidean group and whatever internal symmetry group is 
present (e,g,, gauge transformations, spin rotations, etc.), 

Let Wo be a G-ergodic state describing a pure phase 
of the film; I want to know if w0 can exhibit long-range 
order. We have already seen that this is equivalent to 
asking if Wo can be decomposed into T-ergodic states with 
a broken continuous symmetry, A negative answer to this 
question is provided by the following theorem, which is 
the central result of this whole discussion, 

Theorem 4.1. Every T-invariant, locally normal, KMS 
state w for a thin film system is necessarily invariant 
under any one-parameter group FcG locally generated by a 
conserved density q(r). 
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That is, there are no states with broken continuous 
synunetries and consequently no states exhibiting long­ 
range order. 

The proof consists of choosing suitable operators to 
substitute into the Bogoliubov inequality. I will take 

K = £ d2 x e-ik.x A(x), 

A = A - w(A), 

and 

where A E ~ and q(r) is the density generating F. I have 
adopted the convention that x,x', etc. are vectors with 
vanishing z-component while r,r' are general vectors, also, 
the momentum k has no z-component. The integral defining 
Mis taken over a cylindrical region with height Land 
cross-sections. The next step is to substitute Kand M 
into the Bogoliubov inequality 

t • t 2 I t 
1

2 

w( [K, K }) w( [M, (iM) ]) :2: S w( [K,M ]) , 

divide by V2 = (S•L)2, and let S ~ 00• I will just sketch 
the calculations involved. 

t f -ik0x ~ ~'t lim w([K,K }) = d2x e w([A(x), A}) 
s--= 

This result follQWS from the translation invariance of w. 
I will refer to CA(k) as the correlation function for A. 
In a similar way, we find 

1 t f a ik,r ] lim 8 w([K,M ]) = lim Vd re w([A,q(r) ). 
s~00 v~00 
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Since A E ijL; that is, A E ij(Vo) for some finite V0, the 
integrand in the last equation vanishes for r outside V0• 
This means that the limit k ~ 0 and the limit V ~ 00 are 
interchangable; consequently, 

lim lim ¼ w([K,Mt]) = lim 
k-O s~oo v~oo 

fd3r w([A,q(r) ]) 
V 

The last line follows from the fact that q(r) is the local 
generator for aA. 

The last calculation is more complicated and involves 
the use of the continuity equation. 

lim SJL2 w([M, (iM) t]) = lim <;Pf d3r f d3r 'e <Lk- (r-r ') 
s~00 v~00 V V 

x w([q(r), 0! q(r',t)J)t=O • 

The continuity equation and some integrations by parts 
yield 

w(M, (iM) t ]) = ka f d2 x e -Lk-x w( [q (x), Ia (0) ]) , 

- -1 [L 
where q(x) ~ L Jo dz q(x,z) etc., and the s1:1111mation con- 
vention applies to vector indices. In obtaining this re­ 
sult I had to drop various surface terms arising from the 
integration by parts. The contributions from the top and 
bottom of the cylinder S x L vanish by virtue of the hard­ 
wall boundary conditions, and the contributions from the 
sides are eliminated, in the limit, by the factors s-1• I 
am really only interested in this result for small \k\. 
If the interparticle potential is reasonable; for example, 
if it is short-ranged and has a well-behaved Fourier trans­ 
form, then the integrand will fall off rapidly at large \xi 
and the integral can be expanded as a series ink. 
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Assuming this to be the case, we have, for small k 

where W < 00 is the largest eigenvalue of Was· ® 

Putting all this together, we finally have 

The Bo~oliubov inequality thus gives information a.bout the 
small-Jkl behavior of the correlation function for any 
local observable A. Now eA is the Fourier transform of 
CA(x) = w((A(x), At}), which is a continuous positive defi­ 
nite function satisfying 

Theorem 4.2. (Bochner) The Fourier transform of a con­ 
tinuous, positive definite function Rv is a finite, posi­ 
tive measure. 

We now integrate the inequality over a sphere of 
radius ko centered at the origin. If CA contains a delta 
function concentrated at k=O, it can be dropped without 
changing the resul,t and we denote the resulting measure by 
dµ, For av-dimensional configuration space we have 

ko2 \'dµ(k) :e lk2dµ(k) :e :w I ;;>.. w(a;>..A\=o l2 g(v)ko v 
'k<ko 'k<ko 

where g(v)ko vis the volume of the v-sphere and 
Jk<kodµ(k)-0 as ko-0; therefore, if v~2 we get a contradic­ 
tion unless 

I can replace A by a A, in which case this result implies µ 

0 ;- w(a A) oµ µ 
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But this is the same as w(aµA,)=w(A); in other words, w is 
F-invariant. This completes the proof of Theorem 4.1. 

The simplest example of a forbidden broken symmetry 
is Bose condensation. In this case Fis the gauge group 
genera~ed by the particle density p(r). One easily finds 
W = w(p(O)). Since the whole argument is independent of 
statistics, I can equally well conclude that superconducti­ 
vity is forbidden in thin films. The formation of a crys­ 
tal lattice is more complicated since there is a two-stage 
decomposition involved. In the first stage the fully in­ 
variant state w0 is decomposed into states with a fixed 
orientation of the crystal axes but no fixed location of 
the lattice; in the second stage these states are further 
decomposed into states having a fixed location for the 
lattice. Our general result forbids the broken rotational 
invariance encountered in the first stage so the second 
stage can never be reached. 

y_. DISCUSSION 

The situation as I have outlined it in these talks 
would be eminently satisfactory if it were not the case 
that real thin films exhibit behavior commonly ascribed 
to long-range order. Thus, thin films of helium exhibit 
superflow and thin-film superconductors are well known. 
Consequently, there is an apparent contradiction between 
theory and experiment. Since the theoretical arguments 
only require a few quite general asswnptions, the most 
probable explanation is that tl1e concept of long-range 
order appropriate to bulk systems is not applicable to thin 
films. One promising candidate for a new definition of 
long-range order is the idea of ''weak" long-range order. 
Briefly, one assumes that the generalized susceptibility 
or response function for some observable diverges. This 
behavior is consistent with weak and even strong clustering. 
In any case, it is clear that there is at present no funda­ 
mental theoretical explanation for the behavior of thin 
films. 
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FORMUIATION OF THE MANY - BODY PROBLEM 
FOR COMPOSITE PARTICLES 

M, D. Girardeau 
Institute of Theoretical Science and Department of Physics 

University of Oregon 
Eugene, Oregon 97403 

I, Atomic Second-Quantization Formalism 

A. Motivation 

There are two distinct problems in treating a system 
of interacting particles each of which is composite in the 
sense of being composed of several more elementary consti­ 
tuents, The first is the very difficult problem of find­ 
ing reasonably accurate approximate solutions of any non­ 
trivial quantum-mechanical many-body problem, The second 
problem, with which these lectures will deal, is that of 
even formulating the problem in such a way as to take ac­ 
count of the existence of the composite particles, It is, 
of course, well known that composite particles behave like 
elementary bosons or· fermions when they are (in some rea­ 
sonable sense) well separated or when the interparticle 
interactions are small compared to the internal excitation 
energies1). However, there are many problems in which 
these criteria are violated, yet the composite nature of 
the particles remains important, Examples are high-tem­ 
perature gases and partially ionized plasmas, chemical re­ 
actions in general, and systems such as superconductors 
containing electron pairs or other complexes, Even in li­ 
quid helium at low temperatures, virtual excitation of the 
atoms is by no means negligible, since it is responsible 
for the van der Waals attraction whi.ch binds the system 
into a liquid. In these and other problems, a method of 
formulation in which the existence of the composite par­ 
ticles is treated kinematically, through use of appropri­ 
ate composite-particle dynamical variables, is desirable. 

147 
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It turns out to be possible, starting out from the 
usual Schrodinger representation of states and observables 
of the system of interacting "elementary" constituents 
(electrons and nuclei in the case of systems of atoms), 
to completely eliminate the explicit dependence on the 
dynamical variables of the constituents, representing the 
states and observables in terms of dynamical variables re­ 
ferring only to the atoms (for example, the translational 
wave vectors and internal excitation quantum numbers of 
the atoms). Once this has been done, one can introduce a 
second-quantization formalism in an elementary manner, in 
which the states and observables are represented in terms 
of composite particle annihilation and creation operators 
satisfying elementary B"ose or Fermi commutation relations, 
in spite of the fact that the composite particles are not 
elementary. The price one pays for the complete elimina­ 
tion of dynamical variables of the constituents is that, 
in the first place, subsidiary conditions ensuring the 
correct symmetry under interatomic* exchange of constitu­ 
ents must be imposed in order to set up a one-one corres­ 
pondence between states in the many-atom state space and 
those in the state space of the constituents; in the sec­ 
ond place, all sin&le-atom states, including the continutnn 
states, must be included in order to obtain a complete 
many-atom state space. Although the many-atom representa­ 
tion thus obtained is exactly equivalent to a conventional 
representation in terms of the constituents, both the sub­ 
sidiary conditions and the continuum atomic states intro­ 
duce great difficulties in practical calculations. For 
this reason, my description of this representation, in 
Secs. I and II of these lectures, will be quite abbrevi­ 
ated. I think that the main value of this representation 
is that it serves as a useful preliminary to the formally 
more complicated representation which will be developed in 
Sec. III (which will occupy most of these lectures), in 
which only the bound states of the composite particles are 
represented in terms of atomic dynamical variables, leav­ 
ing the unbound states to be described in terms of 

*From now on our terminology and notation will be 
adapted to the special case where the composite particles 
are atoms, for the sake of definiteness. Nevertheless, 
the method is quite general. 
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dynamical variables of the constituents rather than the 
(essentially unknown) continuum atomic states. I think 
that such representations will be more useful and tract­ 
able in practical calculations in spite of being superfi­ 
cially more complicated. In the remainder of Secs, I and 
II of these lectures I will describe some of the salient 
features of the original work on representations in terms 
of both bound and continuum atomic states. Further de­ 
tails can be found in the literature2),3). 

B. Expansions in Terms of Atomic Product States 

For the sake of definiteness, consider a system of n 
identical atoms each composed of one nucleus and t elec­ 
trons. Let (~a(Xx1 ••• xt)} be a set of single-atom wave 
functions, orthonormal and complete in the sense 

6 
as' 

(t!)-l6(X-X ')i: E(P ')P '[6(x1 "."X{) ••• 6(x,t,-x{)] 
p' 

(I.1) 

where x. = (rj,6j) denotes both the position and spin 
z-comportent variable (=tor•) of elctron j, X the position 
of the nucleus and also its spin z-component variable in 
case its total spin is not zero, J means integration over 
positions and summation over spins, 6as is a Kronecker 
delta with respect to discrete and a Dirac delta function 
with respect to continuous quantum numbers, Eis a sum over 
discrete and integral over contirurus quanturnanumbers, and 
6(X-X') and 6(x-x') are Dirac delta functions of position 
and Kronecker delta functions of spin. The form of the 
completeness relation takes into account the antisymmetry 
of the ~a in the electron variables; E, denotes a sum over 
all permutations P ' of the primed P variables, E(P ') be- 
ing +1 for even and -1 for odd permutations, Note that 
the inclusion of the continuum atomic states in the set 
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f~} is quite essential for completeness; if only the 
bofrnd states are included, no such completeness relation 
holds. It is this feature which leads to difficulties in 
applying this formalism to practical calculations. 

A system of nuclei and electrons whose numbers are 
appropriate to an integral number n of such atoms has a 
wave function* which can be expanded as follows: 

L HX1 • • .x X1 • • .x, ) n en 

with coefficients 

(I.2) 

X (I.3) 

It might be thought that such an expansion is unphysical 
because we have picked one particular assignment of nuclei 
and electrons to atoms, i.e., nucleus 1 and electrons 
1. .• -l to atom 1, etc. However, it follows from (I.3), the 
antisymmetry of * in its electron coordinates, and its 
symmetry or antisymmetry in nuclear coordinates, that 
either all of the coefficients care unchanged or else 
all simultaneously change sign under a permutation of 
the assignment of nuclei and electrons to atoms, depend­ 
ing on the parity of the permutation. Thus the expansion 
(I.2) is in fact independent of the particular assignment, 
apart from physically unobservable constant± 1 phase 
factors. 

In order to transform to a representation :l_n 11hich 
dynamical variables of the nuclei and electrons arc elimi­ 
nated in favor of those of atoms, one can consider the 
coefficents c(al•••Ou) as new wave fmi.ctions and the argu­ 
ments a1 ••• an as the atomic dynamical variables. Part of 
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the permutation s~mnetry of $ under exchange of identical 
constituents (nuclei and electrons) appears explicitly in 
c, in that it follows from (I.3) that c is either a sym­ 
metric or an antisymmetric function of a1.,.an, depending 
on whether 2J +tis even or odd, where J is the nuclear 
spin (at this point we are applying the spin-statistics 
theorem). On the other hand, the s~etry of,$ under 
interatomic exchange of constituents (not exchange of 
whole atoms) appears inc in a concealed fonn. If one 
compares the expansion (I.2) with one differing only by 
interatomic exchange of an electron between the p,t.q and 
qth atom, one finds2) that the wave functions c must sat­ 
isfy the linear relation 

~(apaq !Ielec !afl)c(a1 ••• ap-l aap+l'. ,aq-l flaq+l" •• an) 

(I.4) 

where the electron exchang~ matrix is defined as 

The relation (I.4) for one particular value of p and q, 
say p = 1 anu q = 2, together with the symmetry or anti­ 
s~netry of c(a1, .• Un), implies the relation for all val­ 
ues of p and q. Hence it is convenient to state (I.4) in 
the symmetrized form 

= -\n(n-l)c(a1 •.. a). n (I.6) 
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Similarly, the symmetry or antisymmetry of $ under per­ 
mutations of the nuclear arguments X1,.,Xn implies that 
c must satisfy the linear relation 
n 

I:<q ~(apaq lrnuc I as)c (a1 ••. (lp-1 (l(lp+1 • •• (lq-lsaq+l •.• an) 
p as 

= (-1)2Jl.zn(n-l)c(a1,. ,a ) (I. 7) n 

where the nuclear exchange matrix is defined as 

(a a Ir las) p q nuc 

= Jcpa *(Xx1 •.• x ,i) cpa * (X 'x{ •.• x;) cp a (X 'xi ••• x ,i) cp8 (Xx! .•. xi) 
p q 

(I.8) 

The subsidiary conditions (I.6) and (I.7), together with 
the condition of symmetry or antisymmetry and c(a1,,,a ), 
are in fact necessary and sufficient conditions2) thatn 
the space of wave functions c be in one-one correspond­ 
ence with the space of properly antisymmetric and sym­ 
metric w's. They can be interpreted as saying that the 
"physical state space" of e's is not the entire space of 
symmetric or antisymmetric e's, but the subspace of the 
simultaneous eigenstates of the two linear, hennitian 
operators defined by the left sides of (I.6) and (I,7), 
with eigenvalues -\n(n-1) and (-1)2J~(n-1), respectively. 
If we had started with an expansion differing from (I.2) 
by the inclusion of prefactors of explicit antisymmetriz­ 
ing and symmetrizing or antisymmetrizing operators with 
respect to the electronic and nuclear variables, we would 
have found that the simple explicit expression (I.3) for 
the expansion coefficients c would have been replaced by 
an implicit equation for c with a nonunigue solution. 
The same conditions (I.6) and (I.7) would nevertheless 
have appeared as conditions picking out a unique 
solution2). 
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The correspondence between the space of $1s and 
the space of e's is such that inner products are pre­ 
served2), i.e. 

($, ljl ') "= ft*(X1 .•• Xnx1 ... x,/,n) ljl '(X1 ••• Xnx1 ..• x.i.:r) 

X dX1 ... dXn dx1.,.dx-ln 

(c j c ") = ~ c*(a.1.,.a.n)c'(a.1 •.• a.n). 
O.i ••• a.n 

(I.9) 

The subsidiary conditions (I.6),(I.7) play an essential 
role in the proof of (I.9). 

C. Representation of Observables 

Let T be any single-particle operator, e.g. the 
kinetic energy operator, which has the structure 

n -tn 

THX1, .• Xnx1 .•• x-tn) = [LT(X.) +LT(X.)] 
j=l J j=l J 

on the space of ljl's. T'ne fonn of T as an operator on 
the space of e's is easily found by expanding T$ in the 
manner (I.2); the result is 2

) 

n 

Tc (0.1 .•. a.n) =) ~ (a.p IT I a.)c (0.1 ••. a.p-l a.a.p+l ..• a.n) 
~ a. 

(I.11) 

where the atomic kinetic e::iergy matrix elements have the 
expected fonn 
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,t =fcp *(Xx1 •.• x,) [T(X)+ L T(x.) ]cp (Xx1 •.. x,) 

a, p ,,, j =l J a, ,,, 

x c1Xdx1 •.. dx ,t. (I.12) 

Similarly, a two-particle operator, of which interaction 
potentials are the most important examples, has the 
structure 

X HX1 ••• x X1 ••• x' ) (I. 13) n -,,n 

on the space of w's. When transformed into the space of 
e's, it decomposes2) into an interatomic part V0 and an 
intra-atomic part V': 

Vc(a.1 .•• a.) = (Vo + V')c(a.1 •.• a.), n n 
n 

=I: ~- 
p=l a, 

(a, lvla.)c(a.1,,.a. la,a, +1···a,) p p- p n 

n 

v'c<a.1 •• ,a.n) = I: ~ (a.pa.qlvl(l.f3) 
p<q a,f3 

with 
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(I .15) 

l l l l 

x[v(XX')+~ ~V(xjx{)+ L V(Xxj)+L V(X'xj)] 
j-1 k=l j=l j=l 

(I.16) 

D. Atomic Second-Quantization Representation 

A quantized field representation can now be intro­ 
duced by any of the usual methods used for systems of 
elementary particles. We choose the Fack representation, 
in which state vectors \c) are represented as 

\c) = Co 

. 
C ( 0.1 ••• 0. ) n n 

(I.17) 

with inner product 
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C * ( 01 • • • 0. ) C 
1 
( 0.1 • • • Cl ) • n n n n 

(1.18) 

Here c0 is the vacuum amplitude, c1 the one-atom ampli­ 
tude, etc. The atomic annihilation and creation opera­ 
tors are defined by 4

) 

a a 

and 

Co 

C ( 0.1 ••• 0. ) n n 

Co 

(1.19) 

0 

(n ~ /n!)'°'E (P) Pf/) c l ( 0.1 ••• a. 1)] 'L.J Lao, n- n- p n 

(I.20) 

where P runs over all permutations of a1 ••• a and E(P) 
is to be taken as +l for all p if 2J+t is evgn, whereas 
if 2J+t is odd, then E(P) is +l or -1 depending on 
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whether Pis even or odd. At this point it is customary 
for someone to object that the two definitions (I.19) and 
(1.20) should be interchanged. However, the definitions 
are lorrect as stated, as can be seen by referring to 
Fock) or considering the special case of a state with 
only a vacuum amplitude c0, which is then annihilated by 
aa, whereas it is changed by aJ into a state with only a 
one-atom amplitude. It follows directly from their defi­ 
nitions that these atomic annihilation and creation oper­ 
ators satisfy elementary Bose or Fermi commutation or 
anticommutation relations 

a a - a f3 o, 

6 as (I.21) 

These simple relations are to be contrasted with the more 
complicated relations 

o, 

f t t 6 as + ( ) t .... : .. :_~$ ~ 

factors factors 

(I.22) 

satisfied by the more naive atomic annihilation and cre­ 
tion operators defined by 

(I.23) 

t t where$ (X) and$ (x) are the usual quantized-field crea- 
tion operators for a nucleus and an electron. 

In terms of ·this atomic second-quantization represen· 
tation, the state (I.17) can be represented as 
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where \O) is the normalized atomic vacuum state. The Ham­ 
iltonian (I.10)-(1.16) becomes 

H = T + Vo + V ', 

T =""""'(a\T\s)a ta , L..J a S 
as 

V' = ~ L (as Iv \yo) a/ a/ a 0ay 
agyo 

(1.25) 

which is of the faniliar form except that the matrix ele­ 
ments are between states of atoms rather than of "elemen­ 
tary" particles. If the Cfla are chosen to be free-atom 
energy eigenstates with eigenvalues Ea, then it is not 
difficult to show that 2

) the single-atom part of H be­ 
comes diagonal: 

H = H0 + V ', 

H0 =2:EaNa' 
a 

t a a (1.26) 

The subsidiary conditions (I.6) and (I.7) become in 
this representation 

1elec \c) 

I \c) nuc 

-~(n-1) \c), 

2J I (-1) ~(n-1) c) (1.27) 
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where 

I = ~ nuc 
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(1.28) 

The zero-temperature n-atom problem. is that of finding 
the simultaneous eigenstates of H, of the total atom- num­ 
ber operator 

(I.29) 

with eigenvalue n, and of the operators (I,28) with eigen­ 
values -~(n-1) and (-1)2J~(n-l). 

In practice, however, exact satisfaction of (1.27) 
is out of the question, since Ielec and Inuc have the 
structure of interatomic interactions, and even strong 
ones. Furthermore, the continuum matrix elements are im­ 
portant in (I.27). It is possible to define projection 
operators for these subsidiary conditions which effective­ 
ly replace them by additional exchange interaction terms 
in the Hamiltonian3), which could in principle then be 
treated in the same approximation as the true interatomic 
interaction v'. However, the continuum atomic matrix ele­ 
ments still cause difficulties in practice. Therefore, I 
shall not discuss this projection operator formalism. 
However, I understand that Professor Sakakura will have 
something to say about it next week, in connection with an 
approach to the formulation of a hybrid representation for 
systems of composite and elementary particles different 
from the approach which I will discuss in Sec. III of 
these lectures, 
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II. One Atom Plus One Extra Electron 

A. M:>tivation 

It is useful to examine a representation, for a sys­ 
tem of one atom plus one extra electron, which is closely 
related to the many-atom representation just described, 
since, together with that representation, it can serve as 
a prototype for the more complex but also (hopefully) more 
useful hybrid representations which will be described in 
Sec. III. 

B. Formulation 

Consider first a single atom with t electrons, des­ 
cribed by the same complete orthonormal set {~~(Xx1, •. xi)} 
of atomic wave functions as used in Sec. I. If one extra 
electron is added to this system, the resultant system of 
one nucleus and l + 1 electrons is described by SchrBdin­ 
ger wave functions w(Xx1.,.xi+1)which are antisymmetric 
in all t+l electron variables. Any such wave function can 
be expanded as follows: 

(tr , l) 

where 

w is automatically antisynmetric in x1 ••• xi since the ~a 
are. However, the condition that it also be antisymmetric 
under exchanges of xt+l with any of the other x· imposes 
a subsidairy condition on the amplitudes ca ana1ogous to 
(I"6) and (I.7). To derive it, note that 

(II.3) 

Inserting the expansion (II.l) in both sides, multiplying 
by cp*(Xx1" •• xt), and integrating, one finds that the ca must 
satisfy 
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~JKaS(x,x')cS(x')dx' = -ca(x) 
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(II.4) 

where 

KaS (x ,x 
1
) 2 f cpa * (Xx 'xa .•. x t) cp/3 (Xxx , ••• x t) dXdxa .•• dx l. 

(II.5) 

If we define c(x) as the column vector with components 
ca(x) and~ (x,x') as the matrix with elements Kas(x,x'), 
then (II.4) can be written as 

(K(x,x') £ (x') dx' = -£(x), .,. "" (II. 6) 

i.e. c(x) must be an eigenvector of the hermitian 
"exchange kernel" lSi with eigenvalue -1. Any s(x) derived 
from a totally antisynunetric w(Xx1 ••. x.r,+1) according to 
(II.2) is autanatically an eigenfunction with eigenvalue 
-1, i.e. (II.6) is a necessary condition for total anti­ 
symmetry of w. Conversely, if c satisfies (II.6) then it 
follows from (II.1) and (II.2) that (II.3) is satisfied, 
i.e. w is totally antisymmetric. Thus the eigenvalue 
equation (II.6) is both necessary and sufficient for com­ 
plete antisymmetry of w. Furthermore, the space of total­ 
ly antisymmetric w's is in one-one correspondence with the 
space of e's satisfying (II.6), and this correspondence 
preserves~inner products: 

"'LYa*(x) c;(x)dx. (II. 7) 
a 

I leave the proof to you as an exercise. As in the case 
of (I.9), the subsidiary condition (II.6) plays an essen­ 
tial role in simplifying the expression for the inner pro­ 
duct in the space of state vectors£• It might seem 
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surprising that the vector function c(x) of a single 
electron variable x can contain precisely the same physi­ 
cal information as the Schr~dinger wave function* which 
depends on the coordinates of a nucleus and t+l electrons. 
The point is, of course, that the extra information is 
built into c via its dependence on the vector index a, 
the set of single-atom quantum numbers. 

C. Representation Q.f. the Hamiltonian 

In Schrodinger representation the Hamiltonian has 
the general form 

H 

-t+l 

T (X) + L T (x j) 
j=l 

(II .8) 

To find the representation of Has an operator on state 
vectors c, let H operate on (II.1), multiply by 
~a*(Xx1.~.xt), and integrate. In this way one finds that 
H acts as a matrix operator lt(x): 

H c(x) = H(x)c(x) ,..,., Rj ,..,., 
(II.9) 

where the notation J!(x) means that the matrix operator ij, 
acts on the x dependence of c(x), and the elements of this 
matrix operator are given by~ 

(II.10) • 
where the potential matrix operator i<x) is defined as 

,1, 

Va~(x) =/~a*(Xx1 .•. xt)[V(Xx)+LV(xjx)] 

j=l 
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For simplicity it has been assumed that the ~o. are chosen 
to be the free-atom energy eigenstates: 

t t t 
[T(X) + I: T(x.) = ~ V(x.xk) ")' V(x.~) J~ (Xx1 ••• x,t) 

j=l J j=l J j'°'<k J o. 

(II .12) 

as was assumed in (I.26). This assumption is not essen­ 
tial; if it is not made then the term Eo. o 8 in (II.10) is 
replaced by (o.\T\s)+(o.\V\s), with matrix efements defined 
by (I.12) and (I.15). 

D. Definition of Projected Hamiltonian 

I would like now to sketch a method of satisfying the 
exchange subsidiary condition (II.6) through construction 
of an appropriate projection operator. The method is simi­ 
lar to the projection operator formalism3) alluded to in 
Sec. I, which was not discussed there because of lack of 
time. Here the system is simpler, so the projection oper­ 
ator is also simpler and I can at least very briefly 
sketch the ideas without giving any details of the proof. 

We want to find the simultaneous eigenvectors c of 
the Hamiltonian matrix li, [Eq.(II.10)] and the exchange ma­ 
trix kernel t [Eq.(II.6f], with eigenvalue -1 for the lat­ 
ter. One can reduce this to the problem of finding the 
eigenvectors of a suitable projected Hamiltonian, in 
which (Ii.6) is exactly replaced by an additional electron­ 
atom exchange interaction. Let P be the projection oper­ 
ator onto the space of all eigenvectors c(x) of (II.6) 
with the stated e i.genva Lue -1. This space is closed under 
the action of~ since the Schr~dinger Hamiltonian is sym­ 
metric under permutations of electrons. Hence 

[P,H] = 0 (II.13) 

where His defined by (II.9)-(II.ll). Define a "project­ 
ed Hamiltonian" :IC by 
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3-C PH. (II.14) 

Suppose that£ is an eigenvector of 3-C with eigenvalue E: 

:Kc = Ee. (II.15) 

Then if E 'f 0, 

Pc= E-1P'.rCc E-lP2Hc 

and 

Ee= Kc= PHc = HPc = He 

(II .16) 

(II.17) 

Thus any eigenvector of K with a nonzero eigenvalue is 
necessarily also an eigenvector of P with eigenvalue 1, 
i.e. it satisfie (II.6); furthennore, it is also an 
eigenvector of H with eigenvalue E. On the other hand, 
the eigenstates of 3-C belonging to the eigenvalue zero are 
in general linear cmnbinations of eigenstates of H with 
eigenvalue zero and arbitrary states lying in the sub­ 
space orthogonal to the physical subspace, i.e. states 
annihilated by P. Thus we shall assume E 'f O. This is 
no great loss of generality, since in application, 
states with E=O will usually be of measure zero. E.g., 
in a scattering problem,E will be zero only if the in­ 
coming electron has kinetic energy precisely equal to the 
binding energy of the isolated atom. Nevertheless, we 
should bear in mind that when we work with the projected 
Hamiltonian~, its eigenstates with eigenvalue zero will 
in general be physically meaningless. 

E. Construction of the Projection Q.2.erator and 
Prqj_g_cteq_ Hamiltoniaq 

Let K be the integral operator with kernel t, i.e. 

K £ (x) = f i<x, x ') £ (x ') dx '. (II .18) 

D~fine 
K' = 1 + K (II.19) 
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where 1 is the unit operator, Then (II.6) can be 
written as 

K's(x) o. (II.2O) 

Construct (K ') 2: 

(K ') a 1 + 2K + K2• (II.21) 

Using the completeness relation (I.1) and some permuta­ 
tion algebra which I do not have time to go into here, 
one can show that the iterated kernel ~a is linear in l&,, 
and in fact that 

"'""fi<. (x,x")K (x" ,x ') ~J"a.y Yi3 
y 

= .i-1 [o o(x-x ')-(t-l)K (x,x ') J (II.22) a.s O.R 

or in terms of the notation (II.18) 

Ka -1 (t-l)K]. (II. 23) = .(, [1 - 

Hence 
(K')2 = (1H-1)K' (II. 24) 

or 
K'[K'-(lH-l)] = O, (II. 25) 

from which it foll~ws that K' has precisely two eigenval­ 
ues, zero and l+t- ; only the eigenvectors with eigenval­ 
ue zero satisfy the subsidiary condition (II.6). 

We can now easily write down the desired projection 
operator P: 

(II.26) 



166 M. D. GIRARDEAU 

Then one easily verifies that 

p2 = P, K'P =PK'= 0 (II.27) 

so that (II.26) is indeed the projection operator for 
the subsidiary condition (II.6). 

An explicit expression for the projected Hamilton­ 
ian (II.14) can then be constructed by multiplying 
(II.10) and (II.26) and again making use of the complete­ 
ness relation for the ~a· We give only the result: 

;;.1 
3<'.£_ (x) = (t+l) !!(x) £, (x) 

- (lH,-l)-l f b(x,x ')s(x ')dx' 

with 

(II.28) 

L (x,x') = K (x,x') [ES+ T(x')] + V (x,x'), as as as 
-t 

V (x,x ') =f~ *(Xx 'x2 ••• x ,) [V(Xx ') +V(xx ') +"'"' V(x .x ')] aS a .,, L..J J 
j=2 

(II.29) 

This provides a formulation of such problems as 
electron-atom scattering which is in principle exact. 
However, the necessity of including continuum states 
of the atoms leads to difficulties in practical calcula­ 
tions. Hence this representation should be considered 
as the prototype of a more complex but more useful rep­ 
resentation of the type to be discussed in Sec. III. 
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III. Systems of Elementary ,sLnd Composite Particles 

A. Historical Remarks 

The representations to be discussed in this section 
are of very recent origin; in fact, most of the results 
I will describe have been obtained in the last month, and 
some of them are only a few days old. I apologize for ex­ 
posing you to such undigested results. My excuse is that 
this area is currently being investigated more or less 
independently by several people, and the representations 
thus developed are likely to be applicable to a number 
of problems, not only such problems as partially ionized 
plasmas and superconductors, but also to such problems 
as atomic scattering and chemical and nuclear reactions. 
I tried many years ago, without success, to develop a 
hybrid representation in terms of bound states of atoms 
plus fr~-particle states of the unbound constituents 
(rather than continuum states of the atoms), but at the 
time I did not succeed. I am very much indebted to Pro­ 
fessor Brittin for informing me of his recent work with 
Stolt on such a representation6), which convinced me that 
the problem is indeed soluble and motivated me to take it 
up again. The approach of Brittin and Stolt, based on 
correspondences between various Hilbert subspaces, is 
quite different from mine, and I do not know what the 
precise relationship is. I suspect, however, that the 
two approaches will eventually be found to be essentially 
equivalent. Perhaps Professor Brittin will shed some 
light on this in his forthcoming lectures. I have also 
recently learned that Professor Sakakura is working on 
the same problem from still a different point of view8), 
which he will describe in his lectures. Again, I suspect 
that his representation is essentially equivalent to mine, 
but this remains to be shown. 

B. Motivation 

As already mentioned in Sec. I, describing the un­ 
bound constituents in terms of continuum atomic states, 
though possible in principle, leads to difficulties in 
practical calculations since very little is known about 
such continuum states, and even when they are known (as 
for the hydrogen atom) they are still difficult to deal 

.. 
~- 
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with sufficiently accurately to provide a good approxima­ 
tion to the subsidiary conditions (I,6) and (I.7). Thus 
one is motivated to try to develop a hybrid representation 
in which only bound atomic states (and not necessarily 
even all of these bound states) are described in terms of 
atomic variables, with the remaining dependence of the 
wave functions described explicitly in terms of the con­ 
stituents (e.g., in terms of plane-wave products). 

C. Some Simple Cases 

Start with the simplest case, n = 2 identical fer­ 
mions. Let f~a(x1x2)} be an orthonormal (but not com­ 
plete) set of antisynmetric bound-pair functions, We 
wish to expand a general, antisymmetric w(x1x2) in terms 
of bound pairs and unbound fermions, i.e. we seek an ex­ 
pansion of the form 

Hx1xa) = I;c(a) ~a(x1x2) + c(x1x2) 
a 

(III .1) 

where c(a) is the amplitude for finding a bound pair of 
fermions in the state ~a and c(x1x2) is the amplitude for 
finding an unbound pair in the configuration (x1x2), It 
is obvious from the physical interpretation of amplitudes 
that one should choose 

(III.2) 

Then c(x1x2) is -uniquely determined as the residue, i.e. 
the result of subtracting off the "bound part" of $: 

c(x1x2) = Hx1x2) - I; c(a)~a(x1x2), 
a 

(III.3) 

and(III.1) is satisfied as a trivial identity. Eq. (III.3) 
bears a strong resemblance to the definition of orthogon­ 
alized plane waves. This is no accident; one easily veri­ 
fies that c(x1x2) is indeed orthogonal to all the ~a, 

(III.4) 
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as it ought to be if c(a) and c(x1x2) are to be inter­ 
preted as the amplitudes for bound pairs and unbound 
fermions, respectively. 
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In applications, however, it is desireable to turn 
the problem around, regarding c(a) and c(x1x2) as the 
given wave functions; if one knew$ already there would 
be little point in trying to explicitly introduce dynan­ 
ical variables of the composite particles. The problem 
is then to show that the conditions that c(x1x2) be 
antisymmetric and satisfy (III.4) (which we shall call 
the condition of bound state-continuum orthogonality) 
are both necessary and sufficient to uniquely determine 
the c(a) and c(x1x2), thus establishing a one-one corre­ 
spondence between the space of e's and the space of anti­ 
symmetric $1s. In other words, we want to establish that 
the solution (III.2), (III.3) for the e's is the only 
one compatible with the antisymmetry of c(x1x2) and its 
orthogonality to all the bound states. The demonstration 
is trivial: multiplication of (III.l) by ~a*• integration, 
and use of (III.4) yields the explicit (hence unique) ex­ 
pression (III.2) for c(a); then (III.l) yields the expli­ 
cit and unique expression (III,3) for c(x1x2). Finally, 
it follows from (III.l) that the inner product in the 
space of wave functions c is equal to the usual inner 
product in the space of $'s: 

($,$1)=jw*(x1X2)$'(x1Xa)dx1dxa=(c,c') 

=~c*(a) c '(a)+ fc*(x1xa)c '(x1xa)dx1dx2. 
a 

(III. 5) 

Having understood the trivial case n = 2, we can 
proceed to the less trivial case n = 3. We seek a unique 
expansion of a general antisymmetric $(x1x2x3) of the 
form 
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Hx1xaxa) =A.s L c (Cl,X1) qi Cl (x2x3) + c (x1xaxa) 
Cl 

(III.6) 

where A3 is the case n = 3 of then-fermion antisymmetri­ 
zer 

A n (III. 7) 

the sum runs over all n! permutations P of x1 ... x, and 
E(P) is +l or -1 depending upon whether Pis evennor odd. 
The bound state-continuum orthogonality constraint analo­ 
gous to (III.4) is 

fqiCl*(x2x0)c(x1xaxa)dx2dxa= 0, all Cl and x1• (III.8) 

In the language of quantum chemistry we would say that 
c(x1xax3) is required to be "strongly orthogonal" to all 
the bound states qi. Provided that we restrict ourselves 
to antisymmetric qi~ and c(xaxaxa), the similar relations 
obtained by permutation of the subscripts 1,2, and 3 are 
already implied by (III.8). This condition ensures that 
the c(Cl,x) represent only those configurations where two 
of the fermions are bound together, whereas c(x1x2xa) re­ 
presents only those configurations where all three are 
unbound. 

Multiplication of (III.6) by qiCl*(x2xa), integration, 
and use of (III.8) and the antisymmetry of the qi and of 
c(x1x2xa) yields the following set of equations for the 
determination of the c(Cl,x): 

foCl*(x2xs) Hx1xaxa)dx2dx3 

= f [c(Cl,x1)-2!: jK(Cl,x1;s,x) c(s,x)dx]. (III.9) 
s 
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Here the hennitian kernel K, which we shall call the 
"bound state-continuum exchange kernel" in view of the 
physical origin of its occurrence in (III.9), is defined 
as 

Defining 

Kc(o:,x) = ~K(o:,x; 8,y) c(S,y)dy, 
s· 

one can write (III.9) as 

(III.1O) 

(III .11) 

(III .12) 

This has a unique solution for c(o:,x), denoted by 

C (o:,x) 

provided on11 that (1-2K)­ 
ly detennined 

(III .13) 

1 that K does not have the eigenvalue 2,_so 
is non-singular. Then c(x1x2x3) is unique­ 
by (III.6) as the residue 

a. 

= Hx1x2x3) - ½ ~ [c(o:,x1)C/>2(X2X3) 
0: 

(III.14) 

It is easy to verify that (III.8) is indeed satisfied with 
these choices of c(o:,x) and c(x1x2x3): 
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(III .15) 

The inner product of two wave functions $and$' can be 
expressed in terms of the corresponding wave functions c 
and c', using (III.6), (III.8), (III.10), and (III.11), 
as 

(c ,c ') 

= ½ ~ Jc*(o. ,x) (1-2k)c '(o.,x)dx 

(III.16) 

Given an antisymmetric $ and antisymmetric~~• the c(o.,x) 
and c(x1x2xs) are uniquely detennined by (IIl.13) and 
(III.14). Conversely, given c(o.,x) and an antisymmetric 
c(x1XaXs) satisfying the bound state-continuum orthogon­ 
ality constraint (III.8), an antisymmetric $ is uniquely 
detennined via (III.6). There cannot be mure than one 
such set of e's giving rise to a given$ via (III.6) for 
suppose that there were two such sets, denoted by c1 and 
Ca. Then 

As [I:c2(0.,x1)~0,(xaxs)] + c1(X1Xaxs) 
0, 

As [I:ca(o.,x1)~0,(xaxs)] + ca(X1X2Xs). (III.17) 
0, 
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Then multiplication of both sides by ~a*(x2x3), integra­ 
tion, and use of (III.8) yields 

(III.18) 

which, in view of the nonsingularity of the operator 
(l-2K)-1, implies 

(III.19) 

Then by III.14) and the fact that both c1 and c2 corres­ 
pond to the same$, one has 

(III.2O) 

It follows that the space of wave functions c(a,x) and 
antisymmetric c(x1x2xa) satisfying (III.8) is in one-one 
correspondence with the space of physical (antisymmetric) 
$'s. 

We proceed next to the case n = 4, since some new 
features appear there. The generalization of (III.6) is 

Hx1 •• x4) = A4 [L c (0.1 CJ.2) ~o.}X1X:a) 
CJ.1 Cl,a 
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(III.21) 

There are now two botmd state-continuum orthogonality 
constraints, one on the c(o,x1X2) and one on c(x1 .• X4): 

o, all o,xs, and X4o 

(III022) 

The c(o,x1x2) are required to be antisymmetric in x1 and 
x2,and c(x1 •.. x4) in x1 •. x4; also, since exchange of a 
fermion pair produces two sign changes, c(o102) is re­ 
quired to be symmetric in 01 and 02• Multiplication of 
(III.21) by ~a}*(x1x2)~0 *(xsx4), integration, and use of 
(111022) and the antis~~etry and symmetry properties of 
the e's yields 

(IIIo23) 

where 
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(III.24) 

and 

(III.ZS) 

Similarly, multiplication of (IIIo21) by ~a*(X3X4) and in­ 
tegration yields 

where 

(III.26) 

(III.27) 

and K(a,x1;S,xa) is defined by (III.10). The matrix 
(III.24) is the analog of the "exchange matrix" defined 
previously in Eq. (I.4), except that now it refers only to 
fermion exchange between bound states~~, whereas in (I.4) 
the ~a included continuum states as wello The kernel 
(III,25), (III.27) corresponds to exchange of a pair of 
electrons between the continuum and a product of two bound 
states, one electron exchanging with each of the two bound 
states. It is analogous to a dynamical matrix element re­ 
presenting collision of two bound pairs, with one breaking 
up into two continuum fermions and the other remaining 
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bound (but in general changing its state), and the in­ 
verse process. Similarly, (III.10) is analogous to a 
dynamical matrix element representing collision of an 
unbound (continuum) fermion with a bound pair without 
breakup of the pair, whereas (III.24) is analogous to a 
dynamical matrix element representing collision of two 
bound pairs without breakup of either. In fact, we shall 
see later that these purely kinematical exchange effects 
give rise to terms in the second-quantized Hamiltonian 
which are quite analogous to dynamical terms. 

Equations (III.23) and (III,26) are coupled linear, 
inhomogeneous equations for c(a1a2) and c(a,x1x2) in 
terms of$, which can be denoted symbolically by 

~ C = d (III.28) 

where c is a many-component wave function which can be 
denoted by 

C = 
(III .29) 

and dis the inhomogeneity, denoted in the same represent­ 
ation by 

d 

(III.30) 

with 

(III.31) 

The linear matrix-integral operator k is defined by the 
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right sides of (III.23) and (III.26). When we write down 
the expression for the inner product (c,c'), it will be 
easy to show, moreover, that k is hermitian. Equations 
(III.23) and (III.26) possess a unique solution for 
c(a1a2) and c(a,x1x2) provided only that k does not pos­ 
sess the eigenvalue zero, so that k-l is nonsingular. 
The existence of such a zero eigenvalue would be an acci­ 
dent arising through an t.mfortunate choice of the ~a, and 
we shall assmne that they are chosen so that k does not 
have a zero eigenvalue. Then c(a1a2) and c(a~x1xa) are 
uniquely determined by$, and c(x1 •• x4) subsequently fol­ 
lows uniquely from (III. 21). By analogy with the veri­ 
fication of (III.22), one can show from (III.21), (III.23), 
(III.25), (III.26), and (III.1O) that the bound state-con­ 
tinuum orthogonality constraints (l:II.22) are actually 
satisfied by the c(a1a2) and c(a,x1x2) satisfying (III.23) 
and (III.26). Finally, the proof that there cannot be 
more than one choice of the e's satisfying (III.23) and 
(III.26), the constraints (III.22), and the proper anti­ 
symmetry and symmetry conditions and leading to the same 
$ via (III.21) can be carried out in analogy with (III.17) 
-(III.2O). Thus the space of wave functions c is in one­ 
one correspondence with the space of physical (antisymmet­ 
ric) $'s. The inner product in the space of the e's is 
found to be • 

($, $ ')= /w*(x1 • .x4) $ '(x1 • .x4)dx1 • .dX4 

• (c,c ') = <s, ~ s') + /c*(x1 • .X4)C '(x1 • .X4)dx1 •• dxa 

- I: c*(a1aa)[½c '(a1a2)-fZ:<a1aa \I \as)c '(as) 
a1 aa as 
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It is easy to verify from this expression that the opera­ 
tor k is hermitian, as previously stated, 

As a simple example of the physical interpretation 
of the formalism, let us compute the c 's for· the case 
that~ is a four-fermion function built from products of 
two-fermion bound states, with both pairs in the same 
state Cflo: 

(III.33) 

Such a state is, in fact, of BCS form, with cpo playing the 
role of the Cooper pair wave function. Then 

(III. 34) 
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It is easily verified by substitution that the solutions 
of Eqs. (III.23) and (III.26) are then 

(III. 35) 

Then by (III. 21) 

o. (III.36) 

The state' (III.33) is therefore one in which the probabi­ 
lity of finding two bound pairs both in the state Cf<> is 
unity, the probability of finding two bound pairs not both 
in the state C/-0 is zero, and the probabilities of finding 
only one bound pair or no bound pairs is zero. This is 
exactly what one would naively expect for a state built 
only from the single pair state ~o- The formalism is such 
that the complications arising from the antisymmetrization 
in (III.33) do not upset this naive expectation. This is 
not a trivial point, since an exchanged product such as 
C{-O(x1x3)({-0(x2x4) is not orthogonal to unexchanged products 
~a(x1x2)~8(x3X4) with a; 0 and/or S; O. 

More generally, suppose that w(x1 •• x4) is built 
purely from bound pairs with no continuum amplitudes, i,e. 

(III,37) 

Then it is easily verified that (III,21), (III.23), and 
(III.26) are satisfied for arbitrary symmetric c(a1a2) in 
(III,37) and the same c(a1a2) in (III.21),(III.23), and 
(III,26), provided that 
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o. (III.38) 

For two such $'s, denoted by$ and$', the inner product 
expression (III.32) reduces to 

($,$') = (c,c') 

(III.39) 

The norm of a single state$ can thus be written as 

0, $) = (c,c) = I: P(o.10.a), 
0.1 O.:a 

1 [ P(o.10.:a) = 3 lc(o.10.:a) 12 - c*(o.10.:a) L(o.10.2 I IJo.S)c(o.13) 
a a 

- c(o.10.a) I: <as Ir lo.10.:a)c*<aa)] 
a.a (III.40) 

so that if the state$ is normalized, then P(o.10.2) has an 
obvious physical interpretation as the probability of 
finding the two bound pairs in the pair states ~o. and ~a· 
This probability differs from \c(o.10.a) 12 due to the effects 
of antisymmetrization in (III.37). The distribution func­ 
tion n(o.), the mean occupation number of the pair state 
~o. in the state$, is then 

n(o.) = 2 LP(o.i,) 
s 

= f~[ le (o.S) I 2 -c* (o.13) ~ (o.13 I I I 0.1 o.a) c (0.1 o.a) 
J:l 0.1 0.2 
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-c(ai3) L (a1aalI\aS)c*(a1aa)] 
Cli <la 
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(III.41) 

where the factor 2 arises from the requirement that if 
four fermions are bound into two fermion pairs in various 
states of excitation, then one must have 

I: n(a) 
Cl 

2, (III.42) 

In the case where there are nonvanishing amplitudes for 
finding only one bound pair or no bound pairs present, so 
that the more general wave function (III,21) must be used, 
the expressions for mean occupation numbers are more com­ 
plicated. The discussion of such cases is best postponed 
until after introduction of second quantization, in terms 
of which occupation numbers are more simply expressed. 

D. Systems Q.t.~. Electrons, and Nuclei 

We are now in a position to deal with more realistic 
cases. In a gas, liquid, or solid, there are present 
atoms and/or molecules in various states of real or virtu­ 
al excitation and translational and rotational motion. In 
a plasma, there are in general several species of compo­ 
site particles plus "elementary" particles, namely neutral 
atoms and/or molecules in various states, singly-ionized 
ions, doubly-ionized ions, ••• , and unbound electrons and 
(at sufficiently high temperatures) nuclei. In order to 
avoid unnecessarily complicating the formalism before 
understanding the essential features, we shall restrict 
ourselves here to the case that the composite particles 
are of a single species, each composed of one nucleus, 
whose spin and position variables are denoted by X, and 
one electron, whose spin and position variables are de­ 
noted by x. Thus we have an orthonormal set (~i} of 
bound states, where ~a=~a(X x). Such a description would 
be applicable, e.g. to hydrogen at high enough tempera­ 
tures that virtually all Ha molecules are dissociated. 
There is no upper limit on the temperature, since we 
shall explicitly include the possibility of dissociation 
of the atoms. The notation for the~ is the same as 

Cl 
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the case -v=l of Sec. I, except for the important differ­ 
ence that the set f~a} is now undercomplete, since it con­ 
tains only bound states. Nevertheless, it may still be 
an infinite set. Thus, e.g. the atomic quantum numbers 
a include not only the internal quantum numbers n,t,m, 
ands, but also the translational quantum number k, re­ 
lated to the total momentum£ of the atom by p~ht~ In 
realistic cases it will be necessary to consider a large 
number of k values, proportional to the volume of the sys­ 
tem and hence becoming infinite in the thermodynamic 
limit. Since the set (~a} is nevertheless undercomplete 
as are products of such bound states, the overcomplete­ 
ness problems that plagued us in Secs. I and II will now 
be absent, being prevented here by the constraint of 
bound state-continuum orthogonality. The overcompleteness 
problems in Sec. I arose because the set of all atomic 
product states is overcomplete (as a result of the effects 
of exchange) provided .t_hat all continuum states Q..{ the 
~~included. Here, however, we shall include only 
bound states, treating the continuum states in terms of 
their "elementary" constituents (here nuclei and electrons). 

Suppose that we are dealing with a system of n pro­ 
tons and n electrons, described by Schr~dinger wave func­ 
tions *(X1 ••• X9x1 ••• ~). The obvious generalization of 
the expansion lIII.21Y is 

n! An (nuc) An (elec) { (n!)-~ L c(a1 • •. an) 
a1 ..• an 

n-1 

x ~ (X1x1) ••. ~ (Xx)+""°" (j!)-1[(n-j)!l-~ 
a1 a n n L..J 

n j=l 

x ~ c(a1 ••• a . ,X ·+i· .. Xx ·+i· .• x ) ~ n-J n-J n n-J n 
a1, .. an-j 
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(nuc) (e lee) where An and~ are the proton and electron 
antisymmetrizers defined as in (II,7), and the combina­ 
torial factors are inserted so as to simplify the inner 
product expression which will be derived subsequently, 
The e's are required to be antisymmetric in the X's, 
antisymmetric in the x's, and symmetric in the a's. In 
addition, they are required to be strongly orthogonal to 
the bound states, i.e. 

!Cf! i<(X x ) c(~1 ••• a 1,x x) dX dx o, a n n n- n n n n 

{qi *(X x ) c(a1, .. a 2,X 1x x 1x) dX dx o, 
J a n n n- n- n n- n n n 

!Cf! *(X x ) c(X1,,,x x1 .. ,x) dX dx 0 (III.44) 
a n n n n n n 

as identities in the a's and the unintegrated X's and x's. 
These requirements are the obvious generalization of 
(III,22) and ensure that the dependence of the e's on the 
X's and x's refers only to continuum (unbound) nuclei and 
electrons; furthennore, they will serve to make the solu­ 
tion for the e's in tenns of o/ unique, 

The equations determining the amplitudes c can be de­ 
rived in analogy with the derivation of (III.23) and 
(III,26), by multiplying (III.43) by Cfla*(X1x1), •. Cfl<¾ .* 
(~-j¾-j) and integrating over X1,,,xn:jx1,. ,Xn-j l-J 
for each value of j from Oto n-1. In this way on~ ob­ 
tains a set of n coupled linear, inhomogeneous equations 
for then amplitudes c(a1,,,Un), c(a1,,.an-1,Xnxn), ••• , 
c(a1,X2.,.Xnxa, •• xn) of the form 

M da1 ... a )=(n!)~jCfl *(X1x1) ... Cfl *(Xx )w(X1 ... X X1 ... x) 
n a1 an n n n n 

Mc(a1 ••• a .,X ·+i•••Xx ·+i•·•x) n-J n-J n n-J n 
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-1 -1' f n!(j!) [(n-j)!J 2 rp *(X1x1) •.. cp *(X .x .) 
a1 a . n-J n= j n-J 

(III.45) 

Here Mis a linear, hermitian operator on the e's whose 
explicit form* is to be obtained by substitution of 
(III.43) into the right sides of the equations and evalu­ 
ation of the integrals, dropping terms which vanish as a 
result of (III.44). At this point we do not need the ex­ 
plicit expressions; it is sufficient to realize that as 
before, the solution for th~ e's is unique, i.e. M-l is 
non-s Ingul.arw= and uniquely defined. Hence, imposition 
of the requirements that the e's have the proper symmetry 
and antisymmetry and satisfy the bound state-continuum 
orthogonality constraints (III.44) serves to uniquely de­ 
termine the e's and establish a one-one correspondence be­ 
tween the space of physical $' s and the space of c 's. 
Eqs. (III.45) only determine the e's with O ~ j ~ n - l; 
as before, c(X1 ••. Xnx1 ••. ~) is then uniquely determined 
by (III.43). 

We shall require, however, explicit expressions for 
the most important terms in the inner product (c,c '). In 

* Note that the explicit expression for 
M 0:(0.1, .. 0.n-j•~-j+l"·¾xn-j+lxn) consists of terms 

linear in the various c(o.1 •• ,n0_k,Xn-k+l' .. Xnxn-k+l 

•.. xn), not merely k = j. 

*0'< Note that if the constraints (III.44) were not imposed, 
then the solution would not be unique, i.e. M would have 
a zero eigenvalue. 
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evaluating (ij,,ij,'), one need include only one factor of 
An(nuc) and one factor of An(elec) in the integrand, 
since these antisymmetrizing operators are projection 
operators and hence idempotent, · Thus by (III.43), the 
inner product is 

(c,c') = (ij,,ij,') 

= J dX1 •• ,dKndx1 ••• dxn { (n ! ) ~ I: 
a1, •• an 

c*(a1 .. ,a . ,x ·+i···x x ·+r···x ) n-J n-J n n-J n 

x c '(s1 ••. s .,x •+i···x x •+r··· x ) n-~ n-~ n n-~ n 

X t+'o (X1x1), •. q,Q (X ,x ,)+ c'(X1,.,x X1 ... x )J'l 
~1 ~ n-~ n-~ n n n-l 

(III.46) 
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This inner product is conveniently decomposed as follows: 

(c,c ') = (c ;c ')o + (c,c ')1 + .•. (III.47) 

Here (c,c 1)0 arises from all those terms in (III.46) in 
which the arguments (Xjxj) of the various Cfu.j factors are 
either not permuted at all, or else the pa:irs (Xjxj) are 
permuted bodily between ~a's without breakup. Also, the 
X and x arguments of the e's may be permuted freely, but 
permutations exchanging arguments of the e's with those 
of the ~a's are excluded. Taking proper account of the 
combinatorial factors arising in this way, one finds 

(c,c 1)0 ~ c*(a1 ... a )c '(a1 ... a) L.J n n 
a1 .•. an 

n-1 +z: I: 
j=l a1 ••• a . n+ j 

c*(a1 .•• a . ,X •+i•••X X •+r• .X ) n-J n-J n n-J n 

x c '(a1 ••• a .,x ·+i···x x ·+i··.x )dX ·+i··· dX n-J n=J n n-J n n-J n 

X dx "+l" .• dx n-J n 

(III.48) 

The combinatorial factors in (III.43) were chosen so that 
such prefactors do not appear in (III.48). 

The term (c,c1
)1 in (III.47) is defined to be the 

sum of all terms in (III.46) expressible solely in terms 
of exchange matrices and kernels arising from single ex­ 
change of protons or electrons between atoms, or single 
exchange of a proton or electron between an atom and the 



COMPOSITE PARTICLES 187 

continuum. Such exchanges may be depicted schematically 
as in Fig. 1, in which the circles represent atoms, the 
heavy dots protons, the light dots electrons, and the 
lines with arrows permutation cycles of length 2 (single 
interchanges). In addition, arbitrary permutations of 
proton-electron pairs between atoms, and arbitrary permu­ 
tations of protons and electrons entirely within the con­ 
tinuum, are allowed. These are not indicated in the fig­ 
ure since they do not change the value of the matrix ele­ 
ments (although .they do contribute to the combinatorial 
factors). 

o· 
Fig. 1. Permutations contributing to (c,c')1, 

Their contribution is only appreciable when atoms overlap 
each other or a continuum particle. 

All such terms are expressible linearly in terms of 
the exchange matrix 

(III.49) 

and the exchange kernels 
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K(o.,X1 ;i3,X2)= fcpo.*(X2x)cpi3(X1x)dx, 

K(o.,x1 ;13,xa)= fcpo.*(Xx2)cp
13
(Xx1)dX, 

K(o.10.2 ;o.,Xx)= f cp *(Xx1) rp *(X1x)cp (X1x1)dX1dx1, 0.1 0.2 a 

(III.SO) 

analogous to (III.24), (III.10), (III.25), and (III.27). 

a. a. 

a. a. 

X 

X X 

Fig. 2. Dynamical analogs of binary exchange process 
contributing to (c,c ')1• Heavy lines denote atoms; 

light lines, protons or electrons. 
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Non=negligible contributions to the exchange matrix 
(III.49) arise only from those regions of configuration 
space where two atoms collide (a binary collision). 
Similarly, non-negligible contributions to K(a,X1;S,X2) 
and K(a,x1;S,x2) arise only from regions of configuration 
space where one atom collides with one proton or one elec­ 
tron, and non-negligible contributions to K(a,Xx;a1a2) 

arise only from regions of configuration space where two 
atoms collide, with one breaking up into a proton and an 
electron (exchange cannot induce simultaneous breakup of 
both of the colliding atoms, although such terms will be 
found to occur in the Hamiltonian as a result of true dy­ 
namical interaction). The representation of these contri­ 
butions to (c,c ')1 in terms of diagrams is shown in Fig. 
2. Note that K(a1a2;a,Xx) corresponds to three-body col­ 
lisions (one atom, one proton, and one electron). Never­ 
theless, we have chosen, rather arbitrarily, to include 
its contribution in (c,c ')1, since the inverse process, 
corresponding to K(a,Xx;a1a2), corresponds to only binary 
collisions (two atoms). The conbinatorics required to 
evaluate the coefficients of these exchange matrices and 
kernels are rather involved, so we give only the results:* 

(c, C ') 1 

x }c*(a1 ••• a . ,X ·+i· .. X x ·+i· .. x ) n-J n-J n n-J n 

*Some errors in the combinatorial coefficients have been 
corrected since the lectures were presented, and the dis­ 
cussion of (III.Sl) has been modified accordingly. 



190 M. D. GIRARDEAU 

x dX ·+1 •.• dX dx ·+1 .•. dx n-J n n-J n 

n-1 

- I: j (n+j ) 
j=l 

x fc•"(a1 .•• a . ,X ·+l• •• Xx ·+l' .• x ) n-J n-J n n-J n 

x[jiK(a1,X ;S,X)c '(sa2 ... a .,X ·+l·• .X 1Xx ·+1 •• .x )dX n n-J n-J n- n-J n 

+jK(a1,x ;S,x)c'(Saz ..• a .,X ·+l"".Xx ·+1 .•• x 1x)dx] n n-J n+j n n-J n- 

x dX ·+1 .•• dX dx ·+1 ..• dx n-J n n-J n 

n-2 
.k - L (j+l) (n=j ) z(n-j-1) L L 

j=O 

X c'(a1 .•• a . zS1S2,X ·+1···x X ·+1···x) n-J- n-J n n-J n 

x dX .••• dX dx .•.. dx 
n-J n n-J n 
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n-2 

- L 
j=O 

k 
(j+l) (n-j) 2(n-j-l) 

x Jc>'< ( a,1 ••• a, • , X . +l ••• X x . +l ••• x ) n-J n-J n n-J n 

X dX O o o .d.X dx O o o .dx o 

n-J n n-J n 
(III.51) 

The next tenn, (c,c ')2, in (III.47) is more compli­ 
cated. It arises from both ternary exchange and singly­ 
iterated binary exchange. By "ternary exchange" we mean 
terins in (III.46) arising from permutation cycles running 
through three atoms; such terms only become effective up­ 
on ternary collisions of atoms. An example of such a 
contribution, arising from permutation cycles of length 
three running through three atoms involved in the ampli­ 
tudes c(a.1 ••• a. ), is n 

(III.52) 

where the ternary exchange matrix is defined as 
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+ cpS1 (X1X3)cp$2 (X2x1)tps3 (X3X2)] dX1dX2dX3dX1dx2dX3, 

(III.53) 

The contribution (III.52) includes the combinatorial fac­ 
tor, i.e. it has already been summed over all electron 
and proton cycles of length three. 

The "singly-iterated binary exchange II contributions 
to (c,c ')2 arise from terms in (III.46) involving two 
disjoint permutation cycles of length two. As an example, 
such contributions involving only the amplitudes c ( a1 .•• a ) 
and arising from two disjoint exchanges of electrons n 
and/or protons sum to 

n(n-l)(n-2)(n-3) 
(2 !) 2 

(III.54) 

Let us next estimate the magnitudes of these various 
contributions. To simplify the discussion, assume that 
c(a1••·Ctn)=c '(a1.,.Ctn) = &a 0 ••• o¾0, with all other e's 
and c ''s vanishing*. Then \c,c ')o is unity, whereas 
(c,c ')1 reduces simply to -½n(n-l)(OOIIIOO). To estimate 
this exchange matrix element, note that if the system is 
subject to periodic boundary conditions with periodicity 
volume 0, then the bound states cpa(Xx) can be labelled by 
a wave vector k and internal quantum numbers v, i.e. 
a= (~,v), where, e.g. v = (n,t,m,s). Then the cpa will 
have range ~ao as a function of IR-r I, where a0 is the 
Bohr radius, and wi 11 be of order ~ ~ a; 312 o-l:i within 
this range, Then it is easy to see from (III,49) that 
(a1a2 lrlaa) will be of order (ao3/0) when nonvanishing, 
whereas it will vanish unless the sum of momenta on the 

* This is the case of extreme Bose-Einstein condensation, 
for which one expects exchange effects to be largest. 
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left is equal to the sum of momenta on the right. Thus 
in the special case a1 = aa =a= S = o, (OOIIIOO)~(ao~/o) 
and (c,c 1)1 ~ - ~pad3, where p = n/O and we are assuming 
that n and Oare large but with ratio p independent of n 
and O (macrospcopic system). By a similar argument one 
estimates that the ternari exchange contribution (III,53) 
is of order (3!)-1n(pa03) , whereas the singly-iterated 
binari exchange contribution (III,54) is of order 
(2!)- n2(pa0

3
)
2
• More generally, any connected contribu­ 

tion, i.e. one arising from a single permutation cycle of 
length t, is expected to be of order n(pa03)t-1, whereas 
a disconnected contribution, arising from a permutation 
decomposable into more than one disjoint cycle, will be 
of order of the products of such factors, one for each 
cycle, and will hence be proportional to nm where mis 
the number of disjoint cycles. 

It is clear from the above estimates that the series 
(III.47) is seriously divergent* for a macroscopic system 
(n ~ 1023), terms of higher order in exchange involving 
higher powers of n. The situation in this respect is sim­ 
ilar to the behavior of the Rayleigh-Schrodinger pertur­ 
bation expansion for the ground state energy of a many­ 
body system, or the similar expansions for the equilibrium 
statistical mechanics (Mayer expansion in classical statis­ 
tical mechanics or quantum-statistical perturbation 
theory.) There useful expansions are obtained by appro­ 
priate reordering, through introduction of Ursell func­ 
tions or some equivalent (linked cluster perturbation 
theory). One expects that by the use of similar methods, 
one can represent the sum of all connected and disconnect­ 
ed contributions to (III.46) as the exponential of a sum 
of connected contributions only. Then the inner product 
(III.46) will depend exponentially on n for large n. In 
fact, there are very general arguments7) that this is the 
case for well-behaved many-particle wave functions. 

Since such a rearrangement of the series (III.47) has 
not in fact yet been accomplished, we shall content our­ 
selves here with a more pragmatic approach. It is known 

* Strictly speaking, the series is not divergent for fin­ 
ite n, since it terminates. However, it "converges 
abruptly." 
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that after such Ursell rearrangements have been performed 
in the case of statistical mechanical or quantum mechanic­ 
al perturbation theory, the results* obtained by use of 
the rearranged series agree with those obtained from the 
original one to lowest (first) order in the density, the 
rearrangement only affecting the higher-order contribu­ 
tions. We shall assume that the same is true of the ser­ 
ies (III.47). More specifically, we shall assume that in 
calculating the contribution of exchange to many-body 
energies, the first two terms of the series may be used, 
and the results obtained will then be correct to first 
order in the density. The actual way in which this will 
be done will be through introduction of an appropriate 
"metric operator" which generates the various terms in 
(III.47) and will also be found to be amenable to second 
quantization. This will be evaluated only up to binary 
exchange terms, i.e. those terms which contribute to 
(c,c ')i. We shall call this the "binary exchange approxi­ 
mation". The contributions of exchange to the second­ 
quantized Hamiltonian will be evaluated only up to binary 
exchange terms. 

We now introduce notation which will motivate the 
definition of the metric operator and will also prove 
useful in the subsequent transition to second quantization. 
Define the "state vector" \c) as the set of all amplitudes 
c; this may be conveniently thought of as a column vector: 

C (0.1 • •• 0. ) n 

c(o.1 ••• 0. l'x X) n- n n 

\c) c ( o.1 ••• a . , X • +i • .. X x . +i · .. x ) n-J n-J n n-J n 

c(X1 ••• X x1 ••• x ) n n 
(III. 55) 

* This statement is, of course, only true for .§Q!!lg_ results. 
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Define the inner product of two such state vectors as 

(c le') - ~ 
a. ••• a. 

l n 

n-1 

+ ~ 
J'=l a. a. l••• n-j 

C * ( 0.1 • • , 0. ) C 1 
( 0.1 , • , 0. ) n n 

fc*(a.1, • ,a, , ,X '+l' •,XX '+l', ,X ) n-J n-J n n-J n 

X C '(a.1, • ,a. , ,X '+l' .. X X •+l' .• x ) n-J n-J n n-J n 

x dX ·+i·••dX dx ·+i···dx n-J n n-J n 

(III. 56) 

This inner product is not equal to the inner product 
(c,c'), Eqs. (III.46)-(III.48) and (III.51), although we 
see from (III.48) that it is equal to the direct term, 
(c,c')0, in (c,c'). However, there exists a linear, her­ 
mitian operator Mon the space of state vectors le), such 
that 

(c,c') = (clMlc') (III.57) 

For obvious reasons, we shall call M the "metric ope ra t.o rj' 
It is defined implicitly by (III.46) and (III.56). In 
fact, it follows from (III.45) and (III.46) that Mis the 
same operator as occurs in (III.45), provided that Eqs. 
(III.45), which define M only for O ~ j ~ n-1, are sup­ 
plemented by 

(III.SB) 
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It follows from (III.47), (III.48), and (III.51) that M 
is given up through binary exchange tenns by 

M=l-B+ .•• (III.59) 

where the "binary exchange operator" Bis defined by 

n 

Bc(o.1., .o.n) =r: L (o.po.q Ir [cs) 
p<q o.s 

x c(o.1••·0. lo.a. +1···0. 1130. +1···0.) p- p q- q n 

n 

+n-\ L L f [ K(o.p o.q; o.,Xx) + K(o.q o.P; a,Xx) J 
p<q a 

x c(o.1 ••. a 1a +i··•a 1a +i···o. a,Xx)d.Xdx, (III.60) p- p q- q n 

Bc(o.1 •.. an-j'Xn-j+1···Xnxn-j+l···xn) 

n-j 

L L (apaq Ir [cs) 
p<q as 

x c(a1 •.. a 1aa +i···a 1sa. +i···a ., p- p q- q n-J 

X ·+1· .• x x ·+1· •• x ) n-J n n-J n 

-1: +(j+l) (n-j) 2 

p<q a 

x j[K(a. a. ;a,Xx) + K(a a ;a,Xx)] p q q p 
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x c(a1 ••• a 1a +i···a 1a +i···a .a, p- p q- q n-J 

X ·+i···X Xx ·+i···x x)dXdx n-J n n-J n 

n-j n 

+ :E 
p=l q=n+j+I a 

x c ( a1 ••• a 1aa +i · .. a . , p- p n+j 

X ·+i• .. X 1xx +l· .. X x ·+i· .. x )dX n-J q- q n n-J n 

X ·+i···X x ·+i···x 1xx +i···x) dx] n-J n n-J q- q n 

-1 k + j (n-j+l) 2 

n-j 

:E 
p=l 

and 

n 

x c(a1 ••• a 1a +i···a .as, p- p n-J 

n 

s=-j+l 

1 ,; j ,; n-1, 

"K(a ,x X ;as) L..J P qs 
as 

X ·+1· •. x lx +1· .. x x ·+1· .. x lx +1· .• x ) , n-J q- q n n-J s- s n 

(III.61) 

(III.62) 

where care has been taken to ensure that B preserves the 
proper symmetry and antisymmetry of the e's. 
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E. Representation of Observables 

We wish to detennine how operators representing phy­ 
sical observables transfonn into the space of state vec­ 
tors le). This can, in principle, be done in two steps, 
first finding how the operators act on the space of ampli­ 
tudes c and then transfonning them into the space of state 
vectors le) with the aid of (III,57). Let A be any oper­ 
ator defined on wave functions w. Then A can be defined 
as an operator on the amplitudes c by use of (III.43), 
(III.44), and appropriate algebraic manipulations. De­ 
noting the amplitudes thus determined by Ac, one has by 
(III,57) 

(c,Ac ') = (c IMA le'). (III. 63) 

The metric operator Mis the representation, in the space 
of state vertors le), of the antisymmetrizing operator 
An(nuc)An(e ecJ in (III.46). Thus, since Schrodinger oper­ 
ator representing physical observables are invariant under 
pe'rmut at.Lons o f ide{ltical particles (i.e., they commute 
with AntnucJA (elecJ, the corresponding operators on ampli­ 
tudes c commufe with M. ~, Thus one can also write (III. 63) 
as 

(c ,Ac ') = (c \AM \c ') (III. 64) 

provided that A really corresponds to a physical observ­ 
able. For such an operator, one can combine (III.63) and 
(III.64) into 

(c ,Ac') = (c \A\c ') (III.65) 

where A, the operator on the space of state vectors \c) 
corresponding to the operator A on the amplitudes c, can 
be written in several equivalent forms: 

.k .k A= MA=AM=.l,(MA+AM) = M2AM2 (III.66) 

*This is not a trivial matter, i.e. it is not valid for 
arbitrary operators A invariant under pennutations of 
a's, X's, and x's. Instead,it is a special property of 
those particular A's derived from a Schrodinger operator 
invariant under all permutations (including atom-breaking 
ones). For such A's, there are relations between the tenns 
Ac(a1•••¾-j,Xn-jN,Xn)with various j's, such that (A,M]=O. 
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Thus defined, A is hermitian, since both Mand A are, 
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Defining Ac to be the expansion coefficients of A$, 
in analogy with the procedure used for transforming ob­ 
servables into the space of e's in Sec. I, one can obtain 
formal expressions for these amilitudes by multiplication 
of (III,45) from the left by M- : 

Ac(a1 .•• nn) = (n!)\i-l J~a:(X1x1) .•. ~a*(Xnxn) 
n 

Ac(n1,, .a . ,X ·+l' .. X x ·+l" .x ) n-J n-J n n-J n 

'("')-l[ ·)1]-~M-lf *(X ) *(X ) n .. J. n-J . ~ 1X1 .,.~ .x . 
a1 an-j n-J n-J 

x A$(X1 ... X x1 ... x )dX1 ... dX .dx1 ... dx . , n n n-J n-J 

Ac(a1,X2, •• X x2 ••• x) = nM-l/~ *(X1x1)AHX1,,,X X1, •• x) n n a n n 
l 

X dX1dX1. (III.67) 

Then by (III.66) the metric operator M cancels out of the 
equations determining the operation of A: 
Ac(a1,,,nn) = (n!)~ f~ *(X1x1) •.. ~ *(Xx) a1 an n n 
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(III. 68) 

To detennine Ac (X1 ••. Xnx1. .x ) we note that in the 
first place, by (III.58), jlii equal to A when acting 
on c(X1 ••• Xnx1 ..• Xn), and in the second place Ac(X1 ..• ~ 
x1 ••• Xn) is the residue left after subtracting from Asch* 
the sum of all its bound and partially bound parts. 
Here Asch is the Schrodinger operator, i.e. the operator 
on the space of w's. Then by (III.43) and (III.66) one 
finds 

Ac(x1 ... x x1 ••. x ) = As hc(X1 ... x x1 ••• x ) n n c n n 

+ n.'A (nuc) A (elec) { (n.')-\ " [ ( ) n n L.J c a1 .•. an 

n-1 

+ 'E (j!)-1 c<n-j)!f\ 

j=l 

X L 
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-cp (X1x1) ... cp (X .x .)M-1Ac(et1, .. et ., 
et1 etn-j n-J n-r j n-J 

X ·+1· .. x x ·+1" .x ) ]} n-J n n-J n 
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(III.69) 

Here the Ac involved are to be substituted after evalua­ 
ting the expressions (III.68); then multiplication by M""l 
can be effected by taking the -1 power of the series 
(III.59), which, in the binary exchange approximation, 
gives 

(III. 70) 

As a preliminary to obtaining more explicit general 
expressions for the kinetic and potential energy operators 
TandV, it is helpful, as before, to first consider a 
few special cases of small values of n. For n = 1, one 
has 

HXx) = I: C ( et) cp Ct (Xx) + C (Xx) • 
Ct 

(III. 71) 

Any single-particle operator Ton w has the structure 

Tw(Xx) = TSchW(Xx) = [(T(X) + T(x)Jw(Xx). (III. 72) 

Then by (III.71) 

T W (Xx) = L c ( et) [T (X) +T (x) J cp Ct (Xx) +[T (X) +T (x) Jc (Xx) • 
Ct (III,73) 

Putting n=l in (III,68), one finds 

Tc (et)= L (et IT I 13) c (13) + /cpet *(Xx)[T(X) +T(x) Jc (Xx) dXdx 
/ s 

(III. 74) 
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where the atom-atom matrix elements are 

(a\T\S) = J~a*(Xx)[T(X) + T(x)J ~s(Xx)c!Xdx, (III.75) 

as in (I.12). For the case n=l, M=l, so that (III,69) 
gives 

fc(Xx) = [T(X) + T(x) Jc(Xx) 

Ir= 'x ') [T(X ')+T(x ') Jc(X 'x ')c!X 'dx ' 

+}:)Xx \T \a)c(a) 
a 

where the "bound state kernel" t::. is defined as 

t::.(Xx,X 'x ') = L ~ (Xx)~ *(X 'x ') 
a a a 

and the atom-continuum matrix elements* as 

(Xx\T\a) = [T(X)+T(x)]~ (Xx) a 

- Ir-> 'x ') [T(X ')+T(x ') ]~a(X 'x ')c!X 'dx '. 

