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FOREWORD

This volume contains material based on lectures given
during the second part of the Colorado Summer Institute for
Theoretical Physics held during July and August, 1971.

The portion of the Institute represented here is de-
voted to mathematical physics, with topics ranging over
statistical mechanics, dissipative systems, composite
particles, algebraic methods and field theory.

Volumes XIV represent the last of the current series
of the Boulder Lectures in Theoretical Physics since neces-
sary support is no longer available. It is hoped that the
Institutes have served a useful purpose by stimulating
young scientists as well as old to work in some of the
fascinating fields which have been covered. The Institutes
have certainly played an important role in physics at the
University of Colorado and at this time I wish to thank all
who have participated over the years.

The Institute was sponsored by the National Science
Foundation.

I wish to thank the lecturers and the participants for
their effort for a lively Institute and to the secretary,
Mrs. Charlotte Walker for her invaluable contribution to
the organization of the Institute. I would also like to
extend my appreciation to Mrs. Walker for the typing of
the manuscript.

Boulder, August 1973

Wesley E. Brittin
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STATISTICAL MECHANICS OF THE XY~MODEL

Eytan Barouch
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Introduction

Spin systems play a major role within the general
framework of statistical mechanics and many body theory,
since they provide us with explicit examples for which a
great deal of exact results are known,

A spin system is specified by a Hamiltonian whose
components are spin-spin interactions, and spin-external
field interactions., Because of mathematical limitations
we restrict ourselves to nearest-neighbor interactions
only,

A famous example of a spin system is the Ising model
(Ising 1925) introduced by Ising who computed its parti-
tion function in one dimension, and Onsager (1944) compu-
ted the partition function for the two dimensional lat-
tice with no magnetic field, The Hamiltonian that Onsager
studied is given by

= 1. \sX X - X 4
Hy = ~31)0% nOadi,m J5)0 e (1,1)

Onsager found an explicit phase transition as a logarith-
mic singularity of the specific heat at a critical temper=-
ature T, # 0, and Yang (1952) computed the spontaneous mag-
netization by a perturbation theory for T < T, with the
famous lT-TCI“8 result,

The Ising model represents a ''classical' system,
since every term in (1.1) commutes with each other. An

1



2 EYTAN BAROUCH

obvious generalization of (1.1) to quantum systems with
nearest neighbor interactions is the generalized Heisen-
berg model (in one dimension)

N

X X vy Z 7
= § F
nyz L {Aojoj 1 + Bojcj 1 + Cojoj 1} . (1.2)

The complexity of Hyy, vs. Hy is very clear since
even the ground state of (1.2) is highly nontrivial.
Particular cases of (1.2) were studied for a long time.
Bethe (1931) found the ground state eigenvector when
A =B = C, and Hulthen found the ground state eigenvalue.
Lieb,Schultz and Mattis (1961) and Katsura (1962) studied
the XY-model for which C = 0, Yang and Yang (1966) stu-
died the cases A = B,

The general case (1.2) was not understood until
very recently. Baxter (1971) computed exactly the ground
state of (1.2) and his complicated results contain all
the other cases as particular limiting cases!

Two~dimensional 'classical'' lattices can be studied
by constructing a "transfer matrix" introduced by Kramers
and Wannier (1941), and the log of its largest eigenvalue
gives the free energy per site, in the thermodynamic
limit. Commutation relations of V with Hamiltonians of
quantum lattices suggest that the mathematical tools de-
veloped for one are very handy for the other.

McCoy and Wu (1967) demonstrated that a linear Hamil-
tonian commutes with V of the general six vertex ferro-
electrics, Sutherland (1970) demonstrated that the trans-
fer matrix of the eight vertex ferroelectrics commutes
with (1.2) for a special choice of A, B, C. Baxter de-
rived the ground state energy of (1.2) using the brilliant
method he developed for the 8-vertex problem.

Another example is the relation of the XY-model
with a transverse field to the Ising model. Suzuki (1971)
shows that the XY-Hamiltonian (Lieb, Schultz and Mattis
1961, Katsura 1962) given by
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TS X X LoselyL g Sl ez
H Z{(l—f-y)ojcj+1 + (1 Y)0j0j+1 hoj} (1.3)
J

commutes with the transfer matrix of the Ising model with
the identification

Ki = Ji/kT = BJi

-2K,

b

1

tanh K¥ = e cosh 2K = Y™, and tanh 2K2=(1-Y2fﬁ7h

(1.4)

We devote these lectures to the physical properties
of (1.3), and because of the commutation relations of Su-
zuki it is natural to expect an extensive use of the
mathematics developed for the Ising model.

There are four major tépics we are going to discuss,
(a) Ground state energy and thermodynamics of (1.3).

It is well known that a one-dimensional system with
finite nearest neighbor interactions does not exhibit a
phase transition at any finite temperature. However, it
is not at all clear, that the ground state energy, and the
thermodynamic functions at T = Q0 are analytic functions
of the coupling constants. We wish to study the effect
of symmetry or lack of symmetry on the analytical proper=~
ties of the macroscopic averages. Some symmetry breaking
points are apparent (v=0), some are not (h=1, h®+y®=1),

The symmetry properties of (1.3) manifest themselves
in the behavior of the correlation functions py,. We
find a long range order in the x direction of the ground
state, namely

508 7 [v?(1-h)21 h <1

lim p = 3 (1.5)
Row XX



4 EYTAN BAROUCH

(b) Dynamical properties of many particle systems
very near thermal equilibrium are most commonly studied
in terms of the time delayed correlations

Pog(Rot) = <Sg(0)Sp(t)> . (1.6)

Neimeijer (1967) was able to compute p,,(R,t)
exactly,and found that all contributions come from two-
particle excitations, with t-1 approach to the infinite
time limit, instead of the commonly believed exponential
approach, This result led Mazur (1969) to develop his
criteria for nonergodicity of a system, and he demonstra-
ted that the system is not ergodic. Later on, McCoy,
Barouch and Abraham (1971) and Johnson and McCoy (1971)
studied the rest of the puv(R,t), and found distinction
between h > 1 or h <1, For h > 1, contributions to
pxx (R,t) come from 1,2,3,... excitations, where for
h < 1, we have only even number of excitations contribu-
ting to the asymptotic series. The only other exact re-
sult known is pxz(R,t), computed by Johnson and McCoy.

(¢) In 1968, McCoy and Wu presented a detailed
analysis of the Ising model with random exchange energies,
They found that the logarithmic singularity of the speci=~
fic heat rounds off, infinitely differentiable but non-
analytic. Smith (1970) introduced these ideas to the
isotropic (y=0) XY model, and was able to study the in-
fluence of these random impurities exactly, using the
pioneering work of Dyson (1953) on a random chain of har-
monic oscillators., He finds that the singularities of
the ground state functions become infinitely differentiable.

(d) Our last topic is non-equilibrium phenomenae,
introduced to the XY-model by Niemeijer (1967). Let h
in (1.3) be given by

a t<0
W(E) = (1.6)

h, (t) t >0
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The system is assumed in thermal equilibrium, and at a
specified time t = 0 we turn on a time dependent field.
The natural question is whether the thermodynamic func-
tions will approach equilibrium, and what is their asymp-
totic behavior for large t. Niemeijer (1967) and Barouch,
M:zCoy and Dresden (1970) studied the z-direction magneti-
zation for a step function h(t) namely h, (t) = b. It was
found that the infinite time limit is a non-equilibrium
limit, If b = 0, the "zero field" magnetization does not
vanish, Furthermore, we find a division into regions in
the long time behavior of m,(t). If h > 1-v?, the long
time behavior of m,(t) is 0(t™*?) with two oscillating
frequencies, independent of v. If h < 1-v®, m,(t) is
0(t™*'® with one frequency dependent on y, On the bound-
ary, m,(t) is O(t™%*),

Our approach is exact solution of the Liouville
equation for the density matrix p(t)

i ft— o(t) = [H(E), o(t) 1. (1.7)

We reduce (1.7) to a second order differential equa-
tion of the form

V() + [A% + () Iv(t) = 0 (1.8)

and express p(t) in terms of the solution of (1.8). Do-
ing so, we find that no matter how slowly h(t) varies
with time, lim my(t) exists, but this is not an equili-
brium 1limitft™® Another expression of the nonergodicity

of the system is total destruction of the long range order
of Pyx.

It was felt, however, that a local spin would ther-
malize, and it was found (Abraham, Barouch, Gallavotti,
and Martin-L&f, 1970) that an internal spin thermalizes
like t'% where a boundary spin (Tjon 1970) thermalizes
like t~~,
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Ground State and Thermodynamics
The XY Hamiltonian was defined last time by
- XoX ey e 7
H z [(1+Y)Sj3j+l + (1 «()sjsj_l_1 th] 2.1
J
In order for H to be uniquely defined we choose cy-
clic boundary condition, namely Sﬁ+1 = 8% where o = x,y,2z,

and N is the number of spins in the chain,

We diagonalize H in four steps, following LSM and
Katsura.

(i) Express S, S7, S” in terms of creation and de-
struction operators, J

+ 1 + z +
S* = ¥(b, + b, sY == (b, - b, s =b.b. - % (2.2
i 5 ( 5 J), bxi ( i J), j 3P ¥. (2.2)

The operators bj satisfy a mixed set of commutation rela-
tions

t T B : .
[bi,bj] = [bi,bj] = [bi,bj] =0 i#3 (2.3)

and the anticommutation relations

bbl1 =1 b2 = @H? -0, 2.4)

(ii) Jordan-Wigner transformation. We express the
operators bj,bg in terms of Fermi operators. Let

-1
p e
c, = exp[mi .Za bjijbL
7 1 (2.5)

i il = ¥ +
c, = b, exp[-ni -Li bjbj]
j=
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It is an easy matter to verify the identities

t o R
bjbj+1 = cjcj+l’ bjbj+1 = cjcj+1 (2.6)
T . 1
bNb1 = -—cpc1 exp(im Z cij)
3
g A A0 A t
bybi = =cyea exp(im Z cjcj)° 2.7
J

Inserting (2.6), (2.7), and (2.2) into (2.1), we obtain
1 t e
. -
H s {jzi [cjcj_‘_.1 + cj+1cj + Y(cjcj+1+cj+lcj)]
o t t T
- 2h jz& (cjcj-%) = [eger +eiey + vleyertercy) IX

v _h
x[1 + exp(im E.Cjcj)]} o (2.8)

The last term in (2.8) is the on}y term that is not
quadratic in the Fermi operators C4sC1s and it comes from
the imposed cyclic boundary conditloné.

LSM observed that in most of the thermodynamics
averages, the last term can be dropped and called the
"modified boundary condition' c-cyclic. This is indeed
correct in the thermodynamic limit N - «  and we will
adopt the c-cyclic condition for most of the discussions.
However, for clarity and completeness we outline here the
treatment of (2.8) (Katsura 1962). This treatment is need-
ed to demonstrate the difficulties that rise in computing
the transverse time~delayed correlations,
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Let
N

= 3[1 + exp(in Zl AR (2.9)
b T30

P
+

The operator P+(P ) is the projection operator for states
with an even (odd5 number of c¢; excitations. The Hamilton-
ian (2.8) then decomposes into

H=HP +HP (2.10)

where we assume N to be even, and Hi are given by

T
=& {Zl ! 50t J+1J+Y(C cynateyacy) -
-2 ) (cfc %) =+ [c c, + cfc + (cfcf+c c.) 13.(2.11)
jz‘l jj Nl 1N YNI 1N . .

The decomposition (2.10) is expected, since H commutes
with the parity operator P, - P_. Therefore, when acting
on a state with even (odd) number of c; excitations, H
may be replaced by H4(H.). Therefore, the c-cyclic condi-
tion means replacing H by H, which is permitted for calcu-
lation of expectation values of even operators, like &'
S¥s¥. g, but not for odd operators like S¥ gsgs and J so
fgr . Those who are interested in utmogt rigour are re-
ferred to Katsura's paper (1962) who gave a very thorough
treatment of this recondite point.

Using the c-cyclic condition we write H as (with the

understanding that N is very large)

t t 0
H=% Zi [(egey4q * veyey +1) - Zheje ] + BN, (2.12)
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(iii) Fourier decomposition

Let
N/2
=% : f (2.13)
. =N exp(ijo )a
J p=- /2 P P
N/2
=X
cj =N 2 z exp(-ijcpp)ap mp = 2mp/N
==N/2

By direct substitution of (2.31) into (2.12) we obtain

N/2
H = 21 H, (2.14)
p=
where
Hp = (cos w -h) (a ap+~aT a_ ) - i y sin wp(apafp+apa p)+ h
(2.15)
Since one obtains
H,H]1=0 2.1
E o q] 5 (2.16)

all Hp can be diagonalized simultaneously.

(iv) Bogoliubov=~Valatin transformation.

To diagonalize Hy-h, we change the phase of a5, a-p
by elm 4, and write 1 near combinations of the form
ein/4a =cos 6 n_ -+ sin 6 nf
P pp P -P
(2.17)
elﬂ/aa =cos 6 M =~ sin 6 n?
-pP P -p PP
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where
Y sin %p =
tan 29p oo .= 0 8 2 (2.18)
P
and the transformation is cannonical since 6, = -6_

P

By direct substitution of (2.17) and (2.18) into (2 14)
we obtain

T
H= ; Meg) (nin, = %) + 3h (2.19)

where n;np is a Fermi number operator, and

AMo) = [¥® sin®e + (cos cp-h)al% (2.20)

We finally obtain the ground state per particle to be

B = dn - gy ), Moy (2.21)

which in the thermodynamic limit N - « becomes

L oanp” gl
E =32h - T I de[v? sin®¢ + (cos @-h)?1%, (2.22)
™o

The ground state (2.22) is definitely not an analytic

function of h, vy for all h, y. For instance let h =

Then

m/2
E =~ % Jo do [1 - (1-v®) sin2¢]% = - %8[(1‘Y2)%]

(2.23)

where €(k) is the complete elliptic integral of the second

kind

(GR 8.112), with a singularity proportional to y®logy

for v ~ 0, (See appendix).
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The function A(y) is the one particle excitation,
and it has a gap that disappears at h = 1, So one might
expect a symmetry breaking point at this value., This
point will be further discussed later on.

We now turn to discuss the thermodynamics of the
system. Since H in (2.19) is expressed in terms of non-
interacting Fermions with 'kinetic energy’ A(y), the free
energy per site is then given by

m
BE(h,v,8) = -+ | 1n({2 cosh [38A(x)} do (2.24)
0

The rest of the thermodynamics is then straight-
forward.
The magnetization in the z-direction is given by
1 g -1
m_ =2= [ do(h - cos v) tanh [38A(s) AT (2.25)
0

the internal energy U is given by

CRpE
U=-8" 3= [ A tanh (3M®)] de  (2.26)
0

the specific heat ¢

i
o = '2-% = (- -zk-; jo Ae) tanh [%8A(0)] do +

T
+82 5 [ M@ 1+ tank®[hen(@) lde]  (2.27)
0

and the susceptibility X, is given by

Z 3h (2.28)
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It is very clear that there is no phase transition
at any finite temperature, since my(h) = 0 when h = 0,

At the ground state [T=0 or g==] we have a different
situation. The interesting functions are my,(h), ¥,(h),
and their singular behavior was studied by Niemeijer.

For vy = 0 the magnetization behavesin a non-analytic
way, namely h>1

%
m, (h) = (2.29)
3 - i arc cosh 0 <h =<1
For v # 0, Niemeijer evaluated the magnetization numeri-

cally, and found a continuous non-analytic behavior of
my(h) at h = 1,

D —
L —>

R R N z[ "~
2 e
//,
‘4
1 |
he he
h—» h —»
Fig.la. M%) as function Fig.lb, Magnetization of the
of h for T = 0 (solid line) ground state as function
and T > 0 (dashed line). of h for v = 0.

(Th, Niemeijer,Physica 36, 377, 1967)

The ground state susceptibility X, exhibits a loga-
rithmic singularity near h = 1. To see that rewrite 2,28
for g = =
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T

L. DA (h - cos ®) do

Xz(h) " dh 2nm j [(h-cos®)® + v® sin®o]
0

m
J do
™ J T (h-cos®)?® + y?sin®gl/?

(h-cos _©)? de -
0 [(h-cos w)? + y®’sin®¢)

5]

3

ul 2 2
Y.gin @ 5 do (2.30)
0 [(h-cos )% + y?’sin®o]

m 8 i
To evaluate ¥x,(h) write J = J + I where 6§ is
0 0 )

small but finite. The susceptibility is given by

x, (1) = 1,(8) + I5(6) (2.31)

where I;(8) is a smooth function of h so we need to study
only I,, for ¢ ~ 6, namely

8
Y?0® dow

2 Y2
0 [Y'¢® + (h-1)2 + ¢?(h-1)] (2.32)

ke
L 2m J

1, (8,h, V) ~%; ¥ op T -eret + pa-1)* T
+ log [6 + (8% + (h-1)p)?] -} log [p(a-1?1} (2.33)
and p is given by p = [y + (h-l)zj-l.

The dominant behavior near h = 1 comes from the last
term of (2.33), so x,(h,y) can be written as

~ 33
X, (0,1~ = 3= V[¥ + 0-1)°]  loglh-1| + £(h)  (2.34)
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where f(h) is bounded and continous in h. Graphically,
xz(h) behaves as

O ki o e e o () i e
S| e s &S

< c

h —» h —»
Fig. 2a. ¥?(h) as function Fig.2b. Susceptibility of
of h for T = 0. che ground state for v =0

as function of h,
(Th, Niemeijer,Physica 36, 377, 1967)
Appendix

Using BMP Vol. 1, (318), and Vol. 2 (110, form 12)
we obtain [0 <k =1 - y?]

e(k) = ¥ oF; (-%,%,1,k) =
T(n+3)T (3+n)
_ -k : ) . o
- 2m HZO n! (nt+1)! (h -log(l~k) I[1-k]
£ T(n+2) T (54n)
i DT E W ) -
S 2 =0 n! (n+l)! th -21g v1y

where hn is given by

h = y(otl) + ¥(0+2) - ¥ty - V(a+d)

and the leading singularity for vy ~ 0 is proportional to



XY-MODEL 15

v? lg v.
R
m_(h, v0) =2~ | _h-cose dp=%ifh =2l
9 |h - cos ol
0 <h=<1:
arcos (h) ™
il 1
m_(h, y=0) = = do + 5— dep
& s JO 2y arcos (h)

= %F arcos(h) + %F {m=- arcos (h) ]

It
[N

]
3 =

arcos(h)

Spin Correlation functions

Spin correlation functions are very important in
lattice statistics, since they contain information about
a possible long range order.

The equilibrium, equal time correlation functions
are defined by

pvv(&,m) = <SXS¥> v = Xx,y,2 (3.1)

LSM write these correlation functions in terms of
the operators bj’ bj as

t t

= - L -

o, (tm) = <(bjb, = B (b - B>

o (4,m) = 3<(b) +b,) (b +b)> (3.2)

xx ? 1 4 m m :
_ t o

Pyy(tm) = B<(by = b)) (b = b)>

Define new operators
— A
Ai =c; + s Bi =c; -y (3.3)
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and observe the identity

P

itc,c,

e ' =AB, =-BA, (3.4)
a1l TS 11

We wish to express p___ in terms of the cT, .
v J )

pxx(L,m) = %<(c1 - CL) [exp(injii c;cj)](c; + cm)>

= 4<(BA, B, g A 1B 1A (3.5a)
pry(tom) = XCD™ T  AB A LB A B> (3.5b)
b, (tm) = %<4,B.A B > (3.5¢)

Fubini and Caianello (1952) show by the use of
Wick's theorem (1950) that expectation values of the type
(3.5) are given in terms of Pfaffians. In particular we
have

Py (m=2) =
WEIS, 111 Sy g Spmer Ceeen v 0 Shg
Sm-2,m-l Gm-2,L+1 L g Gm-2,m
Cu-1, 441 Bu=1, 442 *"Cu-1,m
(3.6)

U1 14 o Uty o

Qm-l,m
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where
SL,m = <B&Bm> = S(m-1)
3.7
QL,m = <ALAm> G i)
G, 5 G(m-4) = <B{Am> (3.8)

An important simplification occurs in (3.6) for the equi-
librium case, namely Sy . = Qg o = 8¢ . Then the Pfaf-
fian is equal to the determinant formed from its non-zero
entries G(m-4).

The three spin-spin correlation functions are given
in terms of G(R) as

CE LD G
G0 G_1 - G_R+1 (3.9a)
Peg = % :
Cpeg GR-Z ° e
¢ %o 64 - C.r+2 (3.9b)
Gy 6y C.R+3
pyy=%
Cg . %1 &
P, = m: - % GG _p | (3.9¢)

It is clear that p,, is the easiest to deal with,
since it involves only simple products of Gg. However,
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and p are much harder to evaluate, since one deals
w1§h 1arg¥ Toeplitz determinants [Barouch and McCoy,
19711,

To evaluate Gg use (2.13) and the translation in-
variance to obtain

= L o + ot
Cr = 7 5 ; ; <exp (7[5 (p+q) +Rq]apaq
e

2y s (o s T S t
+exp(GUli(-pt) +Rq a2, - exp(5~li(p-a) - R)a e

- expI(5 (-p-a) - RqDa a > -

Performing the sum over j and taking N -~ = yield

1
[2]
]
[}
1]

R R
1" tanh[%BA ]

= T h JO de o) [-cosgR (cos ¢-a)+singRsingl=
m q

=) &= %; I (%B)éle T[%BA () 1(~cosgp +a + iy sin o) do
-m

(i kily)
with T(x) = aERX

Asymptotic results of p,, for large R, at the ground
state can be now readily obtained as:

@ v=0
sinfR arccosh !
m; (31n R aﬁ; )2 h <1
pzz(R) = (3.12a)
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() v#0, h=1

o, (B n2 - KR 201+ (R 2 + 0] (3.12b)
(¢) h® =1-v* v +#0
p,, (R) = m: (3.12¢)

(@ v#0 0s<h®<l1-y°

: 2iy 1/3
o (R) ~m? - azRR-zn-lRe{elw(R-H') ['CL:L':%W] }
ZZ z (l_age )

. 2 -2i¢
x Refel¥(®-1) [(1""—e2ﬂ—)-]1/a 3 (3.12d)
(1-e"7 1)

where cos | = h(l-Yg)_% and o = ﬁ <1

() 1-y2<h? <1

o (R) ~m -3 x;ZR R°2 7l + oY) (3.12¢)
(£) h>1
0, (B ~ % - o AER g2 n’l{l + o(R'l)} (3.12£)

and Az is given by

‘e = {h - [h® - (1-v?) I¥P}A1-v).

This correlation function p,, reveals more structure
than expected intuitively. We see the boundary Y°+ h® = 1
in which p,, is R independent. We also see that the ap-
proach to the Limit R - » is exponential everywhere except



20 EYTAN BAROUCH

on the boundaries, where it is algebraic. In particular,
one would like to interpret the h > 1 region as an "easy
axis" region. However, in order to be able to say that,
we need information about vanishing of possible long
range orders at h = 1.

It is interesting to note that for 0 < h® <1 - ¥
the approach of p,, to its limit is oscillatory. This is
also the region for which the equivalence to the Ising
model does not hold. Suzuki (1971) calls it the ''quantum
region"”, and the outside of the unit circle h® + y? =1
the ''classical region', with this circle acting like a
natural boundary.

The asymptotic expansions for finite temperature can
be obtained in the same fashion, and are given in Barouch
and McCoy (1971), eq. (6.1)-(6.11).

We turn our attention to the transverse correlations
pyy(R), pxx(R) at the ground state B = ®, We make an ex-
tensive use of Sz&go's theorem about the asymptotic pro-
perties of Toeplitz determinants, and refer the reader to
the paper by Hartwig and Fisher (1969) for a detailed ex-
position of this topic, motivated by the analysis present-
ed by T. T, Wu (1966).

Sz¥c0's theorem: Let Cg be the R X R Toeplitz
determinant

¢ e el e
B Sy C_r+2

cp =| : : ; (3.13)
Coel s v sle 6,

where <, is given by

™ ; .
€, = g; J e 11® c(e1q5 do (3.14)
-
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1f

() [l wea

n=-©

©

)y ) Ialle | <=

==

(iii) c(e1¢5 # 0 on the unit circle

(iv) 1n c(elqb is a periodic function of o
with a period 2m (winding index zero), Then the asymptotic
value of CR is given by

ol koR °°‘
CR : e exp( ni nknk-n) (3.15)
where kn are given by

ln c(eiq5 = kneimp (3.16)

n=s=o

Conditions (iii) and (iv) are very delicate, and
have to be tested rigorously.

These conditions are obeyed for pyy when h < 1. Con-
dition (iv) is violated for and pyy for h > 1. This
is not too serious, since T.T. Wu designed a method that
bypasses this difficulty. However, at h = 1 condition
(iii) is violated, and there we have only partial answers,

Define GR = Cr+1. Then pxx is given by (3.13) with
T =0 as

L . . %
c = %; J e R [ (1-l11e1¢)(1-xglel¢5 J de

n - - — = -
m Gl g ) a5
@.17)
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with
L
Maye = T [H° = G- 7)) I90/(1=v) (3:18)
1 It is instructive to study the motion of xl,xz,xil,
Az~ in the complex el® plane for fixed v
hie/9=0 A =i e’ b
% Sso Lo =,L1Z
\\ ety i,
UNH’URij///’—h\\\\\\ \L{f#/J:JT?;E
it /0> /o=
\x;. Jers
’
/
4
//
" S 7 B
hpe /=0 Ap=-i W-»—
(E.Barouch & B. McCoy) Fig, 3

(Phys. Rev. A3, 786, 1971)

Let us tabulate the values of Ind c(elw):

Case Function Index
(a) Prsc b1 <1 0
(b) P s h>1 +1

c h==1 -1
(c) 2]
d p h<1 -2
(d) 3
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(a) Py for h <1

We can apply Sz&go's theorem directly

1 - n et - g te ™) nEee

-1 i -1 i +w ;
. L= M eHa - xTe® ] 0 ket ™ (3.19)

ko=0
k= GDT BN + 3T (3.20)
k_ = =CDT 505 +3h

So

N Y LaH™ + D™ + 20000 7Y
= n

% logl(1-A%) (1-332) (-x1ah21 (3.21)

Substitution of (3.21) in (3.15) yields for h <1

Lim € = [(1-30) (1-22) (- 1azhy= 1% -
R—.oa

= 2(1+y) "Ly (1-n?) 1F (3.22)

and the first term in the asymptotic evaluation of pxyx(R)
is given by

o ® 2 D20 Tl v 15 (3.23)
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At the boundary value h® = 1-y® we are able to cal-
culate p,, exactly, and find that pgy is R independent

b = XD 2v/(+y)

By the same direct method we find that for vy = 0 h 21
Pxx = pyy = 0.
The case h = 1 y # 0 is closely related to Wu's

T = TC in the Ising model. The result is

113 _ A

72 a3 1140®2) 3
(3.24)

where A = 1.282 427 130 is the Glaisher's constant,

o # ECDR2y/ At IR 2

The case vy = 0 h < 1 has both A on the unit circle,
We are unable to evaluate pxyx on this line. The only re-
sult available is vy = h = 0 due to McCoy.
/3 1fe  _ -1 =
27 478 kDR w7

= (3.25)

R
= & =7l e
P P %(-1)
(b) Res for h > 1
Consider the transpose of (3.13), then the index of

the resultiﬁg generating function is -1, We may write

P ¥ 51T By

by by b_r

b, b_, B v (3.26)
B =
R

b2 B g B
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with
b oL " im0 - eTTNa - aeTt % 4y
B A g e = g ot PG S ety
In order to evaluate we follow Wu almost word for

word. Consider the determinant Dp,y defined by

b,
]
DR+1 = : BR 3.27)
bp-1 bpog +++ b
Then
B, = (=1 D (3.28)
R R+ TR .

Dy, is a "good" Toeplitz matrix, whose limit as R = « is
ggven by

lim (-1)R LA [(1-x%)(1-x§2)(1-x§1x3)21%
R

and Xp is the corner element of the inverse of Dp,., and
is determined by a finite Wienner-Hopf sum equation. Let
d(€) be given by (d(g) has index = 0)

-2 ltehaoeh 1®
(1-371e) (1-1.8)

ace) = { (3.29)

Then d(§) has a unique factorization

ta(e) 17t = pe)Q(e™h (3.30)
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for |6] = 1 such that P(£) and Q(E) are analytic for
|€| < 1 and continuous and nonzero for |§| < 1, Expli-
citly, P(€) and Q(g) are given by

1-x7 e .
P(8) = [I:KZE—}= Qs ] (3.31)

Wu shows that XR is given asymptotically by

L 1 R-1,,.-1 -1
B oy |§|il dg € "P(E ) [Q(&)]

a-rteha-atey 13
J (3.32)

L g g Rl [ -
(1' Az §) (1">\a§ )

2mi ‘g I=1

Performing the tedious asymptotic expansion of (3.32)
we find for large R

ot (DR xR R E D ol Tty e gk

XX

x {1+ 0®R DI (3.33)

(¢) The study of p,, with h > 1 is very similar to pyy
with h > 1, and is discussed in II.

(d) 1In the case of pyy with h < 1 we have a generating
function with index = =2, We add two rows and two col-
umns, and proceed in the same fashion as before, where
XR is replaced by

YR YR+1

Yr-1 R

according to Theorem 4 of Hartwig and Fisher. Details and
results of these considerations are available in II. We
have also computed the next order terms for h < 1, and
found a monotonic approach for h® > 1-y® and oscillatory
approach for h® < 1-v%,



XY -MODEL 27
p for h = 1,
Vo4

Pfeuty (1970) has shown that for v = 1
Pyy = - (4R%-1) pyy. Combining this with (5.31) of Wu we
find for v # 0,1

pyy®) # 2DR v+ 2R Y e 223 oY .

(3.34)
Time delayed correlatioms.
Define the time delayed correlations
= PV u
Py, uRE) = <ST(0) Sy, (£)>. (4.1)

Dynamical properties of many-body systems very near
thermal equilibrium are almost uniquely studied in terms
of time delayed correlations of the type (4.1).

The importance of (4.1) and its relation to experi-
ments (like scattering, NMR, etc.) led theoreticians to
look for a nontrivial model, for which (4.1) can be com-
puted exactly. Niemeijer observed that p,,(R,t) can be
computed exactly for the XY-model we are studying. The
function p,,(R,t) is conceptually simple to obtain since
it is the only one which does not contain S? or Sg.

Later on, we (McCoy, Barouch and Abraham 1971) stu-
died the ground state properties of pyx(R,t) and pyy(R,t),
and Johnson and McCoy (1971) completed the study for
u # v,

(@) »,,(R,t)

We wish to comgu%:_BHszeth = e_th]
I L3 R

Tr[e-BH]

S

0 = ) 4.2)
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In (4.2) we are evolving an even operator, there-
fore, one can use the c-cyclic con?ition. Rewriting H
and S% in terms of the operators 7., m. we have (using
(2.13f, and (2.17)) 30

H = z:Apn;np + const. 4.3)
P
g5 = Y {exp(ij(w -v ) 1[cos 6 nf + sin 8. n_ ]
i N L P q PP p -p
P,q
T
e + sin 06 - 4
[cos qnq sin qn-q]} % (4.4)
and we use

itA d -ith 1= 3 5
expli a1y exp[ Rl e s (4.5)

By substitution of (4.5), (4.4), (4.3) in (4.2) one ob-

tains Neimeijer's result for T = 0 as

m
pzz(R,t) = mz + [%F J exp[i(Roy + tA(w))]dw]z
-7

-[%; I exp{i(Ro + tA(w)) ] ngg_@;hldm]B

T
. A)

il i B
-4 j_nexp[i(mp a1 T Ge

It is interesting to note that as t - = the approach
to the limit is ~ t~1 and not exponential as several ap-
proximation schemes predict. The usefulness of (4.6) as
an exact result manifests itself in Mazur's approach to
ergodic theory (1969) who proved that m, is not an ergodic
variable.

We now turn our attention to the rest of the correla-
tions p,,(R,t), and would like to demonstrate the inappli-
cability of the above method. Consider py,;(R,t) as

_1 -pH v iHt Lu -iHt
pvu(R,t) =5 trle So e Ch ] (4.7)
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-BH, . a o .
where Z = trle B ] is the partition function, and con-~
sider an expansion in terms of eigenvectors of H, namely

-1 = it(E -E
QVU(R,t) =Z m}ge PEn <Em|SX|En> et ( m n) <EnlS;‘Em>
b4

(4.8)

Let u = x, v = x, Since s¥ is a product of odd num-
ber of Fermi operators, the only non-zero matrix elements
are between eigenstates of ut and H™ defined by (2.11).
One might add that the difficulty in obtaining these ma-
trix elements is similar to Yang's (1952) study of the
spontaneous magnetization in the Ising model. We bypass
this difficulty by considering 4-spin correlations
Cxx(R,t) defined by

c._(N,R,t) = <s* (¢) s¥ (t) s* (0)> 4.9y
XX 1+g 1-RHN 1-R+%

where we keep the number of sites large but finite. Cyy
may be evaluated in terms of matrix elements of even
operators only, and by the use of the cluster property we
have

: — 2
é:ﬁ CXX(N’R’C) - [pXX(R’t):] (4-10)

Admittedly this method is a poor man's way of obtain-
ing the results, but this is the only one we know.

To evaluate Cyy(N,R,t) defined by (4.9) we apply
Wick's theorem once more, and obtain a block Toeplitz de-
terminant

0 S T U
X X X
-§x 0 = v,
c;x(N,R, t) = (4.11)

~T U -8

X X X
-U -V g 0

p.4 X X
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0 S T U
X X X
-§X 0 -U, v,
xx = U -S
X X X
-U -v g 0
X X X

where superﬁcrlpt ~ means transpose. Each entry is

( - R) x (— -~ R) matrix whose elements for T = 0 are
given by
SJnn = 50t (4.122)
’ @
e + —in
y = 2 Jotmie i@y (412
’ ®
. AR+ g
(Ux)m e % Z. el(mﬁn &0 e 1Me) e (4.12¢)
? )
_ .1 i(min+R+2)e -iA(p)t (4.124)
(Vx)m,n a N Z e S
©
and G(y) is given by
(o) = o7i® [ LA e””)(l ) 13
® =i -i .
(-7t ) (1-azte 1D

To evaluate (4.11) asymptotically we used the scheme
developed by Cheng and Wu for <S,,Sy N> in the Ising mod-
el. This derivation is long, and we’do not wish to pre-
sent it here. Details are available in paper IV (McCoy
Barouch and Abraham).

The results are

(a) h <1
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w ere super cript means transpose. Each entry is

- R) X (— - R) matrix whose elements for T = 0 are
glven by )
s)_ =g ) e tmmDe g, (4.12a)
’ ®
_1 U -i(mntR)yp -iA(e)t 9
(TX)m n - N e e G(w) (4.12b)
’ ®
) n Ak E ei(m+n+R+1)cp e-iA(w)t (4.12¢)
x'm,n N
®
1 i(mtn+R+2) o -iA(o)t (4.12d)
(Vx)m,n TN ; 5 &

and G(p) is given by i
Gle) = o 19 (1= elw)(l Az 1m)
(1-171e19) (1-1;1e"19)

%
} (4.13)

To evaluate (4.11) asymptotically we used the scheme
developed by Cheng and Wu for <SOOSM N> in the Ising mod-
el. This derivation is long, and we’do not wish to pre-
sent it here. Details are available in paper IV (McCoy
Barouch and Abraham).

The results are
(a) h<1
0 - R =R -
b (RE) £ o (=) {1+ @m" fag dan &8 1% (e

e TEIAFAD) Ty e oy + M(m,8) - 173 (4.16)

where the contours are the unit circles and the 1 contour
is indented outward at € = 7, and

(1-33 ey s le ) aatey (- aate

M(E,n) = e o = = v } (4.15)
a-ainha-ginh aaaite -t
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(b) h>1
b RE) 5 (DX 3-8 a-32 a2 7

RS PSS DS N
§ de gR-1 -1tA(E) (B, BN TG, ) (4.16)
2n1 (1-258) (1-15E871)
and the square root is defined postive at & = -1.

(¢) h=1
We simply don't know what to do.

These results should be compared with pzz(R,t) where
all the contributions are from two particle excitations.
Here, for h > 1 we get contributions from 1,2,3,... exci-~
tations and for h < 1 from 2,4,6,... excitations, since
(4.15) and (4.16) are the first terms in the expansions
of pyu(R,t).

The only other exact result is pxz(R t) for h <1,
derived by Johnson and McCoy (1971) and is given by

o, ®,t) = 5(-D} 2= 1v2 (1-0®) 1Y° (s5-a) (4.17)
Xz 1+
h
vhere L 0 (1-x§12)(1-x;12) %
Sir= pry § dz z [ 1 1 (4.18)
|z {=1 a-3taha-ath
A=W, - W, (4.19)

W, 2n1 s e N ) (- ) 1

s § a2’z 'z-1) 7 M @y Bty it ) 1
(4.20)
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Wz = E%I d dz etht zR[(l-Xglz)(l-xglz)]"%
' ’ i  R- -1 - P AL
X '271;; § dz’(1-22") M (2R L1ty (-azlzy 17

(4.21)

Random Impurities

It is well known that no physical material is 100%
pure., There are several kinds of impurities in solids
like foreign ions, some rare or common isotopes and so
forth. We will address ourselves to the problem of "fro-
zen in" impurities. The impurities, randomly distributed
with some normalized distribution P(z(m)) have the inter-
esting effect that singularities associated with phase
transitions tend to round off, infinitely differentiable,
but non-analytic. This statement is primarily based on
the work of McCoy and Wu (1968) for the Ising model, who
found rounding of the specific heat near T, instead of the
famous log|T-T.| divergence derived by Onsager (1944).
McCoy and Wu's paper partially motivated the work of Smith
which we are about to discuss,

In this lecture we wish to discuss the thermodynamics
of an isotropic XY chain with y = 0, but with random coup-
ling constants, and study their effect on the singularities
of the thermodynamic functions discussed earlier. Smith
introduces the Hamiltonian H

N-1
_ XX V¥ - z
H mzl (I (X8, + 8787 ) hmzl s} (5.1)

where J(m) are independent random variables.

Step (i) and (ii) can be carried over, namely

- t
H = XNh +z cA ¢ (5.2)
m,n
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with
Amm = Am,m+1 - Am+1,m = J(m)
(5.3)
A = 0 otherwise.
mn
‘Since (5.2) is quadradic, the transformation
c =Y £ @u . o =) Xmul (5.4)
m J ol a m o4 a :
a a
yields
_ +
H = Const. + Eaxaua“a (5.5)
with free energy
Bt = 208 - & ) Ia[l + e*’a] (5.6)
a

Define A = B - hl where I is the unit matrix, and an
eigenvector of B with eingenvalue 6 is clearly an eigen-
vector of A with eingenvalue A = &-h, Our task is to find
the distribution of the eigenvalues of B for N - «, and
this was done by Dyson (1953) in his brilliant analysis of
the random chain of harmonic oscillators.

Smith, following Dyson, defines

@

RGO i e e 1n(1+x6) dM (8) (5.7)
N e o

N -0

(the branch of the log is taken in (-m,m), where M(3) is
the limiting distribution function of the eigenvalues of
B, obtained by the relation

lim Re[;%; Q(-x+ie)] = J

aM(s) = 1 - MED) (5.8)
€-0 1/x
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Let D(x) = M'(x) be the density of states, then (5.6) be-

comes
@

pf = 206 - [ In[1 + e PG 1y ax (5.9)

So to determine the thermodynamic behavior of the ran-
dom system one needs to compute Q(x).

Expanding the 12% in (5.7) before taking the limit,

together with tr 20+l - ¢ yield
N o 1 N
QZA ln(1+x6a) Z = x TrB mZ& in{l-o(m,x)} (5.10)

and o(m,x) is a continued fraction with recurrence
relation

%% J% (m

o, %) =TI eail ey ] (5.11)
Setting p(m,y) = -o(m,iy) we have
_ 2 3% (m
p(m,y) = [1+p(m+l,y) ] (51l
and Q(iy) is given by
N
(iy) = lim & ° In[l+p(n,y)] (5.13)
N~o © m=l

In the limit of large N, p(m,y) tends to the limiting
distribution f£(p) obtained by

£(o) = Jdp’ JECo (o - TEIP(2) d (5.14)

where P(z) is the distribution of the random variables
%J®(m). Carrying out the z integration we obtain an inte-
gral equation for £(p)
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£() = | £(p" Ll;f L p [(1;3')] de’ (5.15)
0

and the explicit P(z) we choose is given by

n
n n-1 -nz

B() = GipT Z e (5.16)

Dyson solved (5.15) exactly!!

£ = KR GDTH A ™ exp(- 2 (5.17)

with the normalization Kn given by

K (y?) = J‘o oL (140) ™ exp(- ;—g) dp (5.18)

and Q is found to be
a (y) = (K )77 [ P ha+n ™ 1n(i+e) exp(- 2f) do
n n 0 y

(5.19)

In order to compute M, and hence D, for large n one
needs to analytically continue Q,(iy), compute the discon-
tinuity from the negative real axis, and study the result
asymptotically. Smith has done that and his asymptotic
results are (for large finite n)

- -3 -
D) ~37 ((1-y) 7 + =y +0@} y<1

~ —L = = -6- LD
Dn(y) ey e{2n9(cosh 8-1) + 6~1}exp[-0-2n(sinh6-6)]
y>1

with 6 = arc cosh (y®-1)
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37
Dn(y) ~n'{a;~ a,[n?(y2-1) 1* + 0(la?”P(y?-1) 1°}
ln®/%y*-1) | <1 y ~1
and
21/337/51-«9! 2
ag, | = nrg (1/3) ~ .18 as ~ 253 (5.20)

In the limit n - =, the Poisson distribution becomes
a & function, and the density of states Dw(y) becomes

! -1/a
S=(t=5D <1
D_(y) = {27 7 (5.21)

0 y>1

and is shown in Fig. 4

Once D, (y) is obtained, we can study the thermodynam-
ic functions.

We find that m, tends to smooth up at the
ground state

]
\
|
1
|
[}
|
[}
|
|
[}
|
|
:O[exp*-n(y—Z)}]
1
\

\

~

Fig. 4. Sketeh of density of states D,(y) for n-» and for
n very large, Full curve, n-«=; Broken curve, n very large.
(E.R. Smith, J.Phys. C.: S.S. Phys., Vol. 3, 1419, 1970.)
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To compute the susceptibility for T = 0 we have

Lim 8 j duueh)? (Lae PR y2 7By ()

R—o

X, (h)

D_(h) (5.21)
and Dn(h) is infinitely differentiable.

A recent study is in the process of being completed.
We study the Hamiltonians with random magnetic moments
where the resulting integral equation is too hard to solve
exactly, and we study the smoothing of the transition near
h=1

Non-equilibrium.

Most studies of nonequilibrium phenomenae start from
the Liouville equation for the density matrix p(t)

150 e = (), 0(0) ] (6.1)

It is not at all clear which approximations, if any, are
appropriate in given circumstances. Existence of non-
trivial examples for which (6.1) is exactly solved, en-
ables us to evaluate the effectiveness and legitimacy of
such approximations., In the following lecture we solve
(6.1) exactly for the XY-model, where we allow the magnet-
ic field to depend on time explicitly. Below we follow I
(Barouch, McCoy and Dresden 1970).

Since stages (i), (ii), and (iii) are independent of
the field, we may start from the Hamiltonian

H=)H
P P
el o2 t —— A
= {a (t)[a a+a a ]+ %id [a a +a.a ]+ 2h(t)}
psop PP =P -p p-op%p T TP

(6.2)
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with

ap(t) = 2[cos mp-h(t)], ép = -2y sin wp (6.3)

As we saw before, each H_ in (6.2) commutes with each
other, which means that the sBace upon which H acts, de-
composes into non-interacting subspaces.

g
Let (|0>; a a |0>; a

y f [0>) be the basis for the
pth subspace in Bhepﬂeisenbegg picture. The Hamiltonian
then becomes a matrix H(t)

ﬁ(t)=2 [I®1®...®ﬁp(t)®1...®I] (6.4)
P

where ® is the direct product, I the 4 X 4 unit matrix and

h(t) Lidp 0 0
-%is 2 cos @ _-h(t) 0 0
H (t) = P E
0 0 0
cos wp
0 0 0
cos cpp
(6.5)

Let Up(t) be the time evolution matrix in the pth
subspace given by

. d - i 3 =
don Up(t) Up(t)Hp(t) Up(O) I (6.6)

The Hamiltonian H®(t) is then given by

Hs(t)=2[I®I®...®Hz(t)®...®l] (6.7)
P
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where
s - +
H (t) = U (t)H (£)U (t .
p( ) p( ) p( ) p( ) (6.8)

Because of (6.7) or (6.4), the density matrix at
t = 0 is given by

p(0) = e-sﬁl(o) ® e'Bﬁa(O) ® ... e-BﬁN/Z(O) (6.9)

This particular algebraic form, together with (6.7)
suggests that a solution of (6.1) with boundary condition
(6.9) would have a similar form

p(t) = p(t) ® pa(t) ® ... ® pN/Z(t) (6.10)

This is indeed true, 1if

d - s
il = pp(t) [Hp(t),op(t)],

(6.11)
pp(O) = e-BﬁP(o) = e—BHg(O)

In other words, all we have to do in order to obtain
p(t) is to solve (6.6). The only nontrivial part of (6.6)
is the upper left block, and Uiy, Uiz, Uz1, Uzz can be
easily determined if one of them is known.
Let
h =b + h;(t) with %ig hy(t) =0 (6.12)

and

Uy, (£) = V(t)e 1t ©O8 (6.13)
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The same algebra yields
V(L) + [A%(b) + ¥(t)Iv(t) =0 (6.14)

with b.c. V(0) =1, V'(0) = i[cosep - h(0)], with two in-
dependent solutions W, (t), W;(t), and y(t) is given by

y(t) = h2(t) - 2(cos ©-b)h, (t) + ih,(t) (6.15)
Example 1.
a t<0
h(t) = (6.16)
b t >0
V(t) = i % sin[tA(b) ] + cos[tA(b) ] (6.17)
Example 2.
© a t <0
h(t) = i (6.18)
B Ga-b)e =
V(t) = AW, (t) + AgWs(t) (6.19a)
where

Wy (t) = exp[iA(b)t + iiéihl e-Kt]

1F1[E0A () #b-cosp]; 1+ ZLAEL,  ZLB) KET (g gy
Wa(t) = expl-iA(b)t + 1—%@- ) ]

1 lLK[A(b)+b TR iA(b) Zi(;-b) e-Kc] (6.19¢)



42 EYTAN BAROUCH

and the constants A;, A; are given by

A = W (0) - i(cos p-a)W,(0) (6.19d)
W, (0)W5(0) - W5 (0)W,'(0)
A, = 1¥1(0)(cos g-a) - Wy(0) (6.19e)

W, (0)W5(0) - W5 (0)Wy'(0)

The first question we want to study 1s the approach
of my(t) to its infinite time limit,

To compute m,(t), we observe that % Z.S? can be
written as 33
-1 -1 fal
N M_ =N aa+a a -1]
gp ;Epp -p -p

and ¥
Tr[MPUp(t) pp(O)Up(t)

1
m,(t) =¥ ), TE 5, (0] (6.20)

Using (6.19a), m,(t) can be expressed in terms of W, (t)
and W, (t) as

= tanh[%gA(h(0)) ]
m () =yl tanh ;A/(\hlzo?) p (o) Wa(e)]  (6.21)
b

and F[W, (£),W,(t)] is given explicitly in (4.7) of I.
Example 1 yields for the step function (6.16)

mz(t) = % %J EE%%&%%#%%%l {cos[2A(b) t Jv®(a-b) sinacpp

- (coswp-b)[(coswp-a)(cosmp-b) + v® sin®w]}(6.22)

It is clear from (6.22) that if N is finite and
large and t = «, the limit does not exist, and one may
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wish to compute the Poincare cycle as an explicit func-
tion of N.

In the thermodynamic limit N - «, the sum becomes an
integral

1 " tanh[}pA(a)] g s
mz(t) =0 Jod A(a) A% (b) {cos[2A(b) t 1y (a-b) sin®y
- (cos 9-b)[(cos g-a)(cos ¢-b) + ¥* sin®¢l} (6.23)

This result was derived earlier by Niemeijer. There
are several interesting limits to check.

(i) t = 0: mz(O) becomes the equilibrium result
given by (2. )

(ii) v = 0: Since [Eds§, e s¥s§+1] =0

233 )
3

oneexpects no time dependence of %Z.S;>, and in (6.23)
the time dependent term is proportional to Y2

(iii) a = b: No jump, and again m,(t) = m,(0).

(iv) t - =

S} T tanh(%gA(a) 1(a - cos ©)
m, (%) =55 Jo ) 1)
(b-a) y® sin®o
X { L= (a-cos @) [(b-cos ¢)*+y°sin®w] } (6.24)

This is not the equilibrium magnetization, since b = 0
does not yield m,(=) = 0. The system, even after infinite
time, remembers that it was subjected to an external field
a, through the nonzero function in the curly brackets of
(6.24). This is an explicit expression of the non-ergodi-
city of the system.
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One might raise the suspicion that the nonergodic
behavior of mz(t) is due to the special discontinuous
case (6.16). In other words, one might hope that a con-
tinuous very slow change of h(t) would yield an equili-
brium limit. To demonstrate this hope to be false we
went through the pain of playing the same game with
example (6.18), and computed m,(K,t). We found that tak-
ing the limit kyg lim m,(K,t) gives back (6.24) and rim
lim m, (K, t) gives a complicated expression
™% [T (6.14)1, that shares with (6.24) the unpleasant
feature of failing to vanish at b = 0. We can safely
conclude that a global change of the magnetic field re-
sults in a nonergodic magnetization m,(t).

It is interesting to study the long time behavior
of my(t) (6.23). We find (I) one more division into
regions.

-2

(1) h > 1-v?: m,(t) approaches its limit like t ,

and oscillates with two interfering frequencies, exchange
type and larmor type.

(i%) h < 1-y®: The leading term of m,(t) decays
like t™2 with a single frequency 2Y[l-b3(1-vz)'1]1/g. In
the nextterm all three frequencies are present.

- 34
(ii1) h = 1-v®: Boundary case for which m,(t)~t

This division to regions rises from the number of extremal
points of the one particle spectrum A, If we consider
cos ¢ =y, A is given by

Ay,b) = [¥*(1-y®) + (b-9)21Y° 1=y =<1

In the case (i) A is monotonic and has two extremal
points at the boundaries y = + 1, in case (ii) A has 3 ex-
tremal points at the boundaries and at yo = b/(1-v®), and
in the boundary case (iii), one of its endpoints coincides
with yo.

In figure ( 5) we show a numerical and asymptotic
study of mz(t) for case (i), where the interference of the
two frequencies is quite clear,
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4871

486

4851

* as4f
N I

E 483} === my(t) from us.ymp'o'ic

expansion values

1
|
482 ‘l ~—— m,(t) exact numerical values
1
I

L 1 1 L 1 1 1 i

4 8 12 16 20 24 28 32 36
TIME

Fig. 5. m,(t) exact (numerical) and asymptotic for large t.
a=10, b =2
Yy = %, g =1
(E. .iarouch, B, McCoy, M. Dresden)
(Phys. Rev. A2, 1075, 1970)

We wish to investigate more of the nonergodic fea-
tures of the system by examining the spin correlation
functions.

By a similar method of evaluating mz(t) we find for
the step function case (6.16)

n
- - l tanh 5@/\‘&2 1 2 2
GR hal= Io dy cos gR ( A(a) A2 (b) Y {[¥?sin®e +

+(cos @-a) (cos o©-b) 1(cos ©-b) = (a~b)y®sin®y

i
o 103+ [ o v i o RS
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X {[y®sin 20 + (cos ¢-a)(cos w-b) ] +

+ (a-b) (cos @-b) cos [2A(b)t]} (6.25)

and SR is given by

w
it

= <
S et e E Bo s

it

y(a-b) " . sin[2tA(D) ]
= Jo dy sin ¢ sin oR Aa) A(b) (6.26)

In the equilibrium (a = b or t = 0) Sy vanishes iden-
tically. Furthermore, when t - = Sp -~ 0, In these two
cases the correlations are Toeplitz determinants. However,
for finite t, we have a full Pfaffian, which forces us to
try to evaluate a block Toeplitz determinant. This we
are unable to do (III), and we can just estimate the most
dominant term, up to an unknown multiplicative constant.

Since the analysis is conceptually simple and quite
tedious, let me summarize our conclusions, and refer you
for details to IIIL.

(1) lim ¢, (R,t) # Equilibrium o (R)

tre

(2) At the ground state &1m Lim pxx (R, t) =
namely there is a destruction of the 1ong range
order.

(3) For finite long time, the correlation functions
approach their nonergodic limits with the same power laws
and same frequencies as m,(t).

After the conclusions that fundamental thermodynamic
functions like magnetization and correlations are noner-
godic, one might believe that all thermodynamic averages
are nonergodic, and do not tend to their equilibrium
values. This question was studied by Girardeau (1969).
He considered the Fourier component Mq = Zij cos q;,
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and proved that <Mq(t)> - 0 as t » » when h = o which is
the equilibrium values if 0 < q < m, where My(t)> is
given by

o (£)> = Tr[p(O)eitHqu-itH] (6.27)
p(0) = exp{-[pH + mq]}/Tr{-[aH + mq]} (6.28)

and the parameter X\ measures the prescribed initial val-
ues, and its deviation from an equilibrium state. The
cases q = 0, m are different, since their limit # O.

Note that q = 0 corresponds to our example (6.16) with

b =0, a =21, and q = 1 corresponds to the staggered case,.

When one convinces himself that the system is noner-
godic, the natural question to ask is why. Is it because
of the decomposition of the system into noninteracting
subspaces? 1Is it because of the low dimensions of the
system? Is it because the system is isolated and is not
coupled to a heat bath?

At this stage it is not too wise to point at a spe-
cific "reason'" and claim its responsibility for the noner-
godic behavior of the system. So to gain some insight
into the meaning of these questions we studied the time
behavior of a single magnetic impurity at the boundary
(Tjon 1970) using the weak coupling approximation, and
exactly inside the chain (Abraham, Barouch, Gallavotti
and Martin-L&6f 1970). In both cases thermalization was
obtained, namely m,(t) approached its correct_limit, but
as a power law t~' (for internal spins) or t~2 (for a
boundary spin).

We present now the analysis of ABGM for the isotropic
case Yy = 0 and h = 0. The Hamiltonian is given by

N
a X X vy ZN z
H %j;cojcjﬂ +ofoly) +h(t)er =H, +h(e)ol (6.29)
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with
h(t) = (6.30)

Thermalization occurs if

1im lim <oZ(£)> = 0 (6.31)
o N n

The difficulty involved in this problem is breaking
of the translation invariance, thus Fourier decomposition
does not yield decomposition to noninteracting subspaces.
Furthermore, we can look at the rest of the chain acting
on the single spin like a heat bath,

We proceed with the standard stages (i), (ii), (iii)
and obtain

Ho = E, + Z\cos qaa (6.32a)
q
q
z _2 § _in(@’-q) ¢4
1+ o N ., ¢ aqaq, (6.32b)
qq
and q are the solutions of
e1qN =1 (6.32¢)
We study the expectation value
<1l + oz(t)> = [Tr e-BH]-1 Tr[e-BH alfcE (1+0§)e-iH°t]

(6.33)
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Using (6.32) one obtains

-iHot _ 2

eiH°t(1+0§)e =3 exp{iln(q’-q) + t(cos q-cos qﬁ]}é% i
qq’ £

(6.34)

Since H is quadratic in the Fermi operators a ,a*/
it may be written as 119

H=E, + zskja;a (6.35)

3

where o. are Fermi operators related to a_, by the unitary

transfo}mation q

aj = . quaq (6.36)

Combining (6.36), (6.34) and (6.33) we obtain

z -
<l + on(t)> =

*

) % E“exP{[n(qLQ)+t(°°s q-cos q) ]} Z v U, , <ala,>
q9q :

ja id’ 3%
(6.37)

where <aTa.> is the Fermi occupation number given by
1+ exp(BXj)]-l.