It follows from (III,77) and (III.78) that 

J~a*(Xx)(Xx\T\S)c!Xdx = 0, all a and S. 

(III. 76) 

(III. 77) 

(III.78) 

(III. 79) 

Then it is easy to see that fc(Xx) is orthogonal to all 
the~, as it ought to be. It is also easy to verify that 
the agplitudes (III.74) and (III.76) do in fact generate 
T$ when substituted into (III,71). Any two-particle 

* We shall see later that such matrix elements cancel 
between f and Vin the special case that ~a are taken 
to be energy eigenstates. However, in the general case T can induce breakup of an atom, 
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operator Von$ has the structure 

VHXx) ea VSch $(Xx) ea V(Xx) HXx) (III.BO) 

where the notation means that V(Xx) operates on both the 
X and x dependence of $ (it is not necessarily an ordi­ 
nary potential, i.e. it may be a nontrivial operator). One 
finds in analogy with the derivation of (III.74) and 
(III. 76) 

Vc(a.)= L(a.lvls)c(S) + ~ *(Xx)V(Xx)c(Xx)dXdx, 
13 J~a. 

\l(Xx)=V(Xx)c (Xx)-/1::.(Xx,X 'x ')V(X 'x ')c(X 'x ')dX 'dx ' 

+L 
a 

(Xx Iv I a.) c (a.) (III.Bl) 

where the atom-atom matrix elements are 

(III.B2) 

in analogy with (I.15), and the atom-continuum matrix 
elements are 

(Xxlvla.) ea V(Xx)~ (Xx) a. 

- /1::.(Xx,X'x')V(X'x')~a.(X'x')dX'dx' 

in analogy with (III.7B). Again, one easily verifies 

(III.B3) 

J~a.*(Xx)(Xxlvls)dXdx = 0, all a. ands, (III.B4) 

and checks that Ve (Xx) is orthogonal to the~ and 
that the amplitudes (III.Bl) do in fact generatea. V$. 
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Next consider the case n = 2. Eq. (III.43) reduces 
to 

~(X1X2x1x2) = 2A2(nuc)A2(elec)[2-~ ~ c(a1a2) 

a1a2 

a 

+ ~~ [c(a,Xax2)cp/X1x1) - c(a,X2x1)cpa(X1x2) 
a 

(III. 85) 

where the amplitudes satsify the strong orthogonality con­ 
straints (III,44): 

/cpa*(Xx)c(S,Xx) dXdx = 0, all a and S; 

(III. 86) 

A single-particle operator T has the structure 

(III,87) 
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on the space of $1s. Then by (III.85) 

T$(X1X2x1x2) = 2~ A2(nuc)A2(elec) 

205 

+ 2A2 (nuc) A2 (elec) r:{c(a,X2xa) [T(X1) + T(x1) JCQx (X1x1) 
(l 

since T commutes with A2(nuc) and A2(elec). Then on put­ 
ting n = 2 in (III.68) one finds* 

(l 

- L (a1a2 IITlas)c(as) 
(li3 

+ 2-~ /[(a1 JTJ(Xx) 'c(aa,Xx)+(aa ITJXx) 'c(a1,Xx) ]dXdx 

- 2-~ "'i:_j{(a1<l2 IITla,Xx)' + (a2a1 IITla,Xx)' 
(l 

(III.89) 

+ [K(a1a2;a,Xx)+K(a2a1;a,Xx) ][T(X)+T(x) J}c(a,Xx)dXdx 

* Note that the operators A2(nuc)and A2(elec) may be 
shifted so as to operate on the product of ~a* factors. 
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where 

x ~ (X1x2)~ (X2x1)d.X1d.X dx1dx2 a s 2 

= /[K(a1X2;S,X1)T(X1)K(a2,X1;a,X2) 

+J[K(a1,x2;S,x1)T(x1)K(aa,x1 ;a,x2) 

+ K(a2,x1;S,x2)T(x2)K(a1,x2;a,x1) ]dx1dx2, 

(Xx Ir I a) '=[T(X) +T(x) ]~ (Xx), (a Ir lxx) '= [ (Xx Ir I a) ']*, a 

(a1a2 IITla,Xx) '=f~ *(Xx')~ *(X 'x)[T(X ')+T(x ') J~ (X 'x ') a1 a2 a 

x d.X'dx'. (III.90) 

Similarly, one finds 

Tc (a,Xx)= I: (a Ir I s)c (S ,Xx) + [T(X)+T(x) Jc (a,Xx) 
s 

- L Jcti-,X I IT ls ,x ')+K(a,x; s ,x ') T (X ') Jc (S ,x 'x) dX I 
s 

- "£jfS.a,x Irr I S,x ')+K(a,x; s,x ')T(x ') Jc(s,Xx ')dx' 
s 

+ L ~s (Xx) f (a Ir Ix 'x ') 'c (s,x 'x ') dX 'dx ' 
s 
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+ 2\L(Xx!T!s)'c(sa) 

f3 

+ 2\ L {<a\Tla1)~a2(Xx)-(a,Xx\IT\ a1a2)' 

a1 0.2 
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- [T(X)+T(x) ]K(a,Xx;a1a2)} c(a1a2) 

+ 2/(a\T\X'x') 'c(XX'xx')dX'dx' 

with 

(a,X\IT\s,X')=/~a*(X'x)[T(X)+T(x) ]~f:l(Xx)dx, 

(a,x I IT I f:l,x ') = f~a*(Xx ')[T(X)+T(x) J~f:l (Xx)dX, 

(a,Xx\ITla1a2)' = [(a1a2 IITla,Xx) ']'. 

(III.91) 

(III.92) 

Finally, for completeness we should exhibit the express­ 
ion for Jc(X1X2x1x2), This is not detennined by 
(III.68), but by the more involved expression (III.69). 
However, even for this simple case of n = 2, there are so 
many terms that it hardly seems worthwhile to write out 
the expression explicitly. Actually, in a macroscopic 
system (n ~ 1023) the probability of finding all atoms 
dissociated is negligibly small, so one may safely re­ 
strict oneself to a subspace in which the totally unbound 
amplitude is zero, and neglect matrix elements of observ­ 
ables connecting this restricted subspace with the "total­ 
ly unbound" subspace. 

Next consider the fonn of the operatorV for the 
case n = 2, where Vis a two-particle operator: 

(III.93) 

Derivations similar to those of (III.89) and (III.91) 
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give the form of V on the space of state vectors le). 
As in Sec. I, it vis convenient to separate V ,into 
a single-atom part O and an interaction part V. 
One finds that 

V V + 
0 

y, (III.94) 

where 

V c(a.10.a)=L[(a.1 lvla.)c(a.a.a)+(a.2 \v\a.)c(a.10.) J 
0 a 

+ (a.a \v\Xx) 'c(a.1 ,Xx) ]dXdx (III.95) 

and* 

(Xxlvla.)' = V(Xx)cp (Xx),(a.\vlxx) '=[(Xx!Vla.) ']*. a 

(III.96) 

Similarly, one finds 

V'c (a.1 a.a)= :E [ (a.1 a.a I vi a.13)-(a.1 a.2 I rv] a.13) Jc (a.13) 
as 

+ 2-~ :Ej{<a.10.2 lv\a.,Xx) '+ (a.a0.1 lvla.,Xx) I 

a 

* The prime distinguishes this matrix element from the 
previously-defined one (III.83), which contains an ad­ 
ditional orthogonalization term. The same remark applies 
to the distinction between (III.90) and (III.78). 
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-[K(a1aa;a,Xx )+K(aaa1;a,Xx ) ]V(Xx )} c(a,Xx )dXdx 

+2~ J<a1a2 \v\X1X2x1x2) 'c(X1X2x1x2)dX 1dX2dx1dx2 (III.97) 
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where 

(a1a2 \V\aS)=J~ *(X1X1)cp *(X2x2)[V(X1X2)+V(x1X2) 
<l1 aa 

(III.98) 

as in (I.16), and 

(a1a2 \IV \aS)= fcp *(X1x1) cp *(X2x2) [V(X1X2)+V(x1x2) a1 aa 

+V(X1X1)+V(X2x2)+V(X1x2)+V(X2x1)Jcp
0
(X1x2)cpS(X2x1) 

x dX1dX2dx1dx2, 

(a1 aa \v \ a,Xx) '= fcp *(Xx) cp *(X 'x ') [V(ll ')+V(xx ')+v(Xx ') a1 aa 

+V(X'x)J cp (X'x')dX'dx', 
a 

(a1a2\IV\a,Xx) '=Jcp *(Xx')cp >'<(X'x)[V(XX')+V(xx')+V(X'x') a1 aa 

+ V(Xx')+V(X'x) Jcp (X'x')dX'dx', a 

(III.99) 
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Similarly, the following separation of Vc(a,Xx) will 
prove convenient: 

V c(a,Xx) =:E (alVl13)c(13,Xx) 
0 

13 

+:Eqi
13
(Xx) J<alvlx'x') 'c(13,X'x')clX'dx' 

13 

+ 2 J<alvlx'x')' c(XX'xx')clX'dx' (III.100) 

and 

V'c(a,Xx) = V(Xx)c(a,Xx) 

+ :E [ (a,X Iv I 13 ,X) +(a,x Iv I 13 ,x) Jc (13 ,Xx) 
13 

+ :E qi13(Xx) J<a,Xxlvlxx'xx') 'c(13,X'x')clX'dx' 

13 

- :Ej(a,Xxlrvl13,X'x) 'c(13,X'x)dX' 

s 

- :Ej(a,Xxlrvl13,Xx') 'c(l3,Xx')dx' 

13 

+ 2.fi(a,xlvlx'x'X)' + (a,xlvlx'x'x) 

+ (a,Xx Iv [xx 'xx') 'Jc (XX 'xx') dX 'dx' 

+2.\ L (Xxlvl13)'c(13a) 

13 
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(III.101) 

with 

(a.,X Iv I s,X)= f Cj)a. *(X 'x ') [V(X 'X)+V(Xx ') ]q:,s (X 'x ')clX 'rue', 
(a.,x Iv I s,x)= f Cj)a. *(X 'x ') [V(x 'x)+V(X 'x) ]q:,s (X 'x ')dX 'rue I' 
(XX 'xx' Iv I a.,Xx) '=[V(XX ')+V(xx ')+V(Xx ')+V(X 'x) ]q:, (X 'x '), 

C1. 

(o.,Xxlvlxx'xx')' = [(XX'xx'lvla.,Xx) ']*, 

(a.,Xx I IV IS ,X 'x) ' = f q:,a. *(X 'x ') [V(XX ')+V(xx ')+V(Xx)+V(X 'x ') 

+ V(Xx')+V(X'x)]q:,S(Xx')dx', 

(a.,Xx I IV I s,Xx ') '=!Cj)a. *(X 'x ') [V(XX ')+V(xx,+v(Xx)+V(X 'x ') 

+ V(Xx')+V(X'x)Jq:,S(X'x)dX', 

(a.,x Iv Ix 'x 'X)' = { [V(XX ')+V(Xx
1
') Jq:,a. (X 'x ') }* 

(a.,xlvlx'x'x)' ={[v(xx')+V(X'x)]cpa.(X'x')}*. 

(III.102) 

For completeness, we also define 

Voc(X1Xax1xa) = O, 

i.e. V = V' when acting on c(X1Xax1xa), 
(III.103) 

V' with detennined implicitly by (III.69). 
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These expressions simplify in the special case that 
the~ are chosen to be single-atom energy eigenstates, 
• Cl. 
l.. e. 

[T(X)-t'l'(x)+V(Xx) ]~ (Xx) = e ~ (Xx). 
Cl. Cl. Cl. 

(III.104) 

Then decomposing T in a manner analogous to V 
i.e. 

T T0 + T ', 

Cl. 

+ 2-\J ( (0.1 IT !Xx) 'c (0.2 ,Xx) +(0.2 IT !Xx) 'c (0.1 ,Xx) ]dXdx, 

T c(o.,Xx)= ~ (o.lT!s)c(S,Xx)+(T(X)+T(x) Jc(a:,Xx) 
0 

f3 

+ I: ~s(Xx) f (a.IT I x'x') 'c(l'l,X'x')dX'dx' 

f3 

+ 2 /<a:ITIX'x')' c(XX'xx')dX'dx' 

and for completeness* 

(III.105) 

T c(X1X2X1X2)=(T(X1)+T(X2)+T(x1)+T(x2)Jc(X1X2x1x2), 
0 (III.106) 

* 

one term in 

being the sum of all other terms. 
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one finds with the aid of (III.104) and (III.86) that H 
simplifies: 0 

H 
0 

+ 

ff c(a,Xx) = [e +T(X)+T(x) J c(a,Xx), 
o a 

H c(X1X2x1x2) = [T(X1)+T(X2)+T(x1)+T(x2)Jc(X1X2x1x2). 
0 

(III.107) 

ff has three types of eigenstates: 
0 

(III.108) 

with energy eigenvalue ea+ ea; 

c(a,Xx) 

o, (III.109) 

with energy eigenvalue ea
0 

+ e, where fe is a product of 
free proton and free electron orbitals (plane waves) with 
total energy e; 

c ( a1 a2) = c (a, Xx) = 0 , (III .110) 
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with energy eigenvalue£, where f£ is an antisymmetrized 
product of free proton and free electron orbitals with 
total energy£. Only the eigenstates of type (III.108) 
satisfy the bound state-continuum orthogonality con­ 
straints (111.86), and hence lie in the space of physi­ 
cally allowed states. The failure of the eigenstates of 
types (111.109) and (111.110) to satisfy these constraint? 
is an inescapable consequence of the fact that products 
of free-particle orbitals are not orthogonal to the bound 
states, and the related fact that the interactions between 
continuum particles cannot be turned off without also 
turning off the intra-atomic interactions, causing the 
atoms to disintegrate. Nevertheless, a decomposition of 

H = T + V into H + H' would be useful in 
0 

a perturbation treatment in which atom-atom and atom-con­ 
tinuum exchange effects are treated perturbatively along 
with the actual atom-atom, atom-continuum, and continuum­ 
continuum interactions. Such a treatment is expected to 
be useful at low densities. An interesting aspect of the 

T like V decomposition (111.105) is that , con- 

T/ tains an interaction part It is clear from (II.89) 

and (III.91) that T' contains atom-atom, atom-proton, 
and atom-electron interaction parts. These arise from 
coupling between exchange and kinetic energy. 

If one undertakes the exercise of verifying that 

T c (o:,Xx) and V c (aXx) satisfy the orthogonality 

constraint (III.86), one may be shocked to discover that 
in general they do not, even if c(o:,Xx) does. More gener- 

ally, A c(o:1 ••• D:n-j,Xn-j+l·••XnXn-j+l·••Xn), for general 

n and a general A derived from a Schrodinger operator 

Asch' does not in general satisfy (III.44) even if c 

* In fact, we shall see in the next paragraph that the 

eigenstates of the full H also fail to satisfy these 
constraints. 
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does. The point is that the metric operator Min (III.63) 
and (III.66) in general takes a state satisfying (III.44) 
into one that does not, except in the trivial case n = 1, 
when M = l; this is clear from (III.45), since the right 
sides of these equations are in general not zero. Thus 
it is convenient to make a distinction between extended 
and restricted state spaces. We shall call the space of 
all state vectors le), restricted only by proper symmetry 
and antisymmetry under permutations of the arguments of 
the e's, the "ideal state space" J, The subspace of J 
consisting of state vectors le) satisfying (III.44) will 
be called the "physical subspace" P. Observables A act 
on r and leave fJ Invar Larrtw , but M and operators A = MA 
act on J and in general take a state vector in P into 
me having a physical component (the component in P) and 
an unphysical component (the component in the orthogonal 
subspace J-P, the "totally unphysical" subspace.) Far 
from being a drawback, this is an advantage, since it 
will enable us to introduce second quantization easily 
without worrying about the fact that products of free 
atom., free proton, and free electron states are in gener­ 
al not in oJ, We shall see in Sec. III.F. how observables 
can be projected onto the physical subspace P, in analogy 
with the procedure used in Secs. II.D. and II.E. Finally, 
we note that the fact that A c(X1 •.• ~x1 •• ,Xu) in gener- 

al contains many more terms than do the other A e's may 
be regarded as a result of the fact that M=l on the 

"completely unbound" subspace, so that A c(X1 .. ,Xnx1 .. •Xu) 
is strongly orthogonal to all the ~a if c is; hence 
it automatically contains all of the many orthogonalization 
terms necessary to achieve this orthogonality. 

It is now a fairly straightforward matter (although 
algebraically tedious) to generalize the previous deriva­ 
tions so as to obtain the representation of an observable 
A acting on Schr6dinger wave functions $ as an operator 

A on the ideal state space J, for arbitrary n. If we 

* This 
feet 
from 

is a consequence of relationships between the ef­ 
of A on e's with different values o~ j, following 
the fact that AS h commutes with A (nuc) and A (elec). c n n 
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restrict ourselves to the binary exchange approximation, 
i,e. consider, in the evaluation of the integrals (III.68) 
after substitution of Aw, only the same type of pennuta­ 
tions as were included in evaluating (III.46) up to the 
binary collision tenn (c,c ')1, then the tenns arising for 
general n are rather obvious generalizations of the ones 
occurring already for n = 2. Even if one restricts one­ 
self to the binary exchange approximation, tenns repre­ 
senting collisions of arbitrary numbers of atoms, protons, 
and electrons occur (note that even for n = 2, some of 
the matrix elements represent 3-body collisions). It is 
in the spirit of the binary exchange approximation to al­ 
so drop matrix elements representing true dynamical col­ 
lisions of more than two particles*, so we shall hence­ 
forth do so, We shall call this approximation, in which 
matrix elements representing multiple collisions, whether 
truly dynamical, exchange, or both, are omitted, the 
"binary interaction" approximation.** 

We shall, as before, consider one and two-particle 
observables 

n n 

j=l j=l 

n n n n 
"rl L V(X.X )+ L V(x.xk)+ L L V(X.x.) 

7
j'HX1., .x X1 •• .x ) • J k J J K n n 

j<k j<k j=l k=l 
(III.111) 

* Here "particle" means atom, unbound proton, or unbound 
electron. 

** Note that even with only single binary collision terms 
in the Hamiltonian, iterated collision effects occur in 
its eigenstates, 
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The explicit expressions for T and V up to the bi­ 
nary interaction approximation then follow upon substitu­ 
ting (III,43) and III,111) into (III,68), retaining only 
direct and binary exchange terms, and also dropping many­ 
body interaction terms, The combinatorics are rather in­ 
volved, so we state only the results. One finds* 

H T + V Ho + H, + H 
spont 

(III, 112) 

where 

H C (0.1,., Ct • ,X •+l'. ,X X •+l', ,X ) 
0 n-J n-J n n-J n 

n+] 

r; r; [<o.PITlo.)+(o.Plv\o.)J x 
p=l o. 

x c(o.1, •• a 1cm. +i···o. .,X j+l"'X x. j+i···x) p- p n-J n- n n- . n 

n 

+ r: 
p=n-j+l 

,L-T(X )+T(x )] c(o.1,,,o. .,x ·+i···x p p n-J n-J n 

X X •+l', ,X ) n-J n 

* In the actual lectures only a schematic description of H was given, The expressions given here, and all of the 
subsequent analysis and discussion, are more complete, 
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+{(j+l)(n-j)-~ ij f [<aplTIXx)' +(aPIVIXx) '] 

p=l 

x dXdx + h. c • } • (III.113) 

Here "h c c." denotes the hennitian conjugate; for the case 
of the tenn coupling the (n-j)-atom amplitude to the 
(n-j-1)-atom amplitude, its hennitian conjugate couples 
the (n-j)-atom amplitude to the n-j+l-atom amplitude. 
The inclusion of such off-diagonal tenns in H · rather 
than H ' is purely a convention; we have 

O 
chosen 

to do so since they vanish by (III.44) in case the 
~a are chosen to be single-atom energy eigenstates, Eq. 
(III.104). Then (III.113) reduces to 

Hc(a1 ••• a .,X ·+i···Xx ·+i···x) o n-J n-J n n-J n 

n-j 

={ I: 
p=l 

E + p 

n 
°" ! T (X ) +T (x ) ]'· X .u L p p ; 
p=n+j+L 

(III.114) 

HI The interaction part contains a large number 
of tenns even if terms beyond the binary inter- 
action approximation are discarded. One finds 

H 'c(a1 ••• a . ,X ·+i· .. X x ·+i· .. x ) n-J n-J n n-J n 
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:E :Er a. a. IV I a.S) - ( a. a. I IT I cs) - ( a. a. I IV I cs )J7 tpq pq pq 
Lsp'<q sn+j a.s 

Xx ·+i•••X) n-J n 

n n 

+{ :E r V(Xlq)+V(xpxq) ]+ l: }: V(Xpxq)} 
n-j+l,;;p<q,;;n p=n-j+l q=n-j+l 

n-j n 

+ :E I: ~rl(a. ,x Iv la.,X )+(a. ,x Iv la.,x ) 7_J' \. pq q p q q 
p=l q=n- j+l a. 

X c(a.1 ... a. 1a.a. +l"""a, .,X •+i•••X X ·+i•••X) p- p n-J n-J n n-J n 

- f [<a. ,x IITla.,X)+K(a. X ;a.,X)T(X)] . p q p q 

x c (a.1 ••• a. 1a.a. +i • •. a. . ,x ·+i · .. x 1xx +i • .. x p- p n-J n-J q- q n 

x x ·+1· .. x )dX n-J n 

-f [(a. ,x JITJa.,x)+K(a. ,x ;a.,x)T(x)] p q p q 
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xc(a.1 ••• a. 1a.a. +1 ... a. . ,X ·+1 ... x x ·+l".xq 1xxq+l"' x ) p- p n-J n-J n n-J - n 

xdx} 

n-j n 

+ { (j+l) (n-j)-~ I: L j[ (a.p,xq Iv lxxXq) ' 
p=l q=n+j+L 

+ (a. ,x lvlxxx) '] p q q 

x c (a.1 ... a. 1a. +1 ... a. . ,X ·+1 .. .X Xx ·+l" .x x) dXdx-+h. c .} p- p n-J n-J n n-J n 

+ :{j+l) (j+2) I (n- j) (n- j-1) -J,-~ L [c« a. Iv [xx 'xx') ' 
l L j' p q 

l,;;p<q,;;n-j 

,X ·+i··.X XX'x ·+1 ... x xx')dXdX'dxdx' +h.c.~ n-J n n~J n J 

r -1' " +\(j+l)(n-j) 2.w L fr (a. a. Iv I a.,Xx) '+ (a. a. Iv I a.,Xx)' p q q p 

-(a. a. IITla.,Xx) '-(a. a. lrTla.,Xx)'-(a. a. lrvla.,Xx)' p q q p p q 

-(a. a. lrvla.,Xx)' q p 
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x c(a1 ••• a 1a +i···a 1a +i···a .a, p- p q- q n-J 

,X ·+i···X Xx ·+i···x x)dXdx + h.c.} n-J n n-J n 

221 

+ ... (III. llS) 

where" ..• " indicates terms beyond the binary interaction 
approximation, and all the matrix elements occurring have 
been defined previously. In the terms beyond the binary 
interaction approximation there occur "disconnected" con- 

' tributions to H , i.e. contributions in which the ma- 
trix elements factorize. The following 3-body term, rep­ 
resenting coupling between kinetic energy of unbound par­ 
ticles and interatomic exchange, is one example: 

n 

I:(a a II las) L [T(X )+T(x ) J 
P q r r 

as r=n-j+l 

xc(o.1 ••• a 1aa +l" •. a 1sa +i· •• a . ,X . 1 •.. X p- p q- q n-J n-J+ n 

(III. ll6) 

We assume that all such disconnected terms can be canceled 
by series rearrangement (introduction of appropriate Ursell 
functions as matrix elements) as in the approach of Saka­ 
kura6). After this has been done, them-particle inter­ 
action terms with m ~ 3 will all be connected, as are the 
two-particle ones, and hence may validly be neglected com­ 
pared to the two-particle terms except at high densities. 
As in more familiar applications of the Ursell rearrange­ 
ment method, one expects that introduction of such Ursell 
functions will not affect the two-particle interaction 
terms. 

The part of ff denoted by ff in (III.112) spont 
will be called the "spontaneous breakup" part. It is a 
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sum of disconnected terms in which one or more factors in 
each matrix element are bound state wave functions. One 
finds 

n-j n n 
cp (X x ) o, q r 

p=l q=n-j+l r=n-j+l o, 

n-j 
1 .k 

+j- (n-j+l)2 r; 
n n 

p=l q=n-j+l r=n-j+l o,S 

Xc(Cl1 ••• Cl l(l(l+1···(l .s,x ·+1··.x 1x+1···x p- p n-J n-J q- q n 

x x ·+i· .. x 1x +i· .. x ) n- J r - r n 

n n 

p=n-j+l q=n-j+l o, 

x [ HSch of unbound particles in c l 
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x c(o.1 ... o. .o.,X ·+i··· X 1x +i··.X x ·+i···x 1x +i··.x ) n-J n-J p- p n n-J q- q n 

+ ... (III.117) 

where" 11 indicates more complicated direct terms, as 
well as terms differing from the direct terms in that the 
interaction factors involve exchange (but still contain 
factors of ~o.). H tis quite unphysical. It is not spon 
hermitian, the terms conjugate to the ones shown vanish­ 
ing by the bound state-continuum orthogonality constraints 
(III.44). In fact, it is not difficult to see that 

H t always leads to breakup of atoms, never spon 
ation (this will be 
ond quantization). 

form- 

more evident when we introduce sec- 
Thus if H were actually effect- 

spont 
ive it would lead to an instability in which all atoms 
would dissociate spontaneously. However, one notes in 
the first place that H has vanishing matrix e Le - 

spont 
ments between any two states in the physical subspace r 
of the ideal state space J. Furthermore, we shall see 
later that when the appropriate projection operator for 
the constraints (III.44) (the projector onto r) has been 
introduced, the projected Hamiltonian will contain addi­ 
tional orthogonalization terms which will exactly cancel 

H From the physical point of view, spontaneous spont· 
breakup of atoms does not occur because the unbound parti­ 
cles move in orbitals orthogonal to the bound states. 

E. Second Quantization 

It is now a simple matter to introduce ideal atomic 
annihilation and creation operators a and at, and un­ 
bound proton and electron annihilatioR and c~eation oper­ 
ators *(X),*t(X),*(x), and *t(x), by the Fock representa­ 
tion method of Sec. I. It is not practical to use an ex­ 
plicit matrix representation such as (I.17) for.the state 
vectors, since the matrices would have to be represented 
in three dimensions (one for atomic, one for nuclear, one 
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for electronic variables). Hence we define the Fock 
vectors implicitly by their amplitudes c. As usual, the 
amplitudes must be generalized by allowing arbitrary and 
independent numbers of atoms, protons, and electrons. 
Thus we consider the amplitudes c(a1••·0n-j,~-j+l·••Xn 
xn-i+l·· .xn) so far employed as special cases of the more 
general amplitudes c(a1••·~-j,Xn-j+l·· -XnXn-j+l·· •Xrn) 
with m not necessarily equal ton, and allow j, n, and m 
to range over all integral values satisfying 

0 ~ n < 00, 0 ~ m < 00, 0 ~ j ~ n. (III. 118) 

An amplitude c0 with no arguments represents the vacuum 
amplitude, where the vacuum state lo) is defined as the 
Fock vector with amplitudes 

Co = 1, 

c(a1 .•. a .,X ·+i···X x ·+i···x) = 0 n-J n-J n n-J m 

unless n = m = n-j = O. 

(III.119) 

The inner product expression (III.56) is generalized to 

00 n 

(c le ') = L L L L 
n=O m=O J0=0 a a l • • • n-j 

fc*(a1 ... a .,X ·+i···X x ·+i···x) n-J n-J n n-J m 

xc'(a1 ... a .,X ·+i···Xx ·+i···x) n-J n-J n n-J m 

x dX ·+i···dX dx j+1 ... dx n-J n n- m (III.120) 

where the summand is to be interpreted as c0*c0' in case 
n = m = n-j = 0. 
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In analogy with (I.19), we define the annihilation 
operators by 

a I 0) = lji(X) I 0) = Hx) IO) = 0 
Cl 

(III.121) 

and 

a C ( Cl.1 ••• Cl • , X . +l • .. X X • +l • •. X ) a n-J n-J n n-J m 

.k = (n-J·+1)2 c(a1 ••• a ja,X ·+i···X x ·+i···x ), n- n-J n n-J m 

!J,(X) c(a1 ••• a .,X ·+i···X x ·+i···x) n-J n-J n n-J m 

.k 
= (J"+l)2 c(a1 ••• a .,X j+1 ... XXx ·+i···x ), n-J n- n n-J m 

Hx) c(a1 ••• a . ,X ·+i· .. X x ·+i· .. x ) n-J n-J n n-J m 

- (m-n+j+l/~ c(a1 ••• a .,X ·+i···X x ·+i···x x). n-J n-J n n-J m 

(III.122) 

Similarly, the creation operators are defined* by 

t 
a c(a1 ••• a . ,X ·+i• .. X x ·+i· .. x ) a n-J n-J n n-J m 

n+j 
-1: = (n-j) 2 :E 6 c(a1 ••• a 1a +l ... a ., a,pa, p- p n-J 

p=l 

* Strictly speakin~, one should not use the notations 
aa,t,$t(X), and$ (x) until it has been shown that these 
creation operators are indeed the hermitian conjugates 
of (III.122). This is not difficult to do, using the 
definition (III.120) of the inner product and the sym­ 
metry of the e's. 
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n 
.-~ " - J L., 

p=n-j+l 

X ·+i• .. X 1x +l• .. X x ·+i• .. x ) , n-J p- p n n-J m 

-1: 
- (m-n+j) 2 

m 

L (-l)m-po(x -x)c(o.1 ••• o. . , p n+j 
p=n-j+l 

X ·+i· .. X x ·+i· .. x 1x +i· .. x ) . n-J n n-J p- p m 
(III.123) 

The commutation relations 

[$(X), $(X ') ]+ = 0, [$(X), $ t (X ') ]+ = 6(X-X '); 

t [ $(x) , Hx ') ]+ = 0, [ Hx) , $ (x ') ]+ = 6 (x-x ') ; 

t t [ a , $(X) J = [ a , $ (X) ] = ~ , $(x) J [ a , $ (x) J = 0; 
0. - 0. - 0. - 0. - 

[$(X),$(x) ]_ = [$(X),$t(x) t = 0 (III.124) 
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follo~ directly from the definitions (III.122) and 
(III.123); here [ J+ denotes the anticommutator and [ ]_ 
the commutator. The atom number operators Na and unbound 
proton and electron number density operators p(X) and 
p(x) are defined by 

N = a 
t t p (X) = ij, (X) ij,(X) , p (x) = ij, (x) ij,(x) (III.125) 

and satisfy 

N \o) = p(X) \o) a p(x) \o) o, 

N c ( a1 ••• a . , X . +l .•• X x . +l' •• x ) a n-J n-J n n-J m 

n-j 

L o c ( a1 ••• a . , X . + 1 ••• X x . + 1 ••• x ) , apa n-J n-J n n-J m 
p=l 

p(X)c(a1 ••• a .,X ·+i···Xx ·+i···x) n-J n-J n n-J m 

n 

=I: 
p=n-j+l 

o(X-X)c(a1 ••• a .,X ·+i···Xx ·+i···x), p n-J n-J n n-J m 

* Note that the proton field operators commute (not anti- 
commute) with the electron field operators. This is 
not assumed; it follows from (III.122) and (III.123). 
The proton operators could have been made to anticom­ 
mute with the electron ones by using more complicated 
phase factors in the definitions. However, there seems 
to be little point in doing so. In any event, physical 
results are independent of whether the proton operators 
commute or anticommute with the electron ones. 
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m 

E 
p=n-j+l 

o(x -x)c(o:,1 ••• o:. .,X ·+i···X x ·+i···x ). p n-J n-J n n-J m 

(III.126) 

The total atom number operator Nat, total unbound proton 
number operator Nnuc, and total unbound electron number 
operator Nelec are defined as 

Nat= l::No:,, Nnuc=JdXp(X), Nelec= f dxp(x) 
0:, 

and satisfy 

(III.127) 

N tc(o:,1 ••• o:. • ,X ·+i· .. X x ·+i· .. x ) a n-J n-J n n-J m 

= (n-j)c(o:,1 ... o:, .,X ·+i···X x ·+i···x ), n-J n-J n n-J m 

N c(o:,1 ••• o:, . ,X ·+i· .. X x ·+i· .. x ) nuc n-J n-J n n-J m 

= jc(o:,1 ••• o:, . ,X •+i• .. X X •+i• .. X ) , n-J n-J n n-J m 

N 1 C ( 0:.1 ••• 0:, • 'X . +l ... X X j +l ... X ) e ec n-J n-J n n- m 

(m-n+j j c f o.; ••• o:, .,X ·+i···X x ·+i···x ). n-J n-J n n-J m 

(III .128) 

An arbitrary state vector le) in the ideal state space* 
J can be represented in tenns of the Fock vacuum lo) and 
the creation operators defined above as 

* The meaning of J has now been extended to allow general 
values of n, m and j satisfying (III.118), not merely 
those with m = n. 
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L [n- j) ! j ! (m-n+j ) ! f.\ 
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n=O m=O j=O 

'I: Jax ·+i···dX dx ·+i···dx n-J n n-J m 
0.1 ••• a.n_ j 

t t 
X C ( 0.1 ••• a. . 'X . +1 · .. X X . +1 · .. X ) a ... a n-J n-J n n-J m 0.1 a.n-j 

t t t t I 
X W (X '+l) ... w (X )w (x ·+l) ... $ (x) 0) (III.129) n-J n n-J m 

where the term with n=m=n-j=O is to be interpreted as 
co IO). The state vectors in the physical subspace Pall 
have m=n (with n the same for all states in P) and hence 
satisfy 

(N t+ N ) lc)=(N t+ N 1 ) le)= nlc), all lc)E P. a nuc a e ec 
(III.130) 

This is the source of a superselection rule which will be 
discussed presently. 

The state vectors in P must also satisfy the bound 
state-continuum othogonality constraints (III.44). In J 
these take the simple form 

A le) = 0, all a and all lc)E P, a. 

where* 

A a. = f dXdx cp a.* (Xx) Hx) HX) . 

(III. 131) 

(III.132) 

* Aa.f can be interpreted as the creation operator for an 
"unbound proton-electron pair in the bound state Cfla.," 
and conditions (III.131) ensure that such unphysical 
pairs do not exist. 
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In fact, upon substituting (III.129) into (III.131), ap­ 
plying the normal-ordering theorem or (III.124), and 
equating the various linearly independent components sep­ 
arately to zero one concludes that 

f~ *(Xx )c(a1 ... a .,X ·+i· .. Xx ·+i···x )dX dx = O. a nm n-J n-J n n-J m n m 

(III.133) 

In the special case n = m, Eqs. (III.133) reduce to 
(III.44). Conversely, upon multiplying (III.133) by 

1' t t 
[j!(m-n+j)!/(n-j)!Fa ... a 

a1 an-j 

X ,,,t(X t( t( ) t( )I) 
o/ • +l) ... $ X 1) $ X • +l ... $ X 1 0 ' n-J n- n-J m- 

summing over a1 ... a ., and integrating over X ·+i··· n-J n-J Xn-1 and ¾-j+l···x _1, one deduces (III.131). 
The conditions m (III.131) are in turn equivalent to 

A tA Jc) = 0, all a and all Jc)E P. a a (III.134) 

It is obvious that Eqs. (III.134) follow from (III.133); 
conversely, (III.134) implies 

(c jA tA Jc) = jjA Jc) 112 = 0, all a and all Jc) E P, a a a 
(III.135) 

which is true if and only if (III.131) is satisfied. 
Finally, the set of conditions (III.134) is equivalent to 
the single condition 

A tA le) = 0, all Jc) E P, a a (III.136) 

a 

since the operators AatAa are all positive semidefinite. 
Using (III.77), this can be written as 
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0, all le) E P 

231 

(III.137) 

where 

6 = /dXdX'dxdx'w\x)ljrt(x)t,(Xx,X'x')ljr(x')ljr(X'). (III.138) 

The physical subspace Pis the subspace of J satisfying 
both (III.130) and (III.137). A method of satisfying 
(III.137) by the introduction of an appropriate projec­ 
tion operator will be discussed in Sec. III. G. 

We now exhibit the representation of the Hamiltonian* 
as an operator in J, in terms of annihilation and creation 
operators. It follows from (III.113), (III.122), and 
(III .123) that 

H 
0 

L [(alrls) + (alvl~) Jaatas 

as 

+ I dXw t (X)T(X) $(X) + f dx$t(x)T(x) Hx) 

+ { L f dXdx[ (a Ir IXx) ' + (a IV IXx) 'Ja/ Hx) HX)+ h .c.} 

a 
(III.139) 

In case the ~a are chosen to be energy eigenstates so 
that (III.114) is valid, this simplifies to 

a 
(III.140) 

In fact, since we have not been explicit regarding the 
forms of T(X), T(x), V(XX '), V(xx) and V(Xx), this will 
implicitly de&ine any one or two-particle observable 
as an operator on J. 
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The physical interpretation is obvious: HO is the sum 
of energies of noninteracting atoms, protons, 
and electrons. Similarly, one finds for the interaction 
part (III. 115) 

+ ~ /dxdx '$ t (x) $ t (x ')V(xx ') Hx ') Hx) 

+ f dXdx $ t (X) $ t (x) V (Xx) w(x) ij,(X) 

+ I: /axaat*t(X)(a,xlvls,x)w(x)as 
as 

- L f dXdX 'aa t 1jl t (Xj(a,X !IT I s.x ')+K(a,X; SX ')T(X ') J 
as 

- L /dxdx'a t$t(x)[(a,xlITls,x')+K(a,x;s,x')T(x,] 
as a 

X Hx ') as 

+ [ I: r= 'aat $ t (X ') (a,X 'IVIXxX ')' 

a x ljl(X ') Hx) HX) + h. c • ] 
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+ [!::fc1Xdxdx'a/$t(x')(a,x'IVIXxx') 'Hx')HxH(X) + h.c.J 

a 

+[~ I: f dXdX 'dxdx 'a/ a/ (as Iv [xx 'xx') 'Hx 'H(xH(X ') $(X) 

as ] + h.c. 

+ { I: f dXdx a/a/ { (as Iv lv,Xx) '- (as !IT lv,Xx) ' 
aSy 

-(as IIViv,Xx) '-K(as; y,Xx) [T(X)+T(x)+V(Xx) J}Hx) 

x $(X)ay+ h.c.} 

+ ... 
(III.141) 

where, as usual, " ... " denotes tenns beyond the binary 
interaction approximation. Note that although the terms 
atat$$a and atat$$$$ represent 3-particle and 4-particle 
collisions, their hennitian conjugates, at$t$taa and 
$t$t$t$taa, represent binary atomic collisions, with the 
two atoms breaking up into (one atom+ one proton+ one 
electron) or (no atoms+ two protons+ two electrons). 
Hence such terms are included in the binary interaction 
approximation. 

Finally, the "spontaneous breakup" Hamiltonian is 
found to be 

H 
spont 

L fdXdxa/Ast[(alTIXx) '+(alvl(Xx) '] 
as 
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+ I: a t[(a1Tli3)+(a1Vli3) ]A ta a
13 a Y Y 

a13y 

+ r fdX $t(X)A tT(X)$(X)a 
a a 

a 

~ 
t t + I: r $ (x)A T(x)$(x)a + ... (III.142) a a 

a 

where, as stated previously, we have only written down 
enounh terms to indicate the general structure of 

Because all terms in H t contain at spont' spon 
least one factor Aat on the left, all matrix 

elements of H t between states in r vanish by spon 
(III.131). For essentially the same reason, we shall see 

later that H tis annihilated by the projector on- spon 
to r. 

action terms in 

The diagramatic representations of the direct inter- 

H' 
is the same as in Fig. 2. 

are shown in Fig. 3; the notation 

H' The terms in involving 

exchange (more precisely, coupling of exchange to kinetic 
or potential energy) are of the same general structure, 
as is clear from (III.141). The representation of the 
first term in the "spontaneous breakup" Hamiltonian 

H tis shown in Fig. 4. Since the spontaneous spon 
breakup vertex does not involve any true interaction, the 
nonexistence of any potential causing the breakup is sym­ 
bolized by a dashed line connecting the vertex to the 
letter S (for "spontaneous"). Note that the diagram is 
disconnected, as is the case for all terms in H . 

spont 
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~x: 
(a.SI VI Yo) 

X X X x X X 

XXX 
x' x' I 

X 
I 

X X X 
V(XX') V(xx') V(Xx) 

a. S a, S a, X 

XX>E· 
x x x x x' x' 

(a. .xl vis ,x) (a.,xlvl S,x) 
a, X a, X a, 

>E· x:· 
x x' S x' 

(a.,xlvlxxx')' (a.Slvlxx'xx')' 

(a. ,x' I vi XxX')' 
y 

X 

X 

(a.SI vi Y ,Xx)' 

Figure J. 
Direct interaction processes included, together with their 
hennitian conjugates and similar exchange processes, in 

H' the binary interaction approximation to 
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X 

Ct 

x' 

X 

Figure !f:. 
Representation of one term in 

spont 
of the diagram arises from the true dynamical processes 

(et IT !Xx) ' and (et Iv !Xx) '. 

H The top half 

The terms in H are the same* as those occurring in 

the Hamiltonian Hof Brittin and Stolt6), obtained by a 
different method, except that H does not contain an 

analog of our H t' and that all the exchange spon 

terms in our H have the opposite sign from the cor­ 

responding exchange terms in H. This sign difference is 

* Actually, the terms involving (c:tslvlxx'xx') and its 
conjugate do not appear in the expression for H given 
by Brittin and Stolt, but they would undoubtedly appear 
in a more accurate expression. 
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apparently connected with the fact that His constructed 
to have the same eigenvalues as the Schrodinger Hamilton- 

ian (to the given approximation), whereas H is con~ 
structed to give the correct matrix elements. We .shall 
see in Sec. III,F. that the Hamiltonian H, related to 

H by (III.66), has the same eigenvalues as the Schr~­ 
dinger Hamiltonian, and is therefore more closely related 

to Brittin and Stolt's Hamiltonian H. Our H also re­ 
sembles another Hamiltonian obtained, by a still differ­ 
ent method, by Sakakura6). The precise relationship be- 

tween H , H, 8', and Sakaku ra Is Hamiltonian has not 
yet been elucidated. 

We next discuss the superselection rules related to 
(III.13O). It is obvious from the physics, and can also 
be verified directly from (III.139)-(III.142), that the 
processes in which atoms, protons, or electrons appear 
or disappear are such that whenever an atom disappears, 
an unbound proton-electron pair appears, and vice versa. 
Hence 

(III.143) 

More generally, if A is any operator on J derived 
from a Schr~dinger operator Asch representing a physical 
observable, then 

[ 

(III .144) 

It follows that ~ observable A has vanishing ma­ 
trix elements between any two states belonging to 
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different eigenvalues of Nat+ Nnuc, or different eigen­ 
values of Nat+ Nelec· In fact, states in P correspond­ 
ing ton-proton, n-electron Schrodinger wave functions 
are simultaneous eigenstates of Nat+ Nnuc and Nat+ Nelec 
with eigenvalue n for both; this is the meaning of 
(III.13O). However, (III.144) is valid on the entire 
ideal state space J. 

The metric operator M, which is important in the 
probability interpretation because of (III.57), and will 
also be employed in evaluating the second-quantized H, 
can also be represented in terms of annihilation and 
creation operators. It follows from (III.59)-(III.62), 
(III.122), and (III.123), or by comparison of (III.59)­ 
(III.62) with (III.113), (III.115), (III.139), and 
(III .141), that 

M 1 - B + ... ' 
\ }:: I t t B (as\I yo)a a a0a a 8 y 

asyo 

+ ~ f dXdX 'K(a,X; S,X ')aa t $ t (X) w(X ')ai:1 
as 

+ :E f dxdx'K(a,x;B,x1)a/$t(x)Hx')aS 

as 

+ :E f dXdx [ K(aS; y,Xx)a/a/aYHx) w(X) 

asy 

t t t ] (III.145) + K(y,Xx;as) $ (X) $ (x)a a a . 
Y S a 
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The first line of this expression is the same as the ex­ 
change operator* I of Sec. I, Eq. (I.28), except that now 
only bound states are included in the summations. The re­ 
maining lines of (III.145) represent explicit bound state­ 
continuum exchange effects which were implicit in (I.28) 
because of the inclusion of continuum atomic states. Eq. 
(I.28) also includes continuum-continuum exchange effects 
which are absent in (III.145), being now accounted for 
automatically by the antisyrrnnetry of the e's or the anti­ 
commutation relations satisfied by the $(X) and $(x) op­ 
erators and their hermitian conjugates. 

F. Energy Spectrum and Statistical Mechanics 

It is convenient at this point to introduce Dirac 
notation for the space** g of n-proton, n-electron Schro­ 
dinger wave functions $(X1 ••• X x1 ••• x ). We have shown 
that the e's in (III.43) are uRiquelyndetermined by$ 
provided that the symmetry and antisyrrnnetry requirements 
on the e's are complemented by the strong orthogonality 
constraints (III.44); conversely, every such set of e's 
uniquely determines a properly antisymmetric $ by (III.43). 
Thus a state in g can be denoted by le), the Dirac ket 
notation standing in this case for the set of all such 
e's, and the inner product (clc') between two such states 
[previously denoted by (c,c') J is given by (III.46). The 
vectors le) E Pare in one-one correspondence le)~~ le) 
with the vectors le) E g_ Let f lci)} be any complete or­ 
thonormal basis in P: 

(c. I c.) = oiJ", 
1 J i 

(III .146) 

where lp is the unit operator on P (not on the ideal 
state space J, of which Ii' is a proper subspace). This 

* For the case of hydrogen atoms, Inuc = Ielec = I. 

** We asstnne that g is a separable Hilbert space. This 
will be the case if the particles are confined to a 
finite volume 0, with either box enclosure or periodic 
boundary conditions on the $'s. 
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orthonormal basis in r determines a set [lei)} of vec­ 
tors in gin one-one correspondence lci)~-lci)according 
to (III.43) and (III.45). The set [ ci)} is !!Qt ortho­ 
normal, due to the occurrence of the metric operator M 
in (III.57). On the other hand, it is complete and lin­ 
early independent*. 

The operators A defined by (III.66) and evalu­ 
ated according to (III.68) are constructed in such a way 
that, by (III.65) and (III.46), 

(III.147) 

In particular, denoting the matrix elements of the Hamil- 

tonian H 
one has 

in the orthonormal basis [lei)} by 

H 
ij 

H (c. IH8 h le.). (III.148) 
l. C J 

However, the eigenvalues of then-proton, n-electron 
Hamiltonian Hsch are not in general** equal to those of 

H , since the matrix elements of HSch are evaluated 

in a non-orthonormal basis, in contrast with those H ij 

* If the strong orthogonality constraints had not been 
imposed, one could not have made this statement. In 
fact, the correspondence between g and r would not have 
been one-one. 

** 

**They do, however reduce to those of 
in the limit of zero density. 

Ho+ H 
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of ff Furthennore, H acts on the entire ideal 
state space J and does not leave its physical subspace r 
invariant, so that H does not necessarily have any 
eigenstates lying in r. 

Consider, on the other hand, the operator H given, 
according to (III.66), by 

(III,149) 

or evaluated directly from (III.67) with A= Hsch on the 
right side and A= Hon the left side. It can be shown, 
in analogy with Dyson's theory of spin-wave interactions, 
that the eigenvalues of H ~ identical with those of 
Hsch• Note first that since the set [lei)} is complete, 
one can expand 

HSch lei) = ~ Hji lcj). 
j 

(III.15O) 

On the other hand, since the set [lei)} is not orthonor­ 
mal, one has 

(III,151) 

i.e. the Hji are not the matrix-elements of Hsch occurr:lng 
in (III.148). It follows from the definition of H that* 

* In order to interpret the e's in (III.67) directly as 
constituting the basis {lei)}, this basis must be rein­ 
terpreted as a basis on J, at the expense of lengthening 
the discussion. The conclusion is the same as that of 
the abbreviated discussion above. The essential point 

is that H leave r invariant, whereas H does not. 
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H •• le.) 
J l. J 

(III .152) 

j 

with the same coefficients H.i as occur in (III.150). 
Furthermo~one has by (III~l46) 

H .. = (c. lHlc.). 
Jl. J l. 

(III .153) 

Let IE) be an eigenstate of Hs hand expand it in terms 
of the nonorthogonal set (lei)}: 

IE) L (cilE) lei); 
i 

(III .154) 

again, (cilE) ~ (cilE). Then the eigenvalue equation 

HSchlE) = EIE) (III.155) 

is equivalent to 

L (Hji - E5ji) (cilE) lcj) 0 
ij 

(III.156) 

or, since the lcj) are linearly independent, 

(H .. - EB .. ) (c. IE) 
J l. Jl. l. 

o. (III.157) 

i 

The eigenvalues of Hsch are the values of E for which 
this set of equations has a nontrivial solution for the 
amplitudes (c. IE), and the corresponding eigenstates are 
given by (III~l54). Now define the state IE) E P by 
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IE) - ~ (c. JE) Jc.) 
~ 1 1 

i 

(III.158) 

with the fil!!llil. am~litudes (ciJE). Since the set {lei)} is 
orthononnal, (ci!E) is the inner product of lei) with JE). 
Furthennore, by (III.152) one has 

HIE) L Hji (ci JE) Jcj). 
ij 

(III.159) 

It follows that the solutions E of (III.157) are also 
eigenvalues of H, with the corresponding eigenfuntions 
being given by (III.158). We conclude that the~­ 
value spectrum of H detemined in the ideal m space 
J includes all eigenvalues of Hsch· More specifically, 
those eigenvectors fu of H which lie in the physical 
subspace r have eigenvalues equal to eigenvalues Qf HSch, 
and conversely. every eigenvalue of Hsc4 is equal to 
.fill eigenvalue of H with an ei envector IE) E r. The re­ 
lation between .thg_ eigenvectors E) tl Hscb and~ IE) 
of H is given hv. (III, 154) and (III, 158) with the fil!filg_ 
coefficients (c~IE) . .Th.e. analog of (III,154) with (ciJE) 
replaced .QY. (cilE) is false. If H has any eigenvectors 
\E) i r, they do not correspond !,Q. eigenvalues and eigen- 
vectors tl Hsch. 

These results can now be used to relate the parti­ 
tion function Z evaluated over then-proton, n-electron 
Schrlidinger space g to ones evaluated over the ideal state 
space J and its physical subspace P. Denote the traces 
over g, r, and J by Trg, Trp, and TrJ, and let P be the 
projector onto r. Then it follows from the above results 
that 

(III.160) 

Since H leava:,P invariant, it commutes with P. Thus if 
we define a projected Hamiltonian~ by 

~~PH (III.161) 
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as in Sec. II.D., one can use the same argument (II.14)­ 
(II.17) to conclude that the eigenvalue spectra of '.Kand 
Hsch coincide except for the spurious eigenvalue zero of 
'.K. The eigenstates of '.K with E f Oare eigenstates of H 
with the same eigenvalue and lying in r, whereas eigen­ 
states of '.K with eigenvalue zero are in general linear 
combinations of eigenstates of H with eigenvalue zero (if 
there are any such) and arbitrary states in the "complete­ 
ly unphysical" subspace J- r. It follows that if Tr' e-S'.K 
is defined as the trace of e-S'.K over the ideal state space 
J but witp the contribution from the eigenvalue zero ex­ 
cluded, then one has 

Z ""Tr' e -S'.K (III .162) 

where"" denotes exact equality in case H does not have 
the eigenvalue zero, and asymptotic equality in the ther­ 
modynamic ~imit in case it does*. The same conclusion 
(III.162) also follows from (III.160) and the identity 

(III.163) 

which is easily proved upon noting that P commutes with 
'.Kand that on J-r one has '.K = 0, e-S'.K = 1, and P = O. 

According to (III.149) and (III.161), 

H (III.164) 

The explicit form of Pin the binary interaction approxi­ 
mation can be found by examining the algebraic properties 
of the bound state kernel (III,77) and the corresponding 
second-quantized operator 6, Eq. (III.138). The identity 

* We assume that if H has the eigenvalue zero, its degen­ 
eracy does not grow exponentially with the volume n. 
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/t,(Xx,X"x")t,(X"x",X'x')dX."dx" = t,(Xx,X'x') (III.165) 

is a trivial consequence of the definition (III.77) and 
orthononnality of the ~a· Then using the nonnal order­ 
ing theorem one finds that the operator (III.138) satis­ 
fies 

t,2=/', + f ( Htw\i,twH + / ( ) 1jrt1jrt1jrt1jrtHH (III.166) 

where ( ) 1jrt1jrt1jrt1jr1jr1jr symbolizes a sum of nonnally ordered 
tenns each containing three creation operators on the 
left and three annihilation operators on the right; such 
terms behave like three-body interactions, i.e. they only 
contribute when three unbound particles (protons and/or 
electrons) collide. Similarly, the terms ( ) 1jrt1jrt1jrt1jrt1jr1jr 

x 1jr1jr behave like four-body interactions. It is consistent 
with the binary interaction approximation to drop such 
three-body and four-body interaction terms, in which case 

t,2 = /', + ... (III.167) 

where, as usual, " ..• " stands for terms beyond the binary 
interaction approximation. One concludes that within the 
binary interaction approximation, /', is a projection opera­ 
tor, with eigenvalues zero and unity. Any state vector 
le) E J can be resolved into eigenstates of /', with these 
eigenvalues: 

(III.168) 

By (III.137), lco)E r; then, since lc1) is orthogonal to 
lc0) because it belongs to a different eigenvalue, one 
concludes that \c1)E J-r. Thus t, is the projector onto 
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J - r, and hence* 1 - 6 is the projector Ponto the phy­ 
sical subspace r : 

P=l-6+ ... , (III.169) 

the dots denoting tenns beyond the binary interaction 
approximation. 

The leading tenns in H, can be found by substitution 
of (III.70) and (III.145) into (III.149) and algebraic 
manipulations arising in the application of the nonnal­ 
ordering theorem. Similarly, the leading terms in X can 
be found** by substitution of (III.169) into (III.161) 
or (III.164) and appropriate contractions. The resultant 
expression are lengthy and will not be written out here. 
Both Hand X consist of terms with the same structure as 

those in "+H' no , but the detailed matrix elements 

*pis the projector onto all of r, not a proper sub­ 
space, since, by definition, r is the space of all 
eigenstates of 6 with eigenvalue zero. We assume 
that J has already been restricted by imposition of 
the constraints (III.130), i.e. these constraints are 
not included in P. Note that 6 commutes with Nat, 
Nnuc, and Nelec, and hence with both Nat+ Nnuc and 
Nat+ Nelec· In an application to statistical mechan­ 
ics one could impose (III.130) only as thermal averages 
by using a grand ensemble, replacing Kin (III.162) 
by X - l-1nuc<Nat + Nnuc) - µelec<Nat + Nelec). 

** H spont A more complete expression than (III .142) for 

is H spont = I:<< Ho+ M )a + ... It follows 
Cl 

Cl 

that P H spont = (1 - 6 + ..• ) H spont 0 + 
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are different*. 

G. Discussion 

We have shown how a second-quantization formalism 
for many-atom systems in which unbound nuclei, unbound 
electrons, and bound atoms are represented by "elementary 
particle" field operators can be constructed by a seq.Jenee 
of changes of representation, starting with the usual 
Schrodinger representation in terms of the dynamical var­ 
iables of all nuclei and electrons. This representation 
is similar to those arrived at in different ways by Brit­ 
tin and Stolt6) and by Sakakura6); however, more analysis 
is needed in order to clarify the relationship. Still a 
different approach to construction of such a representa­ 
tion can be based on the "redundant mode" method, in 
which fictitious "elementary atoms" are introduced and 
then given physical meaning by an appropriate unitary 
transformation. The most useful transformation for this 
purpose appears to be a generalization of one employed 
by Tani9) in his analysis of scattering from a one-parti­ 
cle bound state. The Hamiltonian obtained in this way 
has both the same eigenvalues and matrix elements as the 
original Schrodinger Hamiltonian Hsch• to given order in 
the density**. Such an approach will be discussed else­ 
where.10 

*In addition to the exchange terms in Ho + H , H 
contains additional exchange terms arising from the 
prefactor M-1 • (1 + B + ... ),which "renormalize" the 

exchange matrix elements in H 1• Additional "orthog­ 
onality interaction" terms occur in :K, which can again 
be incorporated by appropriate redefinition of the 
matrix elements. 

** The additional freedom necessary to achieve this is 
provided by an appropriate small modification of the 
constraint (III.137). 
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It is clear that similar representations adapted 
to the treatment of scattering of electrons by atoms, 
or nucleons by nuclei, can be derived by similar methods, 
as can representations useful in a "first-principles" 
approach to theories of chemical and nuclear reactions. 
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INFINITE QUANTUM SYSTEMS 

Rudolf Haag 
II. Institut fur Theoretische Physik 
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Hamburg, Germany 

I. Introduction. 

There are two areas in physics in which a quantum 
theoretical treatment of infinitely extended systems (or 
systems with an infinite number of degrees of freedom) be­ 
comes necessary (or at least desirable). These areas are 

1) Quantum Statistical Mechanics 

2) Quantum Field Theory or, to put it into a slightly 
more general context: The theory of elementary par­ 
ticles as approached within the frame of local, re­ 
lativistic Quantum Physics. 

The reasons why need a brief explanation. Statistical 
Me~sanics wants to describe the gross properties of some 
10 particles enclosed in a container of the size of some 
cubic centimeters. Thus, in reality, the number of degrees 
of freedom as well as the volume are finite. But in a pre­ 
cise quantum theoretical treatment of such a complicated 
system we would not find the basic qualitative predictions 
of statistical mechanics. There is no irreversibility, 
there are no thermodynamical equilibrium states etc. These 
features arise only from an approximation in which, at the 
appropriate places, one omits terms which vanish in the 
limit when the particle number N and the volume V approach 
infinity. Thus, if one wants to have a mathematical frame 
in which the laws of statistical mechanics are strictly 
contained one has to start from a situation in which the 
"thermodynamic limit" 

V ... "'; 
N 
V 

fixed (1.1) 

251 
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has been taken at the outset, i.e. one has to consider a 
system with infinitely many particles occupying infinite 
space with a finite mean density. 

In elementary particle theory one could also claim 
that we do not really need to consider infinitely extended 
space-time and unlimited energies. But again, if we "en­ 
close the system in a box" some of the simple concepts 
disappear (i.e. they can then only be approximately de­ 
fined). Among these are the notion of particles, the S­ 
matrix, the invariance properties. 

In both areas therefore the consideration of infinite 
systems is an idealization which simplifies the conceptual 
structure. The price one pays for this is an increase in 
the sophistication of the mathematical apparatus. As it 
is the case with every bargain: one has to be prepared to 
pay the price. 

This price involves on the one hand a distinction be­ 
tween various kinds of convergence. On the other hand, to 
obtain a satisfactory and natural setting, we have to start 
from the algebraic version of the mathematical formalism 
of Quantum Physics instead of the more widely known Hilbert 
space formulation. I shall describe these two versions and 
their relation in section II. A glossary of mathematical 
terms and some relevant theorems is given in section III 
in the hope that this will provide a quick access to the 
language used in many recent papers in the two areas men­ 
tioned. The lectures of Prof. Hugenholtz will give ex­ 
amples of this approach to problems in Statistical,Mechan­ 
ics. Therefore I shall not discuss this area. In section 
IV we shall then sketch one topic in elementary particle 
physics, the structure of the set of charge quantum numbers 
and its relation lo the statistics of particles (Bose­ 
Fermi-parastatistics). 

Before going into details it is perhaps worthwhile to 
indicate the salient feature which is typically (though 
not exclusively) associated with infinite systems. It may 
be called the appearance of "superselection rules".~, The 
set of physical states decomposes into families which are 
distinguished by parameters which have no quantum 
* The term "superselection rule" was introduced and illus­ 
trated by examples in [l]. 
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fluctuations. Such parameters are the "macroscopic ob­ 
servables" (for instance the temperature) in the case of 
Statistical Mechanics, they are the charge quantum numbers 
in elementary particle physics. These parameters arise in 
a natural way if one uses the algebraic formulation of 
Quantum Physics; they correspond to the classification 
parameters of inequivalent representations of one and the 
same abstract algebra. 

IL Mathematical Formalism of General Quantum Physics 

A. Hilbert space formulation 

I suppose that the majority of the audience is 
familiar with J. von Neumann's famous book, 
Mathematical Foundations of Quantum Mechanics [2]. 
It contains among other things a description of the 
concepts used in general quantum physics (i.e. con­ 
cepts which are supposed to apply not only to quan­ 
tum mechanics but equally well to quantum field 
theory) and describes the mathematical objects cor­ 
responding to these concepts. Let us briefly recall 
this conceptual and mathematical structure. 

The basic physical concepts are "states" and 
"observables. 11 A "state" (of the physical system 
under consideration) is--at least for practical pur­ 
poses--a statistical ensemble of identical systems, 
produced (or "prepared") by some piece of experi­ 
mental equipment called the source of the state. 
An "observable" is an apparatus which subjects each 
system of the ensemble to a "measurement" thereby 
registering a number, "the measured value," and--in 
the ideal case--releasing the system after the meas­ 
urement for further subsequent observations. The 
observable-' thus decomposes the origina 1 ensemble in­ 
to a collection of subensembles according to the 
different measured values. 

One may distinguish "pure states" and "mixtures. 11 
If we have any two states s1 and s2, then we can al­ 
ways obtain another states by mixing s1 and s2 with 
arbitrary (positive) weights "l• "-2 ("-1 + "-2 = 1). 
This means that we prepare an ensemble containing, 
say, N systems by using the source of s1 for "lN of 
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the cases and the source of s2 in \2N of the cases. 
Clearly in any subsequent experiment: on this en­ 
semble the probability for any result will be 
"-lPl + A2p2 where PpP2 are the respective proba­ 
b Ll.Lt Le s for the same result in the states sl's2. 
Let us express this relation by 

(2. 1) 

Conversely, given a states one may ask whether 
there exists a pair of other states, s1 and s2, and 
weights A , "-z, such thats, s1 and s2 are in the 
relation {2.1). If it is impossible to find such a 
pair, different from s itself, thens is called 
"pure." It is one of the essential characteristics 
of Quantum Physics that the decomposition of an en­ 
semble into subensembles by an observable (as de­ 
scribed above) does not correspond to a relation of 
the type (2.1). If we throw together all the sub­ 
ensembles released by the observable the resulting 
mixture will be a different state from the one which 
existed before the measurement. The observable has 
not only recorded numbers but also changed the 
state. 

Mathematically, pure states are represented by 
vectors in a Hilbert space :Kor, more precisely, by 
rays in this space (the vectors¥ and c¥ corres­ 
ponding to one and the same state). Observables 
are represented by self-adjoint operators acting on 
:K. The possible measured values which can occur in 
the measurement of the observable Ta.re the spectral 
values of the opera.tor T. To each distinct spectral 
value t there is a spectral projector p . If¥ de­ 
scribesnthe state before the measurementnthen the 
sub-ensemble consisting of those systems after the 
observation for which the value t has been re­ 
corded is given by pn¥. Thus thenprobability for 
finding the value t in the observation Ton the 
ensemble is: n 

llpn¥l1
2 

11¥11
2 (2. 2) 
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If Fis a real monotonic function with an inverse 
then the opera.tor F(T) has the same spectral pro­ 
jections as T and the spectral values a.re F(tn). 
Therefore the observables T and F(T) are measured 
by the same apparatus, only the "sea.le" has been 
changed to indicate F(tn) instead of tt;l. This re­ 
mark may be used to achieve a formal simplification 
of general arguments in two ways. First, one de­ 
fines the "expectation value" of the observable T 
in the state 'I' by: 

(T) =~pt = (p,T$) 
'I' n n ('1', 'I') (2. 3) 

The spectral values t of the observable T and the 
probabilities p for ~eir occurrence in a. state 'I' 
can be reconstrllcted if we have the expectation 
values ('I' ,F(T)'I') for a sufficiently large set of 
functions F of the observable T. Secondly, we may 
be satisfied by considering instead of T (which 
possibly may be an unbounded operator, an opera.tor 
whose spectrum extends to infinite values) bounded 
functions of T, i.e., bounded operators. Instead of 
one observable T we then deal with a cormnutative al­ 
gebra of bounded opera.tors and the physical state­ 
ments about measured values and probabilities a.re 
incorporated in the knowledge of the expectation 
values of all these bounded observables. 

Two more comments on this formalism: 

1. Impure states are described by "density ma­ 
trices." A density matrix pis a. positive 
self adjoint operator with finite trace. The 
expectation value of the observable Tin such 
a state is given by 

Trace T 
(T) = p Trace p (2.4) 

The special case of a. pure state and the ex­ 
pression (2.3) result when pis the projec­ 
tion operator on the direction of the single 
vector 'I'. 
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2. We shall always use the "Heisenberg picture" 
to describe the development in time. This 
means that a state prepared by some source 
is described by a fixed vector or density 
matrix in Hilbert space irrespective of the 
time at which we intend to make an observa­ 
tion on it. The physical specification of 
an observable must then include not only the 
description of the apparatus and its place­ 
ment in the laboratory but also the time at 
which it is used to make the measurement. 

B. Algebraic Approach 

While Hilbert space is the most natural mathe­ 
matical setting for Schrodinger's wave mechanics 
the initial work of Heisenberg-Born-Jordan and in 
particular Dirac's notion of "q-numbers" is closer 
in spirit to the algebraic approach. The mathe­ 
matical description of an observable is not primari­ 
ly given by an operator on a Hilbert space but rath­ 
er by a "q-number" (i.e. an element of an abstract 
algebra) whose relevant properties are determined 
by algebraic relations with other q-numbers. 

A mathematically precise and complete formulation 
of this point of view was given by I.E. Segal [3]. 
The physical meaning of the terms "observable" and 
"state" will be the same as described before, but 
the primary mathematical object is the algebra ij in 
which the set of observables is embedded. The gen­ 
eral description involves algebraic and topological 
aspects. We start with the former and defer the 
discussion of the topology to the end. Let A, B, ... 
denote elements of ij and a, ~ •... complex numbers 
with a, "'S" their complex conjugates. The algebraic 
operations which can be performed within~ are 

1) addition of elements: A+ B 
2) multiplication of an element by a complex number: 

a A 
3) multiplication of elements (in general non commu­ 

tative): AB 
4) involution (corresponding to the adJ.oint for an 

operator on a Hilbert space): A ... A'. 
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The laws prevailing among these operations a.re 
familiar. With respect to 1) and 2) ~ is a linear 
space. The multiplication 3) is associative, dis­ 
tributive with respect to 1) and commutes with 2). 
The involution satisfies 

(a,A + 13B)* 

(AB)* 

A 

The significance of the involution is that it allows 
us to define real (or self adjoint) elements and 
positive elements in~. A E ~ is called real, if 
Ai< = A, it is called positive if it can be written 
in the form A = Bi< B with some B t ~. Observables 
correspond to real elements of~. States corre­ 
spond to "expectation functionals" over~. An "ex­ 
pectation functional" w (a!so called a "positive, 
linear form") is a linea./" function from the alge­ 
bra to the complex numbers taking positive values 
(including possibly zero) on positive elements of~. 
In other words w assigns a complex number w(A) to 
each A E ~ such that 

w(a A+ 13 B) = a w(A) + 13 w (B) (2.5) 

and 

w(A*A) "' 0. (2. 6) 

Usually we shall deal with an algebra. which contain 
a unit element 1. In that case we may add as a 
normalization convention on the state w the condi­ 
tion 

w(l) = 1 (2. 7) 

* For simplicity we shall pretend that every real element 
corresponds to an observable. 
** Since the addition of two noncommuting observables does 
not have a simple operational meaning the reason why an ex­ 
pectation functional should be linear over~ does not lie 
on the surface. 
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The structure described so far is still too 
loose and allows many pathologies or unwanted fea­ 
tures. For instance, it could happen that there is 
a real element which cannot be expressed as a dif­ 
ference of two positive elements. In order to ex­ 
clude such features we have to add topological con­ 
siderations. The simplest kind of a topology in a 
linear space is provided by assigning to each ele­ 
ment A a norm IIAII i.e. a positive number satisfying 

Ila All [«] IIAII, (2.8) 

IIA + Bil ,s; IIAII + IIBII. (2.9) 

In the case of an algebra with involution the norm 
should also satisfy 

IIA Bil ,s; IIAII IIBII (2. 10) 

IIA1'11 IIAII. (2.ll) 

Suppose we have found a norm on !ll satisfying these 
requirements (2.8) to (2.ll). Then we can complete 
!ll by adding to it the limit points of Cauchy se­ 
quences. The completion of !ll, denoted by W will 
still be a *-algebra (algebra with an involution) 
and, considering its linear structure it is a Banach 
space, It is therefore appropriately called a 
Banach 1'-algebra. Given !ll as a '>'<_algebra there will 
be in general many different possible choices of a 
norm. Under good circumstances there is, however, 
one preferred choice called the "minimal regular 
norm", and this norm is determined by the algebraic 
structure of !ll. The line of argument, due to 
I. M. Gelfand and M.A. Naimark is the following 
(see for instance [4],[5]). The set of positive 
linear forms over !ll does not depend on the choice 
of a norm on !ll, If we assign a norm we can ask 
whether all positive linear forms over !ll are con­ 
tinuous in that norm topology. If so, we call the 
norm regular. One finds that if a regular norm ex­ 
ists at all then there is also a minimal regular 
norm II lie, uniquely determined by 

all A E !ll 
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where II llr stands for an arbitrary regular norm. 
Moreover, the minimal regular norm has the property 

(2. 12) 

~, equipped with its minimal regular norm (assuming 
its existence) and completed in that topology will 
be called a C'°'-algebra. Mathematically, a c*-alge­ 
bra (like Hilbert space) is a very natural object 
in the sense that all structural assumptions just 
fit together to entail a beautiful mathematical 
theory. For instance, there are sufficiently many 
positive elements in a c*-algebra so that every 
real element is a difference between two positive 
ones and hence any positive linear form is real on 
the real part of~- Furthermore the spectrum of a 
real element A is well defined and IIAllc is just the 
supremum of the absolute values in the spectrum. 