The coefficients U., are determined from the eigen-

value problem 34
- - 2h i(q-q)m
(Xj cos q)Ujq = 7 Z, ujq/e (6.38)

“and there are two possibilities

(i) Xj = cos 4, for some q, that solves (6.32c)
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- iqm -iqm
b =2 2(8 ’ -8,
ja (8q7q,° Q'-0.% ) (6553
(ii) Xj # cos q

L eiqm/N(xj)(kj - co8 q) (6.40)

where Xj are the zeros of
(V=1 - %? z;(x - cos )t (6.41)

and the normalization is given by
2 - - L il U
NG 12 = )4y - cos @)™ =50 551 _ (6.42)

Combining (6.39) ~ (6.42) and taking the thermodynam-
ic limit we finally obtain

6 G(A, n-m, t) G(X, m-n,

; o P
1 + e F(A

Z
< > =
Gn(t)

where the contour ¢ in the complex X plane avoids the
zeros of 1 + eP* enclosing the zeros of Fy(}), and the
functions G, F are given by

"
expf{i[-1q + t cos q]}
61, 1,8) = 4= J_n e (6.44a)

F()) =1 - 2h(k2-1)-% (6.44b)

and asymptotic study of (6.43) for large t shows approach
to 0 like t™+, This power law also governs the approach
of the correlation functions to their equilibrium nonzero
limit. We have also studied vy # 0, h # 0, and obtained
similar results,
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The last question we mention is that if we turn on
a field, the magnetization does not approach equilibrium
(ABGM) no matter how slowly the field rises with time
from its initial zero value. The result is given by

m
|
<oZ(t) = Re[ j_n dl e s ks

T
X J dp exp{i[t(cos k - cos p)]]
-

m
+ (k-p) (am) ulle, p,£) + 2] dk(l+e® ©°% 71
-

™ 3
X IJ dp exp{ilt cos p - p(n-m)u(k,p,t) |
-7

(6.45)

with

t L.
ul,p,t) =2 [ &' %% Pn(e’) X, (¢) at’  (6.46)
0

and xp(t) is to be determined from the Volterra equation

;. t
_ =it cosp _, ¢
xp(t) =e i J

dt’ Jo (t-t’) h(t’) X (t')
0 P

(6.47)

which can be solved exactly for h(t’) = h # 0.
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COMPOSITE PARTICLES IN MANY-BODY SYSTEMS
METHOD OF STOLT AND BRITTIN

Wesley E. Brittin
University of Colorado
Boulder, Colorado

1. Introduction

Many situations exist in astrophysics, plasma physics,
chemical physics, etc. where it would be meaningful and
useful to have theories dealing with equilibrium and trans-
port properties relating to various bound or composite
particles (atoms, molecules, ions) as well as to '"free' or
"unbound' particles (nuclei, electrons) and to electromag-
netic radiation (photons). A variety of special techniques
has been invented to treat some specific problems in the
above categories. These treatments range from very crude
empirical and theoretical guesses to very sophisticated
field-theoretic procedures. From the standpoint of basic
physics these problems pose certain difficulties and there
exists at present no unified approach to them. It would
be very desirable to have a theory that would be as com-
plete for these problems as is the kinetic theory of gases
for a tenuous system composed of classical stable mole-
cules.

An important first step in the desired direction was
taken in 1963 by M. Girardeau™, who showed that
"... a second-quantization representation for many-
atom systems can be developed in which the atomic
annihilation and creation operators satisfy elemen-
tary boson or fermion commutation relations, i.e.,
the atoms behave like point particles. 1In this rep-
resentation the Hamiltonian, expressed as a function
of the local atomic field operators, takes the famil-
iar form of a sum of a quadratic part representing
independent-particle (here independent atom) energies
and a quartic part representing two-body inter-
actions."

55
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In order to take account of the fact that composites can-
not be actual bosons or fermions, a subsidiary condition
imposed on the overall state vector enforced correct sym-
metry for the elementary particles which built up the com-
posites. 1In the expression for Girardeau's glementary
destruction and creations operators A, and A, the index «
labels the atomic states and includes the center of mass
motion as well as the internal motion of the particles
making up the atom. In addition, the atomic states in-
clude all continuum (ionized) states of the atom as well
as bound states, The question of how to introduce only
bound state composites was not treated at that time.

In the spring of 1971 R. H. Stolt and W. E. Brittin
found a way of introducing bound composites for relatively
simple systems 2, Subsequently A. Y. Sakakura> and
M. Girardeau* found other methods. Although there are
many unresolved (even in principle) problems, the subject
has reached a certain maturity. My lectures have only to
do with the methods discovered by Stolt and Brittin, since
Sakakura® and Girardeau® give accounts of their important
work elsewhere in these lecture proceedings.

II. Preliminary

We consider a system containing N protons and N elec-
trons® which interact through Coulomb forces., Let
Vo= y(x co Xyl Y1eeeY ) be an arbitrary square integrable
function (wave function) of the proton and electron coordi-
nates x,y (x,y includes positions and spins). The set
of all such functions forms a Hilbert space which we label
¥. The space ¥ contains functions belonging to all sym-
metry classes and not only those which represent physical
states. The physical states are represented by functions
¥, which are completely antisymmetric with respect to per-
mutations of proton (electron) coordinates. The subspace
A © X of physical states is obtained from ¥X by projection
with A, the total antisymmetrizer given by

a 1 Py ~
S e R L (2.1)

% It is straightforward to generalize these considerations
to situations where there are different numbers N_, Ne of
protons and electrons, P
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where P (P’) goes over all proton (electron) coordinate
permutations and

(ﬁP¢)(xl...xN;yl...yN) = w(xal...xaN;yl...yN) (2.2)

where P(l...N) = (al...aN), and
Fpoh) (- oxyiyy oy = W0y coyp ) (229)
where P’'(1...N) = (Bl...BN)

Thus s
A=A% (2.4)

where A is the projector* defined by expression 2.1. The
condition that |y, represent a physical state is that

Bry = ¥y (2.5)

We wish to describe situations in which some of the
electrons and protons have combined to form bound hydrogen
atoms. Naturally in the general situation, where the sys-
tem might be in a highly condensed phase, for example, it
may not be useful to ask for a description of the system
in terms of atoms. Perhaps other '"clusters' or 'compos-
ites'" may be more useful in that case. However as an ex-
ample of our method, let us think of physical situations
where it is meaningful to speak of the system as '"having"
"bound'" atoms and ''free" electrons and protons., I wish to
emphasize at this point that our treatment has no approxi-
mations in it in so far as the description of physical
states is concerned, although its utility may depend on
whether or not the physical situation approximates the
description we choose to use,

Let the system be placed in a box of volume V where
V is large but finite. Then we may introduce a complete
orthonormal set of one-proton states ¢;(x), i = 1,2,3
and a complete orthonormal set of one- electron states
W (v), 3 = 1,2,3,... so that any ¢(X1.. K3y yN) €EX

* The conditions that an operator Abea projector are
that A2 = A = A These can be verified for A defined
above.

g0 e
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may be expanded as
y ; = =
v(xl...xN,yl...yN) W(XNYN)

= T C,

i e 1o el 3 () o e (DL (e . 20 (A
il"'i . N1 N i 1 iy N L in N
N

jl...jN (2.6)

In fact, because of the orthogonality of the ¢s and Vs,

C. s % e =
SRR S5 PR I ij
=jdx1..dedy1..dmeil(xl)..wiN(XN)le(Yl)--WjN(YN)¢(XNYN)~

(2.7)

if w(xNyN) is a physical state C; is complete-

1---igiq---dy
ly antisymmetric in i,...1i, rsp. jl...jN, and conversely.
If ¢,4’ are any two functions in X

(4,4 =[x () dy ()T (x(N) ,y (M) ¥ ' (x(N) ,y (W) )=F Eijcij‘

Let us now introduce two-particle bound states
@, (x,y). These states are to represent isolated bound
electron~proton states (including the center of mass mo-
tion). They are taken to be orthonormal

[o (xy)o  (xy)dxdy = & y (2.8)
& &) Ciie?

but not complete. We have
— o) S IS Nty
oy (xy)o, (xy") = Pp(xy;x’y’) (2.9)

where P (xy;x’'y’) is the coordinate space representation
of Pp the 2-particle bound state projector. That is

(Bp¥) (xy) = [Py(xysx’y Yi(x'y)dx'dy’  (2.10)
Further
IBghll < Ny (2.11)

where [lWll 2 = [¥(xy) ¥ (xy)dxdy, which expresses the fact
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that the projector onto bound states is less than the unit
operator,

Let us introduce 'bound'" many particle functions
through the 2-particle states 9 by defining the functions

M
a

y (kp 33y Ty = Yoy (KOY D)

1w Ity
o (Xy)e (X,y,)..0 (X y,00. ( ).l (%)
RN R TRGv ST M 5 1 i ON

Xy, (Vpppp?) - ¥

(¥.) » (2.12)
Im+1 L

J'N
These functions are orthonormal for a given M

G IR OL O TN IO OM O

= éaalﬁii_l&../Eé el a;...éa ’ 61 'Y
LS Il L) MM vl ML
06 . M0 | e oinBlme
N VD VR VTR RN (& 1)
where the integral fdx(N)dy(N) . is extended over all
N’ including summation over spin variables.
Tﬁese %unctlons span a subspace Py of ¥ defined by

-{wwzc VLo et )2
ja

il - finite}. (2.14)
ij Taij’oyy oij

Py may be considered to correspond to those states having
M (or more) bound atoms, although PM contains functions
that are not completely antisymmetric in electron and pro-
ton coordinates. The subspace Py contains Pyyj since

waM+1(xM+1YM+1) can be expanded.in.terms of wiM+1(xM+l)
and ¢jM+l(yM+l). We express this in the customary manner,
Py ® Pyppe Im particular P, is the entire space X since
®; Vj; are complete one-particle states, thus

X = P, = P1 Dy 2 PM 2.2 PN (2.15)
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The projector for ﬁM is expressed as

13M Ay [Moij> <Maij] (2.16)
which means that
By (%75, .- Xy )= a?.jwziij (xp. . oy<Muijlv> (2.17)
with
<weif|y> = [axdy § My =My (2.18)

The relationship (2.15) is reexpressed in terms of the
projectors Py as

~

i=0p

~

0 > P1 > Py PM >,..> PN (2.19)
1f P(l) = =|a> <al, is the single atom bound gﬁatelprgjec-
tor, i.e. cf. (2.9) (B(LV) (x151)=F 9, (%151 /%y 51y ")

X w(xl'yl')dxl'dyl', we may express Py as

P =P(l) ® P(2) ® B(3) ®...® P ® 1

M N-M  (2.20)

where iN-M is the unit operator for functions of the vari-
ables XMylsYmele - XN Yy Hence Py maybe written,

B, = B(LoB()e. ePellielan2)e. 81 (2.21)
where 1(R) refers to the unit operator for functions of
the variables XRHYR- The subspaces Py although not physi-
cal, or at least not entirely so, do somehow correspond to
states having M or more bound atoms. Indeed if the ''real"
atoms in the system are far enough apart the functions in
P,, may represent physical states very closely. However,
this is not what we seek. We would like to find functions
corresponding to precisely M bound atoms. This is done
rather simply. Since Py > Pyl

~ ~

PPy = PuPmel = Pmere (2.22)

S0
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a

N N N 5 AL a1 5
R P Par 1 P PP PM(l PM+1) PrPr1 " Pra 1Py (2.23)

has the property that functioms lying in Ry = Ry ¥ are in
Py but orthogonal to Pyyj. Hence Ry '"has' M or more bound
atoms but not M+l or more bound atoms —i.e. R,, "has' pre-
cisely M bound atom states or more precisely is the sub-
space for functions corresponding to M 'bound'" atoms, N-M
"free' electrons, and N-M '"free'" protons. The entire
function space ¥ may be decomposed directly into orthogo-
nal subspaces according to the scheme

X =RyDR D..DR;D.. DR, (2.24)
which corresponds to the identity
1= ﬁo = (§0-§1)+(§1-ﬁ2)+...+(§M-ﬁM+1)+...+§N
= §O§i+§1§§+...+§M§§+1+...+§N
= ﬁ0+ﬁ1+...ﬁM+..‘+ﬁN. (2.25)

~

It is easy to see that ﬁM Ry’ = Syy’ ﬁMs e.g. if §(€Ry=P]
then Y, is orthogonal to Py and hence to Py,Pj,...which
are contained in Py, etc. Therefore we may decompose any
¥ € X into orthogonal components Yy = Ry¥. If

N
=%
4 M=0¢M
and
v'= Eowg ,
then the orthogonality of Ry implies
N
1 _ 7
(b0’ = MﬁO (Vs Ve (2.26)

Explicit expressions for R,, are obtained directly if
we use the decomposition of Py given in equation 21:

=

=P(1)®B(2)®. . .®P (M)®B(M+L) ‘Bl (M+2)® . . .01(N)
)

M M+l

where ]?’(IVH-l)‘L = i(M+1)-§(M+1) is the projector onto the
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single atom unbound states;
(POMHL) 1) (L) = ¥ (1) S (ML) <a|¥> = ¢F (e+1)

(recall (M+1) here refers to the variables xy.1,Ypmp1) -
Since Ry & Py we may write

g M M
Y = iy Catg Yaist (£ize8)
Then
M _ .M .M 4 PP 't
Cuij = Uaiz'n = UagsR?) = Byasyh
. (2.29)
= (X(‘Lij’q’)
with
A _ .M
alJ RM¢a13 = M PM+1)¢aij - lllaij-PM—l-lwaij P D)
which can also be written as
M
X .. =9 (Do (2).. (M)CP . (M o ( )
aij ay a, M e dvat M+2 F2
A SEPLE 21337,
mlN(xN)WJM+2(yM+2) \l!JN(yN) (2.31)
where, as above,
2,500 = 0, (¥ () (B ¥ 1. (2.32)

Unfortunately the coefficients (el i3 in the expansion
of {y do not have all the properties requlred for a de-
scriptlon of the system in terms of "bound'" atoms and
"free' particles. Such coefficients for physical states
wA should be completely symmetric in ay-- QM and complete-
ly antisymmetric in ipyq...1iy and in JM+1 For phys-
ical states, M ; are zg@etrlc in ag...0y but the pres-
ence of o B 1n t e M+l th entry spoils complete antisym-
metry for M., in the indices i iy and Jyq. - dye
(The CM ] arg completely antlsymmetrlc in dpy., iy -
lN and" 1 Jpens JM+3,...,JN however) .

The decomposition 2.28 for physical states may be
useful in chemical problems because of its simplicity.
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However, see appendix B which gives additional reasons for
not using this representation. We may at this point men-

tion a similar decomposition first used by A.Y. Sakakura3,
From the expansion for Ry (Eq. 2.27) we note that the

M+l st entry is P(M+l)*, so if ws(x,y) form a complete set
of states for the '"unbound'" proton-electron system, we may
expand any | using the orthogonal basis

3 =

. s . = (Do (2)...0. M)
al...aMﬁlM+2...1NJM+2...JN ay ay a

M
§onBij M

Mo,  Gguo) -0, V. Faao) .- V. () (2.33)
wB CPLM+2 M+2 QplN XN JM+2 yM+2 JN yN

which for fixed M spans the subspace Ry. In fact

- M M
- > <
Ry e Lo 815” <Ppij! (2.34)
al... M,
lmz...lN
VTR

For physical states the coefficients cgl"‘aMBiM+2""j
are completely symmetric with respect to interchanges o¥
ap...0y @nd B and completely antisymmetric with respect to
interchanges of iyyo...jy. In physical terms the system
may be thought of in terms of a given number M of '"bound"
atoms, one ''unbound" atom, and N-(M+l) 'free' electrons
and N-(M+1) ''free" protons. In later work Sakakura has
managed to eliminate this 'crazy' B-boson.

In conclusion to this section it is to be noted that
we have achieved an orthogonal expansion 2.28 similar to
but distinct from that used by Girardeau6,

M
=y, = T £ ( RSV g Y0 ®. (Do (2)..0 (M)
M Qg Oy @ge Oy b VTS Rk (TR VIS | N ay a, Oy
% = (2.35)
fal...aM(xM+2""’yN) o 2
R
I 3w
M
C . Lo Yoeeeb, (yy)
al"'aMiM+1"'1NJM+1"'JN v A1 iy N
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which for a physical state § = Ay has coefficient func-

tions f D which are completely symmetric in ay...ay,
. M

but which are not completely antisymmetric in Xj S &t

and in y. ¢e.¥: . Of course, since for physical states,

Vo= AV,

Ay = | =73 AWM =h WM’ (2.36)
and in A¢ the coefficient functions fIl are antisymme-
trized. However projection with A sp01ls the orthogonal-
ity: Avy ¥ ¥y and (Avy, Auy) # 0 for M £ M

IITI. The Stolt-Brittin Method

We have mentioned that projection in general spoils
orthogonality, that is if (¥;,¥5) = 0 and P is some pro-
jector, then (PY ¥y) = (PV ,wz) + 0, in general., On
the other hand 1% P2 is a closed subspace of X which is
contained in the closed subspace P1 of ¥, and if Ais a
prOJector then APZ is contained in APl, e.g.

= > AP 2 AP The subspaces Py introduced in
I% have the property%K =Py 2P 2.2 Py>...2 PN, there-
fore
= TATE (= A AP% 2ianAP. Sn.sio A
A= B = AP) 2 AP 2...AP .2 AP (3.1)

which means that we may decompose A, the subspace of physi-
cal wave functions into an orthogonal set of physical sub-
spaces Ay,

A=A0%A133...9AM39...EBAN (3.2)
where

(3.3)

is the direct difference of the subspaces APM and APM+1
The subspace Ay consists of those states VM which are in
APM but which are orthogonal to all elements of APM+1

* We really are talking about the closed subspaces AP, ,AP Py

obtained by forming the closures of APl and APz, but to
keep the notation simple we simply write AP for AP.
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We define Ay to be the physical subspace corresponding pre-
cisely to M "bound' atoms and N-M 'free" protons and N-M
"free' electrons. Thus any | = AY may be expanded into
orthogonal components ¢M

(3.4)

and (Vy,V¥y’) = pydmy’ where Py = (Vyp¥y) may be regarded
as the probabllity that an observatlon of the system will
result in finding precisely M 'bound' atoms present. The
average number (M) of bound atoms present is just

(M) =§[, M (345

which, of course, in general changes with time. The pro-
jectors A, for the subspaces Ay are not nearly so easy to
compute as, for example, Ry. %n fact we know of no ways,
except those requiring infinite processes, of actually
computing wM’ given V. Let us, however, proceed with the
problem, since in practice we will use approximation pro-
cedures in any case.

The result of projecting the subspace Py with A re-
sults in a subspace APy for which we would like to find
the projector (which we denote by Aop M) - It is so desig-
nated because we anticipate that it may be compounded in
some fashion from the projectors A and PM. We can form
APM by taking the closure of APMK We now observe that

(A°P )AP (3.6)

APM

i.e. A°P is a left projector of AP In fact it is the
left: prOJector of APM, which means that

Aoh

A PM
Knowing what Aoﬁ is, however, does not offer much guid-
ance for computlng it In order to find an expression for
AOPM let us split A into two orthogonal subspaces

inf {Q; Q a projector; QAPM = APM}. (3.7)

A= (APM) &) (APM)Z (3.8)

where (IA&PM K is the orthogonal compliment of APM in A
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which means (AP K = A - (APy). 1If ¥ is contained in
(AP )K it is or%hogonal to all vectors of the form APyx,
X % ¥, in addition to being in A. Therefore

W,AB ) = By,Bx) = (1B = B0 =0 (3.9
which shows that | € PMl and § € A, hence | € AAPML,
the subspace common to A and PM*. Therefore
o I _ % na L(%)
A Py A-AA(L PM) A AAPM. " (3.10)
The intersection AAP," of the projectors A and ?ML can be
expressed (see Appendix A) as
"~ ~ Il = . r AN 1 n - . N AA J-A n " . - A—AA A n
AAPM %&g s(APM ) %ﬁg s(APM A) %ig s(A APMA)
(3.11)
where lim-s is meant limit in the strong sense: i.e.
lim (| (APy™" )™ - (AP )™l ~ 0 for all § € X. The sub-
mn-® N
spaces Ay may now be constructed from the projectors AOP;
2 o %oh . s _ s L a8
g =NERB S NoE = e ARyt (3.12)

We now have the necessary tools to treat situations in-
volving changing numbers of bound atoms. From the orthog-
onal decomposition

g =Ay = zAV= 3y (3.13)

and the Schrddinger equation i h %% = ﬁw for the N-proton,
N-electron system

. N. . ~ N A~
ihy = 7ihy = HY = £ (HY 3.14)
M=0 M M=0( )M (
where (ﬁW)M = AMﬁ¢. Therefore
i 9 =1 A B = A fIA - A HA = 0
1h3E Vi T A = RARAY = B AR Yy = T e Y
(3.15)

# 3,10 can also be written AQ?MTA—AQﬁ *=§A(1—AA§ML)

=AN{ANPy}t=AA(A*VPy) where P{VP,=(Pq*AP,*)L for two pro-
jectors P),Pp. We may also express %M as AO?MA§M+1* (see
appendix C).
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where the Hamiltonian operator ﬁ¥M' = A ﬁAM' maps the M'-

bound .agom subspace into the M-atom subspace. We note

that B,/ = (& HA N* = A /HA =0 so that on A, fl has
MM M M M M>

the correct Hermltlan character

~ PNPPN

-2 & e 2 L. A
AHA = M]}ZIII H_MM/ (1\41):,1'HMMI) mz/:[’HMIM‘ (3.16)

For some problems, it may be useful to use the formalism
as developed to this point. One can easily introduce
"atomic'' and ''free'" particle observables and carry out a
quantum mechanical treatment for them. However, we have
lost much of the 51m§11c1ty which we had when we dealt
with the functions ¥ We would like to transform our
theory back to the simpler subspaces P How can this be
done? Well, we notice that Ay is a su space of APM and a
non zero vector ¥ € Ay is of the form | = APMX for some X,
X€X. Let us look at those X which are mapped into
zero by, APM APMXO =0=> (3 A M0 ) =0, €€ so

= (PyAY XO), and hence X is in the orthogonal compli-
ment of Py OA in P Thus it follows that non zero vectors
in PMOA are mappeg by APM into non-zero vectors in A°P¥
and non zero vectors in AOPM are mapped by PMA (APM)
into non zero vectors in PM The following simple dia-
gram illustrates our result:”

Figure 1

* This result is well-known to some mathematicians (e.g.
those who know it well).
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. .. The mappingaﬁﬁMﬁ = A?M(AﬁM)* is 1-1 on A9Py and
PyAPy = (APy)*(APy) is 1-1 on PyCA (see Fig I). Hence on
AOPy we may normalize PyA (which maps AoPy onto PMOA) and
introduce®

o B A AA ..lé
Wy = (ByAPy)

QM maps A°PM onto PyCA and

13MA. (3.17)

}2, IS

AMIA WA A W o2
* 2
P A ABG(R APD

Wty = PPy
1 (on PMOA)
10 on (PMQA)*

i

B oA (3.18)

Similarly

N e

WM WM = AOPM (3.19)
thus W ,(QM*) is a (partial) isometric mapping of AOPy on-
to PMO% (P0A onto AoPy).

More technically, WM is the essentially unique factor
appearing in the polar decomposition of PyA

ﬁMA = /ﬁMfAﬁM W, = W, /Af»MA (3.20)
an TN g s g FEEN
AR, = JApA W F =W JPNlAPM (3.21)

* To be more mganingful,;it is perhaps better to recognéze

that Wy = (PyoA) (BydPy) “Z(BypeB) PA (RoBy) since (PAP))-
has meaning only on PyoA.

*% On AOPy, ?MX has an inverse (ﬁMﬁ)'l acting on PyOA, so

Similarly**

A AaA A

PyAPy = ByA APy DA (PyA) 1, (f’f,I =p,,, A°=A)
b /AR ) (1) AR U1
[bA JARA (BA)112
thus JﬁMﬁﬁM = ?MA JZ?;z‘(ﬁMA)'l and J@&KFQ‘?MA=§MA JA?MA
or BABBA)TE = (BABE BA = Wy
(See Appendix A for a more technical presentation.)



COMPOSITE PARTICLES 69

By "essentially" unique, I mean that WM is unique in the
sense that any wM satisfying 3.20 having the same domain
and range as Wy, is equal to WM. The (partial) isometry
WM maps AOPy onto PMOA it therefore maps the subspace Ay
of AOPy onto a subspace Cy of PyfA < Py. By our definition

CM = WMAM (3.22)
- oyt
AM = wM CM (31.23)
The projector éM onto CM can be written
- WMAMv?JM* ) (3.24)

Clearly CM as, deflned above is self-adjoint, Further

* _ A
CM = Wiy Wy = By o Byl = My i = Gy,
since AM < A‘)P Thus M 1s a projector. We now show
that Cy is stab%e under ﬁM

A A

CvCy = CM"MPm

A oa K
iy Ty
By
Wity = My = Gy
Eq. 2.24 can be inverted to yield AM = AM MAM

Any physical state | may now be decomposed into or-
thogonal M-atom states:

N . N
= A = % = 5 , 3.25
R N N A (3.25)

and the Yy in Ay may be related to %M in Cy by
o %

€M = waM’ UV VI v (3.26)
Since &M* is a partial isometry (¢M,wM) = (%M,ﬁM), and
_ 2 BN N 2
L) = vl = = Mzo HWMH = 150 flemll =, (2.27)

* Note that if Cpv = Q, W *¥= 0, or for any x € X,

0 = (x, WMAMWM V) =(WMAMWM W%— 0, so if x is an arbitrary
element of Cy, 0 = (x,¥) => ¢ECM which establishes CM as
the projector for Cy.
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Further if {’ is another physical state,

N ’ N '
W0 = = (b)) = = (55" (3.28)
M=0 MM M=0 MM
ﬁﬁ??e §M € CM c PMOA C Py, we may expand §y in terms of
aij’
_ M M
EM =L Caij quj, (3.29)

aij
and since §M € PMoA §M = ﬁMﬁw for some € ¥, which means

This means that the CM are completely symmetric™ in
: M completely an% symmetric in ippq,...1y and com-
p%etely antisymmetric in jyyj,...Jy. The scalar product
3.28 becomes
=M M

N
Ay =mosi (S I Crs BEE 3.30
(v, 10 oij oii Ceij ( )

We have now demonstrated a correspondence between physical
states § and a collection [CglJ} of coefficients

W= {calJ} (3.31)
Further the coefficients have the symmetry corresponding
to "bound' bose atoms and ''free'' fermi protons and elec-
trons. Not every set {Cgij} having the correct symmetMy
corresponds to a physical state however. Only those COLl
which through 3.29 give rise to a E €C,, correspond to a J
physical state. The restriction on CMM that they repre-
sent physical states is that § —CM€M, or

M M M

Caij = (¢aij) M) = (waij ) - (CMw(llJ M)' (3‘32)
We may write
~ M _ M eI S TATRA o
CMwaij = a/?_lj’ ¢a/i/j/ (Mo "1 |CM|M£11J>
Hence
M s
Cy1j = (€ Mc)OLlJ aIEIJ <Mn13|c Mo 173 >ca 1750 (3:3%)

is the additional required restriction on the Caij-



COMPOSITE PARTICLES 71

If we use 3.17 for ﬁM, the expression 3,24 for &M
becomes

w = (PfPy) Py Ay APy (PP
(B AR % A B AR (3.34)

(@33
1

since AyPy = (A A By q* - A A BytlPy = (A A Py *)Py, the
above expression becomes

&, = (B AR)TE (A A B 4y (B AP (3.35)
M MA M M+1 MA M ) )

The coefficients C re

M L 4
@Le e Oy il N dMil. - dN
completely symmetric in aq...0y, and completely antisym-
metric in ipy;p...iy and in jM+1"'jN‘ We may introduce
aNpNe )
1...(1Mall..;‘lNP Jl...JNe
define operators a_, aa*, aj, a;, b.,bj through expres-
sions of the type: J

M
more general state vectors Cg and

MN N, M +1, NN,
(a_C) 0 P . =/M+1 C . ¥ 3
a ooy Ageedy 3y 3y a LI VI TE SRR SeUN PR [
a 12 e a P e
(3.36)
% MN N
(aa C)a .?.a o geles Jaw o -
1 M, 1 Np 1 W
Ma-l,N Ne
A/Ma 2 Ca ap i i ] j Gan
- = i am 5
CPRRRL il Ma 171 Np 1 Ne
(3.37)
where S symmetrizes the indices Wye - Oy i.e.
a....a
1 1 M
S = Frﬁ'z P(a) where P(a) permutes (al...aM) and the
(11. . .(X,M a’ (G)
sum goeg over all M_! permutions of aq...0y . The opera-

tors a;, by etc. are defined similarly exceft that in a"y,
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*
B*, the symmetrizer is replaced by an antisymmetrizer.
The operators a_, a* are adjoint to each other and satis-
fy the usual BoSe commutation relations

=% (3.38)

Similarly a ,8%. and B, b satisfy the usual Fermi
anticommutation relaEion

{ai,aj} - {Bi,sj} =0 (3.39)
{ai,a*j} = {Bi,ﬁ*j} 10 (3.40)
{ai,Bj} = {a*i,ﬁ*j} = 0 (3.41)

With the aid of the destruction operators a,, aj, Bj
we may define the field operators:

i(x,y) =3 éama(x,y), "Bound" atomic field, (3.42)
a
o(x) = b éiwi(x), "Free' proton field, (B134:3)
i
and ﬁ(y) = E ijj(y), "Free" electron field. (3.44)

These operators obey the commutation (anticommutation) re-
lations

[X(xy) ;X (x'y")] = 0, [R(x,y) ¥ (x'y")] = (xy| Bplxy )
(3.45)

[]

{§(y),8(y")} = 0,etc.,(3.46)

8 (x-x"), (3.47)
6(y-y’). (3.48)

{o(x),0(x)} = {ox),i(N)}

@) ,0" (x)}
i (y) 1%y}

E3 TE 3 finitions of aj, ai have an additional factor

(- 1) so as to require that a,, b. have the standard
anticommutation relations 3.41 for distinct fermions. i.e.
M_N N N M N +1, N

ape _— ap
@1y 1y @) T P TR LA 1)

and with no factor (-1) P in the definition of
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We are dealing now with a Eo%stpace 3 whose vectors
v a'pe
¥ are sequences of functions {{ (zl...zM O SRS I
Yy Yy )1, 2y =X Vs Ma’Np’Ne=0’1’2“ with the scalar prod-
e
uct (¥,¥’) of two elements of & expressed as

] o MONON,
¢,¥Hh = ¢ JY (zl...z Oy o M /e oA )|
M 1 15 1 N
MaNpNe a Np e
w'MaNpNe(z z X Xinw G}y Yy )
1°° Ma, R iN B |lo 0 Ne
P
dz....dz, dx,...dx dy....dy (3.49)
1 Ma 1 iN 1 Ne

P
The state Y may be generated from the vacuum |0) through

1
W = T SN TR T dx,...dx dy,...dy_ dz....dz
Mg Ny N VTN TR | 1 pr 1 N1 M,
M NN

b AP Ry ey ) X (2" Gy ) ()
e a

x ¥y ).l 0) (3.50)
e

The results up to this point have been rigorous, with
no approximations of any kind. We observe that in order
to transform the usual quantum mechanical basis to our new
“"eomposite particle' basis we must be able to compute ex~
pressions of the form Pl A ?2 which involve limiting pro-
cesses (Py A Pp)¥ = lim (PyP7)Ny. We would like to find
an expression for H, the Hamiltonian, in the new basis,

We first expand the physical wave function ¥:

A 2 _ ) e
b= A= T Ad = E oy = R e (3.51)

where @M = &M¢M = WyAyV. Similarly

M

~ _ "~ A _ ~ ~ - “ - ~ *N
HY = AHY = ﬁ AMH¢ ﬁ (H¢)M ﬁ W (HE)M
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where

L N e
(He)y, = Wy (D) = WAEY = 2 WA FA W T, (3.52)

or

A An

(—i‘—lg)M = %}1, -ﬁm’ng’ with .ﬁMM/ = ‘:’MAM{]Z\MI&MI*= WMHWM/*.

The terms H,,‘’, M+ M', in the Hamiltonian correspond to
transitions Sy = &y in which the number of bound atoms
changes. Therefore, if we can find reasonable expressions
for the H, ., , we will be able to look at questions relating
to chemic§¥ reactions, rates of ionization, etc., from a
many-body point of view. The existence of the composite
particle basis has now been established, at least for the
rather simple system 'bound Hs', 'free protons" and

"free electrons'. The theory is complete in that it does
not distinguish between tenuous ionized hydrogen at high
temperature and dense solid hydrogen at low temperature.
It is to be expected, therefore, that the general formal-
ism be very complex. However, it was not designed to be
useful in the general case. (It would not be very useful
to describe solid H in terms of "bound' atoms and ''free'
electrons and protons, even though it is in principle pos-
sible). On the other hand, if it is sensible to think of
the system as being composed of composites and free parti-
cles, our method should be useful, once we are able to in-
troduce appropriate approximations to our general formulae.
For example suppose that the system is sufficiently tenu-
ous that only those electron-proton pairs which have formed
bound atoms contribute to the bound state component. For

such states
«/PMAPM §M =)\ £

MM (3.53)
whete xMz = M em-m 2 o2

Further, in this approximation
Mo M’ M qaan M
(il B %57 175 = (Xgq 3 AHALX g v ) My

The yamiltonian can now be expressed in second quantized
form™ as

* First established by R. S. Stolt
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H = ji*(x,y)(Tp+Te+vep)§(x,y)dxdy + [o* (T B (x) dx
PO TIdy + [T 0" (07, 6T (y) dxdy
+ RN T (VT (7)N(x,y) dxdydy”
+ IR, y)07 () (V) 4V )6 (xR (x, y) dx” dxdy

ok Skt A I
+ HXTECE YD) (U VAV AV IR (x Y DR (%, y) dxdx"dydy

PP P

+ T OBV S )P (x) dxdx
+ IV, i () () dydy’
> e, 4 ~ e 1
- X G et (D) TR, Bx)R (x,y) dx’dxdy
- [T TR TR, y) dxdydy”
- XY T, Ky )R (x,y) dxdxdydy
e ks o
+ Jo* VT (9) (T ATV, X (x,y) dxdy
i ol
+ X, 9) (T AT 4V, ) ()6 (x) dxdy
HXE G F TGV, by, ) IRy )R (x,y) dxdx dydy’
Sk " 1o ] K> "W ’ ’
HXE XYY V- hy o 0¥ ()9 (") X (xy) dxdx dydy
+ [e* T (¥ (v )V, T (y)R(x,y) dxdydy’
+ [ TV, I () ()6 (x) dxdydy
+ [T )TV 2 (IR (x,y) dxdx'dy

R R COMMTOTICOTICOT L
(3.54)
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In the above expression V is the single electron-proton
interaction, Vg, the singig atom-proton interaction, Ig
the electron pagr exchange operator, h2e the 2-electron
2-proton interaction, etc. This approx1ma€e Hamiltonian
is probably sufficient for many problems. The terms all
have direct physical significance. The first three terms
represent free bound atoms* free protons, and free elec-
trons. The next term (¢ ©*Vg ¢m) represents the unbound
electron proton interaction. Continuing we have the elec-
tron-atom interaction, the proton atom interaction, etc.
It may be instructive to write the approximate Hamiltonian
3.54 as

H=Ta+T +Te+vep+vea+vpa+vaa+Vee+vpp

=il oo

+ Eea + pa + Eaa + V(ep ~ a) + V(a ~ ep)

+‘V(epa < aa) +‘§(aa < epa) +‘§(eep < ea)
+-V(ea - eep) +'§(epp - pa) +‘§(pa < epp) , (3.55)

where we list below expressions for the various terms:
(using éa,éi,ﬁj etc. instead of the fields ¥,%,%)

T, =1, 3 a|T +T +v_|a">a ,;
& gl © p e 'ep a

™ PO '\ a
Tp E & (1|Tp|i Yl
N X S s I\ D
Te - ?JI bj <J|Te|J )aj’
o~ . ke

=D A h,

N :
ep  i3i’j’ i 7]

. [N EH a N
(iJ'Vepli j >bJ Iail,
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ee
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aja’jjy’ e d

o N .
(aJ]Vee+Vep|a j >bj'aa"

. N
a a
ea’it’ o i

(aiIV +V |a'i')é./é ol
pe Pp 1 a

5 , , & 'a
ajonag 0y %1 %

I 7 ~
(alazlvee+vpp+vep+vpe|a1 a, ,

A s
5z

&g anlaat J J
J]_JZJ1 J2 1 2
5Ls D ATEN & .
<3132|Vee|J1 J2 )bjzlbjl"

%E ’ ’
2 . i i
111211 12 1 2

-z a
’eol
aa ji

3 e 1ol R 2
(ajlI heepla j >bj'aa'

PO P
-z e ai
acii” @

p 75 hwm w0
{ailI heppla i )ai,aa/,
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~ . K. %
E = -3% a ‘a

1t g o
oty fO 1 2

a A

Ya_ 48 i3
a, oy

o
S N\O/

Q\'I(ep'-a)= £ .48, b

e ’ ’
(o.lon2| I hee—pplal ay

aij 173 .
J
il T +1T +v Jada
P e ep a
~ ~ % . %
V(arep)= V(ep-a) = T a
aij @

a|T +T 4V 135,48 ;
| p e epl o el

V(aep-aa)= % a a, b,
(aep ) alcxl'az'ij Ll Emd

ol € ’ I\ A
(a113|Vaa-I hee-pplal a, Ya

-;I(aa*aep)= V(aep*-aa)*=

A a *
¢+ a ’

E ? ’ s a
0104 Oy iy oy 0]

’ ’ e P
<0"1 4a |Vaa-I hee-pp|a11J>

A oA A

b.a.a_
jiay
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~ W K, ke ok
V(epprpa)= L . 8. a, b,
ijiydai f1 t2 J

(i112j|Vpala1) 4,8

= (V(pa—ppe))”

V(eep-ea)= T a, b, g
13,3,03" T J1 J2

(ij1j2|Vea|aj)bjaa

= (V(ea-epe))™

It must be emphasized that the diagrams shown above corre-
spond to terms in the Hamiltonian and are not representa-
tive of any perturbative scheme. The last seventeen terms
represent the basic vertices representing interaction and
exchange in this approximation. It is hoped that even
this simplified Hamiltonian will prove to be a useful aid
toward the treatment of elementary chemical kinetics etc.
from the standpoint of basic quantum theory.

APPENDIX A

Projectors, Partial Isometries, Polar De-
composition

T Definition of Projectors and Elementary Properties

It is sufficient for our purposes to consider pro-
jectors defined on a Hilbert space . We assume known
that if P; € X is a closed vector subspace of 3, then P;*,
the set of all vectors in ¥ which are orthogonal to P,, is
also a closed linear subspace of ¥, Further, the direct
sum P; D Pyt is X itself;

x=pPp" (a.1)
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which means that for every X € X we may write uniquely

= + =
X =Xy Xl

with e, xzepl* and

i 2= o;0 = g 2 ouxgn

We define projection operators or projectors ﬁl’ ﬁll
by

a L Ak

P1X = le Pl X = Xl = X‘Xl

It then follows’ that ﬁl,ﬁll are bounded linear operators
acting on ¥ having norm one and having the properties

ﬁ.l.ﬁ 1%

% _ 1
2 T RT T B 2

PlPl =R

o5

P."=0 ,
and
L

1 1.

is a decomposition of the unit operator om . _ Conversely
if P is any bounded ogerator on ¥ satisfying PP* = P (or
equivalently P = P¥, P), then PX = P is a closed
linear subspace of K and P projects vectors of ¥ onto P,
Further Pl = 1-P 1s the projector onto P+ =X - P

i=5 +p

We now consider some elementary properties of projec-
tors related to various combinations of projectors. We
state these properties as theorems with proofs.

Theorem 1: If Pl and P2 are prOJectors on ¥, the
product B, is a projector iff P18, = P2P1'

Proof: (P p ) P2 P, ¥ = PZP so the condition is
necessary. It is also sufficient for
a BI 2 Le il 2A 2 Ao
B yBp? = BBy E, = 8%, = BB,
An important special case obtains when P In this
case the subspaces Py and P, are orthogona% For let

1ep1 and XZEPZ
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Then

(%) = (B1X1:BoXy) = (q,P1Pyxy) = 0

The closed subspace corresponding to the prOJect0£
BBy = PyPy is that which is common to Py and Pp ~ and
which we denote by Py A P,. That is
P, AP, = xee; Byx = x, Pyx = xi.
We denote the projector onto Py A Py by Pl A P2 We note
that the projector Pl A P2 is defined independently
whether P; and P2 commute. However only if P1 P2 commute
do we have .
P A P = PlPZ, (P P = B,,).
Theorem 2: The sum P1 + P2 of two projectors Pl and
Pz is a projector iff P1P2 = 0,

Proof: The sum is Hermitian since each term is.
Therefore we need only to have

” A 2 A a a2 aa A -«
(B, + B)" = B, + B, + BB, + BB, =B, 4 B,
or 2 a A A
P,P, + P,P, = 0

This latter expression when multiplied on the left and
right by Pl yields

and

ByPyPy + ByBy = 0
Hence P Pz = P2P1’ and by the first line 2P1P2 0 or
P1P2 =

Theorem 3: The difference ﬁl-ﬁz is a projector iff

A A __X—""—
Ple = Py.
% ﬁlX = ﬁlﬁlﬁzx =l ﬁ1?2X =X
Pox = P2P1Pox =P P2 X = PlPZX =X

1
conversely if x€Py and X€Pjy, PlPZX—Plx-x, P2P1X=P2X
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Hence

a

2P2 = PlPZ + P2P1 .

If we multiply this equation on left (right) by ﬁl’ we
find

2P1P2 = 1P2 + P1P2P1
and
2P2P1 = P1P2P1 + P2P1
Hence P1P2 = P2P1 and 2P2 = 2P1P2 or P2 = P1P2 = P2P1.

If ﬁl-fz is a projector we have Py 2 P,, since x€P2=>§2x=

>

and ?1(§2X)=§1x=P1P2X=§2¥=X: which shows that x is in P.

Conversely if Pl 2 Pg, (Pl-Pz)x=xl-x2€Pl further
Py (X1 -X) =By X1 -PoX1=PpX 1 -X3=X 5 -X =0
Whenever Py 2 Py or equivalently whenever P,=P{P,, we

write ﬁl E ﬁz, which introduces a partial ordering '="
into the set of all projectors. That is

(a) P> B,
(b) if ﬁl 2 ﬁz and ﬁz = ﬁl’ then ﬁl = ﬁz
(c) if P1 e P2 and P, = P, then Pl e P3.

We note that 0 < P = 1 for all projectors P. We can now
see the consequences of commutativity for two projectors
Py,Py, fgr giyen P1P,=P,Py, then the three quantities
Pl—P1P2=P1(1-P2)=?1P2l, P,-PP,=P,(1-P{)=P,P;*, and PP,
are mutually orthogonal projectors. Hence their sum
PlPZ*+P2P1*+P1P2=P1+P2-P1P2 is a projector. Further this
projector corresponds to the smallest closed subspace
Py V Py containing Py and Py). We write, therefore,

Pl \ P2 = Pl o P2 - P1P2, AL P1P2 = PZPl

However Py V P, is defined for any two closed subspaces
Pl’PZ’ bu% ?1 % ?2 is given by the above if and only if

ﬁ1P2=P2P1.
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In general we may define

B AP, =g.1b (B3 PP, Ps P,
and
P,VE, =1ubd {P; P = Pl, BP=pl

The existence of ?1 A ﬁz, and P, V ?2 for every pair ?1,?2
of projectors means that the set of all projectors with
the partial ordering as defined above forms a lattice, the
lattice of all projectors on ¥ or equivalently the lattice
of all subspaces of ¥. We would like to find the projec-
tors Pp A Py and Py VP for general pfojecgors Py,Py,
However, we need only an expression for Py A Py, since we
shall show below that

A Al A gy ol
Py VB, = (B;" A By)
We now find an expression for ﬁl A P,. Note that if

xE?lAﬁz, then P;x=x and ﬁ2x=x so that (P,Py)Mx=x. This
suggests that we explore the properties Of (Ple) . Let
Zy = (P1P2)Nx for any x€X. Then

*

2 N Cuf o A 2
WP, 2 1" = (kg + 1 - Pl)PzzNH
PSS 2 A I A 2
HPlPZZNH + (1L - Pl)PZZNH
2 SR 2
= iz . 1H + (1 - Pl)PZZNH
Similarly
2 P 2 PN 2
Nz = = HPZZNH + (1 - PZ)ZNH )
SO
2 2 2 A a4 2
12y - 1l| HPzzNH - (1 - Pl)PzzNH
and
A 2 2 5 2
e, Zgh= = HZNH - lir - PZ)ZNH .

* I am indebted to Peter Breitenlohner for suggesting
this argument, which will show the existence of
I}I_J;Q HZN” =I:‘LT§21 ||P22NH-
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Therefore

Nzgl = UBZyl = Nzl
this shows that &Eg HZyll = a, exists, and also that
é}g 1P5Zll exists and is equal to a,. Similarly .
lim L - ﬁl)ﬁzzNH = 0. To prove that &Eg-s(ﬁlﬁ2)
exists, we must now establish that lim [IZy - Zyll , as M

and N tend independently to infinity, exists and is zero.
This proof is not quite as simple as we might 1ike*,
although it is straightforward. It is patterned after the
proof of von Neuman7, who establlshed the existence of
1im—S(P1P2P YN and 1im-S(P and showed that

PyABy = 1im S(P1P2P2)N = 1 %PZPIPZ) We have

12y 2l =(gymZygs g2 = Eogs 2y )+ (2 2o = s 20D - (220 »

so if we can show that each of the four scalar products
has a common limit, the existence of éim_ZN is established.

Consider
By = (ZypsZy) =((B,P e, 28,00
MN M?TN 1= PA 12

= (BB B B N0 = By BB N0
= &un-1
So
lzy - 2yl = gy + By = 2By

I1f we can now show that lim gk exists, the lim- S(ﬁlﬁz)N

K-
exists. The quantity gy = (PZ(PlPZ)Kx X)= ((PzPle)KX X)

is real and non negative. This follows from the fact that
P2P1P2 is a non-negative self-adjoint operator. Hence

* Prof. B. Misra constructed a proof based on the spec-

tral resolutions of the self-adjoint operators P2P1P and
P1P2P1 However, I prefer a more elementary proof which

1 give here,
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(ﬁzﬁlﬁz)% exists, and

= (BB BN 2, (B33 2 = R/2, 2
gg = ((PyP1Py) ™ "X, (PP P)) ™ %) 18,88 % 10
= (B K/2
Now gy g = ((ByP 1P5)¥,y) where y = (pz ) ey
or
A ~ 2 s 2 2
Bep1 = NEPHYIT s NEyI° = yll® = gy

so gy is a non-increasing sequence of non-negative real
numbers, and hence the sequence has a limit, %im 8K = 8o
s

Therefore [|Zy-Zyll - g, + 8, - 28, = 0. It is now simple
to establish that the limiting vector Z, = 1im (Ple) X,
has the properties Plz =Z,, PZZ = Zo,,and that Z, is
obtained from X by a projector, and that this projector is
P, AP Thus

12 o . A & N
By AREgE Lies )

S
=8 (E PoEa)

A A A N
1lim-S(P,P,P
e BISEA B Byp)

By the subspace P is meant, the closed subspace
obtained by forming all 1inear comblnation of x1€P1 and
X9€Py together with limits of sequences of such linear
combinations. Any vector y in (Py V Pp)* has the property
that

(y,Zl) =0, thPl

0, ZZEP

(y,25) 2
that is yEPll and yEPZL, hence y€P;* A le. Therefore

- y % L
Py VPR, =% - (" np0Y,

and

or - a

d
=

<

3/
N
1

=1- d-8p A (d-Bp).
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, =1 - d-P)(i-p,)
= ﬁ +P, - P P as before.

1 2 1°2?
The above result may be generalized to

>

<3

o
]

[0 PN A L4
Vi, - @ pY
for any collection {ﬁ } of projectors.

We may apply a projector P2 to each vector in the sub-
space Py = Pl
|
The result is in general not a closed subspace. However,
we may close it FzﬁfK = P, o P, and ask what is the pro-

jector P2 o ? for this subspace. In order to find
Py o Py we con31der the symbolic diagram:

B R

Let X be in the complement of P, 0 Py in P,. Then

(x,PzPlZ) =0 vZex
or
(P,P,x,2) = (Bjx,2)  vzex,
Hence .
Plx = 0, so
XEP and xEP P2. Thus the complement of Py, o Py in
}S Pl A P2
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Therefore

o
L)
il

P, - P, A Pll, or

4

=3 Bop il P1

2 2
Support: Closed Range (cf. Dixmiers)*

P, oB, =P

Consider now a bounded operator A. We define the
null space N(A) of A by

N(A) = {x,xex,dx = 0}

The support of A is defined to be the orthogonal comple-

ment of N(A) o » )
s(d) = N(A)

with projector §(A). Clearly

§(A) = inf {§;(88%= §) A = A8}.
is therefore called the right projector of A.
RP(A) If x + 0, x€S(A) then AX f O _for otherwise
= > Y€EN(A) which is orthogonal to S(A).

i
0

We define K = R(A), the closed range of A with pro-
jector R(A)

A~

e.g. R(A)X = R(A) = AKX

clearly ﬁ(A)A = A

and in fact

"

R(A) = inf {R,RR* = R,RA = A}

So ﬁ(ﬁ) = LP(A), the left projector of A.

Theorem: R(A)

S(A*), or in terms of projectors

% The remainder of material presented in this appendix fol-
lows Dixmier8 very closely. It is included because we
need the results to more firmly establish our own.
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Proof:

A = R(AHASA)
Therefore . O

A% = S(A)A*R(A)
and hence .

S(a) = R(A™),
and

R(A) = §(&%)
Therefore . =~ e .

R(A) = S(A") = R(A),

and

S(A™y = R(A)

Partially Isometric Operators (Cf Dixmier 8)

Let G be a bounded operator on X, S(ii) its support,
G is said to be partially isometric if G is isometric on
S(0) = S(1)X. Then R(d) = & = GS(d). The range of G is
a closed subspace of ¥ and G maps S({i) isometrically on
R(G).

S(0) is called the initial projector of & and S(&)
the initial subspace of u.

R(G) is called the final projector of G and R(G) the
final subspace of . Let X€S({), then y = Gx€R(() and for
all 7Z€X, we have

(x,2) = (8(®)x,2) = (x,5()2),

and since both ¥, and $(Q)Z are in S(O),

(x,2) = (bx,08()2) = (4x,uz)
= (y,02) = (§y,2) VZEK
x = &y

Now from (X,2) = (&*0x,Z)
follows %y = X ¥XES(Q)
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and therefore since Gy = 0 implies y€S(G)*,
%0 = §()

Now S(&™) = R({), R(G*) = S(&), and if yeR(D) = S(0™),

%y = x, G is isometric:
yER(Y) = S(U*) since y = G x is isometric.
Again . A
(y,2) = R(wy,2) = (y,R(0)Z)
= (&, TR®2)= (%, 5%2) ([@s(E)=0)
= (4b%y,2) vz
w®y =y yyerR(d),
Hence 40* = R(&).
Conversely:

Suppose WY =8 1s a projector
W2 = (A, Ex) = (W, X)

Gx) = G0 = 18a?

Thus W is isometric on S = 8K and zero elsewhere

Further il =
WW" = R(W).

1f VV* =R 1s a projector then ¥ is partially isometric

on R(V) = S(V ) and V is partially isometric on $(¥).

Polar Decomposition:

Let A be a bounded operator on ¥, and §(A) be the
projector on S(A), and R(A) be the g iector on R(A).
Let us deflne the operator |A| = )%. Then for VZEK

Azi? = (Az,Az) = (A*Az,z)

N ~ a N 2
= (|4l %z,2) = (l&|z,|A|z)y = Il |&lz 0
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Hence S(A) = S(|A|) and R(|A|) = S(|A|), since
= |A|. Further the correspondence

IAI*
[Alx ~ A

is a linear and isometric mapping W' from S(A) to R(A):
Ax = W'1Alx

We extend it by closure to all R(A):

A =Wwa4l.

S = sy,
R = R(A).

The expression A = WA] is called polar decomposition of
A. We state the important results:

S(&)

=
=
]

WW* = R(A)
We now adopt Dixmier's notation to fit our needs. ﬁM’ A

are projectors with subspaces Py and A.
We have seen that

ﬁ(AﬁM) =Ao ﬁM = A - AN ﬁM

= 3(AB™ = 3¢ M
R(AR) = S(BA) =B o B =4 -An ﬁM*
R(BA) = §(A§M) = ﬁM o A= ﬁM . ﬁM A A

We know therefore thgt there exist§ an isgmetric
mapping Wy from S(PyA) = KPM to R(PMA) = PA
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Further

BA = RIBAl = |4B|%

AA* A A A ~ ~
My = R(RA) =Py oA =Py - Py

Thus wM € APM is mapped

il
J
'
o]
=S

into

Sy = Wby SSPA =Py oA
and . . e 5 "
Y Sy = Yy Wyl = Sy 0 Ay
= R(APM)llJM (Ao PM)WM = WM
Similarly
€p A =
EM PMA PM oA
is mapped into i
Yo =1 Wiz By
M MM
and " B o
waM MM s
R(PMA)EM
= (PM o A)";M = §M
APPENDIX B

Additional Comments on RM

Let us introduce the unitary permutation operator
4 (P,Q) defined by

(ﬁ(P,Q)w)(Xl"'XN;yl'“yN) = ¢(xd L S A8
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where P is the permutation (a;...a,) of (1...N) and Q is
the permutation (Bl ..By) of }1 With this defini-
tion

N 1
A= 33 %% te,0

where the sums extend over all possible permutations P,Q,
and €p,€q are the signatures of P and Q respectively, We
now write ?M in the form

P

B(1)®P(2)®. .. P®I(M+1) .. .01 (W)

13M P(1,1)®P(2,2)®P(3,3)...9P(M, M
(supressing the unit operators on the remaining N-M elec-
tron and proton variables) in which the first number K of
K,K in P(K K) refers to proton coordinates and the second
to electron coordinates, With this notation

. % e P N
Ry = P8P (M+1,41) PP (MHL, M)

P

x Ix...x1x1 except at

>

where ﬁ(M+1,M+1) etc. includes
the (M+l)st position.

A first objection to the use of ¢ . might be that,
since the electrons and protons are idenélcal and W
assigns the first M electrons and first M proton to t%e
bound atoms, s could not be a good basis. This objec-
tion is not vallé however, for suppose we use a new basis
in which a permuted order for the electron and proton is
used:

Y Moo Mo
(6 (o) Sy (P,Q) "aij

aij

Then for a physical state ¥, G(P,Q)w = §P€Q¢,

(P Q)” = *p°gh

T |y

. M
Pe, oij' ! (BQ)

AM. ¥

M B
g el T 8,0 k.0

ﬁ(M+l) AM+1A*

AMA
@0 = Gk, Segr ™ Re g = 4 o i
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In the new basis § = % ¢%} Q) where
I

M

M s Ma _ -

e, Se,0f S’ T CrieoR ¥ = St
thus the coefficients C(P Qal] in the new basis have the
form

M = o )
(P,Q)ai] (PQ)aij’ (PQ)
= U M G
‘“<p @ Yaij ’ePeQu(PQ)wM)
2o, o150, 0 W
_ M
= Q(‘l‘aiJ,‘yM) = €P€Qcaij.

Therefore for a physical state the new coefficients differ
from the old by a single overall factor epey * 1, so the

description in terms of C for the orthog nal subspace
aij P

Ry is essentially independent of which electrons or protons
we label 1,...,N.

A further objection might be that although we may ex-

pand a physical state ¥y into orthogonal (non physical)
states wM

and although

the Ay, are not orthogonal and therefore do not correspond
(dlrecgly) to physical M-atom states.

This disadvantage can be further elucidated by con-
sidering that

ﬁM < P(M,M)
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and R cannot be considered directly as the physical M-
atom subspace since if we examine RM A we note that

f’(M,M)f{M AA = RM A A
Further since

P(M,M) = P(PM,QM){

S, (,Q

and A is invariant under 4(P,Q), we have
f>(PM,QM)f<M AA =Ry A A

But we know that f’(M+1,M+1)RM = 0, and hence

f{MAA=o,

s0 Ry does not contain any physical states.

This result is not as disturbing as it may seem. We
are using a decomposition of a physical states § into non-
physical components Ry, which, although strange in appear-
ance, is not 1ncorrect It becomes somewhat a matter of
taste whether or not to use the simple RMw s with COLlJ s
not having the symmetry we would like.

Finally we mention that not all cM, . having the cor-
rect symmetry* represent physical statesT Only those
satisfying a subsidiary condition can be states. The sub-
sidiary condition is determined from

M M sy _ 4 M
C(.ij ( CLlJ’qJ) ( CLlj ,A‘J’) o (Axaij:‘b)-
M M’ M’ Ay

However we may expand Ax 1 ﬁ g'i'j'xm’i'j/(xa'ilj alJ)
to obtain

M M M’

S o
Caij Ty i’i’j'(xalJ’Axa' . ')Ca L3

wCorrect symmetry here means that

(¢} . PR . are completely s etric in
e Oy Ay dpgr eIy P Y Symm
Qg e Qs completely antisymmetric in i

. and

M2
o e

N’
completely antisymmetric in jM+2"
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In the above result Xgij are just those defined by Eq. 31:
M _aM _a M s M _ .M _a M
Xo1j = Raij = PMlats - Pwi’ais = Yaij T PwrrVaij
F
=0 (x,y)..0 (xyI 0. . o, .0, V. b, (v,
ag VT W S Pl Yy e N
APPENDIX C
Proof that
A, =(AobP) AP, .~
Ay = (Ao by APy
We start with expression 3.12 for AM
N " ~ KW ~ A L
AM = A A PM+1 - A A PM
A L, a A L oL
A A PM+1 (A A PM )
Y A LA A 4
since A A PM <A A PM+1

~ 1 a Ay by L
SePei A A (AA B )
since (A A B)AC = A A@B A O)
~ all ~ ~ ~
=B g o {AANAO PM}
BU't ~ ~ A A a ~ A L
AobP, =A-AANP =AANAANP, ) and
M M M
AN (Ao PM) = Ao PM since A o PM < A, and therefore
A, =P . "AAopP)=(@Ao0b)AD *
M- By NA 0By = (AoPBy M+l
(or) . 2 .
s {A - 24 L 1A Bl ’
(ox)

AM = {A -4 NGRS RY (G
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SOME HEURISTIC REMARKS ON ALGEBRAI? TECHNIQUES
IN STATISTICAL PHYSICS

Joseph Dreitlein®
University of Colorado
Boulder, Colorado

Introduction

The introduction of _sophisticated algebraic techniques
into statistical physics® has divided physicists into two
non-communicating groups - those who categorically denounce
them and those who view the techniques as a door opening to
a view which could lead to the formulation and even solu-
tion of some of the outstanding problems of statistical
physics. The barrier which separates the two groups of
physicists is the language, arcane to the average physicist
and Shakespearian to the devotee. The main purpose of
these lectures is to attempt to bridge the gap between the
two groups of physicists by wording familiar situations in
both the secular and the professional mathematical language.

Physicists have been faced more than once before with
mathematigal refinements, Even Einstein reacted somewhat
adversely~ to the mathematical reformulation of special
relativity with the statements ''Since the mathematicians
have attacked the relativity theory, I myself no longer
understand it any more" and "The people in Gottingen some-
times strike me, not as if they wanted to help formulate
something clearly, but as if they wanted only to show us
physicists how much brighter they are than we'. Neverthe-~
less, Einstein went on to develop the general theory of
relativity using the highly mathematical theory which
sprang from Minkowski's formulation,

Briefly stated, the algebraic approach is designed to
handle the peculiarities which arise when a system is con-
sidered infinite in the sense of having an infinite number
of particles in an infinite volume but with finite density.
The peculiarities encountered include non-equivalent

*This work was supported by the National Science Foundation
under Grant number NSF GP-19479
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representations of the commutation relations and, most
spectacular of all, a breakdown of the symmetry™ which the
Hamiltonian of the finite system possesses. This symmetry
breakdown is the tocsin of a phase transition.

Two issues cognate to the subject are worth noting.
The first is that not all statistical phenomena are ex-
plained by taking the thermodynamic limit (N-w, V-=, 5 =p)
for which the algebraic method is specifically designed.
For example, thermal conductivity is volume dependent for
highly purified solids, such as solid He™, at low tempera-
tures. There are also conjectures5 that near the critical
point of fluids, certain observables may depend upon the
number of particles N in the system.

The second observation is that the algebraic tech-
niques used in statistical physics are also appropriate to
the quantized relativistic field problem. Indeed, the only
exact analysis to date of such fields, the %,  superrenor-
malizable model, uses heavily the algebraic and analytic
apparatus of the genre discussed here. The status of such
investigations is nicely reviewed by Jaffe”. Questions
such as uniqueness of the vacuum (called cyclic state be-
low) and symmetry breaking are shared by both relativistic
and non-relativistic theories.

Compared to the problems of formulating and under-
standing quantum electrodynamics, the non-relativistic many
body problems appear almost insignificant. Yet a hope is
that a thorough understanding of the latter case will serve
as a springboard for taking off into relativistic domains.
For some, this may be reason enough for formulating statis-
tical physics algebraically,

I. Algebraic Description of Discrete Finite Systems

For quantum systems described by a finite dimensional
Hilbert space (C"), the measurement of a dynamical variable
associated with the self-adjoint operator A involves re-
peated measurements on states concocted each in an identi-
cal manner. The measurements yield up a number <A> which
can be theoretically calculated from the expression

<A> = tr p A
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The density matrix p is hermitian, of trace unity and non-
negative. It describes a mixed state unless trp = trp

In none of the considerations in section I need p be con-
sidered to describe an equilibrium situation,

It is useful to redescribe this simple picture in a
more formidable algeraic language with the goal of formu-
lating a scheme which carries over to description of sys-
tems with an arbitrarily large number of particles (ideal-
ized to systems with infinite number of particles). With
an appropriate algebraic language, one can hope at least
to state clearly such important physical questions as what
is meant by multiple phases in the thermodynamic limit, by
symmetry breaking and by the development of irreversibility
from microscopically reversible finite systems.

1. The Space of Observables and States

Certainly in the set of observables ¥ all her-
mitian operators should be included. Furthermore, if
it be realized that any operator on cN can be written
as the 1inear iomblnatx n of two hermitian operators

A

(viz, (A+ )+ 1(A A )), there is little point in

not extendlng the set of operators under consideration
to include all N x N matrices., The restriction of the
algebra of observables to purely hermitian operators
has, howevsr been investigated by Jordan, von Neumann
and Wigner’., The question of observables becomes more
acute for a spatially infinite system because of the
finiteness of measuring instruments,

The set of all N x N complex matrices forms the
complete matrix algebra ¥ on cN. 1t is an N? dimen-
sional vector space and closed under matrix multipli-
cation. This means, if A€Y and B€Y then

(XlA + XZB)EM (vector space property)

(1)
ABEY

where Xl and XZ are complex numbers. The algebra

possesses an involution-hermitian conjugation- and
can be normed by setting
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= 2

where |||l is the norm of the vector ¥ in CN
The norm has the defining properties

(N.1)  llal = 0; JlAl=0 1ff A=0 3)
(N.2)  A+BIl = liAll + Bl

(N.3) Al = M| Al r€C

(N.4)  11AB|l < Al |IBI!

(N.5) I =1 (I=identity)

(§.6) At = Al

The normed algebra with these properties is called a
C*-algebra, It is closed with respect to this norm,
Further mathematical details can be found in refer-

ence 8.

A state on the algebra determines the results of
any physical measurement on an ensemble prepared in a
way described by the state. It is an assignment of a
complex number (real for hermitian operators) w(A) to
every element A€Y, These numbers should agree with
the rules of interpreting quantum theory and, of
course, describe the experiment. To be a state, the
functional w must be linear (superposition principle)
and non-negative for positive observables. Require
therefore

(s.1) w(klA1 + XZAZ) = xlw(Al) + xzw(Az) %)
(s.2) w(ata)y = 0

(8.3) w(I) =1

The last requirement (S.3) means that if the identity
I be resolved into mutually orthogonal projectors
(physical alternatives); I =%p , p. p_=8_p , then

one of the mutually exclusive pgssigiTities associated
with these projectors is sure to occur,



ALGEBRAIC TECHIQUES 101

What are the possible states and how can they be
classified? To answer this question, a geometric
picture of state space 8 may be heuristic. The set
of all (bounded) linear functionals on ¥ itself forms
a space, here of dimension N“ over the complex num-
bers. This follows because the combination A f1+X2f2
of two linear functionals is itself a linear func-
tional because it satisfies S.1. 1In this so called
space dual to ¥, the set of non-negative functionals
form a convex subset which is geometrically a cone.

A set § is convex if f,£,€S implies that

lel + (1-2)f,€8 for A réal and between 0 and 1. The
set of all states satisfying S.1, S.2 and S$.3 is a
cross section of this cone and itself a convex set.

For the finite dimensional case under considera-
tion, the linear functionals representing states have
the representation

w(A) = tr(pA) (5)

where the density matrix p 1s any positive hermitian

matrix normalized to tr p = 1 (Hermiticity of p fol-

lows automatically from linearity and non-negativity

of w), States realized with the density matrix con-

struction are called normal states. Every state of a
finite discrete system being considered in this chap-
ter is normal.

2, Symmetry and the Classification of States

The set of all physical states 8 ordinarily does
not come into consideration when studying a physical
system. The reason is that the admissible states are
restricted by the prearranged experimental conditions.
For example, the system studied may be in equilibrium
or it may be spatially homogeneous. Both these con-
ditions are brought about by allowing the system to
interact with itself and the environment for a suf-
ficiently long period of time. In addition then to
specifying the observables and the possible states,
physical systems have imposed upon them various sym-
metry properties.
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To describe a symmetry of a system, the auto-
morphisms of the algebra of observables ¥ are used.
An automorphism of ¥ is a mapping of the elements of
2% into themselves

a: A - a(A) (6)

which preserves the algebraic properties

(A.1) a(rpA) + My8,) = ha(A) + ha(ay) (7
(8.2) a(A)8,) = a(A)a(b,)
(A.3) fa(a)ll = llall

(a.4) a(a™y = o)1t

In particular, the set of automorphisms considered may
form a group., Let {g.g,...} be elements of the group.
Then the group property is

agl[agz(A)] 5 Gglgz(A) (8

An example of a symmetry group of a system is the
group of time displacements at(A)

o (o W] = o o @ ©

By definition, a state is invariant under the group G
if
w[ag(A)] = w(A) for all A€¥ and g€G. (10)

States invariant under the group of time displace-
ments are called equilibrium states, The states of
interest may be restricted by demanding that w belong
to the set of states invariant under some symmetry.

Suppose that the set of admissible states is re-
stricted to some subset R of & which is convex. Every
convex set possesses a set of extreme points E(R) with
the defining property
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(E) If w€E(R) and w=kw1+(1-k)w2, then w,=w,=v

1
for real N between 0 and 1, (11)

The states in E(R) are the pure states. All other
states are mixed states (For a finite system, a pure
state in the set of all possible states & entails

tr p“=1)., Remember that this terminology is relative
to the set ® being considered.

When the states of a system are restricted to
those invariant under a group G, the subset of states
will be called 8,, the set of G-invariant states.
States which cannot be decomposed into a mixture of
two differing states invariant under G are called
extremal invariant with respect to G and will be de-
noted by E(SG).

For the mixed states of the system, it is always
possible to decompose the state w as a linear combina-
tion of other states in an infinite variety of ways.
For example, let the set St be the states invariant
under the time displacement group T of some Hamilton-
ian., Let the spectral decomposition of the density
matrix p be §papa then,

w(A) = Zp w (A) (12)

wa(A) = tr paA

Even this decomposition is not unique if any two of
the p, are equal (Try p=1!). 1In this case the state

w has been written as a linear combination of extremal
states. 1In order that all points of a convex set in
N dimensions be a unique combination of extrfmal
pointsN Ehe convex set must be a simplex oN-1, (A sim-
plex 08" % is the Nth element of the sequence: point,
interval, triangle, tetrahedron ...). The physical
import of these considerations on extreme points will
become clear only when infinite systems with multiple
coexisting phases are considered,

It is clear that the symmetry properties of a
system do not restrict the set of admissible states
to a degree sufficient enough to specify the state,
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Besides homogeneity and statiomarity, ordinarily the
temperature is set and suffices to determine the
state, While this restriction cannot be imposed as a
symmetry, it can be imposed as a condition on the
state, Consider

tr e-BK(AB) L tr o B o Py P

= -BK
tr e PX ELje P

w(AB) = @3)

Define

-BX B3¢ (14)

aB(A) =e Ae
The above devslopment motivates the imposition of the
KMS condition” on the state

w(AB) = w(BaB(A)) (for all A and B in %) (15)

This condition suffices to prescribe the state of any
finite discrete system uniqely. The proof goes as fol-
lows:

BK BK

=tr(e Bxkeﬂx

(1) tr p(AB) = tr p Be
-B}CAeBKp)B =0

P)B (16)
so tr(pA-e
(11) Since B is arbitrary, choose it equal to the

hermitian adjoint of the exgre %on in paren-
theses and conclude pA = e

(1i1) Premultiply by eP¥ and observe eBKp commutes
with all A, hence is a multiple of the ideg-
tity. Normalization yields p = e~ BX/tr e

For infinite systems, while &ig ePYN will not exist

Kﬁ=N part&cel Hamiltonian), it is often true that

%33 e P¥pe" N w111 exist and offer a means of compu-

3. The GNS Representation

The most familiar realization of the linear func-
tionals w and the algebra of observables has already
been cited, viz the specification of the state by a
density matrix and the representation of the algebra
by the N x N matrices with w(A) = tr(pa).
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Another possibility is to represent the algebra
of observables by matrices acting in a Hilbert space
CM(M.>N) and obtain the state functional w as a single
matrix element of the observables represented. The
GNS (Gelfend, Naimark, Segal) constructionl0 leads to
such a representation both for finite and for infinite
systems.

To see the main feature of the GNS representa-
tion, consider a pure density matrix which is neces-
sarily of the operator form

p = |8> <§| <¢le> = 1 (17)
The observable A records as the number
w(A) = <A> = <8 |alE> (18)

One might wonder if there 1s always a representation

of any w of this type even for mixed states to be pre-
cise, does there exist a representation of observable
operators 9 (A) acting in a Hilbert space I(, such that

w(a) = (2,9,(8)¢%) (19)

The GNS construction leads to such a representation,
Furthermore, the representation of this form is ren-
dered unique if we demand that |&> be cyclic. A vec-
tor ¢ 18 cyclic relative to the algebra ¥ if the set
{D,(A)? |AcU} 1s dense in the space ¥, that is, for
any vector ¥ in the space X |]y-D,(A)%|] can be made
as small as desired by a suitable choice of A, In
other words, the space ¥, has a set of operators D (%)
which are not too sparse, The cyclic vector ¥ is of-
ten called the vacuum,

Recall first the defining properties of a representa-
tion

(R)) O, (1144 8,) = A 0 (A))41,0 (A)) (20)
(R)) B,(AA,) = B (A0, (Ay)

(Ry) o, (") = [0, (A)]*
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To see what is involved in the construction, the
details will be worked out first for systems whose de-
fining representation operates in C“. The algebra of
observables % in the space (physically realized as the
space of a spin % particle or of photon polarizations)
consists of elements ¢ of the form

c = a°00+a101+3202+a303 (21)

with o, as the identity and the multiplication law

ciaj = 61j+ieijkdh 1 105 [T () B S (22)
With no loss of generality, the density matrix may be
chosen as
eYcB
PREe——ri (23)
tr(e'’3)

The linear functional thereby defined has the action

w(oo) =1 w(ol) = w(cz) =0

(24)
w(c3) = tanh vy
Seek a representation of the form
w(@) = <¢|9 (9) 2> (25)

Clearly O (0) cannot be an irreducible representation
of the algebra for vy + ©, (There is only one irreduc-
ible representation of the complete matrix algebras.)
The next simplest representation is the 4-dimensional

one
2(0) =[‘(’, 2] (26)

Setting ¢ = (¢1@2@3§4)T (T is the transposition to
colunm form), seek ¢ such that
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2 2 2,112
<é|a( ) (8> = o] +|§2| g |+ 19] %=1 (27)
<tlo@)) |8 = (8,008, 1)+(§3 i 3) it
<t[0(0,) 18 = 1(3)",-2,%8 )41(8,78,-8,70 ) = 0

2 2
<@]n(c3)|@> = l¢1| -f¢2| +f¢3[ -|@4| = tanh v

The solution is

1+tanh v _ | l1-tanh vy
oy = JLHEERY g | o f1EEIRY (o
le,| = 12,1 =0

It is convenient to take instead a related representa-
tion

9(0) = [% g] ¢ =000, (29)

for then we have (with a phase choice) the product
form
J 1+tanh vy
2

¢ = ® (3
?/ 1l-tanh Yy
2

1+03 1--03
Q@) = | —-—|® ¢ + ®0c (30)
2 2
N N’
Recall that if @€C” and ¥€C, then ¥®x, the direct

product is a vector in C with components ©, xJ

While the representation is reducible, ¢ is cy-
clic (if v 4 «) since =

140 1+tanh o
D[c[ 5 3]]@ =«/__2‘"'— ® v(é)

1-03 P 0 1
n[a[T]w =| l-tanh 9| ® 0(0) (31)
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1
clearly spans the space C4 since 0(0) generates the
space C-,

To summarize, the GNS construction provides us
with a representation of the algebra of observables
% such that the state w is represented by the matrix
element of a cyclic vector

w(A) = (%,9_(A)%) (32)

Formally, this insures that all calculations at fi-
nite temperature ''look like' calculations at zero
temperature,

Given a linear positive functional (a state) w
and a C*-algebra of observables, GNS have proved the
existence of such a representation with a cyclic vec-
tor &, The representation is irreducible if and only
if w is a pure state, Note that in the representation
constructed above, the state is pure at y== (zero tem-
perature) and that ¢ 1s no longer cyclic, The GNS
construction then leads to the two dimensional repre-
sentation

L) = (2,08) 5 & = (p) (3%

4, The Representation of Finite Dimensional Algebras

The explicit construction of the GNS representa-
tion for the finite dimensional discrete systems pro-
vides a concrete case illustrating the structure and
properties of such representations.

With no loss of generality, the density matrix
specifying an N level system may be assumed diagonal
with eigenvalues p.p,...Py. Let E'™ be the matrix
with entry 1 in thé fith row, mth column and zero
elsewhere. Then

nm
tr p E = pnénm (34)
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The GNS representation then must have

<e |9 (E™) |e> = o8 (35)

All elements of the algebra are obtainable from EM™®
since

A=% a_E°
rs IS

(36)

where of course the bases EYS are dictated by the
state p. The multiplication law in ¥ is determined by

mn._rs ms
EE" = 6an (37)
Introduce the transposition operators P oper-
ating on CN. These have the defining propergy
T T
Pn(cch"'Cn"'cN) =(CnCZ”’C1"'CN) (38)
p=p p %1
n n n
Write
rs, _ mn rs
QE ") = X E © P E 128 (39)
Clearly,
mn s, _ ms
O(E HD(E) GnrD(E ).
(L E™ Hy=[o(e™]* (40)
Set ¢ = (AlAZ"'An)T ® (100...0)T. Then since
rs T_ (1l n=r=s
(100...O)PnE Pn(100...0) = {0 otherwise (41)

only the terms with r=s in <% |O(E'®) |¢> are non-zero
But 8 %
<e|9(E™) 8> = A _"A_ (42)

Selection of Ar*Ar=p yields a representation, The
phase can be selecteﬁ arbitrarily, say
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A, =p, (43)

Is ¢ cyclic? 1If no ps=0, simple considerations show
that ¢ is cyclic. 1In this non-degenerate case, cycli-
city follows immediately from the expression

T

Ay) (44)

’Als"' NS

D(A)E=Z(0. . .Ag-..) @Ay Ay -

The fact that A =Jp #O for all s and the entries A
A—Z Ap E 1nsures that 9(¥)?% spans the space. Of

course, the representation is reducible in the general
case since (E™®1)%¢ is a space invariant under 9(¥%)

1f PN o -=p =0, the GNS representation is
in a space o¥ &R dimensions. Write in the degenerate

case
R
o(E™®) = L, E" @ P E°P_
_ T T
§ = (Ap...AQ)" @ (10...0)
A = o @5)

The vector ¢ is cyclic. In particular for a pure
state (5 poos
QET) = E .

As expected and the representation is N dimensional.

Thezreduction of the dimension of the Hilbert

space cY" as the "mixed state becomes purer'" can be
described more formally. A left ideal 3. of an alge-
bra % is a subspace of the algebra with %he property

ABEUL for all A 4, B JL (46)
One particular way of constructing a left ideal is to
consider the set of all elements B such that

tr o (B B)=0 The set so formed is a left ideal as a
simple calculation shows. To xeduce the dimension of
the representing space from CN“ to C™, find a projec-
tion operator m such that
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0 for BEJ

mo(BtB)m X

w(TO(A)T) = w(a)  for A4T Y))

The GNS construction then leads to the Hilbirt space
c¢MR spanned by the vectors in Ty where y€cN“, This is
what was done in the previous paragraph,.

To conclude the discussion of the algebras acting
in CN, it is interesting to note that although the GNS
representation is generically reducible for finite T,
the algebraic representation is economical in the fol-
lowing sense. Let 9(¥)' be the set of operators in 3(;
which commute with all 9(¥). Then

D) N D) = AD(E) (48)
Q(E) = representation of the identity

Such a representation is called primary. In addition,
the property

Q@) = [0(A) '] = 0(¥) 49)

can be verified. This last property defines the repre-
sentation algebra as a von Neumann algebra. A von
Neumann algebra is a factor if it satisfies the condi-
tion of Eq. (48). To prove these statements it suf-
fices to exhibit the elements of 9(¥)' explicitly.

B belongs to 9(¥)' if it is of the form

R

m
m‘f} bn (E ®PP) (50)

for arbitrary complex b .

I11. Algebraic Treatment of Infinite Lattice Systems

The remaining presentation will be concerned with in-
finite systems of a special type - lattice systems. A lat-
tice z9 is the set of all elements indexed by a d-tuplet
of integers (nl,nz...n ) = n. Physical lattices occur
naturally in crystals %here d=3, of course and n locates
an elementary atomic grouping from which the crystal is
made. A subset A of the lattice is defined to be any sub-
set of the lattice points.
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To each point n€zd of the lattice, associate an s-di-
mensional Hilbert sapce Cns. For example, if the lattice
is the idealization of a crystal with spin % particles on
each site then the space CnS is the two dimensional complex
space describing the spin at site n on the d=3 dimensional
lattice. Direct products (also called tensor products) of
these spaces

n€A B
® Cn (51

are the spaces of interest here. From now on, s is taken
to be 2. For A a finite subset, the Hilbert space of the
direct product is finite dimensional and the analysis of
operators in this space is straight forward. On the other
hand, when A is taken to be d itself, the infinite tensor
product has novel properties™ . It leads to an inseparable
Hilbert space.

1. Infinite Tensor Products

Nothing topologically or algebraically eventfully
happens if a set of N spins is described by the tensor
roduct of their Hilbert spaces. The tensor product

ﬂ Cﬁ is defined to be the 2N dimensional Hilbert space
obtained by forming all linear combinations of the N

tuplet
(wl,wz,...mN) = ¢ with cprECr2 (52)
with the properties
(wl,mz,...xlmrl+ kzwrz...mN) = kl(mlw3..wrl..mN) (53)
+ xz(cplcoz...cprz...cpN) (0,%) = (@5%q) -+ (PpaXg)

Upeon this space operate all the bounded operators

N
B(¢® an) which are generated by taking sums and products
of the basic operators

181®,..® 0'®1®,..® 1 (abbreviated o )

(54)
reas aér)+ a{r)air)+ aér)cér)+ agr)cg
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(r)

The action of o is defined by its action on a g~vector

(r) _ (r)
g = (mlwz...c wr...qh)
(55)
r . r r
o (xlw + sz)— MO0 + A0
In statistical physics, the simplified thermodynami-
cal properties of systems are expected to be exhibited
only when N - « ., Something mathematically eventful does

happen when the number of spins is assumed infinite.

The complete tensor product @ C 4 is defined to be
the Hilbert space constructed by takiﬁg all finite linear
combinations of vectors of the form

® = (0;0,05...) v EC (56)

and completing the space with the help of an inmer
product defined by

(2,0 = T (95,%) (57)

The value of this inner product is defined to be finite
only when the product converges. It is zero otherwise
by definition. The Hilbert space so constructed

@

® C Z is non-separable since uncountably many vectors
can be made mutually orthogonal. Such a space is not
useful to represent the physics of quantum systems.

To obtain a physically relevant Hilbert space for the
infinite dimensional system, select a vector o of the
form given above. A vector ¥ = (xlx X3 ...) is defined
to be equivalent to ¢ 1if only a fln%te number of Xi
differ from the corresponding ¢, . The usual inner
product 1s formed and is well de%ined for all finite
linear combinations of vectors of the form ¢ . A
separable Hilbert space X(9) results by taking all
finite linear combinations of vectors in the same equi-
valence class and completing the space with the help of
the norm formed from the inner product. The Hilbert space
%(p) is called the incomplete tensor product.
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+)

As a specific example, let & represent a vector
with all spins up, All victors with a finite number of
spins down belong tg #(%®"). Another equivalence class
is generated by Q(' representing all spins down. In
%(%") are all vectors with a finite number of spins up.
One notable peculiarity of infinite systems is discern-
ible here - every vector of y(@g) is orthogonal to every
vector in %(&~).

The representation of algebras in K(§+) and (&)
can be unitarily inequivalent representations as the
following example shows. Suppose that in the algebra
under discussion, there is the bounded operator

N
A=tin § 3 o) (58)
Now n=1
On K(w+), this operator is represented by 1, on (e ) it
is represented by -1. Clearly there is no unitary trans-
formation such that

G, =18 = (s
VANV = A (59)

PRI\ R |

There is a class of Hilbert spaces which should be
considered as physical equivalent to 3(¢™). All such
spaces are generated from vectors X which are called
weakly equivalent to o' . The definition of weakly
equivalent vectors is motivated as follows. Consider
a transformation V acting on #(+), which has the action

i i? id
D
5 0 0%

+ _ 1 2
V& = (e G, e oy, e

+ (60)

Lo (alaazyaga--)

Physically, the choice of the phases should make no diff-
erence in the state., V may be written formally as

V=8&e (61)
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but the matrix element
i
+ ook @
(T ,v8) =me ° (62)
may be ill defined if Z¢_ is unbounded. Instead of V
the ''renormalized" form may be used

L i Do
vie8, 2 R (63)

+ +
Then V'§( ) = & . However, the effect of V' on operator
is not completely trivial. For example,

bl

ip
o™y = ¢ R (64)

Clearly, V' is a unitary operator in the separable space
M(m+) and yields an equivalent representation of the
algebra.

The criterion for weak equivalence of two vectors
¢ and x is that

Flt-lCe, x )l <=, (65)

For vectors in the same equivalence class, the analogous
criterion is

ZIL- Gop, )l <= (66)

One advantage of working with the algebra of opera-
tors rather than with the vectors in a Hilbert space
follows from the above discussion. Rays, not vectors,
are uniquely associated with physical states. For infi-
nite systems, the phase arbitrariness leads to the
necessity of classifying vectors in weak equivalence
classes. The algebraic formulation of the structure of
infinite systems is, in this sense, strongly motivated.
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2, Algebra of Observables on lattices

For the ideal infinite system, the algebra of
observables should be somewhat restricted to accord with
the finiteness of the apparati of observation. A second
practical demand is that the infinite system be mathemati-
cally tractable. Among the other requirements, surely one
needs a simple device for constructing and specifying
states of an infinite dimensional system., 1In order to
carry over most of the ideas developed in section I for
finite s;stems, it suffices to assemble the observables
into a C"-algebraic structure called a quasi-local

algebra.

Consider any finite subset A of the lattice. On
the subset, the algebra of observables #(A) is taken to
be the algebra of all bounded operators. For lattice
systems of spin % particles, ¥(A) is simply the algebra
of all operators in a finite dimensional Hilbert space

& C2n of dimension ZN(A) where N(A)is the number of points
in “A, The set of all such algebra

fu(n): A finite, ne 2%} (67)

provides plenty of observables. The super-algebra formed
by the union of all these algebras Y %(A) is the
algebra of local observables. In the algebra U %(A)

a particular operator A(A;) acts as the unit oﬁerator on
the sublattice which is tﬁe complement of A, and has, of
course, its original action on the Hilbert Space

3(Ay)

The set of observables is conveniently made slightly
larger by completing the algebra in the norm topology.
The resultant algebra TUAY N is called the quasi-

local algebra of observﬁbles. The reason for completing
the algebra is two-fold. One is physical. For most
Hamiltonians driving the operator A (A), the time

evolute of A(A) will be contained in the quasi-local
algebra but not in the local algebra. The explanation

for this behavior is essentially the reason why a strictly
localized wave packet in ordinary quantum-mechanical
Hilbert space becomes non-localized as soon as the time
evolution operator works on it even though its norm is
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preserved. The second reason for completing the local
algebra is to obtain a C" -algebra. For C"-algebras
with a state defined on the system, the GNS construction
yields a Hilbert space with a cyclic vector.

3. States of Infinite Lattice Systems

Given the algebra ¥ of quasi-local observables,
the states of a physical system can be defined just as
was done for the finite system. A state w 1s a positive
normalized linear form (or functional) satisfying
s.1l, s.2, s.3 of section I.

To construct a state by the canonical procedure,
first take any observable in the local algebra, say,
A € M(A}). Form the linear functional w, (A) on the alge-

bra U(A}y where A > A, ., The limit is now taken as
2 i
A - 2. Define.
w(d) = lim v, (A) (68)
A= Zd

The question of the existence of this limit involves the
nature of the Hamiltonian of the system. Extensive in-
vestigations have recently shown Eng such limits exist.
In particular, Lebowitz and Lieb have shown the
existence of the thermodynamic limit of the free energy
for quantum systems with Coulomb interactions. Therefore,
assume w(A) exists for all A of the local algebra. To
define the state on the quasi-local algebra extend the
functional to the algebra completed in the norm. Such an
extension exists and is unique.

*
The specification of the C -algebra and the state w
then provides the basic ingredients for the GNS con-
struction,

4. Symmetries and the Classification of States

The realization of a symmetry on the algebra %
is given by specifying the automorphisms of the algebra
induced by the symmetry group. It is assumed that the
state is invariant under the automorphism
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w [a(A)] = w(a) (69)

which means that the physical system admits the symmetry.
When the algebra is realized as a set of bounded operators
acting on the Hilbert space obtained from the GNS construc-
tion, it turns out that the automorphism is implemented

by a unitary operator which leaves the cyclic vector
invariant.

States invariant under the symmetry group G are
called G-invariant states.

Instead of introducing more definitions and classifi-
cation schemes at this point, specific examples of infi-
nite lattice systems will now be used to clarify the
properties of infinite systems.

I1II. Simple Models of Infinite Lattice Systems

To illustrate the rather abstract formulation of
section II, two specific models of infinite lattice sys-
tems will be described in some detail. The first model
is the one dimensional Ising model; the second the Ising-
Weiss model: the latter exhibits a phase transition at
finite temperature.

A, e=Di ional Isi Mod.

The one dimensional Ising model consists of a
set of spin # particles on a one dimensional lattice
interacting via nearest neighbor interaction. The
characteristic feature is that the interaction depends
only upon the third component of the spin on each
lattice site, a limiting case of the Heisenberg one
dimensional spin system where the interaction becomes
highly anisotropic.

1. Hamiltonian of the Finite System

For an N-spin system, the Hamiltonian is

3% = _anlo3(n)03(n+1); 03(N+1)E 03(1) 70)

Cyclic boundary conditions have been chosen.
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The Hamiltonian is invariant under the cyelic group
whose action is to translate the spins on the sites in a
cycle. Another symmetry admitted by the Hamiltonian is
the symmetry group of a disc 9w. All elements are genera-
ted by rotations about the z axis through an arbitrary
angle ¢ and rotation of all spins through w radians
about any axis in the 1-2 plane. In the infinite limit
N - «  the group Ow will be broken at T = 0 .

The partition function for the finite Hamiltonian
N is evaluated by introducing the transfer matrix

BJij
Tij = e (71)
which takes on the form
v =Y
T=e 7 +te T (72)

where T, are Pauli matrices in the transfer space and
T 1s the unit mafrix. Then, a simple observation yields
o N
BYKE c(n+1) - &
n=l 3 N eV e Y\
ZN S e spEel T = 66
c(n)= 1 (T.8) e ¥el
3 (73)

Y = BJ
(T.S.) = transfer space

2. States of the System for Arbitrary T

To determine the state of the system, the
limiting functional

w(a) = tim u (4) (74)
N

will be computed. It is sufficient to compute
@) @) @),

e @ (75)
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(n))

ke .

where © is an element of the complete matrix algebra
at site n, . It even proves sufficient to compute an
even more Specialized form

(n, ) (n,) (n)
(o Paioy ) @, > ony ) e

since these alone are non-zero as a symmetry argument
shows ,

The basic observation needed to evaluate the
correlation function
Sosliinns ] ( c n +m1 (n1+ml+m2)..
N 12 1 ‘N3 93
7
(n1+m1+m2 + mr)>
o

is that

CN(m m,

17 'mr) -

1 (78)
tr M T T =TT i T
(T.5)

tr TN
(T.S)

where T is a matrix in the transfer space (T.S). It
is an eaS8y matter to evaluate the expression by utilizing
the identity

Tlg

, *
aE (2sinh"y) e

(79)

A

-
tanh( e ; € = (tanh Y)

and the state functional becomes
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w(g (ml)o (nl+ml)(7 (n,+m, +m,) ] (n1+m1~hn3+..-hnr)>
3 3 3 )
0 (r even) (80)
= m1+m3+'-+m
(tanhY) T(r odd)

Observe that the correlation functions have the factori-
zation property

W <0' (nl)c(nl-hnl)o (nl-*m:l-.,-mZ) o .) =
’ ( )3( )3 ( ) ( b
B SRR o (ngtmptmy) (o) 4wy 4, 4my)
= W <0'3 (o3 ) w KO3 0'3 > S
so that all that is needed is
(n) (n,4m;) m
w <c3 L Oy 171 ) = (tanhY) 1 (82)

Note that the Griffith's inequalities are clearly
satisfied.

To evaluate the expectation value of any element of

the algebra of quasi-local observables, the state func-
tional is extended to the elements of the norm closure

of

the generating elements whose state functional has

been evaluated above.

to

As an example, the energy per particle e is found

be
y (n) n+l
=W 4im -J T o c
<N—«>° No=1 3 3
=W < gim -J w (0§1)°§2))> = -Jw<93(1)03(2)> (83)

~-J tanhBJ
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3. Cluster Properties

The cluster properties of a system provide a
means of studying properties of the state w. To define
the cluster property, start with a group G under which
the state is invariant w [a (A)] = w(A) . For the one
dimensional Ising model, theggroups of interest are F
the direct product of the translation group T and the
group D and the time displacement group U .

A state is strongly clustering if

lim w (ag(A) B) =w (A) w (B) (for all A and B) (84)
g

It suffices to che%k the clustering properties for the

model for w(o3nd3 ). Consider the translation group
. n m . m-nta

tim 0 (5, (03"05") = ¢m (ganh) T @ o)

(85)
n, _ n+a
S oyl a=oy
For non-zero temperature
. n,  m\ _ £ n m
:i‘: w (o (03M0,") = 0 = w (63" w (95" (86)

On the other hand, for zero temperature, tanhy= 1
ny, .M
but w(c3 ) w(c3 Y =0 .
For zero ltemperature, the system fails to cluster

strongly, an indication of long range order.

The extremal invariant states now possess the
strongly clustering properties on account of the trivial
nature of the long range order properties.
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4, The KMS Condition

123

Finally, the KMS condition may be applied to the

determination of the state of the system. Demand

w (AB) = w (B og (4))

-8 - BIC
Lim QB A) = e yﬁA e MN
N =
Then
n n
st
(n+1) (n-1)]
i (G(n)_ 28Jlog +g ERrar L e
B+ € + R 1 2
+1 (n-1)
28300, 40 ]
aB(Ufn)= e E 3 o_(n) 3 0 = cl-ic2

Use now .relations such as:

) (cié)o_(n) = w(o_nas(o+é))

w (ofn)cié)) =w (a+éa5(cfn))

o [P0 = o [0 ] = el

and translational invariance to obtain

2w(ogc3n+1) cosh2y - w(cgog+2) sinh2y = sinh2y

(87)

(88)

(89)

(90)

The validity of this relationship can be checked.against
known results. This illustrates how the KMS condition

can be used as a calculational tool.
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B. The Ising-Weiss Model

In a sense the Ising-Weiss model is the opposite ex-
treme from the nearest neighbor interaction just con-
sidered. Each spin now couples equally but weakly with
all spins with interaction Hamiltonian

N I N C VR
N (aFL %3 ) (2]

Clearly the space dimension of the lattice is irrelevant.

1. The Canonical Construction of the State

To evaluate the partition function, it is easiest
to use a basis in which Zo3n is diagonal, for then

- %y R’
ZN = tr e =L IM) e
i (92)
M=N, N-2,-++, -N

(M) is the multiplicity of orthogonal states in the
space of fixed M . A simple calculation yields

non = r«!/ Eoy E (93)

As N-=, T(M) sharply peaks around M = o because
of the voluminous phase space. Indeed, an asymptotic
evaluation of (M) yields 2

1 M
ne - ——e N (94)
/27N

On the other hand, in the partition function the
energy favors large M2 again exponentially. The con-
flict between the demand of large phase space and low
energy is resolved at high temperatures by the domination
of the phase space. To see this, use Eq. (94) tentatively

in Eq. (92). Then 28J-1 MZ
(my

(95)
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If 2BJ<1l, then indeed ths approximation (Eq. 94) is self-
consistent since< M

(/) 20

The situation changes at the critical temperature

28 J =
i (96)

for now Eq. (94) can no longer be used self-consistently.

Write 2
wmn) Ef M

Z, ==L e e 97)
i M

and seek the maximum of the function

I + pJ M2 (98)
N

Stirling's approximation can be used for I(M) for all
cases except T=o. The condition for an extreme value is
then

1 1tm -
) in < 1o ) + 28Jm = 0
(99)

m - tin ()

That this is the Weiss expre331on for magnetization follows
from the identity Baah X Tl in (

Below T the m=o solution must be excluded as shown above.
Above Tz, m=0.

The state of the system is now easily determined.
Above Tc’ the state is independent of T and is given by
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(n) () (o)
w(d) = w(o M o) "2 cee0 " = 0 (A#1)

w(A) = w(l) =1

Below T , again all observables not of the form of
11? a§ comblnatlons (and their limits) of

(100)

03 2)--- have w(A) = o. Otherwise, the state is
determléed by

() (@,) (n)
w(03 og SR ) =o (r odd)

M) (@) @) ROy
w(03 04 ee Oq = m (r even)

where it is assumed that no two of the indices ni are
equal,

The ground state needs separate investigation but
again leads to the above result with m=1.

2., Symmetry Breaking

Below T , the state of the system can be written
as the linear cofibination of two states, each extremal
invariant under lattice translations. In each of the two
states the spins are all aligned in the same direction
with

wy (o4 ®)y = ul
(102)

= |m|

wz (0.3 (n))

Further considerations run along the same line indicated
in part A of this section.

3. The Cywlic Vector of the GNS Comnstruction

For T=o, the GNS construction leads to the cyclic
vector

g Dela@] oS
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and the observables are represented by

) (n,) DS 1+0 (n) (n,) (n )
lgw(:a(nl - n, ."c(nr S <_§_§) o n, = n, I By

1-0. (n;)) (n,) (n)

Sk AN A N2 -

+<2 )@o o) o0 2 (104)
The only non-obvious fact is the cyclicity of ¢. Consider

(n) (n,) ()
1+o "1 140 2 i

(nl) (nz) (n.) 3 - 3 X 1+03 =
o Yo .o (= ) (= ) J. (105)

Applied to ¢, this yields

(@) () (n)
%5 (3) ® g = g Z - ; é)
Similarly,
(n;) (n,) (n)
(nl) (n2) (n) 1-03 gl 1—03 2 1-03 X
o o o (s ) (5 )= )
(106)
applied to ¢ yields
() () ()
%7 (g) ® o 1 il g é) (107)

From these relations, it is clear that the algebra gener-
ates a dense set when applied to ¢.

The extremal invariant states can be obtained by
writing

e 1- o, @
¢={<To:—3-)®gl}¢+{<—2—o—3\)®gl}¢z7%.+7% (108)

The state w then decomposes

|
2

w
2
+ 5= (109)
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For o < T < T_ , the GNS representation is different and
1Sy of course? reducible since the state is not pure.
However, the explicit construction is again easy to carry
out (mainly because the system is separable). Suppose
the state is extremal invariant with respect to transla-
tions. Then let

(n,)

() ( o, & ()
AL AL J e P
(n,) (110)

PG e

The representation of the algebra yields a vector repre-
sentation of the state with the cyclic vector

™ J.LﬁB 1
¢ =9 2 |e
J 1-m o
2

where m is the solution of Eq. (99).

(111)

Above T o’ the same GNS construction is realized but
with m=o.

Finally, the remaining case to be considered is the
representation of the state obtained by the thermodynamic
limiting procedure for o < T < T . At first sight, it
might seem that all that it is necessary to do is to com-
bine the +Iml and -|ml representation in the following

manner

@) @) ()

8(o o e G ) =

1 1 (ni)(

+o +0 n 1 [of

kel ] i 3
- b ® ® 0 ®

(Do SR

n (n,)
1-0 +o, * (n,) 1-o (n,)
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with the cyclic vector given by

R [ N2 il
Rl [1 '

== ®[° (113)

@

L @

J

This construction yields a representation but ¢ is not
cyclic. Thus the representation space is '"too big'".
It can be reduced in half by observing that if
() (n)  (n))
I=1®mnl ® 7y (114)
® ®]

then IDw(A) I is also a representation with the cyclic
vector

7 AL

()

(¢,1+L ¢)é
2

¢! = (115)

This is the correct GNS representation for the case
considered,

Conclusions and Outlook

The purpose of these simple considerations was to
put the algebraic formulation of statistical physics in
concrete terms. Of course, the whole power of the alge-
braic approach is the general conclusions which can be
drawn from abstract generalities. There is a wealth of
literature and reviews now on the abstract structure of
the algebraic properties of infinite system. 13) what
has been attempted here is the most elementary treatment
of the principles involved in the hope of broadening the
class of physicists who might find these techniques
useful and constructive.
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BROKEN SYMMETRY IN RESTRICTED {‘:EOI*‘D.':‘.'I‘RIES'r

J. C. Garrison and J. Wong
Lawrence Livermore Laboratory, University of California
Livermore, California 84550
and
Harry L., Morrison
Dept, of Physics, University of California
Berkeley, California 94720
and
Lawrence Livermore Laboratory, University of California
Livermore, California 94550

I, INTRODUCTION

2 The subject of these talks will be an application of
C"-algebra techniques to the problem of broken symmetry
and long-range order in systems with restricted geometries,
We will try to make the discussion more concrete by talk-
ing about thin-film systems; that is, physical systems that
are constrained to lie between two infinitely extended
parallel planes with separation L. This problem has been
studied by a number of people'~® using the methods of con-
ventional, '"finite-volume,'" statistical mechanics. There
are, however, drawbacks to these proofs, 1In the first
place, the arguments only apply to the small number of or-
der parameters that have been considered so far; and, in
the second place, the proofs use the method of Bogoliubov
quasi-averages, which has not been established within the
algebraic approach, The purpose of these talks is to pre-
sent a new proof that avoids the use of quasi-averages and
does not require the specification of an order parameter.

Since Professors Haag and Hugenholtz are giving a
series of lectures on the foundations of the algebraic

t This work was performed under the auspices of the U.S,
Atomic Energy Commission,
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approach, we shall mention only a few points that are of
importance for this application. We shall take the con-
crete view that the algebra of observables ¥ is realized
by bounded operators on the canonical Fock space bp(T)
corresponding to the configuration space I' relevant to the
problem. In the present case, T is the space between the
two bounding planes. The groups of physical symmetry op-
erations (e.g., time translations, space translations, ro-
tations, etc.) will be represented by automorphisms on %
we assume, in addition, the following local structure:
Each continuous one~parameter automorphism group F = {ax}
is locally generated; that is, for each finite volume V&T
there is a self-adjoint operator Q(V) acting on 5 (T) and

axA = %iﬂ exp[ixQ(Vn)] A exp[-iXQ(Vn)],VAem,axeF,

where V19> V, and Y V, = T. We will assume that physi-
cally admissable states w on ¥ can be extended to act on
the unbounded operators Q(V). More precisely, we require
that the local algebra (V) includes the spectral projec-
tions of Q(V) and that the state w is locally normal; that
is, the restriction of w to U(V) is given by a density ma-
trix, The precise assumption is then that the local den-
sity matrix gives well-defined average values for unbound-
ed operators like Q(V), This is a reasonable assumption
since w is supposed to be the thermodynamic limit of local
Gibbs density matrices.

The groups of particular interest are those that
leave the Hamiltonian invariant; their infinitesimal gen-

erators are usually defined by a density q(r) which satis-
fies a continuity equation:

QW) = | d°r a(o),
v

ES%ELEL + v « I(r,t) = 0,

where I is the current associated with q.

Finally, we will need the Kubo-Martin-Schwinger (KMS)
condition, A state w is said to be a KMS state if
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Jar £(c - ipu(Ba()) = [ar £()w(A(r)B) VECD, A, B € 1,

where A - A(t) denotes the time~translation authomorphism
and ® is the space of C” functions with compact support.

With this background in mind, we can go on to con-
struct the necessar; ! for the study of long-range
order and broken symmetry in thin films,

II. LONG-RANGE ORDER AND BROKEN SYMMETRY
We have so far discussed the action of symmetry opera-
tions on the algebra of observables %; now it is necessary
to consider the symmetry properties of the states, Let G
be a group represented by automorphisms {ag tg € G}, then
a state w is said to be G=invariant if w(c A)—w(A)VAEM, geG
and to be G-ergodic if it is an extremal Point of the con-
vex set of G~invariant states. Recall that a state is ex-
tremal in a convex family if it cannot be represented as a
nontrivial convex combination of two members of the family,

Let G be the invariance group of the Hamiltonian,
then Professor Ruelle has argued that a state w describing
a pure phase of the system should be G-ecrgodic. We now
want to show that this property of being G-ergodic leads
to the relation between long-range order and broken sym-
metry. For homogeneous systems, G will contain a spatial
translation subgroup T, for which we shall use the special
notation

A(x) =0.XAVA ELUl . T TERTS,
A T-invariant state w is said to be stromgly clustering if

lim (A(x)B) = w(A)w(B) VA, B € ¥,
X |~
and weakly clustering if

lim
V=0

<=

J‘V d” x w(A(x)B) = w(A)w(B) VA, B € U ,
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where v is the dimension of T, I will say that a state

w exhibits long-range-order if it is not weakly cluster-
ing. The intuitive idea of long-range order is that some
pair of observables is correlated for large separations;
that is, the strong cluster property is violated. The
definition I have adopted is more stringent, since it ex-
cludes cases where weak clustering is satisfied but
strong clustering is not., The strong definition agrees
with the definitions customarily employed in discussions
of Bose condensation, superconductivity, crystal forma-
tion, etc.; and it has the further advantage of yielding
the usual relation between long-range order and broken
symmetry., To see this, we need some results that are
conveniently gathered together in Professor Ruelle's book’

Theorem 2,1, A T-invariant state w is T-ergodic if
and only if it is weakly clustering. In other words, a
state exhibits long-range order if and only if it is not
T-ergodic. The next step is to use the existence of in-
tegral decompositions for states on a C*-algebra. The
principal result is:

Theorem 2.2. Every T-invariant, locally normal, KMS
state w is given by a unique integral decomposition into
T-ergodic, locally normal, KMS states; i.e.,

w(a) = J' dp(o)o(a) V A € U

where y is a probability measure on states carried by the
T-ergodic, locally normal, KMS states., The published ver-
sion of this theorem does not involve the KMS condition,
but it can be included with a simple modification of the
proof,

Now, suppose that we are given a state W, describing
a pure phase so that it is G-ergodic. If w, exhibits
long-range order, theorems 2.1 and 2.2 tell us that it
has a nontrivial decomposition into T-ergodic states, If
these states are G-invariant, we face a contradiction
with the original assumption that w, is G-ergodic; there-
fore, the T-ergodic states cannot be G-invariant. This
is the precise statement of the relation between long-
range order and broken symmetry.
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II. THE BOGOLIUBOV INEQUALITY

The last piece of machinery I need is the infinite-
volume form of the famous Bogoliubov inequality; in the
present context, this result is based on the following:

Theorem 3.1 Let w be a KMS state, then the bilinear
form

B
(A,B) = % j dr w (AT(-iT)B>
0

defines a norm-continuous inner product on U,

To make sense of the statement of this theorem, I
first have to explain what is meant by a complex time-
translation A - A(z). The concept is defined in the paper
of Haag, Hugenholtz, and Winnink® as follows: Let A(e) be
the Fourier transform of A(t) and assume that A(e) has com-
pact support [as an operator-valued distribution], then
A(z) is defined by

A(z) = j de e"1%% &(e)

for any complex z. It can be shown that the subalgebra
{A°A has compact support} is norm-dense in %, and that
A - A(z) is an automorphism on % satisfying

a1t = At @),
For A, B € ¥, (A,B) is well defined.

To show that (A,B) is an inner product, it is neces~
sary to recall that the KMS condition automatically implies
invariance under time translations® For A € ¥ this extends
to invariance under complex time-translations; that is
w(A(z)) = w(A). Using the properties already established,
it is easy to verify the defining properties for an inner
product,
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B

@a,B* = -;—J dr w@e'a@n),
0
B
- %j ar w(B'(~ima),
0
= (B,A).
B . rar}
(a,A) =% j ar w (A <_-12—T) AGZ—T))
0
B I e,
-1 s ar w@GD) (L) = 0.
0

So far I have only used the KMS condition to obtain
time-translation invariance, which, in turn, implied that
(A,B) is an inner product on ¥; I now have to use the KMS
condition explicitly to get a special property of the inmer
product. We can estimate (A,A) as follows:

B
(A,A) =-;- s ar w aTa@n)
0
8
<5 j dr J'de e™ w@'A(e))
0

ge
esa= . iha
J de oo w(A A(e)).

The last _line is justified by the fact that the first
factor is a C function of ¢ and the second is a distribu-
tion with compact support. Furthermore, one can easily
see that w(A'A(t)) is a positive-definite function, which
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means, by Bochner's theorem, that w(ATA(e)) is a positive
distribution, The combination of this remark with the ele-
mentary inequality

yields

B 2
(AA) < Jﬂde g—iai—L w(ATA(e)),

% tw@a'asy +watay 7,

]

-r
ofsaan)
To get the last line, I had to use the KMS condition in the
form:
w(BA(t + 1)) = w(A(t)B),
which is valid for A,B € ¥, Finally, the Schwartz inequal-

ity and the last estimate yield the norm-continuity of the
inner product by

@1 < @o@n < [3mah) olamsh)s el sl

Thus (A,B) extends to all of ¥ by continuity, and the proof
of theorem 3.1 is complete.

The Bogoliubov inequality itself is obtained by choos-
ing B = i §Ec(t)|t=0; then

B
1 e 200 :
(A,B) = B IO dr wlA 1atC(t + iT) le=0 )

Replace id/3dt by d/37 in the integrand and perform the in-
tegral to get
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w = =

(4,B) tw@a’ c(ip)) - wa'le)l
w(re,aty,

where the KMS condition was used to get the last line,
Next, use the Schwartz inequality again, together with the
previous extimate of (A,A) to get

w(ia,a") u(te, iy 'y = 2

w(rc,at ) |2,

where C = %E C(t)|t=0° This is the well-known Bogoliubov
inequality.,

IV, _ABSENCE OF BROKEN SYMMETRIES IN THIN FIIMS

The construction of machinery is now finished, and I
can proceed to the real topic of this talk, which is the
absence of long-range order in thin films. I choose coor=-
dinates so that the bounding planes are given by z = 0 and
z = L; also, I should remark that hard-wall boundary con-
ditions are to be imposed on these two planes. The Hamil-
tonian for a homogeneous thin film is evidently invariant
under rotations and translations in the x-y plane; there-
fore, I will take G to be the product of the two-dimension-
al Euclidean group and whatever internal symmetry group is
present (e.g., gauge transformations, spin rotations, etc.).

Let wo, be a G-ergodic state describing a pure phase
of the film; I want to know if w, can exhibit long-range
order, We have already seen that this is equivalent to
asking if w, can be decomposed into T~ergodic states with
a broken continuous symmetry, A negative answer to this
question is provided by the following theorem, which is
the central result of this whole discussion,

Theorem 4,1, Every T-invariant, locally normal, KMS
state w for a thin film system is necessarily invariant
under any one-parameter group FCG locally generated by a
conserved density q(r).
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That is, there are no states with broken continuous

symmetries and consequently no states exhibiting long-
range order,

The proof consists of choosing suitable operators to
substitute into the Bogoliubov inequality. I will take

K =f d® x e-ik.x Ex),
S

X

A - w(A),
and

M ij- d%p g TEX q(x),
SxL

where A € % and q(r) is the density generating F. I have
adopted the convention that x,x‘, etc. are vectors with
vanishing z-component while r,r’ are general vectors, also,
the momentum k has no z-component. The integral defining
M is taken over a cylindrical region with height L and
cross~section S, The next step is to substitute K and M
into the Bogoliubov inequality

2
B

2
b

w((&, K" w(m, @7 = 2 Jo(r,M')

divide by V® = (S:L)?, and let S - », I will just sketch
the calculations involved.

lim w({K,K*}) = Jﬂdax R w({A(x), by

S=e
= &,

This result follgws from the translation invariance of w.
I will refer to Cp(k) as the correlation function for A,
In a similar way, we find

lim % w([K,Mf]) = 1lim ./‘dsr eikor w(lA,q(x)]).
S~ Voo v
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Since A € ¥j,; that is, A € %(V,) for some finite V,, the
integrand in the last equation vanishes for r outside V,.
This means that the limit k - 0 and the limit V - = are
interchangable; consequently,

lim lim < w((K,M']) = lim fdsr w([A,q(r) 1)

S
k-0 S~ va

-1
= igy o) -

The last line follows from the fact that q(r) is the local
generator for Oy e

The last calculation is more complicated and involves
the use of the continuity equation,

1im g%i? w([M,(iM)*]) = lim ‘%%l d®r ‘[dar'e-ik"(r-r )
S0 V= Vv v

xufa@), 3 atLoD, .