Therefore Segal's postulate that~ should be a 
c*-algebra appears mathematically very natural. Let 
us see how it is to be understood in the example of 
quantum mechanics of 1 degree of freedom. There we 
are dealing with the algebra generated in some sense 
by two observables p and q satisfying the commuta­ 
tion relations 

[p,q] = -i (2.13) 

One could consider the algebra ijl consisting of fi­ 
nite linear combinations of pnqm. The product of 
such polynomials can be rearranged, using the com­ 
mutation relations, to be again of the form 
LC pnqm. The adjoint will be defined by nm 

nm* m n (p q) = q p 

which can again be reordered, shifting the powers of 
p to the left using (2.13). One has therefore a 
*-algebra. But one finds that this algebra possesses 
no regular norm. This reflects, of course, the fact 
that the spectra of p and q extend to infinity. 
Noting, however, as remarked in section II A that a 
bounded function of an observable A is essentially 
the same physical measurement as A we may construct 
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the algebra, as Weyl suggested, from the elements 

U(a., b) = ei(a.p + bq) (a., b real para.meters). 

(2 .14) 
The equivalent of (2.13) a.re then the commutation 
relations in the Weyl form 

½(ab' -a. 'b) 
U(a,b) U(a.',b') = e U(a+a', b+b').(2.15) 

The involution is defined by 

U(a.,b)* = U(-a,-b). (2.16) 

Thus the set of finite linear combinations 
* ~ Ca..b. U(a.i,bi) forms a. -algebra, say !l.12, and so 

doesitfie set !l.13 consisting of elements 

U(f) = f f(a.,b) U(a,b) dad b 

when f runs through the complex valued, absolutely 
integrable functions of the 2 real variables a and 
b. Both !l.12 and !l.13 possess regular norms and hence 
can be completed to become c*-algebras. The c*-norm 
of an element of !l.12 or !l.13 coincides with the opera.­ 
tor norm of the corresponding Hilbert space opera.tor 
in the Schrodinger representation. 

One sees from this example that the relation be­ 
tween the canonical quantities p,q and the possible 
choices for a. c*-algebra. of observables is very 
a.naloguous to that between the genera.tors of a. Lie 
group and the group elements (or the group algebra). 

C. Infinite Systems and Locality 

In the case of the infinite systems with which 
we are concerned some further general structure of 
the algebra. must be added to the one discussed un­ 
der II Bin order to achieve a reasonable physical 
interpretation. The main point is that we admit as 
elements of !l.l only observables of essentially local 
character. We assume that there are observables 
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which can be measured within finitely extended space­ 
time regions. If a is a space-time region, ~(8) 
shall denote the algebra generated by all observables 
measurable within a. Let Iii, denote some basic set of 
simple, finitely extended regions. To fix the ideas: 
In the nonrelativistic case (application to statisti­ 
cal mechanics), where measurements at a sharp time 
are deemed possible, we may take Iii, to consist of 3- 
dimensiona.l balls or cubes at a time t. In the rela­ 
tivistic case it is convenient to choose Iii, to consist 
of (finitely extended) double cones, Such a double 
cone is determined by two points x1, x2 in Minkowski 
space with x2-x1 a. positive timelike vector. Then 
~ x is the set of points which lie both inside the 
l• 2 

backward cone of x2 and the forward cone of x1. 

We regard then the net of local algebras ~(K) with 
K ranging through Iii, as the mathematical object which 
fixes the theory. This point of view was developed 
within the Hilbert space frame in [ 6], [ 7], [ 8], [ 9] and 
in the purely algebraic form in [ 10]. The algebra ~ 
of section II Bis then the c*-algebra generated by 
all the ~(K), i.e. it is the norm completion of v~(K). 
Similarly, for any infinite region 8 we shall define 

(2.17) 

We call~ the algebra. of qua.silocal observables, 
since every element of it can be uniformly approxi­ 
mated by local quantities. 

"It is perhaps remarkable that the purely geometric 
resolution of~ into the net (~(K)} (i.e. the identi­ 
fication of classes of observables according to the 
space-time-regions in which they may be measured) is 
sufficient to fix the physical interpretation of the 
theory. In other words: given a net (~(K)} which 
satisfies the principles of locality, causality, co­ 
variance the physical phenomena predicted by this 
"theory" are determined unambiguously. (See [ 10] 
and the last section of [11]) 
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III Mathematical Glossary 

This section is intended for the benefit of the physi­ 
cist who is not familiar with the branch of mathematics 
used here and who nevertheless insists on reading these 
notes. It is, of course, not clear that such individuals 
exist but I hope so. I try to give a brief exposition of 
the most important concepts, definitions and some of the 
most relevant mathematical results (listed as Rk, k running 
from 1 to 12). For further (and better) information the 
imaginary reader is referred to the book by Naimark [SJ. 

1. Convergence of sequences of vectors in Hilbert space 

Notation: :i-c a Hilbert space; 'I' a vector in :i-c, 
!,, 

II'!' II = ('!', '!') 2 its norm (length). 

There are two distinct notions of convergence, both 
relevant to problems in physics (e.g. scattering 
theory): The sequence 'I' converges strongly towards 
'I' if 11'1'-'!'nll - 0, it conv~rges weakly if l(~,'!'-'l'n)l-0 
for every fixed ~E:i-c. (~ chosen arbitrarily but inde­ 
pendent of n). To these two notions of convergence 
correspond two topologies of :i-c, the strong and the 
weak topology. 

R1. The unit ball of :i-c is weakly (but not strong- 
ly) compact. 

Or: every infinite set of vectors {'!'} with 11'1'11 ,; 1 
has at least one weak limit point. For most practi­ 
cal purposes: every sequence '!'n with ll'!'nll uniformly 
bounded has a weakly convergent subsequence. 

2. Bounded linear operators 

Q a linear operator acting on :i-c. Its norm is defined 
by IIQII = sup ~ . If IIQII exists (i.e. if it is fi- 

'!'E,c 11'!'11 
nite) Q is called bounded. The set of all bounded, 
linear operators on :i-c is denoted by B(:i-c). The topol­ 
ogy determined by the above norm is called the uniform 
topology in B(:i-c). 

R2, The operator norm IIQII is a c*-norm, i.e. it 
satisfies relations (2.8) through (2.12). 
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Since B(K) is closed under the algebraic operations 
II B 1) through 4) and complete with respect to the 
norm one has 

R3. B(K) is a c*-algebra. 

With Qn a sequence in B(K) we consider 
of convergence to a limit QEB(X) 
a) Uniform: IIQn-QII - O, 
b) 

three notions 

c) Weak: 

Strong: For every fEX the sequence of vectors Q
1
~f 

converges strongly (as defined in III ) 
to Qf, 
For every fEK the sequence of vectors Qnf 
converges weakly to Qf. 

To each of these notions of convergence there corre­ 
sponds a topology on B(K), the uniform (or norm) 
topology, the strong and the weak topology. They 
are decreasing in strength. Thus a weakly closed 
set in B(K) is a forteriori strongly closed and a 
strongly closed set is always uniformly closed. 
(The weaker the topology, the more limit points are 
added in performing the closure). Corresponding to 
R1 one has 

The unit ball of B(X) (i.e. the set with 
IIQII ,;: 1) is weakly compact. 

3. Operator algebras 

The weak and the strong closures of a *-al­ 
gebra in B(K) coincide. 

A strongly (or weakly) closed *-algebra in B(K) con­ 
taining the unit operator 1 is called a von Neumann 
ring, a uniformly closed *-algebra in B(X) we call 
a concrete c*-algebra. Obviously (by the ordering 
of the strengths of the topologies) every von Neumann 
ring is also a concrete c*-algebra but the converse 
is not true in general. 

The cornrnutant of any set Sc B(X) is denoted by S'. 
It consists of all those elements of B(K) which com­ 
mute with every member of S. For the cornrnutant of 
the cornrnutant, i.e. for (S') ' we write S 11• The ad­ 
joint set (consisting of the adjoint operators of all 
elements of S) is denoted bys*. 
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If Sis a self adjoint set in B(:K)(i.e. S=S*) 
then 
a) S' is a von Neumann ring 
b) S" is the von Neumann ring generated from 

Sand 1 (by algebraic operations and weak 
closure). 

c) S" ' = S' 
4. Factors 

Let R be a von Neumann ring. The subalgebra 

is called the center of R. If Z is trivial, i.e. if 
it consists only of multiples of the unit operator, 
then R is called a factor. 

This terminology comes from the following 

If :K is finite demensional and Ra factor 
from B(:K) then :K can be written as a direct 
product of two Hilbert spaces x1 and :K2 such 
that 

l®B(:K2). 

(3 .1) 

For infinite dimensional Hilbert spaces the situation 
is more complicated. The analysis of F. J. Murray 
and J. von Neumann [12) leads to a classification of 
factors into three basic~, only one of which 
(type I) is the analogon of the finite dimensional 
situation described under R7. 

The analysis starts from an ordering of the projec­ 
tion operators which are contained in the factor R. 
Two such projectors P1 and P2 are called equivalent 
(in symbols P1 ~ P2) if there is an operator U ER 

R 
which maps the subspace P1:K isometrically on P2:K, 
Similarly one defines P1 R P2 (existence of U ER 

which maps P1:K isometrically onto a proper subspace 
of P2:K). One finds 
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With Ra factor, P1, Pz projectors from R 
one has always precisely one of the three 
possibilities 

i) Pl > Pz 
R 

ii) Pl ~ Pz 

iii) pl~ Pz 
R 

Corresponding to this ordering of projectors PER 
one can introduce a relative dimension of the sub­ 
spaces P.K. Dim Pis a non negative number (possibly 
00) which satisfies Dim P1 = Dim Pz iff Pl~ Pz, 
Dim P1 < Dim P2 iff P1 R P2 and Dim P = 0 fff P = 0. 
Further, if P1 and Pz are mutually orthogonal 
(P1P2 = 0) then Dim (P1 + Pz) = Dim Pl+ Dim Pz. 

Apart from an arbitrary (positive) normalization 
factor the dimension function is uniquely determined 
by 'these requirements. 

R9. A factor R is either of 

Type I: R contains minimal projectors (P1 
is minimal if P1 + 0 and Pz < P1 R 

_implies Pz = 0). Normalizing the 
dimension function so that it takes 
the value 1 on the minimal projec­ 
tors, Dim P ranges through all in­ 
teger values up to a maximal value 
nor up to and including 00• If n 
is a finite integer R is called of 
type In' otherwise of type I00• 

Dim P ranges through a continuum of 
values which may be either normal- 
ized to be the closed interval 0,1 
(type II1) or it may be the whole 
real line including 0 and 00 

(type II
00
). 

Type III: Dim P takes only the values 0 and 
00 In that case all nonvanishing 
projectors from Rare equivalent 
(in the sense iii). 

Type II: 
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Remark. In the finite dimensional example discussed 
under R7 we have a factor of type In where n is the 
ordinary dimension of the space :i<:1 and Dim Pis the 
ordinary dimension of P.lC1. In other words, the 
multiplicity provided by the dimension of :i<:2 plays 
no role. 

The relative trace over R. If Risa factor of fi­ 
nite type (type I or rr1) then there exists one 
unique positive 1Ynear form over R, denoted by Tr 
which is invariant: 

-1 Tr(UAU ) = TrA 

and normalized by 

Tr 1 = 1 

for any AER (3.2) 
and unitary UE R 

(3.3) 

If Risa factor of seminfinite type (type I00 or II00) 

then the relative trace may be defined not on all 
operators of R but on a weakly dense subalgebra 
which does not contain 1. It is then an unbounded 
positive linear form on this subset, satisfying (3.2) 
but we cannot normalize it by (3.3). It is unique, 
apart from a normalization convention. In a factor 
of type III no trace may be defined at a 11. But re­ 
cently in the theory of modular operators (Tomita­ 
Takesaki theory) [13],[14],[15] mappings between 
factors of type III and type II have been discovered 
which may possibly be useful to introduce "pseudo­ 
traces" also in the type III case. 

Remarks. It appears that in the physical applica­ 
tions which concern us here (see introduction) we 
meet most frequently with factors of type III. The 
mathematical theory of a finer classification of fac­ 
tors seems to be at this moment in a period of major 
progress and in close contact with examples and prin­ 
ciples in physics. 

5. Representations 

Let now !I.I be a c*-algebra. By a representation TT of 
!I.I we mean a mapping from !I.I to the bounded operators 
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of some Hilbert space '.lC which conserves the alge­ 
braic structure (II B, operations 1 to 4). If for 
every A 'f O the representing operator TT(A) 'f O the 
representation is called faithful. 

RlO. If TT is fait~ful then the operator norm of 
TT(A) equals the c*-norm of A i.e. the map­ 
ping TT establishes an isomorphism between 
the abstract c*-algebra !ll and the concrete 
c*-algebra TT(!ll). 

If TT is not faithful IITT(A) II ,;; IIAII and TT is a homo-. 
morphism from !ll to TT(!ll). Again TT(!ll) is uniformly 
closed, i.e. a concrete c*-algebra. 

Cyclic representation: There exist a vector '!'E'.lC (a 
cyclic vector) such that TT(!ll)'!' is dense in '.lC. 

Irreducible representation: '.lC contains no proper 
subspace which is transformed into itself by TT(!ll), 
This is equivalent to (Schur's lemma) 

TT(!ll) II 

TT(!ll) I 

B('.lC) or 

[A l} 

(3.4) 

(3.5) 

Primary representation: TT(!ll)11 is a factor, i.e. 

TT (!ll) 11 n TT (!ll) 1 = [ A 1} (3. 6) 

Unitary equivalence between TTl (!ll) c B('.lC1) and 
TT2 (!ll) c B ('.lCz): Existence of a unitary mapping V 
from :i-c1 onto :i-c2 such that 

(3. 7) 

Quasiequivalence between TT1 and TTz: The von Neumann 
rings TT 1 (M) if and TT 2 (M) if are isomorphic (regarding the 
mapping TT1(A) - TTz(A) and its extension to the weak 
closure). 

6. Families of States 

Let !ll be a c*-algebra, TT(!ll) c B('.lC) a representation 
and Wan arbitrary positive operator of trace class 
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from B(:K) (not necessarily from n(~") normalized by 

Tr W = 1 (3.8) 
I 

Then QW is again of trace class for every QEB(:K) and 
W defines a state WW over the c*-algebra ~ by 

ww(A) = Tr (n(A)W) (3. 9) 

since WW obviously satisfies the requirements (2.5), 
(2.6), (2.7). When W ranges through all positive, 
normalized trace class operators in B('!C) we obtain 
in this way a family of states over ~. This family 
is called the set of normal states with respect to 
the representation n. We shall use the symbol gn 
for it. A subset of this family are the vector 
states of n, which result if W runs through all 1- 
dimensional projections in B(:J-C). We may write these 
as 

w'i'(A) = ('i', n(A)'i') (3. 10) 

with 'i' a unit vector from:K. (Compare (2.3) and 
(2.4)). The normal states of a primary representa­ 
tions we call primary states. 

If n1 and n2 are two primary representations 
then either gn = gn in which case n1 and 

1 2 
n2 are quasiequivalent, or gn n gn is emp- 

1 2 ty, i.e. the two families of states are com- 
pletely disjoint. 

Therefore, it amounts to the same whether we consider 
quasiequivalence classes of primary representations 
or families of 
generated from 

i) 

ii) 
iii) 

primary states. One such family is 
a single member w by the operations 

translation with elements in the 
algebra 

.. . _ w(B~'AB). 
w wB' wB(A) - w(B*B) , BE~, 
Finite convex combinations (mixture), 
closure in the norm topology of state 
space. 
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The GNS-construction (Gelfand, Naimark, Segal) 

Given an arbitrary state w over~. This construc­ 
tion yields a cyclic representation nw so that w oc­ 
curs as a vector state of this representation (re­ 
lated to a cyclic vector (l in the representation 
space by w(A) = (O, n(A)O). This starts from the 
remark that~ is itself a linear space in which, 
given w, a semidefinite scalar product may be de­ 
fined by 

(A,B) = w (A1
' B) (3 .11) 

On the other hand we may regard each element A also 
as a linear operator acting on the space~ (the image 
of B under the operation A being AB). Finally one 
has to come from the space~ with its semidefinite 
metric (3.11) to a space with positive definite met­ 
ric which may then be completed to become a Hilbert 
space. One defines the set Jc~ by 

Z E J if w(z*z) = o (3.12) 

and checks that J is a linear space and a left ideal 
of ~, i.e. if Z E J and A E ~ then A Z E J. We call 
J the GNS - ideal of the state w. Taking K = ~/J 
(set of classes of~ modulo J) one obtains a repre­ 
sentation space with positive definite metric. In it 
the class of elements 1 + J is a cyclic vector (l 
satisfying 

(O,n(A)O) = w(l* A 1) = w(A) 

R12. The vector states of an irreducible repre­ 
sentation are pure states. The GNS - con­ 
struction, starting from a pure state leads 
to an irreducible representation. 

IV.The Superselection Rules of Particle Physics. Statistics. 

If we compare the framework sketched in section II C 
with conventional quantum field theory we see as the most 
striking difference that the latter uses (in realistic 
models) field quantities which can not be associated with 
the algebra of observables~. An. example is the Dirac field. 
There are two simple reasons showing immediately that this 
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field 'l' cannot be associated with~- The first argument 
(due to Wigner): A rotation by 360° is equivalent to doing 
nothing as far as any physical situation is concerned but 
it changes the sign of 'l'. The second argument: The conunu­ 
tator between 'l'(x) and 'l'(y) does not decrease as x - y - 00 

in a spacelike direction and the fact that the anticonunuta­ 
tor vanishes is of no help for an observable; a measurement 
of the Hermitean part of 'l' in one region, if possible, 
would have a disturbing effect on a similar measurement in 
another region and the disturbance would not decrease with 
the distance. 

The use of unobservable fields is tied to the existence 
of superselection rules within the manifold of states one 
wants to consider. Thus, the first argument above as used 
in [l] demands a superselection rule between states of inte­ 
ger spin and those of half integer spin; the second argument 
demands a superselection rule between states of Bose type 
and those of Fermi type. 

In conventional field theory (Hilbert space formalism 
with unobservable fields) the superselection structure and 
the relation between fields and observables is governed by 
a group@. An element g of this group corresponds to a 
transformation which (like the rotation by 360° mentioned 
above) does not produce any change of the physical situa­ 
tion but is nevertheless represented by a non trivial opera­ 
tor U(g) acting on the Hilbert space (U(g) + A 1). An ob­ 
servable must be invariant under this group, i.e. it must 
conunute with all U(g). The Hilbert space may be decomposed 
into subspaces ("superselection sectors") :i-c. according to 
the "spectrum of the group@". In the simpiest and most 
important case when@ is Abelian this corresponds to a 
simultaneous diagonalization of all the U(g) so that in each 
subspace 3-Ci the U(g) act like multiples of the identity, but 
like different multiples in the different 3-C .. Then a coher­ 
ent superposition of state vectors is possi6le (physically 
meaningful) only if these vectors belong to the same sector 
3-Ci. 

The two examples of superselection rules given (integer­ 
half integer spin; Bose-Fermi type) are the most unrefuta­ 
ple cases and actually, because of the spin-statistics 
theorem, they are tied together. The group which is rele­ 
vant here has only one element besides the identity. This 
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transforms ¥(x) into -¥(x). It is, however, rather gener­ 
ally believed that the fundamental conservation laws of 
electric charge, baryon number, lepton number are also 
linked to transformation groups ("gauge transformations'') 
which leave all observables invariant. This implies then 
superselection rules between states differing in any of 
these charge quantum numbers. Empirically the Bose-Fermi 
alternative is tied to the charges. With the usual assign­ 
ment of quantum numbers a state is of Fermi type if the sum 
of baryon and lepton number is odd, it is of Bose type if 
this sum is even. We shall therefore use the term (gener­ 
alized) charge for the set of all parameters which are 
needed to distinguish the different superselection sectors 
and the term "gauge group" for the group (31_ 

Let us now look at these features starting from the 
frame of general local quantum physics. The theory is then 
characterized by the net of algebras of observables (ij(K)}. 
Does this net determine superselection rules, unobservable 
fields, a gauge group and statistics? What is the structure 
allowed by the principles of relativistic locality and 
causality? Are Bose - and Fermi statistics the only possi­ 
bilities? Various aspects of these questions have been 
discussed in [16], [17], [18], [19], [20] (see also [9] and 
[ 10 ]) • 

It has already been mentioned in the introduction that 
in an algebraic formulation of the theory superselection 
rules arise naturally because the algebra will in general 
allow inequivalent representations. Our problem here is, 
however, an embarrassment of riches: The algebia has far 
too many inequivalent irreducibe representation. The in­ 
teresting superselection rules for particle physics corre­ 
spond to a tiny subset of these and we have first to moti­ 
vate and formulate the criteria which single out among all 
possible representations the relevant ones. The origin of 
this restriction is the idealization always adopted in ele­ 
mentary particle physics: We consider only states which 
look (asymptotically) like the vacuum for observations in 
far a.way regions of space. Therefore, it is convenient to 
start from one distinguished representation TT , the "vacuum 
representation" which is obtained by the GNS-gonstruction 

·t< This is a consequence of the fact that ij is an inductive 
limit of the net of local algebras. 
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from the vacuum state w (see section III.6). All other 
representations of inte~est to us will be closely related 
to it. The precise criteria one should adopt in singling 
them out have been formulated in a satisfactory, usable 
form only for the case when there are no long range forces 
(no zero mass particles) in the theor/'. In that case we 
are led to consider the subset of representations for which 
the corresponding families of states (see III.6) contain 
strictly localized states (for a discussion of this see 
[19 I]). Here we use Knight's definition of strict locali­ 
zation [21) and call the state w localized in the double 
cone Kif it coincides completely with the vacuum wQ for all 
observations in the s~ace-like complement K' of K, in other 
words if w!~(K') = w0!~_(K') **. Moreover one finds that a 

localized state w may be related to the vacuum by means of 
a localized morphism p of the algebra: 

w(A) w (P(A)) 
0 

(4 .1) 

By a morphism we mean a mapping A - p(A) from~ into~ 
which preserves the algebraic structure and the norm. The 
image p(~) may be the whole algebra (then pis an automor­ 
phism) but the case where p(~) is a proper subalgebra of~ 
is also possible and of interest. We call p localized in K 
if it acts trivially on the algebra of the space-like comple­ 
ment K' i.e. if p(A) = A for AE~(K'). 

The set~ of interesting representations is then related 
to the vacuum representation TT0 in the following way: TT E ~ 
if (up to equivalence) we can write 

TT(A) = TT (p(A)) 
0 

(4. 2) 

with pa localized morphism. The state (4.1) is a vector 
state of the representation TT. We may devide the localized 
morphisms in equivalence classes calling Pi and p2 equiva­ 
lent representations. We shall call p pure if it generates 

* One may hope that the superselection structure derived be­ 
low for the case of short range forces retains validity also 
in electrodynamics (although it will not be complete there) 
since we may consider this as the limiting case, starting 
from a finite photon mass. 

** w!~ denotes the restriction of w to the subalgebra ~l 
1 
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by (4.2) an irreducible representation (i.e. if the state 
(4.1) is pure). The interesting superselection sectors 
(generalized charges) correspond to equivalence classes of 
pure, localized morphisms. 

To discuss the structure of this set (of charges) we 
need some simple properties of localized morphisms: 

i) morphisms with mutually spacelike loca liza­ 
tion region commute. 

ii) the product of morphisms respects the class 
division, i.e. the class of the product P1P2 
does not change if Pl and p2 vary within 
their classes. 

iii) if pis an automorphism then all positive 
and negative powers pn are defined and they 
are all pure. If pis pure but not an auto­ 
morphism then p2 is never pure. Finally, 

iv) it is reasonable to assume that the Poincar~ 
transform of a localized morphism p is in 
the same class as p*. 

By ii) we have a product composition of classes (composi­ 
tion of charges). It is commutative because of i) and iv). 
The "simple charges", which correspond to automorphism 
classes, form an Abelian group. For the others we have a 
more complicated composition law. The product of two pure 
but not simple charges is a mixture (reducible representa­ 
tion) which can be decomposed again into a finite direct 
sum of irreducibles. In this sense the composition law of 
two such charges ~l' ~2 can be written in the form 

(4. 3) 

An example of such a situation would be the composition law 
of isospin. Indeed, in a theory with strict isospin invari­ 
ance in which there exists no observable distingishing dif­ 
ferent members of a multiplet the magnitude of the isospin 
is a charge quantum number. A sector with nonvanishing 

* This means that the Poincar~ transformations should be 
implementable by unitary operators in the representation 
n (p(•)). If there should exist localized morphisms for 
wRich this is not true we exclude such representations from 
s. 
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isospin is then generated from the vacuum by a p which is 
not an automorphism. 

Besides charge composition we have charge conjugation. 
In the case of simple charges this is trivial· Ifs be­ 
longs to the class of P, then the class of p-1 is the con­ 
jugate I. For non simple charges the construction of the 
conjugate is more interesting. If Px is the morphism 
arising from translation of p by the space-time vector x 
then p and pare equivalent and, in fact, there is a uni­ 
tary ~(p)Eij so that 

P (A)= U (P)P(A) U-l(P) 
X X X 

We may interpret Ux(P) as a charge transfer: If pis local­ 
ized in Kand s denotes the class of p then Ux(P) shifts a 
charge S from the region K to K + x. Thus the state wx de­ 
fined by 

has charge zero but locally, within K + x it appears to 
have charges which is compensated by a "hole" in the re­ 
gion K. As we let x tend spacelike to infinity only the 
hole remains and ~x converges weakly to a state with the 
conjugate charges localized in K. 

Except for the case of simple charges (which is, of 
course the most important case) the charges do not form a 
group. But the structure of the set of charges discussed 
above suggests that this set may be the dual of a compact 
group (to be called the gauge group). By the dual of@ we 
mean the collection of equivalence classes of irreducible 
unitary representations of@ equipped with the composition 
law given by the Clebsch-Gordon series for the direct prod­ 
uct and with the conjugation (complex conjugation of repre­ 
sentations). It is probable but has not been shown so far 
that the information about the structure of the set of 
charges is sufficient to determine@ [22]. 

Let us look finally at the problem of statistics. Sup­ 
pose wl' ... w are all pure states, all having the same 
charges butnlocalized in regions K1, ... K.,_ which lie space­ 
like to each other. So they are generated in the sense of 
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(4.1) by equivalent morphisms Pi, ... Pn with mutually space­ 
like support. The state 

w(,) = w
0
(p1p2 ... pn(·)) 

has charge Sn and corresponds to the physical picture of a 
charges sitting in every one of the regions K1 ... K,.. (and 
vacuum in the spacelike complement of -Ki). We ca'tl this 
state w the "product state" of the wi and write 

(4.4) 

Since morphisms with mutually spacelike supports commute 
the state (4.4) does not change if we permute the wi. Thus 
there is only one localized product state, irrespective of 
the order of the factors. Let us now look at the state 
vectors instead of the states~ To get a reference point we 
pick some morphism pin the class s. There are unitary ele­ 
ments UiE!U which relate pi to p (equivalence pi~ p) 

-1 
Pi(A) = Uip(A) Ui . (4.5) 

Quite generally (irrespective of the position of the sup­ 
ports of the p.) (4.5) implies the equivalence of rr pi 
with pn: 1 

(4. 6) 

where 

(4. 7) 

Consider now the three representations 

A➔ TT (A)= TT (Pn(A)) n o 

corresponding to charges o, s, Sn respectively. They act 
all in the same Hilbert space; the physical interpretation 
of a vector of this space depends on the representation to 
be considered. Thus the vector 0

0 
which corresponds to the 

vacuum state in the representation TT
0 

corresponds to the 
state w

0
(p(•)) in TTl and to the state w (Pn(,)) in TTn• We 

see that wi may be represented in TTl by
0
the vector 

-1 
!i = TTO(Ui )00 (4.8) 
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and w of eq. (4.4) in nn by 

-1 
'i' = TT 

O 
(U ) 0 

0 

with U given by (4.7). Symbolically we can write 

(4. 9) 

(4.10) 

as a short hand for the relations (4.7),(4.8), (4.9). It 
It turns out now that the product (4.10) or, alternatively, 
the expression (4.7) is not independent of the order of 
factors (order in which the p. appear) even when the sup- 
ports of the pi are mutually tpacelike If Pis a permu- 
tation of n obJects and Up denotes the expression (4.7) 
with pi replaced by pP(i) then 

e<n)(P) = u-1(P) u (4.11) 
p 

will in general differ from 1. One finds that it is inde­ 
pendent of the choice of the p. as long as they are all in 
the equivalence class of p andihave mutually spacelike 
supports. Furthermore the e~(P) with fixed p and n form a 
unitary representation of the permutation group and they 
commute with pn(A) for all AE~. Thus, a change in the or­ 
der of factors in (4.10) changes the state vector by some 
n0(e(n)(p) but it does not change the state w; in other 
wordg, all these vectors arising from permutations define 
the same expectation functional over the algebra. Ifs is 
a simple charge then pn is pure and the representation 
n0(pn(,)) is irreducible. By Schur' s lemma then e ~n) (P) 
can only be a multiple of the identity. In that case 
e&n)(p) must be either the totally symmetric or the totally 
antisymmetric representation of the permutation group. If 
sis not simple then pn is reducible and other representa­ 
tions of the permutation group can occur. 

The "statistics" of states with charges meal)S the 
characterization up to quasiequivalence of the e~n) for 
fixed pin the class sand all positive integers n. (Varia­ 
tion of p within its class does not change the quasiequiva­ 
lence class of e~n)). Practically this is done by giving 
the Young tableaux which occur in the decomposition of the 
representation e&n) of the permutation group into irreduci­ 
bles. The analysis in [19,I) shows that this is governed by 
a single parameter A, the "statistics parameter" of the 
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charge I;. Apart from the somewhat pathological case A= 0 
one obtains precisely the possibilities suggested by 
H. S. Green [23], namely para-Bose statistics of some defi­ 
nite order d or para-Fermi statistics of some order d. The 
sign of\ gives the distinction between para-Bose and para­ 
Fermi, I\J-1 gives the order of the parastatistics. Ordi­ 
nary Bose or Fermi statistics (d = 1) occur if and only if 
I; is a simple charge. Parastatistics of order d 'f 1 appears 
whenever we have a non-Abelian gauge group (when ll.l allows 
localized morphisms which map onto a proper subset of ll.l). 

Usually one regards parastatistics as an exotic possi­ 
bility. But it is really very harmless since we have to 
bear in mind that it depends on the knowledge of what is 
observable. If we have a theory with a net (ll.11(K)} which 
has a non Abelian gauge group (for instance the isospin 
group) then it may be that this theory is just an approxi­ 
mation to a situation with a richer supply of observables, 
described by a net (ll.l(K)} for which the gauge group is 
Abelian. On the level of the approximate theory with su2 
as gauge group a sector with isospin I gives rise to para­ 
statistics of order (2 I+ 1), but the more precise theory 
splits this sector into (2 I+ 1) different ones, each 
carrying ordinary Bose - or Fermi statistics. In the exam­ 
ple we may say that in the less precise theory there is no 
way to distinguish a single proton from a single neutron. 
So the particle is a nucleon and it is a parafermion of or­ 
der 2; similarly we have an-meson as a paraboson of order 
3 etc. If on the other hand we have observables which dis­ 
tinguish the different electric charge states in the isospin 
multiplets then instead of one parafermion of order 2 we 
have two ordinary -Fermions, etc. [ 20 J. 

We have seen how a theory of local observables leads 
naturally to the concept of statistics and how the type of 
statistics is related to the structure of the set of charge 
quantum numbers (superselection structure). Combining this 
analysis with the work of H. Epstein [24] one finds that the 
connection between spin and statistics holds in the sense 
that the sign of A is positive or negative depending on 
whether the spins in the sector are integer or half integer 
[19, II]. This gives a somewhat deeper understanding of the 
relation between spin and statistics because the statistics 
were not introduced at the outset by means of commutation 
relations of unobservable fields but result as a structural 
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property of the observable algebra. One also finds sym­ 
metry between charge conjugate sectors: They have the same 
energy - momentum spectrum and the same statistics parame­ 
ter. Finally one can show that the statistics parameters 
determine the metric of the scattering states and thereby 
enter into expressions for cross sections. 
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EQUILIBRIUM STATES IN STATISTICAL MECHANICS 
C*-ALGEBRAIC APPROACH 
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Groningen, The Netherlands 

1. Introduction. 

Statistical mechanics is the theory of systems com­ 
posed of a large number of identical subsystems. The aim 
is to derive thermodynamical laws from the known interac­ 
tion between the individual subsystems. To give a precise 
mathematical description of a large (macroscopic) system 
as opposed to a small system (atom, nucleus etc.) one con­ 
siders the model of an infinitely extended system composed 
of infinitely many identical subsystems. In the tradi­ 
tional approach to statistical mechanics, the prescription 
for calculating properties of equilibrium states is only 
applicable to finite systems. This implies that one can 
get results for infinite systems only at the end of the 
calculation, by taking the thermodynamical limit. 

In the algebraic approach, discussed in these lectures, 
one deals with infinite systems, in particular, infinite 
quantum systems. It is therefore necessary to reformulate 
quantum mechanics in such a way that it may be applied both 
to finite and to infinite systems. This program necessi­ 
tates the use of some mathematical techniques, with which 
most physicists are not very familiar. For a detailed 
study of operator theory we refer to books by Naimark [l] 
and Dixmier [2,3]. A compilation of the most important 
definitions and theorems can be found in an appendix to 
Ruelle' s book on statistical mechanics [ 4] . 

Algebraic methods can be applied not only to statisti­ 
cal mechanics but also to quantum field theory. This is 
due to the great formal similarity between quantum field 
theory and, e.g., the many body theory. In both cases all 
observables are expressible in terms of quantized fields 

281 
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like the canonical pair n(x,t) and ~(x,t) with the commuta­ 
tion relations 

[ ~ (x, t) , ~ (y, t)] 

and 

[n(x,t), n(y,t)] 

[n(x,t), ~(y,t)] = -io(x-y) 

0 

(1. 1) 

or the annihilation and creation operators t(x,t) and 
t*(x,t) for a particle in the space-point x at time t, 
with the well-known commutation relations: 

a. for bosons: 

[ t (x, t), t(y, t)] 

and 

[t*(x,t), t*(y,t)] 

[t(x,t), t*(y,t)] 

and 

o (x-y) 

(t(x,t), t*(y,t)} = o(x-y) 

0 

(1. 2) 

b . for fermions : 

(t(x,t), t(y,t)} = [t*(x,t), f\y,t)} 0 

(1. 3) 

Mathematically the essential difference between finite and 
infinite systems is the occurence of many inequivalent ir­ 
reducible representations of the observables as operators 
in a Hilbert-space in the case of an infinite system. On 
the other hand, von Neumann [SJ has proven that all irre­ 
ducible representations of the canonical commutation re­ 
lations 

[pi,pj] = [qi,qj] = o, [pi,qj] 

for i and j = 1, 2, , s < • 

-io .. 
1J 

as selfadjoint operators in a Hilbert-space"' are unitarily 
equivalent. In other words: whereas for a finite system, 
all irreducible representations are unitarily, and hence 
physically equivalent, this is not the case for infinite 
systems. That this fact is physically relevant is 
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illustrated by the fact that, as will be shown, the ground 
states of a gas at two different densities lead to inequiv­ 
alent irreducible representations. Similarly, the repre­ 
sentations corresponding to equilibrium states of a gas at 
two different temperatures are inequivalent, even disjoint 
[ 6]. 

In the next section we shall give a simple but typical 
example of inequivalent irreducible representations. 

2. Inequivalent representations of the C.A.R. 

In this section we consider a simple example of in­ 
equivalent representations of (1.3) the canonical anti-com­ 
mutation relations (C.A.R.). Before proceeding we shall 
rewrite (1.3) in terms of the smeared out operators w(f) 
and $(f)'

0

', where f is a complex square-integrable function 
of x: 

We then get the commutation relations 

and 

(f ,g)' (2. 1) 

where 

J 3 * (f,g) = d x f(x) g(x). 

The first representation of (2.1) we shall consider is 
the Fack-representation. The representation space ~F(V) 
for a given volume Vis given by the direct sum 

') F(V) = E l)rl) 
n=O n 

where ~n is the Hilbert space of anti-symmetrical n-parti­ 
cle wave-functions in V. An arbitraty)vec(2J 16')F(V) is 
deter~ined by ftf c~mponents 1(0J, ¥ , ¥ etc. Since 
I 1¥ 11 = ti I 1¥ n 11 , ¥ must always satisfy the condition 
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E ll'l'(n)l12<"' 

In this space we define the operators $(f) and $(f)* 
as follows 

* (n) 1 n i-1 (n-1) ~ ($ (f) 'l') (x1x2 .. x )=J- .z::1(-1) f(x.)'l' (x1 .. 1ti .. x ) , n n 1= 1 n 

(2. 2) 
where the wave-function 'l'(n-l) is a function of 
x1,x2, ... ,xn with the exception of xi. 

(n) J 3 * (n+l) ($(f)'l') (x1 ... xn) = Jn+l d x f(x) 'l' (x 
V 

all 

(2. 3) 

One proves, without difficulty, that the operators $(f) 
and Hf)* defined in (2.2) and (2.3) are each-others ad­ 
joint, that they are bounded operators with norm 

I I * < f) I I = I I Hf) * I I = I I f I I , 
satisfying the commutation relations (2.1). Hence we have 
a representation of the C,A.R., called the Fack-representa­ 
tion. Let li0 be the vacuum-state{of·e· the vector in l?)F 
with all components= 0 except li0 = 1. Clearly li0 
satisfies the relation 

$(f)li0 = 0, for all f, (2. 4) 

and lio is the only vector in Fock-space with that property. 

From the Fock-vacuum li0 one can build up the whole 
Fock-space in t2e following manner: let ( fcP a, = 1,2, ... } 
be a basis in L (V). Then the vectors $(fa,)*li0, 
$(fa,)°"'$(f

13
)*l10, Hfa,)i'Hf

13
)i'Hfy)*li0, etc. form a basis 

in ~F(V). li0 is therefore a cyclic vector. 

The particle number operator N(V) is defined on any 
vector with only a finite number of non-zero components, 
as follows: 

(N(V)'l')(n) = n'l'(n). 

N(V) is an unbounded operator, and one can prove that for 
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any basis (fa, a= 1,2, ... } in L2(v) 

N(V) = E t(fa)*t(fa). a. 

Using the completeness relation for (fa} one finds the 
formal expression 
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(2. 5) 

J 3 J. 

N(V) d x $n(x)t(x). 
V 

Without proof we mention that the Fock-representation 
is irreducible. Moreover, a representation of the C.A.R. 
with the properties 

1. There is a vector t0 such that 

~(f)t0 = 0, for all f. 

2. The representation is irreducible. 

is unitarily equivalent to the Fack-representation. In 
other words, the properties 1 and 2 determine the repre­ 
sentation uniquely, up to equivalence. 

In the case of a cubic box of volume V, with periodic 
boundary conditions one can choose for the basis wavefunc­ 
tions fa(x) the plane waves 

with 

k. 
l. 

2n 
-rn., ni vs i 

0, ±1, ±2, .... 

We then write 

- 1 J 3 -ik; a(k) = t(fk) = Tv d x t(x) e 

a (k) and a (k) ;, are the annihilation and creation operators 
for a particle of momentum k. The commutation relations 
are 

- ~ - * - * ( a (k) , a (k')} = ( a (k) , a (k') } .. 0 
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and 
( a(k) , a (k' )'~} = ok k, . 

' 
Until now the volume V could be chosen either finite or 
infinite. We shall now consider the special case that 
V = R3. We can then introduce translations in space. 
¥E~F(R3), The equations 

(n) (U(a)¥) (x1 ... xn) 

Let 

determine a unitary operator, the translation operator. 
It follows from the definition, that ~O is invariant for 
translations, and is the only vector in ~F with that prop­ 
erty. 

Another advantage of taking V = R3 is the possibilit3 of defining densities. Let v0 be a finite subvolume of R, 
and compare the operators 

3 * d x$ (x)$(x) and N, 

the total particle number operator. Clearly, one has 

N(V) ,;; N; 

as an operator inequality. We now define a density oper­ 
ator n, as follows: let¥ be in the domain of N, then 

n¥ = lim _Vl N(V)¥. 
V-+"' 

The limit of the r. h. s. vanishes, since 

I 1.l N(V)¥ 11 ,;; I 1.l N¥ 11 -+ o. V V V-+00 

Hence the operator n, when applied to a dense set of vec­ 
tors in F(R3), gives zero. The density operator is there­ 
fore identically zero, which means that the vectors in 
Fack-space describe states of vanishing par tic le-density. 
For this reason, it is obvious, that the Fock-represnta­ 
tion is not suited for describing the states of systems 
with non-vanishing particle-density. 

We shall now construct another representation of the 
C.A.R. by means of a Bogoliubov-transformation. We define, 
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for finite V, new creation and annihilation operators by 
means of the transformation 

a(k)' = cos (a(k))a(k) - sin (a(k))a(-k)"'. 

Formally, i.e. disregarding convergence questions, 
this transformation can be obtained by means of the uni­ 
tary transformation 

a(k) 1 = eiQa(k)eiQ, 

with 

i [ * .,,, Q = 2 t a(k) a(-k)a(k) - a(k) a(-k) ]. 

(2. 6) 

(2. 7) 

As a consequence of the fact that a(k) and a(-k) anti-com­ 
mute, it is natural to assume that a(k) = -a(-k). 

If we dea_! with spin~ particles, k stands for momen­ 
tum and spin (k,s). In that case this relation is satis­ 
fied if a(k,s) depends on the length lkl only, and 

a ( I k I , +) = -a ( I k I , - ) . 
Let us now consider Q. If Q is a self-adjoint opera­ 

tor in Fock space, then the transformation (2.6) is unitary 
and both representations are unitarily equivalent. To see 
whether Q is a well-defined operator we apply Q to an arbi­ 
trary vector 'l' in s:>F with a finite number of non-vanishing 
components. We have 

( ) 1 n i-1 eikxi (n-1) 
(a(k)*'l') n (xl .. xn)=;-n: iEl (-1) -rv- 'l' (xl .. :ii .. xn) 

and thus 
E * * (n) (ka(k)a(k) a(-k) 'l') (x1 ... xn) 

1 ~ ~ ( l)i+j~( ) (n-2) 4 4 = /n(n-1) . . - a x.-x. 'l' (xl •. ,-. ... ,-. ... x ) , 1.=l J=l 1. J 1. J n 
ifJ 

where 
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Clearly a necessary and sufficient condition for this oper­ 
ator to be defined on a dense subset of ~F(V) is, that 

A ) 2( 2 et(x.-x. EL V), 
l. J 

whicq condition is equivalent with 

~ \et(k) \
2 

< "'· (2. 8) 

In the finite case it depends on the sequence et(k) whether 
or not this condition is satisfied. In the thermodynamical 
limit (V ... "') however, the sum in (2.8) becomes propor­ 
tional to V, so that (2,8) can never be satisfied in the 
infinite volume case. This means that in the infinite 
case, two representations of the C,A,R, connected by a non­ 
trivial Bogoliubov transformation are inequivalent. 

We could have reached this conclusion also without 
calculations. Suppose that both representations were equi­ 
valent. Then there would be in ~F(V) a Fock-vacuum <li0 with 
respect to a(k) '. Let us consider translations in space: 

$ (x) ... $ (x+a) 

or 

a(k) ... a(k)eika. 

It follows then from (2.6) that also 

a(k)'-+ a(k) 'eika. 

In other words the Bogoliubov-transformation commutes with 
space translations. Hence the Fock-vacuum <lio is also in­ 
variant for translations. Hence <li0 and <lio must be identi­ 
cal, which implies immediately that the Bogoliubov trans­ 
formation must be the identity (a.(k) =0). 

We shall finish this discussion by considering the 
following special case: 

et(k,s) = 0 for \k\ > ~• 

et(k,±) ± I for \k\ < ~• 
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We then get the transformation 

a ' (k, s) = a (k, s) 
... ... * a'(k,+) = -a(-k,-) 

a' (k,-) a(-k,+)* 

for \k\ > ~ 

for \k\ < ~• 

Clearly, for V finite, we get an equivalent representation. 
The Fock-vacuum of the primed operators is the state in 

kF2 
which all particle-states of energy less than -2- are oc- 
cupied, whereas all other particle-states are 6¥/occupied. 
It is the groundstate of a system of N free fermions, 
where N equals the number of single-particle states within 
a sphere of radius~ in momentum space. 

If we now take the limit V ... 00 we conclude on the basis 
of our previous discussion, that the ground state of a gas 
of non-interacting fermions in an infinite volume and of 
finite particle density gives rise to a representation, 
which is inequivalent with the Fock-representation. 

3. States and observables. 

In order to allow for infinite quantum systems our 
quantum mechanical notion of state has been generalized: 
A state of a system is a prescription which assigns a num­ 
ber to each observable of the system. This functional has 
to be linear and positive (i.e. to each positive observable 
there corresponds a positive number). 

We shall now give some physical arguments to justify 
this definition. Let us consider first an ordinary (fi­ 
nite) quantum system. The observables are then (self-ad­ 
joint) operators acting on a Hilbert space b . A pure state 
is a vector Yin~. This vector defines the positive line­ 
ar form <A>= (Y,AY). The unpure or mixed states (ensem­ 
bles) are defined by means of a density operator p, i.e. a 
positive operator p with Tr p = 1. The average value <A> 
is now defined by <A>= Tr PA. We see again that we have 
obtained a positive linear form. This shows that our new 
definition of a state is a generalization of the well­ 
known notion in quantum mechanics. 
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We consider next the situation which 
statistical mechanics. One takes a large 
and characterizes the state of the system 
sity operator Pv, where Vis the volume. 
um state one can take the grand-canonical 
which Pv has the form 

arises in quantum 
but finite system 
by means of a den­ 
For an equilibri­ 
ensemble, for 

(3. 1) 

with Hv the Hamilton operator of the system and Nv the 
particle number operator. We are now able to calculate en­ 
semble averages of our observables: 

(3.2) 

Since we are interested in infinite systems we must take 
the so-called thermodynamical limit, i.e. must let the vol­ 
ume V tend to infinity. By taking this limit in (3.2) 
keeping A fixed we get the expectation value or average <A> 
of A for the infinite system. It is implied by this pro­ 
cedure that A must be a local observable, i.e. an observable 
which refers to a bounded region in space. The thermody­ 
namical limit of (3.2) does not always exist for all local 
observables A. On physical grounds we expect this limit to 
exist provided there are no phase-transitions for the given 
values of~ andµ. The existence of the limit does however 
not imply that the density operator Pv has a limit p for 
V - 00 and that <A>= ~!ID <A>v = Tr pA. On the contrary, 
we expect that i!w Pv = 0. Indeed, consider the denomina­ 
tor in (3.1). This is the partition function Zv· The pres­ 
sure of the system is derived from Zv by the formula 

p = kT ~!m ½ log ZV. 

Consequently we can write, for large V, 

z = V 

.eY 
kT e 

so that ZV diverges exponentially for V - 00 
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From this example we learn the following: 
By taking the thermodynamical limit one is able to find 
the average or expectation value of any local observable. 
This means that we have a prescription assigning a number 
to every local observable. Again this functional is posi­ 
tive and linear, since these pr_operties are conserved in 
the thermodynamical limit. 

We have already remarked that observables must have 
some locality property, because real observations always 
are carried out in some finite region of space. Before 
specifying the set of observables for a few specific infi­ 
nite systems, we shall mention some general features. 

Since observables may be added and multiplied the set 
of observables is an algebra. If we limit ourselves to 
bounded observables, we can assign a norm I IA 11 to each 
observable A. We therefore have a normed algebra, the 
completion of which is the algebra ij of quasi-local ob­ 
servables. This is a c*-algebra *). In the most simple 
cases (C,A,R. algebra and lattice systems) the algebra ij 
has the following quasi-local structure. To each bounded 
volume V there is assi~ned an algebra ij(V). This is a 
c*-algebra or even a W -algebra (= Von Neumann algebra). 
These local algebras satisfy the conditions 

1. If v1 c v2, then ij(V1)C(V2). This is called 
isotony. 

2. If V1 n v2 = 0, [ij(V1),ij(V2)J = 0. This is called 
causality. 

As a consequence of 1. the set ij • U ~(V) is an algebra, 
the algebra of all strictly local'. observables. The norm­ 
closure ij is then the c1<-algebra of quasi-local observ­ 
ables. 

Transformations are automorphisms of the c1<-algebra ~. 
As we shall see in the examples, space-translations and 
time-evolutions are commutative groups of automorphisms of 
~. Obviously, in the case of a lattice system, the group 
of space translations is a discrete group, in a continuous 
system it is a continuous group. Let a be a vector, then 

i<) For the definition of c1<-algebra and other mathematical 
objects used in these notes see the lecture notes by 
R. Haag in this volume. 
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aaA is the observable obtained from A by a translation 
over!!.· Similarly atA is obtained from A by evolution 
over the time t. For each!!_ and each t aa and at are auto­ 
morphisms of~- The group property is expressed by the 
relations 

A state w of a c*-algebra ~ is a normed positive line­ 
ar form, i.e. a form satisfying the conditions: 

a. w(>-1A1 + >-2A2) = >-1w(A1) + >-2w(A2), for all 
complex >-1 and >-2 and for all A1 and A2 E ~, 

b. If A E ~ is positive, then w(A) ~ O. 

C. W ( 1) 1, where 1 is the unit-element of~. 

The state w is said to be invariant under a certain 
automorphism a (A➔ aA) if w(aA) = w(A) for all A. A 
state, which is invariant for all translations will be 
called homogeneous. If a state is invariant for time-evo­ 
lution we shall say that it is a stationary state. 

4. Observable algebras for certain simple cases. 

I. Fermi-gas. Let ~F(R3) be the Fock-space for the ca­ 
nonical anti-commutation relations (C.A.R.). We define 

~(V) = {o/(f),o/*(g), with supp. f,g in V}, 

the *algebra generated by o/ (f) and o/'~(g) for all f and 
g with support in V. ~(V) is then the local algebra 
corresponding to V. As follows from the definition the 
isotony condition is satisfied, but due to the fact that 
the o/1S anticommute the causality condition is not. 

The C*-algebra defined by ~=U ~(V), where the bar 
means completion in the norm, Ys called the C.A.R.-alge­ 
bra. It is easy to prove that~ contains the operators 
o/(f), with f E L2(R3). Consequently~ is generated by 
all o/(f),o/*(g) with f and g E L2, We may consider two 
subalgebras: 
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!ll is the c*-algebra generated by polynomials 
contaifiing only even powers of w's and W*'s. Allele­ 
ments of this algebra are clearly invariant for the 
replacement W ➔ -w. 

!ll is the C>'<-algebra generated by polynomials 
consisfing of terms containing an equal number of fac­ 
tors Wand w*. The elements of !ll are invariant for 
gauge-transformations (see furthef in this section). 
Since all physically measurable quantities are gauge­ 
invariant !ll is the actual observable algebra. We 
have the in@qualities 

!li C !li C !ll, g e 

The algebras !llg(V) and !lle(V), which are defined in ob­ 
vious analogy with !ll(V) both satisfy the causality con­ 
dition. 

The C,A,R,-algebras !ll and its subalgebra !ll are not 
the only possible choice for an observable alg§bra for 
a system of fermions. The local algebra !ll(V) is weakly 
dense in B(x:>p(V)}, the set of all bounded operators on 
the Fock-space S';)p(V) of the volume V. By locally in­ 
cluding the weak limit points one may replace !ll (V) by 
B(S';)F(V)}. This leads to a larger algebra 

!ll 1 = ~(B S';)F(V)}. 

In connection with the time-evolution we shall come back 
to this point. 

We shall now define some transformations. 

1. Space trans lat ions. Let f be the function obtain­ 
ed from f by shifting over th~ distance a: 
fa(x) = f(x-a). We then define the mapping a, by 
a.aw(f) = W(fa). It is immediately seen that the com­ 
mutation relations of the operators W(f) and W(g)* 
are not affected by a.a. This means that the mapping 
A➔ a.aA, which is defined in an obvious manner for 
all polynomials in $(f) and W(g)* and hence, by con­ 
tinuity, for all AE!ll is an automorphism of !ll, That 
a.a is a strongly continuous automorphism follows from 
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2. Gauge transforTations. The mapping <\1 is defined 
by av$(f) = $(f)e v. This leads in an obvious manner 
to an automorphism av of ~. In contrast to space­ 
translation and time-evolution (see hereafter) gauge­ 
transformations are local, in the sense that 
av~(V) = ~(V). 

3. Time-evolution. If the notion of an abstract c*­ 
algebra of observables is physically meaningful, time­ 
evolution ought to be an automorphism of that algebra. 
It follows that the proper choice of~ may depend on 
the dynamics of the system. We first study the case 
of free fermions. We then define the mapping a by 
the equation at$(f) = $(ft), where f is the solution 
of the one-particle-wave equation which at t = 0 coin­ 
cides with f. Again we easily prove that at defines 
a strongly continuous one parameter group of auto­ 
morphisms of ~. 

In the case of interaction the situation is less 
clear. It is likely that for a realistic two-particle 
interaction the algebra is not invariant for time-evo­ 
lution. If that is the case time-evolution is not an 
automorphism of the C.A.R, algebra and the problem is 
to define another observable algebra for which time­ 
evolution is an automorphism. It is not clear how 
this may be achieved. 

II. Bose-gas. The operators w(f) and w(g) ,., in the Fock­ 
space S'JF of Bose particles are unbounded in contrast to 
the Fermi-case, We must therefore proceed somewhat dif­ 
ferently. One may define the s.a. fields 41 and TT by 
the equations 

1 * t ( f) = 72. (Hf) + Hf) ) , 

TT (f) = 1z- ($ (f) - o/ (f) '
0

') • 

One then defines unitary operators U(f) = eH (f) and 
V(f) = eiTT (f), which satisfy the multiplication rules 
U(f1)U(fz) = U(f1+fz); V(f1)V(fz) u V(f1+f2) and 
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U(f)V(g) = V(g)U(f) e-i(f,g). The local algebra ~(V) is 
generated by all U(f) and V(g) with support off and g 
in V. Various inequivalent definitions of the observable 
algebra are now possible: 

~l U ~ (V); 

~2 - u B[~F(V)J; 

~ = [U(f) ,V(g), for all f,gES(R:3)}; 3 

~4 = {U(f),V(g), for all f,gEL2(R3)}. 

There are the inequalities 

Space-translations and gauge-transformations are de­ 
fined as in the case of fermions. They are automorphisms 
of all four algebras defined above. Time-evolution of a 
free boson system is defined by ~t~(f) = o/(ft)• It can 
be shown that ~Land ~2 are not invariant for this map­ 
ping, On the ocher hand ~3 and ~4 are invariant. On 
this ground ~land ~2 cannot be considered proper choices 
for free boson systems. The case of interacting bosons 
is even less clear, and will not be discussed in these 
lecture notes. 

III. Quantum lattice systems. In many respects lattice 
systems are much simpler than continuous systems. A lat­ 
tice system is perhaps the simplest non-trivial example 
of a system with infinitely many degrees of freedom. 
They provide, therefore, excellent testing ground for the 
algebraic treatment of infinite systems. The following 
well-known models are special cases of quantum lattice 
systems: the quantum lattice gas, the Ising model and the 
Heisenberg model. 

Let zv be av-dimensional cubic lattice, the points 
of which we shall call x,y etc •• To each lattice point 
x there is assigned a p-dimensional Hilbert space ~x· 
In most applications the dimension v = 1, 2 or 3, p = 2, 
which corresponds to a spin\ at each lattice point. If 
Ac zv is a finite sublattice of zv with N(A) lattice 
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points, we assign to A the Hilbert space '!;JA w~tRf is de­ 
fined as the tensorx~A ® ~ • Clearly ~A is p dimen- 
. x N(A) N(A) s1onal. The set of operators (p x p matrices) 

on '!:IA will be denoted by B('!JA). In a similarnfashion 
we define '!:izv as the infinite tensor productxEzv ® i':lx· 
Each operator A E B('!JA) may be considered to be an oper­ 
ator on '!:izv in the following obvious way. If Ac=zv-A, 
we can wr1te 

'!;i V = '!;JA ® '!)A ' 
Z C 

If we now identify the operator A E B('!JA) with the ten­ 
sor product A® 1 it becomes an operator on '!:izv• 

We now define, for each finite A, 

These local algebras are considered as subalgebras of 
the set B('!:izv). They then satisfy the isotony condition 
and the causality condition. Indeed, if A1 c Az we have 
ij(A1) c ij(Az). If on the other hand Al n 1'12 = 0, then 
ij(A1) and ij(A2) commute, as can be checked easily. In 
accordance with section 3 we obtain the algebra~ of 
quasi-local observables by taking the closure of the 
union of all ij(A): 

~ = ~ ij(A). 

We next define some important groups of transforma- 
tions in lattice systems. 

1. Space-translations. For each a E Zv '!:ix is mapped 
isometrically onto ~x+a' This defines in a natural 
manner an isometric mapping of ~A - '!:IA+~ with a cor­ 
responding mapping A E B('!JA) - <la A E Btl\+a). This 
mapping extends to an automorphism <la of~, which maps 
~(A) onto ~(A+a). 

2. Internal transformations. In each point x we se­ 
lect a unitary operator on '!:ix in such a way, that 
aaux""Ux+a· We then define the unitary operator UA on 
'!;JA by 
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n 
UJ\ = xEJ\ ® Ux. 

The mapping A E ~(J\) ➔A'= UJ\ A UJ\ E ~(J\) defines an 
outer automorphism of~ which is an inner automorphism 
of each ~(J\). In the case of p = 2 these transforma­ 
tions correspond to rotations of the direction of the 
spin in each lattice point. 
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3. Time-evolution. We assume that to every bounded 
J\ c z" is assigned a Hamilton-operator H(J\) E ~(J\). 
This hamiltonian is translationally invariant: 

aaH(J\) = H(J\+a). 

Potentials may be defined by the equations (for each J\) 
~ 

H(J\) =y.::::J\ ~(X). 

We then have 

aa~(X) "'4i(X+a). 

The potential 4i is said to have finite range if the 
number of sets X such that OE X and ~(X) + 0 is fi­ 
nite. The union 6 of all such sets Xis called the 
range of~. 

Let J\ and Az be so far separated that 
(A1-A2) n J = 0, then 

H(J\l u Az) = H(J\l) + H(J\z)· 

There is then no interaction between the sublattices 
A1 and A2. 

Before studying the time-evolution of the infi­ 
nite lattice we consider two well-known examples of 
lattice systems, the Ising-model and the Heisenberg­ 
model. The hamiltonians have the following form: 

Ising: 

Heisenberg: 

H(J\) 

H(J\) = ~ J(x,y) a(x)a(y). x,y 
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The potentials are 

Ising: ~ (X) 0 for N(X) 'F 2 

Heisenberg: 

~(x,y) J(x,y)cr
3
(x)cr

3
(y); 

~(X) = 0 for N(X) 'F 2 

t(x,y) = J(x,y)o(x)a(y). 

The hamilt9ntat1 H(A) .d£;;ines an inner auto­ 
morphism A-Ai=e1H~AJtA e-iH~ Jt of ~(A). Let us now 
take A E ~(Ao), A0 c A, and consider the limit of Ai 
for A-"'. If the potential has finite range, one would 
expect on physical grounds this to exist. Indeed, it 
has been shown by Robinson [7] that this limit exists 
in the norm topology for every t: 

norm lim A~= atA, 
A-"' 

and for every A E ~(Ao), with A0 arbitrary finite. 
The mapping A - atA can be extended by continuity to 
a strongly continuous group of automorphisms of ~. 
Ruelle [4] has shown that the restriction to poten­ 
tials of finite range can be relaxed somewhat to po­ 
tentials that vanish rapidly at large distances. 

5. The ground state. *) 

In this section we study the thermodynamical limit of 
the ground state and some of its properties. To be specif­ 
ic we shall restrict our considerations to quantum lattice 
systems. If we have some prescription to assign a state 
wA of ~(A) to every bounded sublattice A, and if there is 
a state w of ~, such that for each A E ~ (A0) and each 
bounded AO 

lim wA(A) = w(A) 
A➔"' 

*) In order to avoid too much overlap between these lec­ 
ture notes and the notes of lectures given at the confer­ 
ence on mathematical methods of comtemporary physics in 
London, 1971, most proofs have been omitted in this sec­ 
tion and the next. 
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we call w the thermodynamic limit of wA. In general that 
limit will not exist, but it can be shown that the sequence 
will have one or more accumulation points and that one can 
find subsequences converging to these limit points. 

We now apply this to the ground state. Consider a 
finite sublattice A, and let '±'0(A)E~A be the ground state 
of H(A). For simplicity we shall assume that for all A 
the smallest eigenvalue of H(A) is non-degenerate. We now 
define the state wA of ij(A) by 

Before taking the thermodynamical limit of wA we men- 
tion an important property of wA. 

Lemma 5.1: Let A and Brn(A), then the expression 

wA(A~B) can be extended to an entire function of a 
complex variable t which is uniformly bounded for 
Im t ,;; O. 

For the proof one writes wA as the expectation 
value of the vector '±'0(A), and uses the fact that 
'±'0(A) is the ground state of H(A). 

We shall now define what we mean by a ground 
state of the infinite system. Any state which is the 
thermodynamical limit of the sequence of ground states 
wA or of some subsequence of these is a ground state 
of the infinite system. Some properties of such 
states will now be given. 

Theorem 5.2: Let w be a ground state of the infinite 
lattice and A,BEij. Then 

i. w is invariant for at. 
ii. the expression w(atAB) can be extended to a func­ 
tion of a complex variable t which is analytic for 
Im t < 0 and uniformly bounded for Im t,;; 0. 

The proof is based on the fact that these properties 
hold for each A and that, as discussed in section 4, 
norm lim A~= atA. 

A-+"' 
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The analyticity condition expressed in theorem 
5.2 has some farreaching consequences as we shall 
show presently. One might even use that condition as 
the defining property of the ground s.tate of an infi­ 
nite system, although it is not yet known whether 
this new definition is equivalent with the earlier 
one. To discuss some implications of this condition 
let us introduce the spectrum condition. A state w 
which is invariant for o.t satisfies the spectrum con­ 
dition if in the representation determined by w the 
hamiltonian (i.e., the generator of the unitary group 
Ut which implements llt) ha.s a non-negative spectrum. 
We then have the 

Theorem 5.3: A state which satisfies the analyticity 
condition of theorem 5.2 is invariant and satisfies 
the spectrum condition, and vice versa. 

The next theorem concerns the unitary operator 

Theorem 5.4: Let the state w satisfy the analyticity 
condition of theorem 5.2, and let Ut be the unitary 
group representing llt in the representation n deter­ 
mined by w, then Ut En (ij) 11, where n (ij) 11 is the bicom­ 
mutant of n (ij) . 

An important consequence of this theorem is ex­ 
pressed by the 

Corollary 5. 5: If w is the only state satisfying the 
analyticity condition of theorem 5.2, then w is pure. 

6. The equilibrium state at T ,/, 0. 

The discussion in this section will be in many re­ 
spects similar to that in section 5. We start by defininf 
an equilibrium state for a finite lattice A. Let S=(kT)- , 
where k is Boltzmann's constant and T the temperature, then 
the state wA defined by 

with 



C1<-ALGEBRAIC APPROACH 301 

is the state of our lattice A corresponding to the canoni­ 
cal ensemble at temperature T (Gibbs-state). Using the 
definition of wA and the fact that the trace is invariant 
for cyclic permutation of factors, one proves 

A Lemma 6.1: Let A,BE!ll(A), then wJ\.(AtB) can be extended 
to an entire function of a complex variable t which 
is uniformlA bounded in the strip -S ~ Im t ~ O; simi­ 
larly wA(BAt) can be extended to an entire function of 
t which is uniformly bounded in O ~ Im t ~ S; in addi­ 
tion 

A A 
wA(AtB) = wA(BAt+iS) for -S ~ Im t ~ 0. 

We now take the thermodynamical limit of wA. 
This limit, or the limit of any converging subsequence 
of wA is, by definition, an eiuilibrium state of the 
infinite lattice at T = (kS)- . The following theorem 
expresses how many of the properties of lemma 6,1 are 
conserved by taking the thermodynamical limit. 

Theorem 6.2: Let w be an equilibrium state of the in­ 
finite lattice, and let A,BE!ll. Then 

i. w is invariant for at. 
ii. w (atAB) can be extended to a function of a complex 
variable t, which is analytic for -S < Im t < 0 and 
uniformly bounded for -S ~ Im t ~ O; similarly w(BatA) 
can be extended to a function, which is analytic for 
0 < Im t <Sand uniformly bounded for O ~ Im t ~ S; 
in addition 

w(atAB) = w(Bat+iSA) for -S ~ Im t ~ O. 

The proof of this theorem is very analogous to that of 
theorem 5.2. 

Definition: If a state has the property expressed in 
theorem 6.2ii, we say that the state satisfies the 
K,M.S,-condition. 

According to theorem 6.2 every equilibrium state 
satisfies the K.M.S,-condition. Like in the case of 
the ground state we would be tempted to use the 
K.M.S,-condition as the defining property of an equi­ 
librium state of the infinite lattice. It has the 
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advantage that it does not refer to the thermodynami­ 
cal limit. Again it is not known whether the two de­ 
finitions of an equilibrium state are identical. For 
finite systems, however, one can prove without diffi­ 
culty that any state which satisfies the K.M.S.-condi­ 
tion is a Gibbs-state. 

The K.M.S.- condition is in many respects the ana­ 
logue for T + 0 of the analyticity condition of theo­ 
rem 5.2. Also the following theorem is quite similar 
to one in section 5. 

Theorem 6.3: A state which satisfies the K.M.S.-condi­ 
tion is invariant for o.t. There is also a theorem 
that corresponds to theorem 5.4. According to theo­ 
rem 5.4 an element of the commutant TT(~)' commutes 
with Ut, since UtETT(~)". This means that the commu­ 
tant is pointwise invariant. In the case TfO we have 

Theorem 6.4: If w satisfies the K.M.S.-condition, then 
in the representation TT determined by w, all elements 
of the center TT(~)" n TT(~) ' are invariant. 

An important consequence of this theorem is the 

Corollary 6. 5: If w is the only state satisfying the 
K.M.S.-condition, then w is primary. 

In addition to these results which have their 
counterpart in the ground state case, there are other 
results that have no such counterpart. In particular, 
the K.M.S.- condition has farreaching consequences 
with regard to the representation space determined by 
was expressed by the following theorem [8]. 

Theorem 6.6: If w satisfies the K.M.S.-condition, then 
the cyclic representation (TT,~,O) determined by w has 
the following structure 

i. There exists an involution operator J such that 
JTT(~)'J = TT(~)" and JO= o. 
ii. J commutes with Ut 
iii. The positive operator T = U~i~ satisfies the 
equation rn (A)O = JTT (A) >'<o. 
An immediate and trivial consequence of this theorem 
is the fact that a state which satisfies the 
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K,M,S.-condition is not pure. Indeed, since J maps 
the Von Neumann-algebra onto its commutant, the com­ 
mutant is non-trivial, so that n is reducible and w 
not pure. 

7. Heisenberg-model with long range interaction. 

In this section we shall s~ow by means of a simple 
model how the K,M,S.-condition may be used to calculate all 
correlation functions of the equilibrium state. 

Our model is a molecular field approximation to the 
Heisenberg model. We obtain the hamiltonian of our model 
from that of the Heisenberg model 

~ 
x,yEA 

by replacing J(x,y) by J/N(A), where N(A) is the number of 
lattice points in A. We see that in our model the inter­ 
action between two lattice points is independent of their 
position. The potential iji depends, however, on A so that 
the results of section 4 concerning the time-evolution can­ 
not be applied. 

H(A) = \ J(x,y)a (x)cr (y)' 

Our model hamiltonian for the sublattice A is then 

J ... 2 
H(A) = \ N(A) (x~A cr(x)) . 

~ ... 
The operator xEA cr(x) has a simple meaning. It is (disre- 
garding a numerical factor) the operator for the total mag­ 
netization. The hamiltonian H(A) gives rise to an inner 
automorphism of !l!(A), from which we get the equations of 
motion 

1t cri(x) = i[H(A),cri(x)] = i NtA) x'~A cr(x')[a(x),cri(x)] 

(7. 1) 
1 ~ ... 

We notice that the operator N(A) xEA cr(x) is the operator 
for the average magnetization per lattice site. 

We shall now investigate what happens if we try to 
take the thermodynamical limit. In this limit the equa­ 
tions of motion (7.1) would have a well-defined meaning 
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provided the space average occurring at the right hand side 
has a limit in the C~<-algebra !l.l, This is, however, not the 
case. This means, among other things, that the hamiltonian 
in this model does not define an automorphism group of the 
algebra of observables. On the other hand, it is known 
that in certain representations space averages of the infi­ 
nite system exist, as, for example, expressed by the fol­ 
lowing theorem, which is due to Doplicher, Kastler and 
Robinson [9]. 

Theorem 7.1: If !l.l is asymptotically abelian with re­ 
spect to translations (in the sense that for all A and 
BE!l.l [aaA,B] ... 0 for \a\ ... "') and w is invariant for 
space translations, then in the representation deter­ 
mined by w the space average of an observable exists 
in the strong operator topology and is a c-number 
(multiple of the identity) if and only if w is ex­ 
trema 1 invariant. 

We shall apply this theorem and assume that our 
system is in a state w which is extremal invariant. 
We then consider the representation determined by w. 
For simplicity we shall use the same notation for the 
observables and their representants in B(:6). We can 
now replace the space average 

1
. 1 ~ ... 

A:: N(A) 'xEA ~(x) 

by the c-number ;, The equations of motion are now 

(7. 2) 

In this equation; is the average magnetization per 
lattice point in the representation determined by w. 
Clearly, the equations (7.2) are representation-de­ 
pendent. They give rise to the time-evolution 

(7. 3) 

This is an inner automorphism of !l.l which is, however, 
dependent on the choice of w, As we see, this auto­ 
morphism is even a local automorphism, in the sense 
that it is an automorphism of each !l.lx = B(~x). 
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Using properties of the Pauli-spinmatrices we can 
rewrite the equations (7.3) in the form 

2 ; ➔ 
cri(x,t)=cos (Jmt)cri(x)+i sin(Jmt)cos(Jmt); [cr(x),cri(x)] + 

2 mim ➔ 

+ sin (Jmt)(-cri(x) + 2 -2- cr(x)) 
m 

As we see illllllediately from (7.3) we have 

; a(x,t) =; a(x). 

(7 .4) 

(7.5) 

Since we want to calculate correlation functions 
of the system in thermal equilibrium at a given tem­ 
perature T, we shall assume that w satisfies the 
K.M.S.-condition. As we shall see the state is now 
completely determined. 

Using the equation 

mi=}~: N~A) x~A cri(x) (7. 6) 

and the fact that w is assumed to be translationally 
invariant, we find that 

mi = <cr i (x)>. (7. 7) 

We shall now make use of the K.M.S.-condition, 
applied to the operators A = o 1 (x) and B = o 1 (x). This gives 

(7. 8) 

According to the equations of motion (7.4) we have 

2 ; ➔ 
cr1(x,iS)=cosh (JmS)cr1(x)-sinh(JmS)cosh(JmS)m(cr(x),cr1(x)] - 

➔ 

2 mlm ➔ 

- sinh (JmS)(-a1(x)+ 2-2 a(x)). 
m 

If we substitute this in (7.8) we get the equation 
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1 = cosh
2 

(JmS) - 

m .. 
- sinh (JmS) cosh (JmS); <cr1(x)[cr(x),cr1(x)]> - 

2 mlm .. 
sinh (JmS)(-1+2 -2 <cr1(x)cr(x)>), 

m 

which after some simple calculations and using (7.7) 
may be reduced to the form 

tgh (JmS) = -m. (7. 9) 

Equation (7.9) determines the modulus m of the 
average magnetization of the infinite lattice. There 
is always a solution m = 0, and if J is positive, 
that is the only solution, However, for negative 
values of J another solution exists provided -SJ> 1 
or kT < -J. If we define the critical temperature T 
by means of the equation kTc = -J, then equation (7.9) 
admits a solution m 1' 0 if T < Tc. Hence, below the 
critical temperature there are two solutions, m = 0 
and another solution m ,/, 0, If one calculates the 
free energy corresponding to both solutions one will 
find that the solution with average magnetization 
m ,/, 0 has the smallest free energy. The other solu­ 
tion is therefore unphysical, One should notice that 
equation (7.9) determines the magnitude but not the 
direction of the spontaneous magnetization. The di­ 
rection remains arbitrary. 

We still have not calculated all correlation 
functions, which are of the form 

<cri (xl)cri (xz) .... >. 
1 2 

In order to do so, we consider the expression 

<AO> 
<O> (7. 10) 

where AE~x and OE~A' with x¢A. Let O be positive; 
then (7.10) is a state of ~x which, as one can check 
easily, satisfies the K.M.S.-condition. Now the lat­ 
tice site x alone is certainly a finite system. 
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According to section 6 the K.M,S,-condition applied 
to a finite system determines the state uniquely. 
Therefore this state of ~xis equal tow, so that 

<AO> 
<O> = <A>, 

or 

<AO> = <A><Q>. 