The continuity equation and some integrations by parts
yield

V2

Lingr w0, @0') =k, [ x T w3, L0,

L
where q(x) = L-ljg dz q(x,z) etc., and the summation con-
vention applies to vector indices., In obtaining this re-
sult I had to drop various surface terms arising from the
integration by parts. The contributions from the top and
bottom of the cylinder S X L vanish by virtue of the hard-
wall boundary conditions, and the contributions from the
sides are eliminated, in the limit, by the factors ssl, 1
am really only interested in this result for small k.
If the interparticle potential is reasonable; for example,
if it is short-ranged and has a well-behaved Fourier trans-
form, then the integrand will fall off rapidly at large lxl
and the integral can be expanded as a series in k,
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Assuming this to be the case, we have, for small k

i il e it s
éf: s WD, (DD =k W ok, s WK,

where W < = is the largest eigenvalue of WQB.

Putting all this together, we finally have

32

20h 2| 8
k CA(k) > sl 3x w(a)\A))FO 5

The Bogoliubov inequality thus gives information about the
small- k| behavior of the correlation function for any
local observable A, Now §, is the Fourier transform of
Cp(x) = w({A(x), AT}), which is a continuous positive defi-
nite function satisfying

Theorem 4.2, (Bochner) The Fourier transform of a con-
tinuous, positive definite function RY is a finite, posi-
tive measure.

We now integrate the inequality over a sphere of
radius ko centered at the origin. TIf C, contains a delta
function concentrated at k=0, it can be dropped without
changing the result and we denote the resulting measure by
du. For a v-dimensional configuration space we have

; 2 2 v
ko® duk)zx[kzduk > 2 | S w(e,a), _, [Pe(M)ke
5 S0 = gy 1 AT (A e

where g(V)kov is the volume of the v-gphere and
f <1 A4 (k)~0 as ko-0; therefore, if v=2 we get a contradic-
tion unless

ol e
wx @(0,A), ) = OVAE u .

I can replace A by auA, in which case this result implies

)
5 w(auA) =0VA ¢ ﬂlL,auE F
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But this is the same as w(a A)=w(A); in other words, w is
F-invariant., This completes the proof of Theorem 4,1,

The simplest example of a forbidden broken symmetry
is Bose condensation. 1In this case F is the gauge group
generated by the particle density p(r). One easily finds
W = w(p(0)). Since the whole argument is independent of
statistics, I can equally well conclude that superconducti-
vity is forbidden in thin films. The formation of a crys-
tal lattice is more complicated since there is a two-stage
decomposition involved. In the first stage the fully in-
variant state w, is decomposed into states with a fixed
orientation of the crystal axes but no fixed location of
the lattice; in the second stage these states are further
decomposed into states having a fixed location for the
lattice, Our general result forbids the broken rotational
invariance encountered in the first stage so the second
stage can never be reached.

V. DISCUSSION

The situation as I have outlined it in these talks
would be eminently satisfactory if it were not the case
that real thin films exhibit behavior commonly ascribed
to long-range order, Thus, thin films of helium exhibit
superflow and thin-film superconductors are well known,
Consequently, there is an apparent contradiction between
theory and experiment. Since the theoretical arguments
only require a few quite general assumptions, the most
probable explanation is that the concept of long-range
order appropriate to bulk systems is not applicable to thin
films, One promising candidate for a new definition of
long~range order is the idea of 'weak" long-range order,
Briefly, one assumes that the generalized susceptibility
or response function for some observable diverges. This
behavior is consistent with weak and even strong clustering.
In any case, it is clear that there is at present no funda-
mental theoretical explanation for the behavior of thin
films,
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FORMULATION OF THE MANY - BODY PROBLEM
FOR COMPOSITE PARTICLES

M, D, Girardeau
Institute of Theoretical Science and Department of Physics

University of Oregon
Eugene, Oregon 97403

I. Atomic Second-Quantization Formalism

A. Motivation

There are two distinct problems in treating a system
of interacting particles each of which is composite in the
sense of being composed of several more elementary consti-
tuents, The first is the very difficult problem of find-
ing reasonably accurate approximate solutions of any non-
trivial quantum-mechanical many-body problem, The second
problem, with which these lectures will deal, is that of
even formulating the problem in such a way as to take ac-
count of the existence of the composite particles. It is,
of course, well known that composite particles behave like
elementary bosons or fermions when they are (in some rea-
sonable sense) well separated or when the interparticle
interactions are small compared to the internal excitation
energies'). However, there are many problems in which
these criteria are violated, yet the composite nature of
the particles remains important, Examples are high-tem-
perature gases and partially ionized plasmas, chemical re-
actions in general, and systems such as superconductors
containing electron pairs or other complexes. Even in li-
quid helium at low temperatures, virtual excitation of the
atoms is by no means negligible, since it is responsible
for the van der Waals attraction which binds the system
into a liquid., In these and other problems, a method of
formulation in which the existence of the composite par-
ticles is treated kinematically, through use of appropri-
ate composite-particle dynamical variables, is desirable.

147
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It turns out to be possible, starting out from the
usual Schrédinger representation of states and observables
of the system of interacting "elementary" constituents
(electrons and nuclei in the case of systems of atoms),
to completely eliminate the explicit dependence on the
dynamical variables of the constituents, representing the
states and observables in terms of dynamical variables re-
ferring only to the atoms (for example, the translational
wave vectors and internal excitation quantum numbers of
the atoms). Once this has been done, one can introduce a
second-quantization formalism in an elementary manner, in
which the states and observables are represented in terms
of composite particle annihilation and creation operators
satisfying elementary Bose or Fermi commutation relatiomns,
in spite of the fact that the composite particles are not
elementary. The price one pays for the complete elimina-
tion of dynamical variables of the constituents is that,
in the first place, subsidiary conditions ensuring the
correct symmetry under interatomic* exchange of constitu-
ents must be imposed in order to set up a one-one corres-
pondence between states in the many-atom state space and
those in the state space of the constituents; in the sec-
ond place, all single-atom states, including the continuum
states, must be included in order to obtain a complete
many-atom state space, Although the many-atom representa-
tion thus obtained is exactly equivalent to a conventional
representation in terms of the constituents, both the sub-
sidiary conditions and the continuum atomic states intro-
duce great difficulties in practical calculations, For
this reason, my description of this representation, in
Secs. I and ITI of these lectures, will be quite abbrevi-
ated, I think that the main value of this representation
is that it serves as a useful preliminary to the formally
more complicated representation which will be developed in
Sec. III (which will occupy most of these lectures), in
which only the bound states of the composite particles are
represented in terms of atomic dynamical variables, leav-
ing the unbound states to be described in terms of

*From now on our terminology and notation will be

adapted to the special case where the composite particles
are atoms, for the sake of definiteness., Nevertheless,
the method is quite general,
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dynamical variables of the constituents rather than the
(essentially unknown) continuum atomic states. I think
that such representations will be more useful and tract-
able in practical calculations in spite of being superfi-
cially more complicated. 1In the remainder of Secs, I and
II of these lectures I will describe some of the salient
features of the original work on representations in terms
of both bound and continuum atomic states. Further de-
tails can be found in the literature®),®).

B. Expansions in Terms of Atomi¢c Product States

For the sake of definiteness, consider a system of n
identical atoms each composed of one nucleus and 4 elec~
trons, Let {wq(Xx,...%4)} be a set of single-atom wave
functions, orthonormal and complete in the sense

./ga*(xxl---XL)¢B(XX1..-XL)dXdX1--ode = GGB’

* z ’ ’
2; cpa(Xxl...xL)cpOL (04 xl...xL)

= (L!)_lé(X-X')ZI € NP [0 %) .. 8(x mx ) ]
’ (.1

where x. = (r:,%:) denotes both the position and spin
z-compoﬂent variable (=t or ) of elctron j, X the position
of the nucleus and also its spin z=-component variable in
case its total spin is not zero, f means integration over
positions and summation over spins, 8455 is a Kronecker
delta with respect to discrete and a Dirac delta function
with respect to continuous quantum numbers, L is a sum over
discrete and integral over contimuous quantum numbers, and
8(X-X') and 8(x-x') are Dirac delta functions of position
and Kronecker delta functions of spin., The form of the
completeness relation takes into account the antisymmetry
of the ¢ in the electron variables; I, denotes a sum over
all permutations P ' of the primed P variables, € ) be-
ing +1 for even and -1 for odd permutations. Note that

the inclusion of the continuum atomic states in the set



150 M. D. GIRARDEAU

{o } is quite essential for completeness; if only the
bound states are included, no such completeness relation
holds. It is this feature which leads to difficulties in
applying this formalism to practical calculations,

A system of nuclei and electrons whose numbers are
appropriate to an integral number n of such atoms has a
wave function § which can be expanded as follows:

]
w(xl-.-xnx1---an) » L c(“l---an)

G.]_...G.n
X @al(X1X1---X&) <Py (X X tn- L+1"°X{n)’ (1.2)
with coefficients

= *
clanna) = o x@m . x). 0 O g g1+ )

X W(Xl...anl...xin) Xm...andxl...den. (1.3)

It might be thought that such an expansion is unphysical
because we have picked one particular assignment of nuclei
and electrons to atoms, i.e., nucleus 1 and electrons
1...% to atom 1, etc. However, it follows from (I.3),
antisymmetry of ¥ in its electron coordinates, and its
symmetry or antisymmetry in nuclear coordinates, that
either all of the coefficients ¢ are unchanged or else
all simultaneously change sign under a permutation of

the assignment of nuclei and electrons to atoms, depend-
ing on the parity of the permutation, Thus the expansion
(I.2) is in fact independent of the particular assignment,
apart from physically unobservable constant + 1 phase
factors,

In order to transform to a representation ix
dynamical wvariables of the nuclei and electrons are e11m1-
nated in favor of those of atoms, one can consider the
coefficents c(m...0,) as new wave functions and the argu-
ments 0,,.,0, as the atomic dynamical variables, Part of
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the permutation symmetry of | under exchange of identical
constituents (nuclei and electrons) appears explicitly in
c, in that it follows from (I.3) that c is either a sym-
metric or an antisymmetric function of o;...a,, depending
on whether 2J + 4 is even or odd, where J is the nuclear
spin (at this point we are applying the spin-statistics
theorem). On the other hand, the symmetry of ¥ under
interatomic exchange of constituents (not exchange of
whole atoms) appears in ¢ in a concealed form. If one
compares the expansion (I.2) with one differing only by
interatomic exchange of an electron between the pth and
qth atom, one finds®) that the wave functions ¢ must sat-
isfy the linear relation

;(upaq T 10 l28)eCon .. L ML NPT

S -c(al...an) (1.4)

where the electron exchange matrix is defined as

(apaqlleleclaa)

Ejfma:(Xxl...xL)wa*(X'xf ...xé)wa(Xx{x2...xL)
X ws(x’xlx;...xé) dXdxy . . odx dX ‘dxy...dx /. (L.5)

The relation (I.4) for one particular value of p and q,
say p = 1 and ¢ = 2, together with the symmetry or anti-
symmetry of c(al..,an), implies the relation for all val-
ues of p and q. Hence it is convenient to state (I.4) in
the symmetrized form

n

(o o |I laB)e (o oo @ 100 o vus0 JRO L....0)
;{ OLZB p q' elec p-1""p+l q-1" "q+1 n

= “-De(u...a).  (1.6)
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Similarly, the symmetry or antisymmetry of { under per-
mutations of the nuclear arguments X,...X, implies that
¢ must satisfy the linear relation

n

2{: :E:(a a |T_ lag)e(or...a oo ..o _Ba o...q)
p<a “op p q ' nuc p-1""p+l q=1""q+1 n

= (D m@-De(m...q) (1.7)
where the nuclear exchange matrix is defined as

(apaqllnuclas)

= o~ £ ‘o ’ 1] ¢ ’
fwaP(Xxl...xL)waq(X xoox ) R'xoox ) o, (Xxa oo ux )

XdXdx, ...dx, dX'‘dx/...dx]

L (1.8)

£

The subsidiary conditions (I.6) and (I.7), together with
the condition of symmetry or antisymmetry and c(oy...a ),
are in fact necessary and sufficient conditions?®) that™
the space of wave functions c¢ be in one-one correspond-
ence with the space of properly antisymmetric and sym=-
metric §'s. They can be interpreted as saying that the
‘'physical state space' of c's is not the entire space of
symmetric or antisymmetric c's, but the subspace of the
simultaneous eigenstates of the two linear, hermitian
operators defined by the left sides of (I.6) and (I.7),
with eigenvalues =%n(n-1) and (-1)29%n(n-1), respectively.
If we had started with an expansion differing from (I.2)
by the inclusion of prefactors of explicit antisymmetriz-
ing and symmetrizing or antisymmetrizing operators with
respect to the electronic and nuclear variables, we would
have found that the simple explicit expression (I.3) for
the expansion coefficients c¢ would have been replaced by
an implicit equation for ¢ with a nonunique solution,

The same conditions (I,6) and (I.7) would nevertheless
have appeared as conditions picking out a unique
solution®),
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The correspondence between the space of {'s and
the space of c¢'s is such that inner products are pre-
served®), i.e,

(‘L’,WI) = ¢*(X1...anl...an)W'(Xl...anl...xm)
X Xm...an dXJ,...dX'{/n
= (e,c’) = z c*(al.o.an)C'(a1...an). (1.9)
Cli...an

The subsidiary conditions (I.6),(I.7) play an essential
role in the proof of (I.9).

C. Representation of Observables

Let T be any single-particle operator, e.g. the
kinetic energy operator, which has the structure

n in
TH(Ky o0 K Fraoux, ) = [ZT(X.) +2T(x.>]
3=1 ] j=1 ]

X W(Xl...XnX1...x (I.10)

Ln)
on the space of y's., The form of T as an operator on

the space of c's is easily found by expanding T{ in the
manner (I.2); the result is ?)

n
Te(or...a) =;; ; (o, |Tl@ye (e o, qoa guea)

(L.11)

where the atomic kinetic energy matrix elements have the
expected form
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4
((X.p |Tla) =fcpa:(Xx1 o .xL) [T(X)+ jé:l T(xj) ]cpa(Xxl o 'XL)

X ddel...de. (1.12)

Similarly, a two-particle operator, of which interaction
potentials are the most important examples, has the
structure

Vi (X; .. .anl .. .an)
-
= V(X.X )+ Vix.x, ) + VX.x, ) |
[j<k Jxk = ik =1 %=L Ik

X g X xye00x, ) (1.13)

on the space of y's, When transformed into the space of
c's, it decomposes®) into an interatomic part V, and an
intra-atomic part V':

Vc(ai...an) = (Vo +V')c(a1...an),

n
VoC(al...ctn) =E Z (Otprla)c(al...ap_laap+l...an)
p=1 a
n
v c(al...an) = E Z (apaqlvlo.s)
p<q o
X c(al...ap_laapﬂ...aq_lsaq+l...an) (1.14)

with
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vl (3, Svo)]
(a_|Via) =/cp *(Xxy...X%,) Vix.x, ) + V(Xx.)
P o 1 ¢ leg K & i’
X @a(Xxl...xL) ddel...de, (I.15)

&

(o, [V a9) =/cpa:(Xx1,,_xL) ogr O nl o)

[V(xx')+z: Zv(x )+ Z V(Xx )+E V(X %, )]

j=1 k=1

P 17 ’ ’ ’ /
X wa(Xxlg..xL)ws(X xl...xL)ddel...de dX ‘dxy’. . .dx .

(1.16)

D. Atomic Second-Quantization Representation

A quantized field representation can now be intro-
duced by any of the usual methods used for systems of
elementary particles. We choose the Fock representation
in which state vectors |c) are represented as

le) = Co

ey (ay)

°

cn(al...an)

. (1.17)

with inner product
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o
N =1 oo * .
(cle’) = co*ed *-52: 2: e (al...ah)cn(al...an).

=l 01...0
& n

(1.18)

Here co is the vacuum amplitude, ¢, the one-atom ampli-

tude, etc. The atomic annihilation and creation opera-
tors are defined by *)

co cy (@)
aa Cl(al) 2%c5 (a1 a)
. -+1 ;é ( )
cn(al...an) (n+1) e yplmr...aa
L " E 4
and (1.19)
r 1T n
Co 0
a T ci (o) & ¢
a 1\ o o
- o 1
2 ¥
c (o o) (n /r»)EpE(P)P[éaohcn_l(al A “n—l)]
= X (1.20) -

where P runs over all permutations of Weon 0 and €(P)
is to be taken as +1 for all p if 2J+¢ is even, whereas
if 2J+4 is odd, then €(P) is +1 or -1 depending on
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whether P is even or odd. At this point it is customary
for someone to object that the two definitions (I.19) and
(I.20) should be interchanged. However, the definitions
are gorrect as stated, as can be seen by referring to
Fock™) or considering the special case of a state with
only a vacuum amplitude c,, which is then annihilated by
ay, whereas it is changed by a, into a state with only a
one-atom amplitude. It follows directly from their defi-
nitions that these atomic annihilation and creation oper=
ators satisfy elementary Bose or Fermi commutation or
anticommutation relations

23+ ~
a,ag (-1) aga, = 0,

+ 234+
a,ag - (-1) aBaa = éaB : (I.21)

These simple relations are to be contrasted with the more
complicated relations

t 2J+4 B
AaAs-(-l) ABAa =0,

PR LS P f oot
AASCDTTAA =6+ [ Oy

1z z
factors factors
.1-
O Ny (1.22)

satisfied by the more naive atomic annihilation and cre-
tion operators defined by

Als faxa, ...ax g G )V @ @) Ty 123

where Wf(X) and wf(x) are the usual quantized-field crea-
tion operators for a nucleus and an electron.

In terms of this atomic second-quantization represen-
tation, the state (I.17) can be represented as
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n=1 Fieets O
B n

ley=[cot = (al) 7 Z c(al,,.an>aaf...aa;]|0) (1.26)

where lO) is the normalized atomic vacuum state,

The Ham-
iltonian (I,10)-(I.16) becomes
H=T+V, +V’,
T = (a|T|B)a Ta Vo = (a|V|B)a fa
g O °e a “p?
as a8
v =% E (a8 |V]yd)a RN (1.25)
3 f o %p 3%y %

aByd

which is of the familiar form except that the matrix ele-
ments are between states of atoms rather than of 'elemen-
tary' particles. If the ¢, are chosen to be free-atom
energy eigenstates with eigenvalues €,, then it is not

difficult to show that ®) the single-atom part of H be-
comes diagonal:

H=H, +V',
Ho =), € N,
a
N =a la (1.26)
o o a ° ¥

The subsidiary conditions (I.6) and (I.7) become in
this representation

sgaate) = =min-1)le),
L. lo = (D@1 le) (1.27)
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where

t 1
Talee = % :E: (aBlIeleclYé)aa Gg @58y
By

Q

ot
(aﬁllnuclYé) a, ag aga, . (1.28)

= %
s 4 Y

apyd

The zero-temperature n-atom problem is that of finding
the simultaneous eigenstates of H, of the total atom- num-

ber operator
N =z:NOL (1.29)
a

with eigenvalue n, and of the operators (I.28) with eigen-
values -3n(n-1) and (~1)2J%4n(n-1).

In practice, however, exact satisfaction of (I1.27)
is out of the question, since Igjge and Ipye have the
structure of interatomic interactions, and even strong
ones, Furthermore, the continuum matrix elements are im-
portant in (I,27). It is possible to define projection
operators for these subsidiary conditions which effective-
ly replace them by additional exchange interaction terms
in the Hamiltonian®), which could in principle then be
treated in the same approximation as the true interatomic
interaction V', However, the continuum atomic matrix ele-
ments still cause difficulties in practice. Therefore, I
shall not discuss this projection operator formalism,
However, I understand that Professor Sakakura will have
something to say about it next week, in connection with an
approach to the formulation of a hybrid representation for
systems of composite and elementary particles different
from the approach which I will discuss in Sec. III of
these lectures,
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I1. One Atom Plus One Extra Electron

A, Motivation

It is useful to examine a representation, for a sys-
tem of one atom plus one extra electron, which is closely
related to the many-atom representation just described,
since, together with that representation, it can serve as
a prototype for the more complex but also (hopefully) more
useful hybrid representations which will be described in
Sec, III.

B. Formulation

Consider first a single atom with ¢ electrons, des-
cribed by the same complete orthonormal set f{o (Xxi...xg)}
of atomic wave functions as used in Sec. I. If one extra
electron is added to this system, the resultant system of
one nucleus and ¢ + 1 electrons is described by Schr&din-
ger wave functions ¢(Xx1...xL+1)which are antisymmetric
in all 4+l electron variables. Any such wave function can
be expanded as follows:

TCI =;ca(‘x o) P K. x,) (I1.1)

where

ca(xL+1) =J[§a*(Xx1.o.xL)w(Xxl...xL+l) dde1"'de' (I1.2)

¥ is automatically antisymmetric in x;...xy since the Vg,
are. However, the condition that it also be antisymmetric
under exchanges of x4+] with any of the other x; imposes

a subsidairy condition on the amplitudes c anaiogous to
(1.6) and (I.7). To derive it, note that

w(xx&-l']_xQ"'x,{,xl) £3 -w(Xxla.oxH_l). (11.3)

Inserting the expansion (II.1l) in both sides, multiplying
by w*(Xxlo..x£), and integrating, one findsthat the cy must
satisfy
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s 7 1 =5
E;Jkaﬁ(x,x )CB(X ydx* = ca(x) (I1.4)

where
4 = % 2
KdB(x,x ) —./ba (Xx xg...xé)mQ(Xxxa...xL)ddea.wde.
(1IL.5)

If we define Eﬂx) as the column vector with components
co(x) and K (X,x’) as the matrix with elements Kaa(x,x'),
then (II1.4) can be written as

SRG,x) ¢ (=) dx' = —c (), (1L.6)

i.e. c(x) must be an eigenvector of the hermitian
"exchange kernel” K with eigenvalue -1. Any c(x) derived
from a totally antisymmetric Y{(Xxi...xg4]) according to
(II,2) is automatically an eigenfunction with eigenvalue
-1, i.e. (II.6) is a necessary condition for total anti-
symmetry of §. Conversely, if c satisfies (II.6) then it
follows from (IL.1) and (II.2) that (II.3) is satisfied,
i,e, ¥ is totally antisymmetric. Thus the eigenvalue
equation (II.6) is both necessary and sufficient for com-
plete antisymmetry of . Furthermore, the space of total-
ly antisymmetric {'s is in one-one correspondence with the
space of c¢'s satisfying (II,6), and this correspondence
preserves inner products:

(q”w')Efw*(xxl"'xfﬁl)w,(xxl"°XL+1)dXdX1"'dX&+1
= (g E/gT(X) ¢ '(x)dx

Ezaj::a*(x) c(i(x)dx. (11.7)

I leave the proof to you as an exercise. AS in the case

of (I.9), the subsidiary condition (II1.6) plays an essen-

tial role in simplifying the expression for the inner pro-
duct in the space of state vectors c. It might seem
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surprising that the vector function c(x) of a single
electron variable x can contain precisely the same physi-
cal information as the Schrddinger wave function § which
depends on the codrdinates of a nucleus and 4+l electrons.
The point is, of course, that the extra information is
built into ¢ via its dependence on the vector index a,

the set of Single-atom quantum numbers.

C. Representation of the Hamiltonian

In Schrddinger representation the Hamiltonian has
the general form

4+1 4+1 4+1

= TX) + ZT(xj) +Zv(xxj) +ZV(xjxk). (1I1.8)
j=1 3=1 i<k

To find the representation of H as an operator on state
vectors c, let H operate on (IL,1), multiply by

(Xxl...x ) and integrate. In this way one finds that
H acts as a matrlx operator @(x)

Hc(x) = E‘x)g(x) (1I1.9)

where the notation g(x) means that the matrix operator }
acts on the x dependence of g(x), and the elements of this
matrix operator are given by

Has(x) = [eOL + T (%) ]°a5 + Va,s(x) (1I1.10)
where the potential matrix operator Y(x) is defined as
2

(x) Ejrcpa*(xxl . 'X*C) [V(Xx) +ZV(XjX) ]
j=1

VaB

vy (Xxa o0 ox ) dXdx, .. dx, . (I1.11)
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For simplicity it has been assumed that the ¥, are chosen
to be the free-atom energy elgenstateS'

[T +j§ T(x,) =Z V(xjxk)J% V%) Jo Gxaenx )

j=1

e wa(Xxl.,.xL) (11.12)

as was assumed in (I.26)., This assumption is not essen-
tial; if it is not made then the term N in (II1.10) is
replaced by (al|T|g)+(a|V|g), with matris e%ements defined
by (I.12) and (I.15).

D. Definition of Projected Hamiltorian

I would like now to sketch a method of satisfying the
exchange subsidiary condition (II.6) through construction
of an appropriate projection operator, The method is simi-
lar to the projection operator formalism®) alluded to in
Sec., I, which was not discussed there because of lack of
time, Here the system is simpler, so the projection oper=-
ator is also simpler and I can at least very briefly
sketch the ideas without giving any details of the proof.

We want to find the simultaneous eigenvectors ¢ of
the Hamiltonian matrix {Eq.(I1.10) ] and the exchange ma-
trix kernel K [Eq.(IL.6)], with elgenvalue -1 for the lat-
ter. One can reduce this to the problem of finding the
elgenvectors of a suitable projected Hamiltonian, in
which (II.6) is exactly replaced by an additional electron-
atom exchange interaction. Let P be the projection oper-
ator onto the space of all eigenvectors c(x) of (II.6)
with the stated eigenvalue -1. This space is closed under
the action of I since the Schrddinger Hamiltonian is sym-
metric under permutations of electrons. Hence

[P,H] =0 (11.13)

where H is defined by (II.9)-(IL.11)., Define a ''project-
ed Hamiltonian" ¥ by
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% = PH, (11.14)

Suppose that ¢ is an eigenvector of ¥ with eigenvalue E:

}CE, = EE.' (11.15)
Then if E # 0,
Pc = E 'Bic = E™lpene
-1 -1
=E PHc = E 3 = (I1.16)
and
EE,= M§l= PHg = HPi = Hg (1IL.17)

Thus any eigenvector of ¥ with a nonzero eigenvalue is
necessarily also an eigenvector of P with eigenvalue 1,
i,e, it satisfie (IIL.6); furthermore, it is also an
eigenvector of H with eigenvalue E. On the other hand,
the eigenstates of ¥ belonging to the eigenvalue zero are
in general linear combinations of eigenstates of H with
eigenvalue zero and arbitrary states lying in the sub-
space orthogonal to the physical subspace, i.e, states
annihilated by P, Thus we shall assume E # 0., This is
no great loss of generality, since in application,
states with E=0 will usually be of measure zero. E.g.,
in a scattering problem,E will be zero only if the in-
coming electron has kinetic energy precisely equal to the
binding energy of the isolated atom, Nevertheless, we
should bear in mind that when we work with the projected
Hamiltonian ¥, its eigenstates with eigenvalue zero will
in general be physically meaningless,

E. Construction of the Projection Operator and
Projected Hamiltonian

Let K be the integral operator with kernel K, i.e.
K c(x) Ef;g(x,x’) c(xdx ', (11.18)

K'=1+K (1I1.19)
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where 1 is the unit operator, Then (IL.6) can be
written as

K'g(x) =0, (11.20)
Construct (K')?:

(K2 =1 + 2K + K2, (11.21)
Using the completeness relation (I.1) and some permuta-
tion algebra which I do not have time to go into here,

one can show that the iterated kernel K? is linear in K,
and in fact that

ZYﬁ(aY(X,X")KYB(x”,x')

= O [o, 8Gex )= (=DR  (x,x) ] (11.22)

or in terms of the notation (II.,18)

k2 = £7l1 - (e-1)K]D. (11.23)
Hence
(k)2 = 1+ Hk’ (11.24)
or '
R[R‘= @+ 5 1 =0, (11.25)

from which it follgws that K’ has precisely two eigenval-
ues, zero and 1+4”1; only the eigenvectors with eigenval-
ue zero satisfy the subsidiary condition (II.6).

We can now easily write down the desired projection
operator P:

B =l TS LRl e i S e e T (11.26)
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Then one easily verifies that

P2 =P K'P = PK’' =0 (11.27)

2

so that (IL.26) is indeed the projection operator for
the subsidiary condition (IL.6).

An explicit expression for the projected Hamilton-
ian (IL1.14) can then be constructed by multiplying
(I1.10) and (II.26) and again making use of the complete-
ness relation for the L We give only the result:

Ko ()= (4+1) ") ¢ (x)
z (1+L-1)-1./~g(x,x’)gﬂx')dx' (L1.28)

with

LaB(X’XI) Kaﬁ(x,x') [EB + T(x")] + Vas(x,x/),

1

‘{15 (x,x')Efcpa*(XX "Xa...x,) [V(Xx NV (xx )+ E V(xjx')]
=2
X mB(Xxxz...xL)ddez...de. (11.29)

This provides a formulation of such problems as
electron-atom scattering which is in principle exact.
However, the necessity of including continuum states
of the atoms leads to difficulties in practical calcula-
tions. Hence this representation should be considered
as the prototype of a more complex but more useful rep-
resentation of the type to be discussed in Sec. III,
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ITI, Systems of Elementary and Composite Particles

A, Historical Remarks

The representations to be discussed in this section
are of very recent origin; in fact, most of the results
I will describe have been obtained in the last month, and
some of them are only a few days old. I apologize for ex-
posing you to such undigested results. My excuse is that
this area is currently being investigated more or less
independently by several people, and the representations
thus developed are likely to be applicable to a number
of problems, not only such problems as partially ionized
plasmas and superconductors, but also to such problems
as atomic scattering and chemical and nuclear reactions.
I tried many years ago, without success, to develop a
hybrid representation in terms of bound states of atoms
plus free-particle states of the unbound constituents
(rather than continuum states of the atoms), but at the
time I did not succeed. I am very much indebted to Pro-
fessor Brittin for informing me of his recent work with
Stolt on such a representation®), which convinced me that
the problem is indeed soluble and motivated me to take it
up again, The approach of Brittin and Stolt, based on
correspondences between various Hilbert subspaces, is
quite different from mine, and I do not know what the
precise relationship is. I suspect, however, that the
two approaches will eventually be found to be essentially
equivalent, Perhaps Professor Brittin will shed some
light on this in his forthcoming lectures., T have also
recently learned that Professor Sakakura is working on
the same problem from still a different point of view®),
which he will describe in his lectures. Again, I suspect
that his representation is essentially equivalent to mine,
but this remains to be shown,

B, Motivation

As already mentioned in Sec. I, describing the un-
bound constituents in terms of continuum atomic states,
though possible in principle, leads to difficulties in
practical calculations since very little is known about
such continuum states, and even when they are known (as
for the hydrogen atom) they are still difficult to deal

-e
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with sufficiently accurately to provide a good approxima-
tion to the subsidiary conditions (I.6) and (I.7). Thus
one is motivated to try to develop a hybrid representation
in which only bound atomic states (and not necessarily
even all of these bound states) are described in terms of
atomic variables, with the remaining dependence of the
wave functions described explicitly in terms of the con-
stituents (e.g., in terms of plane-wave products).

C. Some Simple Cases

Start with the simplest case, n = 2 identical fer-
mions. Let {ma(xlxz)} be an orthonormal (but not com-
plete) set of antisymmetric bound-pair functions, We
wish to expand a general, antisymmetric y(xi1%s) in terms
of bound pairs and unbound fermions, i.e, we seek an ex-
pansion of the form

¥axa) = Y e(a) ¢ (xixa) + c(xxz) (II1.1)

where c(a) is the amplitude for finding a bound pair of
fermions in the state g, and c(xi1x3) is the amplitude for
finding an unbound pair in the configuration (xi1x3). It
is obvious from the physical interpretation of amplitudes
that one should choose

c(a) EfCPa*(xlxa) Y (x1%Xz)dx;,dxs. (111.2)

Then c(x:%3) 1s uniquely determined as the residue, i.e.
the result of subtracting off the "bound part' of y:

c(x1x3) = Y(x1%x3) - Zc(a)wa(xlx:,), (1I1.3)

a

and (II1.1) is satisfied as a trivial identity. Eq. (IIL.,3)
bears a strong resemblance to the definition of orthogon-
alized plane waves., This is no accident; one easily veri-
fies that c(x3x3) is indeed orthogonal to all the s

fcpa*(xlxg) c(x,1x3)dx,dx, = 0, all a, (I11.4)
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as it ought to be if c(a) and c(x;xz) are to be inter-
preted as the amplitudes for bound pairs and unbound
fermions, respectively.

In applications, however, it is desireable to turn
the problem around, regarding c(a) and c(x1xz) as the
given wave functions; if one knew | already there would
be little point in trying to explicitly introduce dynan-
ical variables of the composite particles, The problem
is then to show that the conditions that c(x1xs) be
antisymmetric and satisfy (ILI.4) (which we shall call
the condition of bound state-continuum orthogonality)
are both necessary and sufficient to uniquely determine
the c(a) and c(x1x%3), thus establishing a one-one corre-
spondence between the space of c's and the space of anti-
symmetric ¥'s. In other words, we want to establish that
the solution (ILI,2), (IIL,3) for the c's is the only
one compatible with the antisymmetry of c(xi1x;) and its
orthogonality to all the bound states. The demonstration
is trivial: multiplication of (III.1) by 9, ¥, integration,
and use of (IIL.4) yields the explicit (hence unique) ex-
pression (III.2) for c(a); then (IIL.1) yields the expli-
cit and unique expression (III.3) for c(x;x3). Finally,
it follows from (IIL,1) that the inner product in the
space of wave functions ¢ is equal to the usual inner
product in the space of {'s:

b, ¥ )= fu* (%) ¥ (x1%5) dxy dxe=(c,c )

EZC*((I) c '(en)+fc*(x1x9)c "(%x1%2)dx,dxz.
a
(I1I.5)

Having understood the trivial case n = 2, we can
proceed to the less trivial case n = 3., We seek a unique
expansion of a general antisymmetric y(x;Xzx3z) of the
form
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¢(X1XSXa)=AaZ c(o,x3) 0 (x2%3) + c(x1Xz%3)
[

= % f/::[c (a,x1) cpa(XEXs) ~e(a,x3) 0 (x1xs) te (a,x5) @, (x1%2) ]
+ c(X1%2%X3) (I11.6)

where A; is the case n = 3 of the n-fermion antisymmetri-
zer

A= @h }PZE(P)P, (111.7)

the sum runs over all n! permutations P of x;...x_, and
€(P) is +1 or -1 depending upon whether P is even or odd.
The bound state-continuum orthogonality constraint analo-
gous to (III.4) is

./}hf(xgxa)c(xlxaxa)dxgdxs= 0, all o and x;. (XIIL.8)

In the language of quantum chemistry we would say that
c(x1XzX3) is required to be "'strongly orthogonal to all
the bound states ¢ . Provided that we restrict ourselves
to antisymmetric ¢, and c(x1X2X3), the similar relations
obtained by permutation of the subscripts 1,2, and 3 are
already implied by (III.8). This condition ensures that
the c(a,x) represent only those configurations where two
of the fermions are bound together, whereas c(x;XzXs) re=-
presents only those configurations where all three are
unbound.,

Multiplication of (III.6) by ¢ *(xsxs), integration,
and use of (III,8) and the antisymmetry of the ¢ and of
c(x1x%x3%p) yields the following set of equations %or the
determination of the c(a,x):

Jo* (raxs) b(mxsxe) drsdxe

= 5 [e@x)2X [Ra,mi0,0 c(p,0ax]. (111,9)
B
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Here the hermitian kernel K, which we shall call the
"bound state-continuum exchange kernel" in view of the
physical origin of its occurrence in (IIL,9), is defined
as

K(a,m38,%0) = [ o % (xaxs) 9 (raxa)dxa. (111.10)
Defining
Ke(a,x) =2 K(a,x;8,y) c(8,y)dy, (I11,11)
-

one can write (III,9) as

%(1-2K) c(o,x) = _/ba*(xaxe)W(xxgxs)dxzdxa. (I11.12)

This has a unique solution for c(a,x), denoted by

c(a,x) = 3(1-2K)-1 @ *(%zx3s) V(xXaXs)dxadxs , (IIL,13)
a

provided oan that K does not have the eigenvalue l, so
that (1-2K)~* is non-singular. Then c(x;Xzxs) is unique~
ly determined by (IIL.6) as the residue

c(x1%Xa%5) = w(xlxaxa)'AaE C(C‘«,Xl)qﬁa(xaxa)
a

= §(X1X2X3) -% Z [e(a,x1) ga (x2%3)
o

—e(o,xa) @ (x1%3) + c(a,xa) @ (x1x5) 1. (II1.14)

It is easy to verify that (III1.8) is indeed satisfied with
these choices of c(a,x) and c(x1%X3Xa):
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ftpa* (xa%3)c(x1X2X3) dxodxa

=f¢>a*(xaxa) V(X1X2Xa)dRadxs - %‘(1-2K)c(a,x1) = 0,

(III.15)

The inner product of two wave functions ¥ and V' can be
expressed in terms of the corresponding wave functions c¢

and c¢’, using (III.6), (XIIL.8), (III.10), and (III.11),
as

A V= [k (x,%2%5) V(X XoXa)dxy dxpdx,

(c,e’)

%Zalfc*«x %) (1-2K)8 *(o %) dx

+ fe*(x1xaXs)e (X xa%s)dx, dxadx,, (II1.16)
Given an antisymmetric ¢ and antisymmetric ¢., the c(a,x)
and c(x;X3X3) are uniquely determined by (IIf.lB) and

(I11.14). Conversely, given c(a,x) and an antisymmetric
c(x1x3x%s) satisfying the bound state-continuum orthogon-
ality constraint (III1.8), an antisymmetric {§ is uniquely
determined via (III,6). There cannot be more than one
such set of c's giving rise to a given ¢ via (III,6) for
suppose that there were two such sets, denoted by ¢, and
¢z. Then

Ag [ECS (G,X1)Cpa(x2xa):l + ¢y (x1x2%3)
a

= A, [z:cz(a,xl)maqua)] + ¢z (X1xpx5) . (IIL.17)
a
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Then multiplication of both sides by @, *(xzx3), integra-
tion, and use of (IIL.8) yields

3 (1-20) e, (a,%1) = 3(1-2K) e, (a,x) (111.18)
which, in view of the nonsingularity of the operator
(1-2K)"1, implies

ci (0,%1) = cz(a,x;). (111.19)

Then by IIL.14) and the fact that both c; and c; corres-
pond to the same ¥, one has

c1(X1XaX3) = cz(X1XsXa). (1I11.20)
It follows that the space of wave functions c(o,x) and
antisymmetric c(x;%;Xs) satisfying (III.8) is in one-one
correspondence with the space of physical (antisymmetric)
i's.

We proceed next to the case n = 4, since some new
features appear there. The generalization of (III.6) is

Y(Xy.eXe) = A4[Z C(alaa)w (x1xa)

03 Qg

X CP-agan:t)"'Z C(a,xlxa)ma(xax4)] + (X ..%a)

a

-3 :E: caraa) [0, (1%a)w, (xaXe)=@y (x2Xa) @y (xaxa)

Q) Qg

+ 9y Gaxe) g, (xs%a) |

+ %aZ[c(a,mxz)cpa(xaxa.) - C(@,Xlxa)tpq(xam.)



174 M. D. GIRARDEAU

+ e(a,x1%s) g (¥eXa) + c(a,xzxs) v, (x1%4)

= c(a,x2x4) @ (%1%3) + c(a,XaXs) o (x1%3)
o o

+ e(x1..%4). (I11.21)

There are now two bound state-continuum orthogonality
constraints, one on the c(a,x1x,) and one on c(xy..Xa):

./@a*(xlxa)c(B,xlxz)dxldxa =0, all a and B;
./ﬁh*(xlxg)c(x1x2x3X4)dx1dx2 = 0, all a,xs, and x4.

(I11.22)

The c(a,x1%5) are required to be antisymmetric in x; and
xz,and c(X1...Xs) in X;..Xs; also, since exchange of a
fermion pair produces two sign changes, c(a,az) is re-
quired to be symmetric in o, and a,., Multiplication of
(III.21) by g, *(x1X5) 9, *(xsx4), integration, and use of

(I11,22) and the antisymmetry and symmetry properties of
the c's yields

SokGax,) ok Grsxe) 4G xa) dxs o s
1 2

= % [C(On(lz)'Z; (alaglIqu)c(aB)]
o %Za fK(alaz;a,Xy) C((I,Xy)dxdy (III°23)

where
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(002 |T|as)= fcpa*(MXz) 9, ¥ (xaxa) o, (KaXa) @, (XaXe) dX1 .+ . dxe
1 2 3

(111.24)

and

R(a10230,%7) = [ %G ) 9 ¥ (yxa) 9y Gaxa) dadns . (I11.25)

Similarly, multiplication of (III.21) by ¢ *(xsXs) and in-
tegration yields

ftpa*(XaX4) Y (xy . .%4)dxadx,

[Zwal(x1xz)c(a1a) =2 Z K(G,X1Xz;0-10«e)c((110-a)]
Qs

01 Qg

Wi

N

[C(a,xlx2)-2 /K(a,x;x;B,Xa)C(B,X1Xa)an
B8

+ 2§ ;.[K(a,xl;B,xa)c(e,xaxa)dxs] (1I11.26)
B8

where

K(a,xyj;oag) = K¥(oyazja,xy) (111.27)

and K(a,x;;B,%xz) is defined by (III1.10). The matrix
(I11.24) is the analog of the "exchange matrix" defined
previously in Eq. (I.4), except that now it refers only to
fermion exchange between bound states ¢.,, whereas in (I.4)
the ¢y included continuum states as welil° The kernel
(II1.25), (III.27) corresponds to exchange of a pair of
electrons between the continuum and a product of two bound
states, one electron exchanging with each of the two bound
states, It is analogous to a dynamical matrix element re-
presenting collision of two bound pairs, with one breaking
up into two continuum fermions and the other remaining
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bound (but in general changing its state), and the in-
verse process. Similarly, (III,10) is analogous to a
dynamical matrix element representing collision of an
unbound (continuum) fermion with a bound pair without
breakup of the pair, whereas (ILI.24) is analogous to a
dynamical matrix element representing collision of two
bound pairs without breakup of either. In fact, we shall
see later that these purely kinematical exchange effects
give rise to terms in the second-~quantized Hamiltonian
which are quite analogous to dynamical terms,

Equations (III.23) and (III.26) are coupled linear,

inhomogeneous equations for c(oyaz) and c(a,x;%X3) in
terms of |y, which can be denoted symbolically by

Nl (111.28)

where ¢ is a many~component wave function which can be
denoted by

c(ay0z)

C(a,X1Xa) (111.29)

]

C

~

and d is the inhomogeneity, denoted in the same represent-
ation by

g = d(oy az)

d(a,X1XQ) (111.30)

with

d(oyaz) =./;hf (Xlxa)wa:(xax4)¢(x1o.X4)dX1..dX4,
d(a,x1%5) =f€pa*(xax4)W(xl..x.a,)dxadx,z,. (111,31)

The linear matrix-integral operator L is defined by the
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right sides of (IIL,23) and (II1.26). When we write down
the expression for the inner product (c,c’), it will be
easy to show, moreover, that L is hermitian, Equations
(I11.23) and (IIL.26) possess a unique solution for
c(oy0z) and c(o,x,%3) provided only that L does not pos-
sess the eigenvalue zero, so that k;l is nonsingular,

The existence of such a zero eigenvalue would be an acci-
dent arising through an umfortunate choice of the ¢, and
we shall assune that they are chosen so that [, does not
have a zero eigenvalue. Then c(0;a;) and c(a,x;%x3) are
uniquely determined by ¢, and c(x,..xs) subsequently fol-
lows uniquely from (III.21). By analogy with the veri-
fication of (III,22), one can show from (II1.21), (III.23),
(I11.25), (I11.26), and (III.10) that the bound state-con-
tinuum orthogonality constraints (II1.22) are actually
satisfied by the c(uoyaz) and c(a,x,x;) satisfying (III,23)
and (I11.26). Finally, the proof that there cannot be
more than one choice of the c¢'s satisfying (III.23) and
(I11.26), the constraints (I1I.22), and the proper anti-
symmetry and symmetry conditions and leading to the same

§ via (III.21) can be carried out in analogy with (IIL,17)
-(I11.20). Thus the space of wave functions ¢ is in one-
one correspondence with the space of physical (antisymmet-
ric) ¢'s. The inner product in the space of the c's is
found to be b

(‘U,ll!')Ef\b*(xl..,m.)llf'(xl..x‘;)dxl.‘,dx,;

= (c,e’) = (e, Le) + fek(r..x)e (.. %) dxs. dxa
= E : C*(alaz)[icl(alaz)'Z'E ka1a3|I|GB)C'(aB)
3 )
oy Qg aB

- % Z[K(al oz 3a,xy)c ‘(a,xy) dxdy]
a

+§ deldXQC*(G,X1X3) ['61' (¢] ,((L,X1X3)

[s3
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- % Zﬁ((a,xa;ﬁ,xa) c'(B,x1x3)dxs
B

2 -
= 32 K(a,x1%530,03) ¢ '(0a0a5) |
Qq Og

+fc*(xl--X4) C'(Xlu.X4)dX1o.dX4. (111.32)
It is easy to verify from this expression that the opera-
tor L is hermitian, as previously stated.

As a simple example of the physical interpretation
of the formalism, let us compute the c's for the case
that § is a four-fermion function built from products of
two-fermion bound states, with both pairs in the same

state oo

Y(x1.oxe) = A [ (X1 %3) o (X2%4) ]

= ':]; (oo (xlxa) o (XaXa) =epo (X1X3) o (X3X4)

+po (X1%4) o (XX 3) il (1I11.33)

Such a state is, in fact, of BCS form, with ¢, playing the
role of the Cooper pair wave function, Then

S0, (raxa) o *(xoxa) §(xa . xa) s . odxa
1 3

1 )
= 3[5a106a20 2(ay 0, |1100) 13,

./;a*(x3X4)W(xl..xa)dxst4

[
o

[5ao%(xlxz)'2K(0t,x1xg;00)]° (111.34)
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It is easily verified by substitution that the solutions
of Eqs, (I11,23) and (III.26) are then

c(oyay) = Galoéaao’

c(a,x1x3) = 0, (I1I.35)
Then by (IIL.21)

c(xy..%4) = 0. (I1I1.36)

The state'(III.33) is therefore one in which the probabi-
lity of finding two bound pairs both in the state « is
unity, the probability of finding two bound pairs not both
in the state ¢, is zero, and the probabilities of finding
only one bound pair or no bound pairs is zero. This is
exactly what one would naively expect for a state built
only from the single pair state ¢,. The formalism is such
that the complications arising from the antisymmetrization
in (IIL,33) do not upset this naive expectation, This is
not a trivial point, since an exchanged product such as

@o (X1X3) o (x2%4) is not orthogonal to unexchanged products
P (x1%2) g (xsxe) with o # 0 and/or B # O.

More generally, suppose that y(x;.. x4) is built
purely from bound pairs with no continuum amplitudes, i.e.

P(x1..xa) = Ag 2 : C(alaa)wa (x1%2) 9 (x3x%4)
1 o5
Qq Qg

1
= 5;12 c(azaz) [Cpal (x1%x3) (paz (Xaxq.)"toal (x1X3) cpaz (x2%4)

+ Cpal (X1X4)Cpa2 (XQX;;) ]. (III.37)

Then it is easily verified that (III.21), (III1.23), and
(I1L1.26) are satisfied for arbitrary symmetric c(ayaz) in
(I11,37) and the same c(ayaz) in (III.21),(IIL,23), and
(I11.26), provided that
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C(G,X:LXQ) = 0,

0. (1I11.38)

i

c(Xy..Xs)

For two such {'s, denoted by ¥ and ¥’, the inner product
expression (III,32) reduces to

(4,4 = (c,e”)

= %Z c¥*(oyag) ¢’ (ogap)

Q3 O3

) % Z Z; c*(030,) (a1 a5 |T]ag)c ' (aB). (III.39)

Or0g Q

The norm of a single state { can thus be written as

(L1 = (c,0) =2, Plaras),

Qg Qg
P(ayos) = % [lc(alaa)la - c*(ayas) Zg(alazlllaﬁ)c(aB)
Q
- e(a ) %: (a8 | |z az)c*(a) | e

so that if the state | is normalized, then P(ay,0z) has an
obvious physical interpretation as the probability of
finding the two bound pairs in the pair states ¢y and Pg-
This probability differs from le(ayaz) |? due to the effects
of antisymmetrization in (IIL.37). The distribution func-
tion n(a), the mean occupation number of the pair state

©q in the state {, is then

n(a) = 2 2 P(aB)
B

= %Z["’(“B) |2'°*(GB)Z<as Ik e ety iy
:

Ay Qg
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-c (a8) Z (102 |I|0.B)c*(a1a3)] (I11.41)

aj Qg

where the factor 2 arises from the requirement that if
four fermions are bound into two fermion pairs in various
states of excitation, then one must have

Zn(a) =2, (II1.42)

63

In the case where there are nonvanishing amplitudes for
finding only one bound pair or no bound pairs present, so
that the more general wave function (III.21) must be used,
the expressions for mean occupation numbers are more com-
plicated. The discussion of such cases is best postponed
until after introduction of second quantization, in terms
of which occupation numbers are more simply expressed.

D. Systems of Atoms, Electrons, and Nuclei

We are now in a position to deal with more realistic
cases. In a gas, liquid, or solid, there are present
atoms and/or molecules in various states of real or virtu-
al excitation and translational and rotational motion., In
a plasma, there are in general several species of compo=-
site particles plus 'elementary" particles, namely neutral
atoms and/or molecules in various states, singly-ionized
ions, doubly-ionized ions,..., and unbound electrons and
(at sufficiently high temperatures) nuclei, In order to
avoid unnecessarily complicating the formalism before
understanding the essential features, we shall restrict
ourselves here to the case that the composite particles
are of a single species, each composed of one nucleus,
whose spin and position variables are denoted by X, and
one electron, whose spin and position variables are de-
noted by x., Thus we have an orthonormal set {¢_} of
bound states, where gy=9y(X x). Such a description would
be applicable, e.g. to hydrogen at high enough tempera-
tures that virtually all H; molecules are dissociated,
There is no upper limit on the temperature, since we
shall explicitly include the possibility of dissociation
of the atoms, The notation for the @, is the same as
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the case 4=1 of Sec. I, except for the important differ-
ence that the set {wa} is now undercomplete, since it con-
tains only bound states, Nevertheless, it may still be

an infinite set, Thus, e.g. the atomic quantum numbers

a include not only the internal quantum numbers n,4{,m,

and s, but also the translational quantum number k, re-
lated to the total momentum p of the atom by =h§7 In
realistic cases it will be necessary to consider a large
number of k values, proportional to the volume of the sys-
tem and hence becoming infinite in the thermodynamic
limit. Since the set {wa} is nevertheless undercomplete
as are products of such bound states, the overcomplete-
ness problems that plagued us in Secs. I and II will now
be absent, being prevented here by the constraint of

bound state-continuum orthogonality. The overcompleteness
problems in Sec. I arose because the set of all atomic
product states is overcomplete (as a result of the effects
of exchange) provided that all continuum states of the
atoms are included., Here, however, we shall include only
bound states, treating the continuum states in terms of
their "elementary' constituents (here nuclei and electrons).

Suppose that we are dealing with a system of n pro-
tons and n electrons, described by Schr&dinger wave func-
tions y(X;...X %1...x.). The obvious generalization of
the expansion ?IIIOZT? is

V& X Xk )

= ! An(nuc) An(elec) {(n!)-% :E: C(al...an)

al...ctn
n=-1
x o (Xx)...0 (X x )+ Z (j')—l[(n-’)']"%
e e o o “n'n . 1.
j=1
X
Z c(a1...an_j,Xn_j_,_l...ann_j+1...xn)
C(-la..(ln_j
X Cpal (Xlxl)-..cpa (Xn-jxn-j)} <k C(Xl.ooxn)h...xn)

n=j (I11.43)
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where A (nuc) and An(elec) are the proton and electron
antisymmetrizers defined as in (II.7), and the combina-
torial factors are inserted so as to simplify the inner
product expression which will be derived subsequently,
The c's are required to be antisymmetric in the X's,
antisymmetric in the x's, and symmetric in the a's. 1In
addition, they are required to be strongly orthogonal to
the bound states, i.e.

[coa*(ann) cloa.o.a o ,X x ) dX dx =0,

1’

X ) dX dx =0,

%
Jf¢a (ann) c(OLI"‘OLn-Z’Xn ¥*a%a-1%

°

% =
j@h (ann) C(Xl.o.anl...xn) dX dx =0 (11L.44)

as identities in the a's and the unintegrated X's and x's,
These requiremeunts are the obvious generalization of
(I11.22) and ensure that the dependence of the c's on the
X's and x's refers only to continuum (unbound) nuclei and
electrons; furthermore, they will serve to make the solu-
tion for the c¢'s in terms of ¢ unique.

The equations determining the amplitudes c can be de-
rived in analogy with the derivation of (III.23) and
(III 26), by multiplying (ITI.43) by ¢a*(X1X1) wau_
Xq- Xn-J) and integrating over X,. Xn-j,
for each value of j from 0 to n-1, In tﬁls way oné ob-
tains a set of n coupled linear, inhomogeneous equations
for the n amplitudes c(al.o.an), clog.oetn-1,%% ), 00,
c(o,Xz. .. XpXa...x,) of the form

L

Moe(or...0)=(n!) chpavf(xlxl).,.cpa:<xnxn>w(x1.,..xnxl.,..xn>

s X Xm...andxl...dx

M C((I]_ ok .G,n_j ,Xn_j+1o . oxnxn_j+lo . oxn)

n’
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T ! . -%
= a!(GH @7 fcpq;*(xlxl)...qoan_;xxn_jxn_j)

b

X W(Xl o .XnX1 . .xn)dX1 .o .dxn"jdXI' . .an_j

3
°

M c(ay,Xz., -ana H0 .xn)= nfcpai“(xlxl) lll(Xl,.,anl N ,,xn) dX,dx; .

(II1.45)

Here M is a linear, hermitian operator on the c's whose
explicit form* is to be obtained by substitution of
(1I11,43) into the right sides of the equations and evalu-
ation of the integrals, dropping terms which vanish as a
result of (III.44). At this point we do not need the ex-
plicit expressions; it is sufficient to realize that as
before, the solution for the c's is unique, i.e. M * is
non-singular** and uniquely defined. Hence, imposition
of the requirements that the c's have the proper symmetry
and antisymmetry and satisfy the bound state-continuum
orthogonality constraints (III.44) serves to uniquely de-
termine the c's and establish a one-one correspondence be-
tween the space of physical {'s and the space of c's.
Eqs. (IIL,45) only determine the c's with 0 < j s n - 1;
as before, c(Xl...anl...xn) is then uniquely determined
by (III.43).

We shall require, however, explicit expressions for
the most important terms in the inner product (c,c')° In

* Note that the explicit expression for
M C(al"'an-j’xn-j+1"'ann-j+1xn) consists of terms

linear in the various C(al°"’nn-k’xn-k+l"‘xnxn-k+1

°..xn), not merely k = j.

*% Note that if the constraints (II1.44) were not imposed,
thenthe solution would not be unique, i.e. M would have
a zero eigenvalue,
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evaluating (¥, V'), one need include only one factor of
A, (nuc) and one factor of Ap(elec) in the integrand,
since these antisymmetrizing operators are projection

operators and hence idempotent, ' Thus by (IIL.43), the
inner product is

(c,c’) = (4,¥")

=de1...,dKndx1 dx_{@h* >>

0.1..oan
n-1
= =%
X c*(al...an)cpaf(xlxl)... P F (X x )+ nlz(j!) 1[(n-j)!] 2
n s
j=1

*
X Z c (al'”an-j’Xn-j+1'"xnxn-j+l'°'xn)
al.o.an_j

* * *
X gt (Xlxl).,.q)an-j(Xn_jxn_j)+ c*(Xy.. X X1...x )}

L
X An(nuc)An(elec) {(n!) s Z

c(BreeeB YO, (Kixidewo o &K x )
Breee B ne ke Bn na

n-1 =

t R ] '%
+n.2 1) [n-t)!] 2

1=1 81...8

Bt

’
X e "(Bree B poX o pqee XX ppe %)

X chl(Xlxl)...°9B L(Xn-&xn-£)+CI(Xl""’XnXl"'Xn)}

(I11.46)
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This inner product is conveniently decomposed as follows:

(e3c ) =) enetVer ! e )alt inl = (I11.47)

Here (c,c ) arises from all those terms in (III,46) in
which the arguments (XJx ) of the various ¢u factors are
either not permuted at all, or else the pairs (Xj xJ) are
permuted bodily between qh s without breakup. Also, the
X and x arguments of the c's may be permuted freely, but
permutations exchanging arguments of the c's with those
of the ¢y's are excluded. Taking proper account of the
combinatorial factors arising in this way, one finds

(c,c’)o = Z c*(oy... 0 )e (0. ..a)

Pl
: n

E E *
= (al“’an-j’xn-3+1 n n-3+1'°xn)

j=1 01w 0

I
X ¢ (al”’an-j’Xn=j+l"‘xnxn-j+1'"xn)dxn-j+1"°dxn

ARy

c*(Xl.“XnX1..nxn)c'(Xlnoxnxluoxn)dxh..andxlu.dxn.

(I11.48)

The combinatorial factors in (IIL.43) were chosen so that
such prefactors do not appear in (IIL.48).

The term (c,c’): in (III.47) is defined to be the
sum of all terms in (III.46) expressible solely in terms
of exchange matrices and kernels arising from single ex-
change of protons or electrons between atoms, or single
exchange of a proton or electron between an atom and the
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continuum, Such exchanges may be depicted schematically
as in Fig. 1, in which the circles represent atoms, the
heavy dots protons, the light dots electrons, and the
lines with arrows permutation cycles of length 2 (single
interchanges). In addition, arbitrary permutations of
proton-electron pairs between atoms, and arbitrary permu-
tations of protons and electrons entirely within the con-~
tinuum, are allowed. These are not indicated in the fig-
ure since they do not change the value of the matrix ele-
ments (although they do contribute to the combinatorial
factors).

<:::E§§;ﬁéégg:j:> "|||IIIII||III"
Fig. 1. Permutations contributing to (c,c )i.

Their contribution is only appreciable when atoms overlap
each other or a continuum particle.

All such terms are expressible linearly in terms of
the exchange matrix

(alazlIlaB)E./@a*(Xlxl)¢h*(xzxz)¢a(xlxe)¢ (X2x,)
1 2 B
X Xmd.XQdX]_an (III-Z"())

and the exchange kernels
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K(a,Xl;B,Xg)E‘fma*(ng)¢B(X1x)dx,
K(a,x; ;8,%3)= f@a*(XXa)ws(xxl)dX,
K(ay05;a,Xx)= Iwa?(xxl)wa:(xlx)¢a(xlx1)dxldx1)

K(a,Xx;0502) 8 K¥(0, 05 ;0,Xx) (I1I1.50)

analogous to (III,24), (III.10), (III.25), and (IIL.27).

a, (ala2|1|6152) 82

a B8 a

K(a,X,38,X,) K(a,x38,x,)

X1 1 2 X2 1 2R es))
ay a a
X X

o, K(alaz;a,Xx) = - K(a,Xx;alaz)

Fig. 2. Dynamical analogs of binary exchange process

a

contributing to (c,c’)y. Heavy lines denote atoms;

light lines, protons or electrons.
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Non=negligible contributions to the exchange matrix
(IIL.49) arise only from those regions of configuration
space where two atoms collide (a binary collision).
Similarly, non-negligible contributions to K(a,X;;B,Xz)
and K(a,x; ;B,x;) arise only from regions of configuration
space where one atom collides with one proton or one elec-
tron, and non-negligible contributions to K(a,Xx;aa3)
arise only from regions of configuration space where two
atoms collide, with one breaking up into a proton and an
electron (exchange cannot induce simultaneous breakup of
both of the colliding atoms, although such terms will be
found to occur in the Hamiltonian as a result of true dy-
namical interaction). The representation of these contri-
butions to (c,c’), in terms of diagrams is shown in Fig.
2, Note that K(a,0;;a,Xx) corresponds to three-body col-
lisions (one atom, one proton, and one electron). Never-
theless, we have chosen, rather arbitrarily, to include
its contribution in (c,c’):, since the inverse process,
corresponding to K(a,Xx;0,0;), corresponds to only binary
collisions (two atoms). The conbinatorics required to
evaluate the coefficients of these exchange matrices and
kernels are rather involved, so we give only the results:¥*

(c,c”)y = -m(n-l) 2 Z c*(or...0 ) (eaz [IB282)

o--(ln B1Ba2

X c (3183(13.. .Qn)

- Z DY EIED M

Q]_..oa "j 81 B2

X v/;*(alo..an_j,xn_j+1...ann_j+1...xn)

*Some errors in the combinatorial coefficients have been
corrected since the lectures were presented, and the dis-
cussion of (III.51) has been modified accordingly.
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x (o, Az ‘I l B1Bz)c '(B1BzOs. . 'an-j ’Xn-j'i‘l' s °ann-j+1' $ .Xn)

X an_j+1. - ‘dxndxn—j+l' Lodx

n~1
=2 i Y VB
j=1— 0y ool 5 B

X /c*(al L ’Xn-j+l‘ . 'ann-j+1' X))

x[fK(al X 38,X)c ‘(Boz ST ’Xn-j+1" .Xn_lXxn_j+1...}<n)dX

7
+fK(C(.1 ,xn;B,x)c (Baz... an-j ’Xn-j+1'°°Xan-j+1'”Xn-lx) dXJ

* dXn-j+1' . 'dxndxn-jﬂ.' : 'dxn

n-2
- T G @D @) YD =

3=0 al..o%_j_l B1B=

X fc‘n‘(al 0 °°Ln-j-1’xn-j g 'ann—j cedX )

X K(an_j_l’xn_jxn_j ;Bl BB)

!
X ¢ (al...an_j_zBlﬁa,Xn_jﬂ...ann_j+1.. -

x dX ,...dX dx ....dx
n-j n n-j n
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n-2
- 3 ) e-HEa-j-ny X 3
j=0 Ay eeol 8

n-j

X %
./}‘(al"'an-j’Xn-j+l"'ann-j+1"'xn)

x Koy 0z38,X X J.)c'(saa...a X L XX LX)

>’n-3i n- n-j’ n-j n n-j n
x dX__,...dX dx__....dx_. (111.51)
n-j n n-j n

The next term, (c,c ')z, in (III.47) is more compli-
cated. It arises from both ternary exchange and singly-
iterated binary exchange. By 'ternary exchange' we mean
terms in (IIL.46) arising from permutation cycles running
through three atoms; such terms only become effective up-
on ternary collisions of atoms. An example of such a
contribution, arising from permutation cycles of length
three running through three atoms involved in the ampli-
tudes c(aloo.an), is

i i (8
AR @2 SN B o, ) (ars0a |18, 8280)
¥ M1 +e00 B1BaBa

n

X 01(515263G4n.oan) (II1.52)

where the ternary exchange matrix is defined as

(alazaaIIlBlBzBa)E./ba*(xlxl)wa*(xaxz)w *(X3%a)
40 2 o5}

X(@ (Xixz)op, (Xaxa)o, (Xaxi) +
LB Ba Bs
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+ g, Kixa)o, Kaxi)e, (Xaxz) :l dX; dX5dX zdx; dxzdxs.
B1 Bz Ba

(I11,53)

The contribution (III,.52) includes the combinatorial fac-
tor, i.e, it has already been summed over all electron
and proton cycles of length three.

The''singly-iterated binary exchange' contributions
to (c,c)s arise from terms in (III,46) involving two
disjoint permutation cycles of length two. As an example,
such contributions involving only the amplitudes c(a; ... )
and arising from two disjoint exchanges of electrons e
and/or protons sum to

n(n-1) (n-2) (n-3)

(R =

Opes. 0 Bi...Ba
X C*(U«l-..an) (a,az |I|3132) (asas |I|BaBa)

X ¢'(Bri.oBa Og...0 ) (I11.54)

Let us next estimate the magnitudes of these various
contributions. To simplify the discussion, assume that
cae..op)=c’(on...0y) = 8q g...8q 0, With all other c's
and ¢ ''s vanishing*, Then ¥c,c’), is unity, whereas
(c,c ), reduces simply to -3n(n~1)(00|1]00). To estimate
this exchange matrix element, note that if the system is
subject to periodic boundary conditions with periodicity
volume Q, then the bound states ¢y (Xx) can be labelled by
a wave vector k and internal quantum numbers v, i.e.

a = (k,v), where, e.g. v = (n,2,m,s). Then the o, will
have ~ range ~a, as a function of |R-r|, where ao is the
Bohr radius, and will be of order ~ ~ as®?® Q% within
this range. Then it is easy to see from (III.49) that
(oaaz |I]aB) will be of order (ao®/Q) when nonvanishing,
whereas it will vanish unless the sum of momenta on the

* This is the case of extreme Bose-Einstein condensation,
for which one expects exchange effects to be largest.
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left is equal to the sum of momenta on the right. Thus
in the special case a; = 0z = a = 8 = 0, (00|1]00)~(ao?/Q)
and (c,c’)y ~ - inpa®, where p = n/n and we are assuming
that n and Q are large but with ratio p independent of n
and Q@ (macrospcopic system). By a similar argument one
estimates that the ternarZ exchange contribution (III,53)
is of order (3!)"*n(pao?®)?, whereas the singly-iterated
binarg exchange contribution (I1I.54) is of order
(21°°n®(pas®)®. More generally, any connected contribu-
tion, i.e. one arising from a single permutation cycle of
length £, is expected to be of order n(pa,®)*"', whereas
a disconmected contribution, arising from a permutation
decomposable into more than one disjoint cycle, will be
of order of the products of such factors, one for each
cycle, and will hence be proportional to n™ where m is
the number of disjoint cycles.

It is clear from the above estimates that the series
(I11.47) is seriously divergent* for a macroscopic system
(n ~ 10°%), terms of higher order in exchange involving
higher powers of n. The situation in this respect is sim=-
ilar to the behavior of the Rayleigh-Schrédinger pertur-
bation expansion for the ground state energy of a many-
body system, or the similar expansions for the equilibrium
statistical mechanics (Mayer expansion in classical statis-
tical mechanics or quantum-statistical perturbation
theory.) There useful expansions are obtained by appro-
priate reordering, through introduction of Ursell func-
tions or some equivalent (linked cluster perturbation
theory) ., One expects that by the use of similar methods,
one can represent the sum of all connected and disconnect-
ed contributions to (ILI.46) as the exponential of a sum
of connected contributions only., Then the inner product
(II1.46) will depend exponentially on n for large n. In
fact, there are very general arguments’) that this is the
case for well-behaved many-particle wave functions,

Since such a rearrangement of the series (IIL.47) has
not in fact yet been accomplished, we shall content our-
selves here with a more pragmatic approach. It is known

* Strictly speaking, the series is not divergent for fin-
ite n, since it terminates. However, it 'converges
abruptly.”
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that after such Ursell rearrangements have been performed
in the case of statistical mechanical or quantum mechanic-
al perturbation theory, the results®* obtained by use of
the rearranged series agree with those obtained from the
original one to lowest (first) order in the density, the
rearrangement only affecting the higher-order contribu-
tions. We shall assume that the same is true of the ser-
ies (III.47). More specifically, we shall assume that in
calculating the contribution of exchange to many-body
energies, the first two terms of the series may be used,
and the results obtained will then be correct to first
order in the density. The actual way in which this will
be done will be through introduction of an appropriate
"metric operator' which generates the various terms in
(I11.47) and will also be found to be amenable to second
quantization. This will be evaluated only up to binary
exchange temms, i.e., those terms which contribute to
(c,c’)1. We shall call this the "binary exchange approxi-
mation'". The contributions of exchange to the second-
quantized Hamiltonian will be evaluated only up to binary
exchange terms.

We now introduce notation which will motivate the
definition of the metric operator and will also prove
useful in the subsequent transition to second quantization,
Define the "state vector' |c) as the set of all amplitudes
c; this may be conveniently thought of as a column vector:

o~ ~

C(Gl...(ln)

clor.oo ,X x )

& = c(al"°an-j’xn-j+1"'ann-j+1"'xn)

.
.

c(al,Xa...anQ...xn)

C(X]_ .o 'anl .o .Xn)

N
(II1.55)

* This statement is, of course, only true for some results,
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Define the inner product of two such state vectors as

(ele ) = Z C*(al-o.an)c'(al.o.an)

o ...
1 n
n-1
%
+ }: >, _/h (al"'an-j’xn-j+1"'ann-j+l"‘xn)
j=1 al...an_j
Xcl(al...a X

n-j’ n-j+1"°xnxn-j+l"'xn)

X an_j+1...andxn_j+1...dxn

+ c*(Xl...anl...xn)c’(Xl...anl...xn)dxl...andX1...dxno
(II1.56)

This inner product is not equal to the inner product
(c,c’), Eqs. (III.46)-(IIL.48) and (III,51), although we
see from (III,48) that it is equal to the direct term,
(c,c Vo, in (c,c’). However, there exists a linear, her-
mitian operator M on the space of state vectors Ic), such
that

(c,c’) = (cM|c) (I11.57)

For obvious reasons, we shall call M the "metric operator!
It is defined implicitly by (III.46) and (III.56). 1In
fact, it follows from (III.45) and (IIL.46) that M is the
same operator as occurs in (III.45), provided that Egs.
(II1.45), which define M only for 0 < j < n-1, are sup-
plemented by

Mc (x1 o -anl o] ) .Xn) £ C(X1 o] (o] .anl ‘e .Xn) . (111.58)
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It follows from (III.47), (I1I.48), and (IIL.51) that M
is given up through binary exchange temms by

M=1-B+ ... (111.59)

where the "binary exchange operator' B is defined by

n

Be(a...0) =3 3 (apaql1|<x6)
p<q ap

X c(oy .. RGeS ’aq-lsaq+l' e0)

n
411'% Z Ef [K(apqu;a,)(x) + K(aqap;o.,Xx)jj
pP<q «

x c(og.. (0101t %101 .a_a,Xx)dXdx, (IIL.60)

Be(a .. Oy ’Xn-j+1' c .ann_j+l. cex)

n-j
= Z E (apanIIaB)

p<q aB

x c(a.. L I L N T N

xn-j+1' : ‘ann-j+l' ¢ 'xn)

n-j
HED @Y T
pP<q a

X f[K(apaq;a,Xx) + K(quap;on,Xx)]
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X c(tyo. a,

o B e ey

X

Koogare s KR e xR dXdx

n-j n
+ Y3 Z[fx(ap,xq;a,x)
p=l1 g=n-j+l1 «

X c(al...ap_laap+1..oan_j,

Xn-j-f-l"'Xq-lqu+1°"ann-'j+1'"Xn)dX

+ fK(ap,xq;oc,x)c(al...a ao.

p-1 p+1"'an-j’

Xn_j+1...ann_j+1...xq_lqu+1...xn) dx]

n=-j n n
+ j'l(n-j+1)% }: Z Z E K(ap,quS;aB)

p=l g=n-j+1 s=n-j+1 aB

X c(al...ap_lap+1...an_ja8,

Xn—j+1"'xq-1xq+l'"ann-j+1'"xs-lxs+1"°xn)’
1 =j<n-1, (I11.61)

and
Bc(Xl...anlo..xn) =205 (111.62)

where care has been taken to ensure that B preserves the
proper symmetry and antisymmetry of the c's.
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E. Representation of Observables

We wish to determine how operators representing phy-
sical observables transform into the space of state vec=-
tors |c). This can, in principle, be done in two steps,
first finding how the operators act on the space of ampli-
tudes ¢ and then transforming them into the space of state
vectors |c) with the aid of (IIL.57). Let A be any oper-
ator defined on wave functions y. Then A can be defined
as an operator on the amplitudes c by use of (III.43),
(I11.44), and appropriate algebraic manipulations. De-
noting the amplitudes thus determined by Ac, one has by
(I11.57)

(c,Ac) = (c|Male’. (I11.63)

The metric operator M is the representation, in the space
of state veitogs |c), of the antisymmetrizing operator

Ay (nuc) Ay €¢) in (III.46). Thus, since Schrddinger oper-
ator representlng physical observables are invariant under
permuta 1on§ f 1de§t1ca1 particles (i.e., they commute
with A, elec) ' the corresponding operators on ampli-
tudes c commute with M.* Thus one can also write (II1.63)
as

(c,Ac”) = (claMlc) (111.64)
provided that A really corresponds to a physical observ-

able, For such an operator, one can combine (III,63) and
(IIL,64) into

(c,Ac”) = (c|fle ) (111.65)

where A, the operator on the space of state vectors lc)
corresponding to the operator A on the amplitudes c, can
be written in several equivalent forms:

EIR !
A = MA=AM=L(MAHAM) = MPAMZ = ., (I11.66)

*This is not a trivial matter, i.e. it is not valid for
arbitrary operators A invariant under permutations of

a's, X's, and x's. Instead,it is a special property of
those particular A's derived from a Schr&dinger operator
invariant under all permutations (including atom-breaking
ones). For such A's, there are relations between the terms
Ac(01c0. Opy=j,Xn=j = Xn)with various j's, such that [A,M]=0.
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Thus defined, [l 1s hermitian, since both M and A are.

Defining Ac to be the expansion coefficients of Ay,
in analogy with the procedure used for transforming ob-
servables into the space of c's in Sec. I, one can obtain
formal expressions for these amglitudes by multiplication
of (IIL.45) from the left by M™*:

-
AeCosnnm) = @DAT forOum) . ok @ xy)

x Ap(X;.. .XnX1 . ..Xn) dX; .. .andxl .- .dxn,

Ac(ay .. “%m ’Xn-j+1° ; 'ann-j+l' . ox)

)

- —1 -
=0l M TE T fo xam) e, R

n-j

X Aﬂ;(Xl .o 'anl .o .Xn)d-X1 . .an_jdx1 . .dxn_j o

-1
Ac(o ,Xz---xnxa...xn) = nM fq)af(xlxl)AW(Xl”'anl"'xn)

x dXydx;. (III.67)

Then by (III,.66) the metric operator M cancels out of the
equations determining the operation of f}:

Ac(al..,.an) = (nf);2 fcpaf(xlxl)...cpa*(xnxn)
n

X APy X xy...x ) dKg L. dK dxgLLldX

Ac(al oa .an_an_j+1. : 'ann-j+l‘ ex)

- nlGH™ [(n-j)!J'%fcoaf(xlxl)...cpa ME )
n-j

X Allf(Xl .o .anl o .Xn)d.X]_ P .dxn_jdX1 00 .an_j,



200 M. D. GIRARDEAU

Ac(al,xz---xnxa---xn) = n/wai‘(XJ.XﬁAW(Xl-o-anl...xn)
X dX;dx, (I11.68)

To determine Ac X;...Xp%1.,..X ) we note that in the
first place, by (III.58), Alg equal to A when acting

on c(X;. <X X1...%x,), and in the second place Ac(X;...X,
xl...xn) is the residue left after subtracting from ASch"l’
the sum of all its bound and partially bound parts.

Here ASch is the Schrddinger operator, i.e. the operator

on the space of y's. Then by (III.43) and (III.66) one
finds

A ... Kxx) = Agc(h. X XL )

o n:An(nUC)An(eleC) { (n!)_% E [C (al = 'O'n)

o8} ...(ln

Aot 0as) -0y Coxg)

- 9y, Tax)eeeg, K x) M Rca.ia)]

n

n-1

Ly -1 N1k

+ 3, G @31

j=1
S [Aschc(“1°"“n-j’xn-j+1'°'ann-j+1'°°xn)
Aroool

n-j

x wal(Xlxl)...wa X
n-j
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-9y, Cama) oy K _x OM el

- n-3"n-j

Xn-j+1"'xnxn-j+1"'xn)]}

(1I1.69)

Here the‘h: involved are to be substituted after evalua-
ting the expressions (III.68); then multiplication by M~
can be effected by taking the -1 power of the series
(IIL.59), which, in the binary exchange approximation
gives

e e (1II1.70)

As a preliminary to obtaining more explicit general

expressions for the kinetic and potential energy operators
and‘,, it is helpful, as before, to first consider a
ew special cases of small values of n.

For n = 1, one
has

B =3 e(0) g, (Xx) +e(X0).

(111,71)
o

Any single-particle operator T on | has the structure

Ty(Xx) = Tschw(xX) = [(T(X) + T(x) Jy(Xx). (I11,72)

Then by (III.71)

Ty (Xx) =§:c(a)[T(X)+T(x)] ma(Xx)+[T(X)+T(x)]c(Xx)

¥ (111.73)
Putting n=1 in (III.68), one finds
Te@= Yaltloet  + fox000 100460 Je (o) axax
B

(I11.74)
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where the atom-atom matrix elements are
al7ls) = fo @0 T® + 16 o (0 akax, (II1.75)

as in (I.12). For the case n=1, M=1, so that (IILL.69)
gives

Texx) = [(T(X) + T(x) le (Xx)
- /A(Xx,X'x')[T(X')ﬂf(x')]c(X'x')dX'dx'
+3xx|T|a)c(a) (111.76)
a

where the "bound state kernel" A is defined as

AXx,X'x ")

3 0, (Fx) o ¥ (X 'x ) (111.77)
a

and the atom-continuum matrix elements* as
&x|Tlo) = [T(X)+T (x) Jo (Xx)
-ﬁ(m,x'x NYITED+T(x ) Jo, (X ‘*x)dX‘'dx’.  (ILL.78)
It follows from (III,77) and (III,78) that
ﬁpa*(Xx) (Xx|T|g)dXdx = 0, all a and B. (I11.79)

Then it is easy to see that ];(Xx) is orthogonal to all
the ¢ , as it ought to be, It is also easy to verify that
the amplitudes (IIL.74) and (I1I.76) do in fact generate
Ty when substituted into (III,71). Any two-particle

* We shall see later that such matrix elements cancel
between T and in the special case that ¢, are taken
to be energy eigenstates., However, in the general case

can induce breakup of an atom,
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operator V on { has the structure

Vi(Xx) = Vg o 1(Xx) = V(Xx) §(Xx) (TII.80)

where the notation means that V(Xx) operates on both the
X and x dependence of ¥ (it is not necessarily an ordi-
nary potential, i.e. it may be a nontrivial operator). One
finds in analogy with the derivation of (III,74) and
(I11.76)

Ve(@= 2 @lvlmee) + fox0mvemme tuates,
B

Ve (ko) =V () e () - [ (R, X % V(K "% Yo (K 'x Y dX ‘dx ’

+ 2 &x|V]a)e(a) (III.81)
a

where the atom-atom matrix elements are

(alV1e) = flog5 (v (R0 v, (k) axax (111.82)

in analogy with (I,15), and the atom~continuum matrix
elements are

(Xx[V]a) = V(Xx) o (Xx)
_[A(XX,x’x NE 'x ')cpa(X 'xHdX ‘dx’ (111,83)
in analogy with (IIL.78). Again, one easily verifies
fcpa*(XX) (Xx |V|g)dXdx = 0, all o and B, (1I11.84)

and checks that VC (X x) is orthogonal to the ¢ and
that the amplitudes (III.81) do in fact generate Vi,
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Next consider the case n = 2, Eq. (II1.43) reduces
to

P(KaKaxyxs) = 24, PU)a, (10O )7% 50 (0,0,

Ay Og

X CPal (X1X1)CPOL2 (Xax3) +E C(a,xaxs)wa(xlxl) ]"‘C(Xlxlexa)
a

=27 T clman) o, Kum)e, (Kaxa)

QA Qg

"fpal (X1x3) w(xg (Xax1) ]

+ %Z [C(a,xzxa)@a(xlxﬂ = C(Q,X9X1)QOQ(X1X2)
a

- c(a,Xlxa)cpa(szl) + c(a,Xlxl)cpa(Xaxg)]
+ ¢ (X, Xax1X3) (I11.85)

where the amplitudes satsify the strong orthogonality con-
straints (I1I1.44):

fcpa*(Xx)c(S,Xx) dXdx = 0, all o and B;

/Cpa*(XQXQ)C(X1X3X1Xz)dx3d}(g = 0, all a, xl, and x,.

(111.86)
A single-particle operator T has the structure

TY(XyXax1%x2) = TschW(xlxlexa)

= [T(X) 4T (X) #T (x2)+T (xa) ¥ (RaKoxixo) D
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on the space of y's. Then by (III.S85)

Ty (X, Koxyx5) = 27 A, (€D, (elec)

x 2 elaaa) {n, (Kexa) [TG)HT(0) Jo (Kaxa)

Q1 Q2

+ oy (Kaxa) [T(Xa) 4T (xa) Jo (Kaxa) }

+ 24,0005, (€180 570 (0, Xoxa) [T(X)) + T(xs) Iy (Kaxa)
o

+ o (%) [T(Xz) + T(xa) Je(,Xa%2) }
+ [T(Xy) + T(Xz) + T(xa) + T(xa) le(X1Xoxixz) (II1.88)

since T commutes with Ag(“uc) and Aa(eiec)_ Then on put-
ting n = 2 in (IIL.68) one finds*

Te(wma) =Y 1o ITl0) e (aas) +(oa T |y e (on ) I

o

= > (w0 |IT]aB)c(aB)
ap

+ 2—%f[(a1 IT| (Xx) ‘c (az,Xx) +(az |T |Xx) ‘c(a; ,Xx) ldXdx

- 27% Zf{(alazllTla,Xx)’ + (050, |IT |a,Xx) *
¢ (I11.89)

+ [K(alaa;a,Xx)+K(aga1;a,Xx)][T(X)+T(x)]}c(a,Xx)dde

*
Note that the operators Az(nuc)and As(elec) may be

shifted so as to operate on the product of wa* factors.
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where

(o200 [17 1080 = g, () 9,3 (aa) [T00) +T.0) 4T Gra 4T Gco)]
X cpa(Xlxz)ch(ngl)dxldXdeldxz
=_/[K(a1Xa;B,Xl)T(Xl)K(az,Xl 30,Xz)
+ K(az,X;38,X) T(X2)K(0y , X5 50,X1) JdX, dX,

+/[K(a1 X2 3B,%1 )T (%) K(oz, %y 50,%35)

+ K(az, %) ;8,%2)T(x2)K(0q ,x230,%1) Jdx:dxz,
Xx|T|a) ‘=[TX)+T (x) ]cpa(xX) ,(a]T |Rx) =[ (Xx |T|a) ' I*,
(a1 05 |IT |0, Xx) ‘= fcoa*(Xx Vo XX R [TEDHT(x) Jo (X 'x")
1 2
x dX ‘dx ‘. (111.90)

Similarly, one finds

Te (e, %0=3 (alT]p)e (B, Xx) + [TEO+T(x) Je (o, %)
B

-Zﬁ@,xlm |6, X )+KR(@,X;38,X YT(X ") Je(8,X 'x)dX ’
8

L Z/[(q,xlIT|B,x')+K(a,x;B,x NYT(x ") e(p,Xx Hdx’
8

+Zch(Xx)f(oc|T‘X ‘x‘) ‘c(B,Xx )X ‘dx’
g
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+ Z%Z(XMTIB)'C(BOL)
B

+2% 3 {(alTla) o, (- (o,xx]1T] a05) °

Q1 &g
- [T(X)+T(x) K(a,Xx30102) } c(araz)

+ Zf(alTlX'x ") e (XX ‘xx ) dX ‘dx ’ (I1I.91)
with
(a,XlITlB,X’)E/wa*(X %) [TCOAT () Jopg (Kx) dx,
(% T2 |8, )= fo #(Xx ) [T () oy (Kx) dX,

(o, Xx |IT| oy a2) * = [(op oz |IT|o,Xx) ‘17, (I1I.92)

Finally, for completeness we should exhibit the express-
ion for c(X;Xz%x:%3). This is not determined by
(I1I.68), but by the more involved expression (III.69).
However, even for this simple case of n = 2, there are so
many terms that it hardly seems worthwhile to write out
the expression explicitly. Actually, in a macroscopic
system (n ~ 10?®) the probability of finding all atoms
dissociated is negligibly small, so one may safely re-
strict oneself to a subspace in which the totally unbound
amplitude is zero, and neglect matrix elements of observ-
ables connecting this restricted subspace with the "total-
ly unbound" subspace.

Next consider the form of the operatorv for the
case n = 2, where V is a two-particle operator:

V\II(X]_XQX;LXQ) = [V(XIXQ)+V(x1x2)+V(X1x1)+V(Xax3)

+ V(X1x2) W (Xexy ) JW(X 1 Xax1x2) . (I11.93)

Derivations similar to those of (IIL.89) and (III.91)
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give the form of " on the space of state vectors le).
As in Sec, I, is convenient to separate Anto
a single-atom part " and an interaction part

One finds that

V-V + 'K (111.94)

where

V c@mad=d e lVio)e(aas) +(oz [Vla) e (oa0) ]

@ a

% f[(a1 [V [Xx) ‘c(az,Xx)

+ (o2 |V|Xx) ‘c (01 ,Xx) JdXdx (I11.95)
and¥*
Ex[V]e) * = V) @ (Xx), (a|V[Xx) "=l (Xx |V ]a) “T*.
(I11.96)
Similarly, one finds

vlc(a1a3)=2 [ (o, a, ]V|0LB)--(0L10L2 [ Iv]aB) Jc (aB)
aB

T f{teas V19,30 + (ones [V, %x) °

a

- (alaz‘IV‘a,Xx)' - (azallIV|a,Xx)'

*The prime distinguishes this matrix element from the
previously-defined one (IIL.83), which contains an ad-
ditional orthogonalization term. The same remark applies
to the distinction between (III1,90) and (III,78).
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~[K (a1 05 50, X%) (005 30, %) W(Xx) } ¢ (o, Xx) dXdx
i
+2 2 f((xl Az |V |X1ng1x3) IC (Xlxgxlxa)dxldxadxldxz (111.97)
where
(a1 az IVlGB)E[@af(xlxl)CPa:‘(xzxz) [V(X1X5) +V(x1%3)
+ V(X1X2)+V(X2X1)]ma(xlxl)@B(Xaxa)dxldxadxldxz

(I11.98)
as in (I.16), and

(onae [TV aB)= fo * (i) o * (Xaxa) [V (X2 Xo) +V (x1%5)
HV (X1 X1 )V (Kox3) W Ky x2) HV (Xax,) ]cpa(Xlxa) ws(xgxl)
X dX,dX,dx, dxs,
(0202 |V]a,Xx) "= /cpafcbc) ¥ (X % ) [V (KK ") (o )40 (R )
+(X %) ] v, (X 'x Yax ‘dx ’,
(alaBIIV|a,Xx)'E‘[waf(Xx')maj(X'x)[V(XX')+V(xx')+V(X'x')
+wkﬁwakn%mkﬁauf,
(X1 Xzx1%3 |V]ogas) '=[V(X1X2) +HV (x1%2) HV (Xy x5) HV (Xax%,) ]

X @al (Xa1xy) fpaa Xax2) s

*
{ayaa |V|X1XsX1Xa) "= [ (X Xax1%5 ‘Vl(h az) 1) o
(I11.99)



210 M. D, GIRARDEAU

Similarly, the following separation of VC(on,Xx) will
prove convenient:

V cox) =3 (alvip)e(s,xx)
B

+ 3 0, (Kx) f(alv|x’x Y 'c(8,X 'x ")dX ‘dx ’
8

+2 f(oc\V\X'x )1 o (XX ‘xx ) dX ‘dx (III.100)
and

¥ cla,xx) = V(Ex)c(a,Xx)

+ 2 [(a,X|V]8,X)+(a,x|V]|8,x) Jc (8, Xx)
B

Y vy (%) f(a,Xx|V|XX'xx') ‘e(8,X 'x 'y dX ‘dx '
B

- Ef(a,Xx|IV|B,X'x) ‘e (B,X'x)dx’
B

2 Ef(a,Xx|IVls,Xx’) ‘c(B,Xx )dx’
B

+ 2 fl@,X|V|IX %K) " + (a,x|V]|X'x %)

+ (o, Xx |V|XX ‘xx /) ‘Je (XX ‘xx YdX ‘dx '

+2% 5 (#x|Vlp) ‘e(po)
B
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i 2% Z {("*lvhl)waa (XX)"'(O‘,xle'Gl%) '-(a,XxIIV|a10c2) !
Qg Qg

- V(Xx)K(a,Xx30, 05) fe (a1 0p) (I11.101)
with
(a,XlV‘B,X)Efcpa*(X % /) IV (X 'K) 4V (X ) Jopg (X 'x /) aX ‘ax
(o, 1V ], 0= f o0 #(X % /) [V G )V (X %) Joog (X' /Y X ‘i

(XX ‘xx ' |V]a,Xx) ‘=[V(XX ) +V(xx )+ (Xx ) +V (X 'x) Jo, (X 'x b

(o, Xx |VIXL xx ) * = [ (XX 'xx ' |V]o,Xx) ' 1%,
(o, Xx |1V |8,X 'x) * Efcpa*(X "% 1Y [V (XX ) +V (xx )V (Rx) V(X 'x 1)

+ V(Ex )+ (X 'x) ]cps (Fx )dx’,
(o, Xx |V |B,Xx ") "= *(X = ") [V (XX ) +V G 4V () V(X 'x )
+ V(Ex )+ (X %) ]ch(X ‘x)dx’,
(a,X[V|Xx'xX) " = {[v(xx ')+v(xx\’) Jo, (X 'x ’)}*
(o V1% %) 7 = {0V G )+ ) Jo w0 1

(I1I,102)

For completeness, we also define

vOC(XIng:LXg) 0, (1110103)

4
i.e, V = v when acting on c(X;Xsx;%3),

!
with v determined implicitly by (III,69).
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These expressions simplify in the special case that
the ¢_ are chosen to be single-atom energy eigenstates,
i€
[TE)HT (x)HV (Xx) Jo (Xx) = ¢ o (Xx). (I1I.104)

Then decomposing T in a manner analogous to V .

T- T, +7T1,

Te(ma) = £ [ lT|e)elons)+(as [Tla)e(or0) ]

a

+ 272 [ 101 1T 1K) ‘e (0, X)+(ap |T[Xx) ‘e (ar ,Xx) JaXdx,

To c(a,Xx)= ¥ (a|T|8)c (B, Xx)+[T(X)+T (x) Je (o, Xx)
B

+ z:ch(xX)f(oclTlx’x')‘c(a,x'x’)dx’dx'
B
+2 el e wxyax dx’ (I11.105)
and for completeness*

T c(Xlxlexg)=[T(X1)+T(X3)+T(x1)+T(x3) le (X1X3x,%3) s
© (I1I.106)

*
It is clear from (III.69) that T c(XXaxixs) is
o

7

one term in Tc(Xlxaxlxz), with T c(X1X3x1%,)

being the sum of all other terms,
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one finds with the aid of (IIX,104) and (I1I.86) that ||
simplifies: 2

H- T + vV .

HOC(Glaz) - (€a1+ 5(13) C(Qla:a),

Hoc(a,Xx) =] [ea+T(X)+T(x)] c(a,Xx),
Hoc (X1X2X1%z) = [T(Xy)+T(Xa)+T (%, ) 4T (x2) Je (X1 Xax1%a) .
(I11.107)
Ho has three types of eigenstates:
c(o,0z) = 6a1a6a36 + 6a166a3a’
c(o,Xx) = c(X;Xexy%3) = 0, (II1.108)
with energy eigenvalue O + eB;
c(a,Xx) = éaao fe (Xx),
c(opag) = c¢(XiXoxix3) = O, (II1,109)

with energy eigenvalue ¢, + ¢, where f¢ is a product of
free proton and free electron orbitals (plane waves) with
total energy e€;

c(X1Xax:%5) = fe(x1xlexa) >

c(a0z) = c(a,Xx) = 0, (I11.110)
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with energy eigenvalue ¢, where f. is an antisymmetrized
product of free proton and free electron orbitals with
total energy ¢. Only the eigenstates of type (III,108)
satisfy the bound state~continuum orthogonality con-
straints (III.86), and hence lie in the space of physi-
cally allowed states, The failure of the eigenstates of
types (III.109) and (III.110) to satisfy these constraint®
is an inescapable consequence of the fact that products

of free-particle orbitals are not orthogonal to the bound
states, and the related fact that the interactions between
continuum particles cannot be turned off without also
turning off the intra-atomic interactions, causing the
atoms to disintegrate. Nevertheless, a decomposition of

H = T + V into Ho i H/ would be useful in

a perturbation treatment in which atom=-atom and atom=con-
tinuum exchange effects are treated perturbatively along
with the actual atom-atom, atom-continuum, and continuum-
continuum interactions. Such a treatment is expected to
be useful at low densities., An interesting aspect of the

decomposition (III.105) is that [ , like V¥

1
tains an interaction part T . It is clear from (II.89)

and (I1I.91) that T' contains atom-atom, atom-proton,
and atom-electron interaction parts. These arise from
coupling between exchange and kinetic energy.

, con-

If one undertakes the exercise of verifying that
'I' c(a,Xx) and v c(aXx) satisfy the orthogonality

constraint (III.86), one may be shocked to discover that
in general they do not, even if c(a,Xx) does. More gener-

ally, A car vty X¥n=j+1 - -Xn¥n-j+1- ¢ .xy), for general
n and a general A derived from a Schrédinger operator

Ag.p» does not in general satisfy (IIL.44) even if c

* In fact, we shall see in the next paragraph that the

eigenstates of the full H also fail to satisfy these
constraints.
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does, The point is that the metric operator M in (IIIL,63)
and (III.66) in general takes a state satisfying (III.44)
into one that does not, except in the trivial case n = 1,
when M = 1; this is clear from (IIL.45), since the right
sides of these equations are in general not zero. Thus
it is convenient to make a distinction between extended
and restricted state spaces, We shall call the space of
all state vectors |c), restricted only by proper symmetry
and antisymmetry under permutations of the arguments of
the c's, the "ideal state space" d. The subspace of d
consisting of state vectors |c) satisfying (III.44) will
be called the '"physical subspace' P. Observables A act

on P and leave P invariant®, but M and operators = MA
act on J and in general take a state vector in P into
ame having a physical component (the component in P) and
an unphysical component (the component in the orthogonal
subspace J-P, the ''totally unphysical" subspace.) Far
from being a drawback, this is an advantage, since it
will enable us to introduce second quantization easily
without worrying about the fact that products of free
atom, free proton, and free electron states are in gener-
al not in , We shall see in Sec. III.F. how observables
can be projected onto the physical subspace £, in analogy
with the procedure used in Secs. II.D. and II.E. Finally,
we note that the fact that A c(X;.. KX X1...%,) in gener-

al contains many more terms than do the other A c's may
be regarded as a result of the fact that M=1 on the

"completely unbound” subspace, so that f}c(Xi...Xux:.. oXy)
is strongly orthogonal to all the o, if ¢ is; hence
it automatically contains all of the many orthogonalization
terms necessary to achieve this orthogonality.

It is now a fairly straightforward matter (although
algebraically tedious) to generalize the previous deriva-
tions so as to obtain the representation of an observable
A acting on Schrddinger wave functions | as an operator

A on the ideal state space §, for arbitrary n. If we

* This is a consequence of relationships between the ef-
fect of A on c's with different values o% j, following
from the fact that Asch commutes with An nuc) ang An(31902
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restrict ourselves to the binary exchange approximation,
i.e. consider, in the evaluation of the integrals (III,68)
after substitution of Ay, only the same type of permuta-
tions as were included in evaluating (II1.46) up to the
binary collision term (c,c’):, then the terms arising for
general n are rather obvious generalizations of the ones
occurring already for n = 2, Even if one restricts one-
self to the binary exchange approximation, terms repre-
senting collisions of arbitrary numbers of atoms, protons,
and electrons occur (note that even for n = 2, some of
the matrix elements represent 3-body collisions). It is
in the spirit of the binary exchange approximation to al-
so drop matrix elements representing true dynamical col-
lisions of more than two particles*, so we shall hence-
forth do so. We shall call this approximation, in which
matrix elements representing multiple collisions, whether
truly dynamical, exchange, or both, are omitted, the
"binary interaction' approximation,¥¥

We shall, as before, consider one and two-particle
observables

T\p(Xl .o .XnX]_ e .Xn) = Tsch‘v(xl £o .an1 . .Xn)

n n
> T + X T(xj):]l VKX KL x ),
j=1 i=1

V(KX KX ) = Vg WKL K XL k)

n n n n
L )+ S vax+ T T ovEx) i X wx)
j<k i<k j=1 k=1

(I11.111)

Here 'particle' means atom, unbound proton, or unbound
electron,

%
Note that even with only single binary collision terms
in the Hamiltonian, iterated collision effects occur in

its eigenstates.
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The explicit expressions for ]' and \’ up to the bi-

nary interaction approximation then follow upon substitu-
ting (III.43) and III,111) into (III,68), retaining only
direct and binary exchange terms, and also dropping many-
body interaction terms, The combinatorics are rather in-
volved, so we state only the results. One finds*

H=T+V=H°+H'+H

spont

(1I11,.112)

where

ci(@awisr il wnde | : arfe ek | nats k)
“o n-j’ n-j+l n n-j+l n

n=j

=2E k [(ap|T|a)+(aplv|a)] x
p=l «a

X x.

X C(ql"'ap-1““p+l‘"an-j’xn-j+1"' = n_j+1...xn)

n
+ ¥ LT(Xp)+T(xp)] c(al.OQan_j,Xn_j+1...Xn
p=n-j+1

X xn-j+1"°xn)

In the actual lectures only a schematic description of
was given, The expressions given here, and all of the
subsequent analysis and discussion, are more complete,



218 M. D, GIRARDEAU
o
q |- ’ I
HED @n™2 5 | [T * +a VX 7]
p=1

x c(ay.. o G s 20 ’Xn-j+1' . .XnXxn_j+l. o .xnx)

X dXdx + h.c.}. (I1I.113)

Here "h.c.' denotes the hermitian conjugate; for the case
of the term coupling the (n-j)-atom amplitude to the
(n-j-1)-atom amplitude, its hermitian conjugate couples
the (n-j)-atom amplitude to the n-j+l-atom amplitude.

The inc1u§ion of such off-diagonal terms in ll rather
than H is purely a convention; we have chosen
to do so since they vanish by (III.44) in case the

¢y are chosen to be single-atom energy eigenstates, Eq.
(II1.104). Then (ITII.113) reduces to

Hoc(al...an_j,Xn_j+l...ann_j+1...xn)

n-j n
= I 1 x
1% et I tT(XP)+T(xp)]j
p=1 p=n-j+1
X °(“1"'“n-j’xn-j+1"'ann-j+1"'xn)' (III1.114)
The interaction part H' contains a large number
of terms even if terms beyond the binary inter-

action approximation are discarded. One finds

!
Hc.. .an_j,Xn_j+1. . ‘ann-j+1‘ cex )
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= ¥ Z‘éapaq|V|ocB)-(apaq|IT|aB)-(apaq|IV|0LB)]
1<p<q<n-j 0B

x e(ay.. £ SR ’aq-leo’qﬂ' : .an_j,Xn_j+1. X

xn-j+l" *“n

n
+Hx [v(xpxq)+V(xpxq)]+ 3 V(X x )}

n-j+l<p<qsn p=n-j+l q=n- J+l

X
c(ay.. 'an-j’xn-j+1‘ o 'ann-j+1‘ X

n-j n
S I 1
+ 3 2 o {L(ap,xq|Vla,Xq)+(ap,xq|V|a,xq)J
p=1l g=n-j+l «

X
c(az.. LR ITRTRL. N ’Xn-j+1‘ . .ann_j+1. X

f [(ap,xqIITla,x)+K(apxq;a,X)T(X)]
x e{ay.. LT STETRL ’Xn-j+1' : 'Xq-1XXq+l' X
X x L..x )dX
n

n-j+1

- f [(ap,xq |IT |a,x)+K(ocp,xq;a,x)T(x) ]



220 M. D. GIRARDEAU

xc (g ...0_ 00

! p+1'"an-j’Xn-j+1'"ann-j+1'”xq—1qu+1"'xn)

xdx}

n-j n
+ {G+) @ty T f[(ap,quVlXqu) '
p=1 g=n-j+1

+ (ap,quVlXqu)']

X X

X c(al'"ap-lap+l'”an-j’Xn-j+1" el

”xnx)dde+h.c.}

% ’ “wot
HODED[@DE-3D T T floa VIR )
]_SP<an-j
x c(oy ... 051041 U1 %+1 " -3

X XX 'x
n

' ’ ’ 2
A e & 2 )dXdX ‘dxdx " + h.c.r

’Xn-j+1'

-%
+ G @3N Y Zf{(apaq\VIa,Xx)’+ (e V10, Xx)"
1€p<qsn-j a

-(apaquTIa,Xx)’-(aqapIITIa,Xx)ﬁ(apanIVIa,Xx)'

-(aqap\lVla,Xx)'

-[K(onpaq;a,Xx)+K(aqap;a,Xx) j [T(x) T (x) 4V (¥x) |}
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XC(O.;L... a,

L L T SRV SRR

X X

’xn-j+1"' " xn_j+1...xnx)dde + h.c.}

+ ... (I11.115)

where "..." indicates terms beyond the binary interaction

approximation, and all the matrix elements occurring have

been defined previously. 1In the terms beyond the binary

interaction approximation there occur "disconnected" con-
’

tributions to “ , 1L.e. contributions in which the ma-

trix elements factorize. The following 3-body term, rep-
resenting coupling between kinetic energy of unbound par-
ticles and interatomic exchange, is one example:

n
-3 Z(apaq [T{ag) 3 [T(Xr)+T(xr) ]
l<p<qs=n-j oB r=n-j+1

X g “es ol o
c(ay ap_laap+1 aq_lﬁaq+1 an-j’xn-j+l"'xn

X xn_j+1...xn). (I1I.116)

We assume that all such disconnected terms can be canceled
by series rearrangement (introduction of appropriate Ursell
functions as matrix elements) as in the approach of Saka-
kura®), After this has been done, the m-particle inter-
action terms with m = 3 will all be connected, as are the
two-particle ones, and hence may validly be neglected com-
pared to the two-particle terms except at high densities.
As in more familiar applications of the Ursell rearrange-
ment method, one expects that introduction of such Ursell
functions will not affect the two-particle interaction
terms,

The part of H denoted by Hspont in (III.112)

will be called the 'spontaneous breakup' part. It is a
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sum of disconnected terms in which one or more factors in
each matrix element are bound state wave functions, One
finds

I8 g R i K i s R K s 1 o e )
- n-3+ -j+
spofit n-j’ n-j+l n n-j+l n

n- n n
> 5 2 S o, (K%
(65

=1 q=n-j+l r=n-j+l

=

o

f[(aplTl 0" + (ol vl (xx) "]

x c(al".ap_laap+1,".an_j,Xn_j+1."Xq_1XXq+1..ann_j+1...

xr=1XXr+1"'xn)dde

n-j n n
TR ICH TS NP T ez

p=l q=n-j+1 r=n-j+l oB

x [(ay |Tla)+(a IV]e) |

B,X X X

x c(al...ap_laap+l...ch_j Koo 410 q-lxq+1"' -

x Xn-j+1"'xr-1x%+1"'xn)

n n
e 5 Y
+3 - X = = ?, (K x,)
p=n-j+l g=n-j+l «

X T . D _]
|Hg.j, of unbound particles inc |
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X C(al'”an—ja’xn-j+l"'Xp-lxp+1'"xnxn-j+1'”xq-lxq+1"xn)

S5 ET (I11.117)

where "..." indicates more complicated direct terms, as

well as terms differing from the direct terms in that the
interaction factors involve exchange (but still contain

factors of ©,). b is quite unphysical. It is not

hermitian, the terms conjugate to the ones shown vanish-

ing by the bound state-continuum orthogonality constraints

(I11.44). 1In fact, it is not difficult to see that
Ilspont always leads to breakup of atoms, never form-

ation (this will be more evident when we introduce sec-

ond quantization). Thus if ll were actually effect-

spont

ive it would lead to an instability in which all atoms

would dissociate spontaneously, However, one notes in

the first place that has vanishing matrix ele-

spont

ments between any two states in the physical subspace

of the ideal state space J. Furthermore, we shall see

later that when the appropriate projection operator for

the constraints (II1.44) (the projector onto ) has been

introduced, the projected Hamiltonian will contain addi-

tional orthogonalization terms which will exactly cancel
H . From the physical point of view, spontaneous

spont
breakup of atoms does not occur because the unbound parti-
cles move in orbitals orthogonal to the bound states.

E. Second Quantization

It is now a simple matter to introduce ideal atomic
annihilation and creation operators a_ and a_', and un-
bound proton,and electron annihilation and creation oper-
ators U(X), ¥ (X),¥(x), and y1(x), by the Fock representa-
tion method of Sec. I. It is not practical to use an ex-
plicit matrix representation such as (I.17) for the state
vectors, since the matrices would have to be represented
in three dimensions (one for atomic, one for nuclear, one
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for electronic variables). Hence we define the Fock
vectors implicitly by their amplitudes c¢. As usual, the
amplitudes must be generalized by allowing arbitrary and
independent numbers of atoms, protons, and electrons.
Thus we consider the amplitudes c(ay. +1---%n

.X ) so far employed as spec1a1 cases o% the more
gengral amplitudes c(ay...op 11',Xn_ 341+ -Xn¥no j41 -+ - ¥m)
with m not necessarily equal to n and allow “j, n, and m
to range over all integral values satisfying

0<n<o 0=<sm<w®o 0=<j<n, (I1I,118)

3

An amplitude c, with no arguments represents the wvacuum
amplitude, where the yacuum state lO) is defined as the
Fock vector with amplitudes

c(a1°"an-j’xn-j+1‘"ann-j+1"'xm) =0

unless n =m =n-j = 0,

(III1.119)

The inner product expression (III.56) is generalized to
@ «© n
= T Z Z

n=0 m=0 j=0 al...an_j

*
./E (a1'°'an-j’xn-j+l'°'xnxn-j+1"'xm)

1
X ¢ (al'"an-j’xn-j+1'"ann-j+l'"xm)
X an_j+1. andxn AL dxm (I1I1,120)

where the summand is to be interpreted as co%*co ' in case
n=m=n~j =0,
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In analogy with (I.19), we define the annihilation
operators by

a 10) = ¥(X)|0) = ¥v(x)[0) =0 (II1.121)

1]

and

aac(al"'an—j’xn-j+1"'xnxn-j+1’"xm)

- sy 3
= (n-j+l) c(al"‘an-ja’xn-j+1'"ann-j+l"'xm)’

¥ (X) c(a1...an_j,Xn_j+1...ann_j+1...xm)

T
= (j+) C(al"‘an-j’xn-j+l'"x%h%-j+1"‘xm)’

(%) C(al'"an-"xn-j+l"'ann-j+1°"xm)
ES
s (m-n+j+l)? c(ay...0 _.,X X x 1...xmx).

n-j’ n-j+1°° " n"n-j+
(I11.122)

Similarly, the creation operators are defined* by

-r
aac(al'"an-j’xn-j+1'"ann-j+1’"xm)
n-j
= @NF L 5, e
= (n-j z 8, S T T g
p=1 P

Keg e FZno g T s

Strictly speakin§, one should not use the notations
aa*,w*(X), and $7(x) until it has been shown that these
creation operators are indeed the hermitian conjugates
of (II1.122). This is not difficult to do, using the
definition (III.120) of the inner product and the sym-
metry of the c's.
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.1-
v X) C(al"'an-j’xn-j+l"‘xnxn—j+l‘"xm)
n
_ % e T M
= j D R L L Y
p=n-j+1

LWL S e I EE

.1-
b (x) C(al"'“n-j’xn-j+1'"ann-j+l"'xm)
m
-1 -
= @nt) 2 X DT PG el
p=n-j+1

0y
=g

K i e S e e e el e
(111.123)

The commutation relations

[aa,aB]_ =0, [aaaB 1= 6&8;
DV, 1D L, = 0, [ve), 4T ®H 1, = 6(x-x1;
4G, 4D T, = 0, (6,7 (xD ], = 6Gx=x");

fa 4] = Ta_, 4" (0] = &,16) ] = [a,4 )] = 0;

V)L, ¥x 1 = 18, @1 =0 (1I1.124)
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follow* directly from the definitions (III.122) and
(I11.123); here [ ]; denotes the anticommutator and [

the commutator. The atom number operators N, and unbound
proton and electron number density operators p(X) and
p(x) are defined by

+

N=aga, p0= 1T, 2= 1T @I (1125

and satisfy

N, 10) = o) ]0) = o(x)]0) =0,

Nac(al"'an-j’xn-j+1"'ann-j+1"‘xm)

n-j
= 2: & ac(a1°"an-j’xn-j+l"'ann-j+1"'xm)’
p=1 P

pX)e(ay...a ”Xn-j+1'"ann-j+1"'xm)

n-j
n
= 8(X -
}E: (Xp X)C(al"'an-j’xn-j+1"'ann-j+1"‘xm)’
p=n-j+1

p(x)c(al...an_j,xn_j+1...ann_j+l...xm)

Note that the proton field operators commute (not anti-
commute) with the electron field operators. This is
not assumed; it follows from (IIL,122) and (III.123).
The proton operators could have been made to anticom-
mute with the electron ones by using more complicated
phase factors in the definitions. However, there seems
to be little point in doing so. In any event, physical
results are independent of whether the proton operators
commute or anticommute with the electron ones.
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m
E X é(xp-x)c(al...an_j,Xn_j+1...ann_j+1...xm).

p=n-j+1
(I11.126)

The total atom number operator N, total unbound proton
number operator Np,e, and total unbound electron number
operator Ngyjo. are defined as

a= LN Nnucsdep(x), Nojoo= fdxeG  (IIL.127)
o4

1]

N

and satisfy

Natc(al"'an-j’xn-j+1"'xnxn-j+l'"Xm)
= (n-J)c(al...an_j,Xn_j+l...ann_j+1...xm),

N Cc(cxl...an_j,Xn_j+l...ann_j+1...xm)

nu
= Jc(al"'an-j’xn-j+l'"ann-j+1"'xm)’
e L L A T )

= (m-n+j)c(a1...an_j,Xn_j+1...ann_j+1...xm).

(I11.128)

An arbitrary state vector |c) in the ideal state space¥
d can be represented in terms of the Fock vacuum |0) and
the creation operators defined above as

*
The meaning of 4 has now been extended to allow general

values of n, m and j satisfying (III1.118), not merely
those with m = n,
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- -] n
) =8 £ I [n-3)!3! teenki) 117E
n=0 m=0 j=0

Z den_j+l. A dxd
al...an_j
x c(a a X X x x Ja L i
1...n_j, n_j+1...nn_j+1...m ay oo an-j
¥ t F t
X)) KDV G ) (x ) 10) (III.129)

where the term with n=m=n-j=0 is to be interpreted as

co |0). The state vectors in the physical subspace P all
have m=n (with n the same for all states in ®) and hence
satisfy

Yle)=nlc), all |c)e P,
(I11.130)

(N, + N ) le) =(N_ +

N
nuc elec

This is the source of a superselection rule which will be
discussed presently.