From this we conclude immediately to the result, that 
for different points xi 

We have now determined our state w completely. 
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WAVE-MECHANICAL FORMULATIONS OF EQUATIONS OF MOTION 

FOR GRAVITATIONAL SYSTEMS OF MANY PARTICLES 

Herbert Jehle 
George Washington UnivP,.·sity 

Washington, D. C. 

Many attempts have been made to give a hydrodynamical 
interpretation of wave-mechanics in view of explaining the 
latter in terms of hidden variables. This is not the ob­ 
jective of the present paper. Rather, we ask whether the 
hydrodynamical equations of motion for a large number of 
particles in purely gravitational interaction (i.e. a 
gravitational system) may be usefully reformulated in 
terms of a Schroedinger-type wave equation. The role of 
the fundamental constant h3, which characterizes the un­ 
certainty principle of ordinary wave mechanics is now 
taken by a macroscopic phase space volume CJ3 which charac­ 
terizes the coarse-grainedness of the den~ity and stream­ 
ing fields of the gravitational system. That phase space 
volume, rather than being a fundamental constant, is a 
quantity characterizing the systems in question. 

This wave-mechanical tool may usefully be applied in 
considering the recent development of the solar system, J 

assuming that the present solar system was preceeded by a 
large set of smaller masses under gravitational interac­ 
tion. It is suggested that the interacting set of parti­ 
cles undergo changes toward preferential orbital elements, 
changes which may be discussed in wave-mechanical terms. 
A study of the statistical aspects of such a purely gravi­ 
tational system should be the first step towards a dis­ 
cussion of the regularities of orbital elements, a study 
preceeding that of more complex models based on hydromag­ 
netic considerations and gas laws in addition to gravita­ 
tional effects. 

309 
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Diverse efforts have already been made in this direc­ 
tion. The most promising recent efforts have been done on 
the basis of computer calculations of a large number of 
mass points in interaction. Different assumptions about 
those systems have led to interesting but quite different 
results. Stan Ulam has given an analysis with the assump­ 
tion of mergings of any two mass points when they make too 
close an approach; the formation of double stars etc. is 
studied. 1 

Another approach uses conventional orbital perturba­ 
tion calculations to look into questions of stability of 
distributions and tendencies in the distribution of orbit­ 
al elements. Such calculations involve extremely complex 
sets of assumptions when it comes to a problem such as the 
development of the distribution of orbital elements in the 
solar system. So complex are these assumptions that only 
in the problem of distribution around the gaps in the sys­ 
tem of minor planets has progress been made, in particular 
by Dirk Brouwer, Wm. H. Jefferys, V. Szebehely, J.H. Bart­ 
lett, K.

2
Franklin, C. Sagan, M. Lecar and many other col­ 

leagues. 

In this note we concern ourselves with density - and 
streaming - field approaches (sometimes called hydrodynam­ 
ical) to gravitational systems,3 in particular to the de­ 
veloping solar system. As an earlier example we remind 
ourselves of the von Weizsaecker model of whirls. With 
the present note we want to propose a more specific model 
of the hydrodynamical category. We start from the recog­ 
nition that in a statistical dynamical system, the densi­ 
ty and streaming fields are only defined in a coarse­ 
grained way. 

To this effect, we consider a system of masses of 
various sizes, single or multiple masses or subclusters, 
and we consider each of these statistically independent 
elements to move in the same smoothed-out potential 
U(x,y,z,t), with superimposed potential fluctuations. For 
gravitational systems where the interaction is long-range, 
such a picture is pa.rticularly appropriate; close encoun­ 
ter terms, so important in the Boltzmann approach to the 
dynamical theory of gases, play here only a very subordi­ 
nate role. As, indeed, the large fluctuations of poten­ 
tial (and corresponding force fluctuations oFv per unit 
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mass, from the smooth field of force -VvU) have the pre­ 
dominant effect, the deflections of individual particles 
caused by these force-fluctuations are almost independent 
of the sizes of the masses of these deflected particles. 
For this reason, the force or potential fluctuation con­ 
cept is particularly adequate for gravitational systems. 
The fluctuations ca.use a diffusion superimposed upon the 
smooth streaming field in a manner similar to that ca.1- 
culated4by Einstein, Smoluchowski, Kramers, Uhlenbeck and 
others. 

Instead of a large number of assumptions needed to 
carry through calculations of the orbital type, the basic 
assumption about coarse-grainedness in the present ap­ 
proach is as follows. For simplicity of illustration, let 
us consider the statistically independent elements to be 
all of equal mass and consider the phase-space volume per 
independent element to be 

(1) 

By Liouville's theorem, applied to the smooth streaming, 
this volume stays constant, following a particular traj ec­ 
tory. As however, gravitational systems may usually be 
thought of as implying a fairly rapid mixing of phase­ 
space motion, (on the coarse grained scale), that particu­ 
lar volume becomes one constant characterizing the entire 
system. 

The situation therefore resembles pretty closely that 
of a Thomas-Fermi atom. In the Thomas-Fermi atom, however, 
all volumes cor~esponding to the lower stationary states 
are filled up to a certain level. But the situation is 
quite different in gravitational systems for which thermal 
types of considerations are not applicable. We may expect, 
e.g., in a developing solar system, to have the lowest 
states represented as well as groups of states correspond­ 
ing to the predecessors of the various planets and satel­ 
lites. For ea.ch group it is a large number of states which 
represent the large number of independent particles which 
a.re expected to have then formed the respective planets 
and satellites. 
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The coarse-grainedness also implies a limit to the 
strongest flattening of the system: consider a livz of the 
order of the ro~t mean square deviation of the system, 
6vz, times (4rr) . Then the system's thickness, 6z(4rr)½ 
has to be greater than or equal to the average distance 
liz between independent elements. Otherwise we would get 
a physically unrealistic picture of a perfectly flat sys­ 
tem with random distribution of elements in the plane of 
the system. Accordingly, 

6z 6v ., ½ CJ, z (2) 

where it turns out that this system constant is of the 
order of (M=mass of the system) 

a"'" MG/c (3) 

There is a certain analogy of that assignment to the quan­ 
tum mechanical one.5 Consider 

lix liv /c "" h/mc 
X 

lix liv /c "" CJ /c 
X 

hc/mc2 = 137 x 2rre2 /mc2 

(4) 

As mentioned in the introduction, the circumstance ex­ 
pressed in (3),(2) invites the description of a gravita­ 
tional system in terms of a Schroedinger-type wave equa­ 
tion. The hydrodynamical analogy of wave mechanics was 
first considered by Madelung and by Van Vleck who showed 
the equivalence of a Schroedinger equatioi to a continuity 
equation and an Euler-Bernouilli equation, cf. (5),(6),(7) 
and who also showed that there is a perfect a.na.logy to 
Liouville's phase-space conservation in quantum mechanics: 
if a wave packet is interpreted in terms of a distribution 
of appropriately chosen functions of position and momentum, 
the time development of such a wave packet follows the 
classical analog of invariance of the corresponding phase­ 
space volume due to Liouville's theorem. Further investi­ 
gations on these relationships have been made by Bohm, 
DeBrogli~, Wilhelm, Takabayasi, Fenye,, Weizel, Nelson, 
de la Pena-Auerbach, and many others. 

We are not here concerned with the hydrodynamical in­ 
terpretation of wave-mechanics, but rather with the wave 
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mechanical formulation of statistical dynamics, especially 
of coarse-grained hydrodynamical systems. They imply the 
laws of classical dynamics, plus statistical hypotheses. 
The latter ones are crucial. They might be formulated in 
terms of assumptions about orbital elements' distributions, 
about moments of velocity distributions, or, alternatively, 
they may be formulated in a more appropriate way in terms 
of coarse-grainedness, thus leading to the uncertainty of 
definition of the hydrodynamical fields. This indetermi­ 
nacy makes significant the continuity and the Euler­ 
Bernouilli equations alone, because the relations involv­ 
ing higher moments of velocity are expected to be over­ 
shadowed by the indeterminacies. 

Whereas in ordinary quantum mechanics, stationary 
states play a predominant role, here we have to deal with 
a set of many stationary states corresponding to a set of 
many particles. Discreteness effects which are so charac­ 
teristic for quantum mechanics, are therefore not discern­ 
able except for the coarse-graining phenomena like the a­ 
bove mentioned phenomenon of strongest flattening of a 
gravitational system. 

In this approach, superposition of probability ampli­ 
tudes ij,, rather than that of probabilities P, is assumed. 
One may ask what the role of such amplitude superposition 
is in the present theory. Interference effects arise in 
a trivial fashion in a gravitational setting which pro­ 
duces tidal effects. Interferences between initial lj, 
states and those resulting from time-dependent perturba­ 
tion theory due to a quadrupole gravitational field re­ 
produce the common tidal effects. In a more subtle set­ 
ting of perturbations, discussed in figures 1,2,3 and 
Eqs. (9),(14),(15), interferences cause time-dependent 
perturbation potentials which lead to transition relations 
of the type: 

Those relations are of the type, so familiar in atomic 
physics between energy levels; they have their counterpart 
in the orbital pick-up and release a~guments done with more 
clumsy classical statistical tools, 
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In the present paper, the point is made that the 
hydrodynamical equations for gravitational systems may 
appropriately be handled by wavemechanical techniques. 
Whether or not the developing solar system, in its re­ 
cent development stages, satisfies the conditions of being 
representable simply as a gravitational system is an en­ 
tirely different question. The numerical results shown in 
the table give, however, much credence to the feasibility 
of considering the orbital regularities to be explicable 
in such terms. Thus, if the assumptions about a system of 
masses in gravitational interaction are applicable, the 
wave-mechanical formulation provides for an irrnnensely use­ 
ful and reliable tool in formulating statistical dynamics. 
The basic inderterminacy assumption which replaces the 
former unwieldly set of assumptions is reminiscent of the 
situation is quantum mechanics in 1925, where the former 
complex set of hypotheses in terms of a Bohr orbiLal 
theory was replaced by quantum mechanics. 

The
8
basic formalism relating wavemechanics to hydro­ 

dynamics is given by splitting the wave equation 

into 
3 

+ \ 'v (l$l2v S) + (o/ot) lwl2 =O (6) l V V 
1 

and a generalized Euler-Bernouilli equation including the 
rest energy c2 • 

3 
o S/ot+l l,('vvS)2 - ("a2 /2 I$ l)'v2 I$ l+u+c2 0 (7) 

1 
The third term represents pressure potential due to mean 
square deviation of velocities. 

A developing solar system in our terminology is under­ 
stood to mean the following: from a certain time in the 
past onward, hydromagnetic effects and gas laws did no 
longer play a role important for the development of the 
present-day distribution of orbital elements. Such sys­ 
tems have been discussed in Poincare's "Lecons sur les 
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Hypotheses Cosmogoniques":9 Particles moving with high ec­ 
centricity or inclination experienced more encounters than 
other particles and thus fell towards the central region 
which left only direct orbits of moderate inclinations and 
excentricities. Gravitational interaction and rare en­ 
counters were considered then to have been responsible for 
the development towards preferential orbits. 

We may then assume that in this already flattened 
early solar system, a subcluster was formed at the loca­ 
tion of Saturn and particles with Jupiter's orbital ele­ 
ments had also been present in great abundance. Saturn 
and Sun being considered as second and first bodies in a 
restricted three-body system (orbiting circularly about 
each other), we may ask what influence they may have on 
the Jupiter particles. It may easily be seen that Jupiter 
particles, under the influence of the Saturn cluster, make 
preferential transitions toward orbital elements which are 
approximately those of Uranus. In other words, Jupiter 
particles not only form Jupiter, but also may be thrown 
into Uranus orbits. 

In order to see this we have to take recour~e to the 
discussion of the restricted three body problem, given 
in the appendix. Using a rotating coordinate system, ro­ 
tating with angular velocity O about the center of mass of 
Saturn and Sun, the gravitational potential is time inde­ 
pendent. The Jacobi constant is an integral of the equa­ 
tion of motion, the value of the Hamiltonian for that sys­ 
tem's small third bodies. Diagrannnatically, it is shown 
in Fig. 1 that with Saturn considered as the second body, 
Uranus and Jupiter have approximately the same Jacobi con­ 
stant C=E-OLz. It is however by no means obvious that 
this may permit a transition of Jupiter particles to 
Uranus because the Hill limit surfaces prevent such third 
body transitions. Indeed, the regions below the curved 
lines -EL22=const (which represents circular orbits in the 
energy-angular momentum diagram) are unphysical regions. 
They correspond to regions forbidden by the Hill condition 
i-2::e:o (eq. (11)). 

In the orbital picture to which we shall refer in 
greater detail in the appendix, this transition from Jupi­ 
ter to Uranus may be considered as follows: A highly 
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Lz 

Figure 1 

Fig. 1 expresses a relationship between Jacobi-constant 
levels; in this case the Jacobi-constants, with 
respect to Saturn chosen as second body in the re­ 
stricted three body problem, are drawn as the par­ 
allel lines. It is seen that Jupiter and Uranus 
lie approximately on the same level. The relation­ 
ship is formalized in Eq. (15). Direct and retro­ 
grade circular orbits are on the lines -EL~= con­ 
stant. The diagrams are drawn with the first body 
considered as predominantly massive; energy E and 
angular momentum Lz are given in equation (12). 
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eccentric and quite massive particle of the Saturn swarm 
dives deeply into the Jupiter region, picks up a. small 
Jupiter particle, which then moves in a. hyperbolic orbit 
relative to that Sa.turn particle, and may thereafter be 
released from the latter upon reaching its aphelion re­ 
gion. Under appropriate assumptions, the released parti­ 
cle is then expected to have the same Jacobi-constant with 
respect to Sa.turn as it had before the pick-up. That re­ 
leased particle in general does not have a. circular orbit 
with respect to the Sun. The transition to orbital ele­ 
ments closely resembling those of present day Uranus is 
assumed to be a. subsequent process in which these released 
Ura.nus particles move along the line of constant value of 
Jacobi-constant until they reach the somewhat circular or­ 
bit, i.e. the intersection with the curved line, Fig. 1. 
The statistical assumptions, needed to calculate this pro­ 
cess, as assumptions needed for any orbital type transi­ 
tion, a.re very complex; it is well known to those who have 
worked on such statistical problems that it is very diffi­ 
cult to make trustworthy a.sstnnptions because of the enor­ 
mous complexity and arbitrariness of the situation. We 
have therefore found it more convincing to discuss this 
issue of equality of Jacobi-constants of Jupiter and 
Uranus (both with respect to Sa.turn) on the basis of wave­ 
mechanica.1-hydrodyna.mical description. 

In the wave-mechanical description there is evidently 
no tunnel effect which leads Jupiter particles to pass 
through the unphysical region to Uranus particles. The 
aforementioned eccentricity of some Saturn particles (and 
presumably also of some Jupiter particles) implies that 
the wave functions of Saturn particles and Jupiter parti­ 
cles overlap, lea.ding to a gravitation potential whose 
time-dependence is chacterized by the beat frequencies of 
those overlapping wave functions. That gravitational po­ 
tential, in turn, will ca.use transitions from the Saturn 
wave functions to Ura.nus wave functions, i.e. transitions 
characterized by the same (Jacobi-constant) level distance 

C -C = C -C Saturn Ura.nus Sa.turn Jupiter (8) 

Indeed, in the rotating coordinate system, the 
Schrodinger type equation corresponding to equation (5) 
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has the form, cf. (12), 

[-\ c? (v> 2+'7 2+'7 2)+U-i aO(yv' -xv' )+c2H 
X y Z X y 

where, crw=C the Jacobi-constant for a. o/ function of fre­ 
quency w, and O is the angular velocity of the Sa.turn-Sun 
system. The wave function of such a. system is a. super­ 
position of a very wide range of energy eigenstates of 
what corresponds to quantum numbers ranging in the order 
of 106 in the cases of our planetary and satellite sys­ 
tems; we do not expect coherence effects to arise. 

The aforementioned level relationships a.re the out­ 
come of ordinary time-dependent perturbation theory. Be­ 
sides the above-mentioned relationships, 

C -C =C -C second body pickup particle second body release parti- 
cle, (10) 

which is pictured in figure 1 , we have also to expect 
similar relationships with opposite signatuf·e to occur, 
such as shown on the level schemes in figures 2 and 3. 

Appendix 

The Jacobi integral (for a small third body moving in 
the field of the first and second bodies which go in cir­ 
cular orbits about each other) is obtained by using a re­ 
ference frame, x,y,z, which rotates with the constant angu­ 
lar velocity O a.bout the center of mass of the first and 
second bodies. In that frame, the potential energy 
U(x,y,z) is time independent, oU/ot=O. Multiplying the 
equations of motion x-20y-02x=-ollox etc., by x, etc, one 
obtains irrnnediately the first form of the Jacobi integral 

(11) 

along the pa.th of the third body. As the term \(x2 +:f +z2) 
cannot be negative, a third body of given Jacobi constant 
C is limited in its motion to regions in x,y,z space 
bounded by the "Hill limit surfaces" x2+y2+z2 =O in Eq. (11). 
The corresponding Langrangian defines the momenta. 
P = x-Oy, P = y-+Dx, P = z; these are the (third body's) 
X y Z 
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URANUS ( PLUTO 
NEPTUNE 

MERCURY 

Figure 2 

Fig. 2 shows the Jacobi-constants of the major planets all 
referred to Jupiter as the second body. 
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E 
Lz 

/' IAPETUS 
\...,.,,, ....... 

.,. ....... HYPERION 
/ 

~;HEA 

MIMAS 

RINGS 

Figure 3 

Fig. 3 shows the Jacobi-constants of Saturn's satellites 
with respect to Titan as second body. 
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x,y,z components of velocity in the inertial system. Ex­ 
pressing (11) in terms of Px,P ,P one obtains y z 

\(P 2+P 2+P 2) + U-O(xP -yP) - E - OL 
X y Z y X Z 

C (12) 

(12)denotes the Hamiltonian H which, since oU/ot=O, is 
constant. For circular orbit approximation about a pre­ 
dominant first body of mass M, E = -½GM/a, Lz = (GMa)~ 
which are applicable to a third or to the second body. 
We may plot E and Lz in a diagram often employed by 
B. Lindblad10 (Fig. 1). Parabolic orbits are at E = O, 
circular direct and circular retrograde orbits are 

-EL 2 = constant (=\(GM)2). z (13) 

Elliptic orbits lie between these two curves (13); the re­ 
gion left and right ~f that pair of curves is unphysical. 
The slope O=(GMa2 -a) of a line E-OLz=C in this diagram 
is equal to that of a line tangent to (13) at the point 
which would correspond to E, L of the second body, be­ 
cause(13) implies dE/dLz = -2E,Lz = o. The constant C 
labels the different parallel lines. Figure 1 is crudely 
simplified in that it does not show a tip at the location 
of the second body. 

As an illustration of the application of the Jacobi 
integra1 we may refer to a note on the evolution of 
comets. 1 In that case Jupiter was considered as the 
second body in the restricted three-body problem for ob­ 
vious reasons. 

We are now in the position to formulate in detail the 
consequences of the above-mentioned transitions, illus­ 
trated in Fig. 1. This relationship between Jupiter and 
Uranus, due to Saturn acting as a second body implies that 
the tangent line of Saturn, which has the slope o, and the 
line connecting Jupiter and Uranus (in line with both the 
Jupiter and Uranus Jacobi line), have the same slope. Ac­ 
cordingly, in terms of the circular orbital elements of 
the three planets, we haves 

(GM)\a-3/at""(dE/dL) t=0=6E/H ... (GM)\ \(aJ-i -aU-i )/(aU\-aJ\) sa z sa z u r r u 

(14) 
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with Saturn considered as the second body. 

We may now ask what occurs if the swarm of Jupiter 
particles is considered as the second body and the inter­ 
action with Sa.turn particles is considered. Transitions 
will occur to wave functions corresponding to particles 
located in the minor planet region; if they a.re assumed to 
adjust to approximately circular orbital condition, the:( 
would be expected to be found at the location 446 x 101 cm, 
as indicated in table one. Similarly, if the particles 
forming a. Ura.nus swarm a.re considered to represent the 
second body, they lead to transitions from Saturn to Pluto 
regions. In other words, the mechanism described in Fig.l 
may be considered to lead to sequence of orbital elementsS 
given in the second column of Table 1. There a.re two more 
such planetary sequences, both corresponding to the transi­ 
tions illustrated in Fig. 1. We note that these theoreti­ 
cal sequences nicely correspond to the actual sequences. 
In the first of these sequences we have started with the 
accurate semi-major axes of Jupiter and Sa.turn; the second 
sequence with accurate values for Sa.turn and Neptune; the 
third represents a crude interpolation sequence. With the 
present masses of minor planets, the second sequence would 
not be meaningful in regard to connecting the inner planets 
with the outer planets, but there may have been a. larger 
amount of mass present in the minor planet region a.t the 
time to which we refer when the transition occurred. 

Very beautiful is the coincidence of some of the 
theoretical sequences for Saturn satellites with the ob­ 
served data.. Also of interest a.re the sequences for Jupi­ 
ter's a.nd Ura.nus' s satellites. The figures given in paren­ 
theses correspond to non-observed satellites. 

Figures 2 and 3 correspond to situations in which 
only the heaviest planet (Jupiter) or heaviest satellite 
(Titan) are considered a.s second bodies. The approximate 
matching level spacings ma.ya.gain be a.n expression for in­ 
teractions of the second type: for example, the overlap 
between Jupiter and Mars particles ca.using a time-depend­ 
ent potential, which in turn causes transtion from Mars 
particles to Earth particles. 
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TABLE l 

We list semi-major axes of major planets and 
satellites; the transitions shown in Fig. 1 lead to 
theoretical sequences for major axes, sequences in 
which any three consecutive entries have the rela­ 
tionship shown in equation (15), (i.e. fig. 1), the 
middle entry as the second body. 

System of 

Mercury 
Venus 
Earth 
Mars 
Minor Pl. 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

Planets, semi major axes to la11cm. 

(Observed) (Three theoretical sequences) 
57.85 55.5 

108.11 108.5 
149. 45 
227.7 

(414) 
777. 6 

1428 
2873 
4501 
5900 

446 
777. 6 

1428 
2896 

230 
538 

108 
155 
227 
341 

1428 

4501 
5920 

Saturn's 

Rings 
Janus 
Mimas 
Enceladus 
Thetys 
Dione 
Rhea 
Titan 
Hyperion 
Lapetus 
Phoebe 

Satellites, semi major axes in 108 cm. 

(Observed) (Three theoretical sequences) 
120 120 120 
160 
188.5 
252.5 
299 
383 
534 

1240 
1503 
3580 

13031 retrogr. 

150 
189 188 

239 240 
311 307 

399 
520 535 525 

1268 

3574 

(Continued next page) 
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Table 1 (cont'd) 

Jupiter's Satellites, semi major axes in 108 cm. 

(Observed) (Three theoretical sequences) 
V 181 184 181 185 

(275) 
I Io 420 419 420 
II Europe 667 663 
III Ganymede 1068 1068 1068 1080 
IV Gallisto 1877 1825 

(3166) (3065) 
VI 11430 
VII 11890 11690 11730 
X 12010 
VIII etc 24000 retrogr. 

Uranus Satellites, semi major axes in 108 cm. 

(Observed) (Two theoretical sequences) 
Miranda 131 132 
Ariel 193 195 

(253) 
Umbriel 268 268 

(332) 
Titania 440 440 
Oberon 588.5 588 588 
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FUNCTIONAL TECHNIQUES AND THEIR APPLICATION 
IN QUANTUM FIELD THEO.RY 

John R. Klauder 
Bell Telephone Laboratories, Incorporated 

Murray Hill, New Jersey 

1. INTRODUCTION 

In the broadest sense, functional methods permeate 
all of quantum theory, and the reason for their appeal is 
self-evident, Whether it be in the Schrodinger represent­ 
ation, the utilization of a specific group or algebra rep­ 
resentation, the path integral approach of Feynman, the 
generating functional for time-ordered operator fields, or 
otherwise, functional techniques serve to bring quantum 
theory into the realm of analysis and subject therefore to 
the powerful tools of that discipline, 

Yet for all the powerful techniques we still seem 
to be in the dark as to the proper formulation (let alone 
a meaningful solution!) of many problems in quantum field 
theory. One may adopt the approach of elaborating an ele­ 
gant -- but largely formal -- structure purporting to 
solve a given field theory along more-or-less standard 
lines. Or one may proceed otherwise, Quantum field theo­ 
ry is, after all, the quantum theory of an infinite number 
of degrees of freedom, and covariant field theories are an 
important, but nevertheless small, class of such theories. 
Models with other invariance groups, particularly noncom­ 
pact invariance groups, frequently have instructive les­ 
sons to offer if existence questions with regard to their 
construction can be overcome. 

The analysis of certain classes of models is a pri­ 
mary goal of these lectures. The key to their analysis 
lies in a close interplay between functional techniques, 
probability theory and Hilbert space methods some parts 
of which may be unfamiliar to the average reader. 

329 
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Consequently, these methods are reviewed and developed to 
the extent needed in the next two chapters, Chapters 2 and 
3. The basic model field theories to be discussed -- the 
ultralocal scalar field theories -- are developed in Chap­ 
ter 4. (Some material, especially that on scale-invariant 
models and scale dimension of the fields, is presented here 
for the first time.)* 

In Chapter 5 a new class of model field theories is 
discussed, a class which contains covariant fields as ex­ 
amples, and about which a surprising amount of structual 
information can be ascertained, Insofar as these models 
are obtained from a "base theory" by extension to an addi­ 
tional dimension -- and also in virtue of the impressive 
geological surroundings in the Boulder area -- we adopt a 
suitable nomenclature from the geological sciences and re­ 
fer to these as diastophic models,** 

In the remainder of this chapter we revisit some of 
the classic functional formulations of quantum field 
theory, and examine some elementary features of an infi­ 
nite number of degrees of freedom, To demonstrate that 
new wealth still lies within the province of a functional 
formalism it is incumbent upon us to show the relation­ 
ship of our results to those predicted, or at least sug­ 
gested, by one or more of the classic functional tech­ 
niques surviving -- due to their elemental and fundamental 
truths -- from earlier eras, This brief comparison is 
discussed in Chapter 6, Hopefully, insight into the Great 
Problems may be won from analyses such as those presented 
in these notes. 

* General references for the material presented in these 
notes appear in the Reference section at the end. 

** diastrophism, n. The process or processes by which the 
earth's crust is deformed, producing continents and ocean 
basins, plateaus and mountains, folds of strata; also 
the results of these processes. diastropic, adj. : 
Webster's Third New International Dictionary (G. and C. 
Merriam Company, Springfield, Mass., 1959). 
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1.1 CLASSIC FUNCTIONAL APPROACHES TO QUANTUM FIELD 
THEORY 

331 

By way of illustration suppose we deal with a scalar 
field, ~(x,t) defined for xER.8, an a-dimensional configu­ 
ration space. The purpose~of quantum field theory, it may 
be stated, is to provide a realization for the local 
field operator ~(x,t). Supposedly, one has the Hamilton­ 
ian X and the space-translation generator r obtained by 
"correspondence" with some particular c-number theory. 
For instance, in a self-interacting covariant example we 
suspect that 

X = J (\[TT2+(_::~)2 + ~~2] + V[~]}d~ , 

TT(~) ¢(~, and 

[~(~), ~<i) J = io(~-;v - 

(1-1) 

Stated otherwise, an equation of motion, such as 

(□ + m~)~(x) = -V'[~(x)], (1-2) 

should determine the space-time dependence of the field 
operator. 

An analogue of Schr~dinger's formulation of quantum 
mechanics arises when we formally diagonalize the field 
operator ~(x) (at t = 0) and represent it by multiplica­ 
tion, say by A(x). The conjugate operator TT(x) becomes 
-io/&A(x); and ~chr~dinger's equation, Xt = El, is a func­ 
tional ctifferential equation in which 

(1-3) 

Elegantly simple, and heuristically almost preordained, 
such a prescription nevertheless requires "renormalization 
ru Ies 11, which are usually deduced by the insertion of one 
or another cutoff. 

The situation is little different in the other 
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classic functional fonnulations. Take, for example, 
the system of coupled (time-ordered) Green's function equa­ 
tions, or for conceptual simplicity that equation sat­ 
isfied by the (Schwinger) T-product generating functional 

0 {j} = < olTeiJ~(x)j(x)dxlo>, 

where j(x) is a c-number (test) frmction. In a standard 
fashion the equation of motion (1 - 2) may be cast into 
an equation for n, namely 

A formal solution may be obtained using a functional Four­ 
ier transform, 

which leads to the solution 

O{j} = NJeiJj(x)s(x)dx + iI(i;} '11;, 

where 

I(i;) Jf~[(oµi;}2 - m~1;2J = V[i;]}dx 

- lo(!;} = JV[i;]dx 

denotes the classical action and N is chosen so that 
O{O} = 1. This equally elegant, but quite formal path in­ 
tegral solution may be re-expressed according to 

O{j} = e-iJv[&/i&jJdx NJeifj(x}i;(x)dx + il0(1;}'11; 

= N'e-iJv[&/i&j]dx e-\Jj(x}~F(x-y}j(y)dxdy, (1-4) 

which is a useful heuristic expression, where as usual (in 
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four-dimensional space time) 

. I e -ipoXd4p 
~(x) = (2~)'• p2-m~+ie 

333 

Cutoffs Require Caution 

How simple field theory would be if these formal 
notions really worked! The traditional remedy for the 
malaise contained in the preceding formulas is an appli­ 
cation of cutoffs, both covariant and noncovariant, One 
device, for example, replaces 6F in (1-4) by 

a botmded, continuous ftmction so that the interaction 
term is locally defined. Such modifications in the func­ 
tional formalism need not respect the underlying quantum 
theory, and correspond, in this case, to indefinite metrics. 
Eventually one links m0, the coupling constants, etc,, to 
A and attempts to pass to the limit A➔00• 

Although conceptually reasonable -- and of unbeliev­ 
able accuracy in the case of quantum electrodynamics -­ 
there is just no a priori assurance that such procedures 
are physically reasonable. Consider the hypothetical 
class of models with classical Hamiltonians 

(1-5) 

When N < 00, the quantum mechanics is straightforward; how­ 
ever, the limit of those straighforward quantum construct­ 
ions as N ➔ 00 exists only so long as A➔ 0 leading at the 
same time to a free thoery, Nevertheless, the quantum 
theory for N = 00 can be formulated directly (via syunnetry 
arguments) without passing through a sequence of cutoff 
theories, and is, as it should be, not a free theory (AiO). 
The qualitative differences between the true theory and 
each member of the sequence of cutoff theories are exten­ 
sive and of unexpected varieties (e.g., reducible 
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representation of the canonical field and momentum opera­ 
tors; Hamiltonian inexpressible solely as a function of 
the canonical operators; etc.) Such gross differences be­ 
tween the true no-cutoff theory and the nonexistent limit 
of the conventional cutoff theories suggest an attitude of 
caution with regard to cutoffs: they work when they work, 
and they don't work when they don't! In the absence of 
definitive information a conservative viewpoint is advis­ 
able -- and this is just the attitude we adopt in the anal­ 
ysis of the model field theories which we discuss in later 
chapters. 

To criticize cutoffs is by no means to criticize the 
concepts of renormalization, that is, the recognition that 
the naive construction of the Hamiltonian (say) is often 
incorrect and that counterterms of various types may be re­ 
quired. For instance, in some simple examples the counter­ 
terms have the principal effect of enforcing a specific 
representation of the field operators to be used in con­ 
structing the Hamiltonian, Examples of this type demon­ 
strate the existence and relevance of inequivalent repre­ 
sentations, and illustrate their relationship to renormal­ 
ization effects. 

1,2. ELEMENTARY EXAMPLES OF INEQUIVALENT REPRESENTATIONS 
OF FIELD OPERATORS 

Consider the example of a collection of independent, 
identical harmonic oscillators with the Hamiltonian 

together with the commutation relation 

[Q p J n, m i 6nm; n,m = 1,2, ... 

It follows that the operator 

F = .f. ~ pa 
N N n=l n 

commutes with all the Pm and fulfills [FN,Qml = -i4Pm/N 
provided N ~ m. Thus as N ~ 00, lim FN=F

00 
commutes with all 
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the Pm and Qm, and it ought to be a multiple of unity for 
an irreducible representation. To evaluate F00 we may em­ 
ploy the ground state lo> of the system as follows: 

. 2 N 
lim <OI FN lo>= lun N n~l <OIP~\O> = w. 

Here we see a dynamical quantity, the energy level, derived 
from kinematical variables. For two different dynamical 
systems of this type characterized by wand w' r w, the as­ 
sociated canonical operators cannot be unitarily equivalent. 
For, in the contrary case, where Pn' VPnv-1 holds for all 
n, it would follow that 

w' = F '= lim F ' 
oo N VwV-l = w 

which is manifestly incorrect. Thus these distinct dynam­ 
ical systems require inequivalent representations of the 
canonical operators. There is just no escaping this fact, 
even in so simple an example as an infinite number of in­ 
dependent harmonic oscillators! 

Once it is recognized that inequivalent representations 
arise, examples can be envisaged in which many such repre­ 
sentations appear simultaneously. Consider the hypotheti­ 
cal model with Hamiltonian 

2 

~ = ~~~ [Pn2 + (P~ + Q~) n=l ~ - (P~ + Q~)J +~(pg+ qg - 1) 

in which Po and Q0 are an additional canonical pair. Here 
it is clear that pg+ Q~ is a constant of the motion and 
can be diagonalized to have the value 2p+l, p=0,1,2, •••• 
In the subspace characterized by p, the remaining oscilla­ 
tor variables are characterized by a representation of the 
preceding type with w = 2p+l, and hence, in each subspace, 
by an inequivalent representation. 

Another elementary example is given by 
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For each real value c we again deal with an inequivalent 
representation of Pn and Qm. Consider the operator 

which commutes with all the Qm and fulfills [GN,Pm] = i/N, 
N ~ m, Hence G00 = lim ~ commutes with all canonical oper­ 
ators and is a multiple of unity. This representation 
"tag" can be evaluated, much as before, by 

G 
00 

-c. 

Again, for two different models, characterized by c and 
c' # c, we must have inequivalence of the canonical opera­ 
tors. For, in the contrary case, where~= VQnv-1 holds 
for all n, it follows that 

-c 
-1 V(-c)V -c 

violating our assumption. We may extend this model in an 
evident fashion by "promoting" the constant c 1-to a dynami­ 
cal variable. Imagine that c is replaced by w w, the num­ 
ber operator corresponding to a single fermion degree of 
freedom, and that we choose for the Hamiltonian 

Here, WtW is a constant of the motion having eigenvalues 0 
and 1; in each of the corresponding subspaces an inequiva­ 
lent representation of the canonical boson operators appears. 
This example is evidently similar to a static nucleon cou­ 
pled by a Yukawa coupling to a meson field. Note the need 
for an infinite nucleon mass renormalization (when the 
bracket is expanded out), which compensates the perturba­ 
tion theoretic diagrams 
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,,..-.._ ,,. ._ ( ' ,, 
' ' + I + .. ' t i \. ., --~ 

corresponding to the "infinite nucleon self mass." 

A broader class of primer models is provided by 

where, e.g., 

and Eis chosen so that the ground state~ of ~1 has zero 
eigenvalue. An essential feature of this example (like the 
earlier ones) is a noncompact invariance group ("transla­ 
tion"), 

which leaves the Hamiltonian invariant, Formally it is 
clear that 

converges as r ~ 00 to a multiple of unity, 

A(p) 

which can be evaluated by 

A(p) = lim < 0 leipQrj O > = J eipx ~2(x) dx. 

Here ~(x) (assumed real) is the Schrodinger representative 
of the ground state ~1• Equivalence of two representations 
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involves equality of their A values for all real p, and 
hence, essentially, equality of the grotmd state ~(x). 

Model Building: 
Embellishments and Diastrophisms 

The simple example given above illustrates a rudimen­ 
tary type of "embellishment" of a simpler underlying prob­ 
lem, namely the single degree of freedan problem, Classic­ 
ally one could assert that 

and its straightforward discrete embellishment 

made sense, However quantum mechanically as we know this 
is not quite right since the minimum energy would be~ E=00• 

An energy adjustment is the only "renormalization" required 
in discussing the quantum theory for discrete embellish­ 
ments, which are therefore quite straightforward. 

However, continous embellishments are a different mat­ 
ter altogether! By continuous embellishment we have in 
mind that p and q are "promoted" to functions of a real 
variable wER, p~p(w), q-oq(w), and the embellished Hamilton­ 
ian is taken as 

H = J H1 (p(w), q(w)) dw. (1-6) 

Such a straightforward classical embellishment has, for its 
cotmterpart, a complicated quantum embellishment which will 
be the subject of considerable study on our part in these 
notes (Chapters 4 and 5). It is this process of model build­ 
ing to which we associate the geological term "diastrophism," 
corresponding to extension into a new dimension. The re­ 
striction a<w<b defines a certain "stratum," and it is clear 
that different solutions may be running their course simul­ 
taneously, but quite independently, in different strata, 
Finally, while we have illustrated a diastrophic model (1-6) 
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based on a single degree of freedom problem, the base 
theory H1 may also be a field theory, say a covariant one 
with Hamiltonian given in (1-1). The diastrophism of such 
field theories is the subject of Chapter 5. 

2. HILBERT SPACE AND PROBABILITY THEORY 

2.1 VECTORS AND OPERATORS: SELECTED PROPERTIES 

Although the main ideas of Hilbert space used in quan­ 
tum theory are generally well known, it is useful to empha­ 
size some of the less common aspects that we will find es­ 
pecially useful. In dealing with a specific problem it is 
often of great utility to focus on a specific realization 
of Hilbert space matched to the problem in one way or an­ 
other. For example, the practical utility of L2(R3

) for 
the Schrodinger equation of a particle in three dimensions 
is clear, although, in principle, L2(R) is "equivalent." 
Aspects of a problem unseen in one realization may become 
self-evident ii1 a more appropriate realization. Thuo it 
becomes not only useful to be aware of the abstract fea­ 
tures of Hilbert space analysis, but also, if possible, 
to appreciate their concrete aspects in specific realization~ 

Dense Sets and Total Sets 

Abstractly a dense set of vectors i contained in a 
separable Hilbert space~ is characterized by the property 
that for each $E~ and e>O, there exists a vector ~E~ such 
that 11 ep- $ 11< e. This may be accomplished by a countable 
set of vectors in~, but this need not be the case. A 
total set of vectors rr is characterized by the property 
that finite linear combinations of the vectors in a total 
set are dense, or, by the property that (~,$)=0 for all 
~Err implies that $=0. Again, a total set may be countable 
(e.g. a complete orthonormal basis) but this need not be 
the case. 

A Useful Convergence Criterion 

Convergence of operators under various conditions fre­ 
quently arises. Often one deals with a sequence of uni­ 
formly bounded operators BN and questions whether or not 
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this sequence converges weakly to an operator B, that is 
whether 

for all~. $ Et. An especially useful Lemma -- which we 
do not prove but frequently use -- is the 

Silver Lemma*: For a sequence (BN} of uniformly bounded 
operators to converge weakly to an operator Bit is neces­ 
sary and sufficient that the sequence of complex numbers 
(~i,BN$j) converge for arbitrary members ~i• $j in total 
sets. 

Numerous examples of the Silver Lemma will appear sub­ 
sequently, but it is useful to give one example here. 
Suppose that we employ the Hilbert space '.,2 composed of 
square summable sequences (zn}, and that (BN)mn = o onN• 
which is uniformly bounded. In the total set of or~~o­ 
normal vectors of that basis it is clear that (BN)mn .... 0 
as N .... 00, and thus we are assured that (w=weak) 

w-lim BN = 0. 

Operators and Forms 

However what happens if BN is!!£!. uniformly bounded? 
Suppose as an example we choose (BN) = N2omNo Nin a 
given basis in t2• Clearly, as N .... 00,miBN) .... 0~ but the 
conditions of the Silver Lemma do not applf~. In particu­ 
lar, consider the dense set of vectors lzn} for which 

z = d /n n n 

where lim dn=dco exists. Between vectors of this type 

~ z*(B) z' = d*d' 
m,n=l m N mn n N N 

* So named because of its great utility and fundamental 
role, and in analogy with the "Golden Rules" of quantum 
mechanics. 
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namely the matrix elements converge but observe that they 
are sensitive to thy details of the "final entry" of the 
vectors {zn} and {zn}. If lim BN were an operator, then 
the resultant expression would have to be continuous in 
the vector {z }. In particular, if lim BN were an opera­ 
tor, it shou18 follow that 

lim lim ~ z*(B) z' O, 
M-<= N➔= m=M m N mn n 

n=l 

* I but this limit equals d
00
d

00 
which is in general different 

from zero. Such behavior is characteristic of so-called 
forms, which are defined for specific ( dense to be useful) 
sets of kets and bras. We will occasionally encounter 
forms as wellas operators, and it is frequently a useful 
generalization. Indeed, it is often convenient to charac­ 
terize operators as well as forms by total sets of matrix 
elements. The Riesz Representation Theorem [which states, 
for example, that every continuous antilinear functional 
A ( { z } ) on .(,2 can be put in the form Z:: z~a , where the 
squa¥e-summable sequence {a} is determine~ by A] can be 
used to help establish whetRer a given expression repre­ 
sents the matrix elements of an operator, or instead cor­ 
responds to a form. 

2.2 RANDOM VARIABLES : SELECTED PROPERTIES 

Probability Distributions 

The theory of probability is so closely related to 
various aspects of quantum theory that much profit follows 
from cross fertilization of the two fields. A real random 
variable is characterized by a probabiltiy distribution 
µ(x) satisfying three basic properties: 

(i) Nondecreasing: µ(x+h) ~ µ(x), h>O; 
(ii) Right continuous: µ(x+O) = µ(x)~µ(x-0); 

(iii) Normalization: µ(-00) = 0, µ(=) = 1. 

Such functions admit a canonical decomposition into dis­ 
crete (d), singular (s) and absolutely continuous (ac) 
components: µ=aµ + bµ + cµ , where a~o, b~O, c~O and 
a+b+c = 1. The ~iscre~e portion contains the discontinui­ 
ies ofµ; the reminder, µ-aµd, is continuous. All discrete 
distributions are of the form 
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µd(x) = ~ pj 9(x-xj), 

where p.>O, and 9(x) is the degenerate distribution having 
unit diJcontinuity at x=O. A singular distributionµ (x) 
is continuous, but has a derivative for which µ~(x) =sO 
almost everwhere (a.e.). In addition, there exists a set 
N of Lebesque measure zero for which 

JN dµs(x) = 1. 

An absolutely continuous distributionµ (x) is the inte- x ac 
gral of its derivative, µac(x) = J...., p(x)dx, where the den- 
sity function p(x) = µ~c(x);eQ, and is evidently L1 (R), i.e. 
Jlp(x) ldx<a>. A distributionµ which has only one component 
(e.g., a=l, b=c=o) is called pure (e.g., purely discrete). 

Characteristic Functions 

To each distribution µ(x) we associate a characteris­ 
tic function C(s) defined by 

C(s) = Jeisxdµ(x). 

Every characteristic function is a contin~ous function, and 
respects the conditions C(O) • 1, C(-s)=C (s) and lc(s) l~l. 
The decomposition of probability distributions leads to a 
corresponding decomposition of characteristic functions: 

C(s) = aCd(s) + bC (s) + cc (s). s ac 

Every discrete characteristic functions Cd(s) is an almost 
periodic function and satisfies lim sup Cd(s) = 1 ass .... 00• 

Every absolutely continuous characteristic function has the 
form 

J 
isx 

C(s) = e p(x)dx, 

and since p(x)EL1 (R) it follows from the Riemann-Lebesgue 
Lemma that lim sup Cac(s) = 0 ass .... a>. [In general, this 
is only a @cessary criterion for a distribution to be ab­ 
solutely continuous since there are examples of singular 
distributions for which lim sup Cs(s) = C for any value of 
C in the range ~,~1.J A sufficient condition for a dis­ 
tribution to be absolutely continuous is that J\c(s) jds<00• 

Indeed, in that case, it even follows that 
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-1 J -isx p(x) = (2n) e C(s)ds 

is continuous. 

An important condition for the convergence of a se­ 
quence of characteristic functions is give!) by the 
Continuity Theorem: A sequence C (s) = Jeisxdµ (x) of 
characteristic functions convergei to a charact~ristic func­ 
tion C(s) = Jeisxdµ(x) if and only if the functions Cn(s) 
converge point-wise to a function C(s) which is continuous 
in the neighborhood of s=O. In such a case one asserts 
that the sequence of probability distributions µn(x) con­ 
verges (weakly) to the probability distribution µ (x). 

An important criterion for a function C(s) to be a 
characteristic function is contained in 
Bochner's Theorem: A function C(s) is the characteristic 
function of a probability distribution if and only if (i) 
C(s) is continuous, (ii) C(O) = 1, and (iii) C(s) is a 
"positive-definite function," i.e. 

N * 
i,!=l aiaj C(si-sj) ~ 0 

for all reals., complex a. and N <., The importance of 
the last condiEion followsifrom the desired relation 

N * i(s.-s.)x N is.x 2 ~ a.a. Je i J dµ(x) = JI.~ aie i \ dµ(x) ~ 0. 
i,j=l i J 1•1 

2,3 RELATION OF HILBERT SPACE AND PROBABILITY THEORY 

Self-Adjoint Operators 

Unbounded operators abound in quantum theory, and do­ 
main questions are an unavoidable by-product. The vector 
cpEx'>., an abstract Hilbert space, is in the domain of A, fJ A , 
provided that AcpEr;.., If tiA is dense and the relation 
($ ,Acp) = (w~,cp) holds fortsome $ and all cpEt;A' then we may 
identify w~ = At$ where A is the adjoint operator. The 
set i for which such a condition holds defines the domain 
of A , ti At . If t; A = t; At and A = At on ii A, the operator is 
called self-adjoint. 
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In most physical applications one is interested in 
self-adjoint operators, for it is such operators which are 
the generators of unitary transformations. However, the 
domain conditions specified above are often complicated to 
verify. It is therefore of interest that an alternative 
characterization exists as now outlined. 

Unitary One-Parameter Groups 

A unitary one-parameter group is a family of operators 
U(s) which fulfills the conditions: 

(i) U(o) = I, the identity operator; 
(ii) U(s)U(s') = U(s+s'); t 

(iii) U(-s) = U(s)-1 = U(s) , 

and weak continuity, i.e., continuity of the function 
(cp,U(sH) for all cp,o/ESJ. A fundamental theorem asserts 
that every unitary one-parameter group U(s) is generated by 
some self-adjoint operator A, and that U(s) = elsA. More­ 
over, cpE~A if and only if (isf1[U(s)-l]cp co,nverges in norm 
as s-0; and the limit is the vector Acp. 

Spectral Resolution 

Another fundamental theorem associated with self-ad­ 
joint operators is the spectral theorem. To each self­ 
adjoint operator A is associated a familt of projection 
operators E(x) [i.e., E2 (x) = E(x), E(x) = E(x)] with the 
properties 

(i) Nondecreasing: E(x+h);:, E(x), h>O; 
(ii) Right continuous: E(x+o) = E(x);:, E(x-0); 

(iii) Normalization: E(-00) = 0, E(00) = I. 

In terms of this spectral family 

A= f xdE(x), 

and similarly for various functions of A such as 

eisA = J eisx dE(x). 

Relation to Characteristic Functions 

Evidently the mean of the last expression in the state 
o/ leads to 
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J eisx d(ljr ,E(x)ljr) 

J 
isx e dµ(x) = C(s), 

which associates the characteristic function of a proba­ 
bility distribution to each self-adjoint operator A and 
state ljrE~. To give examples of various distributions it 
suffices to give the operator A and the state ljr, A dis­ 
crete distribution is given by 

which leads to the characteristic function Cd(s) 
A singular distribution is given by 

00 1 1 ljr=TI ®-() 
n=l /2 1 n 

cos s. 

which leads to the characteristic function 
00 / n Cs(s) =n!h cos (s 3 ) • An absolutely continuous distribu- 

tion is provided by A=Q, the Schrodinger position opera2or, 
and ljr any wave function ljr(x) so that Cac(s)=Je sxiljr(x) I dx. 

2.4 SPECIAL CLASSES OF PROBABILITY DISTRIBUTIONS 

Statistical independence of the variables x1 and x2 follows from the factorization condition 

(eis(x1+x2)) = (eisx1) (eisx2), 

or the equivalent statement that the characteristic func­ 
tion C(s) of the variable x = x1+x2 is given by c1(s)c2(s). 
It is clear that C(s) is a characteristic function since 

C(s) = c
1
(s)C

2
(s) = JJeis(xl+x2)dµ

1
(x

1
)dµ

2
(x

2
) 

J isx = e dµ1*2(x) 

where 
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which fulfills all the criteria to be a distribution func­ 
tion. 

If the distributions µ1 and µ2 are equal,
2
then it 

follows from the foregoing that C (s) = [ c1 (s)] defines a 
new characteristic function, and this property extends to 
an arbitrary integral power, C(s) = [C1(s)]m, m:el.

1
;Con­ 

versely, in this case, it would follow that [C(s)] m=C1(s) 
would be a characteristic function, but in general such 
fractional powers do not lead to characteristic functions. 

Infinitely Divisible Distribution Functions 

There is an important class of distributions (and 
therefore of characteristic functions) called infinitely 
divisible characterized by the property that 

[C(s)Jl/m = C (s) 
m 

is a characteristic function for all positive integers m. 
An immediate consequence is that LC(s)Jn/m is a character­ 
istic function for all positive integers n and m, and thus 
by the Continuit~ Theorem [as the ratio (n/m) .... T] it fol­ 
lows that [C(s)] is a characteristic function for all real 
T>O. Examples of infinitely divisil;>le characteristic func­ 
tions are: the degenerate, C(s) = e1as; the Gaussian, 

C(s) = e-bs
2

, b>O; and the Poisson, C(s) = eA(eis_l) A>O. 

If C(s) denotes a characteristic function, then the 
expression 

C(s) = ep[C(s)-l], p>O 

defines an infinitely divisible characteristic function. 
An important theorem asserts that these special examples 
are dense in the set of all such characteristic functions; 
namely, we have 
De Finetti's Theorem: Every infinitely divisible charac­ 
teristic function is obtained as the limit 

C(s) = lim epm[Cm(s)-l] (2-1) 

as m .... "', where pm>O and Cm(s) are characteristic functions 
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for all m'~. Specifically, if C(s) is infinitely divisible 
then [ C(s)] 1/m = C (s) is a characteristic function so m 
that 

which is a construction in the manner of the theorem. 

A canonical representation, due to Levy, asserts 
that C(s) is an infinitely divisible characteristic func­ 
tion if and only if 

ln C(s) ias-bs
2+ J 

lxl>O 
(eisx_l - isx )da(x) (2-2) 

l+x2 

where a, b, and a are real, b;eQ, and cr is a positive meas­ 
ure fulfilling 

2 
J <½) da (x) < 00 

lxl>O l+x 

It has been shown that either b>O or J \ l>Odcr (x) = 00 is x ac 
sufficient for C(s) to be absolutely continuous. 

The class of symmetric [C(-s) = C(s)] infinitely 
divisible distributions is characterized by the fact that 

C(s) = -bs
2
- e J [1-cos(sx)]da(x). 

lxl>o 

(2-3) 

We shall encounter this formula often in our further 
studies. We term the initial contribution the Gaussian 
component, and the latter the non-Gaussian (or Poisson) 
component. 

Stable Distributions 

A further specialization within the class of proba­ 
bility distributions are the so-called stable distributions. 
The characteristic functions of such distributions have the 

,~ The converse is straightforward: Every characteristic 
function of the form (2-1) is infinitely divisible. 
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property that for every iJ1>o and i32>o there exist a il>O 
and real y such that 

(2-4) 

It follows from this relation that for all m 
C(s) = [C(il s)]m eiyms for some il >O and y . Thus [C(s)]l/m 

m m m 
is a characteristic function for all m, and hence stable 
distributions are infinitely divisible. 

We confine our attention only to symmetric stable 
distributions, C(-s) = C(s). The functional relation (2-4) 
can be used to show for symmetric stable distributions that 

C(s) = e-k\s !'\ 
where a, the exponent of the distribution, satisfies O<n~2, 
and k>O (we exclude the uninteresting case k=O). On refer­ 
ence to (2-3) we see that n=2 corresponds to a Gaussian 
distribution, while the other cases for which O<n<2 corre­ 
spond to non-Gaussian distributions (b=O) where 

dcr(x) = k' \x\-(l+a)dx; \x\>O. 

All stable distributions are absolutely continuous as fol­ 
lows from the fact that C(s) E L1(R). (Stable distributions 
will arise in our analysis of scale invariant field theory 
models.) 

2. 5 FUNDAMENTAL PROPERTIES OF ANNIIIILATION AND CREATION 
OPERATORS 

Single Degree of Freedom 

Many of the properties and techniques of use in a 
field theory have their analogue in a single degree of 
freedom framework. Imagine that a and at are the annihila­ 
tion and creation operators of a single degree of freedom 
which fulfill the commutation relation [a,at] = 1 (i.e., 
the identity operator). T~f ftate \O> satisfies a\O> = 0 
and the vectors \n> = (n!) 2a n\O> for all n form a total 
set in~- The vectors 
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I -½ I z 12 CX) zn z> = e ~ -r. 
n=O ✓ n; 

349 

In> 

for all complex z, are the coherent states and they enjoy 
a number of interesting and useful properties. For example, 
they are total in I'), and they are eigenstates of a, 

alz> = zlz>. 

The inner product of two such states reads 

I 
-½lzl

2
-½lz' 12+z*z' <z z'> = e , 

and although normalized they are never orthogonal. The 
unitary operator 

t * U(z) = e(za -z a) 

defines the coherent states, [z> = U(z) \O>, and leads to 
the "translation formula" 

-1 U(z) a U(z) =a+ z. 

Coherent state matrix elements of normally ordered opera­ 
tors are especially easy to compute. For if :B(at ,a): 
expresses the operator, then 

<zl:B(at,a): lz'> = B(z*,z') <zl~'>. 

Moreovef it follows riadily that the diagonal elements 
<z I :B(a ,a): [z> = B(z ,z) actually determine the operator 
since B(z*,z') can be constructed from a knowledge of 
B(z*,z). 

The basic relation 

iTata t -iTata 
e a e 

Lr t e a 

implies that 
. t 

el.Ta a [z> I eiT z>. 
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From the expression 

Lr a ta I <zl e z> 

it follows that 

i-r * e(e -l)z z 

Lr t 
(e -l)a a :e (2-5) 

A number of other properties are enjoyed by coherent 
states, such as a simple resolution of the identity, but 
they will not be of use to us in these notes. 

Infinite Number of Degrees of Freedom 

Let us introduce a field of formal annihilation and 
creation operators A(y) and At(y) where yERn for some n, 
which fulfill the relation 

[A(y), At (y')] = o(y-y'). 

Again we assert that A(y) Jo>= 0 for ally, and that l'l is 
spanned by repeated action of the formal creation operators 
acting on the vacuum IO>. These requirements dictate that 
we deal with the Fock representation of A and At. The vec­ 
tors 

I$>= e-HIHy) l
2
dy eJHy)At (y)dylo> 

2 for all $(y)EL are coherent states. Such states are total 
in S'.l, but so too are any subs2t of coherent states in which 
$(y) lies in a set dense in L !in the L2 topology). For 
example, the set of functions C0 (which are infinitely dif­ 
ferentiable and of compact support) leads to a total set of 
coherent states. The eigenstate property reads 

A(y) I$> = HY) lw>. 

The inner product of two such states is given by 

<wlw'> = exp{-JE~IHY)l
2 + ~lw'(y)i

2 
- w*<yH'(y)]dy}. 

The unitary operator 

U(ij,) = exp {J[$(y)At (y) - w*(y)A(y)]dy} (2-6) 
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defines the coherent state, \ijr> = U(ljr) \0>, and leads to 
the "translation fonnula" 

As in the simple case above, coherent state matrix elements 
of normally ordered operators are simple to evaluate, and 
in particular 

<ijr \ : B(At ,A) : \ijr '> = B(ijr*, ijr ')<ljr \ijr '>. 

If we set 

A J t W = A (y) w A(y)dy, (2- 7) 

where w is a self-adjoint operator acting on the variable 
y, then 

A A 

isWAt() -isW iswAt() e y e = e y 

h isw . . f . h . bl were e 1.s a unitary trans ormat1.on on t e var1.a e y. 
It follows, in particular, that 

A 

isw where ljrs(y) = e *(y). The analogue of (2-5) reads 

. J t J t isw e1.s A (y)wA(y)dy = : e A (y)(e -l)A(y)dy: 

as may be seen directly from their action on coherent 
states. 

Bilinear Operators 

We shall be especially interested in studying operators 
of the fonn 

W - U(i;)-l ~ U(I;) 

= J[At(y) + i;*(y)] w[A(y) + i;(y)]dy. 

where U(I;) is given by (2-6), assuming that wl;(y)EL2. 
If we introduce 

( 
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B(y) = A(y) + s(y), 

then we have the relations 

W = JBt (y)wB(y)dy 

and 
• J t J t isw eisW eis B (y)wB(y)dy = : e B (y)(e -l)B(y)dy: 

Thus it follows that 

<$ leisWlw'> 

* * isw = exp (J[w (y)+s (y)](e -l)[w'(y)+s(y)]dy} <wlw'>, 

and in particular that 

<OleisWIO> = exp (Js*(y)(eisw_l)s(y)dy}. 

We are especially interested in studying these latter 
two equations for sequences of operators Wn defined by 
sequences of translations s (y) which are not restricted to 
have a limit in L2 (not res\!ricted to a Cauchy sequence). 
Let us introduce the notation 

_ J * isw J (s) = s (y)(e -1) s (y)dy, n n n 

and 

~ (y,s) = (eisw_l) s (y)EL2, 
n n 

2 where we assume that ws (y)EL for all n. Now several 
important criteria can Ye distinguished. 

Convergence to Characteristic Function: The sequence of 
characteristic functions 

C (s) = <OleisWnjo> 
n 

converges, in virtue of the Continuity Theorem, to a char­ 
acteristic function C(s) provided that the sequence J (s) 
converges pointwise to a continuous function J(s)=ln fl(s). 
By DeFinetti Is theorem C(s) will be an infinitely divisible 
characteristic function. 
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Weak Operator Convergence: 
tors eisWn converges weakly 
the Silver Lemma, provided 
verges and that the vector 
weakly to a vector ~(y,s). 

The sequence of unitary opera­ 
to an opera.tor B, in virtue of 

that the sequence Jn(s) con­ 
sequence ~n(y,s) converges 

T~ue as this last result is, we may wish to ensure 
that eisWn converges to a unitary one-parameter group char­ 
acterized by eisW. This entails further conditions on the 
sequences Jn(s) and ~n(y,s) which are summarized as 

Strong Opera.tor Convergence: The sequence of unitary one­ 
parameter groups eiswn converges w'?akly, hence strongly, 
to a unitary one-parameter group el.SW provided that the 
sequence Jn(s) converges pointwise to a continuous func­ 
tion J(s) and that the sequence~ (y,s) converges strongly 
to a vector ~(y,s) continuous in ~he parameters. If such 
is the case, we say that 

(2-8) 

in the sense described above. 

Note again, in these various contexts, that ~either 
ws (y) nor s (y) need to be Cauchy sequences in L , so long· 
asnthe othernconditions are fulfilled. This construction 
will be often used explicitly and implicitly in subsequent 
chapers. 

We conclude this chapter with an outline of the proof 
of the last convergence criterion. This re$ult is readily 
proved if we note that (s = strong) s-lim eisWn = U(s) is 
ensured provided 

I \(eisWn - eisWm) \$>\ 12 = 2[1-Re<$ \elsWneisWm\w>J 

is a Cauchy sequence for a. total set of unit vectors, say 
for all coherent states. From the bilinear form of Wm it 
follows, for each coherent state \$>, that 

eisWm\$> = eiB(m) \$ >• 
(m) ' 

that is, apart from a. phase, we obtain a new coherent 
state, where 
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S * -isw Im * (y)(e -l)s (y)dy, m 

Weak convergence, implied by strong convergence, already 
demands that w-lim cpm(y,-s) = cp(y,-s), and thus 

lim e(m) = 9 = - Im J **(y)cp(y,-s)dy. 

Hence strong convergence of eisWm\*> is fulfilled provided 
that 

2 is a Cauchy sequence for a dense set of *(y)EL. However, 
it may readily be shown, for two coherent states \ *> and 
\*'>, that 

2c1-e-\l\*-*'l\\,;;11 \*> - '*'>\12 

,;; 4( \\*'I+\ I*'\\)''*-*'\\, 

where \ \* \ \2=Jj*(y) \2dy. Consequently, convergence of 
\ \* - *<m)l is equivalent to convergence of (2-9). Thus 
we A~~d strong convergence of (eisw_l)sn(y)=cpn(y,s) for all 
s. The combination law U(s)U(s') = U(s+s') follows from the 
strong coftinuity, while the properties U(o) = I and U(s)-1= 
U(-s) = U (s) are straightforward. Finally, continuity of 
J(s) and cp(y,s) are needed to secure the weak coi;i.tinutiy, 
completing the requirements in order that U(s)=eisW with W 
self-adjoint. 
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3. FIELD OPERATORS AND CURRENT ALGEBRAS: 
GENERAL FEATURES AND SELECTED REPRESENTATIONS 

3.1 EQUAL TIME COMMUTATION RELATIONS 

355 

Heuristic Formulation 

A common starting point for the formulation of a 
quantum field theory is the introduction and analysis of 
various kinematical operators. In canonical theories one 
usually deals with a collection of field operators cpr(.e) 
and conjugate momentum operators rrr(.e), r=l, ... ,R, that 
fulfill canonical commutation relations (CCR) of the form 

[cpr(~), rrs(y)] = i ors 6(,e-y). 

Frequently, one identifies the conjugate momentum rrr(,e) 
with cpr(.e) = -i [cpr(.e) ,:K], where '.IC is the Hamiltonian 
operator, but there is no requirement that this be so. A 
further common assumption is that the kinematical opera­ 
tors -- rp and rr in this case -- form an irreducible set 
of operat6rs, ana therefore that all operators including 
:K can be expressed as functions of cpr and rrr. However, 
this assumption is not always valid; for a generalized free 
field, for example, the representation of the CCR is re­ 
ducible and :K is not a function solely of the field and its 
conjugate. 

Besides the usual canonical operators, other field 
algebras have recently become of importance. Current alge­ 
bras usually consist of a family of local fields jr(.e), 
r=l, ... ,R, which satisfy the equal-time commutation rela­ 
tion 

where Crst are the structure constants of a Lie algebra. 
In such approaches one often imagines, as before, that the 
jr(~) form a complete set of operators, i.e., constitute 
an irreducible representation, and that, as a consequence, 
operators such as the Hamiltonian are expressible in terms 
of the basic fields. 
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Smearing Functions 

The formal relations given above need to be augmented 
before a careful study can be initiated. Fields at a point 
are generally not well defined operators (but are rather 
forms) as is suggested by the presence of the o function 
in the preceding relations. Smearing with test functions 
is generally required leading to the relation 

where 

cp (f) r 
etc., and 

(f,g) = J f(~)g(~)d~. 

In the case of the current algebra we obtain 

where (fg)(~) = f(~)g(~). Observe that in either of the 
two cases if the supports off and g lie in distinct re­ 
gions of space the operators commute. For the most part 
we leave the class of test functions open; however they may 
be assumed, for convenience, to be infinitely differentiable 
and to have compact support. 

Bounded Operator Formulation 

One further refinement is traditional and useful, and 
that consists of replacing the unbounded field operators by 
bounded unitary operators (assuming that the smeared field 
operators are self adjoint). That is, attention is ini­ 
tially focussed on the operator families 

icp(f) irr(g) ij(f) e , e , e 

(suppressing indices) for test functions belonging to some, 
suitable real linear topological vector space. The commuta­ 
tion relations are replaced by such laws as 

icp(f) irr(g) irr(g) icp(f) - i(f,g) e e = e e 
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which is known as the Weyl form of the CCR, and 

eij(f) eij(g) = eij(f·g) 
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where f·g represents multiplication within the group. 

An essential fact, evidently, is the study of a family 
of self-adjoint operators we may generically call W(f) and 
associated unitary operators eiW(f) for suitable test func­ 
tions f. In the remainder of this chapter we primarily 
concentrate on Abelian and non-Abelian field algebras with 
only an occasional reference to the CCR's. 

3.2 FUNCTIONAL CHARACTERIZATION OF CYCLIC REPRESENTATIONS 

There are a number of ways to study representations of 
a family of unitary operators eiW(f). In a separable Hil­ 
bert space, such as we assume, every representation is a 
direct sum of cyclic re~r~ientations. A cyclic representa­ 
tion of the operators e W~) is one for which there exists 
a vector -- call it \O> -- for which the vectors 
\f> = eiW(f) \O> form a total set, Such a representation is 
uniquely determined up to unitary equivalence by the expec­ 
tation functional 

E(f) - <O\eiW(f) \O> 

defined for all fEu, some suitable space of test functions. 
At the very least E(f) is ray continuous, i.e. continuous, 
for each f, in the variables, 

E(sf) = <O\eisW(f) \o>, 

since eisW(f) = U(s) is by assumption a unitary one-para­ 
meter group. However, for simplicity we shall generally 
assume that E(f) is continuous in some suitable topology 
for the space u. In most cases this is a very mild assump­ 
tion. 

The characterization of the representation by E(f) is 
plausible since it follows (from the group property) that 

<f"\eiW(f) \f'> = E(f"-l•f•f') 
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determines a total set of matrix elements of the operators 
eiW(f). Indeed, one of the classic realizations of the 
representation space makes a rather direct use of the func­ 
tional E(f). In this realization the Hilbert space ele­ 
ments are functions 

Hf) = <f\$> = E c.<f\f.> 
l. l. 

-1 = E ci E(f • fi) 

defined over u. The norm of such an element is defined by 

\ \ H ·) \ \ 2 = E c. c ": E ( f: 
1 

• f.) " 0, 
l. J J l. 

(3-1) 

which is non-negative in virture of E being a positive - 
definite functional. Infinite sums are admitted provided 
the partial sums form a Cauchy sequence in theiij9~ as 
usual. The group composition law for U[g] = e lgJ is 
realized according to 

I I -1 I -1 (U[gH) (f) = <f u[gJ $> = <g ·f $> = Hg •f) 

All other realizations of eiW(f) which have the same expec­ 
tation functional are unitarily equivalent to the one just 
outlined. 

Abelian Algebras 

In spite of the equivalence of other representations 
it is often very convenient to have other realizations for 
practical applications. In general these are not easy to 
come by. If one deals only with an Abelian family of fields 
W(f) -- say just ~(f) -- then it is possible to diagonalize 
that field and work in a representation analogous to the 
Schrodinger representation. In this case we have a relation 
like 

E(f) = <O\ei~(f) \O> = J ei(A,f)dµ(A). 

Where A represents a generalized function andµ represents 
a type of measure on such functions. We quote without 
proof two theorems pertaining to such a situation. 
Representation Theorem 1: In order for E(f), where fEu, a 
linear topological space, to be the Fourier transform of a 
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positive normalized cyclinder set measure*µ on u' (the 
dual space to u) it is necessary and sufficient that E(f) 
be a positive-definite functional, (sequentially) continu­ 
ous and fulfill E(O)=l. 

Representation Theorem 2: Any continuous, positive-definite 
functional E(f) on a nuclear space** u such that E(O)=l is 
the Fourier 1;ransform of a (countably additive) normalized 
measure on u 

Given a representation of E(f) as a Fourier transform 
in accord with either of the two preceding theorems, a 
natural functional Hilbert space £2 emerges. The space £2 
is composed of (measurable) functionals w(A) such that 

I lwl 1!2 = J IHA)l
2
dµ(A) < a>, 

The cyclic vector IO> is represented by the functional 
"one", and the action of the operat9X ficp(f) is given by 
multiplication by the functional eil •) Other operators-­ 
for example, the conjugate momentum if it exists--would 
involve a function~l differential operation on the 
functionals w (A) El (u' ,µ). It is in such a framework that 

*A cyclinder set measureµ may be regarded as a sequence of 
compatible measures µNon RN such that 

N J ei(A,f)dµ(A) = lim Jeu:;l;\.n(hn,f)dµN((;\. }) 
N-(X) n 

where A restricted to RN equals ~Nl;\. h (e). 
nn 

*~'Let ~-i;• r=l,2, ... , be a family of Hilbert spaces with ele­ 
ments fc~f that may be identified such that (i) tr+l c ~r• 
(ii) 11 fl s 11 fl I r+l where 11 fl Ir is the norm appropriate 
to ":>rand (iii) ~s=T~l':lr, where for any rkthere is an s>r 
such that Tr is nuclear, i.e., Tr(TrtT~) 2 <a>, A nuclear 
space is th~n basically characteriz~d as the closure of the 
countable Hilbert space CT1 l'lr in the metric 

d(f)=~i' 2-rl If I I f~i+I If I ff~. For example, let ~l =J 
2

, f=(zn}, 
and, define if r=~nrlzn . The( fEu if and only if nrzn-0 
as rr(X) for all r. The sequence f k)-o (ind), i.e., 
d(flk)_o, p:i;ov) Lded 11 f(k) 11 r-o for all r, namely, provided 
sup nrz tk =A (k)-o for all r (n) n r · 
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one would seek to make precise the realization of the con­ 
jugate operator and the Hamiltonian heuristically presented 
in Chapter 1 in Eq. (1-3), but this is not our concern at 
this point. · 

3.3 TRANSLATION, CLUSTER AND SCALE INVARIANCE CONDITIONS 

Translation Invariance 

In an effort to limit the vast number of possible rep­ 
resentations, let us impose several desirable physical 
properties, Let us assume that we deal with a translation 
invariant dynamical problemj and, correspondingly, a trans­ 
lationally invariant state O>. If there was a unitary 
family of translation operators U(!!) with the properties 

U(~)-l ~(~)U(~) = ~(~-~) 

u(~) \o> .. \o>, 
then it would follow, for all £Eu and all ~ERs, that 

E(f) - E(f ) , a 

where fa(~)= f(~+~). Conversely, if E(f) = E(fa) it fol­ 
lows that there exists a unitary set of operators U(~) with 
the stated properties. This already follows from the func­ 
tional realization introduced earlier in which one can de­ 
fine 

The unitarity of this set of transformations, and the ex­ 
istence of an invariant cyclic vector all follow from the 
invariance and continuity of the expectation functional 
E(f). 

Cluster Decomposition 

Not only should \O> be translationally invariant but 
in many problems it should be the unique invariant state. 
Physically, this uniqueness reflects the expected statisti­ 
cal independence of experiments carried out in two remote 
regions of space. Mathematically, this feature takes the 
form of a factorization, 
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<f"\U(,1!) \f'> ... <f"\O><O\f'>, 
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as \.e\ ... ®. Consequently, we impose on invariant expectation 
functionals the requirement that 

lim E(f"-l·f~) = E(f"-l) E(f'). 
l.e \ ... ® 

Since this is, by hypothesis, a total set of matrix elements 
of a uniformly bounded sequence of operators the Silver Lem­ 
ma ensures that 

w-lim U(,1!) = \O><O\. 
I.!! I--® 

This behavior holds independent of the direction in which 
spatial infinity is approached. 

In general, invariance and clustering properties se­ 
verely limit the class of interesting representations. It 
is useful to note an alternate characterization of these 
functional restrictions. Suppose we introduce 

E(f) = e -L(f), 

where L(O) = 0 and L(sf) is finite for any fEv at least 
whenever sis i~ some neighborhood of the origin. More 
generally, if flk) .. o in v and E(f) is continuous in v as we 
ass\WI~, then it follows that there exists a K such that 
E(flKJ),' 0, for all k2':K, and consequently L(f(k)) is well 
defined for all k2!:K, Actually, in many cases of interest 
L(f) is well defined for all fEv. 

The invariance condition E(f) • E(f) evidently re­ 
quires that L(f) • L(fa). The cluster p~operty translates 
into the requirement 

lim L(f"-l·f') .. L(f"-l) + L(f'). 
I.el➔® a 

It is perhaps worth noting the relationship of L(f) to 
the truncated vacuum expectation values of the field opera­ 
tor. These may be introduced through a generating funct­ 
tional which is defined by 
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<Olei~(f) \O> = e<Ol(ei~(f)_l} \o>T. 