The state vectors in P must also satisfy the bound
state-continuum othogonality constraints (IIL.44)., In J
these take the simple form

Aalc) = 0, all & and all |c)€ P, (III.131)
where*
A ef dXdx o % (Xx) §(x) ¥ (X) . (II1.132)

* AaJr can be interpreted as the creation operator for an
"unbound proton-electron pair in the bound state o,
and conditions (III.131) ensure that such unphysical
pairs do not exist.
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In fact, upon substituting (III.129) into (III.131), ap-
plying the normal-ordering theorem or (IIL.124), and
equating the various linearly independent components sep-
arately to zero one concludes that

%
./@a‘(xnxm)c(al...a

n-j’Xn-j+1‘"ann-j+l"'xm)dxndxm

= 0.
(I11.133)

In the special case n = m, Eqs. (IIL.133) reduce to

(I11.44). Conversely, upon multiplying (III.133) by
i

[3!(m-n+j) '/ (n-7) !4 s i

(0778 n_j

Tyt e ) e ) o),

_., and integrating over Xn-'+1"'
_{, one deduces (III.131).77J
(I1I1.131) are in turn equivalent to

summing over Oy...o
X

n
X.n_]_ and Xn_j+l.. o
The conditions

Aq*Aalc) =0, all « and all |c)€ P.  (IIL.134)
It is obvious that Eqs. (III.134) follow from (IIL.133);
conversely, (III.134) implies

(clAaTAa|c) = HAa|c)”2 =0, all o and all |c)€ P,
(I11.135)
which is true if and only if (III.131) is satisfied.

Finally, the set of conditions (III.134) is equivalent to
the single condition

s A 'Ale) =0, all |o) €p, (I1I.136)

a

since the operators AaTAa are all positive semidefinite.
Using (IIL,77), this can be written as
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Ale) = 0, all |c) €@ (111.137)
where

A

./thX'dxdx'wf(X)wf(x)A(Xx,X'x')W(x')¢(X'). (111.138)

The physical subspace P is the subspace of J satisfying
both (III.130) and (III.137). A method of satisfying
(III.137) by the introduction of an appropriate projec-
tion operator will be discussed in Sec. III. G.

We now exhibit the representation of the Hamiltonian¥
as an operator in J, in terms of annihilation and creation
operators. It follows from (IIT.113), (III.122), and
(II1.123) that

Ho = ¥ [(alTip) + (othIs)]aaTaB

aB
t j’ G
+ fa'@01@ v + J it 1w

+ {L faxaxialTi  + @lvio Ta 6 1@+ he.}
a
(I11.139)

In case the ¢, are chosen to be energy eigenstates so
that (III.114) is valid, this simplifies to

H, - & et [’ @ra i+ faa’ 06 v .
a
(I11.140)

*
In fact, since we have not been explicit regarding the

forms of T(X),T(x),V(XX’), V(x¥) and V(Xx), this will
implicitly defiine any one or two-particle observable
as an operator on dJ.
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The physical interpretation is obvious: Ho is the sum
of energies of noninteracting atoms, protons,
and electrons, Similarly, one finds for the interaction
part (III.115)

H'-3% & t(eslv|ve)-(as|IT|v8)- (e |IV]v8) ]

G'BYG Xafafaa
o "B by

i dedxfw*oc)w*(x')V(xx')wcwi(m
+3 fdxdx'w*(x)w*<x'>v<xx Y olx ) ¥ (x)
+ o faxax ot @ Ve v 1

+ 3 faxa V0 @X[V]EX) ¥,
af

g

) fdxaofwf(X)(on,:<lV|B,X)¢'(X)aB
aB

3 dedx’aa*wf(x)[(a,xllTla,x’)+K(a,x;sx’)T(x')]
oB

X ¥(XNag

2 fdxdx 'aa*wf(x) [(a,x|IT)B,x ) +K(a,x;8,x )T (x )]
ap

X Y(x ')aB

+

[ & faxaxax a T (o, |V IR ) ¢
[

X Y& )Y@ VE +hee. |
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+ [T farandxa, " (e Copx [V 1K) 4G 160 40 + e ]

a

a5 faxaxaxaxa;a," (@8 V1K o ) ) 16 4K § )

&8 + h.c.]

+{x dedx aafas*{(ae IVlv,Xx) ‘= (a8 |IT|y,Xx) ’
aBy

- (0B | TV ]y, Xx) “~K(08; v, Xx) [T(X)+T(x) +V(Xx) T}¥(x)

X §(K)a h.c.}
(III.141)

where, as usual, "..." denotes terms beyond the binary
interactlon agprox1matlon. Note that although the terms
atat yya and a *¢¢¢¢ represent 3= partlcle and 4-particle
collisions, their hermitian conjugates, a tytytaa and
V'y'y'¢'aa, represent binary atomic collisions, with the
two atoms breaking up into (one atom + one proton + one
electron) or (no atoms + two protons + two electrons).
Hence such terms are included in the binary interaction
approximation.

Finally, the "spontaneous breakup'" Hamiltonian is
found to be

dedxa *A [(a|T]|Xx) “+(a|V](Xx) ‘]

spont QB

x ¢(X)¢(X)aB



234 M. D. GIRARDEAU

DI DR CID RN

B
aBy
+ [dX Iy*(x)AOLT\T(x)w(x)aOL
04
Y jdx Vs TT@ e, + .. (111.142)
a

where, as stated previously, we have only written down
enouii terms to indicate the general structure of

. Because all terms in contain at
spont ¥ spont
least one factor A,  on the left, all matrix
elements of ll spont between states in © vanish by
(III.131). For essentially the same reason, we shall see
later that 'lspont is annihilated by the projector on-
to By

The diagramatic representations of the direct inter-
’
action terms in H are shown in Fig. 3; the notation
1
is the same as in Fig. 2. The terms in || involving

exchange (more precisely, coupling of exchange to kinetic
or potential energy) are of the same general structure,
as is clear from (IIL.141). The representation of the
first term in the "spontaneous breakup' Hamiltonian

H
spont
breakup vertex does not involve any true interaction, the
nonexistence of any potential causing the breakup is sym-
bolized by a dashed line connecting the vertex to the
letter S (for "spontaneous'"). Note that the diagram is
discommected, as is the case for all terms in H

is shown in Fig. 4. Since the spontaneous

spont
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i
i
»
H]
kel
»

»
=
]
]
]
~

V(xx’) v(xx") V(Xx)

2]
®
Q
™
<3
s

’

X X X X X X
(a,X| V] 8,X) (a,x|V|8,x) (a,X’|v|xxx")’
o X a X o Y
XI
X
X
X x’ B x’ 23
(a,x| V| Xxx")’ (aB| VXX "xx ")’ (aB]V|v,xx)’

Figure 3.

Direct interaction processes included, together with their
hermitian conjugates and similar exchange processes, in

/
the binary interaction approximation to ||
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X
a
X
XI
B
l
1
I
7 I
X S
Figure 4.
Representation of one term in . The top half
spont

of the diagram arises from the true dynamical processes
(a]T|Xx) * and (a|V|Xx) .

The terms in " are the same¥* as those occurring in

the Hamiltonian H of Brittin and Stolt®), obtained by a
different method, except that H does not contain an

analog of our || and that all the exchange

spont’
terms in our H have the opposite sign from the cor-

responding exchange terms in H. This sign difference is

* ’
Actually, the terms involving (a8 |V|XX‘xx’) and its

conjugate do not appear in the expression for H given
by Brittin and Stolt, but they would undoubtedly appear
in a more accurate expression.
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apparently connected with the fact that H is constructed
to have the same eigenvalues as the Schr&dinger Hamilton-

ian (to the given approximation), whereas " is con-
structed to give the correct matrix elements. We shall
see in Sec. III,F. that the Hamiltonian H, related to

l' by (IIL1.66), has the same eigenvalues as the Schrg-
dinger Hamiltonian, and is therefore more closely related

to Brittin and Stolt's Hamiltonian H. Our || also re-
sembles another Hamiltonian obtained, by a still differ-
ent method, by Sakakura®). The precise relationship be-

tween H , H, {, and Sakakura's Hamiltonian has not
yet been elucidated.

We next discuss the superselection rules related to
(IIX.130). It is obvious from the physics, and can also
be verified directly from (III.139)-(III.142), that the
processes in which atoms, protons, or electrons appear
or disappear are such that whenever an atom disappears,
an unbound proton-electron pair appears, and vice versa.
Hence

[ “ ’(Nat b Nnuc):] = [ H ’(Nat it Nelec) :]= 0

(I1I.143)

More generally, if A is any operator on J derived
from a Schr8dinger operator Agch representing a physical
observable, then

[ A ’(Nat + Nnuc)] = [ A ’(Nat i Nelec)] = 0.

(I1I.144)

It follows that every observable A has vanishing ma-
trix elements between any two states belonging to
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different eigenvalues of Ny + Np,., or different eigen-
values of Nat + Ngjee. In fact, states in ® correspond-
ing to n-proton, n-electron Schrddinger wave functions
are simultaneous eigenstates of Nyt Npye and Nae+ Nejee
with eigenvalue n for both; this is the meaning of
(III.130). However, (III,144) is valid on the entire
ideal state space J.

The metric operator M, which is important in the
probability interpretation because of (IIL.57), and will
also be employed in evaluating the second-quantized H,
can also be represented in terms of annihilation and
creation operators. It follows from (III.59)-(IIL.62),
(II1.122), and (III1.123), or by comparison of (IILI,59)-
(II1.62) with (III,113), (III.115), (III.139), and
(II1.141), that

M=1-B+ ...

3

tot
3 2: (aBII\Y5)aa a, agq
aByd

B

¥

S dxclx'K(a,x;s,x’)a&“uﬁ(x)u;(x')aB
B

+ Z /dXdXIK(O.,X;B,XI)aaT‘lJT(X)\P(Xl)as
aB

+ Z /dde [K(aB;Y,Xx)aaTanan(x)w(X)
aBy

+ K(y,Xx;08) 4T (X) w*(x)ay*asaa]. (11I.145)



COMPOSITE PARTICLES 239

The first line of this expression is the same as the ex-
change operator® I of Sec. I, Eq. (I.28), except that now
only bound states are included in the summations. The re-
maining lines of (III.145) represent explicit bound state-
continuum exchange effects which were implicit in (I.28)
because of the inclusion of continuum atomic states. Eq.
(1.28) also includes continuum-continuum exchange effects
which are absent in (III.145), being now accounted for
automatically by the antisymmetry of the c's or the anti-
commutation relations satisfied by the {(X) and ¥(x) op-
erators and their hermitian conjugates.

F. Energy Spectrum and Statistical Mechanics

It is convenient at this point to introduce Dirac
notation for the space** 8 of n-proton, n-electron Schré-
dinger wave functions ¢(X;...X X:;...x_). We have shown
that the c's in (III.43) are uhiquely’determined by ¥
provided that the symmetry and antisymmetry requirements
on the c's are complemented by the strong orthogonality
constraints (IIL.44); conversely, every such set of c's
uniquely determines a properly antisymmetric ¢ by (IIL.43).
Thus a state in 8 can be denoted by |c¢), the Dirac ket
notation standing in this case for the set of all such
¢'s, and the inner product {c|c’) between two such states
[previously denoted by (c,c’)] is given by (IIL.46). The
vectors |c) € @ are in one-one correspondence |¢)— |c)
with the vectors |c) € 8. Let {lci)} be any complete or-
thonormal basis in P:

(cilcj) = 814, lci) (cil = I (II1.146)

i

where 1lp is the unit operator on £ (not on the ideal
state space J, of which® is a proper subspace). This

* For the case of hydrogen atoms, Ipyc = Ielec = I.

We assume that 8 is a separable Hilbert space. This
will be the case if the particles are confined to a
finite volume O, with either box enclosure or periodic
boundary conditions on the {'s.



240 M. D. GIRARDEAU

orthonormal basis in  determines a set {|ci)} of vec-
tors in 8 in one-one correspondence ci)~~ ci)according
to (II1.43) and (I1I.45). The set {|c.>} is not ortho-
normal, due to the occurrence of the métric operator M
in (III.57). On the other hand, it is complete and lin-
early independent¥.

The operators A defined by (III.66) and evalu-

ated according to (III.68) are constructed in such a way
that, by (IIL.65) and (III.46),

il A lep = eplagyled. (111.147)

In particular, denoting the matrix elements of the Hamil-
tonian H in the orthonormal basis {|ci)} by Ilij’

one has

“1j = (cil H |cj) = (cilHSchlcj>. (I11.148)

However, the eigenvalues of the n-proton, n-electron
Hamiltonian Hg.}p, are not in general®* equal to those of

" , Since the matrix elements of Hg., are evaluated

in a non-orthonormal basis, in contrast with those 'Iij

If the strong orthogonality constraints had not been
imposed, one could not have made this statement. In
fact, the correspondence between 3 and P would not have
been one-one.
*k
’
**They do, however reduce to those of H o + H
in the limit of zero density.
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of H . Furthermore, H acts on the entire ideal
state space J and does not leave its physical subspace P

invariant, so that 'I does not necessarily have any
eigenstates lying in P,

Consider, on the other hand, the operator H given,
according to (III.66), by

u=u1H (111.149)

or evaluated directly from (IIL.67) with A = Hgep on the
right side and A = H on the left side. It can be shown,
in analogy with Dyson's theory of spin-wave interactions®)
that the eigenvalues of H are identical with those of
Hgch. Note first that since the set {Ici)} is complete,
one can expand

Hschlci) = E Hji|cj). (11L.150)
j

On the other hand, since the set {|c;)} is not orthonor-
mal, one has

Hy # <cj |Hsch|ci), (I1I.151)

i.e. the Hjj are not the matrix-elements of Hg., occurring
in (III.IA%). It follows from the definition of H that¥®

In order to interpret the c's in (III,67) directly as

constituting the basis {Ici)}, this basis must be rein-
terpreted as abasis on J, at the expense of lengthening
the discussion. The conclusion is the same as that of
the abbreviated discussion above. The essential point

is that H leave P invariant, whereas || does not,
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;ﬁ H |c )
Lo Hyiley
J

chi) = (I11.152)

with the same coefficients HJ as occur in (III1.150).
Furthermore, one has by (III; 146)

= (chchi). (II1.153)

Let |E) be an eigenstate of H h and expand it in terms
of the nonorthogonal set {lc §

|lEY = 2: (cilE) lci>; (I11.154)

again, (ciIE) # (cilE). Then the eigenvalue equation
h|E) = E|E) (111.155)

is equivalent to

2: H,, - Eﬁji) (ciIE) lcj> =0 (111.156)

ji
ij
or, since the ICj> are linearly independent,

Z: (Hji - Eéji) (cilE) =0, (II1.157)

The eigenvalues of Hg.p, are the values of E for which
this set of equations has a nontrivial solution for the
amplitudes (c |E), and the corresponding eigenstates are

given by (III, 154) Now define the state |E) € @ by
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B) = & (c;1B)ley) (II1.158)
i

with the same amplitudes (cilE). Since the set {lci)} is
orthonormal, (ci|E) is the inner product of Ici) with |E).
Furthermore, by (III,152) one has

HIE) = 3 H (e, B ch). (III.159)
ij

It follows that the solutions E of (IIL.157) are also
eigenvalues of H, with the corresponding eigenfuntions
being given by (IIL.158). We conclude that the eigen-

d includes all eigenvalues of Hg.p. More specifically,
lEi

those eigenvectors of H which lie in the physical
subspace P have eigenvalues equal to eigenvalues of HSch’
and conversely, every eigenvalue of Hschn is equal to
an eigenvalue of H with an eigenvector (E) € . The re-
lation between the eigenvectors |E) of HSch and those [E)
of H is given by (III1,154) and (IIT,158) with the same
coefficients (ci|E). The analog of (II1.154) with (cy IE)
replaced by (ciTE> is false. If H has any eigenvectors
E) , they do not correspond to eigenvalues and eigen-
vectors of Hgep-

These results can now be used to relate the parti-
tion function Z evaluated over the n-proton, n-electron
Schr&dinger space 8 to ones evaluated over the ideal state
space 4 and its physical subspace # ., Denote the traces
over 8§, ¥, and 8 by Trg, Trp, and Try, and let P be the
projector onto #. Then it follows from the above results
that

= -BHSch _ -BH _ -B
Z = Trg e = Try e = TI."9 (Pe

Hy  (111.160)

Since H leaves # invariant, it commutes with P, Thus if
we define a projected Hamiltonian X by

X=PH (II1.161)
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as in Sec. II.D., one can use the same argument (II.14)-
(I1.17) to conclude that the eigenvalue spectra of ¥ and
Hgeh coincide except for the spurious eigenvalue zero of
%K. The eigenstates of X with E # 0 are eigenstates of H
with the same eigenvalue and lying in ©, whereas eigen-
states of ¥ with eigenvalue zero are in general linear
combinations of eigenstates of H with eigenvalue zero (if
there are any such) and arbitrary states in the "complete-
ly unphysical” subspace J- P. It follows that if Tr’ e~ B¥
is defined as the trace of e B¥ over the ideal state space
J but with the contribution from the eigenvalue zero ex-
cluded, then one has

Bx

Z sTr' e’ (I11.162)

where ~ denotes exact equality in case H does not have
the eigenvalue zero, and asymptotic equality in the ther-
modynamic limit in case it does*, The same conclusion
(I11.162) also follows from (III.160) and the identity

Pe P  o7BIC 4 & p (III.163)

which is easily proved upon noting that P commutes with
% and that on J-P one has X = 0, ¢™ 8% = 1, and P = 0,

According to (III.149) and (III.1l61),

w=pmt W . (II1.164)

The explicit form of P in the binary interaction approxi-
mation can be found by examining the algebraic properties
of the bound state kernel (III.77) and the corresponding
second-quantized operator A, Eq, (III.138). The identity

We assume that 1f H has the eigenvalue zero, its degen-
eracy does not grow exponentially with the volume Q.
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./k(Xx,X”x”)A(X”x”,X'x’)dX”dx” = A(Xx,X’x’) (III.165)

is a trivial consequence of the definition (III.77) and
orthonormality of the ¢,. Then using the nommal order-
ing theorem one finds that the operator (ITI.138) satis-
fies

A2 = +f( Y Ty vy +f( y vt e e (111, 166)

where ( ) w*wfwfwww symbolizes a sum of normally ordered

terms each containing three creation operators on the

left and three annihilation operators on the right; such
terms behave like three-body interactions, i.e. they only
contribute when three unbound particles (protons and/ox
electrons) collide. Similarly, the terms ( ) ¢*¢*¢TWT¢¢
X {¢ behave like four-body interactions. It is consistent
with the binary interaction approximation to drop such
three-body and four-body interaction terms, in which case

A=A+ .., (I11.167)

where, as usual, "..." stands for terms beyond the binary

interaction approximation. One concludes that within the
binary interaction approximation, A is a projection opera-
tor, with eigenvalues zero and unity. Any state vector
Je) € 8 can be resolved into eigenstates of A with these
eigenvalues:

‘C) = |Co) gt lcl);
AMeo) =0, bley) = ley). (III.168)

By (IIL1.137), lco)€ P; then, since |c,) is orthogonal to
co) because it belongs to a different eigenvalue, one
concludes that |c1)€ I-P, Thus A& is the projector onto
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d - P, and hence* 1 - A is the projector P onto the phy-
sical subspace P :

P=1-A+... (I11.169)

b

the dots denoting terms beyond the binary interaction
approximation.

The leading terms in H, can be found by substitution
of (IIT.70) and (IIL.145) into (III,149) and algebraic
manipulations arising in the application of the normal-
ordering theorem. Similarly, the leading terms in ¥ can
be found** by substitution of (III.169) into (III.161)
or (I1I.164) and appropriate contractions, The resultant
expression are lengthy and will not be written out here.
Both H and ¥ consist of terms with the same structure as

14
those in }lﬁ-" , but the detailed matrix elements

*P is the projector onto all of , not a proper sub-
space, since, by definition, P is the space of all
eigenstates of A with eigenvalue zero. We assume
that J has already been restricted by imposition of
the constraints (III.130), i.e. these constraints are
not included in P. Note that A commutes with N,

Npye, @nd Ngjee, and hence with both Ny + N and
i ol In an application to statistical mechan-

ics one could impose (ILI.130) only as thermal averages

by using a grand ensemble, replacing ¥ in (III.162)

by ¥ = tnue Wat + Npue) = Helec War + Nelec) -

nuc

ok
A more complete expression than (III,142) for }'spont

1. !
is HSpont - za A CH,+H ya, +... . It follows

that 7 H & L5 & Haa)

spont =0+ ...

I"Ispom:
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are different¥.

G. Discussion

We have shown how a second-quantization formalism
for many-atom systems in which unbound nuclei, unbound
electrons, and bound atoms are represented by 'elementary
particle' field operators can be constructed by a seqence
of changes of representation, starting with the usual
Schrddinger representation in terms of the dynamical var-
iables of all nuclei and electrons. This representation
is similar to those arrived at in different ways by Brit-
tin and Stolt®) and by Sakakura®); however, more analysis
is needed in order to clarify the relationship. Still a
different approach to construction of such a representa-
tion can be based on the "redundant mode' method, in
which fictitious "elementary atoms' are introduced and
then given physical meaning by an appropriate unitary
transformation. The most useful transformation for this
purpose appears to be a generalization of one employed
by Tani®) in his analysis of scattering from a one-parti-
cle bound state. The Hamiltonian obtained in this way
has both the same eigenvalues and matrix elements as the
original Schrdodinger Hamiltonian Hg.p, to given order in
the density**, Such an approach will be discussed else-
where .*°©

’

*
In addition to the exchange terms in Ho i H 5 H
contains additional exchange terms arising from the
prefactor M1 = (1 + B + ...), which "renormalize' the
4

exchange matrix elements in H . Additional "orthog-
onality interaction" terms occur in ¥, which can again
be incorporated by appropriate redefinition of the
matrix elements.

%k
The additional freedom necessary to achieve this is

provided by an appropriate small modification of the
constraint (III.137).
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It is clear that similar representations adapted
to the treatment of scattering of electrons by atoms,
or nucleons by nuclei, can be derived by similar methods,
as can representations useful in a "first-principles"
approach to theories of chemical and nuclear reactions,
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INFINITE QUANTUM SYSTEMS

Rudolf Haag
IT. Institut flir Theoretische Physik
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Hamburg, Germany

I. Introduction.

There are two areas in physics in which a quantum
theoretical treatment of infinitely extended systems (or
systems with an infinite number of degrees of freedom) be-
comes necessary (or at least desirable). These areas are

1) Quantum Statistical Mechanics

2) Quantum Field Theory or, to put it into a slightly
more general context: The theory of elementary par-
ticles as approached within the frame of local, re-
lativistic Quantum Physics.

The reasons why need a brief explanation. Statistical
Meﬁsanics wants to describe the gross properties of some
10 particles enclosed in a container of the size of some
cubic centimeters. Thus, in reality, the number of degrees
of freedom as well as the volume are finite. But in a pre-
cise quantum theoretical treatment of such a complicated
system we would not find the basic qualitative predictions
of statistical mechanics. There is no irreversibility,
there are no thermodynamical equilibrium states etc. These
features arise only from an approximation in which, at the
appropriate places, one omits terms which vanish in the
limit when the particle number N and the volume V approach
infinity. Thus, if one wants to have a mathematical frame
in which the laws of statistical mechanics are strictly
contained one has to start from a situation in which the
"thermodynamic limit"

N—ow; Vﬂou;

% fixed (1.1)

251
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has been taken at the outset, i.e. one has to consider a
system with infinitely many particles occupying infinite
space with a finite mean density.

In elementary particle theory one could also claim
that we do not really need to consider infinitely extended
space-time and unlimited energies. But again, if we 'en-
close the system in a box" some of the simple concepts
disappear (i.e. they can then only be approximately de-
fined). Among these are the notion of particles, the S-
matrix, the invariance properties.

In both areas therefore the consideration of infinite
systems is an idealization which simplifies the conceptual
structure. The price one pays for this is an increase in
the sophistication of the mathematical apparatus. As it
is the case with every bargain: one has to be prepared to
pay the price.

This price involves on the one hand a distinction be-
tween various kinds of convergence. On the other hand, to
obtain a satisfactory and natural setting, we have to start
from the algebraic version of the mathematical formalism
of Quantum Physics instead of the more widely known Hilbert
space formulation. I shall describe these two versions and
their relation in section II. A glossary of mathematical
terms and some relevant theorems is given in section III
in the hope that this will provide a quick access to the
language used in many recent papers in the two areas men-
tioned. The lectures of Prof. Hugenholtz will give ex-
amples of this approach to problems in Statistical Mechan-
ics. Therefore I shall not discuss this area. 1In section
IV we shall then sketch one topic in elementary particle
physics, the structure of the set of charge quantum numbers
and its relation to the statistics of particles (Bose-
Fermi-parastatistics).

Before going into details it is perhaps worthwhile to
indicate the salient feature which is typically (though
not exclusively) associated with infinite systems. It may
be called the appearance of 'superselection rules'.® The
set of physical states decomposes into families which are
distinguished by parameters which have no quantum
* The term "superselection rule' was introduced and illus-
trated by examples in [1].
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fluctuations. Such parameters are the ''macroscopic ob-
servables'" (for instance the temperature) in the case of
Statistical Mechanics, they are the charge quantum numbers
in elementary particle physics. These parameters arise in
a natural way if one uses the algebraic formulation of
Quantum Physics; they correspond to the classification
parameters of inequivalent representations of one and the
same abstract algebra.

II. Mathematical Formalism of Genmeral Quantum Physics

A. Hilbert space formulation

I suppose that the majority of the audience is
familiar with J. von Neumann's famous book,
Mathematical Foundations of Quantum Mechanics [2].
It contains among other things a description of the
concepts used in general quantum physics (i.e. con-
cepts which are supposed to apply not only to quan-
tum mechanics but equally well to quantum field
theory) and describes the mathematical objects cor-
responding to these concepts. Let us briefly recall
this conceptual and mathematical structure.

The basic physical concepts are ''states' and
"observables.'" A "state" (of the physical system
under consideration) is--at least for practical pur-
poses--a statistical ensemble of identical systems,
produced (or 'prepared') by some piece of experi-
mental equipment called the source of the state.

An "observable'" is an apparatus which subjects each
system of the ensemble to a ''measurement' thereby
registering a number, ''the measured value,' and--in
the ideal case--releasing the system after the meas-
urement for further subsequent observations. The
observable thus decomposes the original ensemble in-
to a collection of subensembles according to the
different measured values.

One may distinguish '"pure states' and "mixtures.'
If we have any two states s, and Sy5 then we can al-~
ways obtain another state s by mixing s, and s, with
arbitrary (positive) weights Ay, Ao (A1 + 14, ="1).
This means that we prepare an ensemble containing,
say, N systems by using the source of s; for AN of
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the cases and the source of s, in A,N of the cases.
Clearly in any subsequent experiment on this en-
semble the probability for any result will be

lel + Azp where pp,Py are the respective proba-
bilities”for the same result in the states $1s89-
Let us express this relation by

s = Xlsl + AZSZ (2.1
Conversely, given a state s one may ask whether
there exists a pair of other states, s; and s,, and
weights A,, A,, such that s, sy and 8, are in the
relation %2.1%. If it is impossible to find such a
pair, different from s itself, then s is called
"pure." It is one of the essential characteristics
of Quantum Physics that the decomposition of an en-
semble into subensembles by an observable (as de-
scribed above) does not correspond to a relation of
the type (2.1). 1If we throw together all the sub-
ensembles released by the observable the resulting
mixture will be a different state from the one which
existed before the measurement. The observable has
not only recorded numbers but also changed the
state,

Mathematically, pure states are represented by
vectors in a Hilbert space X or, more precisely, by
rays in this space (the vectors Y and cY corres-
ponding to one and the same state). Observables
are represented by self-adjoint operators acting on
¥. The possible measured values which can occur in
the measurement of the observable T are the spectral
values of the operator T. To each distinct spectral
value t_ there is a spectral projector | If ¥ de-
scribes the state before the measurement then the
sub-ensemble consisting of those systems after the
observation for which the value t_ has been re-
corded is given by p,¥. Thus the probability for
finding the value £, in the observation T on the
ensemble is:

2
llp_¥Il
= 0 (2.2)

P
TR
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If F is a real monotonic function with an inverse
then the operator F(T) has the same spectral pro-
jections as T and the spectral values are F(tn).
Therefore the observables T and F(T) are measured
by the same apparatus, only the 'scale' has been
changed to indicate F(t,) instead of t,. This re-
mark may be used to achieve a formal simplification
of general arguments in two ways. First, one de-
fines the '"expectation value' of the observable T
in the state Y by:

Ty

<T>Y B antn = @Y

(2.3)
The spectral values t_ of the observable T and the
probabilities p_ for eir occurrence in a state Y
can be reconstricted if we have the expectation
values (Y,F(T)Y¥) for a sufficiently large set of
functions F of the observable T, Secondly, we may
be satisfied by considering instead of T (which
possibly may be an unbounded operator, an operator
whose spectrum extends to infinite values) bounded
functions of T, i.e., bounded operators. Instead of
one observable T we then deal with a commutative al-
gebra of bounded operators and the physical state-
ments about measured values and probabilities are
incorporated in the knowledge of the expectation
values of all these bounded observables.

Two more comments on this formalism:

1. Impure states are described by ''density ma-
trices." A density matrix p is a positive
self adjoint operator with finite trace. The
expectation value of the observable T in such
a state is given by

Trace T

(T (2.4)

p = Trace p

The special case of a pure state and the ex-
pression (2.3) result when p is the projec-
tion operator on the direction of the single
vector Y.
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2. We shall always use the '""Heisenberg picture'
to describe the development in time. This
means that a state prepared by some source
is described by a fixed vector or density
matrix in Hilbert space irrespective of the
time at which we intend to make an observa-
tion on it. The physical specification of
an observable must then include not only the
description of the apparatus and its place-
ment in the laboratory but also the time at
which it is used to make the measurement.

. Algebraic Approach

While Hilbert space is the most natural mathe-
matical setting for Schrddinger's wave mechanics
the initial work of Heisenberg-Born-Jordan and in
particular Dirac's notion of ''q-numbers" is closer
in spirit to the algebraic approach. The mathe-
matical description of an observable is not primari-
ly given by an operator on a Hilbert space but rath-
er by a "q-number" (i.e. an element of an abstract
algebra) whose relevant properties are determined
by algebraic relations with other g-numbers.

A mathematically precise and complete formulation
of this point of view was given by I.E. Segal [3].
The physical meaning of the terms 'observable'' and
"state'" will be the same as described before, but
the primary mathematical object is the algebra ¥ in
which the set of observables is embedded. The gen-
eral description involves algebraic and topological
aspects. We start with the former and defer the
discussion of the topology to the end. Let A, B,...
denote elements of ¥ and o, B,... complex numbers
with @, B their complex conjugates. The algebraic
operations which can be performed within 2 are

1) addition of elements: A + B

2) multiplication of an element by a complex number:
a A

3) multiplication of elements (in general non commu-
tative): A B

4) involution (corresponding to the ad;oint for an
operator on a Hilbert space): A - A™,
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The laws prevailing among these operations are
familiar, With respect to 1) and 2) ¥ is a linear
space. The multiplication 3) is associative, dis-
tributive with respect to 1) and commutes with 2).
The involution satisfies

(aA + BB)* = T A" + B BF
(AB)* = B* A*
A** BT

The significance of the involution is that it allows
us to define real (or self adjoint) elements and
positive elements in ¥, A € ¥ is called real, if
A* = A, it is called positive if it can be written
in the form A = B* B with some B € %, Observables
correspond to real elements of Y. States corre-
spond to "expectation functionals'' over ¥. An '"ex-
pectation functional' w (also called a "positive,
linear form'") is a linear ~ function from the alge-
bra to the complex numbers taking positive values
(including possibly zero) on positive elements of %.
In other words w assigns a complex number w(A) to
each A € ¥ such that

w(a A+ B B) =a w(A) + 8 w (B) (2.5)
and
w(a*a) = 0. (2.6)

Usually we shall deal with an algebra which contain
a unit element 1. In that case we may add as a
normalization convention on the state w the condi-
tion

w(l) =1 2.7)

% For simplicity we shall pretend that every real element
corresponds to an observable,

*% Since the addition of two noncommuting observables does
not have a simple operational meaning the reason why an ex-
pectation functional should be linear over U does not lie
on the surface.
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The structure described so far is still too
loose and allows many pathologies or unwanted fea-
tures. For instance, it could happen that there is
a real element which cannot be expressed as a dif-
ference of two positive elements. In order to ex-
clude such features we have to add topological con-
siderations. The simplest kind of a topology in a
linear space is provided by assigning to each ele-
ment A a norm [{A]l] i.e. a positive number satisfying

lla All = [al A, (2.8)

ItA + BIl < [All + |IBII. (2.9)

In the case of an algebra with involution the norm
should also satisfy

1A Bl = ||Alf - 1IBII (2.10)
Na*l = yalf. (@a1'1)

Suppose we have found a norm on ¥ satisfying these
requirements (2.8) to (2.11). Then we can complete
% by adding to it the limit points of Cauchy se-
quences, The completion of %, denoted by ¥ will
still be a *-algebra (algebra with an involution)
and, considering its linear structure it is a Banach
space, It is therefore appropriately called a
Banach *-algebra. Given ¥ as a *-algebra there will
be in general many different possible choices of a
norm. Under good circumstances there is, however,
one preferred choice called the "minimal regular
norm'", and this norm is determined by the algebraic
structure of ¥. The line of argument, due to

I. M. Gelfand and M. A. Naimark is the following
(see for instance [4],[5]). The set of positive
linear forms over ¥ does not depend on the choice
of a norm on ¥, If we assign a norm we can ask
whether all positive linear forms over ¥ are con-
tinuous in that norm topology. 1If so, we call the
norm regular. One finds that if a regular norm ex-
ists at all then there is also a minimal regular
norm || ”c’ uniquely determined by

Al < 1Al all A € 9
(o4 r
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where || Hr stands for an arbitrary regular norm.
Moreover, the minimal regular norm has the property

8% Al = nal%, (2.12)

¥, equipped with its minimal regular norm (assuming
its existence) and completed in that topology will
be called a C*-algebra. Mathematically, a C*-alge-
bra (like Hilbert space) is a very natural object
in the sense that all structural assumptions just
fit together to entail a beautiful mathematical
theory. For instance, there are sufficiently many
positive elements in a C¥*-algebra so that every
real element is a difference between two positive
ones and hence any positive linear form is real on
the real part of ¥. Furthermore the spectrum of a
real element A is well defined and IIAIIC is just the
supremum of the absolute values in the spectrum.

Therefore Segal's postulate that % should be a
C*-algebra appears mathematically very natural. Let
us see how it is to be understood in the example of
quantum mechanics of 1 degree of freedom. There we
are dealing with the algebra generated in some sense
by two observables p and q satisfying the commuta-
tion relations

[p,ql = -i (2.13)

One could consider the algebra ¥; consisting of fi-
nite linear combinations of pfq™, The product of
such polynomials can be rearranged, using the com-
mutation relations, to be again of the form
by Cnmpnqm. The adjoint will be defined by
*

@™ = b
which can again be reordered, shifting the powers of
p to the left using (2.13). One has therefore a
*.algebra. But one finds that this algebra possesses
no regular norm. This reflects, of course, the fact
that the spectra of p and q extend to infinity.
Noting, however, as remarked in section II A that a
bounded function of an observable A is essentially
the same physical measurement as A we may construct
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the algebra, as Weyl suggested, from the elements

U(a, b) = ei(ap o) (a, b real parameters).

(2.14)

The equivalent of (2.13) are then the commutation
relations in the Weyl form

%(ab'—a'b)
U(a,b) U(a',b') = e U(a+a', b+b').(2.15)

The involution is defined by
U(a,b)* = U(-a,-b). (2.16)

Thus the set of finite linear combinations
Z Cy.p, U(ay,by) forms a *—algebra, say ¥,, and so

doesltﬁe set ¥4 consisting of elements
U(f) = [ £(a,b) U(a,b) d a db

when f runs through the complex valued, absolutely
integrable functions of the 2 real variables a and
b. Both ¥, and %4 possess regular norms and hence
can be completed to become C*-algebras. The C*-norm
of an element of ¥, or U5 coincides with the opera-
tor norm of the corresponding Hilbert space operator
in the Schrddinger representation.

One sees from this example that the relation be-
tween the canonical quantities p,q and the possible
choices for a C¥-algebra of observables is very
analoguous to that between the generators of a Lie
group and the group elements (or the group algebra).

Infinite Systems and Locality

In the case of the infinite systems with which
we are concerned some further general structure of
the algebra must be added to the one discussed un-
der II B in order to achieve a reasonable physical
interpretation. The main point is that we admit as
elements of % only observables of essentially local
character. We assume that there are observables
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which can be measured within finitely extended space-
time regions, If 8 is a space-time region, U(R)
shall denote the algebra generated by all observables
measurable within 8, Let ® denote some basic set of
simple, finitely extended regions. To fix the ideas:
In the nonrelativistic case (application to statisti-
cal mechanics), where measurements at a sharp time
are deemed possible, we may take R to consist of 3-
dimensional balls or cubes at a time t. 1In the rela-
tivistic case it is convenient to choose R to consist
of (finitely extended) double cones., Such a double
cone is determined by two points x;, X, in Minkowski
space with Xy-X71 & positive timelike vector. Then
le % 1is the set of points which lie both inside the
?

backward cone of xy and the forward cone of Xq.

We regard then the net of local algebras U(K) with
K ranging through ® as the mathematical object which
fixes the theory. This point of view was developed
within the Hilbert space frame in [61,{7]1,0(81,[9] and
in the purely algebraic form in [10]. The algebra %
of section II B is then the C*-algebra generated by
all the U(K), i.e. it is the norm completion of JUA(K).
Similarly, for any infinite region # we shall define

AB) = .« U(K) (2.17)
k=g

We call ¥ the algebra of quasilocal observables,
since every element of it can be uniformly approxi-
mated by local quantities.

It is perhaps remarkable that the purely geometric
resolution of ¥ into the net {A(K)} (i.e. the identi-
fication of classes of observables according to the
space-time-regions in which they may be measured) is
sufficient to fix the physical interpretation of the
theory. 1In other words: given a net {%(K)} which
satisfies the principles of locality, causality, co-
variance the physical phenomena predicted by this
"theory" are determined unambiguously. (See [10]
and the last section of [11])



262 RUDOLF HAAG

IIT Mathematical Glossary

This section is intended for the benefit of the physi-
cist who is not familiar with the branch of mathematics
used here and who nevertheless insists on reading these
notes. It is, of course, not clear that such individuals
exist but I hope so. T try to give a brief exposition of
the most important concepts, definitions and some of the
most relevant mathematical results (listed as Ry, k running
from 1 to 12), For further (and better) information the
imaginary reader is referred to the book by Naimark [5].

1. Convergence of sequences of vectors in Hilbert space

Notation: ¥ a Hilbert space; Y a vector in ¥,
S
Iyl = (¥,¥)* its norm (length).

There are two distinct notions of convergence, both
relevant to problems in physics (e.g. scattering
theory): The sequence ¥, converges stron ly towards
¥ if HY-YnH - 0, it converges weakly if (@,Y-Yn)|~0
for every fixed 3€X. (@ chosen arbitrarily but inde-
pendent of n). To these two notions of convergence
correspond two topologies of ¥, the strong and the
weak topology.

R;. The unit ball of 3 is weakly (but not strong-

ly) compact.

Or: every infinite set of vectors {¥} with ||¥] = 1
has at least one weak limit point. For most practi-
cal purposes: every sequence Y, with [[Y || uniformly
bounded has a weakly convergent subsequence.

2. Bounded linear operators

Q a linear operator acting on . 1Its norm is defined
by IlQll = sup ”\?YH . If |lQll exists (i.e. if it is fi-

nite) Q igeﬁélled bounded. The set of all bounded,
linear operators on ¥ is denoted by B(¥X). The topol-
ogy determined by the above norm is called the uniform
topology in B(X).
Ry. The operator norm [|Qll is a C*-norm, i.e. it
satisfies relations (2.8) through (2.12).
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Since B(¥) is closed under the algebraic operations
II B 1) through 4) and complete with respect to the
norm one has

R3. B(X) is a C*-algebra.

With Q, a sequence in B(X) we consider three notions
of convergence to a 11m1t QEB (X))
a) Uniform: [IQ -Qll -

b) Strong: For every Y€X the sequence of vectors Q_ Y
converges strongly (as defined in III 1?
to QY,

c) Weak: For every YE€X the sequence of vectors Q.Y
converges weakly to QY.

To each of these notions of convergence there corre-
sponds a topology on B(¥X), the uniform (or norm)
topology, the strong and the weak topology. They
are decreasing in strength, Thus a weakly closed
set in B(¥) is a forteriori strongly closed and a
strongly closed set is always uniformly closed.

(The weaker the topology, the more limit points are
added in performing the closure). Corresponding to
R, one has

R,. The unit ball of B(X) (i.e. the set with
IIQll = 1) is weakly compact.

. Operator algebras

Ry. The weak and the strong closures of a 2 A=
gebra in B(¥) coincide.

A strongly (or weakly) closed *_algebra in B(¥) con-

tainlng the unit operator 1 is called a von Neumann
ing, a uniformly closed *-algebra in B(X) we call

a concrete C¥-algebra. Obviously (by the ordering

of the strengths of the topologies) every von Neumann

ring is also a concrete C*-algebra but the converse

is not true in general.

The commutant of any set S € B(X) is denoted by S'.
It consists of all those elements of B(X) which com-
mute with every member of S. For the commutant of
the commutant, i.e. for (S')' we write §". The ad-
joint set (consisting of the adJoint operators of all
elements of S) is denoted by §*
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Rg. If S is a self adjoint set in B(X) (i.e. S=5¥)
then
a) 8' is a von Neumann ring
b) 8" is the von Neumann ring generated from
S and 1 (by algebraic operations and weak
closure).
c) §''"' =g’

4, Factors

Let R be a von Neumann ring. The subalgebra
Z=RNR'

is called the center of R, If Z is trivial, i.e. if
it consists only of multiples of the unit operator,
then R is called a factor.

This terminology comes from the following

R 1f 5 is finite demensional and R a factor
from B(¥) then X can be written as a direct
product of two Hilbert spaces ¥; and ¥, such

that

7°

X = K,®K,;

== 3 L=
8%, R = B(X)®l; R 19B (¥

2"
(3.1)

For infinite dimensional Hilbert spaces the situation
is more complicated. The analysis of F. J. Murray
and J. von Neumann [12] leads to a classification of
factors into three basic types, only one of which
(type 1) is the analogon of the finite dimensional
situation described under R7.

The analysis starts from an ordering of the projec-
tion operators which are contained in the factor R.
Two such projectors P, and P2 are called equivalent
(in symbols Py E Py) }f theré is an operator U € R

which maps the subspace PfK isometrically on PoX.
Similarly one defines Py E P, (existence of U € R
which maps P.¥ isometrically onto a proper subspace
of PZK). One finds



INFINITE QUANTUM SYSTEMS 265

Rg. With R a factor, Py, Py projectors from R
one has always precisely one of the three
possibilities

i) P1

ii) P

WA RV
o

1
1i1) P
1R

2
H

Corresponding to this ordering of projectors P € R
one can introduce a relative dimension of the sub-
spaces Pi. Dim P is a non negative number (possibly
») which satisfies Dim Py = Dim P, iff Py ~ Py,

Dim Py < Dim P, iff BAv e P2 and Dim P = 0 1ff P = O.

Further, if Py and P are mutually orthogonal
(P1P2 0) then Dim %Pl + P ) = Dim Py + Dim Py,

Apart from an arbitrary (positive) normalization
factor the dimension function is uniquely determined
by these requirements.
R9. A factor R is either of
Type I: R contains minimal projectors (P
is minimal if Py $ 0 and P, <P

implies P, = 0). Normalizing the
dimension function so that it takes
the value 1 on the minimal projec-
tors, Dim P ranges through all in-
teger values up to a maximal value
n or up to and including ». If n
is a finite integer R is called of
type I, otherwise of type I .

Type II: Dim P ranges through a continuum of
values which may be either normal-
ized to be the closed interval 0,1
(type II;) or it may be the whole
real 1ine including 0 and «
(type II)).

Type III: Dim P takes only the values 0 and
©, In that case all nonvanishing
projectors from R are equivalent
(in the sense iii).
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Remark, In the finite dimensional example discussed

under R, we have a factor of type 1_ where n is the
ordinary dimension of the space X; and Dim P is the
ordinary dimension of P¥;. In other words, the
multiplicity provided by the dimension of 3, plays
no role.

The relative trace over R. If R is a factor of fi-

nite type (type I_ or II,) then there exists one
unique positive 1%near form over R, denoted by Tr
which is invariant:

Te(UAU™Y) = Tra for any AER (3.2)
and unitary UER

and normalized by
Tr 1 =1 (3.3)

If R is a factor of seminfinite type (type I, or II.)
then the relative trace may be defined not on all
operators of R but on a weakly dense subalgebra
which does not contain 1. It is then an unbounded
positive linear form on this subset, satisfying (3.2)
but we cannot normalize it by (3.3). It is unique,
apart from a normalization convention. 1In a factor
of type III no trace may be defined at all. But re-
cently in the theory of modular operators (Tomita-
Takesaki theory) [131,[14],{15] mappings between
factors of type III and type II have been discovered
which may possibly be useful to introduce ''pseudo-
traces' also in the type III case.

Remarks. It appears that in the physical applica-
tions which concern us here (see introduction) we
meet most frequently with factors of type III. The
mathematical theory of a finer classification of fac-
tors seems to be at this moment in a period of major
progress and in close contact with examples and prin-
ciples in physics.

. Representations

Let now ¥ be a C*-algebra. By a representation m of
% we mean a mapping from % to the bounded operators
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of some Hilbert space X which conserves the alge-
braic structure (II B, operations 1 to 4)., If for
every A # 0 the representing operator m(A) # O the
representation is called faithful.

R10. If m is faithful then the operator norm of
m(A) equals the C*-norm of A i.e. the map-
ping ™ establishes an isomorphism between
the abstract C*-algebra % and the concrete
C*-algebra m(¥).

If 7™ is not faithful ||w(A)| < ||All and ™ is a homo-
morphism from % to m(¥). Again m(¥) is uniformly
closed, i.e. a concrete C"-algebra.

Cyclic representation: There exist a vector Y€X (a
cyclic vector) such that m(¥)Y¥ is dense in X.

Irreducible representation: ¥ contains no proper
subspace which is transformed into itself by mw(¥).
This is equivalent to (Schur's lemma)

n(u) "

B() or (3.4)

n@) ' = {x 1} (3.5)

Primary representation: m(¥)'" is a factor, i.e.

UICYRNIELICO RN P (3.6)

Unitary equivalence between nl(m) c BCK ) and
my(U) c B(Xy): Existence of & unitary mapplng v
from ¥; onto ¥, such that

v ﬂl(A) = nz(A)V for all Ac¥ (3.7)

Quasiequivalence between T and Ty The von Neumann

rings T (ﬁ'" and T are isomorphic (regarding the
mapping ﬂl(A) =3 5 %A) and its extension to the weak
closure) .

. Families of States

Let ¥ be a C*—algebra, m(¥) c B() a representation
and W an arbitrary positive operator of trace class
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from B(X) (not necessarily from m(¥") normalized by
Tr W=1 (3.8)

Then QW is again of trace class*for every QEB(X) and
W defines a state wy over the C"-algebra U by

ww(A) = Tr (T(A)W) (3.9)

since obviously satisfies the requirements (2.5),
(2.6), (2.7). When W ranges through all positive,
normalized trace class operators in B(¥X) we obtain
in this way a family of states over ¥. This family
is called the set of normal states with respect to
the representation m. We shall use the symbol S
for it. A subset of this family are the vector

states of m, which result if W runs through all 1-

dimensional projections in B(X). We may write these
as
wY(A) = (¥, m(A)Y) (3.10)

with ¥ a unit vector from X. (Compare (2.3) and
(2.4)). The normal states of a primary representa-
tions we call primary states.

Rll' If m; and 7, are two primary representations
then either 8"1 = 8, in which case m; and

m, are quasiequivalent, or 8, N 8. 1is emp-

ty, i.e. the two families of states“are com-
pletely disjoint.

Therefore, it amounts to the same whether we consider
quasiequivalence classes of primary representations
or families of primary states. One such family is
generated from a single member w by the operations

i) translation with elements in the
algebra

*
1 _ w(B"AB) .
w UJB, WB(A) = W, BEQI,
ii) Finite convex combinations (mixture),

ii1) closure in the norm topology of state
space.
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The GNS-construction (Gelfand, Naimark, Segal)

Given an arbitrary state w over U, This construc-
tion yields a cyclic representation m, so that w oc-
curs as a vector state of this representation (re-
lated to a cyclic vector Q in the representation
space by w(A) = (Q, m(A)Q). This starts from the
remark that ¥ is itself a linear space in which,
given w, a semidefinite scalar product may be de-
fined by

(A,B) = w (A* B) (3.11)

On the other hand we may regard each element A also
as a linear operator acting on the space % (the image
of B under the operation A being A B). Finally one
has to come from the space % with its semidefinite
metric (3.11) to a space with positive definite met-
ric which may then be completed to become a Hilbert
space. One defines the set J c ¥ by

Z€J if w(z¥z) =0 (3.12)

and checks that J is a linear space and a left ideal
of ¥, i.e. if Z € Jand A€ U then A Z € J, We call
J the GNS - ideal of the state w. Taking i = 94/J
(set of classes of ¥ modulo J) one obtains a repre-
sentation space with positive definite metric. 1In it
the class of elements 1 + J is a cyclic vector 0
satisfying

(Q,m(a)) = w(1* 4 1) = w(a)

R12' The vector states of an irreducible repre-
sentation are pure states. The GNS - con-
struction, starting from a pure state leads
to an irreducible representation.

IV.The Superselection Rules of Particle Physics. Statistics,

If we compare the framework sketched in section II C
with conventional quantum field theory we see as the most
striking difference that the latter uses (in realistic
models) field quantities which can not be associated with
the algebra of observables . An example is the Dirac field.
There are two simple reasons showing immediately that this
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field Y cannot be associated with ¥. The first argument
(due to Wigner): A rotation by 360° is equivalent to doing
nothing as far as any physical situation is concerned but
it changes the sign of ¥, The second argument: The commu-
tator between Y(x) and Y(y) does not decrease as x - y = =
in a spacelike direction and the fact that the anticommuta-
tor vanishes is of no help for an observable; a measurement
of the Hermitean part of Y in one region, if possible,
would have a disturbing effect on a similar measurement in
another region and the disturbance would not decrease with
the distance.

The use of unobservable fields is tied to the existence
of superselection rules within the manifold of states one
wants to consider. Thus, the first argument above as used
in [1] demands a superselection rule between states of inte-
ger spin and those of half integer spin; the second argument
demands a superselection rule between states of Bose type
and those of Fermi type.

In conventional field theory (Hilbert space formalism
with unobservable fields) the superselection structure and
the relation between fields and observables is governed by
a group &. An element g of this group corresponds to a
transformation which (like the rotation by 360° mentioned
above) does not produce any change of the physical situa-
tion but is nevertheless represented by a non trivial opera-
tor U(g) acting on the Hilbert space (U(g) # A 1). An ob-
servable must be invariant under this group, i.e. it must
commute with all U(g). The Hilbert space may be decomposed
into subspaces (''superselection sectors') X, according to
the "spectrum of the group @'". 1In the simplest and most
important case when ® is Abelian this corresponds to a
simultaneous diagonalization of all the U(g) so that in each
subspace ¥; the U(g) act like multiples of the identity, but
like different multiples in the different .. Then a coher-
ent superposition of state vectors is possible (physically
meaningful) only if these vectors belong to the same sector
X

it

The two examples of superselection rules given (integer-
half integer spin; Bose-Fermi type) are the most unrefuta-
ble cases and actually, because of the spin-statistics
theorem, they are tied together. The group which is rele-
vant here has only one element besides the identity. This
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transforms Y(x) into -Y(x). It is, however, rather gener-
ally believed that the fundamental conservation laws of
electric charge, baryon number, lepton number are also
linked to transformation groups ('gauge transformations'’)
which leave all observables invariant. This implies then
superselection rules between states differing in any of
these charge quantum numbers. Empirically the Bose-Fermi
alternative is tied to the charges. With the usual assign-
ment of quantum numbers a state is of Fermi type if the sum
of baryon and lepton number is odd, it is of Bose type if
this sum is even. We shall therefore use the term (gener-
alized) charge for the set of all parameters which are
needed to distinguish the different superselection sectors
and the term ''gauge group' for the group @,

Let us now look at these features starting from the
frame of general local quantum physics. The theory is then
characterized by the net of algebras of observables {%(K)}.
Does this net determine superselection rules, unobservable
fields, a gauge group and statistics? What is the structure
allowed by the principles of relativistic locality and
causality? Are Bose - and Fermi statistics the only possi-
bilities? Various aspects of these questions have been
discussed in [16], [17], (18], [19], [20] (see also [9] and
(10D).

It has already been mentioned in the introduction that
in an algebraic formulation of the theory superselection
rules arise naturally because the algebra will in general
allow inequivalent representations. Our problem here is,
however, an embarrassment of riches: The algebra has far
too many inequivalent irreducibe representation”. The in-
teresting superselection rules for particle physics corre-
spond to a tiny subset of these and we have first to moti-
vate and formulate the criteria which single out among all
possible representations the relevant ones. The origin of
this restriction is the idealization always adopted in ele-
mentary particle physics: We consider only states which
look (asymptotically) like the vacuum for observations in
far away regions of space. Therefore, it is convenient to
start from one distinguished representation m_, the "vacuum
representation' which is obtained by the GNS-construction

* This is a consequence of the fact that ¥ is an inductive
limit of the net of local algebras,
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from the vacuum state w_ (see section III.6). All other
representations of intefest to us will be closely related
to it. The precise criteria one should adopt in singling
them out have been formulated in a satisfactory, usable
form only for the case when there are no long range forces
(no zero mass particles) in the theory”. 1In that case we
are led to consider the subset of representations for which
the corresponding families of states (see III.6) contain
strictly localized states (for a discussion of this see

[19 1]). Here we use Knight's definition of strict locali-
zation [21] and call the state w localized in the double
cone K if it coincides completely with the vacuum w_ for all
observations in the space-like complement K' of K, in other
words if wlm(K,) = wO?%(K')**' Moreover one finds that a

localized state w may be related to the vacuum by means of
a localized morphism p of the algebra:

w(a) = u_(s(A)) 4.1)

By a morphism we mean a mapping A - p(A) from ¥ into ¥

which preserves the algebraic structure and the norm. The
image p(¥) may be the whole algebra (then p is an automor-
phism) but the case where p(¥) is a proper subalgebra of ¥

is also possible and of interest. We call p localized in K
if it acts trivially on the algebra of the space-like comple-
ment K' i.e. if p(A) = A for ACU(K').

The set R of interesting representations is then related
to the vacuum representation 1, in the following way: m € R
if (up to equivalence) we can write

() =1 (0(A)) (4.2)

with p a localized morphism, The state (4.1) is a vector
state of the representation . We may devide the localized
morphisms in equivalence classes calling PL and Py equiva-
lent representations. We shall call p pure if it generates

* One may hope that the superselection structure derived be-
low for the case of short range forces retains validity also
in electrodynamics (although it will not be complete there)
since we may consider this as the limiting case, starting
from a finite photon mass.

%k w[u denotes the restriction of w to the subalgebra U
1
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by (4.2) an irreducible representation (i.e. if the state
(4.1) is pure). The interesting superselection sectors
(generalized charges) correspond to equivalence classes of
pure, localized morphisms.