Thus, it follows that 
CX) 

-L(f) • <Olei~(f) lo>T-1 = l (n!)-lin<O\~n(f) IO>T 
n=l 

assuming a power series expansion for purposes of illustra­ 
tion. 

Scale Invariance 

Another transformation which is occasionally intro­ 
duced is the scale (or dilatation) transformation. Such a 
transformation makes sense for a free massless field, and 
it is often assumed to hold for an interacting theory in 
which only dimensionless parameters appear. In such cases 
we assume that there exists a family of unitary operators 
V(S), s>O, such that V(S)V(S')=V(SS'), with the properties 

v-1(s)~(~,t) V(S) = sd ~(S~,St), 

v(s) lo>= lo>, 

where dis called the scale dimension of the field. For a 
canonical theory, by which we mean that 

[~(~,t), ~(y,t)J = i o(~-y), 

the scale dimension has its canonical value 

d = \(s-1) 
C 

wheres is the number of space dimensions. However, other 
values of d arise as well. 

If we set t=O, it follows that 

V-l(S) ~(f) V(S) m ~(f(S)) 

where 
d-s -1 

f(S)(~) = S f(S ~). 



FUNCTIONAL TECHNIQUES 363 

Consequently invariance of the expectation functional takes 
the form 

E(f) (3-2) 

for all s>O. 

Unitary Equivalence of Representations 

A criterion for equivalence or inequivalence of two 
representations can often be established with the aid of 
the expectational functional. Let us assume that invari­ 
ance and cluster properties hold under the translation 
group U(E). When such is the case it follows that 

weakly converges as IEl•«X> to a multiple of unity as may be 
seen from the total set of matrix elements 

iW(f) 
<f"le a If'> = E(f11-

1,f ·f') 
a 

and an application of the Silver Lemma. Assume, for ex­ 
ample, that f,f', and f" all have compact support so that 
for large enough l.@.I the factors commute and 

E(f"-l,f ·f') = E(f"-l•f',f )-+E(f"-l·f') E(f). a a 
From this relation we even observe that as IEI -+00 

iW(f ) iW(f) 
w-lim e a• <Ole lo>• E(f). 

This property holds for each fEu, which means that for each 
f, E(f) is a "tag" for the representation. 

If two such representations are unitarily equivalent 
such that 

V-1 iW(f) V iW' (f) e "' e 

holds for all fEu, then it follows that as IEI -+00 
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iW' (fa) _1 iW(fa) 
E'(f) = w-lim e = w-lim V e V 

= V-l E(f) V • E(f). 

But if E' (f) = E(f) for all f we are already assured that 
the representations are equivalent. On the other hand, if 
E'(f) ~ E(f) for any f, then no V exists and the represen­ 
tations are inequivalent. 

In summary, therefore, distinct expectation functionals 
label inequivalent representations. Note this argument 
makes no statement regarding the reducibility or irreduci­ 
bility of the representation; the only ingredients are in­ 
variance and cluster decomposition. 

3.4 INFINITELY DIVISIBLE REPRESENTATIONS OF FIELD ALGEBRAS 

In this section we wish to construct expectation func­ 
tionals which incorporate the various features we discussed 
above. We do not attempt to determine all such representa­ 
tions but rather those which are analogues of infinitely 
divisible distributions. This is most conveniently carried 
out in the framework of exponential Hilbert spaces which is 
quite directly based on the Fock space methods introduced 
in Chapter 2. 

Exponential Hilbert Space 

Consider an abstract Hilbert space ti and the Fock 
space ~ based on it, ., 

~ =$ (g®n) s' 
n•O 

where the symmetric subspace is implied. For each $El) we 
associate the unit vector \$>E~ based on the definition 

\$> ea NEB (n!)-~ ($181n) 
n•O s 

where N = ex!,) [ -~ ($, $)] is a norma.lization factor such 
that \ \ \$>\ l•l. To each ~El) we associate an annihilation 
operator A(~), antilinear in~. with the property that 
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A(cp) lw> = (cp,w) lw> 
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(3-3) 

Observe that the states lw> are just the coherent states 
again and (3-3) expresses that they are eigenstates for 
A(cp). We have the relations 

[A(cp), A(tJ,)t] = (cp,tJ,), 

and 

where 

U(tJ,) = exp [A(tJ,)t - A(tJ,)]. 

A bilinear operator [compare Eq. (2-7)] 

W ea (A,wA) 

is characterized by its coherent state matrix elements, 

<w lwlw'> = <w,w w')<w lw'>, 

and it follows that 

(3-4) 
A 

If w is self adjoint on ~ , W is se 1f adjoint on t. 

Now consider that wmw(f), W•W(f) are smeared field 
operators and that the w(f) correspond to some current al­ 
gebra. That is, we imagine that 

[w(f), w(g)] = i w([f,g]) 

in some unspecified but fairly self-evident notation. 
Then it follows that 

A A 

[W(f), W(g)] = (A, [w(f), w(g)]A) 
A 

... i w ([ f' g]) ' 
namely, that W(f) also satisfies the same algebra. As a 
consequence eiw(f) and eiW(f) constitute group 
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representations, and the latter is highly reducible even if 
the former is irreducible. The group representation proper­ 
ty is preserved under a fixed unitary transformation such 
that 

which, if w(f)SEQ, means that 

W(f) = (B,w(f)B) = ([A+s], w(f)[A+s]). 

We note that 
[ iW(f) I 

<$ \eiW(f) \$ '> = e(Hs, e -1] ($ +s))q \$ '> 

and in particular that 

E(f) = <O\eiW(f) \O> 

(3-5) 

(3-6) 

We have already assumed that eiw(f) constitutes a 
group representation and have observed that e1W(f) consti­ 
tutes such a representation for any U(s), i.e., for any 
SEQ. From this it follows that E(f) is infinitely divisi­ 
ble, that is for each positive integer m, 

[ iw(f) 
[E(f)]l/m ~ E (f) • el/m(s, e -l]s) 

m 
is a positive definite functional [in the sense of (3-1)]. 
This is clear since Em is obtained from E simply by the 
change of s to slim. On the other hand, the analog of 
DeFinetti' s Theorem implies that all infinitely divisible 
representations are limits of those for which Eq. (3-6) 
holds. For, if we assume that E(f) is infinitely divisible, 
then 

m([E(f)]l/m_l} = m(E (f)-1} 
m 

=m(8 ,[eiw(f)_1]8 ), 
m m 

for some representation w(f), where \ I em\ \=1, from which it 
follows that / . 

m([E(f)]1 m-1} m(8m,[e1w(f)_1]8m) 
E(f) =lime =lime . 

(3-7) 
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With this motivation let us study the limits of ex­ 
pressions of the form (3-6). We divide our study into two 
parts. 

Abelian Field Algebras 

Suppose first that we have an Abelian family of opera­ 
tors -- say just the single field operator ~(f). In that 
case we may diagonalize the field in accord with the theo­ 
rems mentioned earlier, but this time we diagonalize in the 
exponent. That is, we express (3-6) in the form 

E(f) = <O\ei~(f) \O> = ef[ei(A,f)_l]dcr(A). 

Sequences of such expectation functionals converge to an 
expectation functional provided that 

J[ i(A, f) 
lim E (f) =lime e -l]dcrn(A) 

n 
converges to a continuous functional which is the analogue 
of the Continuity Theorem. Tortrat has given an analogue 
of the Levy canonical formula (2-2) which reads 

ln E ( f) = i ( a , f) - ( f , bf) 

+J[ei(A,f)_l_ i(A,f) J dcr(A) (3-8) 
l+\ \A\ 1

2 

where a and b are real, b;;eQ and \\A\ \2 can be appropriately 
defined. For symmetric functionals, where E(-f)=E(f), the 
general form reads 

E(f) = e-(f,bf) -J[l-cos(A,f)]dcr(J\). (3-9) 

In these expressions, J dcr(J\) need not be finite, but rather 

JI \A\ \2/(1+\ \A\ \2)da(A) <"' 

excluding, as always, the point A=O. 

Expressions of the type (3-9) can be readily con­ 
strained to have invariance and clustering, the latter 
being rather naturally and easily imposed on the measure cr. 
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For example, 

E(f) -(f,bf) - Jdzr[l-cos(A,f )]da (A) 
a e ~ Z 0 

fulfills the desired properties, where b=b(~-y), f =f(~+~) 
and a0 is concentrated on generalized functions wi~h sup­ 
port ttnear ~-o." 

It should be observed in the preceding construction 
that the sequence of field operators ~n(f) do not neces­ 
sarily converge to the operator ~(f) in the "same" Hilbert 
space g"J, For this to be true we could invoke the analogue 
of the Strong Operator Convergence theorem of Chapter 2. 
That is, besides the convergence of E (f) to a continuous 
functional, we would require the stroRg convergence of 

(eiw(f)_l} I; .... ~[f] E" n '1, (3-10) 

which excludes, for example, the appearance of a Gaussian 
part in E(f). On the other hand, if a Gaussian term is 
present [or condition (3-10) otherwise fails] we would say 
that ~n(f) .... ~(f) in the sense of expectation functionals. 

Non-Abelian Field Algebras 

For a non-Abelian group representation many of the 
same arguments apply, except that we cannot invoke the 
Fourier transform representation theorem. Consider the 
sequence of functionals 

iWn(f) (sn,[eiw(f)_l]i;n) 
E ( f) = <O I e IO> = e n 

which are continuous and positive definite in the sense of 
(3-1). We have argued in Eq. (3-7) that every infinitely 
divisible group representation can be expressed as the 
limit of such functionals. Conversely, for every sequence 
l;n such that 

E(f) 
(s [eiw(f) -1]1; ) 

=lime n' n 

converges to a continuous functional, we generate a valid 
group representation, which incidently happens to be in- / 
finitely divisible. (This latter follows because [En(f)]1 m 
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is positive definite fo11each n and converges to the con­ 
tinuous function [E(f)] m.) 

These representations may be made to exhibit manifest 
invariance and cluster properties as well. For this pur­ 
pose, let 

l:J = f ;9 l:Jz dL 

w(f) = f $ w (f ) d~ 
0 Z 

and suppose that 

where, for example, 

and the function 

l~I :s: n, 

- 0 lzl ~ n+l 

and falls smoothly in between. Here iEl:Jz, which we assume 
to be the "same" vector for all z. With f constrained to 
have compact support it is evide~t that 

(!; [eiw(f) _1] I; ) 
n' n 

e E(f) = lim 
iw

0
(fz) S dz ( I; , [ e - 1] !; ) 

=lime - nz nz z 

(3-11) 

exists since for large enough n the sequence becomes con­ 
stant. The functional E(f) evidently is invariant, and if 
w0(~) has support near the origin, E(f) will also have the 
cluster property. Limits of such functionals (e.g., a 
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</ 

non-Cauchy sequence snEg) lead to new, infinitely divisi­ 
ble representations whicfi enjoy both invariance and cluster 
decomposition, 

Generally, the limit E (f) will lead to convergence 
only of expectation functioRals, and not to a convergence 
of the operators in the original Hilbert space~. This 
may lead to the representation "growing" unwanted subrepre­ 
sentations. An example of this behavior might be the ap­ 
pearance of a Gaussian part in E(f). One way to suppress 
such terms is to insist on the Strong Operator Convergence 
condition, 

{ e i w ( f) - 1} s .... cp [ f] E 9 , 
n 

where cp[ f] is continuous in f. This condition will at the 
same time establish the convergence of the opera.tors 
W (f) .... W(f) within one and the same Hilbert space 11:,. It 
i~ worth emphasizing that although the algebra of opera.tors 
Wn(f) constructed in the above fashion is reducible for 
each n, it can happen that the limit opera.tors W(f) are ir­ 
reducible [and consequently would not possess an expansion 
equivalent to (3-4)]. - 

An example will serve to illustrate some of the fea­ 
ture discussed above. 
Example: Consider the field algebra characterized by 

(3-12) 

which is based on the two-parameter affine group with an 
elementary Lie algebra. 

[B,P] = iP. 

An i2reducible representation of the affine group is given 
on L (O,~) by the prescription 

(e-isPeirBcp)(k) = 

for all cp(k) E Lz (O,~). 
as that denoted by w

0 
in 

representation given by 

-J,r -isk -r e e cp ( e k) 

We identify this representation 
Eq. (3-11), leading to a field 
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E(f,g) = <O\e-irr(g) eiK(f) \O> 
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= exp (-jd~J
00

s*(k)[s(k)-e-~f(~)-ig(~)ks(e-f(~)k)]dk} 
0 

(3-13) 

For each s(k) E L2(0,00) this functional characterizes a 
representation of (3-12), and for each unequal ray the rep­ 
resentations are inequivalent and reducible. 

Consider a non-Cauchy sequence sn(k) defining a se­ 
quence of functionals En(f,g) which converges to a new 
functional E(f,g). For example, let 

s (k) = k-~exp [-( -y,::-1 -1)2Je(k) 
n ki.,n 

where e(k) is C
00 

and square integrable. Then it follows 
that 

cpn(r,s,k) 

converges strongly to 

$(r,s,k) = k-~[e-isk e(e-rk) - e(k)], 

while 
00 

= s 
0 

converges to 

J(r,s) = ~j00 (e*(erk)[e-iske(k)-e(erk)] 
0 

This limiting expression leads to an expectation functional 

E(f,g) = exp(Jd~ J[f(~),g(~)]} 

characterizing a representation of (3-12) inequivalent to 
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those previously discussed and one which is irreducible in 
contrast to the preceding examples. 

As an example of the growth of unwanted subrepresenta­ 
tions, imagine that 

s (k) n 
where 

It follows that w-lim 0n(k) = 0, but 0n(k) does not con­ 
verge strongly. As a consequence we can anticipate only 
convergence of the expectation functional, and it is a 
simple matter to see that 

En(f,g) ➔ E(f,g) = eJd~(J[f(~) ,g(~)] + Y[f(~),g(~)]} 

where J is implicitly given in (3-13), while 

Y[r,s] = J~ e*(k)[e-\re(e-rk) - 0(k)]dk, 
0 

which is independent of s [i.e., of g(~)]. Thus the limit­ 
ing representation of 1t(~) and TT(~) is such that, in an ob­ 
vious notation, 

1t (~) = 1ti~) 4hy(~) 

TT (~) = TT/~) E9 Q , 

namely in the "second representation space" TT(~) is repre­ 
sented by zero [a perfectly acceptable solution to (3-12) !] . 

4. ULTRALOCAL FIELD THEORIES 

4.1 HEURISTIC, CLASSICAL INTRODUCTION 

Covariant Motivation 

Ultralocal scalar field theories are formally obtained 
from covariant scalar theories by suppressing the spacial 
gradient term in the Hamiltonian. They are characterized, 
therefore, by a classical Hamiltonian of the form 
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(4-1) 

Such models are distinguished by the property that distinct 
spacial points characterize statistically independent 
fields for all times. Stated otherwise, the light cone of 
the covariant theories has been collapsed to a "vertical 
line" passing through the space point in question. Never­ 
theless, the topology of the original space is retained, 
and indeed we still insist on a space translation generator 
classically given by 

The ultralocal theories are expected to have a trivial 
scattering matrix (S•l), and are not, by themselves, ex­ 
pected to provide physically significant predictions. 
These models are examples of systems with an infinite num­ 
ber of degrees of freedom from which we hope to learn more 
about such systems. Viewed in the conventional fashion 
these models are nonrenormalizable, and their study by 
standard perturbation techniques is frought with ambigui­ 
ties. Techniques other than the conventional ones are re­ 
quired to solve these models, and such techniques will be 
provided. 

Even before determining the quantum solution, we may 
anticipate that it would have at least two interesting re­ 
lations to the corresponding solution of a covariant theory. 
On the one hand, the ultralocal models and their corres­ 
ponding solutions should be the limit of 2ovariant models 
as the coefficient of the term ~[y_cpci(.?t)] vanished from 
the Hamiltonian. On the other hand, it might be hoped that 
the spacial gradient term could be restored by a perturba­ 
tion analysis. Some comments on the latter idea are pre­ 
sented in Chapter 6. 

Alternative Interpretation 

Although the ultralocal models are motivated by co­ 
variant models they may be interpreted in another way as 
well. There is an evident, classical one degree of free­ 
dom problem underlying (4-1) described by the Hamiltonian 

2 2 2 
Hl(p,q) = ~(p +mOq) + V[q]; 
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and the Hamiltonian (4-1) itself may be considered as a 
continuous embellishment of H1 in the sense of Chapter 1. 
It is anticipated, therefore, that the ultralocal quantum 
theory should be characterized, in some sense, by an under­ 
lying one degree of freedom problem, and we shall find this 
to be the case, although the underlying problem is neces­ 
sarily different from the "obvious" one. 

Our subsequent discussion of these models focuses on 
a general understanding of the solution with a special em­ 
phasis on certain specific aspects. Several other discus­ 
sions of these models have been given elsewhere and should 
be consulted by the interested reader in order to round out 
an appreciation of the present understanding of ultralocal 
scalar fields. 

4.2 OPERATOR SOLlITION FOR ULTRALOCAL MODELS 

Our assumptions regarding the quantum solution are 
minimal and quite plausible. We expect, for each potential 
V of a large class, that their exists a Hamiltonian opera­ 
tor :IC :e 0, and a unique ground state IO> for which KIO>= 0. 
The state IO> is also the unique translationally invariant 
state and satisfies f \O> = O, and [f,:IC] - 0, where f is the 
space-translation generator. We suppose initially that 
there exists a self-adjoint field operator 

~(f) = f f(~)~(~)d~ 

defined for all fEc;. (Subsequently, we shall generalize 
this assumption to a space-time smearing.) For simplicity 
we assume the potential Vis symmetric, i.e., 

and bounded below as in usual models. 

Determination of Expectation Functional 

We focus initially on the expectation functional 

E(f) = <Olei~(f) lo> 

defined, let us suppose, for all f(~)Ec~0, together with 
some continuity properties, the least of which is ray 
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continuity. The symmetry of the potential implies that 
E(-f) = E(f); while the principal symmetry fact of the 
ultralocal form of the dynamics -- the independence for­ 
all-times of the field at distinct spacial points -- im­ 
plies that 

E ( f) = e - J d.e L[ f (_e) ] . 

From this form alone we immediately deduce that E(f) is 
infinitely divisible. Since E(f) is a positive-definite 
functional for all f(_e)EC0, it follows that. 

- _ml J d_e L[ f (_e) ] 
[E(f)] l/m = e 

J 1/s 
= e- dy L[f(m y)] = E(f(m))' 

where f(m)(.e) = f(ml/sx) E c0, and thus E(f)l/m is positive 
definite for all m. Consequently, E(f) necessarily has the 
form given in Eq. (3-9), which implies that E(f) never 
vanishes. It follows in our case that L[ f(e)] is defined 
for all arguments. 

To prove that L[s] is necessarily continuous on the 
basis of our minimal assumptions we can proceed as follows. 
Let u(x) E c00

8, xER, satisfy u(x) = 1, lxl~A; u(x) = 0, 
Ix\> A+l. efine 

u (x) - u(x), x ~ 0 a 

- u(x+a), x;,, 0 

for all a such that O < a < A; clearly ua(x)EC0 for such a. 
If s=l let f1 (x) =u(x) , f2 (x) =ua (x) . If s ;,, 2 let 

f1 (_e) = u( l2Sls), 

u ( \x \ s). 
a - 

The ray continuity (weak continuity of each unitary one 
parameter subgroup) ensures that 

is 
cf. (s) = E(sfi) = <Ole 

l. 

cp(f.) 
i \O>, 
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i=l,2, are both continuous functions of s, while the 
special form of f1 and f2 imply that 

Cf
1 

(s) -Jd~{L[sf1(~)J - L[sf2(~)J} 
---,-....,.... = e cf (s) 

2 

where O < 6 < 00 It follows, therefore, that L[s] is con­ 
tinuous ins, as was to be shown. 

-H[s] 
e 

The positivity condition 
N l aia; E(fi-fj) ~ 0 

i,j=l 

carries over by continuity to multiples of characteristic 
functions, 

fi US) = Si X6 US) 
which thus implies, for all 6 > O, that 

f -H[ si-s .] 
a.a~ e J ~ O. 
]. J 

i,j=l 

Consequently, L has the form implicit in (2-3), namely 

L[s] = bs2 + J [1-~os(\s)]dcr(\). 
\\ \>O 

We interpret the first (Gaussian) term as describing the 
free, ultralocal Fack theory, but this solution is not of 
interest to us at this point, For the second (non-Gaussian) 
term we adopt an absolutely continuous measure, 
dcr(\)=c2(\)d\, leading to the relation 

E(f) = e-Jd.?SJ{l-cos [\f(:1S)]}c
2
(\)d\. (4-2) 

The plausibility of this choice for L[s] will become clear 
in our subsequent discussions. The integrability condition 
on c(\) for this expression to exist is clearly 

J \2/(1+\2) c2(\)d\ < 00, 
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but we may (and in fact will) have Jc2(:l.)d\=cx,, We refer to 
c(:I.) as the model function. 

Let us anticipate the remaining properties of the 
model function so the reader may be allerted to the various 
conditions as they arise, Clearly we can choose c(:I.) as 
real and symmetric, c(-:1.)=c(:I.). We shall also find that 
c(:I.) is nonvanishing and twice differentiable except at the 
origin, Finally we will require that 

J c2 (:l.)d:1. = CX) 

suggesting the form 

C (\) - 

where y ~s called the singularity parameter and fulfills 
½ ~ y < Z' (When we generalize to space-time smearing we 
only require that½~ y,) 

Field Operator 

An operator realization for ~(f) can be given in terms 
of the relations established in Chapters 2 and 3. In the no­ 
tation of Section 2.5, with y=(.2S,:I.), we assert that 

+ I C (:I. ) A A(~. A ) d:I. 

+ f At (.25,:I.) >.. c(:l.)d:I.. 

If we set 

B(.2S,:I.) =A(~,\)+ c(:I.) 

and observe 2hat for symmetric c(:I.) the principal value 
integral f>..c (:l.)d:l.=O, we may also put 

(4-3) 

[It should be remembered that any expression of this type 
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should be interpreted in terms of a limit in the manner 
ofEq. (2-8).] 

It is clear from our earlier discussion that with the 
above choice for cp(,e) the expectation functional E(f) co­ 
incides with (4-2). Now cp(,e), being a construct of A and 
At, operates within the usual Hilbert space ~ build by re­ 
peated action of the creation operators At on the (unique) 
vacuum lo>. To demonstrate cyclicity of the representation 
for cp(_e) -- and thereby establish the uniqueness of that 
representation up to unitary equivalence -7 we need only 
establish that the closed linear span of eicp(f) lo> coin­ 
cides with the Hilbert space~. 

Functions of the Field 

To facilitate the discussion of the cyclicity of the 
representation for cp(,e) let us investigate some local opera­ 
tors which can be constructed from the field operator. 
From (4-3) we easily see that 

cp(_e)cp(y) = &(~-y) fBt (~,\) \2B(~,\)d\ 

+ ! cp (~) cp (y) ! ' 

where ! : denotes normal order with respect to Bt and B 
(which are inequivalent to a Fock representation). The 
singular coefficient of the first term (at ~=y) compared to 
the second term permits a test function sequence to pick 
out the operator 

2 f t 2 2 rrr(]S) = B (1S,\) \ B~,\)d\ =Zcp (25) 

where, formally, z-1=&(0). This is a renormalized operator 
product (hence the subscript r), where multiplication oc­ 
curs in "\-space", under the integral. This procedure may 
obviously be extended further to yield 

cp~(]S) = f Bt (JS,\) \P B(,e,\)d\ = zP-lcpp(~) 

or generally, for a broad class of functions V[\], 

(V[cp(~)])r = fBt (~,A)V[\]B(1S,A)d\ = z-1v[zcp(,e)J. 
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All such local opera.tors a.re functions in the usual sense 
of cp(~). 

Cyclicity of Representation 

Without difficulty we can imagine the construction of 
an opera.tor 

again a construct of the field, which is well defined for 
all h(~,\)EC0 that also vanish in a neighborhood of \=O. 
The opera.tor eG, still only a. construct of the field, es­ 
sentially takes the vacuum into a. coherent state for 

eGIO> = ! eJJBt ~,\) [eh~,\)_l}B(,e,\)d]Sd\ ! lo> 

= ege JJAt (,e,\)[eh(,e,\)_l}c(\)d]Sd\ lo>, 

where 
g = SJ c (\ ) [ eh (,e' "-) - 1} c ("-) d]Sd"- . 

If c("-) never vanishes, then [eh(~,"-)_l}c("-) covers a. dense 
set of L2(RsxR) as h va.:riet) in its allowed region. It fol­ 
lows that the span of e1cp l IO> coincides with ~ as was to 
be proved. 

We note in passing, and without proof, that the space 
translation generator f is given by 

E = JdlS.fAt (,e,\)(-i2) A(,e,\)d"-. 

Structure of Hamiltonian 

The form of the Hamiltonian is decisively determined by 
the ultralocal form of the dynamics. Heuristically, we ex­ 
pect that 

where the local operator K(,e) has the form 
t 

K(~) = F[A (~,·), A(~,·)}. 
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The notation in the latter expression means, formally, 
that 

CX) 

3-C(AS) = l Jhn,m(Al' ... An; Ai, ... A~) 
n,m=O 

However only the first few terms in such a series can actu­ 
ally enter, specifically those of the form 

t 
= fJoo+.f hl o(A) A ~,A)dA 

' 
+ J A~,A) ho l (A)dA 

' 
+ J At(.?S,A) hl l(A;A') 

' 
A(.e,A I )dAdA I. 

(4-4) 

Most higher order terms are forms and not local operators 
as evident in the case 

Smearing with a space-dependent test function, f~), and 
taking coherent state matrix elements yields 

<w ln(f) lw'> = <w \w'> 

J J * * * x f~)rl~ $ (1S,A1H (~,A2H (1S,A3) 

3 x h3,0(A1,A2,A3)d A 

However, this expression is not even continuous in the co­ 
herent state bra, for one may choose a sequence *n~•A) 
converging strongly to W(.?S,A) for which the right side 
fails to converge. For example, let 

2 -2 s/5 
Wn(~,A) = [ (~-~) +n ] f(~)h(A) 

where~ is a point of support off~). Thus h3 o=O and 
by hermitian symmetry ho 3=0 as well. A similar argument 
applies to the remaining'terms. 

Only the quadratic term in (4-4) survives the integra­ 
tion over Rs, so that we must have 
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:IC= Jd~ f At~,1'.) hl 1(1'.;1'.') A(~,1'.1)d1'.d1'.1 

' 
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where -fvis a self-adjoint differential operator in the A 
variables alone. Observe that :te\O>=O, and that,l:eo implies 
that :te:eO. In order to win uniqueness of the ground state 
we actually need to have c-», 

Delineation of the Hamiltonian 

To further determine l (and thereby :IC) we must inject 
additional physics. We propose that 

02 
/., = - \ -2 + v(A) 

oA 

which requires that c(A) not vanish and that c(A) be twice 
differentiable almost everywhere. Observe that ic(A)=O 
and that it is necessary that c (A) ¢L2 in order thatl >O, 
i.e., for there to be a nondegenerate ground-state of :IC. 
Two model functions which differ simply by a scale factor, 
e.g., c1 (A) = N c (1'.), lead to the same differential operator 
~and tfius to the same Hamiltonian :IC. 

An alternate form for :IC is also useful, which is based 
on the fact that we can write 

fv = bt b, 

where 

o -1 
b = J\ c(A) IT c (1'.). 

With this expression for I,, we can recast 
t / 

:IC= Jd~ J[bA~,1'.)] [bA(~,1'.)]dA, 

and since the first two operations of bare "divide by c 
and differentiate" we can freely add c(A) to the operators 
A above, Hence, we also can write 
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t 

Jd~[bB(,e,"-)] [bB(,e,\)]d\ 
t 

Jd.eJ B (~,"-) f/. B(~,\)d\. 

Focus attention for the 1:1resent on the term v("-) in -t,, and 
indeed on the monomial ,,_Zn contained therein. Such a term 
contributes to :le(~) the local operator 

J 
t 2n 2n 

B (~, A ) A B (~, A ) d\ = cp r (,e) 

illustrating the central idea in constructing the potential 
term in :lC(,e) from renormalized powers of the field Cfl(,e), 
The motivation for the second derivative term in .$.., will be 
given subsequently. 

The Hamiltonian fv corresponds to the underlying one 
degree of freedom problem alluded to earlier. If we adopt 
the relation c("-) = \\ \-Y exp [-y(\)], it follows that 

v("-) = Y(Y~l) + yy: ("-) + ~y,2("-) _ ~y"("-)' 
2\ 

where, for example, if y("-) is an even polynomial, the lat­ 
ter three terms yield a polynomial contribution to v("-). 
Note there is always a singular term ,,_-2 with a strength 
determined by the singularity parameter y, 

The 
sidering 

interpretation of v("-) is greatly 
the special cases where 

2 -%µ\ e 

helped by con- 

In this case, it follows that 

Moreover 
pletely. 
two-fold 

the energy spectrum of 1-,, can be determined com­ 
The energy levels ll,t,, t=0,1,2 ... , are discrete, 

degenerate (µ2t=µ2t+l) and are given by 

µ2t = µ (2t+2y+l). 

That is, apart from a y-dependent minimum energy, the 

(4-5) 
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energy levels are equally spaced reminiscent of the har­ 
monic oscillator problem. These levels in the ultralocal 
model are interpreted as eigenlevels of an idealized, 
"pseudo-free" case -- not free in the sense of the Fock 
representation -- in which the interaction potential Vis 
"zero" but its representation changing effects have been, 
in part, taken into account. The uniform ladder of levels 
µl represent the excitation spectrum of l, which is heuris­ 
tically the spectrum of localized energy levels. In the 
harmonic oscillator an equal spacing of energy levels is 
equated with an absence of interaction, independently of 
the magnitude of the zero-point energy. By analogy, we 
interpret the equal spacing of the levels µ.t as character­ 
izing a sequence of "excitation types" which are declared, 
by fiat, to be "interaction free." Such a view holds what­ 
ever value we choose for y, 

As we change the model function from c(A) to a general 
c(A), the potential changes from v(A) to v(A) and the ener­ 
gy levels change accordingly. Deviations from the standard 
provided by (4-5) describe positive, or negative, interac­ 
tion energies induced among the excitation ty~es by the new 
terms in the potential. So long as y(A),,a+bA , b>O, for 
example, such Hamiltonians likewise have discrete, doubly 
degenerate, energy levels µ,i, and corresponding energy 
eigenstates u,i(A). It is evident that we can rewrite the 
Hamiltonian in the form 

where 

Each N,e, is a conventional number operator (for excitation 
type .t), and the spectrum of~ is clearly given by E µ,tn,i, 
where n,e,=O,1,2 ... , and En,e,<"'. Observe that the entire 
spectrum of£ is displayed in the "one particle" subspace 
where En,i=l. 

Although we have argued the case for a discrete spec­ 
trum of£ the essential ideas are identical whatever the 
spectrum of/!., is. 
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Absence of Canonical Conjugate Field 

Consider the expression 

cp(1s) - i[:K,cp(.e)J 

= s Bt(.e,"-)(-io/o>..) B(1s,>..)dA 

as formally computed from the bilinear form of both :ic and 
cp(.e), This expression is only a form, and not a local 
operator, as readily seen by setting up a sequence of the 
type envisaged in Chapter 2. Nevertheless, we could for­ 
mally imagine the hypothetical construct 

• 2 
cp (x) r- 

which is seen to be an ingredient in :K~.e); namely, that 
ingredient formally corresponding ton (.e). Although such 
a term is not a local operator it is greatly aided by a re­ 
normalization term 

which by itself is also ill defined. We interpret this 
latter term as part of a necessary operat2r renormaliza­ 
tion to supplement the ill defined term ~r(~) in the con­ 
struction of the Hamiltonian. 

If we ignore the fact that ~(.e) is only a form, we 
would formally compute that 

[cp(1s).~(z)] = i 6(~-y) f Btus,"-)B(~,A)dA 

which has a divergent c-number term, 

i6(.e-.Y) f c2(>..)d>... 

Such a divergence is usually indicative of an infinite 
field strength renormalization. 

Time-Dependent Field 

The simple relation 
i:ict i e A(.e,"-) e- :Kt 
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allows us to .express the time-dependent field operator in 
the form 

cp(e, t) i:Kt IV) - i:!Ct e cp\..e e 

J At (e, A ) e i~t"- e - ih-t A (e, A ) dA 

-~t + J c("-)"- e A(e,"-)d"- 

t itt 
+ J A ~, A ) e A c ("- ) dA . 

For the field to become an operator with space smearing 
only it is necessary that Ac("-) be square integrable near 
A=O, and this property carries over to the field at any 
sharp time t. However, if we permit space-time smearing 
to define our operators then we can choose model func­ 
tions for which "-C("-HL2 near A=O and consider singularity 
parameters y for arbitrary values y;;,\. We note, first, 
that the definition of/:.., (and thus of :K) is valid as it 
stands for any y;;,\ .

0 
We next argue, in the case of a dis­ 

crete spectrum for h-, that for suitable e(t), 

J i/;.t 
e(t) e AC(A)dt (4-6) 

is square integrable f~r y;;,\. To see this we need only 
consider the sum E\1\tl where 

* iA.t Kl - JS e(t) ut("-)e Ac(A)dAdt 

= kt J e(t) eiµttdt 

and 

* kt'= J ut("-)"-c("-)d"-. 

Since \ ut ("-) \ ~ \1,, \ l+y near A=O, kt exists for all t, a~d 
it may be estimated that kt o: t -a with a;;\ provided y~ 'Z 
consonant with the fa.ct that Ac("-) is square integrable 
provided that Y < i· But, if ~(µt) falls sufficiently 
fast for large argument (equivalent to large t), these­ 
quence Kt becomes square summable. This demonstrates that 
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(4-6) is square integrable, which is sufficient to show 
that cp V!, t) becomes an operator with space-time smearing. 
A similar argument applies in the cases where the spectrum 
of A, is not purely discrete. 

However, even if y 2: ¾ so that time smearing is re­ 
quired, we can always consider the renormalized fields 

e cp V!) r 
which for sufficiently large ea.gain become operators with 
space smearing alone. For present purposes let us adopt 
an "odd" definition of Ae, i.e., 

Then, it suffices that 9 > y-,½, and it follows that 

E9(f) = <O\eicp!(f) \O> 

= e-Jd1SJ{l-cos[A
8
fV!)]} c

2
(A)dA. 

Clearly by a change of variables this expression becomes 
identical to that given in (4-2) for some transformed 
model function. This means that the renormalized 9 field 
power (appropriate to a model function c(A) and a singu­ 
larity parameter y<9+,½) is unita.rily equivalent to on3 of 
the fields covered by Eq. (4-2)(where necessarily y< 7). 

Summary 

We a.re now in a position to recapitulate the basic 
solution for the ultra.local models. For ea.ch real, even, 
nowhere vanishing, twice differentiable (save at A=O) 
model function of the form 

for which y 2: ,½ and for 8 > y-,½, 

J A
28

/(l+A
28

) c2(A)dA 
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we associate the Hamiltonian 

where 

f) o 2 C "IA\ 
11,= -~ - + ~ 

oA 2 c (A) 

The (space-time distribution) local field operator is 
given by 

cp~,t) j At ~,A) eih.tAe-ik-t A~,A)dA 

+ f At ~,A) ei.'1_tAc(A)dA 

-ift.,t + f c(A) Ae A~,A)dA. 

As before the potential terms in the Hamiltonian are for­ 
mally given by renormalized field powers such as 

2n f t 2n_ cp ~) = B ~,A)A .ti~,A)dA, r 
which links the representation of cp~, t) to the Hamil­ 
tonian. 

The connection to the motivating classical problem 
seems to be best understood by temporarily reinserting the 
dependence on h. In this case 

fv= - ~ h2 ~ + h2y(y+l) + h2e + vo(A) 
oA 2 2A 2 

where e is a constant, e=(y-~)y"(O), and y(A) [=y(A ,h)] is 
chosen so that 

is h indepzndent as usu2l. For the pseudo-free case, 
2 y(A) = WA /h so that h e = h(y-~)µ and v0(A) = \ µ2A . 

Observe, in the general case, that the singular term ,--2 
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makes no classical contribution as h ... O [as is already 
familiar from the analogous problem of a radial Schrodinger 
equation for a spherically symmetric potential in which, 
in the classical limit, the angular momentum vanishes when­ 
ever the angular momentum quantum number (the analogue of 
y) is held fixed]. 

As is evident from the preceding discussion, the 
characterization of the solution is complete a.part from 
specification of y which cannot be deduced from classical 
arguments a.lone. To determine y we shall appeal to a very 
different argument and to a. very special class of models, 
the sea.le-invariant models. 

4.3 IMPLICATIONS OF SCALE INVARIANCE 

Sea.le Invariant Models 

In order to determine whether any of the ultraloca.l 
models qualify as s caLe invariant we invoke the t=O invari­ 
ance criterion given in (3-2). This is most simply employ­ 
ed if we specialize to multiples of a. characteristic func­ 
tion, f~) = rx~~). The expectation functional then be­ 
comes 

E
9 (f) = C(r) 

d -s 
-SSH[ S B r] 

e 

-H[r] = e 

9 9 
and invaria8c~sunder scaling [E (f)=E (f(S))' where 
f(s)~) = s 9 f(s-1~)] takes on the form 

-H[r] 
e 

It follows directly that L[r] = k\r\a, where a=s/(s-de), 
and k = L[l]. These functions lead to the (symmetric) 
stable distributions discussed in Chapter 2. We noted 
there that a is restricted such that O<a,;2. The case a=2 
corresponded to the Gaussian, while O<a<2 were all non­ 
Gaussian with c(>..) being a homogeneous function. 

A more direct analysis is useful as well. Sea.le in­ 
variance of the expectation functional, E9(f)mE9(f(s)), 
requires that the expression 

9 d9-S 1 2 
Jd~J(l-cos[>.. s f(S- ~)]}c (>-)d>.. 



FUNCTIONAL TECHNIQUES 389 

be independent of S. This can only be satisfied by a 
homogeneous c(A), namely c(A) ~ IA I-Y, in which case it 
follows (by a simple change of variables) that 

9 
d9 = (1 - 2y-l)s, (4-7) 

and thus the exponent a (2y-l) /9. 

We note that the only model functions describing 
scale invariant theories are given by c(A) = IA 1-y (or 
multiples thereof), where y>~. The functional form for 
stable distributions implies that for scale invariant 
theories 9 

i~ (f) JI 1a <Ole r \O> = e-k f~) de, 

where (a,/,2) 

k = J [l-cos(A9)J \A\-2YdA, 

It follows ~hat \ \~9 (f) \ O> \ \ = 00, i.e. \ O> is not in the 
domain of~ (f). T&is is only a technical difficulty and 
does not intalidate their existence (a suitable time 
smeared field can be applied to the vacuum). 

Determination of Scale Dimension and 
Singularity Parameter 

As a next step in exploring the scale invariant 
models we invoke scaling with respect to time, In analogy 
to (3-2), full space-time scale invariance, i.e., 

9 9 
E (g) = E (g(S)), 

where 
d9-s-l -1 -1 

g(S) ~. t) = S g(S e,S t), 

leads to the easily established requirement that 

i~t 9 -iht d9-s-l -1 -1 
Jd15.J'c(A){l-cos[J(e A e )S g(S e,S t)dt]}c(A)dA 

be independent of S. Observe for c(A) = \A \-Y that 
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f o 2 y (y+l) 
l'v= -\ --2 + -'-->-'---,,.. 

ax 2A 2 

which is homogeneous in A-2• To secure full independence 
as far as the variable tis concerned requires (simply 
using the homogenity of~) that 

d9 s-\9, 

Y s+\; 

namely, two conditions rather than the single (compatible) 
condition (4-7) obtained for t=O. Observe that by this 
argument the singularity parameter is"\ plus the number 
of space dimensions". 

We assume that this evaluation holds for y(A);'O,i.e., 
even for nonscale invariant theories. For example, with 
this choice the spectrum of the pseudo-free model func­ 
tions 

is given [on reference to (4-5)] by 

which leads to a ladder of excitation levels with a start­ 
ing level [(2µ)(s+l)] to spacing (2µ) ratio of s+l, the 
number of space-time dimensions. (It is amusing to imagine 
that such a property almost constitutes an "experimental 
prediction" under the hypothetical conditions for which it 
applies.) 

Dilation Operator 

The explicit construction of the dilation operator 
V(S) is straightforward in the ultralocal models. It 
follows that 

(4-8) 
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where 

- cl. cl cl cl D = \~.- + -•x) +Ji;(>..°"+~>..). cl~ cl~ - u11. dA 

It is clear the V(S) lo>= IO>, and a straightforward com­ 
putation shows that 

-1 9 d9 9 
V (S)~r~'t)V(S) = S ~r(S~,St) 

provided c(>..) ~ I>- 1-v. 

Once given the form of V(S) we may investigate the 
scale transformation of a general (nonscale invariant) 
field ~t~,t) described by c(>-)=I>- 1-v exp [-y(>..)J. in 
that case, 

-1 9 
V (S)~r~' t)V(S) 

-9 where ~r is characterized by 

c(>-) = I>- 1-v exp [-y(s-\)J 
,.., ,.._, 

and by the corresponding~ ~=O). For the pseudo-free 
case c(>..), where y(>..)=\µ>.. , the transformed field corres­ 
ponds to a transformed mass il=s-1µ, a transformation which 
is consistent with the conventional viewpoint lending 
credence to the choice y=s+\ even for nonscale invariant 
theories. 

Alternative Scale Transformations 

Although we have fixed yon the basis of scale in­ 
variance arguments it is instructive to understand the 
significance of the remaining y values. We have argued 
that the ultralocal models may be interpreted as the limit 
of covaria~t Hamiltonians in which the coefficient (a. say) 
of \(y~ct) vanishes. It is such a term which dictates 
the equality of the~ and t scaling for covariant theories 
as is evident, for example, in the wave equation 

= a, 
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The appropriate scaling, ~ .... g~ and t .... St, holds 
and it applies equally well in the limit a.=O. 
limiting equation may be obtained in a number 
ways. Consider the wave equation defined by 

for all «>o , 
However the 

of different 

13>0, (4-9) 

which is covariant under the scaling 

x .... Sx · t...,S!3 t. - _, 
Only 13=1 characterizes the relativistic case. When a.=O 
all these wave equations are equal and the whole class 
(i.e., all 13) of scaling transformations apply. 

In the case of the ultralocal models, where a.=O, the 
whole class of scaling transformations should also apply 
and not merely the special case 13=1. If we repeat our 
previous analysis based on the assumptions that 
V13(S) \O>=\O> and 

-1 8 v13 (S)q\~• t) 

we would discover that 

y = (s/13) + ~. 
which connects y to the number of space dimensions and the 
presumed underlying wave equation (4-9), i.e., to 13. In 
this calculation it would follow that v13 (S) has0 the same 
form as (4-8) efcept that the coefficient of A 'aI• etc., 
in D now reads 413 . 

On the basis of these arguments the singularity pa­ 
rameter y can be determined, at least for y>~. The case 
y•\ is anomalous in this regard (although it can be con­ 
sidered as a limiting case as 13 .... =). We remind the reader 
that the relativistically determined y values are y=s+\, 

3 5 7 
i.e., ya 2' 2' 2' etc. 
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4.4 PASSAGE TO THE FREE THEORY 

393 

An important issue remaining to be discussed is what 
might be called "turning off the coupling constant," 
namely, the passage from the interacting models to a non­ 
interacting, free, Fock solution for a particular mass m. 
This transformation has been dis,ussed elsewhere for re­ 
stricted singularity parameters 7>y~\. Here we discuss 
the general case y~\. 

Field Operator 

Let us assume that c(\) is such that \9c(\)EL2 for 
some 9>y-\, all of which are sufficient to overcome the 
singularity at the origin. For future reference we shall 
also need an upper bolf!ld on 9, namely y+\~9. With the 
"odd" definition of\ we have already noted that 

E9(f) • e-Jd~J(l-cos[\
9
fus)]}c

2
(\)d\, 

while the free, Fock theory of mass mis characterized by 
the functional 

icp (f) l Jf2lv)d 
E (f) = <O\e F \O> • e- 4m ~ ~ 
F 

We "turn off the coupling constant" by choosing a sequence 
of models -- hence a sequence of model functions en(\) -­ 
such that, as n➔00, 

J[l-cos(\
9f)Jc2 (\)d\ ➔ __!, f2 n 4m 

This is accomplished by the formal requirement that 

for example, if we adopt 

c2(\). n20+1c2(n\) 
n 

where c(\) has been prescaled (without change of fvor ~) 
so that 
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Observe that any preassigned mass m can be obtained by 
such a procedure. 

According to the above conditions, the sequence of 
expectation functionals converges to the expectation func­ 
tional of the free theory. Thus we may say that 

9 
cpr~) ... cpF~) 

in the sense of expectation functionals. This convergence 
does not occur as operator convergence in the Hilbert 
space~. However, the free field cpF~) has its own well 
known operator realization in an appropriate Hilbert space 
~F' 

Hamiltonian 

The convergence of the Hamiltonian :tC to the free 
(ultralocal) Hamiltonian :tCF of mass mis more complicated. 
Although cp~~) is a local operator (since 9>y-~), ciir~) is 
only a form (since we impose y+\~9). It follows, moreover, 
in a formal way, that 

[cp9~), <$96'.)] = ili~-.:t:) f Bt ~,:\) 92\2(9-1) B~,\)d\ 
r r 

which by hypothesis has a leading c-number singularity 

ili(~-y) f 02\29-2c2(\)dA 

that diverges because we suppose that 9~y+\. 

To remove the infinite multiple in the connnutation 
relation let us consider the properties that follow from 
the scaled and modified Hamiltonians 

:tee = f d,isf At ~,A) (b t Me b)A~,\) d\ 

where, as before, b=2-\(\) (o/o\)c-l(A), and 

-//A 2 
e Me - ---.-,,2-..,,2----~-- 

f e-e /A 92\29-2c2(A)d\ 

As e-+O, the operators :K'
8 

converge to a form and not an 
operator. We may see this most easily by taking coherent 
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state matrix elements with wave functions 
$(x,A) = A9c(A)h(x,A), where h(x,A) is c2 save at A=O 
where c1 suffices-;- and has compact support in Rs. If I$> 
and \$'> denote two such coherent states, it follows that 

lim <$ lxelw'> = ~ s h*(e,O)h'(e,O)de<wlw'>, 
e➔o 

which is evidently not continuous in the bra<$!. 
special states 

The 

icp 9 (f) 
If> = e r !O> 

are coherent states of the usual type for which 

$(e,A) = {iA
9
f(e)_l}c(A) = A9c(A)h(e,A), 

and therefore h(e,O)=if(e). Hence we learn that 

lim <flxe If'>=~ J f(~)f'(_~)d~f\f'>, 
€-+Q 

in which, although the set of states \f> are total, the 
lack of continuity in the bra < f I is not so obvious. 
Finally, if we let T'J-+"' in the model functions cT'J(A) we 
learn that* 

lim lim <f\X \f'> = ~ Jf(e)f' (e)d.x...<f\f'> 
C -t· F T'J-+0 e-+0 

which is well known to characterize the matrix elements 
F<f\:!Cr\f'>F of the free Fock Hamiltonian of mass min the 
Hilbert space ~F• In the sense of the above analysis, 
X--:!CF. 

For the space translation generator we immediately 
find as T'J-+"' that 

<f\ei~·.e1f'> = <flf'> ... <f\f'> = <flei~•.eF\f'> a F a Fr ·· r 

In this sense,.!: ... fr• 
icp (f) 

1, Here we introduce <O I f>r= Er ( f) and I f>r=e r IO>, 
which form a total set for S,..· 
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Conclusion 

It is noteworthy that a transition to the free, Fock 
theory exists for ally;,\, and that each theory can lead 
to a free theory with any preassigned mass value. 

It is remarkable how complete an understanding can be 
found for the ultralocal models on the basis of simple 
symmetry arguments. The power of these arguments will 
again become apparent in the models discussed in the next 
chapter, 

5. DIASTROPHIC FIELD THEORIES 

5.1 HEURISTIC, CLASSICAL MOTIVATION 

The basic extension of one problem to another which 
distinguishes the ultralocal fields can be applied more 
generally. By way of illustrgtion consider the classical 
Hamiltonian of a covariant, cp , theory 

2 2 2 2 
Hl[rrcl'cpcl] "'J{\[rrcl (e)+(ycpcl (e)) +mocpcl (e)] 

+ Ji;g cp~l (e)} d.e (5-1) 

and the diastrophic field theory it engenders. We enlarge 
the configuration space so that rrc1Ce) ~ rrc1Ce,w) and 
cpcl (e) ~ cpcl (e,w), where wER, and adopt the classical 
moc!el 

H(rrcl'cpcl) = J Hl[TTcl(w), cpcl(w)]dw 

J 
2 2 2 2 

- {\[rrcl (e,w)+(ycpcl (e,w)) +mocpcl (e,w)] 

4 + Ji;gcpc1(e,w)}disdw. (5-2) 

The essential point to observe is that there is no mecha­ 
nism for communication of field values from one w value to 
another -- distinct w values label statistically independ­ 
ent fields for all time. This feature is also clear in 
the field equation that follows from (5-2), namely (x=is,t) 

2 3 (D + m
0
) cpc1(x,w) = -gcpc1(x,w). (5-3) 
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In fact, if we choose as initial values 

cpcl(e,w) = cpcl(e) x(w), 

~cl (e,w) ~cl(e)x(w), 

where x(w) is a characteristic function (say for lwl s\), 
then the solution to the diastrophic model is just 

cpcl(x,w) = cpcl(x) x(w) 

where cpc1(x) is the corresponding solution of the base 
theory given in (5-1). That is, all the solutions of the 
base theory are contained in the solutions of the di~stro­ 
phic theory. (This argument is of course independent of 
the covariance of the base theory.) 

Not only can we have the solution qi (x) in the 
"stratum" lwl s J..i, we can simultaneouslycfiave two quite 
independent solutions in disjoint strata. To show this we 
need only note that 

cpcl(x,w) = cpc1(x) x(w) + cpcl(x) x(w) 

is a solution also, provided that cpc1(x) and $(:1(x) are 
solutions of the base theory and that x(w) x(wJ = 0. This 
picture obviously extends to any number of solutions in 
disjoint strata, and all solutions are suitable limits of 
such multiple-strata solutions. 

Suppose the diastrophic classical model (5-2) could 
be quantized. For one thing it should correspond to a co­ 
variant theory as is evident from the equation of motion 
(5-3). Moreover, since within one stratum (say lwl s \), 
we can recover the entire set of classical solutions of 
the base cheory , it is not unreasonable that a scattering 
theory could be set up, built from asymptotic states 
having characteristic functions in w for test functions. 
We also have another fact at our disposal, namely that if, 
in the quantum theory based on (5-2), the coefficient of 
the spacial gradient went to zero we must recover an ultra­ 
local model of t~e preceding chapter based on the configu­ 
ration space Rs+, the latter R coming from the variable w. 
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Superficially, on the basis of perturbation theory 
for example, the diastrophic theory is no less singular 
than the base theory. We approach their solution by non­ 
perturbative techniques, and, although we are only able to 
present a certain "super structure" of the solution, it is 
noteworthy how much structural information can be found. 
Our discussion makes heavy use of analogies, both explicit 
and implicit, with the treatment of the ultra local models. 

5.2 SUPER STRUCTURE OF OPERATOR SOLUTION 

As in the previous chapter our assumptions are minimal 
and reasonable. For a large class of symmetric potentials 
we assume there is a positive, self-adjoint Hamiltonian K, 
and a unique ground state lo> satisfying KIO>= 0. Also we 
assume there is a space-translation generator f satisfying 
[P,K] = O, and \O> is a nondegenerate eigenstate off, 
fiO> = 0. Likewise, we postulate the generators of the 
Lorentz group for a covariant diastrophic model. 

With regard to the field operator ~(x,w) = ~(e,t,w) 
we assume it transforms conventionally, and is self adjoint 
when smeared with appropriate space (or space-time) plus 
w-dependent test functions. For purposes of illustration 
we shall assume that space plus w-dependent test functions 
suffice. (The appropriate generalization to include time 
smearing will be noted subsequently.) 

Determination of Expectation Functional 

We study the expectation functional for the field 
operator 

~(f) = JS ~(e,w) f(e,w)d]SdW. 

The "ultralocal" nature of the dynamics with respect to 
the variable w implies that 

E(f) ~ <O\ ei~(f) lo>= e-JdwL{f(·,w)}. (5-4) 

Here, the notation for L denotes, formally, 

L{ f( • ,w) }= f J .. JMn(el' .• •2Sn)f(e1,w) ... f(en,w) d]Sl ... d]Sn• 
n=o 
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Symmetry of the potential implies that E(-f) = E(f), Let 
us assume that E(f) is defined for all f EC~ (minimally 
ray continuous) and is positive definite. It follows from 
the functional form in (5-4) that E(f) is infinitely di­ 
visible. Clearly 

[E(f)]l/m = e-(1/m) JdwL(f(,,w)} 

-fdw'L(f(•,mw')} = E(f ) = e - [m] ' 

where f[m]~,w) = f~,mw) EC~. It follows that [E(f)]l/m 
is an expectation functional for all m and is therefore 
infinitely divisible, This property, which holds for all 
f~,w), is a consequence of the ultralocality of just one 
of the variables, namely w. -- 

According to Eq. (3-9), E(f) never vanishes and thus 
L(f(•,w)} is defined for all f. Continuity of E(f) ex­ 
tends to ~roduct test functions of the form 
f~,,;_t) = f~) x6 (w), where x6 is a characteristic function 
and f~) is smooth. For these cases 

E(f) e-1::.L( f(.)} 

which since iJ. must be positive definite for all b.>0 im­ 
plies that L(f(·)} can be determined from Eq. (3-9). As 
in the ultralocal models we associate the Gaussian terms 
with the free (Fock representation) theory and focus in­ 
stead on the non-Gaussian part. Thus we have determined 
that 

E(f) = e-JdwJ[l-cos(A,f(w))] da(A), 

where, formally, the notation means 

(A ,f(w)) = f A~) f~,w)d~. 

In the present theory, the ''model function" is contained 
in the measure a. In analogy with the ultralocal case, 
we shall require that J da(A) = 00, 
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Field Operator 

An operator realization for the field can be given in 
terms of the formulation presented in Section 3.4. For 
this purpose we assume that 

2 2 h2 
b = t, (lf ' ,a) x L (R) = t. 

composed of elements $(A,w) such that 

($,$) = fdwf\$(A,w) \2da(A) < oo 

It is also convenient to employ elements of t.2 (lf' ,a) alone, 
say $(A), for which 

<$,$> - J\HA) \2da(A). 

The round or angular brackets distinguish the two cases. 
In an obvious embedding we can imagine that 

$(A,w) E t.2(lf',a) 

for almost all w, in which case we set 

<$(w),$(w)> = J\w(A,w) \2da(A). 

Observe that the function "one" is not an element of t.2 
[since Jda(A) = 00], but that iA(1s)g(1s)d25, for suitable 
g(1s), is a-square integrable 'near the origin". 

In the notation of Section 3.4 we may represent the 
field operator cp(1s,w) as 

cp(1s,w) = <B(w), A (1s) B(w)> 

[cf., Eq.(3-5) and also Eq. (4-3)]. Here we have chosen 

B(cp) • A(cp) + fcp*(A,w) da(A)dw, 
h2 hl 

which holds for cp Et, n t. , and which can be viewed as 
the limit of unitarily equivalent operators for a non­ 
Cauchy sequence sn(A,w) ... 1 in the sense of Chapter 3. In 
terms of coherent state matrix elements we have 
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<ij, \cp~,w) \ij, '> / <ij, \ij, '> 

.. J[ij,*(A,w)+l] A(~ [ij,'(A,w)+l] dcr(A), 

t * where \ij,> • N exp [A(lj,) J \O>, ij,q, as usual. In spite of 
the abstract notation, the fundamental idea to appreciate 
is simplicity itself: The representation of the field 
operator is bilinear in conventional (Fock representation) 
annihilation and creation operators! 

Functions of the Field and 
Cyclicity of the Representation 

It is clear that we may write 

cp~,w)cp~',w') • li(w-w') <B(w),A~)A~')B(w)> 

+ ! cp(1s,w)cp(1s' ,w') ! , 

where ! ! means normal order with respect to Bt and B. 
As in the preceding chapter the singular coefficient of 
the first term (for w=w') permits a test function sequence 
to pick out the partially renormalized field product 

[cp~,w)cp(1s',w)] = <B(w), A(1s)A(1s')B(w)>, r 
where multiplication occurs in "A-spa.ce". This is a par­ 
tial renormalization because, as ~•---.e, another, model de­ 
pendent, renormalization may be involved; however, we do 
not discuss this problem. 

By extension we can clearly build partially renormal­ 
ized polynomials composed of terms such as 

[cp0s1,w) ••• cp(1s ,w)] = <B(w) ,A(1s1) •.. A(1s )B(w)> n r n 

all of which are functions of the field cp(1s,w). It is 
from such operators that we expect to build the nonlinear 
interaction terms in the Hamiltonian just as we did in the 
ultra.local models. All such terms are bilinear in the B's 
(or A's)! 

* We adopt, as in Chapter 4, a principal value definition 
such that JA(x)dcr(A) .. O. 
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Cyclicity of the representation can be established in 
much the same manner as for the ultralocal models. In a 
limiting fashion, let us build the operator 

G = J <B(w),h(A,w)B(w)>dw 

where h(A,w) is a suitable functional, e.g., 

The operator eG essentially takes the vacuum into a co­ 
herent state since 

! eJ<B(w) ,{eh(A,w)_l}B(w)>dw! IO> 

t 
eg+A ( ~) lo> 

where g is a numerical factor, and where 

W(A,w) = {eh(A,w)_l} E i2 

in virtue of our assumption on h. As h(A,w) varies in its 
allowed domain it clearly covers a dense set of elements 
in :2, which thus ensures the desired cyclicity. It is 
note-worthy that this remarkable cyclicity has come about 
by the fact that w ER. One should never underestimate the 
power of the continuum! 

A Few Generators 

The simplest generators to deal with generate trans­ 
lations in the configuration space. For example, the 
operator 

lb = J dw<A(w), (-io /ow)A(w)> 

induces translations in the stratum variable w, The space­ 
translation generator f is likewise bilinear in At and A, 

f = J dw<A(w) ,e A(w)>, 

where l, is a self-adjoint operator on .c2 with the property 
that 
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Note that f I 0>=0; ~ut uniqueness demands there exist no in­ 
variant state in/, . 

The form of these opera.tors is already completely 
dictated by the field opera.tor representation since a total 
set of matrix elements is given by a. relation such as 

<flei_g•flf'> = <f If'> = E(f'-f) 
a. a 

where 

I f> = e icp < f) I o> . 
Structure of Hamiltonian 

The opera.tor form of the Hamiltonian is as conceptual­ 
ly simple as a collection of harmonic oscillators! As in 
the ultra.local models we expect that K = JK(w)dw and that 
3-<'(w) is constructed from A and At, but only at the point 
w. We a.re led by the same reasoning as in the ultra.local 
case to the form 

K = Jdw<A(w), {i,A(w)> 

where f!.v is a. self-adjoint operator on :.2• Again KIO> = 0, 
and to have uniqueness of the ground state and a. non-nega­ 
tive spectrum we needl >0. That is, there can be no time­ 
translation invariant state in :.2, nor, as we have already 
noted, any space-translation invariant state. Thus, with 
regard to the base quantum theory -- that defined in :.2 
we deal with an unconventional field theory, one without a 
normalizable, invariant state. 

For the Lorentz group (when this group applies) iden­ 
tical reasoning demands that 

~ Jdw < A(w), ! A(w)>, 

J. Jdw < A(w), j-A(w)>, 

for the boosts and rotations, respectively. Fulfillment of 
the Poincare Lie algebra. by K,f,lf and .2 is assured provided 
/;, '/!, ! and j: already fulfill the Lie algebra on :,2. 
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However, in this latter case we deal with an unusual repre­ 
sentation since there is no normalizable state annihilated 
by _t., orJ, 

Stratons and Excitations 

We may suggestively refer to 

h = Jdw < A(w), A(w)> 

as the "straton" number operator, and the subspace where 
h = n as the n-straton subspace. Evidently [h,K]=O, etc., 
so that all the generators we have introduced conserve 
straton number. 

Straton conservation implies that we can restrict K 
(and the other generators) to any particular n-straton sub­ 
space. It is clear from the construction that the entire 
spectrum of Ii, is contained already in the one straton sub­ 
space! Hence, among the one straton stateswe expect to 
find the~ particle states of the base theory, two par­ 
ticle scattering states, three particle scattering states, 
etc. Among the one straton states should be found a two 
particle "in" state and a (different) two particle "out" 
state, etc., which implies, as well, that the conventional 
scattering theory of the base theory is already contained 
in the one straton subspace. Thus, unlike the usual one 
particleS-matrix (which is trivial), we expect nontrivial 
scattering to exist among initial and final one straton 
states. 

Two straton states would describe two independent, 
uncoupled scattering events conveniently pictured as taking 
place at disjoint strata. Multi-straton states have a 
corresponding interpretation. 

Time-Dependent Field 

The form of the time-dependent field operator can be 
readily found using the relation 

illt -illt -i~t i~t e <~,A(w)> e = <~,e A(w)> = <e ~,A(w)> 

where <~,A(w)> is the annihilation operator which maps the 
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A2 I coherent state \w>, w(A,w) E l into <cp,w(w)> lJ,>. 
If we note that 
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cp(e,w) = <A(w) ,A (e)A(w)> 

+ <A(e) ,A(w)> 

+ <A(w) ,A (e)>, 

then we find (x=~,t) 

cp(x,w) nee -uce - e cp(e,w)e 

= <A(w), eiht A(e)e-i~tA(w)> 

+ <eiKtA (e), A(w)> 

+<A(w), eif-tA(e)>. 

It is convenient to define this as 

cp(x,w) = <A(w), A(x) A(w)> 

+ <A(x), A(w)> 

+ <A(w), A(x)>, 

which introduces the notation A(x), an operator 
A(x) an element of J:2(of course when smeared). 
size that the field operator, for all times, is 
bilinear expression in A and At*. 

on .1:2, and 
We empha­ 
simply a 

* The space-time field cp(x,w), and the given generators for 
3{ and f, would serve to characterize the theory in the 
event that space-time smearing is required. This permits, 
as in Chapter 4, the generalization to additional measur&s 
a(A). These may be different in that only [JA(e)g(e)d~] , 
8>1, may be square integrable near zero (rather than 8=1). 
These measures may a2so be different if Pi, cannot be con­ 
structed to act on .I: but requires an enlarged space; i.e., 
the field at fixed time of the base theory is not cyclic. 
Even if this is the case, the given expressions for cp(x,w), 
3C and f apply with the new measure. 



406 JOHN KLAUDER 

Asymptotic Fields 

The bilinear form for ~(x,w) is in fact preserved in 
the asymptotic limit yielding "in" and "out" operators. 
Let "ex" denote either of these. Then we must have 

~ex(x,w) = <A(w), Aex(x) A(w)> 

+ <ti (x), A(w)> ex 

+ <A(w), ti (x)>. ex (5-5) 

In the simplest form of asymptotic theory we would associ­ 
ate the one particle states (say of mass m) with the one 
straton states formed from ~ex(x,w) IO>. The only term of 
(5-5) which contributes is the last and we find 

~ (x,w) lo> ex <A(w), ti (x)> lo> ex 

- J ti (x) da(A) IA,w >. ex 

Stability of the one particle state requires that 

ti. (x) = ti (x) = ti (x). in out o 

The overlap of two such states is just 

<OI~ (x,w)~ (x' ,w') lo>= o(w-w') ex ex 

x <ti (x), ti (x')>, 
0 0 

from which it follows that we should have 

J ti* (x)ti (x')da(A) = -iii+(x-x' ;m2). 
0 0 

Consider next the product~ (x,w)~ (x',w') which 
. . ex ex i 1 contains a one Straton creation operator term proport ona 

to o(w-w'). To emphasize this term we appeal to our par­ 
tial renormalization of the product. The vector 

[~ (x,w)~ (x' ,w)] IO> ex ex r 

has the one straton component 
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<A(w),A (x)A (x')> \O> ex o 
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- f A (x)A (x')dcr(A) \A,w>, ex o 

which we interpret as a two particle state. These states 
can differ for "in" and "out" and their overlap would cor­ 
respond to a two-particle elastic scattering amplitude. 
From these examples one sees the way in which scattering 
states can in fact lie in the one straton subspace. 

It should be noted that the asymptotic fields C/lex(x,w) 
are not canonical (c-number commutator) unless A x<x) = 0. 
This behavior is mandatory in order to have non-Erivial 
scattering for otherwise cpin(x,w) = cpout(x,w) and no scat­ 
tering arises. 

Indeed, the form of the S-matrix must be given by 

S = eifdw <A(w), ~A(w)> 

which, as usual, must fulfill 

-1 
S cpin(x,w)S = cpout(x,w). 

This is satisfied provided we have 

-i~ i~ 
e Ain(x)e = Aout(x) 

and 

i~- - e A (x) = A (x), 
0 0 

which are quite plausible. 

Truncated Vacuum 
Expectation Values 

On the basis of the bilinear form for the field opera­ 
tor, the truncated vacuum expectation values for the field 
may be readily calculated. It follows directly that 
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<Ol~(x1,w1) ~(xn,wn) IO>T 

o(w1-w2) o(wn_1-wn) 

x <A(x1), A(x2) ... A(xn_1)A(xn)>. 

Moreover, if we introduce 

~(x) = f\ ~(x,w)dw, 
-\ 

an operator appropriate to the stratum lwl,:\, we find 
simply 

<Ol~(x1) ~(xn) IO>T 

<A(x1),A(x2) A(xn_1)A(xn)> 

(5-6) 

It is noteworthy that only one straton intermediate states 
appear in the construction of the truncated functions. If 
there are any asymptotic states (possibly requiring compos­ 
ite field operators), or even if there is no scattering 
theory at all, these facts can, in principle, be deduced 
from the truncated functions (5-6). 

5.3 SPECULATION ON ADDITIONAL PROPERTIES 

A number of additional properties of diastrophic 
quantum fields can be postulated on a heuristic basis by 
analogy with similar results for ultralocal models. We 
may imagine that the dynamics and field representation are 
linked clrrough a functional differential equation "Al = O" 
[similar to.Kc("-) =OJ. This would lead to joint expres­ 
sions 

X f dw <A(w),KA(w)> 

= f dw <B(w),f.B(w)>. 

In the latter form we could expect to identify renormalized 
powers of the field characterizing the interaction poten­ 
tial appearing as monomials in A~) within /!,, along with 
functional differential operators, o /oA ~). If we suppose 
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that the highest-order functional differential operator in 
,{contributes the formal term 

-~ J[t//oA2(e)] d..e, 

then it would follow that 

[ cp Ce> W) > ~ Ce I >WI ) J 

= iO Ce-..e') o (w -w ') <B (w) , B (w) >, 

which has a leading c-number singularity 

i o(e-..e') o(w-w') J da(A). 

On this basis we also expect that cp(e' ,w') is only a form 
and not an operator when smeared with a test function 
f(e I ,W1). 

The passage to the free, Fock theory of mass m could 
presumably be arranged along lines similar to those0appro­ 
priate to the ultralocal models. For the field operator, 
for example, we could obtain convergence of the expectation 
functionals basically by a suitable scaling. Consider a 
hypothetical sequence of covariant measures O'Tl(A) with the 
property that 

J A(~)A(.y)daTl(A) = -if 6+(e-_y; m
2
) pTl(m

2
)dmz 

2 [pTl(m) is the two-point spectral weight] converges to 

lim J A(e)A(.y)daTl(A) = -i6+(e-_y;m~) 

(5- 7) 

Then it follows that the sequence 

E (f) ; e-JdwJ[l-cos(A,f(w))Jri
2
daTl(TlA) 

Tl 

-JdwJ[l-cos[ri-1(A,f(w))]}ri2da (A) 
e Tl 

converges to 

e-Jdw(f(w), bf(w)) 
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where bis the kernel defined by (5-7). This is the ap­ 
propriate expectation functional for the covariant diastro­ 
phic free field of mass m

0
• 

Pseudo-Free Models 

The general formalism outlined above applies, in 
principle, to a number of covariant diastrophic theories* 
such as the cp4 theory appearing in (5-2), or for other 
symmetric potentials. The difficulties in computation are 
not necessarily simpler in such a study -- namely determi­ 
nation of a suitable a(J\) -- but they may be different 
ones. However, among all such models that can be studied 
two types stand out as prime candidates for early attack. 
In the ultralocal models, the pseudo-free cases were among 
the simplest possible. The analogue of the pseudo-free 
cases in the present context should yield a very different 
way to view a conventional free theory, one in which the 
interaction is vanishingly small but one in which its rep­ 
resentation changing properties have, in large measure, 
been taken into account. Presumably such a pseudo-free 
theory should have no nontrivial scattering, but rather it 
serves to "prepare the ground." Adding interaction to the 
pseudo-free theory seems to be conceptually and practically 
easier than adding it to the free (Fock) theory, as we 
comment on in the next chapter. Indeed, in favorable 
cases, the field representations of the two (i.e. pseudo­ 
free and interacting) are locally equivalent if the be­ 
havior of the ultralocal models carries over. It would 
seem that a study of pseudo-free, covariant, diastrophic 
quantum fields would be a useful enterprise. 

A second class of interesting models could be the 
scale-invariant ones, which proved so useful in the study 
of the ultralocal fields. By analogy, these models would 
have a number of delicate technical questions, but again, 
if analogies hold true, the scale-invariant theories should 
correspond to the zero-mass, pseudo-free covariant diastro­ 
phic fields and may most likely be obtained from the 
pseudo-free models as a limit in which their only parame­ 
ter -- the mass -- vanishes. 
i< And by implication to noncovariant diastrophic theories 
of many varieties although we have not discussed any as an 
illustration. We trust the reader's imagination to make 
the necessary changes. 
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6. -THE CLASSIC FUNCTIONAL TECHNIQUES REVISTED 
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What is the relationship, if any, of the field theory 
solutions presented in these notes to the classic func­ 
tional formalisms as presented in Chapter 1? For the sake 
of illustration we take the most understood of our models, 
the ultralocal models of Chapter 4. The usual functional 
formulations purport to "solve the problem"; but what is 
the true state of affairs? The explicit solutions we have 
obtained can shed some light on this situation. 

Diagonalization of the Field 

We take the simplest ultralocal models for which 

E(f) = e-Jd~J(l-cos[Af(e)]}c
2
(A)dA 

3 with a singularity parameter y satisfying~~ y < 7, 
According to the theorems presented in Chapter 3, it should 
be possible to realize E(f) in the form 

E(f) = J ei(A,f)dµ(A), 

where A (e) ElJ'. A heuristic, physical picture of the kind 
of elements in lJ'can be given on the basis of results ab­ 
stracted from the theory of "shot noise." We suppose that 
we formally may write 

"' 
A (_e) = l A • & (e-_y.) ' 

j=l J J 
( 6-1) 

where A., _y. are 
bles fot ali j. 
tribution-valued 

independent, and identical random varia­ 
The characteristic function for the dis­ 
stochastic variable A(e) may be given by 

. (A f) "' iA . f (_y • ) 
<el. ' > = IT <e J J >., 

j=l J 

which we interpret to mean 

'Af( ) N lim ( Je1. y dµN(A ,y_)} 
N'"'"' 

where µN is a sequence of normalized measures. The appear­ 
ance of the Nth power is a consequence of the assumed equi­ 
valence of distributions for each j. Under appropriate 
conditions (which we adopt) it follows that 
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lim ( 1 + !! f [ e i:\.£ (x) -1] dµ (),. ,_x)} N 
N N 

where a= lim WN• Independence of A and y, uniformity of 
the distribution in y, and symmetry and absolute continuity 
of the\ distribution finally determine that 

<ei(A, f)> 

as desired [cf. 
regard 

2 = e-fd_yf(l-cos[\f(r:_)J}c (\)d\ 

Eq. (4-2)]. Consequently, we may formally 

A~) = i::.>.. .6~-_y.) 
J J J 

as characteristic of the elements in~• 

To make this real-i.zation more plausible we note that 

A~)A~') = ,,::k A,Ak 6~-_y.)6~'-_xk) 
J, J J 

2 
1 \j 6~--i}o~•-_yj) 

+,:: \,\ko~-y.)6~'-yk). 
jik J J 

Observe that the first term may also be written as 

2 
6~-~•) ,::j \j°(~-.Y,j) 

which suggests that 

A 
2 
~) = ,:: . \ 2 6 ~-_yJ.) r J j 

corresponds to~;~). Higher order renormalized products 
are defined analogously. 

Consider next the quantity 

(6-2) 
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which is formally a differential operator on the space u ", 
It follows that 

[/\ (e) ,A(e')] = i6 (e-~ ')E .6 (e-_y.). 
J J 

However the quantity H(e) = E. 6(e-_yj) is not a meaningful 
random variable since (if f ¢JO) 

<ei(H,f)> = e-Jd.e.J'[l-cos[f(e)]}c
2
(',)d\ 0 

due to the divergence of Jc2(\)d\. 

Within this framework, the (functional) differential 
representation of the Hamiltonian K is given by 

K = JP.JA2(e) + y(y+l)A-2(e) + 2e r r 

(6-3) 

Expressed in terms of the realization (6-1) and (6-2) we 
determine that 

02 ~, = J[E.[-\ --2 + v(\.)] 6(e-_yJ.)}d~ 
J o\ J 

j 
02 

= E.[-\ --2 + v(AJ.)]. 
J ax 

j 

The similarity to the differential operator for f.., is clear, 
but, of course, the interpretation is quite different. 

The expressions given above represent the best inter­ 
pretation of a dia.gona.liza.tion of the field (at t=O), and 
a. realization of the Hamiltonian as a. functional differen­ 
tial operator. It should be noted that the class of ele­ 
ments composing li' is of basic importance for it determines 
the form of the renormalized product. Moreover, the opera.­ 
tor -i6 /61\ (e) actually does not appear in K,. but its role 
is assumed by the formally similar quantity J\ (e). Adding 
these features to the need for the u2usual and unexpected 
field renormalization term ~ (y+l)J\~ (e) drastically re­ 
duces the value of the straightforward, commonly assumed 
functional form like (1-3). 
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T-Product Generating Functional 

Consider another of the functional formul~tions of 
Chapter 1. For the ultralocal models (½ "'Y < z) let us 
construct 

(6-4) 

where j~,t) is a smooth function. This expression can be 
evaluated for the ultralocal models, and one finds 

·J"- (t) · t~ t)dt O(j} = exp (Jd~J c(A)(T ei J~, -l}c(A)d"-), 

where A(t) = ei~tAe-i{t_ Strictly speaking, this expres­ 
sion is not precise and should be supplemented by the r~le 
that c(A) is a formal left and right eigenvector for ei t 
with eigenvalue one. Thus a term like 

is understood to mean 

We discuss only a few questions based on the formula 
for O(j}. Suppose one had a particular solution corre­ 
sponding to one model and wished to consider the perturba­ 
tion to another model with ~ different potential. For ex­ 
ample, assume that we knew O(j} based

2
on the pseudo-free 

model function c("-) = \"- \-Y exp(-~"-). Considering the 
interaction term g"-4 to be a perturbation in the potential 
we could expect that a relation like (1-4) holds, namely 

O(j} = N eig Jz364/6j(x)4dx O(j} 

-1 
where Z =6(0) denotes 
malized field powers. 
that O(j} is the limit 
g(x)2!0, of 

the factor associated with renor­ 
To be more precise we anticipate 
as g(x)-g, where g(x)EC0, and 

(6-5) 

This latter expression can be made meaningful provided 
the field representations for c(A) and c("-) are locally 
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equivalent, and the condition for this to hold is just 
(c("-) - c("-)}EL2. In that case Ng is neither O nor CX> and 
is chosen so that O (O} = 1. g 

We define the operator 

© - J g(x) z3o4/oj(x)4dx g 
by its action on functionals of the form 

J = En(n!)-
1
JJAn(y;t1, ... ,tn)j(y,t1) ... j(y,tn)dydt1 ... dtn 

(6-6) 
to be 

The inclusion of the space-time cutoff g(x) removes any 
support requirements on the coefficients An; in fact, in 
the case of interest An, n>O, is independent of y. Certain 
of the functionals J would be analytic functionals for ©g -~ -~ 
such that e gJ = E(m!)-1(-i)m©mJ. The operation e g 
can be extended by linearity andgcontinuity to additional 
functionals which needAno longer be analytic for ©g. It 
seems reasonable that O(j} is a functional of this type, 
and that (6-5) holds true. Finally O(j} = lim og(j} as 
g(x) .... g. 

One advant~2e of_, this picture is that theAunusual re­ 
normalization "- in Yv is already included in O, and only 
the genuine interaction term :x.4 need be explicitly dis­ 
played in constructing 0. Yet we know this to be true 
only because we already have the operator solution to draw 
on. What exact form the renormalized interaction assumes 
cannot be foretold in the general case. 

It i~ noteworthy that there are many functionals on 
which e-1. g acts in a trivial fashion. For example, on 
the basis of our earlier definition 

-i©g i(j ,f) i(j ,f) 
e e = e 
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where 

(j,f) = J j~,t) f~,t)d,edt 

and fECo, say. One may be tempted to extend this trivial 
action to other functionals by linearity and continuity -­ 
but what is the appropriate choice of topology? For ex­ 
ample, an extension of the trivial action, consistent with 
(6-7), can be made to the functional 

- f j ~. t1) b (t1, t2) j ~, t2) dt1 dt2d.e 
O {j} = e • 
0 

which is the form of (6-4) appropriate to the free Fock 
representation. Yet we would not like to extend, by con­ 
tinuity, a trivial action to the functional O(j}. What is 
the distinction? In the Hilbert space characterized by 
00(j} [e.g., in the functional Hilbert space constructed 
(at sharp time) in the fashion of Section 3.2] the action 
of© =0. On the other hand,© is nonzero in other func­ 
tionh Hilbert spaces such as ~hat characterized by Ol j}. 
Any superficial "extension by continuity" would tend to 
gloss over the delicate distinction of different functional 
Hilbert spaces. Clearly, considerable care must be exer­ 
cised in the general problem in finding the proper defini­ 
tion of an interaction opera.tor. 

Speculation on Covariant Models 

Let us once a.gain consider O{j} a.s given in (6-4). 
In analogy with (1-4) we wish to ex~lore the possibility 
of restoring the (spacial gradient) to the ultra.local 
models thereby giving a covariant theory. Formally, we 
might anticipate that the covariant functional Oc(j} would 
be the limit of the expressions 

0 ( ·} = N ei\ Jg(x)[yo/oj(x)J; dxO{j} 
cg J cg (6-8) 

as g(x)-1, where r stands for some unknown renormalization. 
For this expression to be useful we must somehow be able 
to define 
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on functionals of the form (6-6). If this could be accom­ 
plished we sould have the ingredients of a covariant 
theory, or so it would seem. Unfortunately, no natural, 
straightforward definition has been found, and one is re­ 
luctant to introduce momentum-space cutoffs blindly just 
to get a definition. After all, momentum-space cutoffs 
make the ultralocal interaction terms compatible with the 
Fock representation; but there is no hope for such a scheme 
because one is ignorant of the unexpected yet necessary 
operator renormalization [i.e., A-2(e)as given in (6-3)]. 
It is not known whether or not un~xpected renormalization 
terms would be needed in restoring the spacial gradient 
term, and if so what form they would take. On the other 
hand, the inadequacy of the scheme represented by (6-8) is 
by no means certain, and perhaps it should not be dismissed 
so lightly. 

Conclusion 

It is hoped that the reader may have found in the 
material presented in these notes further evidence for the 
continuing appeal of functional techniques. Few can deny 
the potential power and diversity of both the old and the 
ever-enlarging new functional techniques in attacking the 
fundamental problems of quantum field theory. So numerous 
are the unsolved problems and so challenging are their 
solutions that one feels a kindred relation with the Colo­ 
rado miner of yester-year in his tireless search for the 
tiny deposits of precious ore deeply hidden the vast wil­ 
derness. One can only hope, as he did then, that "Surely, 
there must be gold in them thar hills." 
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I. Introduction 

These lecture notes present an outline of the proof 
of the existence of the thermodynamic limit for Coulomb 
systems. A brief statement of the main results has ap­ 
peared previously, Lebowitz and Lieb (1969), and the full 
work will appear shortly, Lieb and Lebowitz (1971). What 
we have tried to do in these notes is to present the 
ideas and methods used in constructing this proof while 
leaving out most of the details of the analysis. In some 
places, such as section III, we treat only the simplest 
kind of Coulomb system: two species of charged particles 
(one positive and one negative) whose only interaction is 
through the Coulomb potential. In other places we simply 
state various lemmas and theorems without proof. 

The basic pre-requirement for the existence of a 
thermodynamic limit for Coulomb systems in the Dyson­ 
Lenard Theorem, Dyson-Lenard (1965), which gives a lower 
bound to the energy of a system of charged particles. 
It is therefore very fortunate that the proof of this 
theorem is presented in a particularly nice form, in 
Professor Lenard's lectures which are included in this 
volume. 

* Supported in part by National Science Foundation 
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Statement of the Problem 

Statistical Mechanics as developed by Gibbs and 
others rests on the hypothesis that equilibrium properties 
of matter can be completely described in terms of a. phase­ 
space average, or partition function, Z = Tr (exp(-~H)}, 
with H the Hamiltonian and~ the reciprocal temperature. 
It was realized early that there were grave difficulties 
in justifying this assumption in terms of basic microsco­ 
pic dynamics. These questions, which involve the time 
evolution of macroscopic systems, have still not been 
satisfactorily resolved, but the great success of equi­ 
librium statistical mechanics in offering qualitative and 
quantitative equilibrium explanations for such varied phe­ 
nomena as superconductivity, specific heats of crystals, 
chemical equilibrium constants, etc. have left little 
doubt about the essential correctness of the partition 
function method. However, since Z cannot be evaluated 
explicitly for any reasonable physical Hamiltonian H, com­ 
parison with experiment always involves some uncontrolled 
approximations, Hence, the following problem deserves 
attention: Is it true that the thermal properties of 
matter obtained from an exact evaluation of the partition 
function would be extensive and otherwise have the same 
form as those postulated in the science of thermodynamics? 
In particular, does the thermodynamic, or bulk, limit exist 
for the Helmholtz free energy/unit volume derived from the 
partition function, and if so, does it have the appropriate 
convexity, i.e., stability properties? 

To be more precise: Let (A.} 3e a sequence of 
bounded open sets (domains) in J R with A, becoming 
infinitely large as j ... 00 in some 1rea.sonab1J wa.y1 which 
will be specified later. (We shall be concerned primarily 
with d = 3 but many of our results a.re valid for all d). 
The volume (Lebesgue measure) of Aj will be denoted by 
V(A·) and V(Aj) ... 00 as j ... 00 • Consider now a sequence of 
sysiems consisting of S species of particles in the domains 
(Aj} . Let~-= (N. , ••. , N,S) be the partfcle number 
vector specifying tte system Jin Aj , i.e. N. is a non­ 
negative integer and is the number of particies of species 
i contained in A. . The canonical partition function of 
the jth system at reciprocal temperature~ is then given 
by - 
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by Z(l3, N. -J 
(1.1) 

where E (Nj ; Aj) are the energy levels of the jth 
sy~1em,a£j-= Nj/V(Aj) is the particle density vector, and 
-13g (13, £j ; Aj) is the Helmholtz free energy/unit volume 
of the jth system. According to statistical mechanics, 
knowledgeof g determines all the equilibrium properties 
of this system. The question to be studied is the foliow­ 
ing: Given a sequence of particle density vectors (pj} 
which approach a limit pas j - co , does g(l3, p ; AjJ 
approach a limit, g(l3, p) , as j - co and is this limit in 
some sense of the particular sequence of domains (Ai} and 
density vectors (p .. } used in going to the limit? IT: so, 
does the limiting-free energy density have, as a function 
of p and 13 the convexity properties required for thermo­ 
dynamic stability, i.e. is g(13,P) convex in 13 and concave 
in p ? (With regard to 13, we see from (1.1) that each 
g(l3: P· ; Aj) is convex in 13 . Therefore, if this limit 
g(13, pJ exists it will automatically be convex in 13 . 
Consequently we can set 13 = 1 and omit mention of 13 , and 
shall do so henceforth.) 

The proof of the above for the free energy obtained 
from the canonical ensemble and the proof that the 'same' 
results are obtained, in the thermodynamic limit, from 
the microcanonical and grand canonical ensembles as well, 
have come to he recognized (by some people) as one of the 
basic goals of statistical mechanics and is referred to as 
proving the existence of the thermodynamic limit. 

Background: Tempering and the Coulomb Potential 

Various authors have evolved a technique for proving 
the existence of the thermodynamic limit for systems whose 
Hamiltonians satisfy certain conditions. (The different 
names associated with this development are: Van Hove, Lee 
and Yang, van Kampen, Wills, Mazur and van der Linden, 
Griffiths, and in particular Ruelle and Fisher. The read­ 
er is referred to Fisher (1964) and Ruelle (1969) for an 
exposition and references. For a synopsis and more 
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references see also Lebowitz (1968) and Griffiths (1971).) 
In particular it was necessary to assume that the inter­ 
action between the particles constituting the microscopic 
units of macroscopic matter were short range or 'tempered'. 
This means that there exists a fixed distance r :e O and 
constants C :e O and e: > 0 such that the inter-d8main inter­ 
action potential energy between N1 particles in a domain 
111 , N2 particles in a domain 112 , ... , and NK particles 
in a domain AK, has a bound in terms of the minimum 
distances rij between Ai and Aj , 

K K 

l.·~-l U (N.) ,;; C E r1.J. l. i,&j 

(1. 2) 

whenever ri. :e r for all i ,& j . We have written here 
J O ---- 

U(N) = u~l ' ... x,._l) for the toaal potential energy of N 
particles at pos~\:ions x,e, e R . (We shall generally not 
indicate that the partic'1:es belong to differenS s~ecies 
when this is not essential and shall denote i::1 N by N). 

The requirement of tempering unfortunately excludes 
the Coulomb potential which is the true potential relevant 
for real matter. That a nice thermodynamic limit exists 
for systems with Coulomb forces is a fact of common ex­ 
perience, but the proof that it does so is a much more 
subtle matter than for short range forces. It is screen­ 
ing, brought about by the long range nature of the Coulomb 
force itself, that causes the Coulomb force to behave as 
if it were short range. This has the consequence, as we 
shall prove in these notes, that when the sequence of sys­ 
tems are overall neutral then the approach of g(p. A.) 
to its limit g(P) and the properties of g(p) are-J J 
the same as those obtained. for systems witn tempered inter­ 
actions (except that the p1 , i = 1, ... , Sare con­ 
strained by the neutrality requirement). In particular 
g(P) is the same for different 'shapes' of the domains 
in- {A.} . This shape independence disappears when the 
constrlint of charge neutrality is lifted and systems 
with a 'non-negligible' amount of net charge are con­ 
sidered. The true long range nature of the Coulomb force 
now becomes manifest, leading in some cases to a shape 
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dependent limit of the free energy density and in other 
cases (when the excess charge is large) to an infinite 
limit (cf section IV). 

Background: H-stability and the Dyson-Lenard Theorem 

The basic condition on the N body Hamiltonian 

N 2 
H(N) =tgl (Pt)+ U (~1•·· -~) , (1.3) 

where mt is the mass and P,ithe momentum (momentum operator 
in quantum mechanics) of the tth particle, required for 
the existence of thermodynamicsis that there exists a 
constant B < 00 , such that for all N 

E
0
(N) :.e -BN. (1.4) 

Here E (N) is the ground state 3nergy of the N particle 
system0in infinite space, ~i€ R , defined by 

E (N) =Inf[(!, H(N) !)/(! , !)] 
0 ' 

with the ! (x1, ... , x,..T) elements of a properly constructed 
Hilbert space in whicH H(N) is a self-adjoint operator. 
The functions !(xi,··, xN) have to satisfy the proper 
symmetry relations whenever the coordinates of two par­ 
ticles belonging to the same species are interchanged: 
! ➔!or!➔-! for bosons or fermions respectively. 
(Since the spin does not appear directly in the Hamil­ 
tonian we can, a.nd do, treat particles of the same type 
having different values of their spins in the z:..direction 
as belonging to different species.) 

(1.5) 

We shall refer to condition (1.4) as H-stability. 
Heuristically, H-stability insures against collapse of 
the system. Mathematically it provides an upper bound to 
the sequence (g(.e_j ; J\j} and this bound plays an essen­ 
tial role in the proof. It should be emphasized however 
that H-stability does not in itself imply a thermodynamic 
limit. As an example, it is trivial to prove H-stability 
for charged particles all of one sign, and it is equally 
obvious that the thermodynamic limit does not exist in 
that case. 
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We shall refer to condition (1.4) as H-stability. 
Heuristically, H-stability insures against collapse of 
the system. Mathematically it provides an upper bound 
to the sequence [g(Pj ; J\.)} and this bound plays an 
essential role in tne pro6f. It should be emphasized 
however that H-stability does not in itself imply a ther­ 
modynamic limit. As an example, it is trivial to prove 
H-stability for charged particles all of one sign, and 
it is equally obvious that the thermodynamic limit does 
not exist in that case. 

To satisfy (1.4) it is clearly sufficient that the 
potential energy U (N) by itself have a lower bound of 
the same form: 

Inf U(~l , ... , ~N) ;, -NB, all ~l' ... , ~N . (1. 6) 

Indeed for a classical system (1.6) is also necessary for 
(1.4). There are a large variety of interaction poten­ 
tials for which the existence of the lower bound (1. 6) 
can be verified explicitly. The simplest of these is the 
case when U(N) can be written as the sum of a positive 
term and a term consisting of a sum of pair potentials 
v (x. - x.) which is bounded below and has the asymptotic 
beha·hors~ 

lim IEld+o v(~) ➔+and lim IEldttv(r);, 0 (1.7) 
lrl ➔ O+ lrl ➔ 00 

for some o > 0 and e > 0 . (This result is due to Morrey 
(1955) who appears to have been the first to consider 
bounds of the form (1.6) for non-Coulomb potentials.) 
More general types of potentials satisfying (1. 6) have 
been considered by other authors [3], [17] . 

It is clear, however, that (1.6) will not be satis­ 
fied by a system of point charges with charges q. of 
different signs, i = 1, ... , N . The interparticl~ Coulomb 
potential has the form, ford= 4, 

(1.8) 

and the potential energy of even a single pair of oppo­ 
sitely charged particles has no lower bound. Interesting­ 
ly though, if the particles have har cores, i.e. U(N) 
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contains in addition to its Coulomb part (1.8) a term 
which is + CX) if l~i - ~j I < R , then Onsager (1939) 
showed that (1. 6) is satisfied. Onsager's proof is so 
simple that we shall present it here (in a form communi­ 
cated to us by Penrose*): Since the particles cannot 
approach each other any closer than a distance R, the 
effect of the Coulomb interaction between the particles 
will be the same, Newton (1687), if the charge of each 
particle is distributed in any spherically symmetric way 
within a ball of radius~ R centered on the position of 
that particle, e.g. a uniform charge density. Now, as 
is well-known from electrostatics, (Kellog 1929), 

N 
dx - ~ (self 

i-1 
k I 1-l_ k s 2 ( ) 2 ~ q. q. x. - x. - 2 d E ~ 

i;l,j 1. J -1. -J R - 
(1.9) 

energy of the ith particle)~ - NB , 

where .E (_~) is the electrostatic field, and B is the max­ 
imum self energy of any of the balls. 

Onsager's results were generalized somewhat by 
Fisher and Ruelle (1966). This work, however, still left 
open the question of whether a system of point Coulomb 
charges, which may be taken as the building blocks of 
rea 1 matter, has a lower bound of the form ( 1. 4) . Now 
when dealing with a quantum system of ch~1ges the non­ 
existence of a lower bound to -lxi - xj I might appear 
not as serious as in the classical ca"se since we expect 
that the Heisenberg uncertainty principle, which prevents 
particles from having their positions 'close to each 
other' without also having a large kinetic energy, will 
insure the existence of a lower bound to the ground state 
energy. This is indeed the case for any finite system, 
(-13.5 electron volts for a system composed of one elec- 
tron and one proton), and generally E

0 
(N) > - CX) , for 

any N, Kato (1966). We need however a bound proportional 
to N and this, it turns out, the uncertainty principle 
alone cannot provide. The required result was proven by 
Dyson and Lenard (1967-8), who showed that (1.4) holds 
for a system of point Coulomb charges when all species 
with negative and/or positive charges are fermions. This 
'>'<See also Penrose Is comments [ 16] on using electromagne­ 
tic energy considerations to establish the thermodynamic 
limit for charged and magnetic systems. 
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is happily the case in nature where the electrons are 
fermions. (When neither of the charges are fermions, 
Dyson (1967) found an ~ bo~Jg to the ground state 
energy that is proportional -N ; hence such a system 
will not be thermodynamically stable.) 

We note here that the Dyson-Lenard lower bound is 
valid whenever the masses of the fermion particles are 
finite (the masses only affect the numerical value of 
B which is of no interest here). Hence it remains valid 
if the kinetic energy term in the Hamiltonian is multi­ 
plied by some o , 0 < o < 1, e.g. o = \. 

Basic Inequalities and Outline of the Notes 

Let us consider a system of N = (N1, ... , Ns) par­ 
ticles in a domain A with a Hamiltonian H(N ; A) 

2 N -1 
H(N; A)=-\ h I: (m1) lii+ Uc (:51 , ... , _:N) 

i=l 
( 1. 10) 

s a 
Here N =' E N , and :5i e A is the coordinate of a par- 

tic le of ~plcies one for 1 ,; i ,; N1, and of a particle 
of species two for Nl < i,; N1 + N2 , etc .. 
Uc (~1, •.. , S,1) is the Coulomb potential defiyed in 
(~.8), so tha~ m1 = m1, qi= el for 1,; i,; N, etc. 
with ma and ea, , a = I , ... , S, the mass and charge of a 
particle of the c th species. UT (~1 , ... , S,1) is a 
tempered and stable potential satisfying ( C'.-1) and ( 1. 6) 
(which is also translationally and rotationally invar­ 
iant). It is not altogether useless to include tempered 
potentials along with the true Coulomb potentials because 
one might wish to consider model systems in which ionized 
molecules are the elementary particles. Although~ 
shall omit U in most of these notes, it should be under­ 
stood that aI1 the stated theorem are valid for the full 
Hamiltonian (1.10). H(N ; A) is a self-adjoint operator, 
defined via the Friedrichs extension. (In the physi­ 
cists language this corresponds to using a Hilbert 
space in which the wave functions vanish on the boundary 
of A .) When the statistics of the particles satisfy the 
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conditions of the Dyson-Lenard theorem then H(N 
satisfy the inequality (note the factor\) 

h2 N -1 
H(N; A)~ - -4 E (m.) 6. - N ~ 

i=l 1 1 
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A) will 

(1.11) 

with~ some constant,~< 00 The canonical partition 
function Z(N; A) and the corresponding g(_p_ ; A) will have 
the bounds ~ 

s 
(No. Z(_~ A)~ exp [N~]o.U1 z ; A) 

0 ,o. 
s 

(Po. g(_p_ A)~ p ~ + o.h go,o. ; A) 

(1.12a) 

(1.12b) 

s 
where p = ~l po. and z (resp. g ) is the partition 
function (~esp.-free ene~~~/unit vol&tiJ) of an ideal gas 
(fermion or boson according to the statistic of species o.) 
of particles with masses m ' = 2m . The inequality 
(1.13) readily yields a un1form b%und on any sequence 
( g(_£j ; L\. j)} . whenever the ,P.j are in a compact subset of 
Rs, (with Pj" 0) . 

We now give a sketch of the method used in our 
proof. As usual, one first proves the existence of the 
limit for a standard sequence of domains. the limit for 
an arbitrary domain is then easily arrived at by packing 
that domain with the standard ones. The basic inequality 
that is needed is that if a domain A contains K disjoint 
sub-domains Al, A2, ••• , AK and if the inter-domain inter­ 
action be neg ected then 

K K 
Z(E N. A):eu Z (!'!i; Ai) (1.13a) 
i=l ~1 i=l 

or 
K K 

g (E f. S . ; A) " E fi g(~i ; Ai) 
i=l 1 ~1 i=l 

where f. = V(Ai) /V(A) is the fraction of the volume of A 
occupiea by Ai . If the distance between every pair of 
sub-domains is not less than r , one can use (1. 2) to 
obtain a useful bound on the tgmpered part of the omitted 
interdomain interaction energy, IT(N1, •.. ,NK). 

(1.13b) 
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The normal choice for the standard domains are 
cubes r. , with rj+i being composed of 2d copies of rj, 
togethet with 'corridors'. One chooses N•+1 = 2d~j . 
Neglecting IT one would have from (1.14)-that 
g(£j+l) ; rj+l) ~ g(fj ; r:) which, since g(£t ; rt) is 
bounded above implies the Jxistence of a limit. To justi­ 
fy neglect of IT one makes the corridors increase in 
thickness with increasing j ; although VJ , the corridor 
volume, approaches CX) one makes "JIVj - 0 in order that 
~id fi - 1 as j - ex, • The positive E of (1.2) allows 
one to accomplish these desiderata. 

Obviously, such a strategy will fail with Coulomb 
forces, but fortunately there is another way to bound the 
inter-domain energy. The essential point is that it is 
not necessary to bound this energy for all possible states 
of the systems in the sub-domains; it is only necessary 
to bound the 'average' interaction between domains which 
is much easier. This is expressed mathematically by 
using the Peierls-Bogoli4bov inequality (Jensen's in­ 
equality in the classical case) to show that for 
N = ~1 ~i 

Z(~ 
K 

A)~ exp [- (I(N1, ... NK))] II A(Ni; Ai) (1.14) 
i=l 

where (1) is the average inter-domain energy in an en­ 
semble where each sub-domain is independent. Where (1) 
vanishes, (1.14) reduces to (1.13a) and, in general, 
there is a corresponding equation for g(p ; A) as in 
(1.13b). - 

To prove (1.14) consider the case K = 2 and let 
{'I'.}, j = 1,2, ... , be a set of functions consisting of 
all properly symmetrized and normalized functions of the 
form 

'I' .='I' =W (x1, ••• x 
J n,m n - -N1 

where the {w } and {x} are a complete orthonormal set of 
eigen functi8ns in thW Hilbert spaces of H(N1 ; A1) and 
H(N2 ; A2). The {'I'.} are clearly an orthonormal set 
(possible incompletJ) in the Hilbert space of 
H(N1 + N3 ; A) . Hence 
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(1. 16) 

where the last equality follows from the fact that the 
support of the{~ } is in A and the support of the {x} 
is in A2 . The c8nvexity oi the exponential function m 
implies (Peierls-Bogoliubov inequality) for any pair of 
self-adjoint operators~ and~ and any set of normalized 
vectors { f ,r,} in the domain of ~ and ~ that 

~ (f,r,, [exp(_~+A)J f,r,) ;e ~ exp {f,r,, [~+~] f,r,)} 

;e {~ exp (f,r,, ~ f,r,)} exp [(~)A] 
(1.17) 

where 

(~)~es {i [exp(f,r,,~ f,r,)J (f,r,, B f,l,)}/{~ exp (f,r,•~ f,l,)}. 

(1.18) 

Applying (1.17) to (1.16) and remembering that { ~ } and 
(x} are complete in the Hilbert spaces of H(N

1 
;nA

1
) 

an~ H(N2 ; A2) respectively yields the desired 
inequalities, 

Z(B1 + B2 ; A) ;e Z(B1 ; Al) Z(B2 ; A2 ; 11) 

;e Z(B1 ; Al) Z(~2 ; A2) exp [-(I(Nl , N2)] 

(1.19) 

Here Z(N2 ; A? : r1) is the partition function of N2 particles in ir2 wich a Hamiltonian 

H(N2 ; A2 : Il) = H(N2 ; Az) + Il (~l +1•····~1+N2) ' 

(1. 20) 

with 

11 es Tr1 (I(N1,N2) exp [-H(N1; A1J}/Z(E1; A1), (1.21) 

the subscript 1 indicating that the trace is taken with 
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respect to the(~ }. Hence I1 is the value of the inter­ 
domain interactioW energy for a given configurationofthe 
N2 particles in A2 averaged over the canonical ensemble of 
N1 particles in Ai which are unaffected by the presence 
of the particles in A2 . Similarly, 

(I(N1,N2)> = Trl 2(I(N1,N2)exp[-H(Nl;A1)]exp[-H(N2;A2)]} , 

z (~l ; A 1) z (~2 ; A 2) 
(1. 22) 

the trace now being taken over a. complete set of functions 
corresponding to a system consisting of a specified set of 
N1 particles in Ai and another set of N2 particles in A2 
The quantity (I(N1,N2)> thus corresponds to the average 
of the interaction between the particles in A1 and those 
in A2 when the states and the probabilities of different 
states in each box are completely unaffected by the 
presence of the other box. This corresponds to taking 
the average of I(N1,N 2) with a density matrix which is 
a direct product of tlie unperturbed density matrices in 
A1 and A2 

We now make the observation, which is one of the 
crucial steps in our proof, that if A1 and/or A2 are 
balls then, because of the rotational (and translational) 
symmetry of the Hamiltonian the unperturbed density 
matrices (corresponding to no interaction between A1 and 
A2) are spherically syrrnnetric about the centers of ir1 
and/or A2 . This implies in particular that the average 
unperturbed charge density in Ai and/or A2 is spherically 
symmetric and hence by Newton's theorem the Coulomb con­ 
tribution to (I(N1,N2)) in (1.19) is the same as would be 
obtained if all tlie charges in the ball domain were con­ 
centrated at its center and would vanish when the ball 
is overall neutral. 

This clearly generalizes to the Coulomb pa.rt of 
(I(N1,••·,NK)) in (1.14) and this leads us to choose 
balls, rather than cubes, for our standard domains. There 
is of course a price to be paid for this since balls do 
not pack into each other as nicely as cubes do and necessi­ 
tates our packing the standard ball domain Bj not only 
with balls of type Bj-1 but with balls of types B0, 
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B1, ... ,B;-2 as well. The geometrical problem involved 
in this is handled in sec. II. 

We mention here that the use of (1.14) permits us 
to prove the existence of the thermodynamic limit for sys­ 
tems containing electric or magnetic dipoles which inter­ 
act with long range, i.e. non tempered, potentials 
(falling off only as lx.-x. 1-3). The average interaction 
between domains will vafiisB. since the expectation value 
of the dipole moment of any particle will be zero in the 
absence of an external electric or magnetic field, 
Griffiths (1968)*. 

For such systems it is essential, however, that the 
particles have hard cores since otherwise they will not 
satisfy the H-stability condition. Indeed, E0(N) will not 
be bounded below. For this reason we cannot include spin­ 
spin couplings between the elementary charges in our 
analysis. (These couplings are intrinsically of a rela­ 
tivistic nature and present entirely new problems; 
Dyson- private communication.) 

Needless to say we do not deal with the strong 
(nuclear) and weak interactions. As pointed out by Dyson 
(1967), the magnitude of the nuclear forces is so large 
that they would give completely different binding energies 
for molecules and for crystals if they played any role in 
the thermal properties of ordinary matter. We are also 
neglecting, of course, gravitational forces which certain­ 
ly are important for large aggregates of matter and thus 
might be thought important in the 'thermodynamic limit' . 
To quote Onsager (1967), however, 'The corranon concept of 
a homogeneous phase implies dimensions that are large 

* Griffiths' proof for dipoles does not use (1.19) but re- 
lies on the complete symmetry between 'up and down' 
orientations of the dipoles. Using such symmetry Griffiths 
(unpublished) was able to prove the existence of the ther­ 
modynamic limit for a system of charged particles in which 
the positive and negative particles are identical under 
charge conjugation, e.g. positrons and electrons. When 
such an additional symmetry is present the rotational in­ 
variance of the Hamiltonian becomes unimportant and it 
is not necessary to use balls as we do. Unfortunately 
such synnnetries are not present in real systems. 
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compared to the molecules and small compared to the moon. 
When we speak of the thermodynamic limit which is mathe­ 
matically the infinite system limit we have in ~ind its 
physical application to systems containing, 102 _ 1028 
particles, i.e. systems which are large enough for surface 
effects to be negligible and yet small enough for internal 
gravitational effects also to be completely negligible. 
(An external gravitational field will of course have some 
effect but does not present any fundamental problem.) 
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II. On Packing A Domain With Balls 

437 

In this section we address ourselves to a geometric 
construction which is fundamental to our proof of the exis­ 
tence of the thermodynamic limit, namely the possibility of 
packing a ball or a cube by smaller balls such that the 
packing is both complete and rapid. 

We shall always 1:fSe the word domain to mean a 
bounded, open set in R . If /\ is a domain and B = (Bi} 
is a denumerable family of domains such that Bi /\ for 
all i we shall say that B is packed in /\ if the (Bi} 
are all disjoint. The packing is complete if 
~iV(Bi) = V(/\) where V(/\) is the volume (lebesgue measure 
of/\ 

Definition: For a domain/\ 
we define 

Rd and a real number h 

( r: r E /\ , d ( r; "' /\) < h} 

(r: r E "'A,d(r;/\) $ -h} 

for h > 0 

for h $ 0 
(2 .1) 

where d(;) is the distance function and "' denotes comple­ 
ment. We also define V(h;/\) to be the volume of /\h. 

We shall frequently make use of the fact (Lemma 2 
of Section 8 in Fisher (1964) that the number, N, of 
cubes of side 2y that can be packed in/\ satisfiis the 
inequality 

N ~ (2y)-d[V(/\) - V(2y,/a;/\)] (2.2) y 
Definition: Let ad be the volume of a ball of 

radius in Rd. gd = z-da d is the fraction of the 
of a cube of side 2y filled by a ball of radius 
the ball is packed in the cube. We also define 
ad= (2d - 1)2Jd. 

unit 
volume 
y when 

Clearly, for a ball B of radius r ~ 2y/d ~ 0 

V(2yJd;B) $ V(-2yJd;B) $ adcrxr( d-l)y . (2.3) 
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The main theorem we wish to prove is that we can 
find a ~equence of balls of decri:asing radius, of which 
the jt type has radius rj = oJ (with 6 < 1), such that 
we can completely pack a unit d-dimensional ball (r = 1) 
with these and, moreover, we can do this rapidly. 

Theorem 2.1: Let p be a positive integer and, fm; 
all positive integer~ j , defiQa l~dii r; = (1 + p)-J 
and integers nj = pJ-1(1 + p)J~ - J. Then~if 
1 + p 2: °'d + gd-d it is possible to pack ·lh (nj balls 
of radius rj) in a unit d-dimensional~ J d 
ball. The packing is complete since j~lnjrj = 1 

Proof: We shall give an explicit construction for 
accomplishing the packing stated in the theorem by using 
(2. 2) and (2. 3). First cover the unit ball by a cubic 
array of cubes of side 2r1. We shall show that there 
are n1 of these cubes which are contained in the unit 
ball. We can place a ball of radius r1 at the center 
of each of these cubes. We then cover the unit ball by 
a cubic array of cubes of side 2r2 and show that there 
are n2 of these cubes which are contained in the unit 
ball and which do not intersect the first n1 balls. 
The argument is repeated inductively. Thus, we have to 
show that after placing all balls up to and including 
those of radius r. we can pack n.+l in a cubic array 
into nj , which iJ the interior ofJ the unfilled portion 
of the unit ball. (We must prove this for j 2: 0 , with 
r0 = 0 .) For j 2: O, 

j d p j 
V(Oj) = ad - ad k~o~rk ad(p + 1) 

Clearly, V(2-/drJ+l;O.) is £Ounded above by Mi which is 
t4e sum of the Jv(-2-/drj+l;B) for each ~all of 
t~ _(nt balls of radius rt) separately, plus 
V(~./drj+l;B) for the unit ball. Thus, by (2.3), if 
2Jdrj+l < rj (which is true when p satisfies the 
hypothesis) 

j d-1 
V(2Jdrj+l;Oj) ~ Mj ~ adadrj+ 1(1 + k~o~rk } 

= (pj + p - 2)(p - 1)-1(1 + p)-(j+l)adad = Mj 
(2.4) 
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Using (2,2) it is sufficient to show that 

d 
(2rj+l) nj+l,;; [Vj-Mj] ,;; [V(Oj) - V(zJcirj+l;Oj)] 

439 

Inserting the relevant quantities, we require that 
l+p-J(p-2) 

1,;; gd[p + 1 - ad p - 1 

for all j ;;, 0. By the hypothesis p;;, 2. Then p-j(p - 2) ,;; 
(p - 2) and hence it is sufficient that 

which agrees with the hypothesis, 

The minimum ratio of successive radii, 1 + p, 
required by this construction is 27 ford= 3, We note 
that the fraction of volume of the unit ball occupied by 
all the balls of radius r. is 

J 
d n.r. 

J J 
f. 
J 

-1 j p ,._ (2. 5) 

where 

"- = p(l + p)-l < 1 , (2. 6) 

Moreover, the fraction of volume left unfilled after the 
balls of type j have been packed is ,._j, This implies that 
the packing is "exponentially fast". 

It can be shown that Theorem 2.1 is also true if 
"unit d-dimensional ball" is replaced by "d-dimensional 
cube of volume o d , 
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III. Thermodynamic Limit for Spherical Domains 

In this section we shall prove the existence of 
the thermodynamic limit for a two component system of 
charges e1 > O, e2 < 0 and le1/e2 I is rational and that 
the particles interact via the Coulomb potential alone. 
To do so we shall definea sequence of standard balls 
(Bj} of increasing radii (Rj}, j = O, 1, ... 

Definition: Let 1 + p satisfy the condition of 
Theorem 2.1 and be even. (The fa.ct that 1 +pis even 
will not be used until later.) Choose an R > 0 . The 

0 balls, B , B1, •.. , forming the standard sequence, a.re 
chosen t8 have radii 

R.=R(l+p)j 
J 0 

The volume of B. will be denoted by V .. 
J J 

The pa.eking described in Theorem 2.1 will be 
referred to as the standard packing of the ball BK with 
balls (Bj}, j = O, 1, ... , K- 1. 

(3 .1) 

Filling of Balls with Particles 

In the following we shall fill the standard balls 
with particles in various ways. However, we shall always 
observe the following convention: Each ball will rave 
charge neutrality. We take q particles of type 1 and 
t particles of type 2 such that qe1 + te2 = O, and such 
that q and t have no common divisor, as the fundamen­ 
tal unit and this will be referred to simply as a multi­ 
plet. Densities and (multiplet) numbers will be in terms 
of this unit. 

We define 

(3 .2) 

where 
set ~ 

N is the number of multiplets and where we have 
1 for convenience. 
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Since N must 

is thereby placed on 
(1964) we can define 
lation as follows: 

be an integer, an obvious restriction 
p However, following Fisher 
g for all p by linear interpo- 

Definition: Let 
tegers to the reals. If 
and Os~ s 1, we extend 
f (n) = f(N) + ~[f(N + 1) 

f(N) be a function 
n = N + ~ , with 
f(•) to the reals 
- f(N)]. 

from the in­ 
N an integer 
by 

The usefulness of this definition is made manifest 
by the following lemma. 

+ Lemma 3. 1: Let 7Z + be the non-negative integers, 
1R the non-negative reals, and lR the ieals. Let 
f, h1, h2, ••• , h,,, be functions from~ to lR and let 
f , h1 , ... , h,,, '''be the extended functions from R + to 
1R as ii the a~ove definition. Let Nj E 72:+ and 
nJ. E lR • If f(I:~.) ~ z:t\i.(N.) for all (N.} then 

M M. J JJ J 
f (I:1n.) ~ I:111.(n.) for all (n.} 

J J J J 
The proof follows by induction on M. The case 

M = 1 is obvious and M = 2 is proved in Fisher (1964), 
footnote 25. 

Let us now consider a standard J_:llcking of BK and 
place N. multiplets in all balls of type j, j = 0, 1, 
•.. , K J 1. The total number of multiplets in BK is then 

N (3.3) 

so that 

(3.4) 

Our fundamental inequality on the partition function of 
a subdivided domain, together with the vanishing of the 
average Coulomb interaction for neutral balls implies: 

Theorem 3.1: Let pl' ... ,pK-l be non-negative reals 
_ -1 K-1 k-J and let p-p r:0 pjY . Then 
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(3.5) 

Limit of gk(p) ask - 00 

Our next task is to use Theorem 3.1 to establish the 
thermodynamic limit of gk(p) for the standard sequence of 
balls. To accomplish this we define, for each j;;, 0, a 
standard density sequence (depending on p) as follows: 

pj = p for j > O; pj = p(l-Y)-l for j = 0 

It is understood that when p = 0, g.(0) = 0. 
J 

With p held fixed, let us denote g.(pj) simply by gJ .. 
Then, from Theorem 3.1, J 

1 k-1 k-. 
gk = - ~ y Jg.+ ck 

P j=O J 
(3. 6) 

fork> 0, where ck is a non-negative real number. 

The solution of (3.6), valid fork> 0, is easily 
found to be 

k 
gk = yck + (1-Y) ~ c. + (1-Y)go 

j=l J 
(3. 7) 

Equation (3. 7) establishes a limit for gk because: (a) g 
is finite; (b) As each c.;;, 0, and as we know that gk ha~ 
an upper bound by H-stabiiity, the sum involving the e's 
must converge. This implies that ck - 0 and hence (3. 7) 
must have a limit. We shall call tnis limit g(p). 

Further examination of (3.7) leads to a lower bound 
for g which is proportional to p for sufficiently small p. 

Our analysis of (3.6) thus yields 

Then 
Theorem 3.2: Let p be a fixed multiplet density. 

g(p) 
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exists and is finite. Furthermore, there exists a p1 > 0 
such that for p in the closed-open interval [O,p1), g(p) 
is bounded below by o,p with o, finite and independent of p. 

Convexity of the Free Energy 

With the limit, g(p), in hand we can next establish 
convexity. It is here that we use the fact that 1 + p was 
chosen to be even. This permits us to place densities p'. 
corresponding to a final density p' (with p'=p'(l-y)-1, J 
pj=p ', j > 0) in half the balls of each typg and densities 

p ''. in the other ha 1f. Taking the limit j - 00 yields 
J 

(1 , 1 ") 1 ( ') 1 ( ") g-zP +-zP "' gp + gp 2 2 · (3. 8) 

We can now follow the standard arguments used for 
non-Coulomb systems to establish the concavity and hence 
continuity of g(p). Similarly, the approach of g.(p) to 
g(o) can be shown (by means of Dini's theorem) toJbe uni­ 
form on any closed interval [ 0, p '], p' < 00 

Neutral Multicomponent Systems with Coulomb and Tem­ 
pered Interactions in General Domains 

Thus far we have established the limit and the con­ 
vexity of the free energy/unit volume for an overall neu­ 
tral system composed of two species of charged particles 
interacting with Coulomb forces only and confined to the 
standard sequence of balls. This permitted us to deal 
with a neutral multiplet as though it were a single parti­ 
cle. 

We shall now state the general theorem on the proper­ 
ties of the free energy/unit volume for an overall system 
composed of S species of particles with charges e

1
, ... ,e . 

We suppose these charges to be rational fractions of eac~ 
other so that, in appropriate units, the ei may be taken 
to be integers. In nature all elementary charges are in 
fact integral multiples of the electron charge. Thee, 
may not be all of one sign, but we do allow some of thim 
to be zero, We shall represent particle numbers by a vec­ 
tor N = (N1, ... ,Ns), so that charge neutrality is repre­ 
sent~d by N · E = 0 with E = (e1, ... ,e). In a like man- ~ ~ ~ s ner we shall represent particle densities by a vector ,g. 
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The particles comprising our system may have, in 
addition to their Coulomb interactions, other kinds of in­ 
teraction potentials as long as those interactions are tem­ 
pered and the full Hamiltonian is H-stable (this will al­ 
ways be true when the additional interactions are them­ 
selves stable). When these tempered interactions include 
hard cores, there will be some convex domain in ]RS in which 
a vector,£ must lie in order for the density to be less 
than the close packing density. We shall denote the fact 
that o is in this domain by writing In! < p • ~ N C 

We consider a general sequence of domains (/\.} tending 
to infinity in a reasonable way. To define reasorl.able we 
introduce the following conditions on a sequence of domains 
inlRd: 

~- A sequence of domains (A.} tends to infinity in the 
sense of Van Hove if V(Aj) .l"' and V(h;Aj)/V(A1) .... 0 as 
j .... "' for each fixed h. (For definitions see (Z .1)). 

B. A sequence of domains (A.} satisfies the ball condition 
if there exists a o > 0 sue~ that 

V(A.)/V(B.) ~ o , 
J J 

(3. 9) 

where Bj is the ball of smallest radius containing Aj. 

_g_. A sequence of domains (A.} tends to infinity in the 
sense of Fisher if VfAj) .... J"' and if there exists a con­ 
tinuous function n: 1R .... ]R1, with n(O) = 0 such that 

V(a[V(A.)]l/d;A.)/V(A.) ~ n(a) 
J J J 

for all a and all j. 

(3.10) 

Obviously, condition C implies A. It also implies 
condition Bas shown in Fisher (1964). On the other hand, 
neither condition A nor B implies the other, nor do condi­ 
tions A and B together imply C. 

Definition: A regular sequence of domains, [Aj}, in IR.d 
is one satisfying conditions A and B if only strongly tem­ 
pered potentials (in addition to the Coulomb potential) are 
present. If weakly tempered potentials are also present 
then the stronger condtion C must be satisfied. 
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Our final result for neutral systems, which we state 
here without proof, is 

Theorem 3.3: Let (A.} be a regular sequence of domains. 
Let l]'. J be a sequence] of non-negative, integer valued 
particle number vectors satisfying the neutrality condi­ 
tions, NJ· · E = 0, and let o, = V(J\.)-lhl. If limn.= n ~ ~ NJ J ~j ,_00 NJ N> 
with l,el < Pc then· J 

(i) 

(ii) 

lim g(_g.;J\.) = g(_g) exists and is independent of 
j-oo J J 
the sequence of domains or particle numbers. 

g(_g) is continuous and concave in the convex do­ 
main D=(,e,:l,e,I < pc} £,e:,e · _§=0} and g(O) = O. 

(iii) Let K be a compact subset of D. Suppose that for 
each ,e E K we have a sequence (N. (g)} and the cor­ 
responding sequence (z. (e)} withJ the additional 
hypothesis that ,£. (,e)_;l uniformly on K. Then 

gj (,e,j (,e)) - g(,e) fuiiformly on K. 

IV. Systems With Net Charge 

In the last section we showed that a sequence of sys­ 
tems of charged particles has a thermodynamic limit when 
the finite systems in the sequence have no net charge, 
that is N, · E = 0. The free energy density in this 
limit, -g{e) ,~ is independent of the shape of the domains 
J\. and depends only on the limit of the particle density 
vJctor Bj/V(J\j). 

It is intuitively clear that this condition of strict 
charge neutrality, Nj · E = 0, is unnecessarily restric­ 
tive. We expect tha~ a 'small' amount of uncompensated 
charge will have no effect on the free energy density in 
the thermodynamic limit while a 'large' amount of uncom­ 
pensated charge will lead to a divergent free energy den­ 
sity in that limit. The dividing line between 'small' and 
'large' should be when the excess charge Qj, in a domain 
J\j, increases in proportion to the 'surface area' of A; 
as j - 00. In this case we expect the thermodynamic li~it 
of the free energy density to exist but that its value de­ 
pends also on the limiting shape of the domains J\j. 
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These expectations come from macroscopic electro­ 
static theory (Kellog (1929)) which shows that the lowest 
energy configuration for any net charge Q confined to a 
domain A is obtained when Q is concentrated at the bounda­ 
ry of A. This configuration of the charge is described in 
electrostatics by a two dimensional charge density o (e), 
~ E SA, where SA is the surface of_ A. (We shall only con­ 
sider three dimensional systems here, that is Aj R3). 
This surface charge density will be such as to make the 
electrostatic potential constant in the interior of A, 
i.e., there will be no electric field in A. The electro­ 
static energy of this surface layer is equal to \Q2/c(A) 
where C(A) is the capacitance of A. 

Fpr a given domain shape, C(A) is proportional to 
[V(A)]3 and the electrostatig energy per unit volume will 
thus be proportional to [Q/V3]2, the square of the 'aver­ 
age surface charge density'. Hence for a sequence of do­ 
mains (Aj} with volumes (vj} and capacitances (Cj} each 
containing a net chapge Qj such that as j _, "', V; _, 00, 

Cj/V/ _, c and Qj/Vj3 _, cr, the minimum electrostll.tic ener- 
gy per unit volume ej will also approach a limit, 

1 2 
e=lime.=zcr/c (4.1) 

j--oo J 

Note that (4.1) refers solely to the macroscopic 
electrostatic energy per unit volume of the charge Qin 
the domain A or on the surface St,., We shall now state a 
theorem which shows that in the thermodynamic limit the 
difference between the free energy densities of a neutral 
system, obtained in Section III and of a system containing 
some extra charged particles is given precisely by (4.1). 
For technical reasons the theorem is proved only for a 
sequence of domains whose shapes approach ellipsoids in 
the sense defined below. This is more restrictive than is 
desirable or (probably) necessary as will be clear from 
the derivation of the theorem. 

Definition: Let Ebe an open ellipsoid of unit volume 
and capacity cE. A sequence of domains (Aj}, j = 1,2, ... , 
will be called asymptotically similar to E if V(Aj) _,"' 
and if there exist ellipsoids lEj} and lE"} similar to E 
such that Ej c A. c E''. and V(Ej) 7V(Ej) _, 1 as j _, "' . The 
capacity of Aj will c1early lie between the capacities of 
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' d n 1 [ ' ]~ Ej an Ej. These atter capacities are cE V(Ej) 3 and 
cE[V(Ej)J½ respectively. 

Theorem 4.1: Let [Aj} be a sequence of domains asymp­ 
totically similar to an ellipsoid E, and let ll:Jj}, and 
t,B;} be sequences of integer particle number vectors such 
chat; ]j • ,§ = 0, -Bj · E = Qj , and 

lim N./V(/\.) = ,g, lim n./V(A.) 
j-oo ~J J j-oo ~J J 

Then if l,21 < pc' 

1 2 lim g([N. + n.]/V(/\.;A.) = g(n) - -2 cr /cE. 
j-oo ~J ~J J J N 

Remarks: (i) Since E ! c A. c E''., it follows from the 
basic inequality that Z(Bj + nj ;Ej) ;;,: Z(Bj + ,Bj ;Aj) 
;;,: Z(]j + ,nj; Ej). Moreover, since V(E~)/V(Ej) - 1 as j-00 

it is sufficient to prove the theorem !or a sequence of 
ellipsoids tE;} similar to E, whose volumes are the same 
as that of th~ [i\.}. With each E. we associate a pair of 
homothetic ellips6ids, Ej and E! Jimilar to Ej such that 
Ej c Ej c Ej and V(Ej)/V{Ej) - las J - 00

• The volumes 
and capacities of E}, Ej, and Ej will be denoted by 

(Lj)3, LJ, (Lj)3 and Cj, Cj, Cj respectively. Clearly 
c:=cEL: and Cj=cEL .. The interiors of the ellipsoidal 
J J -h J\ - + - shells E.,\E. and E. E. will be called D. and Dj respec- 

tively. J J J J J 

(ii) The reason for the introduction of el­ 
lipsoidal domains, is their well known electrostatic prop­ 
erty (Kellog (1929)) that a uniform three dimensional 
charge density Tin an ellipsoidal2shell2

such as DT (de­ 
fined above) has a self ener_g7 ¼ T V(DT) /C~ and ptoduces 
a constant potential TV(DT) /Cj m the i.nterior of Ej, 

with cEL. ~ c. s c'. ~ cELt. This fact will enable us to 
J J J J 

obtain bounds on the partition functions for the domains 
[E.} in a simple manner. Identical methods would work 
alio for any other sequence of domains for which there 
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are shell domains surrounding each Aj with the above men­ 
tioned properties of the shells D3. 

(iii) The proof of Theorem (4.1) will proceed 
by establishing bounds on the free energy of these systems. 
For this we shall need the free energies of two kinds of 
neut:al systems: the first kind consists of B_; particles 
in E•; the second kind is of system in Ej whicn contains 
an aJditional species of particles so that it has alto­ 
gether S + 1 species. The new specie, which, following 
Aristotle, we shall call hyle will be labeled by the index 
zero. Its charge e0 will be ±1 (in units in which all ei, 
i = 1, ... , S, are integers), The sign of e0 will be cho­ 
sen as the opposite of the sign (which we shall take to be 
independent of j) of the excess charge Qj, that is e0Qj<O, 
The new neutral system will have an St l component parti­ 
cle number vector Nj + nj + nj = (n9,Nj + n},··· ,NJ+ nj) 
with n9 = IQ,I, njeo = -Q· so that the system is overall 
neutral. Thl hyle partic1.es will only have Coulomb inter­ 
actions and will be fermions in order to comply with the 
Dyson-Lenard theorem. 

Lower Bound on the Partition Functions 
of Charged Ellipsoids 

We consider a packing of E: with balls and we dis­ 
tribute the N • particles, N. · il: = 0, among the balls such 
that each bail is neutral a.dd call the resulting partition 
function Z(B,;B(Ej)). The remaining Ej particles we place 
in DJ. It then follows from our basic inequality and the 
fact that each ball is neutral that 

Z(B. + n. ;E.) ~ Z(B. ;B(E:))z(B. ;D:). 
J ~J J J J J J 

(4. 2) 

It can be shown, using Theorem 3.1, that the packing 
for each j can be chosen so that upon taking the logarithm 
of (4.2) and dividing by V(E.) one obtains 

J 
lim inf(g([N.+n.]/V(E.) ;E.) - [V(E.)J-1tnZ(n. ;D:)} 
j-~ ~] ~] J J J ~ J J 

~ g(e). 
(4. 3) 

Since nj/V(Ej) - 0, the only contribution from 
lnZ(n.;D7)/V(EJ.) which survives when j - 00 is the Coulomb 

~] J - self energy of the charges in Dj. We now use the 
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following general inequality for the partition function of 
a system of N particles in a somain A, with a Hamiltonian 
H; 

tnZ(N;A) "' -J-l i ($ ,H$ ) , 
c.=L a a 

(4.4) 

where ($ }, a= 1, •.. , J is any properly symmetrized and 
normalizid set of functions of the N particle coordinates 
.3i, i = 1, ... , N and spins, which vanish unless ~:i- E A. 
Applying (4.4) to Z(n.:Dj) with a choice of$ which cor­ 
responds to the .Bj patticles being situated ii little balls 
centered on the vertices of a cubical lattice covering n3, 
we obtain a lower bound on this self energy corresponding 
to a uniform distribution of the charge Qj in n3, 

]-1 - 1 2 lim sup[V(E.) tnZ(n.;D."' - -2 a /cE. 
j-oo J ~J J 

(4. 5) 

This yields 

lim inf g([N. + n.]/V(E.);E.)"' g(~) - !2 a
2/cE 

j-oo ~J ~J J J 
(4. 6) 

Upper Bound on the Partition Functions 
of Charged Ellipsoids 

Let Z~j + .Bj + .Bj;Ej) be the partition function of a 

system in the domain ET having S + 1 species with n]'=JQjJ 
hyle particles of charie e0 = -Qj / I Qj I , as in remark (iii) 
after Theorem 4.1. The masses m.P of the hyle particles 
may be chosen arbitrarily. We then have 

ZIN. + n?;E":) "' Z(N + n. ;E.)Z(n?;n::w.). (4. 7) ~J ~J J ~ ~J J J J J 

Here Z(n1;nt:w;) is the partition function of nj particles 
of speci~s 2ero whose Hamiltonian consists of a kinetic 
energy term, a Coulomb pair interaction term, and an ex­ 
ternal one-body electrostatic potential w; (~i), i=l, .-::n<?, 
produced by the (canonical ensemble) ave rage charge densi.­ 
ty of the Bj + .Bj particles in E;. Taking logarithms in 
(4.7) and dividing by V(Ej) gives the upper bound 

lim sup (g([ NJ.+nJ. J /V(E":) ; E":) +[V(E":) ]- l ~.nz (n~; D: :W.) }s: g (e,) . 
j-oo ~ ~ J J J J J J 

(4. 8) 
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Here, too, the only contribution from tnZ(nj;Dj=Wj) which 
survives in the limit is the Coulomb energy which now con­ 
sists of two parts: the self energy of the charges in Dj 
and the mutual electrostatic energy between the charge 
-Q· in nt and Q. in E-. Now if the charge -Q. were smeared 
oui unif'6rmly id nt then, because of the propJrties of the 
ellipsoidal shellsJmentioned in r~mark2 (!_i), the ~ume o!_ 
these two energies would be \Q3/cj - Q_;/Cj with c1 and Cj 
both approaching c. as j .... CX). It canoe shown inneed by 
using inequality (4.4) with a suitable choice of tiJ,a}, 
that 

lim inf[V(E.)]-1,1,nZ(n~;D'.:W.)~ ½ a2/cE. 
j .... CX) J J J J 

Combining this with (4.8) and (4.6) yields Theorem 4.1. 

(4. 9) 

When the magnitude of the charge contained in 
Aj, Qj = ~- • .§, (where _tl. is an int~ger particle numbej; 
vector), iicreases fasterJthan V(Aj)3, i.e., IQjlV(Aj)-3 .... cx,, 
then it is possible to show that g~Mj/V(Aj);Aj) .... _ex, for 
any regular sequence of domains tAjJ. 

V. Grand Canonical Ensemble 

The grand canonical partition function for a system 
of S. s~ecies in a. domair_i A1 with chemical potentials 
µi, 1 - l, ... ,s, is definen as 

CX) CX) 

E(~;A.) = l~ ... ~ exp[~ · N]Z(N;A.), 
J N =o NS=o ~ ~ J 

(5. 1) 

where~ = (µ1, ... ,µs), and we have set ~ = 1. The grand 
canonical pressure is defined as 

We also define the neutral grand canonical partition 
function E', by restricting the summations in the right 
side of (5.1) to neutral systems for which N · E = 0. The 
The function E' will clearly depend only on~that part of 
the vector ~ which is perpendicular to .§, i.e. , on 
B = B - ~ · .P.§1 (.§ · .§), and will thus be a function of 
only S - 1 independent variables, 

E'~;A.) = E'(~';A.) = ~ ... ~ exp[~'·N]Z(N;A.). 
J J (B·]=o) ~ ~ J (5.3) 
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(5 .4) 

is the neutral grand canonical pressure. 

As in section IV, we shall convine our attention here 
to domains A. c ]R3 

J 
Remark: As is well known, ifµ> o, the grand canonical 

partition function Bose gas is infinite for large j (Bose­ 
Einstein condensation). One can prove, Ruelle (1969), 
that if the particles interact with a tempered super-stable 
potential then this pressure does exist for allµ, while 
for a tempered potential which is only stable the pressure 
exists only for small values ofµ (depending on S), i.e., 
µ < f(S). 

For Coulomb systems to be H-stable the Dyson-Lenard 
theorem requires that all charged bosons have charges of 
the same sign. We can show that if the only bosons present 
are charged ones then lim TT(µ;AJ·) exists for all values of J-0) ,...., 
the µi, (-00 s: µi < 00,i=l, ... ,S); see Lemma 5.3. If, how­ 
ever, our systems contains some species of neutral bosons, 
say el= e2 = =et= 0, ts: S - 2, then the correspond- 
ing µi, i = 1, , twill have to be appropriately small 
unless the tempered potentials involving these uncharged 
particles satisfy some super-stability condition. Since 
the part of the proof which involves the uncharged compo­ 
nents does not differ from the standard ones we shall 
assume from now on that all the species are charged with 
e1, ... ,ea > 0 and ea+l' ... ,es < 0. We shall assume that 
species a+ 1, ... ,Sare fermions and that some or all of 
species 1, ... ,a may be bosons. 

We shall now state the main theorem of this section. 

Theorem 5.1 

For any regular sequence of domains (Aj}, 
TT~)= lim TT~;Aj) = lim TT

1
(~';Aj) = TT1(~') exists and is 

relatedJto the Helmholtz free energy density by 
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n'(B') = Sup [,e, · .1:\1 + g(e,)J, 
l,e,J<pc 

(5. 5) 

the supremum being taken only over values of ,e, for which 
,e, . ,§ = 0. 

Proof: The proof that limn'(µ'; Aj) exists and is 
given by (5.5) is analogous to Fisher's (1964) proof of a 
similar result for one component systems interacting only 
with tempered potentials with the additional result that 
the µi are arbitrary even if some of the components are 
bosons. (The reason for this is that if the boson density 
is large then the fermion density must also be large to 
insure charge neutrality. See Lemma 5.3.) The new ele­ 
ment entering Theorem 5.1 is the equality of n(B;Aj) and 
n'(B';/\.) in the thermodynamic limit. This means Ln es­ 
sence tflat the terms in the grand partition function for 
which Bj · ,§ f Odo not contribute to the pressure in this 
limit and hence lim n(B;Aj) depends only on S - 1 varia- 

bles. Now sincej;(.l:\;Aj) ~ n'(B';A,), Theorem 5.1 will be 
established if we can prove that n{µ;A1) s: n(µ';Aj) + oj 
with oj - 0 as j - 00• This is accomplished with 'the help 
of the following three lemmas which we shall give here 
without proof (assuming for simplicity that there are no 
hard cores). 

Lemma 5.1: Let M = (M1, ... ,Ms) be an integer particle 
number vector such that M · E = Q. It is then possible to 
decompose M into a "neutral'' part N and a "charged" part 
n, M = N +~ n such that (i) N and n~ are both integer parti­ 
cle~ number ~ectors; (ii) N ~ E = o, n. E = Q; (iii) it is 
impossible to decompose ;n~ into a non':'.zero neutral part and 

s • 
a charged part; (iv) lnl = ~ nl.:,;; "-IQI with A a constant. 

i=l 
Lemma 5.2: Let [A.} be a regular sequence of domains 

with V(Aj) = V· and 1Jt K be a compact subset of p. Let 
.I:\ be a fixed c~emical potential. Then there exists a se­ 
quence of numbers [E:;} (depending on K and ,I:\), tending to 
zero as j - 00, such 1:hat 

-1 -1 
u · nV. + gtMV. ;A.) - g(N;A.):,;; E:,, ~ ~ J ~ J J ~ J J 

whenever _tlVj 1 E K and 1:1 = B + ;n as in Lemma 5. 1. 

(5. 6) 
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Lemma 5.3: Let 
with volumes tv.}. 
positive constatlts 

Z(tl;J\.) :s: 
J 

(A·} be a sequence of regular domains 
Tien there exists some fixed, strictly 

k and a independent of j such that 

a + s ' -1 Mi 
tiJ;ll2o,i(Mi;J\j)Hi=ll+l(Mi.) [Vj] } 

for j sufficiently 
Bose gas partition 
the domain J\j. 

The proof of Theorem 5.1 now proceeds as follows: 
Using Lemma 5. 3 we establish that 

ideal 
i in 

[V. /v ] 
J~ 0 exp[~ · M]Z(tl;A.) (5.7) 

Ms=o ~ J 

for j sufficiently large, where v0 is some fixed small 
volume. The inequality (5.7) is easily obtained for non­ 
Coulomb systems when the interactions among the bosons is 
superstable. The physical content of Lemma 5.3 is that 
the Coulomb energy is as efficacious as a superstable in­ 
teraction in this respect; the Coulomb energy discourages 
a large excess of bosons over fermions. The number of 
terms in (5.7) is at most (1 + Vj/v0)s. If we now write 
M = N + n as in Lemma 5. 1 and use (5. 6) we readily find 
that";' ~ 

[VJ. /v0] Z'N+n; J\.) 
}:: ~ ·n z ~-~ l 

ns=o C, j) 

(5. 8) 

so that 

TT
1(~;J\,) :S: TT(~;J\,) :S: TT1(~;J\.) + &. , (5,9) 

J J J J 
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and oj - 0 as j - 00 Equation (5.9) proves the equiva­ 
lence of rr'CJ::;A.) and rr(!::;A,) in the thermodynamic limit. 
The proof of thJ existence 6f rr'CJ::) and (5.5) is identical 
to that for systems with tempered potentials. 

Remark: Theorem 5.1 shows in a striking way the special 
nature of the Coulomb potential. In the absence of the 
Coulomb potential, but for any tempered potential, one can, 
by properly choosing the various chemical potentials µi, 
induce essentially any desired ratio of the densities p. 
of the various species. For Coulomb potentials, on thei 
other hand, only neutral densities are permitted in the 
thermodynamic limit. To ~e more specific, it can be 
readily shown that (Q) .vj - 00, where (Q). is the expecta­ 
tion val~e of the c~arie in ~j• for an ar~itrary choice of 
the chemical potentials µi' i = 1, ... ,S. 

An interesting question arises abou1 the behavior of 
the charge fluctuations ([Q - (Q).]2).v: as j - 00• It 
seems certain on the basis of ourJpreii9us results that 
this will approach zero (probably as Vj3) when j - 00, but 
we have not established this rigorously. 

VI. The Microcanonical Ensemble For Neutral Systems 

In the foregoing pages we discussed the existence 
and properties of the canonical and grand canonical free 
energies per unit volume. The microcanonical ensemble is 
and ensemble of even more physical and historical impor­ 
tance. From it the requisite thermodynamic properties of 
the canonical and grandcanonical ensembles may be deduced 
directly on general grounds, but the converse is not true. 
The microcanonical partition, function O(E,N;A), is a 
function of energy, E, the domain, A, and the particle 
number vector N. There are many ways to define 0, but in 
any case one defines an entropy/unit volume, a, as a func­ 
tion of density,£, and energy/unit volume, 8, by 

( 6. 1) 

where V = V(A). In addition to showing that cr has a 
thermodynamic limit which is concave in (8,£), one also 
has to show that the various definitions of O yield the 
same limiting cr function. [See Ruelle (1969) and refer­ 
ences quoted therein.] 
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Instead of following the usual route of first defin­ 
ing o and then its inverse function e(o,,e,;A), we define e 
directly to suit our purposes. We then show that it has 
all the requisite thermodynamic properties for neutral 
systems in general domains as we did in Section III for 
the canonical free energy. It can also be shown that our 
definitions of e and o (which is defined to be the inverse 
of our e function) agree with the usual definitions in the 
thermodynamic limit. The "equivalence" of the microcanoni­ 
cal ensemble to the canonical and grand-canonical ensem­ 
bles in this limit is a consequence of the general argu­ 
ments developed for non-Coulomb systems (cf. Ruelle, 1969). 

The Microcanonical Energy Function, e 

Definition: Consider a quantum system in a domain A (of 
volume V) with particle density£· Let E1 ~ E2 ~ ... be 
the eigenvalues of the Hamiltonian arranged in increasing 
order (including multiplicity). Let o E lR.1 and let J. :e 1 
be the smallest integer :e exp(oV). Then the energy func­ 
tion is defined by 

- -1 ,l, e (a ,,e,;A) ~ (v.t .. ) ,I: E .. 
i=l i 

( 6 2) 

Remarks: (i) H-stability provides the lower bound 

e ( a ,,e,; A) :e I ,e, I <F , ( 6. 3) 

for some constant, <F. 

(ii) The range of Ve (o ,,e,;A) is [E1,"'] since 
the Hamiltonian is unbounded above. 

(iii) It is clear from the definitions that 
e is non-decreasing in o. Hence, the energy function has 
a pseudo-inverse called the entropy function which will be 
denoted by o(e,,e,;A). It is given explicitly by 

o(e,,e,,A) = sup Io : e(o,,e,;A) ~ e} (6.4) 

Implicit in Eq. (6.2) is the notion that each Ei is 
defined for all ,e, by linear interpolation. Thus, the 
definition, (6.4), of o is not the same as one would ob­ 
tain if one defined o for non-integral particle numbers 
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by linear interpolation of o, In other 
given priority to the energy function. 
noted that while the domain of e (in o) 
main of o (in.:) is [E1/V,00]. 

words, we have 
It is also to be 
is (-00,00), the do- 

We now use the minimax principle which states that if 
{iJ, i}, i = 1, ... , t is a set of t orthonormal functions 
(called variational functions) in the domain of the Hamil­ 
tonian, H, and that if we form the t-square Hermitian ma­ 
trix A whose elements are AiJ = ($i,H$j), and label the 
eigenvalues of A as Al s AZ .. ,sAt then Ai~ Ei for 
i = 1, ... ,t. In particular, for integral particle numbers, 

-1 e(o,,e_;A) s (Vt) TrA, (6.5) 

where exp(oV) = t. This formula shows the advantage of 
our definition of e because all we need to know are the 
diagonal elements of A. 

To apply this principle, let A :::i A1 U Az, with A1 and 
Az disjoint, and let N = N{ + Nz be the respective particle · ~ ~ ~ 1 1 number in2th2 various doma ns. If ($i,Ei}, i = 1, ... ,n1 
(resp. ($i,Ei}, i = l, ... ,n2) are the first n1 (resp. nz) 
eigenfuncEions and eigenvalues in A1 (resp. A2), we can 
form th! set

2
of n1n2 variational functions in A by 

$ij = $i ® Wj• To evaluate the right hand side of (6.5) 
we need cons1der only Ai. i" and this is given by J. J 

1 2 
Aij,ij = Ei + Ej + Uij , (6.6) 

where Uii is the expectation value of the inter-domain 
part of the potential energy. Obviously, (6.6) generalizes 
in a trivial way when A contains more than two disjoint 
subdomains. 

The average interaction, Ui·• consists of a non-Cou­ 
lomb, but tempered part and a coJlomb part. The former 
can be easily bounded and we shall ignore it in these 
notes. Bounding the Coulomb part tf;'.j is slightly more 
complicated. 

Suppose that A1 in the previous discussion is a ball, 
B. Each index i denoting the eigenfunctions and eigen­ 
values of the Hamiltonian in B can best be written as a 
pair (n,m) where n denotes the principal quantum numbers, 
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including the angular momentum, L(a) (irreducible repre­ 
sentation of the rotation group), and m denotes the mag­ 
netic quantum number (row of the representation). The 
energy E depends only on a and not on m. Suppose further 
that n1 is such that for every a all the levels (a,m) with 
-L(a) ~ m ~ L(a) appear in the list 1, •.. ,n if any one 
(a,m') does. In that case we shall say that n1 is perfect. 
L C 
E U( ) ., which is part of the sum in (6.5), we have 

m=-L a,m ,J 
to evaluate an average charge density in A1 which involves 
integrals over all but one of the N1 particle coordinates 
in B, such as 

L J 1 2 I (E) = _E lw < )<.E,E2, ••. ,£N)I d£2 ... dEN a m--1 Ni-1 a,m 1 1 
B 

Clearly Ia depends only on the distance of E from the cen­ 
ter of B. If, in addition, we postulate that Bi ·] = 0, 
i.e., that A1 contains a neutral mixture of par f Lc Les, 
then the average Coulomb potential outside of A1 will 
vanish by Newton's theorem. That is 

n1 C 
E Ui. i=l J 

0 for all j (6.7) 

regardless of the shape of A2 and of its constituent parti­ 
cles. If n1 is not perfect, it lies between two perfect 
numbers µ and v, µ < n1 < v, v - µ = 2L(a) + 1 = t, where 
a is the last principle quantum number appearing in the 

µ C 
first n1 levels. The sum EU .. = 0 and can be ignored. 

i=l l.J 

nl C C 
We a.re then left with U E Ui where Ui - 

i=µ+l 
The key fact is that we can relabel the last t 

v1 C 
v such that U ~ 0. This is so because E U 

L=u+L i 

Writing, for i = 1, 2, xi= Vi/V and exp(cr.V.) = ni, 
then if exp(crV) = n1n2 we have cr = x1a1 + x2cr .1. If we 
now denote the energy function of Ai by ei ana if A1 is a 
ball, then the preceding discussion shows that 

(6.8) 
e (xlcr l+x2cr 2 ,xl,e.l+x2,e.2 ;A) ~ "i e 1 (c 1',e.1; Al)+x2e 2 (c 2 •£2 ;A2) • 

n2 C 
E Ui .. 

'=1 J 
1evels in 

= 0. 
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It can be shown that (6.8) is true even when n1, n2, Bi 
and ]2 are not integral and that it generalizes tu more 
than cwo subdomains provided all but one of them is a ball. 
Thus, we have established precisely the analogue of the in­ 
equalities on the g function of Section III. Therefore, 
the same analysis as that given in Section III will lead 
to the same conclusions for the energy function. 

Our results are summarized in the following theorem: 

Theorem 6.1: (i) Let (Aj,]•} be a sequence of regular 
domains and integer valued particle number vectors satis­ 
fying the neutrality condition ]j · _§ = 0 and such that 
,e,· = V(A·)-1]. satisfies l,e,I < p . Let a sequence of en­ 
ttopies 1a.} hso be given and sfippose that ,e, .... ,e, with 
l,e,I < p aJd aj .... a. Then, the energy functions e(a.,p,; 
Aj) con~erge to a function e(a,,e,) which is independetlt Jf 
tfie particular sequence. 

(ii) e(a,,e,) is continuous and convex in 
( a ,,e) in the domain 

0, -"' < a < "'} . 

It is also non-decreasing in a. 

(iii) e(a,Q) = O. 