To discuss the structure of this set (of charges) we
need some simple properties of localized morphisms:

i)  morphisms with mutually spacelike localiza-
tion region commute.

ii) the product of morphisms respects the class
division, i.e. the class of the product P1Po

does not change if py and p, vary within
their classes,

iii) if p is an automorphism then all positive
and negative powers p? are defined and they
are all pure. If p is pure but not an auto-
morphism then p4 is never pure. Finally,

iv) it is reasonable to assume that the Poincaré
transform of a localized morphism p is in
the same class as p".

By ii) we have a product composition of classes (composi-
tion of charges). It is commutative because of i) and iv).
The "simple charges', which correspond to automorphism
classes, form an Abelian group., For the others we have a
more complicated composition law. The product of two pure
but not simple charges is a mixture (reducible representa-
tion) which can be decomposed again into a finite direct
sum of irreducibles. In this sense the composition law of
two such charges %1, €9 can be written in the form

%152 =F 1% ;i (4.3)

An example of such a situation would be the composition law
of isospin. 1Indeed, in a theory with strict isospin invari-
ance in which there exists no observable distingishing dif-
ferent members of a multiplet the magnitude of the isospin
is a charge quantum number, A sector with nonvanishing

* This means that the Poincaré transformations should be
implementable by unitary operators in the representation
m_(p(+)). If there should exist localized morphisms for
wgich this is not true we exclude such representations from
R,



274 RUDOLF HAAG

isospin is then generated from the vacuum by a p which is
not an automorphism,

Besides charge composition we have charge conjugation.
In the case of simple charges this is trivial; 1If £ be-
longs to the class of p, then the class of p™* is the con-
jugate §. For non simple charges the construction of the
conjugate is more interesting. If Py is the morphism
arising from translation of p by the space-time vector x
then p_ and p are equivalent and, in fact, there is a uni-
tary Ui(p)eu so that

0 (&) = U_(p)r(a) U;l(p)

We may interpret Ux(p) as a charge transfer: 1If p is local-
ized in K and § denotes the class of p then Ux(p) shifts a
charge € from the region K to K + x. Thus the state w,  de-
fined by

w (&) = u (U (o) A U ()

has charge zero but locally, within K 4+ x it appears to
have charge & which is compensated by a "hole'" in the re-
gion K. As we let x tend spacelike to infinity only the
hole remains and W,  converges weakly to a state with the
conjugate charge & localized in K.

Except for the case of simple charges (which is, of
course the most important case) the charges do not form a
group. But the structure of the set of charges discussed
above suggests that this set may be the dual of a compact
group (to be called the gauge group). By the dual of & we
mean the collection of equivalence classes of irreducible
unitary representations of ® equipped with the composition
law given by the Clebsch-Gordon series for the direct prod-
uct and with the conjugation (complex conjugation of repre-
sentations). It is probable but has not been shown so far
that the information about the structure of the set of
charges is sufficient to determine & [22].

Let us look finally at the problem of statistics. Sup-
pose W,,...w_are all pure states, all having the same
charge € but localized in regions Kiseen which lie space-
like to each other. So they are generated in the sense of
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(4.1) by equivalent morphisms py,...p, with mutually space-

like support. The state

n

w(-) =@ (pypy...p (+))

has charge g and corresponds to the physical picture of a
charge § sitting in every one of the regions Ky... (and
vacuum in the spacelike complement of .K;). We call this
state w the '"product state' of the ws and write

U N XN (4.4)
Since morphisms with mutually spacelike supports commute
the state (4.4) does not change if we permute the w;. Thus
there is only one localized product state, irrespective of
the order of the factors. ©Let us now look at the state
vectors instead of the states! To get a reference point we
pick some morphism p in the class €. There are unitary ele-
ments UiEM which relate p; to p (equivalence P p)
-1
Pi(A) = Uip(A) Ui . (4.5)
Quite generally (irrespective of the position of the sup-
ports of the o, ) (4.5) implies the equivalence of]T

l
with ot
0. ...p_(A) = Up™(a) Ut (4.6)
adim ]
where
U=y p(U,) ... 0" 2 e ) .7
1 vk n-17° n’* :

Consider now the three representations
n
A= (A); A= T () =T (p(A)); A= (8) =T _(p"(A))

corresponding to charges o, §, g respectively. They act
all in the same Hilbert space; the physical interpretation
of a vector of this space depends on the representation to
be considered. Thus the vector Q_which corresponds to the
vacuum state in the representation 7, corresponds to the
state w_(p(-)) in 7, and to the state (pn( )) in T_. We
see thaf w; may be represented in i) by the vector

1

¥y = m (U0, (4.8)
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and w of eq. (4.4) in m, by
-1
Y=m (U)o (4.9)
with U given by (4.7). Symbolically we can write

1 g ¥ o0 ¥ Yn (4.10)
as a short hand for the relations (4.7),(4.8), (4.9). 1t
It turns out now that the product (4.10) or, alternatively,
the expression (4.7) is not independent of the order of
factors (order in which the p, appear) even when the sup-
ports of the p, are mutually spacelike If P is a permu-
tation of n objects and Up denotes the expression (4.7)
with oy replaced by pP(i) then

e‘()“) @ =uleE v (4.11)

will in general differ from 1. One finds that it is inde-
pendent of the choice of the p, as long as they are all in
the equivalence class of p and have mutually spacelike
supports. Furthermore the 6B(P) with fixed p and n form a
unitary representation of the permutation group and they
commute with pM(A) for all A€Y. Thus, a change in the or-
der of factors in (4.10) changes the state vector by some
no(e(n)(P) but it does not change the state w; in other
wordg, all these vectors arising from permutations define
the same expectation functional over the algebra. If £ is
a simple charge then p™ is pure and the representation
ﬂo(pn(-)) is irreducible. By Schur's lemma then e(n (P)
can_only be a multiple of the identity. 1In that case
6Sn)(P) must be either the totally symmetric or the totally
antisymmetric representation of the permutation group. If
€ is not simple then p" is reducible and other representa-
tions of the permutation group can occur.

The '"statistics' of states with charge § mea?s the
characterization up to quasiequivalence of the 3pn) for
fixed p in the class £ and all positive integers n. (Varia-
tion of p within its class does not change the quasiequiva-
lence class of €y™)), Practically this is done by giving
the Young tableaux which occur in the decomposition of the
representation ESn) of the permutation group into irreduci-
bles. The analysis in [19,I] shows that this is governed by
a single parameter A, the '"statistics parameter' of the
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charge §. Apart from the somewhat pathological case X = 0
one obtains precisely the possibilities suggested by

H. S. Green (23], namely para-Bose statistics of some defi-
nite order d or para-Fermi statistics of some order d. The
sign of A gives the distinction between para-Bose and para-
Fermi, |A|~' gives the order of the parastatistics. Ordi-
nary Bose or Fermi statistics (d = 1) occur if and only if

€ is a simple charge. Parastatistics of order d # 1 appears
whenever we have a non-Abelian gauge group (when ¥ allows
localized morphisms which map onto a proper subset of %),

Usually one regards parastatistics as an exotic possi-
bility. But it is really very harmless since we have to
bear in mind that it depends on the knowledge of what is
observable. If we have a theory with a net {¥;(K)} which
has a non Abelian gauge group (for instance the isospin
group) then it may be that this theory is just an approxi-
mation to a situation with a richer supply of observables,
described by a net {U(K)} for which the gauge group is
Abelian. On the level of the approximate theory with SU,
as gauge group a sector with isospin I gives rise to para-
statistics of order (2 I + 1), but the more precise theory
splits this sector into (2 I + 1) different ones, each
carrying ordinary Bose - or Fermi statistics. In the exam-
ple we may say that in the less precise theory there is no
way to distinguish a single proton from a single neutron.
So the particle is a nucleon and it is a parafermion of or-
der 2; similarly we have a m-meson as a paraboson of order
3 etc. If on the other hand we have observables which dis-
tinguish the different electric charge states in the isospin
multiplets then instead of one parafermion of order 2 we
have two ordinary Fermions, etc. [20].

We have seen how a theory of local observables leads
naturally to the concept of statistics and how the type of
statistics is related to the structure of the set of charge
quantum numbers (superselection structure). Combining this
analysis with the work of H. Epstein [24] one finds that the
connection between spin and statistics holds in the sense
that the sign of A is positive or negative depending on
whether the spins in the sector are integer or half integer
{19, 1II]. This gives a somewhat deeper understanding of the
relation between spin and statistics because the statistics
were not introduced at the outset by means of commutation
relations of unobservable fields but result as a structural
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property of the observable algebra. One also finds sym-
metry between charge conjugate sectors: They have the same
energy - momentum spectrum and the same statistics parame-
ter. Finally one can show that the statistics parameters
determine the metric of the scattering states and thereby
enter into expressions for cross sections.
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EQUILIBRIUM STATES IN STATISTICAL MECHANICS
C*~ALGEBRAIC APPROACH

N. M. Hugenholtz
University of Groningen
Groningen, The Netherlands

1. Introduction.

Statistical mechanics is the theory of systems com-
posed of a large number of identical subsystems. The aim
is to derive thermodynamical laws from the known interac-
tion between the individual subsystems. To give a precise
mathematical description of a large (macroscopic) system
as opposed to a small system (atom, nucleus etc.) one con-
siders the model of an infinitely extended system composed
of infinitely many identical subsystems. In the tradi-
tional approach to statistical mechanics, the prescription
for calculating properties of equilibrium states is only
applicable to finite systems. This implies that one can
get results for infinite systems only at the end of the
calculation, by taking the thermodynamical limit.

In the algebraic approach, discussed in these lectures,
one deals with infinite systems, in particular, infinite
quantum systems. It is therefore necessary to reformulate
quantum mechanics in such a way that it may be applied both
to finite and to infinite systems. This program necessi-
tates the use of some mathematical techniques, with which
most physicists are not very familiar. For a detailed
study of operator theory we refer to books by Naimark [1]
and Dixmier [2,3]. A compilation of the most important
definitions and theorems can be found in an appendix to
Ruelle's book on statistical mechanics [4].

Algebraic methods can be applied not only to statisti-
cal mechanics but also to quantum field theory. This is
due to the great formal similarity between quantum field
theory and, e.g., the many body theory. 1In both cases all
observables are expressible in terms of quantized fields

281



282 N. M. HUGENHOLTZ

like the canonical pair m(x,t) and ¢(x,t) with the commuta-
tion relations

[e(x,t), #(y,t)]) = [m(x,t), m(y,t)] =
and
(r(x,t), #(y,t)] = -i8(x-y) (1.1)
or the annihilation and creation operators V¥ (x,t) and
y*(x, t) for a particle in the space-point x at time t,

with the well-known commutation relations:

a. for bosons:

L4 (x,t), ¥(y,0)] = [¥¥(x,t), ¥¥(y,6)] = 0
and
Lh(x,8), ¥ (y,6)] = 6(x-y) (1.2)
b. for fermions:
hx,0, 1y,0) = V&0, ¥@,n) =0
and
L (x,0), V¥(y,0)} = 8(x-y) (1.3)

Mathematically the essential difference between finite and
infinite systems is the occurence of many inequivalent ir-
reducible representations of the observables as operators
in a Hilbert-space in the case of an infinite system. On
the other hand, von Neumann [5] has proven that all irre-
ducible representations of the canonical commutation re-
lations

[Pi:Pj] = [qi’qj] = 0’ [piyqj] = _iéij

for i and j =1, 2, ..... s Si=

as selfadjoint operators in a Hilbert-space ® are unitarily
equivalent. In other words: whereas for a finite system,
all irreducible representations are unitarily, and hence
physically equivalent, this is not the case for infinite
systems. That this fact is physically relevant is
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illustrated by the fact that, as will be shown, the ground
states of a gas at two different densities lead to inequiv-
alent irreducible representations. Similarly, the repre-

sentations corresponding to equilibrium states of a gas at
two different temperatures are inequivalent, even disjoint

[6].

In the next section we shall give a simple but typical
example of inequivalent irreducible representations.

2. Inequivalent representations of the C.A.R.

In this section we consider a simple example of in-
equivalent representations of (1.3) the canonical anti-com-
mutation relations (C.A.R.). Before proceeding we shall
rewrite (1.3) in terms of the smeared out operators ¥ (f)
and U (£)*, where f is a complex square-integrable function
of x:

bE = [ Px v £@*
We then get the commutation relations
L, 1@ = O™, @)™ =0

and

(e, 1™ = (£,8), (2.1)

where

(£,8) = [ %k £ g(x).

The first representation of (2.1) we shall consider is
the Fock-representation. The representation space 9 (V)
for a given volume V is given by the direct sum

2 F(V) =n£0 P bn

where.?)n is the Hilbert space of anti-symmetrical n-parti-
cle wave-functions in V. An arb}trafx)vecfgf Y (V) is

deter?ined by %tf cgmponents ¥ ( etc Since
I ¥ ¢ {127y must always satlsfy the condition
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b H'y(“)\lz < @,

In this space we define the operators ¢ (f) and ¢(f)*
as follows

@®* 0w,y L BT D (gL x),

(2.2)
where the wave-function Y(n-l) is a function of all
XsXg, 00X with the exception of x,.
n i
(n) _ 3 %, (nt+1)
WD (xy...x ) = /ntl £ d’x F(x)"Y (x xq...% ).
(2:3)

One proves, without difficulty, that the operators {(f)
and W(f)* defined in (2.2) and (2.3) are each-others ad-
joint, that they are bounded operators with norm

oot = Tl ™1 = gl

satisfying the commutation relations (2.1). Hence we have

a representation of the C,A,R,, called the Fock-representa-

tion. Let ¥, be the vacuum-state(O}.e. the vector in @F
=1

with all components = 0 except @0 Clearly @0
satisfies the relation
W(f)éo = 0, for all f, (2.4)

and % is the only vector in Fock-space with that property.

From the Fock-vacuum ¢, one can build up the whole
Fock-space in the following mannmer: let Dl 120 E 1 |
be a basis in L°(V). Then the vectors w(fa)*éo,

W(fa)*W(fB)*QO, W(fa)*W(fs)*w(fY)*éo, etc. form a basis
in @F(V). QO is therefore a cyclic vector.

The particle number operator N(V) is defined on any
vector with only a finite number of non-zero components,
as follows:

(N(Y) (n) = n¥ (n)

N(V) is an unbounded operator, and one can prove that for
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any basis (£, « = 1,2,...} in L2(V)

NV = Z ¥ (E)TH(E) . (2.5)

Using the completeness relation for {fa} one finds the
formal expression

N(WV) = [ a3x W*(x)w(x).
v

Without proof we mention that the Fock-representation
is irreducible, Moreover, a representation of the C.A.R.
with the properties

1. There is a vector @0 such that
Y(f)@o = 0, for all £.
2. The representation is irreducible.
is unitarily equivalent to the Fock-representation. In
other words, the properties 1 and 2 determine the repre-
sentation uniquely, up to equivalence.
In the case of a cubic box of volume V, with periodic

boundary conditions one can choose for the basis wavefunc-
tions £, (x) the plane waves

_; ——t
fi(x) =V 2eikx,
with
2
k SEEST Tl (Ll o= 0, il, :i:2,...
1 Vs 1

We then write
a(®) = ¥(E) = 7o [ Ex (x) e

a(ﬁ) and a(i)* are the annihilation and creation operators
for a particle of momentum k. The commutation relations
are

Lo
-ikx

(a(®, ak")} = {a(®”, a(")™ =0
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and
k'

Until now the volume V could be chosen either finite or
infinite. We shall now consider the special case that

V = R3, We can then introduce translations in space. Let
YE%F(R3). The equations

{a(k), a(k")™) = op ¢

@) ™ .. - y (@) (xy+a,x 48, . X _+a)

2
determine a unitary operator, the translation operator.

It follows from the definition, that @0 is invariant for
translations, and is the only vector in %p with that prop-
erty,.

Another advantage of taking V = R3 is the possibilitg
of defining densities. Let V5 be a finite subvolume of R”,
and compare the operators

N(Vo) = f d3x¢*(x)¢(x) and N,
Hg

the total particle number operator. Clearly, one has
N(V) < N;

as an operator inequality. We now define a density oper-
ator n, as follows: let Y be in the domain of N, then

nt = lim g N(V)Y.
Voo \Y
The limit of the r.h.s., vanishes, since

1 1
g Ny il < [ig w i z,0.
Hence the operator n, when applied to a dense set of vec-
tors in F(R ), gives zero. The density operator is there-
fore identically zero, which means that the vectors in
Fock-space describe states of vanishing particle-density.
For this reason, it is obvious, that the Fock-represnta-
tion is not suited for describing the states of systems
with non-vanishing particle-density.

We shall now construct another representation of the
C.A.R. by means of a Bogoliubov-transformation. We define,
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for finite V, new creation and annihilation operators by
means of the transformation

a(k)' = cos (a(k))a(k) - sin (a(k))a(-k)™. (2.6)

Formally, i.e. disregarding convergence questions,
this transformation can be obtained by means of the uni-
tary transformation

a(k)' = eiQa(k)eiQ,
with
QF= % ﬁ a(k)a(-k)a(k) - a(k) a(-k)*]. (2.7

As a consequence of the fact that a(k) and a(-k) anti-com-
mute, it is natural to assume that a(k) = -a(-k).

If we deal with spin % particles, k stands for momen-
tum and spin (k,s). 1In that case this relation is satis-
fied if a(k,s) depends on the length |k| only, and

a(lkl, ) = -a(lkl,-).

Let us now consider Q. If Q is a self-adjoint opera-
tor in Fock space, then the transformation (2.6) is unitary
and both representations are unitarily equivalent. To see
whether Q is a well-defined operator we apply Q to an arbi-
trary vector ¥ in ., with a finite number of non-vanishing
components. We have

% () ST G T A i R
(a()™) " (xy..x )= /— i=1(_ ) 7 (%p. kg% )

and thus
(i a(k)a(k)*a(-k)*w)(“)(xl...xn) =

cmaled O o i+g -2
= 7a(n-1) igl#jzl(-l)l Jon(xi-xj)&'(n )<x1..xi..xj..xn) 5
i#3

where
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Clearly a necessary and sufficient condition for this oper-
ator to be defined on a dense subset of bF(V) is, that

4 2g ),
a(xi-xj) € L),
which condition is equivalent with

i la() |2 < . (2.8)

In the finite case it depends on the sequence & (k) whether
or not this condition is satisfied. In the thermodynamical
limit (V - « ) however, the sum in (2.8) becomes propor-
tional to V, so that (2.8) can never be satisfied in the
infinite volume case. This means that in the infinite
case, two representations of the C,A.R, connected by a non-
trivial Bogoliubov transformation are inequivalent.

We could have reached this conclusion also without
calculations, Suppose that both representations were equi-
valent. Then there would be in %y (V) a Fock-vacuum @6 with
respect to a(k)'. Let us consider translations in space:

V(x) - V(xta)

or
B (ks al(lyal

It follows then from (2.6) that also
a(k)' = a(k)'el¥?,

In other words the Bogoliubov-transformation commutes with

space translations. Hence the Fock-vacuum Qé is also in-

variant for translations, Hence ¥, and @6 must be identi-

cal, which implies immediately thag the Bogoliubov trans-

formation must be the identity (a(k) =0).

We shall finish this discussion by considering the
following special case:
alk,s) = 0 for |k| > lop.s

o i
a(k,t) = + 5 for |k| < s
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We then get the transformation
a'(k,s) = a(k,s) for |kl > Kk

a'(kK,+) = -a(-k,-)*
a'(K,-) = a(-k, )"

for |k| < kg
Clearly, for V finite, we get an equivalent representation.
The Fock-vacuum of the primed operators is the state in

which all particle-states of energy less than = are oc-
cupied, whereas all other particle-states are u%occupied.
It is the groundstate of a system of N free fermions,
where N equals the number of single-particle states within
a sphere of radius kF in momentum space.

If we now take the limit V-~ we conclude on the basis
of our previous discussion, that the ground state of a gas
of non-interacting fermions in an infinite volume and of
finite particle density gives rise to a representation,
which is inequivalent with the Fock-representation.

3. States and observables.

In order to allow for infinite quantum systems our
quantum mechanical notion of state has been generalized:
A state of a system is a prescription which assigns a num-
ber to each observable of the system. This functional has
to be linear and positive (i.e. to each positive observable
there corresponds a positive number).

We shall now give some physical arguments to justify
this definition. Let us consider first an ordinary (fi-
nite) quantum system. The observables are then (self-ad-
joint) operators acting on a Hilbert space . A pure state
is a vector Y in §. This vector defines the positive line-
ar form <A> = (Y,AY). The unpure or mixed states (ensem-
bles) are defined by means of a density operator p, i.e. a
positive operator p with Tr p = 1. The average value <A>
is now defined by <A> = Tr pA. We see again that we have
obtained a positive linear form. This shows that our new
definition of a state is a generalization of the well-
known notion in quantum mechanics,
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We consider next the situation which arises in quantum
statistical mechanics. One takes a large but finite system
and characterizes the state of the system by means of a den-
sity operator p,,, where V is the volume. For an equilibri-
um state one can take the grand-canonical ensemble, for
which py has the form

oy = EEL R LT (3.1)
= - - . '

\Y Tr e S(HV U-Nv)

with Hy the Hamilton operator of the system and Ny the

particle number operator. We are now able to calculate en-

semble averages of our observables:

<A>V = Tr pVA. (3.2)
Since we are interested in infinite systems we must take
the so-called thermodynamical limit, i.e. must let the vol-
ume V tend to infinity. By taking this limit in (3.2)
keeping A fixed we get the expectation value or average <A>
of A for the infinite system. It is implied by this pro-
cedure that A must be a local observable, i.e. an observable
which refers to a bounded region in space. The thermody-
namical limit of (3.2) does not always exist for all local
observables A, On physical grounds we expect this limit to
exist provided there are no phase-transitions for the given
values of B and u. The existence of the limit does however
not imply that the density operator py, has a limit o for
V -» ® and that <A> = %3@ <Ay = Tr pX On the contrary,

we expect that lip oy = 0. Indeed consider the denomina-
tor in (3.1). his is the partition function Zy. The pres-
sure of the system is derived from Zy by the formula

p = kT %i@ % log ZV

Consequently we can write, for large V,

so that ZV diverges exponentially for V - «,
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From this example we learn the following:
By taking the thermodynamical limit one is able to find
the average or expectation value of any local observable,
This means that we have a prescription assigning a number
to every local observable. Again this functional is posi-
tive and linear, since these properties are conserved in
the thermodynamical limit.

We have already remarked that observables must have
some locality property, because real observations always
are carried out in some finite region of space. Before
specifying the set of observables for a few specific infi-
nite systems, we shall mention some general features.

Since observables may be added and multiplied the set
of observables is an algebra. If we limit ourselves to
bounded observables, we can assign a norm |lA|| to each
observable A. We therefore have a normed algebra, the
completion of which is the algebra ¥ of quasi~local ob-
servables. This is a C*-algebra *). 1In the most simple
cases (C,A.R, algebra and lattice systems) the algebra %
has the following quasi-local structure. To each bounded
volume V there is assigned an algebra ¥ (V). This is a
C*-algebra or even a W -algebra (= Von Neumann algebra).
These local algebras satisfy the conditions

1. If vy € V,y, then N(VI)C(VZ). This is called
isotony.

2. £ vy NV, =@, [U(V,),%4(Vy)] = 0. This is called
causality.

As a consequence of 1. the set Y. = U Y(V) is an algebra,
the algebra of all strictly loca& observables. The norm-
closure % is then the C*-algebra of quasi-local observ-
ables.

Transformations are automorphisms of the C*-algebra a,
As we shall see in the examples, space-translations and
time-evolutions are commutative groups of automorphisms of
%, Obviously, in the case of a lattice system, the group
of space translations is a discrete group, in a continuous
system it is a continuous group. Let a be a vector, then

*) For the definition of C*-algebra and other mathematical
objects used in these notes see the lecture notes by
R. Haag in this volume.



292 N, M, HUGENHOLTZ

G,A is the observable obtained from A by a translation
over a. Similarly o b is obtained from A by evolution
over the time t. For each a and each t a, and a_ are auto-
morphisms of %, The group property is expressed by the

relations
(o SN/ = Q and o a = Q
a1 a2 a1+a2 t1 2 t1+t2.

A state w of a C*-algebra ¥ is a normed positive line-
ar form, i.e., a form satisfying the conditions:

a. w(llA1 + XZA Y = w(A ) + X w(A ), for all

comp lex Xl and X and or al Ay and A, €Y,

b. If A € ¥ is positive, then w(A) = O,
c. w(l) = 1, where 1 is the unit-element of ¥.
The state w is said to be invariant under a certain
automorphism o (A - aA) if w(ald) = w(A) for all A. A
state, which is invariant for all translations will be

called homogeneous. If a state is invariant for time-evo-
lution we shall say that it is a stationary state.

4, Observable algebras for certain simple cases.

I. Fermi-gas. Let © (R3) be the Fock-space for the ca-
nonical anti- commutatlon relations (C.A.R.,). We define

AW) = {¥(£),¥*(g), with supp. f,g in V},

the *algebra generated by Y (f) and Vy*(g) for all f and
g with support in V. A(V) is then the local algebra
corresponding to V. As follows from the definition the
isotony condition is satisfied, but due to the fact that
the §'s anticommute the causality condition is not.

The C*-algebra defined by 4=U U(V), where the bar
means completion in the norm, Ys called the C.A.R. -alge-
bra. It is easy to prove that ¥ contains the operators

y(£), with £ € L, (R ). Consequently ¥ is generated by
all v (£),¥*(g) w1th f and g € Lyp. We may consider two
subalgebras:
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2 is the C*-algebra generated by polynomials
contaiging only even powers of §'s and y*'s. All ele-
ments of this algebra are clearly invariant for the
replacement ¥ ~ -y,

is the C*-algebra generated by polynomials
cons1s%1ng of terms containing an equal number of fac-
tors ¥ and y*, The elements of ¥_ are invariant for
gauge- transformatlons (see furthe? in this section).
Since all physically measurable quantities are gauge-
invariant ¥_ is the actual observable algebra. We
have the ingqualities

gy U <cu,
g e

The algebras ¥,(V) and ¥, (V), which are defined in ob-
vious analogy with ¥(V) both satisfy the causality con-
dition.

The C,A.R,-algebras ¥ and its subalgebra %_ are not
the only possible choice for an observable algébra for
a system of fermions. The local algebra U(V) is weakly
dense in B{®,(V)}, the set of all bounded operators on
the Fock-space 9 (V) of the volume V. By locally in-
cluding the weak limit points one may replace U(V) by
B{ﬁ (V)}. This leads to a larger algebra

g = 3{3 s:F(V)}.

In connection with the time-evolution we shall come back
to this point.

We shall now define some transformations.

1. Space translations. Let f_ be the function obtain-
ed from f by shifting over the distance a:

fa(x) = f(x-a). We then define the mapping %, by

a W(f) = ¥(fy). It is immediately seen that the com~
mitation relatlons of the operators ¥ (f) and W(g)

are not affected by a,. This means that the mapping
A - a,A, which is defined in an obvious manner for

all polynomials in y(f) and ¢(g)* and hence, by con-
tinuity, for all A€Y is an automorphism of ¥, That

o, is a strongly continuous automorphism follows from
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Lin Hab (£) - v(B) 1l = L |1£5-£11 = 0.

2. Gauge transforTations. The mapping @,, is defined
by avW(f) = y(f)e”, This leads in an obvious manner
to an automorphism a,, of ¥, 1In contrast to space-
translation and time-evolution (see hereafter) gauge-
transformations are local, in the sense that

a U (V) = U(V).

3. Time-evolution. If the notion of an abstract C"-
algebra of observables is physically meaningful, time-
evolution ought to be an automorphism of that algebra.
It follows that the proper choice of Y may depend on
the dynamics of the system. We first study the case
of free fermions. We then define the mapping a, by
the equation a.y(f) = w(ft), where f£f_ is the solution
of the one-particle-wave eéquation which at t = 0 coin-
cides with f. Again we easily prove that a, defines

a strongly continuous one parameter group of auto-
morphisms of ¥,

In the case of interaction the situation is less
clear. It is likely that for a realistic two-particle
interaction the algebra is not invariant for time-evo-
lution. If that is the case time-evolution is not an
automorphism of the C.A.R, algebra and the problem is
to define another observable algebra for which time-
evolution is an automorphism. It is not clear how
this may be achieved.

II. Bose-gas. The operators ¥ (f) and ¥(g)” in the Fock-
space 9y of Bose particles are unbounded in contrast to
the Fermi-case. We must therefore proceed somewhat dif-
ferently. One may define the s.a, fields ¢ and m by

the equations

B(E) = 35 (H(D) + V(D))

T(E) = @) - (D).

One then defines unitary operators U(f) = eié(f) and
V(£f) = ei™(£) | which satisfy the multiplication rules
U(EDU(Ey) = U(F+£,) ;5 V(E{IV(Ey) = V(Ey+£,) and
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U(E)V(g) = V(g)U(F) e~1(£,8), The local algebra U(V) is
generated by all U(f) and V(g) with support of f and g
in V. Various inequivalent definitions of the observable
algebra are now possible:

=
1]

U aw);

=2
]

9 U B{bF(V)[;

=
1]

3 {u(5),Vv(g), for all £,g€S(RI)};

U, = {U(f),V(g), for all f,gELz(R3)},

There are the inequalities
Y Fu; A, ¢ U,

Space-translations and gauge-transformations are de-
fined as in the case of fermions. They are automorphisms
of all four algebras defined above, Time-evolution of a
free boson system is defined by a V(f) = Y(f). It can
be shown that %; and ¥, are not invariant for this map-
ping. On the other hand %3 and ¥, are invariant. On
this ground %, and ¥, cannot be considered proper choices
for free boson systems. The case of interacting bosons
is even less clear, and will not be discussed in these
lecture notes.

III. Quantum lattice systems. In many respects lattice
systems are much simpler than continuous systems. A lat-
tice system is perhaps the simplest non-trivial example
of a system with infinitely many degrees of freedom.

They provide, therefore, excellent testing ground for the
algebraic treatment of infinite systems. The following
well-known models are special cases of quantum lattice
systems: the quantum lattice gas, the Ising model and the
Heisenberg model,

Let z' be a v-dimensional cubic lattice, the points
of which we shall call x,y etc,., To each lattice point
x there is assigned a p-dimensional Hilbert space 9.

In most applications the dimension v =1, 2 or 3, p = 2,
which corresponds to a spin % at each lattice point. If
AMc 7V is a finite sublattice of zY with N(A) lattice
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points, we assign to_A the Hilbert space %A B% h is de-
fined as the tensor.c, ® L Clearly %, is p dimen-

X
sional. The set of operators (pN(A) N(A) matrices)

on &, will be denoted by B(%,). In a similar fashion
we define @,v as the infinite tensor productyc,v ® %y.

Each operator A € B(%,) may be considered to be an oper-
ator on 9., in the following obvious way. If A =zZV-A,
we can write

ZV A

L, =908, .

c
If we now identify the operator A € B(b ) with the ten-
sor product A ® 1 it becomes an operator on b

We now define, for each finite A,
U(h) = B(D,) -

These local algebras are considered as subalgebras of
the set B(%zv). They then satisfy the isotony condition
and the causality condition. Indeed, if A we have
U(Ay) < U(Ay). 1If on the other hand Ay N k é, then
(A ) and ¥Y(A)) commute, as can be checked easily In
accordance with section 3 we obtain the algebra ¥ of
quasi-local observables by taking the closure of the
union of all A(A):

U= TUQR.

We next define some important groups of transforma-
tions In lattice systems.

1. Space-translations., For each a € 7% 9y 1s mapped

isometrically onto %, . This defines in a natural
manner an isometric mapping of %, with a cor-
responding mapping A € B(b Yy ~ a A E B?b . This

mapping extends to an automorphism a, of M, which maps
A(A) onto U(A+a).

2, Internal transformations. 1In each point X we se-
lect a unitary operator on %, in such a way, that

gaUg;Ux+a. We then define tﬁe unitary operator U, on
A
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i
Up = xen @ Uk
The mapping A € ¥(A) ~ A' = U, A U, € Y(A) defines an
outer automorphism of ¥ which is an inner automorphism
of each U(A). 1In the case of p = 2 these transforma-
tions correspond to rotations of the direction of the
spin in each lattice point.

3., Time-evolution. We assume that to every bounded
A c 2V is assigned a Hamilton-operator H(A) € U(A).
This hamiltonian is translationally invariant:

aaH(A) = H(A+a).

Potentials may be defined by the equations (for each A)

2

B = yen

3(X).

We then have

aaé(X) = §(X+a).
The potential ¢ is said to have finite range if the
number of sets X such that 0 € X and &(X) # 0 is fi-

nite. The union A of all such sets X is called the
range of &.

Let A, and Ay, be so far separated that
(hy-Ay) N t = ¢, then

H(A, U ) = H(A)) + H(A,).

There is then no interaction between the sublattices
A1 and AZ.

Before studying the time-evolution of the infi-
nite lattice we consider two well-known examples of
lattice systems, the Ising-model and the Heisenberg-
model, The hamiltonians have the following form:

Ising: H(D) = iy J(5,9)03(x)0 3(y);

Heisenberg: H(A) = x?y J(x,y) T(x)I(y).
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The potentials are

Ising: 3(X) = 0 for N(X) # 2
2(x,y) = J(x,5)95(x)0,(y);

Heisenberg: 8(X) = 0 for N(X) # 2
8(x,y) = J(x,9)5(x)3(y).

The hamiltqn%a? H(A)_difines an inner auto-
morphism A-'A/é=elH Mty i)t o U(A). Let us now
take A € 9(Ag), Ay € A, and consider the limit of A}
for A-»=, TIf the potential has finite range, one would
expect on physical grounds this to exist. Indeed, it
has been shown by Robinson [7] that this limit exists
in the norm topology for every t:

norm lim K\ =a A,
N t

and for every A € U(Ag), with A, arbitrary finite.
The mapping A - o A can be extended by continuity to
a strongly continuous group of automorphisms of ¥.
Ruelle [4] has shown that the restriction to poten-
tials of finite range can be relaxed somewhat to po-
tentials that vanish rapidly at large distances.

5. The ground state. *)

In this section we study the thermodynamical limit of
the ground state and some of its properties. To be specif-
ic we shall restrict our considerations to quantum lattice
systems. If we have some prescription to assign a state
wy of U(A) to every bounded sublattice A, and if there is
a state w of ¥, such that for each A € M(AO) and each
bounded AO

lim wA(A) = w(A)

Ao

%) In order to avoid too much overlap between these lec-
ture notes and the notes of lectures given at the confer-
ence on mathematical methods of comtemporary physics in
London, 1971, most proofs have been omitted in this sec-
tion and the next.
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we call w the thermodynamic limit of wy. In general that
limit will not exist, but it can be shown that the sequence

will
find

have one or more accumulation points and that one can
subsequences converging to these limit points.

We now apply this to the ground state. Consider a

finite sublattice A, and let Y (A)EbA be the ground state
of H(A). For simplicity we shall assume that for all A
the smallest eigenvalue of H(A) is non-degenerate. We now

define the state w

tion

A of U(A) by

wp(B) = (Y (1), AY (A)).

Before taking the thermodynamical limit of w, we men-
an important property of w, .

Lemma 5.1: Let A and BE€U(A), then the expression

wA(AQB) can be extended to an entire function of a
complex variable t which is uniformly bounded for
Im t < 0.

For the proof one writes w, as the expectation
value of the vector Y.(A), and uses the fact that
YO(A) is the ground sgate of H(A).

We shall now define what we mean by a ground
state of the infinite system. Any state which is the
thermodynamical 1limit of the sequence of ground states
wp or of some subsequence of these is a ground state
of the infinite system. Some properties of such
states will now be given.

Theorem 5.2: Let w be a ground state of the infinite
lattice and A,B€Y%, Then

i. w is invariant for a_.

ii. the expression w(atXB) can be extended to a func-
tion of a complex variable t which is analytic for
Im t < 0 and uniformly bounded for Im t < O,

The proof is based on the fact that these properties
hold for each A and that, as discussed in section 4,
norm lim A} = A,

Ao
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The analyticity condition expressed in theorem
5.2 has some farreaching consequences as we shall
show presently. One might even use that condition as
the defining property of the ground state of an infi-
nite system, although it is not yet known whether
this new definition is equivalent with the earlier
one, To discuss some implications of this condition
let us introduce the spectrum condition. A state w
which is invariant for a, satisfies the spectrum con-
dition if in the representation determined by w the
hamiltonian (i.e., the generator of the unitary group
U, which implements a;) has a non-negative spectrum.
We then have the

Theorem 5.3: A state which satisfies the analyticity
condition of theorem 5.2 is invariant and satisfies
the spectrum condition, and vice versa.

The next theorem concerns the unitary operator
U,..
Theorem 5.4: Let the state w satisfy the analyticity
condition of theorem 5.2, and let U_ be the unitary
group representing «,_ in the representation m deter-
mined by w, then UtEﬂ(M)", where m(¥)" is the bicom-
mutant of (%),

An important consequence of this theorem is ex-
pressed by the

Corollary 5.5: If w is the only state satisfying the
analyticity condition of theorem 5.2, then w is pure.

6. The equilibrium state at T # O.

The discussion in this section will be in many re-
spects similar to that in section 5. We start by definin§
an equilibrium state for a finite lattice A, Let B=(kT)~%,
where k is Boltzmann's constant and T the temperature, then
the state w, defined by

wA(A) = Tr p)A,

with

o, = & FHM) gy BHGN),
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is the state of our lattice A corresponding to the canoni-
cal ensemble at temperature T (Gibbs-state). Using the
definition of w, and the fact that the trace is invariant
for cyclic permutation of factors, one proves

Lemma 6.1: Let A,B€U(A), then w (AQB) can be extended
to an entire function of a comp&ex variable t which
is uniformlx bounded in the strip -f < Im t < 0; simi-
larly w, (BAE) can be extended to an entire function of
t which is uniformly bounded in 0 < Im t < B; in addi-
tion

A

A
wy (A B) = 0, (BA, ;

B) for -8 < Im t < 0,

We now take the thermodynamical limit of w,.
This limit, or the limit of any converging subsequence
of wy is, by definition, an eiuilibrium state of the
infinite lattice at T = (kB) ~. The following theorem
expresses how many of the properties of lemma 6.1 are
conserved by taking the thermodynamical limit.

Theorem 6.2: Let w be an equilibrium state of the in-
finite lattice, and let A,B€¥U., Then

i. w is invariant for a_.

ii. w(a AB) can be extended to a function of a complex
variable t, which is analytic for -B < Im t < 0 and
uniformly bounded for -B < Im t < 0; similarly w(Ba A)
can be extended to a function, which is analytic for

0 < Im t < B and uniformly bounded for 0 < Im t < B;
in addition

w(atAB) = w(Ba A) for -B < Im t < 0.

t+iB
The proof of this theorem is very analogous to that of
theorem 5.2,

Definition: If a state has the property expressed in
theorem 6.2ii, we say that the state satisfies the
K.M.S,-condition,

According to theorem 6.2 every equilibrium state
satisfies the K,M,S.-condition. Like in the case of
the ground state we would be tempted to use the
K.M,S.-condition as the defining property of an equi-
librium state of the infinite lattice. It has the
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advantage that it does not refer to the thermodynami-
cal limit. Again it is not known whether the two de-
finitions of an equilibrium state are identical. For
finite systems, however, one can prove without diffi-
culty that any state which satisfies the K.M,S,-condi-
tion is a Gibbs-state.

The K.M.S.- condition is in many respects the ana-
logue for T # 0 of the analyticity condition of theo-
rem 5.2. Also the following theorem is quite similar
to one in section 5.

Theorem 6.3: A state which satisfies the K,M.S,-condi-
tion is invariant for a.. There is also a theorem
that corresponds to theorem 5.4. According to theo-
rem 5.4 an element of the commutant 7(¥)' commutes
with U_, since U Gﬂ(ﬂ)" This means that the commu-
tant is p01ntw1se invariant. In the case T#0 we have

Theorem 6.4: If w satisfies the K.M.S.-condition, then
in the representation ™ determined by w, all elements
of the center m(¥)" N m(¥)' are invariant.

An important consequence of this theorem is the

Corollary 6.5: If w is the only state satisfying the
K.M.S.~condition, then w is primary.

In addition to these results which have their
counterpart in the ground state case, there are other
results that have no such counterpart. In particular,
the K.M,S,.- condition has farreaching consequences
with regard to the representation space determined by
w as expressed by the following theorem [8].

Theorem 6.6: If w satisfies the K,M.S,-condition, then
the cyclic representation (7,%9,0) determined by w has
the following structure

i. There exists an involution operator J such that
JTEY'T = (¥)" and IO = Q.

ii. J commutes with U

iii. The positive operator T = U;
equation T (A)Q = J7(A)*n.

An immediate and trivial consequence of this theorem
is the fact that a state which satisfies the

satisfies the

i
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K.M,S.-condition is not pure. Indeed, since J maps
the Von Neumann-algebra onto its commutant, the com-
mutant is non-trivial, so that m is reducible and w
not pure,

7. Heisenberg-model with long range interaction.

In this section we shall show by means of a simple
model how the K,M,S.-condition may be used to calculate all
correlation functions of the equilibrium state.

Our model is a molecular field approximation to the
Heisenberg model. We obtain the hamiltonian of our model
from that of the Heisenberg model

HV) =% & J(x,y)0(x)0(y),
X,y€EA

by replacing J(x,y) by J/N(A), where N(A) is the number of
lattice points in A, We see that in our model the inter-
action between two lattice points is independent of their
position. The potential & depends, however, on A so that
the results of section 4 concerning the time-evolution can-
not be applied.

Qur model hamiltonian for the sublattice A is then

J

g 2
H(A) = % N(R) (XEA a(x))".

The operator XEA E(X) has a simple meaning. It is (disre-
garding a numerical factor) the operator for the total mag-
netization. The hamiltonian H(A) gives rise to an inner
automorphism of U(A), from which we get the equations of
motion

4 = =13 Z Fexne
$29.00 = {HW L0, (0] = 1 gy oy TENITE,0,(0]
(7.1
il = q
We notice that the operator E—Ky <€A ¢ (x) is the operator

for the average magnetization per lattice site.

We shall now investigate what happens if we try to
take the thermodynamical limit. 1In this limit the equa-
tions of motion (7.1) would have a well-defined meaning
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provided the space average occurring at the right hand side
has a limit in the C¥*-algebra ¥, This is, however, not the
case, This means, among other things, that the hamiltonian
in this model does not define an automorphism group of the
algebra of observables. On the other hand, it is known
that in certain representations space averages of the infi-
nite system exist, as, for example, expressed by the fol-
lowing theorem, which is due to Doplicher, Kastler and
Robinson [9].

Theorem 7.1: If U is asymptotically abelian with re-
spect to translations (in the sense that for all A and
BEY [0, A,B] = 0 for |a| = ®) and w is invariant for
space translations, then in the representation deter-
mined by w the space average of an observable exists
in the strong operator topology and is a c-number
(multiple of the identity) if and only if w is ex-
tremal invariant.

We shall apply this theorem and assume that our
system is in a state w which is extremal invariant.
We then consider the representation determined by w,
For simplicity we shall use the same notation for the
observables and their representants in B(®). We can
now replace the space average

P 5
A0 N@R)  xeA

by the c-number m. The equations of motion are now

7 (x)

%E 0, (®) = 1ImF(x),0, (0], 7.2

In this equation m is the average magnetizétion per
lattice point in the representation determined by w,
Clearly, the equations (7.2) are representation-de-
pendent. They give rise to the time-evolution

Oi(x,t) - etho(x)tci(x)e-lJmO(x)t' (7.3)
This is an inner automorphism of ¥ which is, however,
dependent on the choice of w. As we see, this auto-
morphism is even a local automorphism, in the sense

that it is an automorphism of each U, = B(®y).
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Using properties of the Pauli-spinmatrices we can
rewrite the equations (7.3) in the form

=

Oi(x,t)=cosz(Jmt)Oi(x)+i sin(Imt)cos (Int) 2 [F(x),0, ()] +
) i
+ sin” (Jmt) (-0 (x) + 2 -%— o(x)) (7.4)
m

As we see immediately from (7.3) we have
mo(x,t) = m d(x). (7.5)

Since we want to calculate correlation functions
of the system in thermal equilibrium at a given tem-
perature T, we shall assume that w satisfies the
K.M.S.~condition. As we shall see the state is now
completely determined.

Using the equation

- S »
m; = Mm g gen 71(5) (746

and the fact that w is assumed to be translationally
invariant, we find that

m; = <Ui(x)>. (7.7)

We shall now make use of the K.M.S,-condition,
applied to the operators A = cl(x) and B = ol(x).
This gives

<0, (®)9, (x,iB)> = <0, (x)9,(x)> = 1. (7.8)

According to the equations of motion (7.4) we have

Ul(x,iB)=cosh2(JmB)cl(x)-sinh(JmB)cosh(Jmﬁ)gig(x),ol(x)] -

-

m.m

- sinh’ (JuB) (-0, () + 255 3 (x)).
m

If we substitute this in (7.8) we get the equation
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1= cosh2 (JmB) -

g[81¢

- sinh (JmB) cosh (JmB) <°1(x)[;(x),°1(x)]> -

2 L -
- sinh” (JmB) (-1+2 —=5 <0, (x)0(x)>),
m

which after some simple calculations and using (7.7)
may be reduced to the form

tgh (JmB) = -m. (7.9)

Equation (7.9) determines the modulus m of the
average magnetization of the infinite lattice. There
is always a solution m = 0, and if J is positive,
that is the only solution. However, for negative
values of J another solution exists provided -BJ > 1
or kT < -J. 1If we define the critical temperature T
by means of the equation kT, = -J, then equation (7.8)
admits a solution m # 0 if T < T,. Hence, below the
critical temperature there are two solutions, m = 0
and another solution m # 0. If one calculates the
free energy corresponding to both solutions one will
find that the solution with average magnetization
m # 0 has the smallest free energy. The other solu-
tion is therefore unphysical. One should notice that
equation (7.9) determines the magnitude but not the
direction of the spontaneous magnetization. The di-
rection remains arbitrary.

We still have not calculated all correlation
functions, which are of the form

<oil(x1)ciz(x2) oy s 5243
In order to do so, we consider the expression
<AO>
o (7.10)

where A€Y  and 0€¥,, with x¢A. Let O be positive;
then (7.10) is a state of ¥, which, as one can check
easily, satisfies the K.M,S.-condition. Now the lat-
tice site x alone is certainly a finite system.
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According to section 6 the K,M.S.-condition applied
to a finite system determines the state uniquely,
Therefore this state of ¥, is equal to w, so that

<AQ0>
<0>

= <A>,

or
<AQ> = <A><0>,

From this we conclude immediately to the result, that

for different points x;

<0, (%00, (¥,) .e...>=m, m, ..,
il 1 i, 2 i1 i,

We have now determined our state w completely.
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WAVE-MECHANICAL FORMULATIONS OF EQUATIONS OF MOTION
FOR GRAVITATIONAL SYSTEMS OF MANY PARTICLES

Herbert Jehle
George Washington Unive,'sity
Washington, D. C.

Many attempts have been made to give a hydrodynamical
interpretation of wave-mechanics in view of explaining the
latter in terms of hidden variables. This is not the ob-
jective of the present paper. Rather, we ask whether the
hydrodynamical equations of motion for a large number of
particles in purely gravitational interaction (i.e. a
gravitational system) may be usefully reformulated in
terms of a Schroedinger-type wave equation. The role of
the fundamental constant h®, which characterizes the un-
certainty principle of ordinary wave mechanics is now
taken by a macroscopic phase space volume 0° which charac-
terizes the coarse-grainedness of the density and stream-
ing fields of the gravitational system. That phase space
volume, rather than being a fundamental constant, is a
quantity characterizing the systems in question.

This wave-mechanical tool may usefully be applied in
considering the recent development of the solar system,
assuming that the present solar system was preceeded by a
large set of smaller masses under gravitational interac-
tion. It is suggested that the interacting set of parti-
cles undergo changes toward preferential orbital elements,
changes which may be discussed in wave-mechanical terms,

A study of the statistical aspects of such a purely gravi-
tational system should be the first step towards a dis-
cussion of the regularities of orbital elements, a study
preceeding that of more complex models based on hydromag-
netic considerations and gas laws in addition to gravita-
tional effects.

309
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Diverse efforts have already been made in this direc-
tion. The most promising recent efforts have been done on
the basis of computer calculations of a large number of
mass points in interaction. Different assumptions about
those systems have led to interesting but quite different
results, Stan Ulam has given an analysis with the assump-
tion of mergings of any two mass points when they make too
close an approach; the formation of double stars etc. is
studied.

Another approach uses conventional orbital perturba-
tion calculations to look into questions of stability of
distributions and tendencies in the distribution of orbit-
al elements. Such calc¢ulations involve extremely complex
sets of assumptions when it comes to a problem such as the
development of the distribution of orbital elements in the
solar system. So complex are these assumptions that only
in the problem of distribution around the gaps in the sys-
tem of minor planets has progress been made, in particular
by Dirk Brouwer, Wm. H. Jefferys, V. Szebehely, J,H. Bart-
lett, K, _Franklin, C. Sagan, M. Lecar and many other col-
leagues,

In this note we concern ourselves with density - and
streaming - field approaches (sometimes called hydrodynam-
ical) to gravitational systems,” in particular to the de-
veloping solar system. As an earlier example we remind
ourselves of the von Weizsaecker model of whirls., With
the present note we want to propose a more specific model
of the hydrodynamical category. We start from the recog-
nition that in a statistical dynamical system, the densi-
ty and streaming fields are only defined in a coarse-
grained way.

To this effect, we consider a system of masses of
various sizes, single or multiple masses or subclusters,
and we consider each of these statistically independent
elements to move in the same smoothed-out potential
U(x,y,z,t), with superimposed potential fluctuations. For
gravitational systems where the interaction is long-range,
such a picture is particularly appropriate; close encoun-
ter terms, so important in the Boltzmann approach to the
dynamical theory of gases, play here only a very subordi-
nate role. As, indeed, the large fluctuations of poten-
tial (and corresponding force fluctuations 8F,, per unit



GRAVITATIONAL SYSTEMS 311

mass, from the smooth field of force -vab have the pre-
dominant effect, the deflections of individual particles
caused by these force-fluctuations are almost independent
of the sizes of the masses of these deflected particles.
For this reason, the force or potential fluctuation con-
cept is particularly adequate for gravitational systems.
The fluctuations cause a diffusion superimposed upon the
smooth streaming field in a manner similar to that cal-
culated by Einstein, Smoluchowski, Kramers, Uhlenbeck and
others.

Instead of a large number of assumptions needed to
carry through calculations of the orbital type, the basic
assumption about coarse-grainedness in the present ap-
proach is as follows. For simplicity of illustration, let
us consider the statistically independent elements to be
all of equal mass and consider the phase-space volume per
independent element to be

- 5% = =\ 3
Sx 5y S5z 6vx 6vy sz =0 (ZTTU) J (1)

By Liouville's theorem, applied to the smooth streaming,
this volume stays constant, following a particular trajec-
tory. As however, gravitational systems may usually be
thought of as implying a fairly rapid mixing of phase-~
space motion, (on the coarse grained scale), that particu-
lar volume becomes one constant characterizing the entire
system.

The situation therefore resembles pretty closely that
of a Thomas-Fermi atom. In the Thomas-Fermi atom, however,
all volumes corresponding to the lower stationary states
are filled up to a certain level. But the situation is
quite different in gravitational systems for which thermal
types of considerations are not applicable. We may expect,
e.g., in a developing solar system, to have the lowest
states represented as well as groups of states correspond-
ing to the predecessors of the various planets and satel-
lites. For each group it is a large number of states which
represent the large number of independent particles which
are expected to have then formed the respective planets
and satellites.
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The coarse-grainedness also implies a limit to the
strongest flattening of the system: consider a 6v, of the
order of the ropt mean square deviation of the system,
Av,, times (47)2, Then the system's thickness, Az(hn)%
has to be greater than or equal to the average distance
8z between independent elements. Otherwise we would get
a physically unrealistic picture of a perfectly flat sys-
tem with random distribution of elements in the plane of
the system. Accordingly,

bz bv, = %0, (2)
where it turns out that this system constant is of the
order of (M=mass of the system)

g ~ MG/c (3)

There is a certain analogy of that assignment to the quan-
tum mechanical one. Consider

0x 8v _[e =~ h/mec = he/me® = 137 x 2ne® /mc®
* ()
ox 6vx/c ~ 0fc = 2iMG/c®= 2nM G/Mc?

As mentioned in the introduction, the circumstance ex-
pressed in (3),(2) invites the description of a gravita-
tional system in terms of a Schroedinger-type wave equa-
tion. The hydrodynamical analogy of wave mechanics was
first considered by Madelung and by Van Vleck who showed
the equivalence of a Schroedinger equatiog to a continuity
equation and an Euler-Bernouilli equation®, cf. (5),(6),(7)
and who also showed that there is a perfect analogy to
Liouville's phase-space conservation in quantum mechanics:
if a wave packet is interpreted in terms of a distribution
of appropriately chosen functions of position and momentum,
the time development of such a wave packet follows the
classical analog of invariance of the corresponding phase-
space volume due to Liouville's theorem. Further investi-
gations on these relationships have been made by Bohm,
DeBroglie, Wilhelm, Takabayasi, Fenye§, Weizel, Nelson,
de la Pena-Auerbach, and many others.

We are not here concerned with the hydrodynamical in-
terpretation of wave-mechanics, but rather with the wave
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mechanical formulation of statistical dynamics, especially
of coarse-grained hydrodynamical systems. They imply the
laws of classical dynamics, plus statistical hypotheses,
The latter ones are crucial. They might be formulated in
terms of assumptions about orbital elements' distributionms,
about moments of velocity distributions, or, alternatively,
they may be formulated in a more appropriate way in terms
of coarse-grainedness, thus leading to the uncertainty of
definition of the hydrodynamical fields. This indetermi-
nacy makes significant the continuity and the Euler-
Bernouilli equations alone, because the relations involv-
ing higher moments of velocity are expected to be over-
shadowed by the indeterminacies,

Whereas in ordinary quantum mechanics, stationary
states play a predominant role, here we have to deal with
a set of many stationary states corresponding to a set of
many particles, Discreteness effects which are so charac-
teristic for quantum mechanics, are therefore not discern-
able except for the coarse-graining phenomena like the a-
bove mentioned phenomenon of strongest flattening of a
gravitational system.

In this approach, superposition of probability ampli-
tudes ¥, rather than that of probabilities p, is assumed.
One may ask what the role of such amplitude superposition
is in the present theory. Interference effects arise in
a trivial fashion in a gravitational setting which pro-
duces tidal effects. Interferences between initial ¢
states and those resulting from time-dependent perturba-
tion theory due to a quadrupole gravitational field re-
produce the common tidal effects. 1In a more subtle set-
ting of perturbations, discussed in figures 1,2,3 and
Eqs. (9),(14),(15), interferences cause time-dependent
perturbation potentials which lead to transition relations
of the type:

(Ca-Cs) pickup = £ (C3-C4) release

Those relations are of the type, so familiar in atomic
physics between energy levels; they have their counterpart
in the orbital pick-up and release arguments done with more
clumsy classical statistical tools.
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In the present paper, the point is made that the
hydrodynamical equations for gravitational systems may
appropriately be handled by wavemechanical techniques.
Whether or not the developing solar system, in its re-
cent development stages, satisfies the conditions of being
representable simply as a gravitational system is an en-
tirely different question. The numerical results shown in
the table give, however, much credence to the feasibility
of considering the orbital regularities to be explicable
in such terms. Thus, if the assumptions about a system of
masses in gravitational interaction are applicable, the
wave-mechanical formulation provides for an immensely use-
ful and reliable tool in formulating statistical dynamics.
The basic inderterminacy assumption which replaces the
former unwieldly set of assumptions is reminiscent of the
situation is quantum mechanics in 1925, where the former
complex set of hypotheses in terms of a Bohr orbiLal
theory was replaced by quantum mechanics.