(iv) Let K be a compact subset of D. 
Suppose that for each (a ,,e) E K we have a sequence 
(a i (a ,,e,) ,.E.j (a ,,e,)} which approaches (a ,,e,) uniformly on K. 
Th-en e(aj,,e,j;Aj) approaches e(a,,e,) uniformly on K. 

(v) The entropy function, a(e,,e,,A), also 
approaches a limit a(e,,e,) uniformly on compacts. 

(vi) a (e ,e,) is continuous, and concave in 
the domain D = ((e,,e,): !,e,[ < p ,,e, • _§ = O,e1(,e,), where 
el(,e,) = ~im E1(,e,J.;AJ.)V(A.)-1ana E1(,e,;A) is the lowest 

J"""' J 
eigenvalue of the Hamiltonian in A. It is also non-de­ 
creasing in€ and its range is not bounded above. 

functions. 
(viii) a(e,,e,) and e(a,,e,) are inverse 
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* DISSIPATIVE SYSTEMS AND DIFFERENTIAL ANALYSIS 

** David Ruelle 
Institute for Advanced Study 

Princeton, New Jersey 

Introduction 

In these notes we make a sketchy description of the 
application to dissipative systems of the qualitative 
theory of differential equations. One might say that the 
subject to be described is largely non-existent. Indeed, 
much remains to be understood about the qualitative be­ 
haviour of solutions of differential equations in finite 
dimension. Furthermore the differential equations for 
the time-evolution of dissipative systems are in infi­ 
nite dimension, and an existence and uniqueness theorem 
for their solutions is usually not known. On the other 
hand, dissipative systems exhibit some of the most fasci­ 
nating of natural phenomena (think for instance of the 
flow of liquids), and obviously deserve the growing inter­ 
est devoted to them (see PrigoginelS, Thom24). 

Chapter 1. The physical principles. 

1. Nature of dissipative systems. 

Dissipative systems are macroscopic systems de­ 
scribed in terms of macroscopic variables in such a 
manner that time evolution leads to a continual 
dissipation of microscopic information (entropy pro­ 
duction). More precisely, we consider a dissipative 
system as extended in physical space, and such that 
its state in small regions of space may be approxi­ 
mated by a thermodynamic equilibrium state. This 

*This is a short version of lectures given in spring and 
summer 1971 in Brandeis and Boulder respectively. I hope 
to publish later an extended treatment of the same subject. 
**Permanent address: IHES, 91. Bures-sur-Yvette, France. 
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state (described by a finite number of parameters) 
varies in general in space and time, and the system 
as a whole is not in equilibrium. 

The time evolution of a dissipative system is 
given by a differential equation 

d~ = X(~) 
dt ( 1. 1) 

on a suitable manifold M. Here~ is a vector field 
over physical space, the components of which are, at 
ea.ch point, the parameters describing the local ther­ 
modynamic equilibrium state. The r.h.s. of (1.1) is 
a vector field X on the infinite dimensional manifold 
M. The vector field Xis locally of a rather unre­ 
stricted character, and therefore there is usually 
no useful variational principle associated with dis­ 
sipative problems. On the other hand, the unrestric­ 
ted nature of X makes the qualitative behaviour of 
dissipative systems less complicated in general than 
that of conservative (Hamiltonian) systems: the Kol­ 
mogorov-Arnold-Moser phenomena. do not occur here 
(see for instance Arnold and Avez2). 

2. Evolution equations. 

Consider a continuous system consisting of a 
fluid mixture of a finite number of constituents 
which may participate in chemical reactions. The 
following processes lead to entropy production: 
(i) internal friction due to viscosity 
(ii) heat transfer 
(iii) diffusion of matter 
(iv) chemical reactions 
Processes (i), (ii), and (iii) are called transfer 
processes. The evolution equations for the system 
under consideration a.re obtained by expressing the 
conservation of the masses of the various constitu­ 
ents and the conservation of the fluid momentum and 
energy. 

We shall write the evolution equations in the 
special case of a system with only one constituent: 
the processes (iii) and (iv) a.re then not present. 
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We let p be the density, p the pressure, T the temper­ 
ature, e resp. s the energy resp. entropy per unit 
mass of fluid. All these variables satisfy the equi­ 
librium thermodynamic relations. The velocity of the 
fluid is denoted by v = (v.). The following quanti­ 
ties are also associated with the dissipative proces­ 
ses (i) and (ii): 
(i) viscosity stress tensor a= (aij) 
(ii) heat flow q = (q.) 
The evolution equatiofis are then as follows 

(a) Mass conservation (continuity equation) 

(b) Momentum conservation 

cl cl at (Pv.)=- 0- [pviv. + (po .. -ai.)J + F. 
1 xj J 1J J 1 

(c) Energy conservation 

cl 
cl t (\ p v2 + p 8) 

The source terms E,F=(Fi),G have been introduced for 
greater generality. They are functions of the posi­ 
tion x and of the thermodynamic variables and the 
velocity at x. Notice that we may rewrite (c) as 

ov. 
1 

ox. 
J 

The entropy s satisfies 

T ds =de - ~ dp p 

hence, omitting the source terms in (a),(b),(c), 
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[
a a ] as as 

T a't(ps) + oxi (psvi) = PT <at+ vi oxi) 

=p c:~ - 7 :~ + vi ::i - 7 vi :~i J 

Therefore 

The r.h.s. is the rate of internal entropy production. 
It is positive and may be rewritten as 

r:Jx;eo 
m m m 

oT ovi 
where the~ are forces ox, ox. and the Jk are 
fluxes or currents. i J 

The fluxes Jm depend on the forces X and vanish 
when the latter vanish (at equilibrium). nin the 
linear approximation we have thus phenomenological 
laws 

J = r: L X m n mn n 

where the coefficients depend on the thermodynamic 
variables. From the reversibility of the microscopic 
laws of motion one derives the Onsager reciprocity 
relations of the type 

L = L 
mn nm 

Furthermore some coefficients L vanish identically 
as a consequence of physical ini;yRriance laws. 

In our case o .. and qi are given by the phenome- 
nological laws iJ 



DISSIPATIVE SYSTEMS t· , .. 2 avk) ovk 
a .. 11 _1. + -1. 3 6 

ij o¾ + C 6 .. 
o¾ 1.J ox. ox, 1.J 

J 1. 

A a r (Fourier's law) qi ox, 
1. 
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The entropy production is 

1 ar 1 ovi 
- F qi oxi +Ta ij oxj 

- io-( :~, )' + iT G=~ + ::~ 2 
- 3 6 ij 

hence A, 11, C ~ O; A is the thermal conductivity and 
11, Care the viscosity coefficients. 

For an incompressible fluid, the evolution equa­ 
tions are 

0=-0-v 
oxi i 

o e: o e: 
0 t m-v i O xi - 

o o ovi o ~ + -- C, =-v -- - ~ + !,!. ti V 
oxi oxj ij j oxj oxi p i 

(Navier-Stokes equation) 

oqi ovi oe: 1 
.,_-- + ai. -- =-v -- + A ti T + -2 11 uXi J OX, i OX, J 1. 

where 11 and A have been assumed constant, and the 
source terms have been omitted. 
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3. Remarks on the time evolution of dissipative sys­ 
tems 

Because of entropy production, an isolated dis­ 
sipative system will "die out" i.e. tend to equilib­ 
rium. A more interesting situation is that in which 
the system receives a steady negative entropy flow 
from the outside; in that case non equilibrium re­ 
gimes will be established, which may be stationary 
or non stationary. 

The evolution equations have to be supplemented 
by boundary conditions. In particular, the velocity 
v of a viscous fluid at a solid boundary is that of 
the boundary (the f~uid sticks). The boundary con­ 
ditions and the source terms in the evolution equa­ 
tions both contribute to the entropy balance of a 
dissipative system. A stationary non equilibrium 
state can thus be achieved in spite of a strictly 
positive internal entropy production. 

A mathematical theory of solutions of the evolu­ 
tion equations has been developed only in very special 
cases. In general, compressibility leads to charac­ 
teristic physical phenomena: sound waves and shock 
waves, and the existence of shock waves necessitates 
the introduction of special prescriptions to supple­ 
ment the evolution equations. The situations is bet­ 
ter for an inc·ompressible fluid but the non linear ov• 
terms - in particular vjox~ - are not of a type 

treated by standard methodJ. In the well-studied 
case of the Na.vier-Stokes equation for 3-dimensional 
flows, no general existence and uniqueness theorem is 
known. 

The idealization process which leads to the 
mathematical description of dissipative systems uses 
various approximations. In particular, in specific 
problems some dissipative processes are considered, 
and others disregarded. Apart from that the follow­ 
ing approximations play an important role 
(i) Macroscopic approximation. This implies in par­ 
ticular that the "mean free path" of molecules is 
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small in comparison with macroscopic lengths (a con­ 
dition usually not satisfied in plasma physics). 
(ii) Linearity of phenomenological laws. This is gen­ 
erally assumed for transfer processes but not for 
chemical reactions (where use is made of the nonlinear 
"mass action law"). Nonlinear phenomenological laws 
have been considered for incompressible viscous fluids 
in order to make the problem of existence and unique­ 
ness for the evolution eguations more amenable to 
study (see LadyzhenskaJa12, supplement p. 193). 
(iii) Constant phenomenological coefficients and 
thermodynamic functions. This is assumed for mathe­ 
matical convenience. 

4. Examples of dissipative systems. 

We can only sketch the wealth of intriguing 
phenomena occuring in dissipative systems. In the 
next section we consider the viscous flow between ro­ 
tating cylinders. For the f~ow of a viscous fluid 
past an obstacle see Feynman II Section 41-4. For 
the onset of convexion in a fluid layer heated below 
(Benard problem) see Chandrasekhar4. 

A simple and interesting example of dissipative 
system is provided by a homogeneous solution of chemi­ 
cal reactants. Here the evolution equation 

de 
dt = X(c) (4.1) 

describes the change in time of a vector c in a fi­ 
nite-dimensional concentration space. 

A stationary state (or steady state) is a con­ 
stant solution of (4.1): c(t) • c0 i.e. X(c) = 0. 
By maintaining the concentrations of some o~ the re­ 
actants at non equilibrium values, a non equilibrium 
stationary state is usually obtained. In some cases 
a periodic state with period t9 appears, i.e. a non 
constant solution of (4.1) such that c(t+t0) = c(t), 
we observe then chemical oscillations. An example 
of chemical oscillations is easily realized at room 
temperature in the Beloussov reaction; the following 
mixture being alternatively yellow and colorless: 
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Malonic acid 
Cerous nitrate 
H2S04 
Na Br Q3 

0.3 Molar 
0.005 - 0.01 M 
3.0 M 
0.05 - 0.01 M 

More colors are obtained by adding a little Ferroin. 

5. Viscous flow between rotating cylinders. 

Two coaxial circular cylinders with radii R1 and 
R2 rotate with constant angular velocities 01 and 02 

(Fig. 1). The space between them is 
filled with a viscous incompressible 
fluid, and the flow of the fluid is 
investigated for various choices of 
01 , 02• 

I 

I 
! 
I 
I 
I 

The evolution equations are the 
Navier-Stokes equation 

(where v =~/pis the kinematic vis­ 
cosity) supplemented by the incompres­ 
sibility relation 

Fig. 1 0 

We introduce cylindrical coordinates r, ~, z, the 
boundary conditions are then 

for r • R1 

It is also required that there be no net flow of the 
fluid along the vertical direction. This problem 
has a simple steady (time-independent) solution, the 
rotating Couette flow given by 
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V cp (5. 1) 

The flow between rotating cylinders has been ex­ 
tensively studied experimentally, the fluid being air 
or water (with suspended particles for visibility). 
A variety of flow patterns are obtained, We describe 
some of them, but warn the reader that new experiments 
might change details in the following descriptions 
(see Fig. 2). 

,r'.fl.,R/ 
differe "/: 
cell n u rn b e rs 

""" ti 

{i) Cou.eUe 

V 
V 

1/ 
r,,) r«ylor ;, ;, 
c,1/s 1/ 

1/ 
/ 
/ 
/ 
/ 
/ 

/ / flow­ 
/ 

0 

Fig. 2. 

(i) The Couette flow (5.1) is observed for small 
101 I, 102 I, and also when 02R~ > 01 R~ > 0 
(ii) For higher values of 01 the Couette flow is re­ 
placed by another steady flow, the structure of which 
has been theoretically and experimen2~11y investi- 
---- -- gated by G. I. Taylor . Here the 0.. __ g fluid column is vertically divided in 
8 C cells - Taylor cells - and a vertical 
- -- C- and radial motion is superimposed on 
:J the (horizontal) Couette flow (Fig. 3). 5 C The new flow is still time independent 
- and rotationally symmetric, but has 
;J C lost the invariance under vertical 
- - - - - trans la.tions ( trans lat ions along the 

Fig. 3. z-axis). We have here a beautiful 
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example of symmetry breakdown in physics. 
(iii) when the cylinders turn in opposite directions, 
instead of a transition Couette flow - Taylor cells, 
one may observe a transition Couette flow - helical 
wave form. The helical wave form consists in that 
the Taylor cells, instead of being annular, are join­ 
ed to form a structure which winds helically between 
the two cylinders (see Snyder22). Here the time in­ 
variance and the rotational invariance of the flow 
have both been destroyed. 
(iv) In other situations the Taylor cells retain 
their general shape but loose their rotational in­ 
variance, which is replaced by an angular periodicity 
with period Zn (m = 1,2, ... ) - the boundaries of the 

m 
cells undulate with this period - and time invariance 
is lost. These flows are called doubly periodic. 
Notice that the experiments are made with cylinders 
of finite height L (one can idealize this situation 
by restricting one's attention to solutions of the 
Navier-Stokes equation which are periodic with period 
L with respect to the z ordinate). Let n be the to­ 
tal numbe5 of cells. It has been shown experimental­ 
ly (Coles ) that, for each choice of 01 ,02 in a cer­ 
tain region, there exist several possible flows char­ 
acterized by different values of m and n and stable 
under small disturbances. 
(v) There is a domain of values of the pair (01 ,02) 
which leads to turbulent flow. Here is an e!peri­ 
mental (!) description (extracted from Coles ) of the 
onset of turbulence: " ... The ensuing motion then re­ 
mains laminar and doubly periodic for a time, as suc­ 
cessively higher-order harmonics of the basic frequen­ 
cies are excited. At sufficiently high speeds how­ 
ever, the flow becomes noticeably no longer quite 
laminar, in the sense that irregularities have begun 
to appear, especially in the motions of smallest 
scale. Further increases in speed then increase the 
degree of irregularity until finally the flow can only 
be described as fully turbulent." 
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Chapter 2. Differential analysis. 

6. Qualitative theory of differential equations. 

In the next chapter we propose to use the quali­ 
tative theory of differential equations to study the 
evolution equation 

dx 
dt = X(x) 

of a dissipative system. It is not possible here to 
reproduce all the necessary background of differen­ 
tial analysis - ancient and modern - and we shall 
mostly limit ourselves to some bibliography. 

Calculus in Banach space, in particular the ii­ 
plicit f1~ction theorem, is described in Dieudonne . 
See Lang for manifolds, vector fields, and the ba­ 
sic existence and uniqueness theorems for differen­ 
tial equations. The ck vector fields on a manifold 
have (usually) a natural topology of Banach or 
Frechft space xk; a. property of vector fields is cal­ 
led K generic if it is satisfied on

1
a. residual set 

of X . This is discussed in Abraham, which is also 
referred to for the study of closed orbits of a vec­ 
tor field and their associated Poinca.re maps. 

Remarkable progress has been ma.de recently in 
understanding the structure of or2fts of vector 
fields or diffeomorphisms. Smale is the basic re­ 
ference in this area.; it discusses the ma.in results 
on the nonwandering set of a. diffeomorphism and gives 
in particular examples of strange attractors. In 
section 7 below we give some indications on the work 
of Hirsch, Pugh, and Shub concerning the center mani­ 
fold theorem, and invariant manifolds with normally 
hyperbolic diffeomorphism. 

7. Some results on invariant manifolds. 

Let O be a fixed point of a ck diffeomorphism f 
of the Banach space E. We suppose that the spectrum 
of the derivative Df(O) is disjoint from the unit cir­ 
cle, i.e. 0 is a hyperbolic fixed point. The 
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points x such that lim fns = 0 form a ck manifold 
n ➔oo 

called stable manifold and tangent at Oto the linear 
space corresponding to the part of the spectrum of 
Df(O) which is inside the unit circle. Similarly the 
unstable manifold consists of those x such that 
lim fnx=O and corresponds to the part of the spec- 
n--oo 
trum of Df(O) which is outside the unit circle. The 
situation for vector fields is analogous. 

Clearly, the stable and unstable manifolds are 
invariant under f. If f is not hyperbolic but has a 
finite number of isolated eigenvalues of finite mul­ 
tiplicity on the unit circle, various invariant mani­ 
folds can still be defined under suitable conditions: 
stable, centerstable, center, centerunstable, and un­ 
stable. The center manifold will interest us most: 
it is tangent to the subspace of E corresponding to 
the part of the spectrum of Df(O) which is on the 
unit circle. The existence of a center manifold 
which is ck, k < + 00, is asserted by the center mani­ 
fold theorem, for which see Hirsch, Pugh, and Shub8. 
There is no uniqueness: there may be several center 
manifolds. 

We shall use the center manifold to study a dif­ 
feomorphism fµ, depending on the real parameterµ, 
when one or several eigenvalues of Dfµ(O) cr,oss the 
unit circle, say for µ=0. It is then convenient to 
add one dimension to E and to consider the diffeo­ 
morphism (x,µ) ... (fµ x, µ) of E X lR at the fixed 
point (0,0). The new diffeomorphism has just one 
more eigenvalue (1) on the unit circle. 

Similar results hold if O is a critical point of 
a vector field X : X(O) = 0. The role of Df(O) is 
taken by the Jacobian and that of the unit circle by 
the imaginary axis. 

Let f be a diffeomorphism of a manifold, which 
leaves invariant a compact submanifold V. It is 
sometimes possible to say that a diffeomorphism f' 
close to f has a compact invariant manifold V' close 
to V. This is the case if f is normally hyperbolic 
to V. Roughly speaking, this means that f is more 
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hyperbolic (i.e. contracting or expanding) in direc­ 
tions normal to V than tangent to V. For a precise 
statement see Hirsch, Pugh, and Shub8or9. 

8 ,. Normal forms. 

If we want to study a vector field near a criti­ 
cal point, or a diffeomorphism near a fixed point, it 
is generally useful to choose the coordinates so that 
the lower order terms in the expression for the vec­ 
tor field or diffeomorp~lsm take a simple form. Fol­ 
lowing Jost and Zehnder we shall make use of such 
normal forms in discussing bifurcation problems. 
Here we state a typical result. 

Theorem. Let X = (X .) be a -- µ µi 
depending on the parameterµ 

X (0) = 0, (x, µ) ... X (x) is 
µ ,t µ 

is C for allµ, 3 ~ k ~ -t ~ 

be the Jacobian of X at 0: µ- 

e x i 
Aµij = o/ (0) 

J 

vector field inlRZq 

E lR and such that 
k C while x ... X (x) µ 

+ 00 Let A = (A .. ) -- µ µ1.J 

We let Aµ have 2q complex eigenvalues "'1, ... ,"'q• 

\ 1, ... ,r q. We assume that there is no linear 

relation of the form 

q 
I: (s A + t A ) = Ai 

n=l n n n n 

(1 ~ i ~ q) for any choice of integers sn,tn~ 0 

such that I: (s +t) = 2 or 3, except relations -----n n n 
of the form "'i+"'j+\j="'i (this exception permits 

the "'j to become pure imaginary). There is then 

a change of coordinates lR2q ... «;q such that 

(x,µ) ... wµx is ck-3 and, for each µ ,x ... wµx is c"' 
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In the new coordinates z1, ,zq the vector 

field Xµ takes the form (z1, ,Zq): 

where the A. are Ck-land the b. are Ck-3 func- 
i - 3n tions of µ; (x, µ) .... Z . is ck- and, for each µi 

µ, X""' Z • is Ct. 
µJ - 

Chapter 3. Bifurcation theory of dissipative systems. 

9. General principles. 

Let again the evolution equation of a dissipa­ 
tive system be 

dx 
dt = X(x) (9. 1) 

For most dissipative systems this is a differential 
equation on an infinite dimensional manifold. Fur­ 
thermore the vector field Xis often not well be­ 
haved so that the standard theory does not apply. 
Under these circumstances it will be convenient to 
think of (9.1) as a differential equation on a finite­ 
dimensional manifold. This will be sufficient for 
the intuitive picture we want to give here - some re­ 
ferences will be given to precise results. 

We consider a dissipative system subjected to a 
time-independent external action described by a real 
parameterµ. Equation (9.1) then becomes 

dx 
dt = xµ (x) 

where we assume that (x,µ) .... Xµ(x) is ck (1 ~ k ~ 00). 

The study of changes in the structure of orbits of a 
differential equation as a parameter is varied is the 
object of bifurcation theory. We are thus interested 
in the bifurcation theory of dissipative systems. 

(9.2) 
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Forµ= 0, we suppose that the external action 
on the system vanishes. (9.2) has then a solution 
x = go corresponding to equilibrium, and all solu­ 
tions x(t) of (9.2) tend to go when t ➔ + 00• We as­ 
sume therefore that ~o is an attracting critical 
point of the vector field Xo in the sense that the 
eigenvalues of the Jacobian have strictly negative 
real parts. The Jacobian A = (A .. ) defined by 

1] 
oX • 

01 
Aij = oxj (O) 

is then an invertible matrix, and therefore the im­ 
plicit function theorem shows the existence of a 
smooth functionµ➔ g such that X (~) = 0 forµ in 
a neighbourhood of o." For suffici~t~y small µ the 
eigenvalues of the Jacobian of X,, at g have strictly 
negative real parts (by continuity) anti g is thus an 
attracting critical point for K,i· We malinterpret 
~µ as a steady state of the dissipative system de­ 
scribed by the vector field K,i; it is stable in the 
sense that small perturbations are damped off (expo­ 
nentially) as time tends to+ 00• Asµ increases, one 
or more eigenvalues of A(µ) may cross the imaginary 
axis,~ then "looses its stability". In hydrodynam­ 
ics theµoperator corresponding to A is unbounded and 
its studr

4
is the basis of linear stability theory 

(see Lin , Sattingerl8). 

10. Loss of stability of a steady state and Hopf bi­ 
furcation. 

As above let Aµ be the Jacobian of the vector 
field Aµ at the critical point~ . For smallµ, ,µ 
is attracting. Asµ increases aµreal eigenvalue 
11.(µ) may cross 0, or a pair of complex conjugate 
eigenvalues 11.(µ), A(µ) may cross the imaginary axis 
(it is intuitively clear that other possibilities are 
not generic). 

If the real eigenvalue 11.(µ) crosses 0 for µ=µ1, 
A is clearly not invertible. Therefore the implic­ 
i~1 function theorem which we used to prove the exis­ 
tence of gµ does not apply. What happens generically 
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is that, for µ=µ1, the attracting critical point ~I-! 
coalesces with a saddle type critical point g•µ and, 
forµ> µ1, there is no attracting set close to gl-! 

(Fig. 4). This possit 
bility is relatively un­ 
interesting. We shall 
see in a moment that, 
when two complex conju­ 
gate eigenvalues of A 
cross the imaginary axis, 
the steady solution tµ 
is replaced by a periodic 
solution. It remains 
thus to understand how, 
in the flow between ro­ 
tating cyclinders for in­ 
stance (see Section 5) a 

steady flow (Couette) can loose its stability and be 
replaced by another steady flow (Taylor cells). What 
happens here is that, because of the symmetry of the 
system (invariance under the group of vertical trans­ 
lations. and reflections) the vector field Xµ has a 
non generic behaviour. The study of systems with an 
invariance group has therefore to be made separately; 
it may lead to bifurcations from one steady flow to 
other steady flows. 

X 

/', 

Fig. 4 

Suppose now that two complex conjugate eigen­ 
values\(µ), A(µ) of Aµ cross the imaginary axis for 
µ=µ1• There exists then, in a neighbourhood of(~µ , 
µl) a one-parameter family of closed ~obits of Xµ. l 
This fact was first proved by E. Hopf , and the as­ 
sociated transition from critical point to periodic 
orbit is known as Hopf bifurcation. 

It is easy to understand how the Hopf bifurcation 
takes place in 2 dimensions. Forµ< µ1 (resp.µ> µ1) 
the integral curves of Xµ spiral 
inward towards gl-! (resp. outward 
from~µ). This is true very close 
to ~1,1· Some distance away from 
gµ, the transition from spiraling 
inward to outward may be delayed 
(see Fig. 5) or advanced, and this 
leads to a closed orbit. Fig. 5 
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The original proof of Hopf assumes t~at (x,µ) .... 
2S.!(x) is real analytic. A proof in the C case 
(3 ~ k < + a,) is obtained as follows. First use the 
center manifold theorem to reduce the problem to 2 
dimensions. Then put the vector field in the normal 
form 

Z = (l(µ) + b(µ) \z\2) \z\ + oa 

The vector field Z-oa has the closed orbit 

\z\ = (-Re l(µ)/Re b(µ))½ 

Using the theorem of Hirsch, Pugh and Shub on invari­ 
ant manifolds with normally hyperbolic diffeomorphism 
(or vector field) one can show that this closed orbit 
is not destroyed by the perturbation Os. 

The 'Hopf bifurcation explains the occurence of 
periodic oscillation in hydrodynamic systems after 
loss of ~tability of a steady solution (see Bru~­ 
linskaja, Sattinger19). It explains also chemical 
oscillations (see Sel'kov20, I am indebted to 
J. P. Eckmann for explaining this reference to me). 

11. Other bifurcations. 

The bifurcations of a closed orbit can be studied 
by investigating the corresponding Poincare map iJi. 
The closed orbit is attracting if the eigenvalues of 
DiJi(O) are in the open unit disk. Loss of stability 
occurs when the unit circle is crossed either by a 
pair of complex conjugate eigenvalues or by a real 
eigenvalue at ±1. Crossing at +l generically leads 
to a destruction of the closed orbit. The other pos­ 
sibilities may lead to the replacement of the origi­ 
nal attracting closed orbit by one or several at­ 
tracting closed orbits the periods of which are an 
integral multiple of the original period. In particu­ 
lar in the case of a real eigenvalues crossing at -1, 
one has a doubling of the period. It is interesting 
to remark that such a doubling of period is apparent­ 
ly observed in soTg chemical oscillations (see Fig. 6 
in Pye and Chance ). 
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It is difficult to have a complete picture of 
the structure of orbits of (9.2) whenµ becomes 
large. It is however possible to obtain some idea 
of what happens by using the normal forms of section 
8. We assume thus that~ is a critical point of}_{µ 
and that, asµ increases,µsuccessive pairs of complex 
conjugate eigenvalues "-i, X:1, ••• ,"-q• A cross the 
imaginary axis from left to right. Byqusing somehow 
the center manifold theorem and then introducing 
suitable complex coordinates Zi , ••• ,zq we may assume 
that the vector field Xi.i has the form 

(Zi, .. ,,Zq) = (Zi'., ... ,Z~) + oa 

We consider first the equations 

Z! 
l. 

They imply 

ddt lzil2= 2(Re "-i+ I:q Re b. [z 12) [z 12 
n=l 1.n n i 

Therefore the manifolds defined by the equations 

Re "- . + I:q Re b . I z 12 = 0 or 
l. n=l in n 

for each i are invariant for Z'. It is easy in spe­ 
cific cases to discuss the attracting, saddle-type, 
or repulsive character of each one of these manifolds. 
For instance if q=2 the following possibilities exist 
(among others which are less interesting) 

(a) The following two one-dimensional invariant 
manifolds (closed orbits) are attracting: 

Re "- 1 + I:2 Re b 1 I z I 2 = 0 , 
n=l n n 

lz2 12 = o 
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and 

(b) The following two-dimensional invariant mani­ 
fold (torus) is attracting 

Re A 1 + I:" Re b ln I zn I 2 =O, 
n=l 

Re A 2 + 'f.2 Re b I z I 2 =O 
n=l 2n n 

If the perturbation o3 is sufficiently small, one 
finds (see section 7) that Z (and hence X) has a­ 
gain two attracting closed orbits in caseµ(a) or 
one attracting 2-torus in case (b). 

The interest of case (a) is to show that a dis­ 
sipative system may conceivably have several differ­ 
ent attractors. Which attractor is chosen by the 
system depends then on initial conditions. An ex­ 
perimental example of this situation was mentioned 
in Section 5 where several "doubly periodic" flows 
may coexist. 

One can see that case (b) corresponds to the 
bifurcation of a closed orbit (as discussed above) 
when two complex conjugate eigenvalues of D~(O) cross 
the unit circle. Using Peixoto's theorem (see for 
instance Abraham1 one finds that the attracting in­ 
variant 2-torus carries a finite number of attracting 
closed orbits. 

We consider now the analog of case (b) when q>2. 
We have here an attracting q-dimensional torus, and 
the problem is to understand the nature of the orbits 
on this torus. As it turns out very complicated or­ 
bit structures may occur; in particular strange at­ 
tractors arise for q :e 4 (see Ruelle and Takensl7). 
The integral curve of a vector field near a strange 
attractor has an apparently irregular and chaotic 
appearance, and depends very sensitively on initial 
conditions. It was proposed by Ruelle and Takens17 
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that the phenomenon of turbulent flow in a viscous 
liquid is described by an integral curve of the equa­ 
tions of motion which is asymptotic to a strange at­ 
tractor. This proposal is in agreement with the 
qualitative properties of turbulent flow a.nd, as we 
have just shown, is not unreasonable from the point 
of view of bifurcation theory, 
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COMPOSITE PARTICLES IN MANY-BODY SYSTEMS 

Arthur Y. Sakakura 
Colorado School of Mines 

Golden, Colorado 

I. Introduction 

In these lectures a second quantized formalism for 
composite particles in many-body systems will be presented. 
In order to explicitly define our terms we consider a sys­ 
tem of N protons and N electrons interacting through the 
coulomb potential. At non-relativistic energies the proton 
and the electron are elementary particles, whereas the H­ 
atom, Hz-molecule, H--ion, etc. are the composite particles, 
which we will indiscriminately call the atoms. 

It is well known1 that when composite particles are 
far apart, they may be considered as integral entities with 
internal structures and obeying definite statistics, i.e., 
H-atoms and Hz-molecules are bosons, and H--ions are fer­ 
mions. When they are close together, the indistinguishabil­ 
ity of the constituent elementary particles negates the no­ 
tion of individual atoms. Yet, the concept of atoms as en­ 
tities has been most useful, so we wish to express the 
hamiltonian and other observables in terms of atomic, pro­ 
tonic, and electronic creation-annihilation operators from 
first principles. 

The emphasis is important, for one can always write 
the atom-atom interaction with a phenomenological potential. 
First principles means: given a system of protons and elec­ 
trons interacting through the coulomb potential and taking 
into account that these particles are fermions, derive sys­ 
tematically the atom-atom and other composite particle in­ 
teractions. 

The important problem of deriving the interactions a­ 
side, it is an advantage to introduce the composite parti­ 
cles in the zero order. This means that the hamiltonian 

483 
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will explicitly describe processes such as 

H (I-1) 

etc., so that the equilibrium and non-equilibrium properties 
relating to various chemical constituents can be calculated 
in the zero order without recourse to many-particle green 
functions. 

II. Statement of the Problem --- 
To further simplify the admittedly involved formalism, 

the only atom to be considered will be the H-atom. This 
choice does not alter the problem, but merely precludes the 
explicit appearance of terms involving Hz, H-, etc. How 
these are to be incorporated will be indicated later. The 
proton coordinates including the spins will be denoted by 
x1 •••.• ~, the electron coordinates by y1 ...•. yN, and the 
entire set by~- The hamiltonian in the Schrodinger rep­ 
resentation is 

N N _ _ _ _ 
HS =

1
.~_. 

1
(T+(i)+T_(i)) + t [v(lx.-x.l)+v(!y.-y.l)J 

i>j=l J J 1 J 

N _, ... 
- t v(lx.-y.l) 
i,j=l J 1 

(II. 1) 

where vis the repulsive coulomb potential, and T-1:- and T_ 
are the kinetic energy operators of the proton and the elec­ 
tron, respectively. 

The hilbert space in which Hs operates is spanned by 

I~>= lx1 > ••• [xy > IY1 > ••• lyN > (II.2) 

whereas the physically admissible states ("physical states") 
form a subspace defined by 

(II.3) 
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where 

(N.,)-
2 

~p oplxp > J > I > J > ••· xPN Yp ••• YpN 

(II.4) 

and where Pis the product, (permutation of the N proton 
coordinates) x (permutation of the N electron coordinates). 
Op is the signature of P. AN is then the operator which 
skew symmetrizes the state with respect to the N proton 
coordinates and the N electron coordinates simultaneously. 
It is hermetian and idempotent, and commutes with all the 
operators of the system observeables. 

The standard representation, which we will call the 
elementary particle representation, is the second quantized 
one, wherein 

J + J + HE= $(x) T+$(x)dx + $(y) T_$(y)dy 

- J 

+ + - - $ (x1)$ (x2)v(lx1-x2J )$(x2)$(x1)dx1dx2 

+ + - - $ (x)$ (y)v(lx-yl)$(y)$(x)dxdy 

and 

AN= Jw(xl)+ .•. $+(xN)$(yl)+ ••. $(yN)+IO>(N!)-2 

<OJ$(yN) ••. $(yl)$(xN) ... $(xl) d~ 

(II.5) 

(II. 6) 

where $(x) and $(y) are the usual wave function operators 
for the proton and the electron, respectively and Jo> is 
the normalized vacuum state. The operation, ]dx, means in­ 
tegration over the space coordinates and summation over the 
spin coordinates, whereas the operation, Jdxy, means the in­ 
tegration and summation over the coordinates of all the par­ 
ticles. The$ obey the normal commutation relations: 
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[$(x),$(x')+]+=o(x,x') [$(y),$+(y')]+=o(y,y') 

O=[ $ (x) , $ (x ') ]+ =[ $ + (x),$ + (x') ]+ =[ $ + (y),$ + (y') ]+ =[ $ (y), $ (y) ') J+ 

+ + + + 
O=[ Hx), Hy) J+ =[ Hx), Hy) J+ =[ Hx) , Hy) J+ =[ Hx) , Hy) J+ 

(II.7) 
The la.st set of relations enables the product, $(y)$(x), to 
commute with both $(x') and $(y'), thus partaking a. useful 
characteristic of an independent bose opera.tor. 

Two points need emphasizing" The ha.miltonian, HE, con­ 
tains no explicit references to composite particles, and AN 
is the identity opera.tor for the sub space containing N 
particles each of two different fermions. 

Girardea.u2 introduced a.toms via the basis 

where cp is the complete set of atomic wave functions, and 
Risa iermutation of N objects. One now introduces the 
creation and annihilation opera.tors for the state, a, obey­ 
ing the bose commutation relations: 

+ I + + [a ,a , ] = o (c ,« ) , [a ,a ,]=[a ,a ,]=O a a a a a a 
Girardeau obtained 

(II.9) 

where Ea is the energy of a including the center of mass 
energy, and VAA is the coulomb interaction energy of two 
a.toms: 

We will call this the atomic representation. 

AN' however, is not the identity for the subspace of N 
atoms, so the physical states must obey the subsidiary 
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condition (II.3) or its equivalent, the satisfaction of 
which presents a formidable problem. 

Another source of difficulty is the necessary inclu­ 
sion of the continuum atomic states for completeness. By 
treating these states as atoms, recombination and ioniza­ 
tion terms do not appear in HA. A mixed representation 
with a basis of bound atomic states and free electron and 
free proton states will explicitly display these desired 
terms. This, however, opens a new Pandora's box of prob­ 
lems associated with orthogonality and completeness. The 
lectures by Brittin3, Girardeau4, and myself are all con­ 
cerned with different approaches to the problems of orthog­ 
onality and completeness and of the elimination of the sub­ 
sidiary condition in the mixed representation. 

In these lectures, a complete orthonormal set in the 
mixed representation will be shown with one curious feature: 
every orthonormal subspace, except one, contains a continuum 
boson, the remainder of the particles being bound atoms and/ 
or free electrons and protons, The elimination of the con­ 
tinuum bozog is equivalent to the strong orthogonality of 
Girardeau , • 

We avoid the subsidiary conditions by utilizing 
Giradeau1s6 observation about the projected hamiltonian, H, 

(II,12) 

The eigenstates of Hare the physical states of H. So in­ 
stead of examining H (end other observables) in the physical 
subspace, we consider Hin the entire hilbert space. In~ 
other words, the burden of symmetry is to be carried by H, 
rather than by the state. 

Unfortunately, the eigenstates belonging to the zero 
eigenvalue of H include all the unphysical states so that 
the solution of the Schrodinger equation, 

(II,13) 

may contain a large time-independent component of the un­ 
physical states. But the physically interesting quantities 
are thermal averages of observables, O, which can be written, 
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(0) Trace over physical states p 0 
Trace over all states ANP 0 
Trace over all states P ~ (II. 14) 

where p is the density matrix with the normalization 

Trace over all states p = 1 (II.15) 

and where p and Oare related top and Oby equation (II.12). 

We will determine Hand AN, and demonstrate a systematic 
procedure for determining 0. 

III. The Mixed Representation 

The representation of the projected operator, O, is 
carried out in the space, Sc, which is the union of the or­ 
thogonal subspaces, SM, where the number of bound atoms, M, 
ranges from zero to N. The subspace, Sij, contains N bound 
bosons. The remaining subspaces, SM' with M less than N, 
contain M bound bosons, one continuum boson, N-M-1 protons 
and N-M-1 electrons. The space is a subspace of the origi­ 
nal hilbert space but is "large enough" to contain the 
physical states (see, III.23). The presence of the single 
continuum boson is necessitated by the requirement of com­ 
pleteness and orthogonality in the original hilbert space. 
(see, III.5 et seq). 

We will first derive the expression for the projected 
operator, 0, in S (III.1). Then we will isolate the fac­ 
tors containing tfie continuum boson operators and express 0 
in terms of U, the corresponding operator in the space con­ 
taining no continuum bosons. Finally, we will exhibit the 
relationship between Girardeau's "strong orthogonality" and 
the present formulation. 

We will first show that the operator O can be written 
in the form 
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N Bound States Continuum States 
0 ~ ~ ~ 

M,M'=O N Q Q' ~1•••0.M ~Ml-1'~ M'+l 
I I 

a.1, •• a.M, 

J I I I d ' d~zdYM+-z•••d~dyNdx M'+2dy M'+z•··dx Ny N 

a:1 .•. a;Ma;Ml-/ + (~zH+ (yMl-2) •• $ + (~H+ (yN) I Q>[M!M+!M_ ! r\ 

x <olw(yN)w(~) ••. w(y*2)w<~2)As A •.• A oE(N!)-
2 

M+l a.M a.1 

x A:i ••• A;,M,A;M'+1$+(~,+2)W+(y~,+2) •.. $+(~)$+(y~)IO> 

x [M'!M~!M~!J-\<olw(y~)w(~) ... w(y~'+z)w(~,+2) 

xaQ, a, •.. a, 
~M' +1 a.M, a.1 

(III.1) 

The a and the$ have already been introduced and obey the 
commutation rules, (II. 7) and (II. 9). In addition the bose 
operators, at, aa., a!, as, commute with both$ and t+· 
Moreover, both aa. and a! commute with both as and as· That 
is, the continuum bosons and the bound bosons are treated as 
kinematically independent. We will always employ the con­ 
vention that a. will run over the bound states and S over the 
continuum states so that the summation ranges will not be 
explicitly stated hereafter. OE is the second quantized 
form of O in the elementary particle representation. A 
and As are defined as follows, a. 

* * Ao.= J~a.(xy)$(y)$(x)dxdy, AS= J~S(xy)$(y)$(x)dxdy 
(III. 2) + + whereas Ao. and As are their hermetian conjugates. 

M+' the number of proton operators appearing as factors 
on the left hand side of a given term, and M_, the number of 
electron operators appearing as factors on the left hand 
side of a given term, are both equal to N-M-1 when M;. N, 
and are equal to zero when N = M. The primed quantities 



490 ARTHUR SAKAKURA 

refer to the right hand factors (annihilation opera.tors) 
with the same restrictions. 

Note that there is a single continuum boson in a.11 
states except when Mor M' are equal to N. Then there is 
no continuum boson. 

The kets on the left, including the factor, 
(M!M+!M_!)-\, are the normalized basis vectors for states 
containing M bound bosons, one or zero continuum boson, M+ 
heavy fermions, and M_ electrons. These basis vectors are 
orthogonal for different values of M, a.nd together, they 
span the space in which 

M + M+ + (0 or 1) = N = M + M_ + (0 or 1). (III. 3) 

where the number of continuum bosons is zero when N =Mand 
one otherwise. 

Note carefully that the operators a.re "reflected" 
across I0)(0I at both ends of the expression. This simpli­ 
fies sign manipulation when the summation is actually car­ 
ried out. 

The startin~ point is really a definition owing to the 
completeness of I~). 

(III.3) 

The trick is to rewrite the identity opera.tor, incorporating 
atoms and ta.king advantage of some properties of AN' Con­ 
sider the one atom projection operators, 

(III. 5) 

\; (1,1') 

I (1,1') 

* I I 
~ ~S(xl,yl)~S(xl,yl) 

IB(l,1')+\; (1,1') as o(x1,x{)o(yl'y{) 

(III. 7) 

(III. 6) 

with the properties 

Jr (1,l')I (1' ,ln)dx'dy' 
B B 

(III. 8) 
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JrB(l,l')Ic(l' ,ln)dx'dy' 

Now construct the projection operator, IM, whose matrix 
elements are 

<~lrNI~> 

<~lrMI~> 

IB(l,l') ... IB(N,N') 

IB(l,11
) ••• IB(M,M')Ic(M+l,M+l') 

x I(M+2,M+2') ... I(N,N'), 

IC(l,l') ... I(N,N') 

From the above, one can show 

and 

0 

491 

(III.9) 

(III.1O) 

(III.11) 

(III.12) 

(III.13) 

which is the unit operator for the entire hilbert space. 
The orthogonality, (III. 12) is a weak one since it depends 
upon integration over the entire configuration space. It 
depends critically upon the position of the single le in 
(III.11). We now rewrite 

(III. 14) 

and introduce the projection operator, PM, with the matrix 
elements 

(III.15) 

Where Sis the product, (permutation of the M couples 
x1y,1,···xM?'M) x (permutation of the proton coordinates, 
~+2, xN) x (permutation of the electron coordinates, 
y 2, yN), and os is the product of the signatures of 
t~ electron and the proton permutations. It can be shown 
that 
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PM2 = PM, PM+ = PM (III.16) 

(III.17) 

(III .18) 

The last property results only because the single continuum 
boson is treated as a different particle and is not mixed 
in the permutation, S. We now write 

~ N 
O = M,M~=O ¾r\fNOSANPM,IM, 

N 
r; PM¾fNOSAN M,M'=O 

= r J1~><~1ANOSAN1~><M'~1d~ d~ (III.19) 
M,M'=O 

where 

(III. 20) 

The orthogonality and completeness relations are, 

(M'~I~> <~I IM,PM,PMIMI~> 

= <~I PM,IM,IJ'MI~> 

<~IPMVMI~> o(M' ,M) (III. 21) 

and 

JJ~)(~M'Jd~ = JPM~l~)(~JIM,PM,dxdy 

PM~~,PM, 

(III. 22) 

Clearly, PMIJ'M is the idempotent projection operator onto 
the subspace M, so the entire space, Sc, is the union of 
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orthogonal subspaces. The identity for Sc, which is "smal­ 
N 

ler" than the original hilbert space, is given by M~OVMIM. 
The space contains all the physical states, for 

N N N 
AN M~O I✓MIM = AN M~O PM~ = ~ M~O ~ = AN (III. 23) 

as one might have expected. 

In second quantization, 

!Mxy> 

(III. 24) 

where 

+ * + *c<x,y) = ~ ~s(x,y)as 
(III.25) 

are the wave function operators of the bound and continuum 
bosons respectively. The order, or the pairing, of the free 
proton and electron operators is due to the paired form of 
I (j ,j ') . 

Finally, the matrix element, 

(xylANOSANlx'y') = (N!)-
2
(Ol$(x1) ... $(~)$(y1 $(yN)OE 

x $+(y'N) ... $+(y{)$+(x'N) $+(x{)IO) 

(N!)-2(0l$(yN)$(~) ... $(yl)$(xl)OE 

X $+(x{)w+(y{), .. $+(~)$+(y~)IO) 

(III.26) 

all,ows pa1.r1.ng of the particles without a change in sign, 
since the primed and unprimed operators are moved symmetri­ 
cally with respect to the "reflection" across OE. Here, we 
have made a transition from the Schrodinger Os to the OE in 
the elementary particle representation. 
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Upon combining (III.2, 19, 24, 25, 26), we obtain 
(III. l). 

We will now achieve simplification by isolating the 
effect of the continuum bosons.5 We will show that (III.l) 
can then be written as 

(III. 27) 

where 

which are complex conjugate quantities. The very important 
operator, ij, is given by (III.l) except that there are no 
continuum boson operators. That is, instead of 

0 = ls, ... a; ... 10><0! ... As ... A;, ... lo><ol ... aS''" 
' (III. l) 

there is 

~ = Jd~ldyM+ldx'M'+ldy'M'+1···$+(~+l)$+(yMtl) IO) 

x co] .•. HYMtl) H~+l) ... $ + (x' M'+1H + (y' M'+l) Io> 

(III.29) 

where all the irrelevant (for the moment!) debris have been 
suppressed. Hence ij is defined in the subspaces with M 
bound bosons, N-M each of electrons and protons, and no con­ 
tinuum bosons. The union of these orthogonal subspaces from 
M=O to M=N is the space, SB. 

A A 

In (III.28), M+ and M_ are number operators for the 
proton and the electron, respectively. Prst is the identity 
operator for the subspace containing r bound bosons, s pro­ 
tons, t electrons, and no continuum bosons. Explicitly, 
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+ + + + I $ (xl) ... $ (xsH (yl) ... $ (yt) 0) 

[r! s !t ! J-1<ol HYt) ... Hy1H (xs) .. , Hx1)aa. • .. a 
r a.l 

(III.30) 

with the properties 

o(r,r')o(s,s')o(t,t')P t rs 

(III. 31) 

We now derive (III.27). Consider the left hand portion of 
(III.l) in the neighborhood of the vacuum state projection 
operator, I 0) (O I . 
I ++ + + + I 

~ d~+zdYM+2"d~dyN .. af3$ <~+2H (yM+-2) .. $ (~H (yN) 0) 

x[M!(N-M-l)!(N-M-l)!]-\(0l$(yN)$(xN) ... $(yM+-2)$(~+2)Af3. ·· 

= ~ ... a;PO,N-M-1 N-M-1Af3 ... [(M!)-l(N-M-l)!(N-M-l) !]\ 
f3 

= ~-· .a;Af3Po,N-M,N-M[(M!)-
1
(N-M-l)!(N-M-l)!]\ ... 

_ + <' ' -\ [ I -1 I I]\ - ~- .. a13A13 M+M_) PO,N-M,N-M (M.) (N-M). (N-M). 

_ + ' ' -\ 2 I -1 I I \ - j· .. a13A13(M+M_) PO,N-M,N-M[(M.) (N-M).(N-M).] (III.32) 

Upon restoring the bound state operators in the above, 
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J + + + ~ t d~2dy:t,ff-2 ... dxNdyNa ... a aS 
a. 1 ' ' '°'M J:l a. 1 °'M 

+ + + + I 
X $ (~+2)$ (y:t,ff-2) ... $ (~)$ (yN) 0) 

_J,, 
X [M! (N-M-1) ! (N-M-1) ! ] 2 

X <o!w(yN)$(~)- .. $(yM+2)$(~+2)ASAo.M·· .Ao.1··. 

='~ a+A (MM)-½ ~ + + P2 
0 S S + - ao. ... ao.M 0,N-M,N-M 
,., °'1' ' .o.M l 

X [ (M!) -l (N-M) ! (N-M) ! ]+½ 
+ A A -½ 

= ~ aSAS(M+M_) PM N-M N-M ~ 
S ' ' a. 1' ' .o.M 

x PO,N-M,N-M[(M!)-l(N-M)!(N-M)!J½ 

+ A A -½ =; aSAS(M+M_) PM,N-M,N-M 

x ~ fd~+ldyM+l' .. d~dyN 
°'1 .. '°'M 

+ ++ + ++I x ao.
1 

... ao.M$ (~+lH (yM+l) ... $ (xNH (yN) 0) 

_J,, 
x [ (M!) (N-M) ! (N-M) ! ] 2 

+ + a ... a 
°'l °'M 

x (O!$(yN)$(xN) ... $(yM+l)$(~+l)Ao.M···Ao.l· .. 

(III. 33) 
Proceeding similarly with the factors clustered about the 
vacuum state projection operator on the right hand side of 
(III.l), one obtains 

JI I II+++ 

1 ~ 1 ~I d~1+2dyM1+2···dx:iiYN'•·Ao.1 ... A0.11AS1 
°'l · · .o.M S 1 M 

+( I ) +( I ) +( I) +( ') [ I I ( I ) I ( I ) I]-½ x $ ~1+2 $ YM'+z , .. $ xN $ YN M. N-M -1. N-M -1 . 

x <o!w(yN)$(xN) ... $(y~,+2)$(~,+2)as1a0.~1"'ao.{ 
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J I I I I + + 
= I~ I d¾'+ldyM'+1···d~dyN" .. Aa.'···Aa.1 I 

a.~·· .a.M 1 M 

x w+<~•+1)w+(Y~'+1) ... $+(~)w+(y~)lo> 

X [M1!(N-M1)!(N-M1)!]-\ 

x <ol Hy' NH (x' N) ... Hy~, +lH (~, +l) aa.~, ... aa.{ 

(III. 34) 

Sandwiching OE between the two and summing over Mand M' 
yields (III.27 ,28). We finally write 

0 = A-+<a'A 

I I I I + + 
x d¾'+ldyM'+l'' .d~dyNaa.

1 
... aa.M 

x w+<¾+1)w+(yM+1) ... w+<~)w+(yN)lo>CM!(N-M)!(N-M) :J-½ 

x <olw(yN)w(~)- .. w(yM+1)*<¾+1)Aa.M···Aa.10E(N!)-2 

x A;i ... A;~,*+<~·+1)w+<Y~'+1) ... w+<~)w+(y~)lo> 

x [M'!(N-M1)!(N-M1)!]-\ 

x <olw(y~)w(~) ... $(y~'+l)$(~l)aa.~, ... aa.i/\ (III.27). 

The problem now reduces to the determination of ij_ 

Before doing so, we will exhibit the relationship be­ 
tween the present formulation and Girardeau•s4,S; wherein 
the states are in SB, the sub space containing no continuum 
bosons. Only the physical states are considered by using 
AN as the metric operator. In addition, the physical states 
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satisfy the "strong orthogonality" condition, 

A I lj, ) = I$) 
a, (III. 35) 

Note that the operator, A, maps any state of Sc into a 
subspace of SB, which we will call Sc'. Similarly, 11+ maps 
any state of SB into a subspace of Sc, which we will call 
SB'. In both mappings, distinct vectors map into distinct 
vectors, but the two mappings are not inverses of each other 
in general. But for physical states, one can define a one­ 
one correspondence, a consequence of which is (III.35). 

From the identity 

AN A/ 

and the definition, 

(III. 36) 

(III. 37) 

it follows that 

That is, both Sc' and SB' are composed of two mutually or­ 
thogonal subspaces. The case of 5E', this is nothing more 
than the decomposition of AN. Let lw) be a vector in Sc 
and lw) be its image in Sc' defined by 

lw) = 11lw> (III. 39) 

We will always used the angular kets for vectors in Sc and 
the rounded ket for vectors in SB. 

The physical states satisfy 

(III.40) 

so that 

and 
lw> (III.41) 

I w) (III.42) 
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The last equation is the necessary condition that J$) be an 
image of a physical state. 

Consider now the states in Sc' satisfying 

(III.43) 

These will have images in the physical states given by 

(III.44) 

which in turn will have images in sc' given by 

I$') = /\ANJ\ ry:J $) 
< M -tx) < J\J\ ry:) I w ) 

(M-+1.) I$) 

(III.45) 

by the idempotency of flfl+'X in Sc' Consequently, if we now 
require that 

(fl/\+;.) J $) = J $) (III.46) 

the transformation becomes one-one. Together with (III.43), 
then 

J\fl+Jiv) = J$) (III.47). 
In Sc', the above equation is a consequence of condition 
(III.43). In the larger space SB, both conditions 
(III.43,46) serve to define the physical state. From the 
identity 

we write 

J\J\+ = 1- ~ A+(M++l)-\(M +1)-\A 
a a - a 

so that the condition (III.47) becomes 

A J$) = 0 a 
which is the strong orthogonality condition. 

(III.48) 

(III.49) 

(III. 50) 
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To recapitulate, solving the following problem in Sc 

(III.51) 

is equivalent to solving the following problem in SB. 

i h ~t I~) = ~!~), Aal~) = 0 

IV. The Determination of ij_ 

Previously7, the direct summation of (III. 27) was 
given wherein the matrix elements appearing in it were ex­ 
panded in analogy with the Ursell expansion in statistical 
mechanics. Here we wil.l give a simpler derivation yielding 
the same forms for the low order terms, but will not yield 
without much manipulation, the normal ordered exponential 
form of the previous work. 

(III. 52) 

One observes from (III.27) that the matrix elements of 
ij are given by 

[M! (N+-M) ! (N_ -M) !M' ! (N+-M') ! (N_ -M') ! r~ 
x (OIHYN) ... HyN-MH(~) ... HxN-M)a ... a ij 

- + + aM al 
+ + ( I )+ ( I + I )+ ( I ) I > x a , ... a , $ xN -M' ... $ ~) $(yN -M' .•. $ y N 0 
al aM, + + - - 

-< , , -1( I = N+.N_.) 0 $(yN_) ... $(yN_-M)$(~+) ... $(~+-M)AaM···AaloE 

x A+, ... A+, H~ -M')+ ... H~ )+HY~ -M')+ ... Hy~ )lo> 
al aM, + + - - 

(IV. 1) 

where we have generalized by allowing the number of protons, 
N+, and the number of electrons, N_, to take different 
values. 

We baldly assume the existence of the normal ordered 
expansion 



COMPOSITE PARTICLES 501 

0 }:'. 
rst 

r's't' 

x Hy~,) ... *(y{H(x{)aa;· .. aa{ 

x (r!s!t!r'!s'!t'!)-l (IV.2) 

where the "connected" matrix elements O , are skew sym- c / / metric in the interchange of coordinates, x, x, y, y, and 
symmetric in the interchange of a,a'. These are evaluated 
by considering (IV.l) for the few particle states. Observe 
that the terms containing no bose operators (r,r'=O, or 
M,M'=O) merely yield OE' and need not be explicitly evalu­ 
ated. The first few non-trivial terms are 

N =N =M=M'=l + - (IV.3) 

(yx!Ola'>c (Ol$(y)$(x)OEA:lo> 

N =N =M'=l M=O (IV.4) + - , 

(y!Oly'>c<ala'> + (yiy')(a!Ola'> + (yalola'y') 
C C 

= 2-1<ol$(y)A oEA+,$(y')+lo> a a 
N =M=M'=l N =2 (IV.5) + , - 

(x!Olx'> (ala'>+ (x' \x')(a!O\a'> + (xa\O\a'x') 
C C C 

N =M=M'=l N =2 - , + (IV. 6) 
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2-
1
(<a.21ola.~>c<a.1la.i_> + (a.21ola.i_>c<a.1la.~) 

+ <a.2la.~><a.1lola.i>c + <a.2la.i_><a.1lola.i>c 

+ <a.2a.1lola.i_a.~>cl 

= 2-2<olA A oEA ,A ,lo> 
a.2 a.l a.l a.2 

N =N =M=M'=2 + - (IV. 7) 

Clearly, every connected matrix element can be expressed in 
terms of the corresponding and lower order ordinary matrix 
elements. 

For the case of ff, we have, 

(IV.8) 

where HA is the atomic hamiltonian, and the bracket is the 
matrix element in our original hilbert space of distinguish­ 
able particles. Moreover, 

(OIHYH(x)H A ,IO)= (xylHAla.') = E ,cp ,(xy) (IV.9) EO. a. a. 
and 

<ol Hy)Aa.HEA;,Hy') I o>=<ya.J (1-I_) (HA+T_+v AJ I a. 'y') 
(IV.10) 

where T_ is the kinetic energy of the extra electron, VA- is 
the coulomb interaction between the atom and the electron, 
and I_ is the electron exchange operator. 

co] $ (x)Aa.HEA: ,$ (x') I O)=(xa.l (1-I+) (HA+T++V A+) I a 'x') 
(IV. 11) 

where T is the kinetic energy of the extra proton, VA+ is 
the cou1omb interaction between the proton and the atom, and 
I+ is the proton exchange operator. Finally, 
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co] A A HEA+,A+, Io> 
a,2 a,l a,l a,2 

(a.2a.11 (1-I_) (1-I+) (HA (1) +HA (2)+VAA) ja.{a.2) 
(a.2a.11 (l-I+I_)(l-I_)(HA(l)+HA(2)+VAA) \a,ia.2) 

<a.za.11 (l-I_)(HA(l)+HA(2)+VAA)la.{a.z> 
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(IV .12) 

where HA(l) and HA(2) are the hamiltonians of the first and 
second atoms, respectively, and VAA is the coulomb inter­ 
action between the two of them. We have used the idempotency 
of the exchange operators and the fact that I_I+ has the 
effect of exchanging an electron-proton pair. 

Thus, 

<a.I H la.') 

(yxl H la.') 

Eli(a.,a.') a, 

E ,cp , (xy) a, a, 

(IV.3') 

(IV.4') 

<ya.I i+la.'y'> 
C 

z-1(ya.l (1-I_) (HA+T_+VA_) I a, 'y') 

-<ya.lT_la.'y')-(ya.lHAla.'y') 

(ya.lvA_la.'y'> 

I -1-I I , +(ya, (-z)(HA+T_+VAA a, ya,) 

- (ya.JvA_la.'y'>+<ya.JI'HA_la.'y'> ov.s ': 
where we have introduced some obvious notations. Similarly, 

(xa.JH Ja.'x') 
C 

(IV.6') 
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Finally, 

I I , , -1 J J , , (a.2a.l H a.la.2)c = 2 (a.2a.1 (l-I_)(HA(l)+ HA(2)+VAA) a.la.2) 

+ 2-1<a.1a.2I (1-I_) (HA (l)+(HA (2)+vAA) I a.{a.~> 

- <a.1a.2 I (HA (1)-tHA (2)) J a.~a.{> 

- (a.la.2 J HA (l)+HA (2) J a.{a.~> 

<a.2a.1l VAAI a.{a.~> 

+ <a.2a.1I c1;1-) <HA (l)HA (2)+vAA) I a.{a.~> 

(IV. 7 ') 

We thus obtain, 

~ = H + ~ E a+a 
E a. a.a.a. 

+ ~ E (a+A +A+ a ) 
a. a. a. a. a. a. 

+a.~ a. ,J dxdx' $ + (x) a! (xa. IV A++ I ;HA+I a.' x') $ (x') aa., 
' 
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+ ½a~af a;la:2 (a2all (VAA+I~HAA)la{a~)aa~aa{ 

ala2 (IV.13) 

The first term is the ion-electron hamiltonian (II.5). 
The second term is the free atom hamiltonian. The third 
term describes the process 

H~ p + e 

which was first obtained by Stolt and Brittin8. 

The fourth term describes the process 

(IV .14) 

(IV .15) 

and consists of two parts, the direct coulomb interaction 
VA , and I~HA+' which does not agree with the Ea of Stolt 
an~ Brittin, who have the operator I+ rather thgn I~. Our 
result is in partial agreement with Girardeau9 and is physi­ 
cally reasonable for it corrects the total hamiltonian by 
eliminating the part of the atom-proton hamiltonian which is 
symmetric in the exchange of the two protons. The fifth 
term is the analogous one for the electron-atom scattering. 

The last term describes the process, 

H+H'7H+H (IV. 16) 

which again consists of the direct part, VAA• and the cor­ 
rection, I~HAA· These terms were first obtained by 
Girardeau6 except that the atomic states included the con­ 
tinuum states- 

Terms corresponding to processes such as p+H • p+p+e 
were omitted as we were only concerned with two body proc­ 
esses. The inclusion would be trivial, for one only needs 
the connected matrix, (x1a!Hiy'x~x{), 

The expansion of i is a bit more subtle. The M=M'=O 
term of (III.27) with OE set equal to one is nothing more 
than Po N N• the identil:y in the subspace with no bound 
atoms. 'TfJ.Us, instead of the expansion (IV. 2), one needs 



506 

A=l+ L'. 
rst 
r's't' 

ARTHUR SAKAKURA 

+ + + + + + 
x a ... a t (x1) ... t (x )t (y1) .. •• (yt) a1 ar s 

x t(yt' ,) ... t(y1'H(x' ,) ... t(x1')a , ... a , 
s ar, a1 

(IV .17) 

which differs from (IV.2) by the presence of the identity. 
The definition of the connected matrix elements are then 

+ (Ola a ,lo>+<alAla') = (OIA A ,lo>= 5(a,a') a a c a a 
N =N =M'=M=l + - 

(OI t (y) t (x)a+, I O)+(yxl Al x') a C 

(IV.18) 

N =N =M'=l M=O (IV.19) + - ' 
(Olt(y)a a+,t+(y')IO)+(alAla') (yly')+(ala')(ylAly') a a c c 

+ (yalAla'y') 
C 

2-1<olt(y)AaA:,t+(y')IO) 

2-1(yal (1-I )la'y') 
N =M=M'=l N =2 + ' - (IV-20) 

(OIHx)a a+,t+(x')IO)+(alAla') (xlx')+(ala')(xlAlx') a a c c 

N =M=M'=l N =2 - ' + (IV. 21) 
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2-1(<ola a a+,a+,lo>+<a.2!Ala~) <a1la{> a2 a1 a1 a2 c 

507 

+ (a2!Ala{)c(a1la~)+(a2la~)c(a1!Ala{)c+(a2la{)(a1!A!a~)c 

+ (a2a1!Ala{a~)c} 

2-2<o!A A A+,A+,!o> 
a2 al a2 a2 

-2< I I ' ' 2 a2a1 (1-I_)(l-I+) a1a2) 

-
2 I I ' ' -2 I I ' ' 2 (a2a1 1-I_ a1a2)+2 (a1a2 1-I_ a1a2) 

N =N =M=M'=2 + - 
We then have 

(a!Ala')c = 0 

(yxlA!a') = ~ ,(xy) 
C a 

(ya!A!a'y')c (yalI~la'y') 

(IV. 22) 

(IV.18') 

(IV.19') 

(IV.20') 

(xa!Ala'x') 
C 

(a2a1 I Al a{a~) c 

( xa \I~ I a 'x') (IV. 21 ') 

(a2a1! (la{a~)+(a1a2I (la{a~) 

(IV.22') 

In the derivation of (III.20') and (III.21'), we used the 
fact that (x!Alx') and (y!A!y') were zero respectively, 
since the projecti8n of A into tfie subspace with no bound 
atoms is the identity. 

Thus , we have 

A= 1 + ~ (a+A + A+a) 
a a a a a 

+ ~ ,Jdxdx'a+$+(x)(xa! I'la'x')Hx')a , 
a,a a + a 
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+ ~ ,Jdydy'a+$+(y)(ya\I'la'y')$(y')a , 
a,a a - a 

+ ~ 

(IV.22) 

V. Concluding Remarks 

We have obtained expressions for the projected hamil­ 
tonian, AH, and Aij itself in the mixed representation, 
which exp~icitly display terms corresponding to the ioniza­ 
tion, recombination, scattering, etc., of elementary and 
composite particles. Two representations were shown. The 
one involves the solution of the Schrodinger equation 

(V .1) 

where 

(V .2) 

operating in Sc, and the other involving the solution of 
the Schrodinger equation, 

(V. 3) 

with the subsidiary condition 

A\$) = 0 
a 

(V.4) 

operating in SB. In either representation, the hamiltonian 
serves to project the wave function into the physical space 
except for the subspace belonging to the zero eig~nvalues 
of the respective hamiltonians. These must be supplemented 
by the relations 

(V. 5) 

or 

(V. 6) 
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The form (V.2) is not as formidable as it appears, for 
its effect is to replace a proton-electron pair operator 
with a continuum boson operator, i.e., 

(V. 7) 

where O is simply related Oby the above mentioned replace­ 
ment and A+A yields one when operating upon a physical 
state. Explicit form has been reported earlier7. 

Since one must eventually calculate either the thermal 
averages or expectation values, it may be more profitable 
to directly evaluate Trace ANpO, rather than explicitly 
finding ANO as we have done here. In fact, the arguments 
leading to (III.27) results in some interesting expressions 
for AN, which will facilitate the trace operations. 

Finally the presence of more than one composite specie 
can be taken into account by the generalization of (III. 11) 
et seq. One introduces the bound and continuum projection 
operators for Hz molecules, say, and decompose the product 
of the free electron and proton operators in the same way 
that the entire hilbert space was decomposed by means of the 
H atom projection operators. This and the above matter will 
be reported elsewhere. 
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ERGODIC THEORY IN ALGEBRAIC STATISTICAL MECHANICS 

G. L. Sewell 
Queen Mary College 

London El 4NS England 

1. Introduction 

The C*-algebraic formulation of statistical mechanics 
provides a framework for the study of properties of assem­ 
blies of particles in the thermodynamical limit. The use 
of this limit constitutes an idealization which permits 
sharp mathematical characterizations of properties that 
would otherwise be masked by finite-size effects. 

The object of the present course is to formulate a 
unified approach, within the algebraic framework, to the 
following statistical mechanical problems:- (a) the charac­ 
terization of pure thermodynamical phases; (b) the charac­ 
terization of phase transition, especially with regard to 
symmetry changes; and (c) theory of the approach to equi­ 
librium. Our treatment of these problems will be centered 
on a non-commutative generalization of classical ergodic 
theory and also on the celebrated KMS conditions. 

The subject matter will be presented as follows. In 
section 2, we shall present, in summarized form, the mathe­ 
matical equipment we need: this will consist of defini­ 
tions and standard results concerning C*-algebras, abstract 
ergodic theory and KMS conditions. In section 3, we shall 
outline the algebraic formulation of states, observables 
and space-translational ergodic theory for "infinite vol­ 
ume" physical systems. In section 4, we shall adapt the 
formalism of section 3 to statistical mechanics. In par­ 
ticular, we shall formulate the Gibbs state and the time 
translations in the islands of =I= those states according to 

:I= By the island of a state¢ on an algebra G, we mean the 
set of states of the form iVorr, where iji is a normal state on 
the image of G under the ¢-induced GNS representation TT. 
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the scheme proposed by Dubin and myself1 (DS). This will 
lead us to a. characterization of the pure phases and of 
symmetry breakdown in equilibrium states (section 4.7). 
In section 5, we shall apply the formalism of section 4 to 
the theory of the approach to equilibrium in the island of 
a Gibbs state. I think that the results of this section, 
though of a familiar form, a.re new at least as consequences 
of the DS scheme. In section 6, we shall apply the same 
formalism to the study of phase transitions, with particu­ 
lar reference to symmetry breakdown and, in the case of 
transitions of the second kind, the divergence of a. cor­ 
relation length (appropriately defined) a.t the critical 
point. Our study of phase transitions will be largely 
centered on a new a1gebraic treatment, due to Maria 
Marinaro and myself, of a class of Ising models which, in 
the specific case of the soluble two-dimensional one, 
leads to the required characterizations of the phase tran­ 
sitions. 

2. Mathematical Equipment 

2.1 I:-systems 

We define a I:-system to be a triple (G,S,a.(G)), where 
a is a C1'-a.lgebra3, S the set of all states on a and a, a. 
homomorphism of a group G into Aut a, the automorphisms of 
a. The set of all pure states on a will be denoted by S . 
We define a.* to be the representation of G induced in S Ey 
a.:- (a.*(g)¢)(A) = ¢(a.(g)A), VAEG, ¢ES, gEG. 

Let ¢ES. We denote by(~¢' n~, 0¢) the GNS triple 
(representation space, representation, cyclical vector) in­ 
duced by the action of¢ on a. Correspondingly, we define 
J(¢), the island of states associated with¢, to be the 
set of states of the form iJ, = Won¢ where Wis a normal 
state on n¢(G): thus J(¢) corresponds to the set of densi­ 
ty ma.trices in ~ . 

We denote by CG the set of all G-invariant states on 
G, i.e. CG= (¢j¢EG, a.*(g)¢ = ¢, VgEG}. For ¢ECG, we de­ 
fine U¢ to be the representation of G induced in 3-C¢ by a,: - 

-1 
U¢(g)O¢ = 0¢; n¢(a.(g)A) = U¢(g)n¢(A)U¢(g ); VAEG, gEG 
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We define P¢ to be the projection operator for the maximal 
subspace of K¢ that is stable under U¢(G). 

The set CG is convex and w>'<-compact. We denote by Ee 
the extremal elements of this set. Adopting a usual ter­ 
minology, whose significance will become manifest in sec­ 
tions 2.4, 2.5, we refer to the elements of Ee as the G­ 
ergodic states. 

2.2 Classical ~-systems 

We term a ~-system (G, S, a(G)) classical if G is 
abelian and possesses an identity element. On the other 
hand, we define a C-system to be a pair (K, T(G)), where 
K is a compact space and T a homomorphism of the group G 
into the automorphisms of K. 

It follows from these definitions that, corresponding 
to a given C-system (K, T(G)), there exists a classical 
~-system (G, S, a(G)) such that G = a(K), the set of all 
bounded, continuous, complex-valued functions on K, with 
supremum norm; and (a(g)A)(k) = A(T(g-l)K), VAE6(K), kEK, 
gEG. Further, the state space S corresponds to the set 
f-'(K) of all probability measures (positive measures of 
total mass 1) on K; i.e. if ¢ES,~ a unique probability 
measureµ¢ on K such that ¢(A) = JA(k)dµ¢(k),VAE6(K). 

K 

Conversely, it follows from the Gelfand isomorphism 
that every classical ~-system (G, S, a(G)) may be con­ 
structed from a C-system in this way, with K = Sp (equip­ 
ped with the w>'<-topology) and T(g) = a*(g), ygEG. Hence 
there is a one-to-one correspondence between C-systems 
and classical ~-systems. We note that in this correspond­ 
ence between (K, T(G)) and (G, S, a(G)), G is separable if 
and only if K is metrisable. 

2.3 Amenable groups4 

Let G be a locally compact group; and let a(G) be the 
C>'<-algebra of a 11 bounded, continuous, complex-valued func­ 
tions on G, with supremum norm. Let a be the homomorphism 
of G into Aut a(G), defined by:-(a(g)A)(g')=A(g-1g1

), 

VAE6(G); g,g'EG. Then if AE6(G), we define O(A), the or­ 
bit of A, to be (a(g)A; gEG}. The set W(G), of weakly 
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almost periodic functions on G, is defined5 to be the set 
of elements A, of a(G), for which O(A) is relatively com­ 
pact in the weak topology of a(G). W(G) is then a closed 
subspace of the Banach space a(G). 

The group G is said to be amenable if there exists at 
least one state Tlc on 3(G), such that Tlc is invariant un­ 
der a~<(G). TlG is then termed an invariant mean (more pre­ 
cisely a left-invariant mean) on 3(G). In general, an 
amenable group G will possess more than one invariant mean. 
However, these means all coincide on W(G). 

Examples of amenable groups are:- compact groups, 
Z(the integers), R(the reals), finite-dimensional Euclidean 
groups; but not the Lorentz group. In the particular case 
of R, all invariant means TlR reduce, on W(R), to the form:- 

1 T 
TlR(A) = lim -T J dt A(t). 

T-"'' 0 

Note If G is an amenable group and U a strongly-continu­ 
ous ~nitary representation of Gin a Hilbert space J-C, 
then the function g ➔ ($1, U(g)$2) belongs to W(G), 
VW1 ,$2EJ-C. Further,the application to this function of an 
invariant mean ric yields the value (iJ,1, P$2), where Pis 
the projector for the subspace of J-C that is stable under 
U(G): this is the mean L2 ergodic theorem. Hence in the 
notation of section 2.1, if ¢ECc, then the function 
g ➔ ¢((a(g)A)B)(~(u¢(g)n¢(A*)O¢, TT¢.(B)Ow)) belongs to W(G), 
and the action of TlG on this function yields the value 
(n¢.(M<)O¢' P¢n¢(B)O¢). This result is the essential con­ 
stituent of the mean ergodic theorems of sections 2.4,2.5. 

2.4 Classical mean ergodic theory 

Let (K, T(G)) be a C-system, for which G is amenable, 
K metrisable and T a continuous representation of G in K. 
We define CG to be the set of all G-invariant probability 
measures on K, i.e. Cc={µ\µEP(K); µ=µoT(g),VgEG}. We de­ 
fine eG to be the subset of elementsµ of CG for which K 
is indecomposable into subspaces of non-zero µ-measure 
that are stable under T(G). eG is termed the set of G­ 
ergodic measures on K, and corresponds to the set of ex­ 
tremal elements of CG (c.f. Ref. 6, Ch. 10). 
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We now note the following results of classical ergodic 
theory:- 

(a) (Ref. 6, Ch. 10). There is a unique integral re­ 
presentation of CG in eG; i.e., given µECG' :3: a unique 
measure IDµ on CG such tfiat IDµ (CG \eG = 0 and 

J v(A) d m (v), VAE3(K), 
C µ 
G 

(b) (consequence of mean L2(K,µ) ergodic theorem). 
Let µECG and let riG be an invariant mean on 3(G). 
Then the following statements are equivalent:- 

µ(A)(= J Adµ) 

(i) µEeG 

(ii) TlGµ(o:(,)A)B) = µ(A)µ(B), A, BE3(K), 
where o:(G) is the group induced by T(G) in Aut a, 
according to the prescription of section 2.3. 

In view of the one-to-one correspondence between C­ 
systems and classical r'.-systems (c.f. section 2.2), we may 
translate the above results of classical ergodic theory 
into the following form. Let (G, S, o:(G))be a classical 
r'.-system for which G is separable, G amenable and a: a con­ 
tinuous representation of Gin a. Let Cc, EG be defined 
as in section 2 .1. Then:- 

(a) 1 There is a unique integral representation of CG 
in EG; i.e. given ¢ECG, :3: a unique measure µ¢ on Cc, 
such that µ¢ (CG \EG) = 0 and ¢ = J r, d µ¢ (r,). 

CG 
(b)' Let ¢ECG and let Tlc be an invariant mean on a(G), 
Then the following statements are equivalent:- 

(i) ¢EEG 

(ii) TlG¢((o:(·)A)B) = ¢(A)¢(B), VA, BEG, 

i.e.¢ is weakly clustering with respect to G. 

2.5 Non-commutative mean ergodic theory 

The reformulation of classical mean ergodic theory in 
C*-algebraic terms has the advantage of being generalizable 
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to non-connnutative algebras. We now formulate the non­ 
commutative generalization of the theory of section 2.5. 

We introduce the following standard definitions of 
"quasi-commutative" properties which may serve to replace 
the connnutativity of Gin classical ergodic theory. 

(a) We say that G is G-asymptotically abelian if norm­ 
lim [a(g)A,B] = 0 VA,BEG. By lim we mean the fol- g➔oo - g-oo 
lowing. Let f be a function from G into C. We say 
that lim f(g) = 0 if, given E > O, :3:a compact subset 

g-oo 
KE of C such that \ f(g) \ < E \1 gEG\KE' 

(b) We say that G is riG-abelian7 if a, is a strongly­ 
continuous representation of Gin G and ric is an in­ 
variant mean on 13(G) such that 

TJG(h TT [a,(•)A,B] 11' )= O, V$i,ilt2E:K,.; A, BEG, ¢ES. , ¢ - ,,. 'I' 

(c) We say that G is G-abelian8 (resp. G-abelian in 
the representation TT¢) if P¢TT¢(G)P¢ is abelian \1¢ECG 
(resp. for the particular state ¢ECG). 

For cases where G is a C*-algebra in a Hilbert space 
:K, we introduce the following definitions:- 

(a) ' We say that G is weakly G-asymptotically abelian 
in :Kif lim (11'1 ,[a(g)A,B] 11'2) = O; VA, BEG; 11'1 ,11'2E:K. 

g-oo - 
(b)' We say that a is riG-abelian in :Kif, for all 
o/1 ,o/2E:K and A1 ,A2EG, the function g-(o/1[0.(g)A,B] o/2) 
is continuous; and if the application of the invari­ 
ant mean ric to this function yields zero. 

It folllows from these definitions that, if G is G­ 
asymptotically abelian and a, is a strongly continuous rep­ 
resentation of Gin G, then G is riG-abelian. Further, if 
G is riG-abelian or G-asymptotically abelian, then it is 
necessarily G-abelian (c.f. Ref. 9, Corollary 6.2.10 and 
Prop. 6.2.16). 

The next two theorems generalize classical mean er­ 
godic theory to the case where G is G-abelian, though not 
necessarily abelian. 



ERGODIC THEORY 517 

Theorem 2.5.1 Let G be G-abelian and norm-separable. 
Then g a unique integral representation of CG in EG; i.e. , 
given ¢ECG,3: a unique measure µdi on CG such that 
µ</>(CG\EG) = o and¢ = f o d µr/J(cr). 

G 
Proof c.f. Lanford and Ruelle8 (Theorem 3.1 and Corollary 
3. 2). 

Theorem 2.5.2 Let ¢ECG. Then:- 

(i) If Pl/> is one-dimensional, then ¢EEG. 

(ii) If G is G-abelian in the representation TT¢ 
and if ¢EEG, then Pl/> is one-dimensional. 

( iii) If u.¢, is a strongly-continuous representation 
of G in ¾, then ¢ is weakly clustering 
(i.e. TJG¢((a(·)A)B) = r/J(A)r/J(B), VA, BEG) if and 
only if P¢ is one-dimensional.. 

Proof c.f. Ruelle9 (Theorem 6.3.3 and Proposition 6.3.5). 

Thus it follows from the above theorems that the fol­ 
lowing conditions suffice for the generalization of clas­ 
sical ergodic theory to the non-commutative case:- (a) G is 
G-abelian; (b) G is norm-separable; and (c) U~ is a strong­ 
ly continuous representation of Gin :ic</>. In fact, it will 
be seen in section 3 that, in cases of physical interest, 
where G has a "quasi-local" structure, one may obtain the 
essential content pertinent to physics of the above theo­ 
rems without recourse to the separability a.ssumption. 

2.6 The KMS conditions 

Let (G,S,y(R)) be a I:-system, with ya homomorphism 
of the real line, R, into Aut G. Given ~(ER)> O, we say 
that ¢(ES) satisfies the KMS conditions1O 11 12 correspond­ 
ing to (y(R),13) if, for each pair A, BEG, 3: functions fAB• 
gAB on the complex plane C, such that:- 

(i) fAB(t) = </>((a(t)A)B); gAB(t) </>(B(a(t)A)); 
VA, BEG; tER. 

(ii) fA~ (resp. gAB) is analytic in the strip Imz 
E(-13,O) (resp. (O,13)) and continuous on its 
boundaries. 



518 G. L. SEWELL 

(iii) fAB(z) = gAB(z+i~), VzEC. 

If¢ satisfies these conditions, then11:- (1) ¢ is 
invariant under y1<(R); and (2) O.~ is both cyclical and 
separating with respect to TT¢ (Cl) ', the weak closure of 
TT¢ (Cl). 

Conversely to (2), we have the following theorem, due 
to Tomita. 

Theorem 2. 6. 1 Let ¢ be a state on a C1<-algebra. a, and let 
0.¢ be cyclical and separating with respect to TT¢ (Cl) 11

• 

Then, given~ (ER)> O, ~ a unique homomorphism yr/J: R ~ 
Aut TT¢ (Cl)" such that, if qi denotes the state on TT¢ (Cl) 11 

defined by¢(·) = (0.¢, (·)0.¢,), then qi satisfies the KMS 
conditions with respect to (Y¢(R), ~). 

Proof c.f. Ta.kesaki12, Theorems 13.1 and 13.2. 

3. States of Physical Systems 

3.1 The quasi-local algebra 

Let X be a. locally compact, non-compact space corre­ 
sponding to that occupied by the physical system under 
consideration. We assume that Xis either a finite-dimen­ 
sional Euclidean space or a lattice of points (with dis­ 
crete topology) in such a. space: in either case X corre­ 
sponds to an amenable group. Let L be the set (y} of all 
bounded subsets of X. By a. standard construction (Ref. 9, 
Ch. 7), we assign to each YEL a. C1<-a.lgebra Cly (whose self­ 
adjoint elements correspond to the observables for the 
region Y) such that:- 

(i) Cly is isotonic with respect to Y; 

(ii) Cly commutes* with Cly, if Y and Y' a.re mutu­ 
ally disjoint; and 

(iii) denoting U Cly by GL, ~ a homomorphism a of 
YEL 

X into Aut aL, such that a(x)Gy = GxY. 

:f: In the case of a. system of fermions; one has to define 
Cly as the even subalgebra for the region Yin order to 
obtain this commutativity condition. 
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We define G to be the norm closure of GL' and extend a:(X) 
by continuity from GL to G. In a usual waY,we refer to G 
as the C~<-algebra of quasi-local bounded observables. The 
group a:(X) corresponds to space translations. 

It follows easily from (i)-(iii) and our definitions 
of and a:(X)(E Aut G) that G is X-asymptotically abelian. 

We shall henceforth restrict ourselves to the follow­ 
ing standard cases:- 

Lattice systems (classical or quantal). Here, G is norm­ 
separable, and a; is a strongly continuous representation 
of X in G. 

Quantal continuous systems. The Gy 's are W<-algebras in a 
Fack-Hilbert space 3CF, and a:(X) is unitarily implemented 
in 3CF by a strongly continuous representation UF of X. 

3.2 Locally normal states 

Consider a quantal continuous system (G, S, a:(X)), 
equipped with the above-described quasi-local structure. 
We denote by t. the set of all locally normal states, i.e. 
the states whose restrictions to all the local algebras 
[ GY IYEL} are normal. These are presumably the physically 
significant elements of S, since they correspond to the 
states for which there is zero probability of findiug an 
infinity of particles in a bounded region of spaceu. 
Thus, when considering states of continuous quantal sys­ 
tems, we shall henceforth restrict our analysis to the 
class t.. (In the case of lattice systems, there is no 
need to make such a restriction, since the number of parti­ 
cles (spins) in a bounded region is a fortiori finite.) 

Let us now note the following properties of l-:­ 

(i) If ¢Et., then 3C¢ is separable (Ref. 8, 
Prop. 4.3). 

(ii) If ¢Ecxnt., then the unitary representation 
U¢ of X inauced by a; in 3C¢ is strongly continu­ 
ous: this follows from the strong continuity of 
UF in 3CF and the strong continuity of¢ on the 
unit ball of each local algebra GY (i.e. the 
local normality of¢). 
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3.3 X-ergodicity 

Theorem 3.3.1 With the above definitions and assumptions, 
the set CX has the following properties:- 
(1) In the case of a lattice system, 

(a) a a unique integral representation of Cx in Ex: 
and 

(b) ¢(ECx) is weakly clustering with respect to X if 
and only if ¢EEX. 

(2) In the case of quantal continuous system, 

(a) a a unique integral representation of Ct"ll in 
Exnt; and 
(b) ¢(ECi.i:) is weakly clustering with respect to S 
if and only if ¢EExn.i:. 

Proof Since Cl is X-abelian in all cases, we see that ( 1) 
follows directly from Theorems 2.5.1-2 and our above speci­ 
fications concerning lattice systems (Sec. 3.1): while (2) 
follows from the strong continuity of U¢' together with 
Theorems 2.5.2 and Ref. 8, Theorem 4.3, 

Thus, in case of physical interest, there is a unique 
decomposition of any element¢, of Ci, into X-ergodic com­ 
ponents; and there is an identification of Ex with the 
weakly clustering elements of X. Further, we note that 
weak spatial clustering is arguably a property of a pure 
X-invariant thermodynamical phase (c.f. Ref. 9, Ch. 6.5), 
and thus the X-ergodic decomposition law, given by Theorem 
3.3.1, has a physical significance: the characterization 
of pure thermodynamical phases will be further discussed 
in Secs. 4.6 and 4.7. 

4. Formulation of Statistical Mechanics 

4.1 The ~-systems an 

We shall now outline a procedure for the formulation 
of equilibrium states and of dynamics of an 'infinite' 
system, as limits of the corresponding quantities for 
finite systems. For this purpose, we introduce an in­ 
creasing sequence L'= (yn} of elements of the above- de­ 
scribed set L, such that HYn = X. Corresponding to each 
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YnEL', we employ the standard methods of fiiire-yolum~ $ta­ 
tisticat rechanics to construct a triple (G n ,Sn) ,ytn) (R)), 
where G n = Gyn is the algebra of observables of a 
system of the particles concerned, confi~ed to tbe)region 
Yn; s(n) is the set of all states on G nJ; and y(n is a 
homomorphism of R into Aut a(n), corresponding to tiie) 
ti;apslations of the system. Thus the triple (a(n),s n, 
yln) (R)) is a ~-system, which we denote by crn. Likewise, 
by standard methods, we c~nftruct the Gibbs (canonical or 
grand canonical) state ¢fl n on a(n) corresponding to the 
inverse temperature S(>O). 

Note In the quantum-mechanical case10( ¢s.(n) satisfies 
the KMS conditions corresponding to (y n)(R), ~bJ Also, 
in the case of a c;o~tinuous quantal system, ¢s is a 
normal state on atnJ. 

4.2 Gibbs states on G. 

Let AEGL. Then it follows from the constructions of 
Secs. 3 1 4.1 that, for n sufficiently large, AEG(n) and 
thus ¢s{n1(A) is well-defined. We now introduce the fol­ 
lowing standard postulate (c.f. Ref. 10):- 

(I) !£ID ¢S (n)(A) exists, VAEGL. 

Since GL is norm-dense in G, it follows from (I) that there 
exists a state ¢Son G. that is uniquely defined by the pre­ 
scription: - 

We term ¢
13 

the Gibbs state of the "infinite" system, whose 
observables are G. 

4.3 Time-translations: the HHW scheme 

The Haag-Hugenholtz-Winnink10 treatment of infinite­ 
volume statistical mechanics was based on (I), together 
with the following postulate concerning time-translations:- 
(II) Given AEGL and tER, y(n)(t)A converges normwise in 
the limit n➔00• As a consequence of this postulate, one 
obtains the result that there exists a homomorphism y of R 
into Aut G, uniquely defined by the prescription:- 
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y(t)A = norm-A!m y(n)(t)A, VAEuL' tER. 

Thus, in this scheme, time-translations of the infinite 
system are taken to correspond to the group y(R) of auto­ 
morphisms of a. 

On the basis of assumptions (I) and (II), HHW obtained 
the powerful result that, in the quantum-mechanical cases, 
¢s satisfies the KMS conditions with respect to (y(R), S). 

4.4 Critique of the HHW scheme 

The HHW postulates (I) and (II) are known to be valid 
for free fermions and also for a wide class of lattice 
systemsl4. On the other hand, as shown by Dubin and my­ 
self (Appendices of Ref. 1), postulate (II) (though not 
(I)) fails in the cases of the BCS model and the ideal 
Bose gas. For this reason, we proposed the following 
scheme, based on weaker axioms than those of HHW. 

4.5 The DS schemel 

This scheme is based on the following two postulates, 
which are shown to be weaker (as a pair) than (I) and (II). 

(I) 1 Given k (EZ+) <00; Ai , •.• ,AkEuL; and ti, ••. , tkER, 
A!m ¢s(n)((Y(n)(t1)Ai), .. (y(n)(tk)Ak))exists. 

(II)' Given k, l(EZ+); Ai, ... ,Ak+tEuL; and ti, ... ,tk+tER, 
~!m A!m ¢s (n)((y(n)(ti)Ai), .. (y(n (tk)Ak) X 

(m) (m) 
(Y (tk+1)Ak+1) ... (y (tk+l)Ak+l)) exists, and is equal 

. (aj (aj (aj 
to Alm ¢s ((y (ti)A1), .. (y (tk+l)Ak+l)), 

These assumptions were shown to be valid for all the cases 
considered, including the BCS model and the ideal Bose gas. 
From a physical standpoint, they may be considered to have 
the advantage of expressing properties of correlation 
functions, rather than of abstract algebraic entities. 

The principle results of the DS scheme are as follows: 
(1) Trivially, the HHW postulate (I) is satisfied; and 
therefore (Ref. 15, Prop. 1) the resultant Gibbs state ¢S 
is locally normal. We shall denote by (KS' ns, Os) the 
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GNS triple induced by ¢13. Also, we shall denote by ;p13 the 
state on n

13
(G)" defined by:- i$13(·) = (0

13
, (·)013). 

(2) 3 a unique homomorphism v
13 

of R into Aut n
13
(G)", such 

that 

A!m ¢~n)((Y(n)(t1)A1) ... (y(n)(tk)Ak))=/p13(n~1 (A1) .•. n~k(Ak)), 

VA1, ... ,AkEGL; ti,••·• tkER; k< 00
, 

where n~(A) = v
13
(t)n

13
(A). 

(3) ;p
13 

satisfies the KMS conditions with respect to 
(v

13
(R) ,13). 

We interpret these results as signifying that, in the 
island J (¢

13
), time-translations correspond to the auto­ 

morphisms Ys(R) of n13(G)", though not necessarily to auto­ 
morphisms of G itself. With this interpretation of y 13 (R) , we see that the results (1)-(3) constitute a recovery of 
the essential conclusions of HHW regarding the island ..9(¢13). 

The automorphisms v13(R) are, in fact, precisely the 
Tomita automorphisms described in Theorem 2.6.1. 

4.6 Structure of J(¢s) 

Let us now investigate the structure of the island 
..9(¢13) on the basis of the DS scheme, supplemented by the 
postulate that ¢6ECX. This last hypothesis is valid, for 
example, if xEX,¢s is is unchanged if L' is replaced by 
xL' (=(xY \y EL'}) in the construction of Sec. 4.2. In 
fact, it ltlay~e verified that ¢13 is invariant under these 
translations of L' in all the tractable models mentioned 
in Sec. 4.4. 

Thus, we examine the structure of ..9(¢
13
) on the basis 

of the following "axioms":- 

(1) ¢13Ec • 
(2) In t~e case of continuous systems, ¢13El. 
(3) 3 a homomorphism y ~ of R into Aut TT i3 (G) 11, such that ;p13 
sati&fies the KMS conditions with respect to (v13(R),i3). 
It follows from this last axiom that ;p

13 
is invariant under 

vg(R) and thus that v13(R) is unitarily implemented in :i-c13 
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by a representation v13 of R, uniquely defined by the re­ 
quirements that 

Further it follows easily from the KMS conditions (specifi­ 
cally from the pa.rt of condition (ii) (§ec. 2.6) pertaining 
to continuity on the boundaries) that v13 is a. strongly con­ 
tinuous representation of R in :ic

13
. 

It follows from the general definition of J(¢) 
(Sec. 2.1) that J(¢13) is in one-to one correspondence with 
the normal states on n13(u) and thus (by continuity) on 
n13(G)". Specifically, each !J,EJ(¢13) corresponds to a. unique 
normal state iii on n13(G)", such that iJ,=ilion13. Thus, the 
automorphisms y 13 (R), of TT 13 (G) ", induce a. representation vt 
of R in J(¢13), given by:- 

v;(t)!J, = y;(t)!J,on13,v tER. 

* Hence, v
13 

corresponds to time-translations in J(¢13). 

Let c13 be the set of states !J,=fon13(EJ(¢13)) such that 
iii satisfies the KMS conditions with respect to (y13(R),i3). 
c13 is thus a convex, w*-compact set. We shall denote its 
extremal elements by E . As a. natural generalization of 
traditional (finite-voiume) statistical mechanics, we regard 
C13 as constituting the set of thermal equilibrium states 
of the system at the inverse temperature 13. Thus> as has 
been cogently argued by Emch, Knops and Verboven10, 17, 
it is natural to interpret Es as the set of states corre­ 
sponding to pure thermodynamical phases at that inverse 
temperature. 

We define c8R(~c13) to be the set of elements of J(¢s) 
that are stable under vt(R); and we denote by EsR the set 
of extrema.ls of CSR' 

Theorem 4.6.1 Let g
13
=(!J, \iJ,EJ(¢

13
);iJ, < A¢13 for some AER+}, 

Then:- 
(i) g13 is uniformly dense in J(¢

13
); and 

(ii) :3: a unique map f:g
13 

_, :ic13 such that 

(y*(t)!J,)(A) = (f(!J,), V13(t)n13(A)013),VAEG, tER, !J,Egs· 
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Proof Since is satisfies the KMS conditions with respect 
to (Ys(R), S), the required result follows easily from 
Ref. 18 (Prop. 2 and Ex. 5). 

Theorem 4.6.2 Let P be a central projector for ns(G)", and 
let Xp be the element of J(¢6) defined by Xp(') = (ffis, 
TT S ( ') POS) / \ IPns I I 2, Then J (Xp) is stable under Ys(R). 

Proof It follows from our definitions that J(Xp) is the 
subset of J(¢s) constituted by states WpoPTTs, where Wp is 
a normal state on ns(G)". Further, since ~S satisfies the 
KMS conditions with respect to (Ys(R),S), it follows that 
Pis stable under yS(R)(c.f. Ref. 19, Corollary 2.5). Con­ 
sequently, J(xp) is stable under Ys(R). 

Theorem 4.6.3 (i) There is a unique integral representa­ 
tion of CS in ES; and further, the decomposition Cs-+Es is 
precisely the central decomposition of C~ into factors. 
(ii) If nS(G)" is T]R-abelian (w.r.t. Ys(R)) in the space 
:KS' then ES coincides with ESR' 
(iii) If wEcXncS, then the measureµ~ on Ex, induced by 
its X-ergodic decomposition, has support in ExncS. Thus, 
the KMS decomposition is finer than or coinciaent with the 
X-ergodic one. 

Proof In view of our axioms (1)-(3) and subsequent defini­ 
tions:- 
(i) follows from Ref. 12 (Theorem 15.4 and subsequent re­ 
mark), together with Ref. 16, Theorem 1.2 and the fact that 
¢~El implies that J(¢s)E£ (c.f. Ref. 20, Lemma 3.3). 
(ii) is proved in the first sentence of the proof of Theo­ 
rem 3.6 in Ref. 21 (independently of the norm-separability 
assumption for G); and 
(iii) follows from (i), together with Ref. 22 (Theorem 
3.2.1 and subsequent remark). 

Corollary The Gibbs state ¢S must satisfy one of the fol­ 
lowing mutually exclusive properties:- 
(i) ¢s€Rs 
(ii) ¢S¢EX' and the X-ergodic decomposition of ¢S coincides 
with its KMS decomposition 
(iii) ¢s¢Es, and the KMS decomposition of ¢s is a refine­ 
ment of its X-ergodic decomposition. 



526 G. L. SEWELL 

4.7 Symmetry breakdown 

Let $Ec6ncx, and let µ$(resp vo/) be the (unique) meas­ 
ure on EX (resp Es) associated with its X-ergodic (resp 
KMS) decomposition. Let r be a homomorphism of a group H 
into Aut a, let~ be the set of states in J(¢s) that are 
stable under r>'<(HY and let KH = J (¢6) \KH' Then we say 
that$ undergoes an H-symmetry breakdown associated with 
its X-ergodic (resp. KMS) decomposition if $E~ but µ$(K8) 
(resp vw(~)) f 0. 

Thus, accepting that E corresponds to the set of pure 
thermodynamical phases at tte inverse temperature S, it 
follows from the Corollary to Theorems 4.6.3 that:- 

(a) if alternative (i) is valid, then ¢8 is a pure 
phase and undergoes no symmetry breakdown; 

(b) if alternative (ii) is valid, then ¢6 is a mixture 
of X-invariant pure phases, and may undergo a symmetry 
breakdown associated with its X-ergodic decomposition; 

(c) if alternative (iii) is valid, then ¢8 undergoes 
an X-i~etry breakdown (as in the crystalline 
state ), and possibly other breakdowns also, associ­ 
ated with its KMS decomposition into pure phases. 

The theory of symmetry breakdown in phase transitions 
will be treated in section 6. 

5. Temporal ergodicity and the approach to equilibrium 

Assuming the axioms and definitions of section 4.7, 
we obtain the following theorem concerning dynamics of 
states in J(¢s). 

Theorem 5 (i) ~ a map F: J(¢6)~c6R such that 
T 

~R(y:(·)$) = w*-f~~ ½ J y;(t)$dt = F($), V$EJ(¢S) 
0 

(ii) If rr S (G) 11 is weakly assymptotically abelian with 
respect to v

6
(R) in~. then 

w*-lim y;(t)W = F($), V$EJ(¢
6
). 

t~O) 
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( iii) If TT 13 (Cl) 
11 is 17R-abelian with respect to y 13 (R) in :K:13 

then F(J(¢13))cc13. 
(iv) If ¢13EE13 and if TT 13 (Cl) 

11 is 17R-abelian in :K:13, then 
F(J(¢13)} = (¢13}. 

Proof (i) Let P13be the PEOjector for the subspace of :K:13 that is invariant under v8(R). By applying von Neumann's 
mean ergodic theorem 4.6.1 (ii), we see that 

f~~ ½ JTdt(yt(t)ljl)(A) = (f(ljl), P13TT13(A)013), VAECl, lj1Egj3 
0 

The required result follows easily from this formula, to­ 
gether with Theorem 4.6.1 (i) 
(ii) By theorem 4.6.3(i), ~ belongs to the wi<-convex hull 
of the factor states on TT13(~)

11
, Hence, if TT13(Cl)11 is weak­ 

ly asymptotically abelian with respect to v13 (R) in :K13, it 
follows from an easy adaptation of Ref. 20, Lemma 3.2* 
that 

T 
(w, '.Ks)-£~~ V13(t) = P13 = (w,'.IC13)-t~~ J dt V13(t) 

0 

Hence, by (i) and Theorem 4.6.3 (ii) 

w*-lim y*s<tH 
t-"' 

The required result follows from this equation, together 
with Theorem 4.6.1 (i). 
(iii) follows from Theorem 4.6.3 (ii) and the fact that 
F : J(¢13)-Ci3R(by (i)). 
(iv) Assuming that ¢13EE13 and that TTs(Cl)11 is 17R-abelian in 
:K:13, it follows from Theorem 4.6,1 (ii) that ¢~EEl3E. and 
hence, from Theorem 2.5.2, that Ps is the proJection for 
08. Thus, since F(ljl) (A) = (f(ljl), TTl3 (A)Os), V ljlESS, as 
shown in ·the proof of (i), it follows easily that 
F(ljl) = ¢13, Vlj1Eg13. Thus, in view of Theorem 4.6.1 (i), the 
required result follows by continuity. 
:I= That lemma, in its original form, referred to space 
translations. However, it carries through equally well 
for time-translations when the above weak asymptotic 
abe lian condition is fulfilled. 
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Connnent It follows from this theorem that, if TT 13 (G)" is 
weakly asymptotically abelian with respect to yl3 (R) in :K:8, 
then the time-translate vt(tH tends (w'~) to an equilibrl­ 
um state F(ljr) as .t-+00, 
Further, in the case where¢ is a pure phase, all states 
in J(¢8) evolve asymptoticalli.y to ¢13. On the other hand, 
it follows from Theorem 4.6 2-3 that any state$ in the 
sector J(Xp) will tend to an equilibrium state in the same 
sector, i.e. F(J(xp))CJ(xp)nc~. Thus a system whose ini­ 
tial state lies in a sector J(xp), for which Xp lacks cer­ 
tain of the synnnetries of ¢13, will in general evolve asymp­ 
totically to an equilibrium state that also lacks those 
synnnetries. From a physical standpoint, this is a satis­ 
factory result: for one would anticipate, for example, 
that a ferromagnet which was initially disturbed from a po­ 
larized equilibrium state, would eventually relax back in­ 
to such a state. 

As regards the condition that rr13(G)" be weakly asymp­ 
totically abelian with respect to Yl3(R) in :K:13, one knows 
that this condition is fulfilled in certain tractable dy­ 
namical models, e.g. the ideal Fermi gas, the ideal Bose 
gas, certain Fermion lattice models23 and the XY model24. 
Thus, the condition is at least compatible with the general 
principles of statistical mechanics. 

In short, the use of the DS conditions in the alge­ 
braic formalism leads to a satisfactory framework for the 
theory of the approach to equilibrium within the island 
J(¢13), subject to the above realizable conditions. More­ 
over, a similar theory could not be obtained within the 
framework of the traditional finite-volume quantum statis­ 
tical mechanics: for there the discrete spectrum of the 
Hamiltonian renders all time-dependent expectation values 
of observables quasi-periodic int; and further the possi­ 
bility of super-selection rules between different sectors 
such as J(xp) is precluded by the uniqueness of the Hilbert 
space representation of the observables. 

However, despite the advantages gained by the alge­ 
braic theory I still think that the present formulation of 
the theory of the approach to equilibrium lacks at least 
one essential ingredient which may loosely be termed 
"friction". By that I mean that the above-mentioned trac­ 
table models, which satisfy the asymptotic-abelian 
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condition, exhibit an approach to equilibrium which corre­ 
sponds to nothing more than the spreading of a wave-packet 
for a free particle or free field. On the other hand, the 
mechanism of the approach to equilibrium of real systems 
is presumably governed by some "friction" process which 
operates locally, and which acts prior to the eventual 
dispersion of local disturbances (c.f. frictional term in 
the Navier-Stokes equation). For this reason, I think 
that the asymptotic abelian condition should be supple­ 
mented by some requirement of "local mixing" (corresponding 
to friction) in order to describe the approach to equilib­ 
rium in a more realistic way. 

6. Phase transitions 

6.1 General considerations 

In general, phase transitions a.re characterized by:­ 

(a.) a singularity or discontinuity in a. thermodynami­ 
cal function (e.g. the specific heat) a.ta certain 
temperature !3 c -i ; 

(b) a spontaneous symmetry change (breakdown) on 
passing through the same temperature; and, in the 
case of transitions of the second kind; 

(c)25 a. divergence of an otherwise finite correlation 
length, appropriately defined, as !'l➔l'lc±O; in cases 
where !.!ID ¢13((a.(x)A)B) exists (= F!B, say), one may 
define this length a.s 

sup {rlrER;lim [¢Q((a.(x)A)B)-F!BJe\x\/r'=o, Vr < r'}. 
A,BEG x➔ ., ., 

The theory of the characterization (Q) has been 
treated systematically within the framework of traditional 
statistical mechanics (c.f. Ref. 26). In this treatment 
one formulates the properties of an intensive thermodynami­ 
cal potential fv(!'l) (via a calculation of the partition 
function) for a system occupying volume V; and then one 
proceeds to the thermodynamical limit (V➔"') and examines 
whether the resultant function f00(!'l) has any singularities 
or discontinuities. This approach can, in principal, lead 
to the characterization (a); and, indeed, it is known to 
do so in the cases of certain exactly soluble models, e.g. 
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the BCS model, the Bose gas and the two-dimensional Ising 
model. 

On the other hand, it is difficult to see how the 
traditional approach can lead to a rigorous treatment of 
spontaneous symmetry breakdown, as distinct from a break­ 
down induced by the application of some (usually ficti­ 
tious) external field. In fact, it seems evident that the 
algebraic formalism provides one with the most natural 
means of approach to the characterizations (b) and (c). 
For this formalism is explicitly concerned with the proper­ 
ties of the symmetries and the correlations of the pure 
phase components of the Gibbs states (cf. Section 4.7.). 

Actually, the algebraic formalism has been success­ 
fully employed to yield a theory of the cha.ra.cteriza.t~~n 
(b) for the BCS mode127,28 and for the ideal Bose gas . 
In both these models the Gibbs state corresponds to a pure 
phase for tl < tlc, but undergoes a gauge-symmetry breakdown 
for tl > tlc (here tlc is the thermodynamical transition tem­ 
perature). 

However, it is easily verified that neither the BCS 
model nor the ideal Bose gas posses the property (c). The 
BCS model lacks this property because it corresponds to a 
classical "mean field" theory, and consequently its corre­ 
lation functions ¢((a.(x)A)B) factorize in a way that pre­ 
cludes the possibility of (c). On the other hand, the 
Bose gas has the pathology that its correlation length -t 
is infinite for all tl > tl , and thus the critical point is 
not identified as the uni~ue temperature where -t diverges. 

In a recent work2, which I shall outline below (Sec­ 
tions 6.2-5) Maria Marinaro and I have formulated an alge­ 
braic treatment of a rather wide class of (non-mean-field 
theoretic) Ising models, including the exactly soluble two­ 
dimensional one, with the view to obtaining a theory of (b) 
and (c). In the two-dimensional case we prove that the 
model does exhibit the characteristics (b) and (c); thus 
we supplement Onsa.ger's30 result that it exhibits the prop­ 
erty (a). In the more general case, we expressed space­ 
correlation functions in terms of a certain semi-group, I:, 
of contractions of a certain Hilbert space, and obtained 
conditions on I: that sufficed to ensure that the system 
had the properties (b), (c): these conditions a.re fulfilled 
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in the two-dimensional case. In the more general case, 
this formulation might be useful for the purpose of con­ 
structing an axiomatic approach to the theory of phase 
transitions. 

6.2 Ising Models2: the algebras. 

Let X, the set of sites for the spins, be of the form 
T x Z, where Tis a countably infinite point set and Z is 
the set of integers. Thus, in the case where T = zd, 
where dis a positive integer, X corresponds to a rectangu­ 
lar lattice of dimension (d+l). 

We denote points in T, Z, X by t, n, x = (t,n). 
Translations along the Z-component of X correspond to the 
group g = (un\nEZ}, where 

un(t,n') = (t,n+n'), VtET; n,n'EZ. 

Let er= (-1,1}, with discrete topology. We define K 
to be the topological power erX, K is thus a compact space 
(by Tychonoff's theorem). Points in K will be denoted by 
erX. The projection of erx corresponding to x(EX) will be 
denoted by er . Thus ox may be interpreted as the spin at 
x; and K the~ corresponds to the space of spin configura­ 
tions in X. The group g induces a group G = (un\nEZ} of 
K:- 

(~oX)x =an , VxEX, nEZ, 
U X 

Let C(K) be the C*-algebra of bounded, continuous, 
complex-valued functions on K, with supremum norm. We 
take C(K) to be the algebra of observables, a, for the sys­ 
tem. We define the homomorphism n, of Z into Aut a, corre­ 
sponding to translations along the Z-component of X, by 

-n 
(n(n)A) (ox) = A(U c:rx)' VnEZ, AEG, 

where U was defined above. 

Corresponding to each finite point subset, Y, of X 
we define Cly to be subalgebra of a consisting of functions 
A on K, such that the value of A(erx) is independent of 
(erxlxEX/Y}. By the Stone-Weierstrass theorem, the union 
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aL, of such algebras is dense in a. Thus, a has the quasi­ 
local structure described in Section 3 .1. 

For each finite point subset Y of X we define Py(EGy) 
by:- 

Py(C7X) = JhC7x, 

Thus one easily proves that Gy is the vector space of 
linear combinations of {Py, \y'cy}, Hence, defining a to 
be the set of all Py's, for finite point subse!s Y of X, 
it follows easily from our constructions that a is a linear 
basis for a; i.e. a corresponds to the norm closure of the 
set of finite linear combinations of elements of a. We de­ 
fine ~o to be the subset of G consisting of elements Py 
for which Y consists of an odd number of points. 

We now introduce an auxiliary (non-commutative) alge­ 
bra, a, of Pauli spins over T. Thus, we assign to each 
tET a two-dimensional Hilbert space :Kt. Corresponding to 
each finite point subset M of T, we define :KM= tt~ :Kt. 
Thus :K.,.,..,"", = X., ® ~• if Mn M' = ~- We then define aM 
to be t'ti.e C~<-a'.t'gebra of bounded operators in :KM> with 
uniform norm. We identify B(E6M? with B ® IM'\M(E6M,) for 
Mc M'. Thus aM is isotonic with respect to M; and the 
union, over all finite point subsets M(ET) of the aM's is 
a normed *-algebra. We define a to be the norm closure of 
this union. 

6.3 The Interactions. 

As usual the Gibbs states on a are constructed as 
limits of 'finite-volume' Gibbs states, which in turn are 
specified by finite-volume Hamiltonians. In the present 
case, we define these as follows. 

Let ll\ (resp. h) be a system of finite point subsets 
of T (resp. Z) whose union covers T (resp. Z). We shall 
always take the elements N of h to be of the form 
[n1 ,n2](={n\nEZ,n1~n~n2}). 

In the two-dimensional case, where T = Z, we take the 
elements, M, of ll\ to be of the same form. 
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We assign to the region M x N (with ME~, NEh) a 
Hamiltonian H,.,,._ rEQM N° In the two-dimensional case, this 
will take the~rorm X 

~(crX) = -JnfN mfM(0m,n°m,n+i"·I-O'm,n°m+l,n)' 

where J>O; and where, for M = [m1 ,m2] and N = [n1 ,n2], we 
identify ma+l with m1, and n2+1 with n1 in the above sum­ 
mation (cyclical bounded conditions). 

In the more general case, take 

~= I: 
nEN 

f + L'. g 
M,n nEN M,n,n+l 

where 

gM n n+L (crx) = -J I: 0 0 
, , tEM t,n t,n+l 

and where fM,nEQMx(n}' Further restrictions are imposed 
on fM n to ensure that it corresponds to a potential energy 
in a 7'hyperplane II Mx( n} , in which each spin is coupled to 
only a finite number of other spins. 

6.4 Gibbs States. 

We define the finite volume Gibbs state¢~ on GM x N 
by:- 

where 

EMN(A) = r. A(ax)exp(-~~(ax)), VAEGM X N 
[o lxEM x N} 

X 

We prove that for any AEGL, ki.m Mm ¢~(A) exists, and 

thus defines a Gibbs state ¢son a, as in section 4.2. 
Further, this state is invariant under the group a*(Z), 
induced in the state space of a by the group a(Z), defined 
in section 6.2. 
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6.5 Properties of ¢9• 

Using an extension of Onsager's transfer matrix for­ 
malism, we prove the following properties for ¢s in terms 
of the basis set a and the auxiliary algebra a, both de­ 
fined in section 6.2:- 

(1) The state ¢9 induc~s a map 06:a ... a and a state *son a 
such that ¢6=w6009 on G, Further the properties of w9, 06 are completely determined by the infinite-volume limiting 
properties (appropriately defined) of the Onsager transfer 
matrix (for transfer along the Z-component of X). 
(2) Let (~9,TT9,w9) be the GNS triple corresponding to w9. 
Then~ a quadruple (X9,~9,~t,vs) sucg that:- 
(i) x9 (:lw9) is a closed subspace of x9 
(ii~ s9(=nSo99),s; are maps of G into x9, such that 
s9(G)(;st(~)) is a linear basis set for x9. 
(iii) v9 is a positive self-adjoint contraction in x9 and 
vsws=ws. 
(iv) ¢s(A) = (w91s9(A)) = (st(A),w9), VAEG 
(v) Given A, A'EG, ~n0 = n0(A' ,A). 

* n-n0 _ 
¢9(A'a(n)A) = (s9(A'),v9 s9(A)), VA,A'EG, n>nO 

Thus the structure of the state are determined by the 
quadruple (X9,s9,st,v9), which in turn is determined by 
certain limiting properties of the finite-volume transfer 
matrices. In particular, space-translations in the Z+ 
(and likewise\the Z) direction corresponds to the one­ 
parameter semi-group [vF\nEZ+} of positive self-adjoint 
contractions of X . The formulation of correlations in 
terms of such con~ractions has obvious advantages for pur­ 
pose of obtaining the asymptotic (e.g. the cluster) proper­ 
ties of such functions. 

For the case of the two-dimensional model, in the 
absence of any external field, we utilize the properties 
of the finite volume transfer matrix, as obtained by 
Schultz, Mattis and Lieb31; and thereby obtain the follow­ 
ing results:- 
(!) For S/S , there is a gap A(S) between the principal eigen­ 
value (unity) of v6 and the rest of its spectrum. This 
gap ... 0 as S ... Sc±O. 
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(II) For 13<13 , the subspace of X that is invariant under 
v13 consists gf the scalar multipies of w

13
. 

(III) For 13>13 , the principal eigenvalue (unity) of v13 be­ 
comes degenerite. Further, the principle eigenprojector 
of ~l3 is no~ orthogona~ to the subspace of x13 generated by 
s13(u0)(=st(u0)), with u0 defined as in section 6.2. 

It is a simple matter to infer the following results 
from (I) - (III):- 
(A) For 13<13c, ¢13 is Z-ergodic (and therefore X-ergodic); 
while, for ~>13 , ¢

13 
undergoes a symmetry breakdown, corre­ 

sponding to spin inversion (a-+-a), associated with its Z­ 
ergodic decomposition 
(B) lim ¢13(Aa.(n)B) exists (=1B, say), 137'13c. Further, de­ 

fining the correlation length t(13) as su~ (r\rER; 
_A 1 , A,B a 

k!ID (¢
13
(Aa.(n)B) - i--1/)en r = O, Vr < r'}, we see that 

t(l3) = [tn(l-L\(13))-1]-1• Thus, t(13) is finite for 137'13c, 
and tends to infinity as 13 ... 13 c±O. 

Thus, the model exhibits the characteristics (b, (c), 
as well as (a). Since (b) and (c) are consequences of 
(I)-(III), it is tempting to propose these latter state­ 
ments as "axioms" not merely for the two-dimensional case 
but for the wider class of models that we consider. We 
have, in fact, formulated a framework for the "scaling 
laws", even in the presence of an external magnetic field, 
on the basis of (I)-(III), together with a supplementary 
assumption concerning the spectral projection for v

13
. 
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Po=±✓p2+m2 

this is not so for m2 < 0. As long as only real energies 
are considered, i.e. as long as 

we are restricted to momenta for which 

-2 2 p 2: -m > 0. 

This spells trouble for locality since it takes an integral 
over all momenta to achieve spatial localization. 

In view of these difficulties we shall base tachyon 
quantization on a manifestly cov~riant and local expression. 
It has zeen emphasized by Tanaka and especially by 
Schroer that such a starting point is provided by the 
commutator equation 

[A(x), A(y)] ill (x-y, m). 

Inspection of 

1 { 2 2 m _,..,..} l\(x,m) = - 2n e(x0) o(x) - 8(x )~ J1(m~x-) 

shows that there is a well defined continuation to imagi­ 
nary m where 

l\(x,±ilml) = - 2; e(x0){o(x
2
) - 8(x

2
) ~ I1(1ml W)}. 

As an aside it is worth mentioning that any such theory 
will be canonical: for ~(x) = A(x) and n(y) = k A(y) at 
some fixed time x0 = Yo we have Yo 

[~(x), n(y)J = i o3(x-y), 
While it is challenging to speculate about regions of 
strongly attractive pgtgntials as a natural habitat for 
tachyonic excitations - we shall here concentrate on 
quantizations with a ground state invariant under space 
time translations. 
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It turns out that this requirement imposes an indefi­ 
nite metric on the representation space (one example each 
of representations with positive and indefinite metric 
have been constructed by Schroer4). 

The further requirement of rotation invariance rules 
out all irreducible representations. The condition of 
Lorentz invariance, finally, will leave us with a one pa­ 
rameter family of causal, Po Lnc a'r e invariant quantizations. 

2. The Two-Point Function 

We are interested in free field representations which 
are characterized by a translation invariant two point 
function 

Wz(x-y) = (OIA(x) A(y) lo). 

Hence we make the ansatz 

W2 (x) = tz;f Jd3Ic [ eikx P (k) + e -ikx a (Ic)] 

with 
✓1c2 2 if Ic2 2 

0 +m +m > 
kO - w = 

i ✓-1<2 2 i<2 2 
- m if + m < 0. 

We note for comparison that for the tardyon Fock represen­ 
tation we would have 

O' = Fock 
-1 (2w) . 

The first thing to do will be to impose the commutation 
relation 

ill (x-y ,m) 

on our ansatz. By comparing 

with 
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il\(x,m) 

we find that 

1 - a (le) = 2w ('R) + P (k) 

is necessary and sufficient for the commutation relation 
to hold in the space generated by W. This condition shows 
clearly that to obtain the correct focal commutation rela­ 
tions, contributions from all momenta are required. In 
particular we may not simply set 

p=cr=O 

in the region of imaginary energies. 

Having thus eliminated O' from our ansatz we proceed 
similarly to invoke hermiticity 

At(x) = A(x) 

for the field operator. 

For the two-point function this implies 

or in terms of p 

P ;, (k) 

p (le) 2 if w > 0 

..l. + P (-k) 2w if w2 < 0. 

To explore the metric properties of the representation 
space we focus on 

llcp(f) lo >11
2 

and 
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Here 

cp ( f) 

f(l<) 

= f d3x cp(x) f(x) 

[ 1]3/2 f 3 "kx➔-+ - -l. ➔ = 2TT d x e f(x) 

and consequently 

w (l<) = a (l<) + p ( -1<) cpcp 2! + p(k) + P(-K) 

and 

w (K) TTTT 
2r: ➔ ➔J 

w La (k) + p ( -k)J 

w 
2 
[2! + P (k) + P ( - k~ 

Evidently the "norms" 

llcp(f) lo >112 < o I cp < f) cp < f) I o > 
and 

llrr(f) lo >112 = (Oirr(f) rr(f) lo> 

are real (positive, zero) if and only if the kernels wcpcp 
and wrrrr are real (positive, zero) almost everywhere. 

While reality of the kernels, and hence of the norms 
is a consequence of the hermiticity condition imposed on 
p we observe that for w2 < 0 the kernels cannot both be 
positive, i.e. 

All translation invariant representations of the 
tachyon commutation relations are endowed with an indefi­ 
nite metric. 

Actually this is true for the larger class of theories 
which have a ground state invariant under spatial transla­ 
tions and for which the time translations are generated by 
operators U(t) (while not necessarily U(t) lo>= IO>). 
We plan to discuss such representations elsewhere. 

At this point and before restricting our ansatz further 
by requiring rotational or full Poincare invariance of the 
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ground state we pause to give an explicit construction of 
the field algebra. 

3. Field Algebra and Hamilton Operator 

Being mainly interested in the peculiarities brought 
about by w2 < 0 we ~hall consider only the Fock represen­ 
tation as long as w > O, i.e. 

P(k) = 0 for all Jk\ > [m ] , 

One verifies straightforwardly that the ansatz 

ikx e 

+[x(-k) b (k) + x(k) b~(-k)] e-ikx} 

with 

x(k) 
if P ('I<) ,; o 

if P (k) = o 

and 

b±(k) \o >so 

[b±(k), b±(k')] 0 

0 

* [b±(k), b±(k')] 

[ b ± (k) ' b; (k I) J 
0 

gives rise to the correct commutation relation and n-point 
functions. 
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To disentangle the algebra of b± it is useful to 
introduce 

545 

so that 

* * Since furthermore a+ and a+ commute with a , a , the repre- 
sentation space is the direct product of three-Fock spaces 

H = H z ©H ©H 
w >O + - 

where, however, H_ is endowed with an indefinite metric: 

f z"'(k) a±(k) - z(k) a:(k) d
3
k 'f ½f lz(k) 1

2 
d
3
k 

(O I e lo> = e M 

M will be specified below. 

To ensure that the representation thus constructed is 
the one that arises from the generating functional 

iA(f) -½Jf(x) w2(x-y) f(y) dxdy 
<ol e lo>= e 

we have to verify that it is cyclic. 

To this end we note that the field algebra as well as 
the canonical algebra of cp and rr are generated by 

- * - -2 2 a(k), a (k) fork > -m 

and by 

p(k) b+(-k) + p*(-k) b:(k), x(-k) b (k) + x(k) b~(-k) 

for k2 < -m2. 
Hence the field algebra generates states 

a*(k) lo ) and a:(k) \O ) 
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from the vacuum, the latter if k e supp P(-k) ; M. By 
iteration of this procedure one obtains the higher order 
states. 

With this choice of M, then, 

H=H ®H ®H 
w2>o + - 

is the cyclic representation space for the field A(x). 

If there is a set G c R3 of non-zero measure on which 

x(k) = x(-k) = 1 

then any operator 

J - * ~ 3- 
G f(k)(b+(-k) + b+(k)) d k 

will commute with A(x). 

On the other hand, if there is no such G, the operators 
given above as generators of the field algebra specialize 
to 

.... * .... a(k) , a (k) 

and 

b+(-k), b:(-k) or b:(k), b (k) 

depending on whether we z~~O§e -keM .... or keM. From these 
then we can build the a± (k) for keM. Hence: 
The canonical and field algebras are irreducible if and 

.... .... -- .... -2 --2- 
only if p(k)•p(-k) = 0 for almost all~ with k < -m. 

JE. particular, rotation invariant representations with 

p(k) = P(ikl) ~ always reducible. 

We note that 

-1 p(R) = -8(k3)(2w) 

provides an example of an irreducible representation. 
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The Hamiltonian, for which 

0 
i[1<:,A(x)] = - A(x) oxo 

and 

:ic lo > o 
is given by 

1<: = J d3kw(k) a'°'(k) a(k) + J d
3
kw(k) (b:(k) b (k) 

w2>0 M 

* - We recognize the b±(k) as creatign operators for energy 
eigenstates with eigenvalues ±w(k). 

4. Lorentz Invariance 

To obtain a Lorentz invariant two-point function one 
might think of proceeding in analogy with our discussion 
of the tachyon commutator ill (x,m). However 

ill (x,m) 

2 depends on w only and hence 

ik~ sin wx0 e w 

ll(x,ilml) = ll(x,-i\m\). 

On the other hand this is not so for 

2 N _,-,r ~ym-vx-, 
Brr 

m X 

+ 

2 K _r-7 
m l(m'V-x~) 
4rr ✓ 2 m -x 

2 
X > 0 

x2 < 0 
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as one sees quite easily from 

As a result we have two b. - functions from which to con­ 
struct a Lorentz invariant two-point function: The ansatz 

amounts to 

cr (k) = ~w P (k) for w2 < O 

on which we have to impose the restrictions frora the com­ 
mutation relation 

a (k) - p (k) = ~w i.e. a + 13 1 . 

and further from hermiticity 

* ➔ ➔ 1 
p (k) - p(-k) = Zw 

'{( 
i.e. 13 + 13 1 

Hence 

a(k) 1 + ia 
4w P ('k) 1 - ia for w2 < 0 

4w 

and 

a (k) = ~w P (k) 0 2 for w > 0 

with arbitrary real a give rise to a one parameter family 
of Poincare invariant quantizations. (Evidently we are 
dealing with pseudounitary representations of the Poincare 
group.) 

5. Summary 

Tachyon quantizations are obtained by constructing 
representations of the tachyon commutation relations. 
These are causal: field operators at· spacelike separation 
will commute with each other. The construction proceeds 
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from an ansatz for the two-point function; all higher 
truncated Wightman functions are set equal to zero. 

Insistence on a translation invariant ground state 
necessitates an indefinite metric for the representation 
space in the imaginary frequency regime. 

An explicit realization of the algebra in terms of 
creation and annihilation operators shows that e.g. rota­ 
tion invariance of the ground state is sufficient to make 
the canonical algebra reducible. In contrast to reducible 
representations encountered elsewhere, the reducibility is 
not lifted by the action of the Hamiltonian: the space 
time algebra is not larger than the canonical one at a 
fixed time, and the field obeys the appropriate equation 
of motion: 

(ot11h A (x) = o. 
While the explicit construction of the field algebra is 
anything but patently covariant it encompasses a one-para­ 
meter subfamily of Po Lnc ar'e invariant representations. 
Thus consistent causal Poincare invariant quantizations of 
the free tachyon field are obtained in a systematic way. 
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LOCALITY AND COVARIANCE IN QED AND GRAVITATION 

GENERAL PROOF OF GUPTA-BLEULER TYPE FORMULATIONS 

F. Strocchi 
Princeton University 

Princeton, New Jersey 

The aim of the present paper is to discuss the quan­ 
tization of the electromagnetic and gravitational field in 
the framework of Wightman's theory1. The motivation for 
this is to clarify the difficulties arising from the zero 
mass in connection with the gauge group. All the known 
ways of quantizing the e.m. and the gravitational poten­ 
tial have in fact some unpleasant features. For example, 
the local and covariant Gupta-Bleuler formulation2 of QED 
requires an indefinite metric Hilbert s~ace whereas the 
Coulomb or radiation gauge quantization uses non-local 
and non-covariant fields. The natural question is whether 
these difficulties a.rise because one insists on some un­ 
necessary assumptions or there is some _general property 
which makes them unavoidable. The impression one gets 
from the literature is that the difficulties connected 
with the quantization of the electromagnetic potential 
have a rather accidental origin. It seems in fact that 
all the troubles arise because one tries to impose the 
Lorentz condition oµAµ = 0 and to work in a positive met­ 
ric Hilbert space. None of the above conditions are real­ 
ly necessary. Even classically, there is no need for im­ 
posing the Lorentz condition in the Maxwell's equations 

Similar considerations hold for the quantization of the 
gravitational potential with the Hilbert-Lorentz condition 
o If!V + a.a Vlfl = 0 playing essentially the same role as 
t~e Lorentz c~ndition in QED4. The literature on the sub­ 
ject is very rich, but all the formulations are based on 

551 
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some definite choices or assumptions and one might hope 
that different choices may provide better solutions and 
a.void the unpleasant features of the known formulations. 
One should perhaps add that even in the free field case, 
there is a large freedom in the representation of the 
field opera.tors because of the zero mass and one may con­ 
sider representations which are not equivalent to the Fock 
representation. 

The purpose of this pa.per is to provide general 
statements a.bout the quantization of the e.m. and gravi­ 
tational field without assuming the spectral condition, 
the temperedness of the fields, the uniqueness of the 
vacuum state, the Fock representation, the positive defi­ 
niteness of the metric in the Hilbert space and consequent­ 
ly the unitarity of the Poincare representation. Each of 
these assumptions could in fact turn out to be unnecessary. 
We will show under very general assumptions that the char­ 
acteristic features of Gupta-Bleuler formulation like in­ 
definite metric and unphysical states are in fact unescap­ 
able features of any local and/or covariant quantization 
of the electromagnetic potential. Conversely, any quanti­ 
zation avoiding indefinite metric and unphysical states 
like the Coulomb or radiation gauge formulation must be 
based on non-local and non-covariant fields. Similar 
statements are proved for the quantization of the gravi­ 
tational potential. 

1. Basic assumptions 

The basic assumptions which serve as a definition of 
the problem are the following. (We consider the electro­ 
magnetic case first.) 

i) The fields ')i(x), µ = 0,1,2,3, may be defined as 
opera.tor valued distributions (not necessarily tem­ 
pered), for which the Fourier transform may be de­ 
fined. They are supposed to ac5 in a Hilbert space 
:IC equipped withta nondegenera.te sesquilinear her­ 
tean form ri = ri (t denotes the Hilbert space ad­ 
joint.) 
ii) There exists a representation {a}➔u(a) of the 
space time translation group in :IC such that 

U(a)A (f)U(a)-1 = A (f ), fa(x);f(x-a) µ µ a 
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and the operators U are unitary with respect to~ 

ut ~u = ~ 

iii) There is a vector Wo, called the vacuum state, 
in the domain of the fields Aµ(f), invariant under 
U(a). 

U(a) Wo = Wo 

A few connnents on the above assumptions may be useful. 
Assumption (i) is nothing but the statement that ~,(x) can 
be defined as quantum fields. No assumption is ma.cle about 
the type of distribution except for the requirement that 
the Fourier transform exists. For example Aµ(x) could be 
a strictly local field in the sense of Jaffe 6. The in­ 
troduction of the sesquilinea.r form~ is done in order to 
cover the most general use. It might be necessary, in the 
quantization of the electromagnetic potential, to define 
all the physically meaningful quantities such as transi­ 
tion probabilities, vacuum expectation values, etc., in 
terms of a "product" (,) defined by 

where<,> is the natural scalar product in '.IC. Assumptions 
(ii) and (iii) look rather mild and it seems difficult to 
think of a quantum field theory in which they do not hold. 

2. Quantization of Maxwell's equation and Lorentz covari­ 
ance 

The assumptions made up to now apply to a general 
vector field (for example a massive vector field). The 
connection with free quantum electrodynamics is given by 
the Maxwell's equations 

..J.l \I o J:'" = 0 µ 
e ovFpO' = 0 
µvpa (2 .1) 

They have the advantage of not involving unphysical states 
or subsidiary conditions. It is therefore reasonable to 
try to impose eqs. 2.1, and see which of the basic assump­ 
tion of quantum field theory conflict with them. 
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The first property we want to discuss is covariance 
under the Lorentz group. Up to now no assumption was 
made about the transformation properties of Aµ(x) under 
the Lorentz group. (Aµ(x) could be a non-covariant field 
like in the Coulomb or radiation gauge.) We will there­ 
fore try to assume that 

iv) The two point function (Wo,Aµ(x)Av(Y)Wo)=W (x-y) 
transforms covar Lant Ly under the Lorentz group µv 

W (x) =A-la, A-l 13 WN
0
(Ax) 

µV µ V ~~ 

One may then prove the following: 

Statement 1. 7 In any quantum field theory satisfying con­ 
ditions (i), (ii), (iii), (iv) (weak local 
commutativity is not required). 
(a) The Maxwell's equations cannot even hold as weak 

equations on the vacuum state 

o Fµv,,, =O µ v o > 0 (2. 2) 

Otherwise the two point function (Wo,Fµv(x)Fpa(Y)Wo) 
vanishes. 
(b) If the Maxwell's equations are required to hold 

as mean values in Do = { set of vectors obtained 
by applying polynomials in the smeared fields 
Fµv(f) towel 

(~,oµFµv(f)w) = o, v~,$EDO . 

then the metric 17 cannot be positive definite in 
Do , and there is a subspace :IC" c Do of vectors of 
vanishing 17-norm 

and 

o µFµv (f)Do c :IC" 

(c) the metric 17 cannot be semidefinite (17 ~ 0) in :IC; 
i.e., there must be vectors in :IC with negative 
rj -norrn r ($,$) = (17$,$) < 0 
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Proof. 

(a) One considers the two-point function 

(Wo, Aµ(x)FpO'(y)wo) = Fµpcr(x-y) 

Eqs. (2.2) imply 
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(2.3) 

T d ()' 
(OF ) (fHo =[o (o F) -o (o F) Ho-+o E: (o F ) Wo =O µv µ v v µ rµvcr 

p d cr AO'a~ 
((oF)v = o Fpv'(oF) = oAE: Fa~). Therefore 
one has 

where F denotes the Fourier transform of F. 
Hence 

~ - + - - supp F O' c V U V µp 

Now the forward and backward cone are regularly 
separated8 with respect to· their intersection 
(the origin), which is a compact set. Then by 
Malgrange's theorem9 one may write 

(2.4) 

where 

~ C :-:+V supp Fµpcr , 

The Fourier transform of eq. (2.4) gives 

F (x) = F+ (x) + F- (x) µpcr µpcr µpcr 

± and both Fµpcr transform covariantly under the 
Lorentz group, since by assumption iv) so does 
Fµpcr 
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± Because of the support properties Fµpa(x) 
may be regarded as boundary values6 of two ana­ 
lytic functions F (z), r+ being analytic in the µpa 
forward tube~+ ancl F- being analytic in the 
backward tube~- 

± According to assumption iv), Fµpa(z) yield two 
representations of the complex Lorentz group 
4 (C) and by the Araki-HepplO theorem, they may 
be written in the following form 
± . ± ± ± 

Fµpa (z) = ~pzO'F1 (z) + gµO'zpF2 (z) + gpazµFs (z) 

A ± 
+ eµpa;l.. z F4 (z), 

± for ze~ 

± where ~vis the metric tensor and Fi (z) are in- 
variant functions 

± ± 
Fi (z) = Fi (Az), 

By using Iisentially the same argument discussed 
elsewhere and the antisymmetry of Fpa(x) one 
may write F~pa(z) also in the following form 

_± o o ± o ± 
Fµpo(z)= gµo az -~p az' F (z)+eµpo;l.. -A G (z) 

p O oz 

and by going to the boundary value one has 
A 

Fµpo(x) = (gµOop-gµpoo)F + €µpOAO G (2.5) 

where F(x) = F+(x) + F-(x) and G = G+(x) + G-(x) 
are Lorentz invariant distributions. 

Now if one imposes the Maxwell equations, in 
the weak form 

o ~v (fHo=O, µ 
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one obtains the following restrictions for F and 
G 

O = oPF ~<x) = (Dg -a a ) F(x) µp~ µa µ a 

The above differential equations for the Lorentz 
invariant distributions F i~d G have no solution 
apart from the trivial one 

F(x) = const G(x) = const 
Eqs. (2. 8) imply 

(Wo, Fµv(x) Fpa(y) Wo) = 0 

(2. 6) 

(2. 7) 

(2.8) 

(2. 9) 

(b) If Maxwell's equations are required to hold only 
as mean values on Do one gets 

V~, wEDo 

Then by choosing t = oµFpa(f)w. one has 

(t,~) = 0 (2.10) 

Since for w=wo one cannot have 

V test function f 

as discussed at point a), eq. (2.10) proves that 
there are vectors in Do with zero ~-norm and that 

oµFµv (f)Do C :IC" 

(c) This follows from the following remark. A non­ 
degenerate hermitean sesquilinear form~ in a 
Hilbert space :IC cannot have vanishing expectation 
value on a non-zero vector, unless~ is indefi­ 
nite. One has in fact 
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(HH ,HH)=(ljl ,ljl)+\"- \2 (iJi ,iJi)+2Re["- (ljl ,iii)] 

=(ljl,ij,)+2Re[A(ljl,iJi)] (2.11) 

for any vector 1jl, if iJi E :K". The left hand side 
is clearly indefinite ~nless (ljl,iJi) = 0. Now, one 
cannot have 

because Tl is non-degenerate. Thus, eq. (2.11) 
implies that there are vectors in :K with negative 
Tl-norm. 

The content of Statement 1 is slightly 
strengthened by the following 

Corollary 
and Fµ\I (f) 
t denoting 
plies that 

If the metric Tl is semidefinite (Tl~ 0) in Do 
is hermitean with respect to Tl (Fi\l(f)Tl=TlFµ\l(f), 
the Hilbert space adjoint), then eq. (2.2) im­ 
all the Wightman functions of F vanish. µ\I 

Proof. Since, by Statement 1, the two-point function of 
F vanishes µv 

F (f)ljl E :K" µ\I 0 

Now, if iJi E Do and (iJi,iJi) = O, then (ljl,iJi) = 0 l E Do, pro­ 
vided that Tl is non negative in Do. Therefore 

Remark. Statement 1 proves that any quantization of Max­ 
well's equations satisfying conditions i), ii), iii), 
in which the potential Aµ(x) transforms as a four vector, 
must share all the essential features of Gupta-Bleuler 
formulation. These results make use of very general 
properties of quantum field theory and may be regarded as 
a proofl3 that the Gupta-Bleuler formulation is inavoid­ 
able if one wants a covariant theory. 
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3. Quantization of Ma.xell's equations and weak local 
commutativity 

The next property we want to investigate is Weak 
Local Commutativity (WLC), which was not assumed up to 
now. We will discuss the possibility of writing the Max­ 
well's equations in the weak form (2,2), in terms of a 
weakly local field operator Aµ(x). We will not assume 
that Aµ(x) transforms covariantly under the Lorentz group 
but only that 

v) The two-point function F C1(x-y)=($o ,F (x)F (y) µv,p µv p<1 
$0) transforms covariantly under the Lorentz group 

F (x y) = A-ia A-1~ A-iy A-io F 
0 

.(A(x-y)) 
µV,pC1 - µ V P C1 a~,yu 

Moreover we will assume that 

vi) ($0, [Aµ (f), Av(g)Ho) = 0 

whenever the supports of the test functions f and g 
are spacelike to one another. 

The above equation may be empty unless one makes 
some assumption on the class of test functions for 
which Aµ(f) is defined. We will therefore assume 
that Aµ_(x) a.re operator valued distributions for 
which WLC may be defined. For example the strictly 
local fields introduced by Jaffe6 satisfy this condi­ 
tion. 

One may then prove the following 

14 Statement 2. In any quantum field theory satisfying 
conditions i) , ii) , iii) , v) , and vi), 

(a) The Maxwell's equations cannot even hold as weak 
equations on the vacuum state 

0 (2. 2) 

Otherwise the vacuum expectation value 
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(o/o, [Fµv(x), FpC7(y)Ho) 

should vanish 
b) and c) of Statement 1 also hold. 

Proof. 

(a) One considers the following commutator 

(o/o, [Aµ(x), FpC7(y)Ho) = FµpC7(x-y) 

The first step is to show that Fµpe1(x-y) trans­ 
forms covariantly under the Lorentz group, i.e. 

-l(l -ll3 -ly 
FµpC7(x-y) = Aµ AP AC7 Fal3y(A(x-y)) (2.12) 

To this purpose it is convenient to introduce the 
following distribution 

:, (x A) =A Cl A l3 A y F (A 
1 

) F ( ) µpC7 , µ p C7 a;l3y X - µpC7 X 

so that eq. (2.12) is proved by showing that:, µpC7 
vanishes. An immediate consequence of assumption 
iv is that the four dimensional curl of :,µpe1, 
with respect to the indexµ, vanishes. This im­ 
plies that 3µpC7 may be written in the following 
form 

:,µpe1 (x,A) = aµ:,pC7 (x,A) 

~gs~ (2.2) imply that the supp 3 C7 
V'"uv- and therefore by Malgrangeris 
split :,pC7 in the following way 

:,pC7(x) = :,;C7 - :,~C7 

is contained 
theorem one may 

where 

supp ~C7 c V 
:,pC7(x) are therefore boundary v:lues of analytic 
functions ~C7(z), analytic in 3 respectively. 
(3± denote the forward and backward tube). 
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Moreover by condition vi) 

+ - 
J pc/x) = J pc (x) 
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for r < 0 

Then, by a known theorem15, there is an analytic 
function GPO'(z) such that 

GpO'(z) • a-;O'(z) for z E ~+ 

= J- (z) 
PO' for z E ~ 

Furthermore G O'(z) is analytic in a neighborhood 
of Jost's poigts and by Streater's theorem17 
Gpcr (z) can be analytically continued to ~', the 
extended tube. 

We may now show that Gpcr(z) 
purpose we note that 

f 
.. o. To this 

(2. 13) 
p ,0'=0 

since Gpa is antisymmetric in p ,a. Therefore, 
putting 

we have 
3 
\ zp F (z) = 0 (__, p 

0'=0 

in~' (2.14) 

Now~' c~ntain~ the intervals of the form 
( z0=o, z ,!,o, zJ=O, j,l,i} and on those intervals 
eq. (2.14) becomes 

i z Fi(z) 0 (no sum over i!)(2.15) 

i.e. 

(2.16) 
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By analyticity, eqs, (2.16) hold throughout 31 

and by eq. (2.14) one also gets Fo(z)=O through­ 
out 3'. In a similar way one also proves that 
Gpcr(z)=O. 

Having proved that FµRcr(x) transform covari­ 
antly under the Lorentz group one may repeat the 
argument given in Statement 1 and conclude that 
eqs. (2. 2) imply 

Fµpcr (x) = 0 
and 

(2.17) 

This concludes the proof of a); b) and c) follow 
in the same way discussed in Statement 1. It is 
clear from eq. (2.17) that if eqs. (2.2) hold one 
would get a trivial theory and therefore one is 
forced to abandon eqs. (2.2). The conclusion can 
be strengthened if one assumes that the Fourier 
transform of the two-point function (Wo ,F (x) 
F cr(y)Wo) has support in 'vF. Eq. (2.17) ~~plies 
i~ fact Fµv,pcr(p)=O. Therefore, if one writes 

(2.18) 

with 

supp 'r c ~ µo 

one has 

(2.19) 

Now the two-point function 

satisfies the spectral condition 

supp wµv,pcr(p) c v+" 
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and therefore Fµv,pr:, in eq. (2.18) are the Fourier 
transforms W ~Cx-y) and -W (y-x), respec- µv,pv pa,µv 
tively. Then, by eq. (2.19) 

In conclusion, by combining Statement 1 and 2, any 
quantization of the Maxwell's equations using a weakly 
local and/or covariant potential Aµ(x) has all the essen­ 
tial features of the Gupta-Bleuler formulation. In this 
respect, Statement 1 and 2 are a general proof of Gupta­ 
Bleuler formulation. Conversely any theory in which Max­ 
well's equations hold as operator equations must necessar­ 
ily use a non-local and non-covariant potential. Thus a 
result which was known for the Coulomb or radiation gauge 
is shown to hold in general, whenever eqs. (2.2) hold. 

4. Quantization of Einstein's equation: locality and co­ 
variance 

To ,simplify the discussion we will consider the 
Einstein's equations in the weak field approximation in 
vacuo. This does not seem to be a limitation of the argu­ 
ment since one expects that the general theory will admit 
the weak field approximation as a limit 

R (fHo =O µv when T (fHo =O µv 

The assumptions which define the problem in this case are 
the same as those discussed in Section 2 with Aµ(x) re­ 
placed by the gravitation potential hµv(x) and Fµv(x) re­ 
placed by the Einstein's tensor Rµvpr:,(x). One may then 
prove the following. 

Statement 3. In any quantum field theory satisfying condi­ 
tion i) , ii) , iii) , with the gravitational potential 
defined 

either as a covariant operator (assumption iv)) 
EE a weakly local operator (assumptions v), vi)) 

(a) The Einstein's equation cannot even hold in the 
weak form 
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(b) 

Otherwise the two-point function (Wo, Rµvpa(f) 
Ra~y6(g)~o) vanishes. 
If the Einstein's equations are required to hold 
as mean values in Do= (set of vectors which are 
obtained by applying polynomials in the smeared 
fields, R (f) to the vacuum} µvpa 

then the metric~ cannot be positive definite in 
Do, there is a subspace :IC" c Do of vectors of 
zero ~-norm and 

Rµv (f) Do c :IC" 

(c) The metric~ cannot be semidefinite (~2:0) in :ic, 
i.e. there must be vectors* with negative 
~-norm. 

Proof. 

The proof is similar to that of Statement 1 and 2. 
For details we refer the reader to reference (18). 

5. Remarks 

A possible objection to the difficulties encountered 
in a local and/or covariant quantization of the free Max­ 
well's and Einstein's equations may be that: a) one may 
quantize the Maxwell's equations in a local and covariant 
way by using only the fields F v<x), without introducing 
the potential ¾(x) and the in~efinite metric is not neces­ 
sary. b) even if Aµ(x) is introduced, as suggested by the 
second Maxwell's equation (eµvpaovFpa = 0), one may think 
that the interacting case is totally different from the 
free field theory and the above difficulties may disappear. 

There are indications that the above remarks do not 
get into the core of the problem for the following reasons: 
a') One does not know how to formulate a local interacting 
theory (even in the Lagrangian approach) in terms of Fµv 
only. Thus, even if the free field case can be formulated 
in terms of Fµv only, there is little chance that this will 
be possible in the interacting case. Actually, there are 
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strong indications that S-matrix elements must involve~ 
in order to account for bremstrahlung processes. b') If, 
as one reasonably hopes, the interactinf ~heory will allow 
the definition of asymptotic fields, Aµ n/out(x) should be 
free fields and for them Statements 1 and 2 apply. The argu­ 
ments a') and b') can be supplied by a rigorous statement 
To this purpose, let jv(x) denote the electromagnetic cur­ 
rent, associated with the local charge operator so that 

[Jj0 (i,f)fR(x)fd(x0)d3x dXo, cp(g)]=qcp(g) (2.20) 

for R sufficiently large, where J fd(x
0

)dx°= 1 

fR(i)=l for Iii< R, fR(i)=O for lxl >R-t£, fd(x0)=0 

for IXo I > d, and cp(x) is local field carrying charge q. 
Then one may prove the following 19, 

Statement 4. In any quantum field theory in which a 
charged field cp is.defined as a local field in a 
Hilbert space :K equipped with a non-degenerate metric 
~. the Maxwell's equations 

cannot hold as operator equation in :K, Moreover, if 
:K' is a linear manifold c :ic, stable under aV(f) = 
a ~v(f)-jv(f) µ 

a V ( f):!C I C :l( I 

and such that~~ 0 in :K' and 
V 

(ii? ,a (fH) = o Vil?,$ E:K', $ E Dcp(f) 

then~ cannot be positive definite in :K' and/or semi­ 
definite in :K unless 

(i!?,cp(fH) = o Vil?'$ E :KI 

(this means that :K' has zero charge). 

The above statement confirms that in any quantum field 
theory in which charged fields are local, the Hilbert space 
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must be equipped with an indefinite metric Tl, and unphysi­ 
cal fields av(x) must be introduced. (In the Gupta.-Bleuler 
formulation a.V=a voµAµ (x)). Thus any local theory must 
share all the essential features of the Gupta-Bleuler for­ 
mulation. It may be worthwhile to remark that Statement 4 
is proved under very general a.ssuptions and that nowhere 
the existence of a field Aµ(x) has been used. 
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