The _basic formalism relating wavemechanics to hydro-
dynamics® is given by splitting the wave equation

(+% 0°v?+10 3 /dt-c®-U) |¥ lexp (iS/0) = 0 (5)
into

3
+ 2 v, (1¥lPv,8) + @/et) I¥I* =0 (6)
1

and a generalized Euler-Bernouilli equation including the
rest energy c°.

3 L
38/3tF) %(v,8)° - (@ /21w D)V W e =0 (D)
1

The third term represents pressure potential due to mean
square deviation of velocities.

A developing solar system in our terminology is under-
stood to mean the following: from a certain time in the
past onward, hydromagnetic effects and gas laws did no
longer play a role important for the development of the
present-day distribution of orbital elements., Such sys-
tems have been discussed in Poincaré's '"Lecons sur les
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Hypothéses Cosmogoniques":9 Particles moving with high ec-
centricity or inclination experienced more encounters than
other particles and thus fell towards the central region
which left only direct orbits of moderate inclinations and
excentricities. Gravitational interaction and rare en-
counters were considered then to have been responsible for
the development towards preferential orbits.

We may then assume that in this already flattened
early solar system, a subcluster was formed at the loca-
tion of Saturn and particles with Jupiter's orbital ele-
ments had also been present in great abundance. Saturn
and Sun being considered as second and first bodies in a
restricted three-body system (orbiting circularly about
each other), we may ask what influence they may have on
the Jupiter particles. It may easily be seen that Jupiter
particles, under the influence of the Saturn cluster, make
preferential transitions toward orbital elements which are
approximately those of Uranus. 1In other words, Jupiter
particles not only form Jupiter, but also may be thrown
into Uranus orbits.,

In order to see this we have to take recourie to the
discussion of the restricted three body problem,“ given
in the appendix. Using a rotating coordinate system, ro-
tating with angular velocity Q about the center of mass of
Saturn and Sun, the gravitational potential is time inde-
pendent. The Jacobi constant is an integral of the equa-
tion of motion, the value of the Hamiltonian for that sys-
tem's small third bodies. Diagrammatically, it is shown
in Fig., 1 that with Saturn considered as the second body,
Uranus and Jupiter have approximately the same Jacobi con-
stant C=E-QL,. It is however by no means obvious that
this may permit a transition of Jupiter particles to
Uranus because the Hill limit surfaces prevent such third
body transitions. Indeed, the regions below the curved
lines -EL,?’=const (which represents circular orbits in the
energy-angular momentum diagram) are unphysical regions.
They correspond to regions forbidden by the Hill condition
20 (eq. (11)).

In the orbital picture to which we shall refer in
greater detail in the appendix, this transition from Jupi-
ter to Uranus may be considered as follows: A highly
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Lz

URANUS

| S PR Figure 1

Fig. 1 expresses a relationship between Jacobi-constant
levels; in this case the Jacobi-constants, with
respect to Saturn chosen as second body in the re-
stricted three body problem, are drawn as the par-
allel lines. It is seen that Jupiter and Uranus
lie approximately on the same level. The relation-
ship is formalized in Eq. (15). Direct and retro-
grade circular orbits are on the lines -ELZ = con-
stant, The diagrams are drawn with the first body
considered as predominantly massive; energy E and
angular momentum L, are given in equation (12))5
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eccentric and quite massive particle of the Saturn swarm
dives deeply into the Jupiter region, picks up a small
Jupiter particle, which then moves in a hyperbolic orbit
relative to that Saturn particle, and may thereafter be
released from the latter upon reaching its aphelion re-
gion. Under appropriate assumptions, the released parti-
cle is then expected to have the same Jacobi-constant with
respect to Saturn as it had before the pick-up. That re-
leased particle in general does not have a circular orbit
with respect to the Sun. The transition to orbital ele-
ments closely resembling those of present day Uranus is
assumed to be a subsequent process in which these released
Uranus particles move along the line of constant value of
Jacobi~constant until they reach the somewhat circular or-
bit, i.e. the intersection with the curved line, Fig. 1.
The statistical assumptions, needed to calculate this pro-
cess, as assumptions needed for any orbital type transi-
tion, are very complex; it is well known to those who have
worked on such statistical problems that it is very diffi-
cult to make trustworthy assumptions because of the enor-
mous complexity and arbitrariness of the situation. We
have therefore found it more convincing to discuss this
issue of equality of Jacobi-constants of Jupiter and
Uranus (both with respect to Saturn) on the basis of wave-
mechanical-hydrodynamical description.

In the wave-mechanical description there is evidently
no tunnel effect which leads Jupiter particles to pass
through the unphysical region to Uranus particles. The
aforementioned eccentricity of some Saturn particles (and
presumably also of some Jupiter particles) implies that
the wave functions of Saturn particles and Jupiter parti-
cles overlap, leading to a gravitation potential whose
time-dependence is chacterized by the beat frequencies of
those overlapping wave functions. That gravitational po-
tential, in turn, will cause transitions from the Saturn
wave functions to Uranus wave functions, i.e. transitions
characterized by the same (Jacobi-constant) level distance

=c c (8)

CSaturn-CUranus Saturn’ Jupiter

Indeed, in the rotating coordinate system, the
Schrédinger type equation corresponding to equation (5)
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has the form, cf. (12),
- ] 2 2 2 a3 = - 2 = e
[-%o0 (G +vy it )+U-1 9Q(yv xvy)+c Ty =+ coy/fot (9)

where, ow=C the Jacobi-constant for a § function of fre-
quency ®, and Q is the angular velocity of the Saturn-Sun
system, The wave function of such a system is a super-
position of a very wide range of energy eigenstates of
what corresponds to quantum numbers ranging in the order
of 10° in the cases of our planetary and satellite sys-
tems; we do not expect coherence effects to arise,

The aforementioned level relationships are the out-
come of ordinary time-dependent perturbation theory. Be-
sides the above-mentioned relationships,

Csecond body-cpickup particle=csecond body-Crelease parti-
cle, (10)

which is pictured in figure 1, we have also to expect
similar relationships with opposite signatuie to occur,
such as shown on the level schemes in figures2 and 3,

Appendix

The Jacobi integral (for a small third body moving in
the field of the first and second bodies which go in cir-
cular orbits about each other) is obtained by using a re-
ference frame, x,y,z, which rotates with the constant angu-
lar velocity Q about the center of mass of the first and
second bodies. 1In that frame, the potential energy
U(x,y,z) is time independent, 3U/dt=0. Multiplying the
equations of motion %-20y-0°x=-30x etc., by %, etc, one
obtains immediately the first form of the Jacobi integral

5@+ +2%) -5 0° (X +y°) + U(x,y,2) = C (11)

along the path of the third body. As the term %(X+y°+2°)
cannot be negative, a third body of given Jacobi constant
C is limited in its motion to regions in x,y,z space
bounded by the "Hill limit surfaces'" #F¥+y°+2°=0 in Eq. (11).
The corresponding Langrangian defines the momenta

P = %-Qy, Py = yHix, Pz = %2; these are the (third body's)
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Figure 2

Fig. 2 shows the Jacobi-constants of the major planets all
referred to Jupiter as the second body.
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Figure 3

Fig. 3 shows the Jacobi-constants of Saturn's satellites
with respect to Titan as second body.
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x,y,z components of velocity in the inertial system. Ex-
pressing (11) in terms of PX,Py,Pz one obtains

1 2 2 2 ) - = - =
5 (P KRy HHE, Yy + U Q(xPy yP) =E-QL =C (12)

(12)denotes the Hamiltonian H which, since 3U/3t=0, is
constant. For circular orbit approximation about a pge-
dominant first body of mass M, E = -3GM/a, L, = (GMa)
which are applicable to a third or to the second body.
We may plot E and L, in a diagram often employed by

B. Lindblad (Fig. 1). Parabolic orbits are at E = 0,
circular direct and circular retrograde orbits are

-ELzz = constant (=%(GM)?). (13)

Elliptic orbits lie between these two curves (13); the re-
gion left and right gf that pair of curves is unphysical,
The slope N=(GMa, ®)Z of a line E-0L,=C in this diagram
is equal to that of a line tangent to (13) at the point
which would correspond to E, L, of the second body, be-
cause (13) implies dE/dLz = -2E/L, = Q. The constant C
labels the different parallel lines. Figure 1 is crudely
simplified in that it does not show a tip at the location
of the second body.

As an illustration of the application of the Jacobi
integra}lwe may refer to a note on the evolution of
comets. In that case Jupiter was considered as the
second body in the restricted three-body problem for ob-
vious reasons.

We are now in the position to formulate in detail the
consequences of the above-mentioned transitions, illus-
trated in Fig. 1. This relationship between Jupiter and
Uranus, due to Saturn acting as a second body implies that
the tangent line of Saturn, which has the slope 2, and the
line connecting Jupiter and Uranus (in line with both the
Jupiter and Uranus Jacobi line), have the same slope., Ac-
cordingly, in terms of the circular orbital elements of
the three planets, we have

(cM) %a;Ziw(dE/sz) (e RE/AL (Gl % B(aT-art)/ (an’f-a JE)

(14)
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asaﬂfasat A aJuaUr

/GfaJu + /a (15)

Ur)
with Saturn considered as the second body.

We may now ask what occurs if the swarm of Jupiter
particles is considered as the second body and the inter-
action with Saturn particles is considered. Transitions
will occur to wave functions corresponding to particles
located in the minor planet region; if they are assumed to
adjust to approximately circular orbital condition, they
would be expected to be found at the location 446 x 10''ecm,
as indicated in table one, Similarly, if the particles
forming a Uranus swarm are considered to represent the
second body, they lead to transitions from Saturn to Pluto
regions. 1In other words, the mechanism described in Fig.l
may be considered to lead to sequence of orbital elements
given in the second column of Table 1., There are two more
such planetary sequences, both corresponding to the transi-
tions illustrated in Fig. 1. We note that these theoreti-
cal sequences nicely correspond to the actual sequences.

In the first of these sequences we have started with the
accurate semi-major axes of Jupiter and Saturn; the second
sequence with accurate values for Saturn and Neptune; the
third represents a crude interpolation sequence., With the
present masses of minor planets, the second sequence would
not be meaningful in regard to connecting the inner planets
with the outer planets, but there may have been a larger
amount of mass present in the minor planet region at the
time to which we refer when the transition occurred.

Very beautiful is the coincidence of some of the
theoretical sequences for Saturn satellites with the ob-
served data. Also of interest are the sequences for Jupi-
ter's and Uranus's satellites. The figures given in paren-
theses correspond to non-observed satellites.

Figures 2 and 3 correspond to situations in which
only the heaviest planet (Jupiter) or heaviest satellite
(Titan) are considered as second bodies. The approximate
matching level spacings may again be an expression for in-
teractions of the second type: for example, the overlap
between Jupiter and Mars particles causing a time-depend-
ent potential, which in turn causes transtion from Mars
particles to Earth particles.
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TABLE 1

We list semi-major axes of major planets and
satellites; the transitions shown in Fig. 1 lead to
theoretical sequences for major axes, sequences in
which any three consecutive entries have the rela-
tionship shown in equation (15), (i.e. fig. 1), the
middle entry as the second body.

System of Planets, semi major axes to 10"cm.

(Observed) (Three theoretical sequences)
Mercury 57.85 59545
Venus 108.11 108.5 108
Earth 149.45 155
Mars 227 57 230 227
Minor P1. (414) 446 538 341
Jupiter 777.6 777.6
Saturn 1428 1428 1428
Uranus 2873 2896
Neptune 4501 4501
Pluto 5900 5920

Saturn's Satellites, seml major axes in 10° cm.

(Observed) (Three theoretical sequences)
Rings 120 120 120
Janus 160 150
Mimas 188.5 189 188
Enceladus 252.5 239 240
Thetys 299 St 307
Dione 383 399
Rhea 534 520 535 525
Titan 1240 1268
Hyperion 1503
Lapetus 3580 3574
Phoebe 13031 retrogr.

(Continued next page)
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Table 1 (cont'd)

Jupiter's Satellites, semi major axes in 10° cm.
P s J

\
I Io
IT Europe

IIT Ganymede
IV Gallisto

VI

VII

X

VIII etc

(Observed) (Three theoretical sequences)
181 184 181 185
(275)
420 419 420
667 663
1068 1068 1068 1080
1877 1825
(3166) (3065)
11430
11890 11690 11730
12010

24000 retrogr.

Uranus Satellites, semi major axes in 10° cm.

Miranda
Ariel

Umbriel

Titania
Oberon

(Observed) (Two theoretical sequences)
131 132
193 195
(253)
268 268
(332)
440 440

588.5 588 588
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FUNCTIONAL TECHNIQUES AND THEIR APPLICATION
IN QUANTUM FIELD THEORY

John R, Klauder
Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

1. INTRODUCTION

In the broadest sense, functional methods permeate
all of quantum theory, and the reason for their appeal is
self-evident, Whether it be in the Schr¥dinger represent=-
ation, the utilization of a specific group or algebra rep-
resentation, the path integral approach of Feynman, the
generating functional for time-ordered operator fields, or
otherwise, functional techniques serve to bring quantum
theory into the realm of analysis and subject therefore to
the powerful tools of that discipline.

Yet for all the powerful techniques we still seem
to be in the dark as to the proper formulation (let alone
a meaningful solution!) of many problems in quantum field
theory. One may adopt the approach of elaborating an ele-~
gant -- but largely formal -- structure purporting to
solve a given field theory along more-or-less standard
lines, Or one may proceed otherwise, Quantum field theo=~
ry is, after all, the quantum theory of an infinite number
of degrees of freedom, and covariant field theories are an
important, but nevertheless small, class of such theories,
Models with other invariance groups, particularly noncom=-
pact invariance groups, frequently have instructive les-
sons to offer i1f existence questions with regard to their
construction can be overcome.

The analysis of certain classes of models is a pri-
mary goal of these lectures. The key to their analysis
lies in a close interplay between functional techniques,
probability theory and Hilbert space methods some parts
of which may be unfamiliar to the average reader,

329
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Consequently, these methods are reviewed and developed to
the extent needed in the next two chapters, Chapters 2 and
3. The basic model field theories to be discussed =-- the
ultralocal scalar field theories -- are developed in Chap-
ter 4, (Some material, especially that on scale-invariant
models and scale dimension of the fields, is presented here
for the first time,)*

In Chapter 5 a new class of model field theories is
discussed, a class which contains covariant fields as ex-
amples, and about which a surprising amount of structual
information can be ascertained, Insofar as these models
are obtained from a ''base theory' by extension to an addi-
tional dimension =~ and also in virtue of the impressive
geological surroundings in the Boulder area -- we adopt a
suitable nomenclature from the geological sciences and re-
fer to these as diastophic models .**

In the remainder of this chapter we revisit some of
the classic functional formulations of quantum field
theory, and examine some elementary features of an infi=-
nite number of degrees of freedom. To demonstrate that
new wealth still lies within the province of a functional
formalism it is incumbent upon us to show the relation=-
ship of our results to those predicted, or at least sug-
gested, by one or more of the classic functional tech-
niques surviving -~ due to their elemental and fundamental
truths =-- from earlier eras. This brief comparison is
discussed in Chapter 6. Hopefully, insight into the Great
Problems may be won from analyses such as those presented
in these notes,

General references for the material presented in these
notes appear in the Reference section at the end,

**diastro hism, n. The process or processes by which the
earth's crust is deformed, producing continents and ocean
basins, plateaus and mountains, folds of strata; also
the results of these processes, diastropic, adj. :
Webster's Third New International Dictionary (G. and C,
Merriam Company, Springfield, Mass., 1959).
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1,1 CLASSIC FUNCTIONAL APPROACHES TO QUANTUM FIELD
THEORY

By way of illustration suppose we deal with a scalar
field, o(x,t) defined for x€R®, an s-dimensional configu-
ration space. The purpose of quantum field theory, it may
be stated, is to provide a realization for the local
field operator o(x,t). Supposedly, one has the Hamilton-
ian ¥ and the space-translation generator P obtained by
"correspondence' with some particular c-number theory,

For instance, in a self-interacting covariant example we
suspect that

% = [(BIrP+H(v9? + nde?] + Vplldx , (1-1)
m(x) = $(x), and

lo(x), o(y)] = i8(x-y).

Stated otherwise, an equation of motion, such as

@+ md)o(x) = -V'[ex)], (1-2)

should determine the space-time dependence of the field
operator,

An analogue of Schrédinger's formulation of quantum
mechanics arises when we formally diagonalize the field
operator 9(x) (at t = 0) and represent it by multiplica~-
tion, say by A(x). The conjugate operator m(x) becomes
-18/8A(x); and Schr8dinger's equation, %Y = E¥, is a func-
tional differential equation in which

% = [(50-87/60% + (YN +miA*] + V[Aldax.  (1-3)

Elegantly simple, and heuristically almost preordained,
such a prescription nevertheless requires ''renormalization
rules", which are usually deduced by the insertion of one
or another cutoff,

The situation is little different in the other
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classic functional formulations. Take, for example,

the system of coupled (time-ordered) Green's function equa-
tions, or for conceptual simplicity that equation sat-
isfied by the (Schwinger) T-product generating functional

0 {j} = < OITeifcp(x)j(x)di(lo)’

where j(x) is a c-number (test) function. In a standard
fashion the equation of motion (1 - 2) may be cast into
an equation for Q, namely

{@+md) ;@;)- + v’ [gz'jg(—;)'_l - 1)} {3} = 0.

A formal solution may be obtained using a functional Four=-
ier transform,

agj) = [elf10EGIInpy() g,

which leads to the solution
agj) = Nj‘eifj(x)g(x)dx +AL(E) g

where

I(8)

[t ©® - nge?) - vigliax
L(2) = [vigldx

"

denotes the classical action and N is chosen so that
0{0} = 1, This equally elegant, but quite formal path in-
tegral solution may be re-expressed according to

a(j} = e t[VI8/183]dx NJ\eifj (x)E(x)dx + ilo (8) g,

- nremifVI8/1831dx ~%[3(x) bp (x-y) j (y) dxdy , (1-4)

which is a useful heuristic expression, where as usual (in
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four-dimensional space time)

" ~ipeX .4
- i e d p
AF(X) Qm* I p ~mi+ie

Cutoffs Require Caution

How simple field theory would be if these formal
notions really worked! The traditional remedy for the
malaise contained in the preceding formulas is an appli~
cation of cutoffs, both covariant and noncovariant. One
device, for example, replaces Ay in (1-4) by

=ipex

s -A? Barr
bp 20 = (2:)‘1= J%p"’=m§+ie) [(pa-/\”’fie)] ShE

a bounded, continuous function so that the interaction
term is locally defined, Such modifications in the func-
tional formalism need not respect the underlying quantum
theory, and correspond, in this case, to indefinite metrics,
Eventually one links mo, the coupling constants, etc,, to

A and attempts to pass to the limit A-e,

Although conceptually reasonable -- and of unbeliev=~
able accuracy in the case of quantum electrodynamics ==
there is just no a priori assurance that such procedures
are physically reasonable, Consider the hypothetical
class of models with classical Hamiltonians

Hy = 35 2002 + @) + AGTeR)%, (1-5)

When N < «, the quantum mechanics is straightforward; how=-
ever, the limit of those straighforward quantum construct-
ions as N - « exists only so long as A - 0 leading at the
same time to a free thoery, Nevertheless, the quantum
theory for N = = can be formulated directly (via symmetry
arguments) without passing through a sequence of cutoff
theories, and is, as it should be, not a free theory (A#0).
The qualitative differences between the true theory and
each member of the sequence of cutoff theories are exten-
sive and of unexpected varieties (e.g., reducible
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representation of the canonical field and momentum opera-
tors; Hamiltonian inexpressible solely as a function of
the canonical operators; etc.) Such gross differences be-
tween the true no-cutoff theory and the nonexistent limit
of the conventional cutoff theories suggest an attitude of
caution with regard to cutoffs: they work when they work,
and they don't work when they don't! 1In the absence of
definitive information a conservative viewpoint is advis-
able ~- and this is just the attitude we adopt in the anal-
ysis of the model field theories which we discuss in later
chapters.

To criticize cutoffs is by no means to criticize the
concepts of renormalization, that is, the recognition that
the naive construction of the Hamiltonian (say) is often
incorrect and that counterterms of various types may be re-
quired. For instance, in some simple examples the counter-
terms have the principal effect of enforcing a specific
representation of the field operators to be used in con-
structing the Hamiltonian. Examples of this type demon-
strate the existence and relevance of inequivalent repre-
sentations, and illustrate their relationship to renormal-
ization effects.

1.2, ELEMENTARY EXAMPLES OF INEQUIVALENT REPRESENTATIONS
OF FIELD OPERATORS

Consider the example of a collection of independent,
identical harmonic oscillators with the Hamiltonian

<«

=3 ngl

2 303
(Pn + W Qn w)

together with the commutation relation

[Qn Pm] =id snm=12,,.. .
b

It follows that the operator

_2 N
TN "Naa 'n

commutes with all the Py and fulfills [Fy,Qul = -i4P,/N
provided N 2 m, Thus as N ~ «, 1lim Fy=F_ commutes with all
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the Pp and Qp, and it ought to be a multiple of unity for
an irreducible representation, To evaluate F, we may em=-
ploy the ground state |0> of the system as follows:

=2

F_ = lim <0| Fy 0> = 1im 3

2 =
N nZ1 <0|Pn|0> = U

Here we see a dynamical quantity, the energy level, derived
from kinematical variables, For two different dynamical
systems of this type characterized by w and w’ # w, the as-
sociated canonical operators cannot be unitarily equivalent.
For, in the contrary case, where P,’ = V}?nV‘1 holds for all
n, it would follow that

w =F ' =limF ' =V lmFV = v =

which is manifestly incorrect. Thus these distinct dynam-
ical systems require inequivalent representations of the
canonical operators. There 1s just no escaping this fact,
even in so simple an example as an infinite number of in-
dependent harmonic oscillators!

Once it is recognized that inequivalent representations
arise, examples can be envisaged in which many such repre-
sentations appear simultaneously, Consider the hypotheti-
cal model with Hamiltonian

% a
=% 8 [P2+ (B2 +Q2) Q- (B2 +Q)]+ (P +QR - 1)

in which P, and Q, are an additional canonical pair, Here
it is clear that P§ + Q3 is a constant of the motion and
can be diagonalized to have the value 2p+l, p=0,1,2,... .
In the subspace characterized by p, the remaining oscilla-
tor variables are characterized by a representation of the
preceding type with w = 2p+1, and hence, in each subspace,
by an inequivalent representation,

Another elementary example is given by

k= kg 3P +(Q +e)® - 1),
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For each real value c¢ we again deal with an inequivalent
representation of P, and Q,. Consider the operator

_1 B
Gy = N nf1 Qn

which commutes with all the Q and fulfills [Gy,P,] = i/N,
N =2 m, Hence G, = 1lim Gy commutes with all canonical oper-
ators and is a multiple of unity. This representation
"tag" can be evaluated, much as before, by

- -l Y -
G, =1lim<0 |6l 0>=1limyg % <0 lQ]|0>=-c.

Again, for two different models, characterized by c and
¢’ # ¢, we must have inequivalence of the canonical opera-
tors. For, in the contrary case, where Qé = VQ,V™* holds
for all n, it follows that

~¢’ =6, = lim Gy =V lim GNV'1 = V(-o)vl = ¢

violating our assumption., We may extend this model in an
evident fashion by ''promoting" the constant c o a dynami-
cal variable. Imagine that c¢ is replaced by V'Y, the num-
ber operator corresponding to a single fermion degree of
freedom, and that we choose for the Hamiltonian

w=% § B2+ @ + w11+ 4"

Here, ¢Tw is a constant of the motion having eigenvalues 0
and 1; in each of the corresponding subspaces an inequiva-
lent representation of the canonical boson operators appears,
This example is evidently similar to a static nucleon cou-
pled by a Yukawa coupling to a meson field, Note the need
for an infinite nucleon mass renormalization (when the
bracket is expanded out), which compensates the perturba-
tion theoretic diagrams
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‘corresponding to the "infinite nucleon self mass,"

A broader class of primer models is provided by

k= %, %(,Q)

n=-w
where, e.g.,
= L(p? 2 LI
1 (B ,Q) = (2 +Q2) + Q! - E
and E is chosen so that the ground state ¢ of 3¥; has zero
eigenvalue. An essential feature of this example (like the
earlier ones) is a noncompact invariance group ("transla-
tion"),

-1 _ Sibis
TPnT B Pn+l’ TQnT B Qn+1’

which leaves the Hamiltonian invariant., Formally it is
clear that
rF o1PQ p-r _ 1pQr
converges as r - © to a multiple of unity,
A(p) = lim epor,
which can be evaluated by

AR = 1im <0 [ 0> = [ ™™ () ax.

Here 9(x) (assumed real) is the Schrddinger representative
of the ground state ¥;. Equivalence of two representations
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involves equality of their A values for all real p, and
hence, essentially, equality of the ground state o(x).

Model Building:
Embellishments and Diastrophisms

The simple example given above illustrates a rudimen-
tary type of "embellishment' of a simpler underlying prob-
lem, namely the single degree of freedom problem, Classic-
ally one could assert that

Hy (p,q) = %(p® + ¢®) + Aq*

and its straightforward discrete embellishment

= 2 = % 2 2 3
H= 2 Wlp,q) = T  Glg +q) +q.}

made sense, However quantum mechanically as we know this
is not quite right since the minimum energy would be I E=,
An energy adjustment is the only ''renormalization" required
in discussing the quantum theory for discrete embellish-
ments, which are therefore quite straightforward.

However, continous embellishments are a different mat-
ter altogether! By continuous embellishment we have in
mind that p and q are "promoted" to functions of a real
variable w€R, p-p(w), q-q(w), and the embellished Hamilton-
ian is taken as

BH=[H (W, a@) dv. (1-6)

Such a straightforward classical embellishment has, for its
counterpart, a complicated quantum embellishment which will
be the subject of considerable study on our part in these
notes (Chapters 4 and 5), It is this process of model build-
ing to which we associate the geological term 'diastrophism,”
corresponding to extension into a new dimension., The re-
striction a<w<b defines a certain "stratum,' and it is clear
that different solutions may be rumming their course simul-
taneously, but quite independently, in different strata,
Finally, while we have illustrated a diastrophic model (1-6)
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based on a single degree of freedom problem, the base
theory H, may also be a field theory, say a covariant one
with Hamiltonian given in (1-1). The diastrophism of such
field theories is the subject of Chapter 5.

2, HILBERT SPACE AND PROBABILITY THEORY
2,1 VECTORS AND OPERATORS: SELECTED PROPERTIES

Although the main ideas of Hilbert space used in quan-
tum theory are generally well known, it is useful to empha-
size some of the less common aspects that we will find es-
pecially useful, In dealing with a specific problem it is
often of great utility to focus on a specific realization
of Hilbert space matched to the problem in one way_or an-
other. For example, the practical utility of L®(R") for
the Schrddinger equation of a particle in three dimensions
is clear, although, in principle, L?®(R) is "equivalent."
Aspects of a problem unseen in one realization may become
gelf-evident in a more appropriate realization. Thus it
becomes not only useful to be aware of the abstract fea-
tures of Hilbert space analysis, but also, if possible,
to appreciate their concrete aspects in specific realizations,

Dense Sets_and Total Sets

Abstractly a dense set of vectors # contained in a
separable Hilbert space $ is characterized by the property
that for each ¥€% and ¢>0, there exists a vector ¢€# such
that || ¢-y|l< €. This may be accomplished by a countable
set of vectors in #, but this need not be the case, A
total set of vectors J is characterized by the property
that finite linear combinations of the vectors in a total
set are dense, or, by the property that (o, {)=0 for all
9€3 implies that =0, Again, a total set may be countable
(e.g. a complete orthonormal basis) but this need not be
the case,

A Useful Convergence Criterion

Convergence of operators under various conditions fre-
quently arises., Often one deals with a sequence of uni-

formly bounded operators BN and questions whether or not
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this sequence converges weakly to an operator B, that is
whether

(Cp,BN‘IJ) - (9,BY)

for all o, ¥ €9%. An especially useful Lemma -- which we
do not prove but frequently use -- is the

Silver Lemma*: For a sequence {B } of uniformly bounded
operators to converge weakly to an operator B it 1s neces-
sary and sufficient that the sequence of complex numbers
(w%,BNWj) converge for arbitrary members ¢, ¢j in total
sets,

Numerous examples of the Silver Lemma will appear sub-
sequently, but it is useful to give one example here.
Suppose that we employ the Hilbert space {° composed of
square summable sequences {z_}, and that (B ) AN’
which is uniformly bounded. 1In the total set "o orggo
normal vectors of that basis it is clear that (BN)mn 0
as N -+ »  and thus we are assured that (w=weak)

w-1lim BN = 0.

Operators and Forms

However what happens if By is not uniformly bounded?

Suppose as an example we choose (B )m FﬁémNénN in a
given basis in 4. Clearly, as N-=, (B ) =0, but the
conditions of the Silver Lemma do not a p . In particu-
lar, consider the dense set of vectors f for which

z = dn/n

where 1lim dn=d” exists. Between vectors of this type

* * = *dl = *dl,
m,§=l zm(BN)mnzn dN N dedas

* So named because of its great utility and fundamental
role, and in analogy with the '"Golden Rules' of quantum
mechanics,
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namely the matrix elements converge but observe that they
are sensitive to th¢ details of the '"final entry" of the
vectors {z,} and {z;}. 1If lim By were an operator, then
the resultant expression would have to be continuocus in
the vector {z_}. 1In particular, if lim By were an opera-
tor, it shoull follow that

© & _
lim lim X zm(BN)mnzn =0,

Moo N-® m=
n=

but this limit equals d:d; which is in general different
from zero. Such behavior is characteristic of so~called
forms, which are defined for specific (dense to be useful)
sets of kets and bras. We will occasionally encounter
forms as well as operators, and it is frequently a useful
generalization. Indeed, it is often convenient to charac-
terize operators as well as forms by total sets of matrix
elements, The Riesz Representation Theorem [which states,
for example, that every continuous antilinear functional
A(fz }) on 4° can be put in the form T zXa_, where the
square-summable sequence {a_} is determined by A] can be
used to help establish whetBler a given expression repre-
sents the matrix elements of an operator, or instead cor-
responds to a form.

2.2 RANDOM VARIABLES : SELECTED PROPERTIES

Probability Distributions

The theory of probability is so closely related to
various aspects of quantum theory that much profit follows
from cross fertilization of the two fields. A real random
variable is characterized by a probabiltiy distribution
1 (x) satisfying three basic properties:

(i) Nondecreasing: u(x+h) = u(x), h>0;
(ii) Right continuous: pu(x+0) = p(x)z2u(x-0);
(iii) Normalization: p(-®) =0, u(=) = 1,

Such functions admit a canonical decomposition into dis-
crete (d), singular (s) and absolutely continuous (ac)
components: p=au, + bu_+ cu__, where a20, bz0, c20 and
atb+c = 1. The discrete porgion contains the discontinui-
ies of u; the reminder, p-auq, is continuous. All discrete
distributions are of the form
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=X p. 8(x-x.),
ug(x) = % py 0(x-x,)

where p.>0, and 0(x) is the degenerate distribution having
unit digcontinuity at x=0., A singular distribution u_(x)
is continuous, but has a derivative for which p!(x) =0
almost everwhere (a.e.). 1In addition, there exists a set
N of Lebesque measure zero for which

IN du_(x) = 1.

An absolutely continuous distribution uac(x) is the inte-
gral of its derivative, uac(x) = £: p(x)dx, where the den-
sity function p(x) = uz.(x)20, and is evidently L' (R), i.e.
Ilp(x)ldx<°. A distribution u which has only one component
(e.g., a=1, b=c=0) is called pure (e.g., purely discrete).

Characteristic Functions

To each distribution u(x) we associate a characteris-
tic function C(s) defined by

C(s) = feisxdu(x).

Every characteristic function is a contingous function, and
respects the conditions C(0) = 1, C(-s)=C"(s) and |C(s) |=1.
The decomposition of probability distributions leads to a
corresponding decomposition of characteristic functions:

C(s) = aCd(s) + bCS(s) + cCac(s).

Every discrete characteristic functions C,(s) is an almost
periodic function and satisfies 1lim sup C;(8) = 1 as s » =,
Every absolutely continuous characteristic function has the

form isx

C(s) = fe p(x)dx,

and since p(x)€L' (R) it follows from the Riemann-Lebesque
Lemma that lim sup C,.(s) = 0 as s - . [1In general, this
is only a reecessary criterion for a distribution to be ab-
solutely continuous since there are examples of singular
distributions for which lim sup CS(s) = ( for any value of
¢ in the range 0=(<1,] A sufficient condition for a dis-
tribution to be absolutely continuous is that IlC(s)lds<”.
Indeed, in that case, it even follows that
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p(x) = @)t [ c(syds
is continuous,

An important condition for the convergence of a se-
quence of characteristic functions is given by the
Continuity Theorem: A sequence C_(8) = Ielsxdun(x) of
characteristic functions convergeg to a characteristic func-
tion C(s) = feisxdu(x) if and only if the functions C (s)
converge point-wise to a function C(s) which is continuous
in the neighborhood of s=0. 1In such a case one asserts
that the sequence of probability distributions p,(x) con-
verges (weakly) to the probability distribution u(x)

An important criterion for a function C(s) to be a
characteristic function is contained in
Bochner's Theorem: A function C(s) is the characteristic
function of a probability distribution if and only if (i)
C(s) is continuous, (ii) C(0) = 1, and (iii) C(s) is a
"positive-definite function," i.e.

N *
% aa, C(s,-s.) 2 0
i,j=1 J ]
for all real 8, complex &, and N < @, The importance of
the last condition follows from the desired relation

N i(s,-s.)x N is.x
* i 7] 1012
r a.a. [e du(x) = []| 2 a,e |“ du(x) = 0.
1,j=1 & (= 'fi-li b

2.3 RELATION OF HILBERT SPACE AND PROBABILITY THEORY

Self-Adjoint Operators

Unbounded operators abound in quantum theory, and do-
main questions are an unavoidable by-product. The vector
%€%, an abstract Hilbert space, is in the domain of A, #, ,
provided that Apés. If 8, is dense and the relation
(b,a9) = (V™ ,w) holds for some ¥ and all ¢€d then we may
identify ¢~ = Aty where A' is the adjoint operator The
set for which such a condition holds defines the domain
of A", #,1. If 8, = 9Af and A = AT on QA’ the operator is
called self-adjoint.
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In most physical applications one is interested in
self-adjoint operators, for it is such operators which are
the generators of unitary transformations. However, the
domain conditions specified above are often complicated to
verify, It is therefore of interest that an alternative
characterization exists as now outlined.

Unitary One-Parameter Groups

A unitary one-parameter group is a family of operators
U(s) which fulfills the conditions:

(i) U(o) = I, the identity operator;
(ii) U(s)U(s') = U(s+s'");
(iii) U(-s) = U(e) = u(s)',

and weak continuity, i.e., continuity of the function
(p,U(s)V) for all o,i€5H, A fundamental theorem asserts
that every unitary one-parameter group U(s) is §enerated by
some self-adjoint operator A, and that U(s) = e SA. More-
over, 9€#, if and only if (is) *[U(s)-1]y converges in norm
as s—~0; and the limit is the vector Aep.

Spectral Resolution

Another fundamental theorem associated with self-ad-
joint operators is the spectral theorem. To each self-
adjoint operator A is associated a famil¥ of projection
operators E(x) [i.e., F°(x) = E(x), E(x)' = E(x)] with the
properties

(i) Nondecreasing: E(x+h) = E(x), h>0;
(ii) Right continuous: E(x+0) = E(x) 2 E(x-0);
(iii) Normalization: E(-*) = 0, E(*) = I.

In terms of this spectral family
A= f xdE(x) ,
and similarly for various functions of A such as
eisA = f eisx dE (x) .

Relation to Characteristic Functions

Evidently the mean of the last expression in the state
¥ leads to
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SA

¥, ¢4 = [ I 4@, E@) )

[ ¥ aum = c(s),

]

which associates the characteristic function of a proba-
bility distribution to each self-adjoint operator A and
state €%, To give examples of various distributions it
suffices to give the operator A and the state §, A dis-
crete distribution is given by

A=((1)_2)E°Z;W=717(i)

which leads to the characteristic function Cd(s) = cos 8.
A singular distribution is given by

A=7%

-n . 3 = —
= 3 (Oz) > ¥ "'n[=I ® 2 (1)

1 n 1 n

which legds to the %haracteristic function

Cs(s) =n£1 cos (s/37). An absolutely continuous distribu-
tion is provided by A=Q, the Schrddinger posit}on operator,
and § any wave function ¥(x) so that C,.(s)=[e SX 1y (x) |“dx.

2.4 SPECIAL CLASSES OF PROBABILITY DISTRIBUTIONS

Statistical independence of the variables Xy and Xy
follows from the factorization condition

is(x,+x,) isx isx
(e 17727y = (e™7L) (e 772y,
or the equivalent statement that the characteristic func-

tion C(s) of the variable x = % +X, is given by Cl(s)cz(s)‘
It is clear that C(s) is a characteristic function since

C(s) = Cl(s)Cz(s)

[felsxytxy) dug (x)du, (x,)

= Ielsx A4 p (%)

where

u1*2(x) = I “1(X'Y) dUZ(Y)



346 JOHN KLAUDER

which fulfills all the criteria to be a distribution func-
tion.

If the distributions uj and W, are equal, then it
follows from the foregoing that C(s) = [Cl(s)] defines a
new characteristic function, and this property extends to
an arbitrary integral power, C(s) = [Cl(s)]m, m21.1/Con-
versely, in this case, it would follow that [C(s)) m=Cl(s)
would be a characteristic function, but in general such
fractional powers do not lead to characteristic functionms.

Infinitely Divisible Distribution Functions

There is an important class of distributions (and
therefore of characteristic functions) called infinitely
divisible characterized by the property that

[e()1™ = ¢_(s)

is a characteristic function for all pos}tive integers m.
An immediate consequence is that [C(s)]™™ is a character-
istic function for all positive integers n and m, and thus
by the Continuity Theorem [as the ratio (n/m) - 7] it fol-
lows that [C(s)] 1is a characteristic function for all real
7>0. Examples of infinitely divisible characteristic func-
tions are: the degenerate, C(s) = e'?5; the Gaussian,

S-
C(s) = P8, 1>0; and the Poisson, C(s) = e (© 1), A>0.

If E(s) denotes a characteristic function, then the

expression
c(s) = ePLC(8)-1] p>0

defines an infinitely divisible characteristic function.
An important theorem asserts that these special examples
are dense in the set of all such characteristic functions;
namely, we have
De Finetti's Theorem: Every infinitely divisible charac-
teristic function is obtained as the limit

C(s) = lim ePrlCn(®)-1] (2-1)

as m~®, where pm>0 and Cm(s) are characteristic functions
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for all m Spec1f1cally, if C(s) is infinitely divisible
then [C(s)]l/ = Cm(s) is a characteristic function so
that

1/m_ 1)

m{ [C(s)] mlC_(s)-1]

C(s) = lim e = lim e

which is a construction in the manner of the theorem.
A canonical representation, due to Lévy, asserts

that C(s) is an infinitely divisible characteristic func-
tion if and only if

1n G(a) = fag-be % i (et < 22Xy do () (2-2)
jx1>0 1+x

where a, b, and 0 are real, b=0, and ¢ is a positive meas-
ure fulfilling

2
] G oo <=
1+x
[x|>0
It has been shown that either b>0 or f l>0 ac(® =

sufficient for C(s) to be absolutely contlnuous

The class of symmetric [C(-s) = C(s)] infinitely
divisible distributions is characterized by the fact that

c(s) = e-bsz_ J' [1-cos(sx)]do(x). (2-3)

|x|>0
We shall encounter this formula often in our further
studies. We term the initial contribution the Gaussian

component, and the latter the non-Gaussian (or Poisson)
component.

Stable Distributions

A further specialization within the class of proba-
bility distributions are the so-called stable distributions.
The characteristic functions of such distributions have the

* The converse is straightforward: Every characteristic
function of the form (2-1) is infinitely divisible.
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property that for every Bl>0 and Bz>0 there exist a B>0
and real vy such that

C(B,8)C(B,8) = 'Y5C(Bs). (2-4)

It follows from this relation that for all m

C(s) = [C(Bms)]m el¥n® for some B >0 and y . Thus [c(s)l
is a characteristic function for all m, and hence stable
distributions are infinitely divisible.

1/m

We confine our attention only to symmetric stable
distributions, C(-s) = C(s). The functional relation (2-4)
can be used to show for symmetric stable distributions that

C(s) = e-klsla,

where o, the exponent of the distribution, satisfies 0<a<2,
and k>0 (we exclude the uninteresting case k=0). On refer-
ence to (2-3) we see that a=2 corresponds to a Gaussian
distribution, while the other cases for which 0<a<2 corre-
spond to non-Gaussian distributions (b=0) where

do (x) = k'|xl_(1+a)dx; |x|>0.

All stable distributions are absolutely continuous as fol-
lows from the fact that C(s) € Ll(R). (Stable distributions
will arise in our analysis of scale invariant field theory
models.)

2.5 FUNDAMENTAL PROPERTIES OF ANNIIILATION AND CREATION
OPERATORS

Single Degree of Freedom

Many of the properties and techniques of use in a
field theory have their analogue in a single degree of
freedom framework. Imagine that a and a' are the annihila-
tion and creation operators of a single degree of freedom
which fulfill the commutation relation [a,a'] = 1 (i.e.,
the identity operator). Th gtate |0> satisfies al0> =0
and the vectors |n> = (n!) " 2a'"|0> for all n form a total
set in . The vectors
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70 n
e-%|zl s Z |n>
n.

n=0

|z> =

2 T
e-%|ZI o lo>,

for all complex z, are the coherent states and they enjoy
a number of interesting and useful properties. For example,
they are total in %, and they are eigenstates of a,

alz> = z|z>.
The inner product of two such states reads

2
<zlet> = ¥zl Elzt Bea¥e

and although normalized they are never orthogonal. The
unitary operator

U(z) = e(zaT-z*a)

defines the coherent states, |z> = U(z)|0>, and leads to
the "translation formula'

U(z)-l a U(z) = a+ z.
Coherent state matrix elements of normally ordered opera-
tors are especially easy to compute, For if :B(af,a):
expresses the operator, then

<z|:B(a’,a):|z"> = B(2¥,2") <z|z'>.

Moreove¥ it follows rﬁadily that the diagonal elements

<z|:B(a',a):|z> = B(z ,2) actually determine the operator
since B(z*,z’) can be constructed from a knowledge of
B(z*,z).

The basic relation
1-

itata 4+ -ira'a it t
e a'e =e a
implies that

iTafa ir
em T %Yz> = | e 2>
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From the expression

Yotz i ir *
<z elTa alZ> = e(e -1)z"z

it follows that

el it +
elTaa _ (e -Da a, (2-5)
A number of other properties are enjoyed by coherent
states, such as a simple resolution of the identity, but

they will not be of use to us in these notes.

Infinite Number of Degrees of Freedom

Let us introduce a field of formal annihilation and
creation operators A(y) and A'(y) where y€RD for some n,
which fulfill the relation

[ACy), AT(y)] = 6(y-y").

Again we assert that A(y) |0> = 0 for all y, and that & is
spanned by repeated action of the formal creation operators
acting on the vacuum |0>., These requirements dictate that
we deal with the Fock representation of A and AT, The vec-
tors

> = o3 18 Pay Jra oy,

for all llr(y)GL2 are coherent states. Such states are total
in ®, but so too are any subs&t of coherent states in which
¥(y) lies in a set demse in L® (in the L2 topology). For
example, the set of functionms C, (which are infinitely dif-
ferentiable and of compact support) leads to a total set of
coherent states. The eigenstate property reads

Ay) [4> = ¥ (y) Jv>.

The inner product of two such states is given by
<vly'> = expl-[T5IV () 12 + 50 ) 17 - 451" () Tay)

The unitary operator

Uy = exp (JIV(NA (3) - 1AM Iy} (2-6)
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defines the coherent state, |¢> = U(¥)]0>, and leads to
the ''translation formula"

-1
U@y 7 Ay UY) = A(y) ().
As 1n the simple case above, coherent state matrix elements

of normally ordered operators are simple to evaluate, and
in particular

<yl oBaT,a) ¢ s = BOT, y<y >,
If we set
W= A" wamady, (2-7)

where w is a self-adjoint operator acting on the variable
y, then

-isW  disw t
= e

" (yye A" ()

where e °Y is a unitary transformation on the variable y.
It follows, in particular, that

isW _
e > = v >,
where ws(y) = eisww(y). The analogue of (2-5) reads
Jsfa' vy _ | 8T @ -namay,

as may be seen directly from their action on coherent
states.

Bilinear Operators

We shall be especially interested in studying operators
of the form

ue) "L W uce)
[TAt () + €5(y)) wla(y) + £(y)1dy.

where U(E) is given by (2-6), assuming that wg(y)ELz,
If we introduce

it

W
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B(y) = A(y) + E(¥),

then we have the relations
§
W= [B (y)wB(y)dy

and
isW _ eiSIB*(y)WB(y)dy L s efo(y)(elSW

- -1)B(y)dy,

Thus it follows that
<yletM|yr>

= exp (JTV (046 (101 -1) [y () +E () Tdyd <vlv'>,

and in particular that
<01e™™)0> = exp {[£*(y) (e*¥-1)e(v)dy}.

We are especially interested in studylng these latter
two equations for sequences of operators W, defined by
sequences of tranglations £ (y) which are not restricted to
have a limit in L (not restricted to a Cauchy sequence) .
Let us introduce the notation

3.(s) = ey 1) £ (may,

and

(eisw

n

SIENOEAR

where we assume that wg (y)EL2 for all n. Now several
important criteria can Be distinguished.

v (v,8)

Convergence to Characteristic Function: The sequence of
characteristic functions

c (s) = <0els¥n o>

converges, in virtue of the Continuity Theorem, to a char-
acteristic function C(s) provided that the sequence J_(s)
converges pointwise to a continuous function J(s)=1ln C(s).
By DeFinetti's theorem C(s) will be an infinitely divisible
characteristic function.
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Weak Operator Convergence: The sequence of unitary opera-

tors elSWn converges weakly to an operator B, in virtue of
the Silver Lemma, provided that the sequence Jn(s) con-
verges and that the vector sequence @n(y,s) converges
weakly to a vector o(y,s).

True as this last result is, we may wish to ensure
that elS%n converges to a unitary one-parameter group char-
acterized by elsW, This entails further conditions on the
sequences Jn(s) and wn(y,s) which are summarized as

Strong Operator Convergence: The sequence of unitary one-
parameter groups eiswn converges weakly, hence strongly,
to a unitary one-parameter group elSW provided that the
sequence Jn(s) converges pointwise to a continuous func-
tion J(s) and that the sequence @_(y,s) converges strongly
to a vector ®(y,s) continuous in The parameter s, If such
is the case, we say that

W= lim [{AT (45T WAG+E (NIdy  (2-8)
in the sense described above.

Note again, in these various contexts, that peither
wgn(y) nor En(y) need to be Cauchy sequences in L, so long
as the other conditions are fulfilled. This construction
will be often used explicitly and implicitly in subsequent
chapers.

We conclude this chapter with an outline of the proof
of the last convergence criterion. This reiult is readily
proved if we note that (s = strong) s-lim e SWn - U(s) is
ensured provided

l l(elsWn _ elswm) H’>| |2 = A leRe<q le'lSWnelszw>]
is a Cauchy sequence for a total set of unit vectors, say
for all coherent states. From the bilinear form of W it
follows, for each coherent state |{>, that

elswm|¢> = ele(m) ‘w(m)>;

that is, apart from a phase, we obtain a new coherent
state, where
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0

1

@ = - o E e may,

V@ = e + @ nE o).

Weak convergence, implied by strong convergence, already
demands that w-1lim mm(y,-s) = ¢(y,-s), and thus

im0 =0 = - In | Y (no(y,-s)dy.

Hence strong convergence of elswml¢> is fulfilled provided
that

2 1-Re<t oy 1001 = 11 1y > = 1v 11

(2-9)

is a Cauchy sequence for a dense set of \JJ(y)EL2 However,
it may readily be shown, for two coherent states |¢> and
|y'>, that

112
e A M A PRI P TN
< 4l lel 1+ e I Tl-wr L,

where |l¢l|2 { ¢(y)|2dy. Consequently, convergence of
is equivalent to convergence of (2-9). Thus

we éegd stgo%g convergence of (elSW 1)5 (y) ¢,(y,s) for all
s. The combination law U(s)U(s') = U(s+s ) follows from the
strong co¥tinu1ty, while the properties U(o) = I and U(s) ™ *=

U(-s) U' (s) are straightforward. Finally, continuity of
J(s) and ®(y,s) are needed to secure the weak continutiy,
completing the requirements in order that U(s)= =elsW yith w
self-adjoint.
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3. FIELD OPERATORS AND CURRENT ALGEBRAS:
GENERAL FEATURES AND SELECTED REPRESENTATIONS

3.1 EQUAL TIME COMMUTATION RELATIONS

Heuristic Formulation

A common starting point for the formulation of a
quantum field theory is the introduction and analysis of
various kinematical operators. In canonical theories one
usually deals with a collection of field operators wu_(x)
and conjugate momentum operators m_(x), r=1,...,R, that
fulfill canonical commutation relations (CCR) of the form

[0, (0), T (0] =16 _ 5(x-y).

Frequently, one identifies the conjugate momentum T_ (x)
with ¢.(x) = -i [9.(x),%], where i is the Hamiltonian
operator, but there is no requirement that this be so. A
further common assumption is that the kinematical opera-
tors -- @ _ and m_ in this case -- form an irreducible set
of operators, ang therefore that all operators including

¥ can be expressed as functions of ¢, and .. However,
this assumption is not always valid; for a generalized free
field, for example, the representation of the CCR is re-
ducible and X is not a function solely of the field and its
conjugate.

Besides the usual canonical operators, other field
algebras have recently become of importance. Current alge-
bras usually consist of a family of local fields j_(x),

‘ 3 7 oL
r=1,...,R, which satisfy the equal-time commutation rela-
tion

i,®, 1,0 =183 ¢ 3.®

where c,.g4¢ are the structure constants of a Lie algebra.
In such approaches one often imagines, as before, that the
jr(g) form a complete set of operators, i.e., constitute
an irreducible representation, and that, as a consequence,
operators such as the Hamiltonian are expressible in terms
of the basic fields.
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Smearing Functions

The formal relations given above need to be augmented
before a careful study can be initiated. Fields at a point
are generally not well defined operators (but are rather
forms) as is suggested by the presence of the § function
in the preceding relations. Smearing with test functions
is generally required leading to the relation

[0 (5, m ()] = 1 6_(£,8),

where

v (£) = [ £(®)o (0)dx

etc., and

i

(£,8) = [ £(x)gx)dx.

In the case of the current algebra we obtain
(3.(5), 5 (@] =1ic. . ] (fe)

where (fg)(x) = £(x)g(x). Observe that in either of the

two cases if the supports of f and g lie in distinct re-
gions of space the operators commute, For the most part

we leave the class of test functions open; however they may
be assumed, for convenience, to be infinitely differentiable
and to have compact support.

Bounded Operator Formulation

One further refinement is traditional and useful, and
that consists of replacing the unbounded field operators by
bounded unitary operators (assuming that the smeared field
operators are self adjoint). That is, attention is ini-
tially focussed on the operator families

gL NE) - SAT(E) ()
(suppressing indices) for test functions belonging to some,

suitable real linear topological vector space, The commuta-
tion relations are replaced by such laws as

1P ) AN (B) o ST CBIN JLB(E) s (E, )
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which is known as the Weyl form of the CCR, and
1I(E) 1i(e) _  1i(f-8)

where f:g represents multiplication within the group.

An essential fact, evidently, is the study of a family
of self-adjoint operators we ma% %enerically call W(f) and
associated unitary operators el () for suitable test func-
tions £. 1In the remainder of this chapter we primarily
concentrate on Abelian and non-Abelian field algebras with
only an occasional reference to the CCR's.

3.2 FUNCTIONAL CHARACTERIZATION OF CYCLIC REPRESENTATIONS

There are a number of ways to study representations of
a family of unitary operators elW . In a separable Hil-
bert space, such as we assume, every representation is a
direct sum of cyclic regr?gentations. A cyclic representa-
tion of the operators e W(E) is one for which there exists
a vector -- call it |0> -- for which the vectors
|£> = e )IO> form a total set. Such a representation is
uniquely determined up to unitary equivalence by the expec-
tation functional

B(£) = <0le™(E) o>

I

defined for all f€u, some suitable space of test functions.
At the very least E(f) is ray continuous, i.e. continuous,
for each £, in the variable s,

E(sf) = <0leisw(f)l0>,

since elsw(f) = U(s) is by assumption a unitary one-para-
meter group. However, for simplicity we shall generally
assume that E(f) is continuous in some suitable topology
for the space v, In most cases this is a very mild assump-
tion.

The characterization of the representation by E(f) is
plausible since it follows (from the group property) that

iw(f)]f

<f"le S o E(fn'l,f,fV)
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determines a total set of matrix elements of the operators
eiW(E) Indeed, one of the classic realizations of the
representation space makes a rather direct use of the func-
tional E(f). 1In this realization the Hilbert space ele-
ments are functions

v (£)

<fly> = ¢ ci<f|fi>

o il
=3 ¢y E(f fi)

defined over v. The norm of such an element is defined by
2 = * —10 -

which is non-negative in virture of E being a positive -
definite functional. Infinite sums are admitted provided
the partial sums form a Cauchy sequence in the Q?ry as
usual. The group composition law for Ulg] = elW(8) jg
realized according to

Wl (8) = <glolgl [v> = <g - £li> = v(g™ho6)
All other realizations of eiW(f) which have the same expec-
tation functional are unitarily equivalent to the one just

outlined.

Abelian Algebras

In spite of the equivalence of other representations
it is often very convenient to have other realizations for
practical applications. 1In general these are not easy to
come by. If one deals only with an Abelian family of fields
W(f) -- say just 9(f) -- then it is possible to diagonalize
that field and work in a representation analogous to the
Schrodinger representation. In this case we have a relation
like

E(f) = <o|eiw(f)|0> =[ ei(A’f)du(A)«

Where A represents a generalized function and u represents
a type of measure on such functions. We quote without
proof two theorems pertaining to such a situation.
Representation Theorem 1: In order for E(f), where fe€v, a
linear topological space, to be the Fourier transform of a
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positive normalized cyclinder set measure® y on v’ (the
dual space to v) it is necessary and sufficient that E(f)
be a positive-definite functional, (sequentially) continu-
ous and fulfill E(0)=1.

Representation Theorem 2: Any continuous, positive-definite
functional E(f) on a nuclear space®* u such that E(0)=1 is
the Fourier transform of a (countably additive) normalized
measure on v’

Given a representation of E(f) as a Fourier transform
in accord with either of the two preceding theorems, a
natural functional Hilbert space £4 emerges. The space £2
is composed of (measurable) functionals {(A) such that

el132 = [ vy Zae@) < o

The CyCllC vector |0> is represented by the functional

""one", and the action of the operat?x %1@ is given by
multiplicatlon by the functional e Other operators--
for example, the conjugate momentum if it exists--would
involve a functlongl differential operation on the
functionals Yy (A)€L%(u’,u). It is in such a framework that

*A cyclinder set measure u may be regarded as a sequence of
compatible measures py on RN such that

J et Dauy = 1im fel Vol Dy (00,

where A restricted to RN equals ZTknhn(g).

et o, r= 1,2,..., be a family of Hilbert spaces with ele~

ments fgﬁ that may be identified such that (i) Dpt1 S s
(ii) ||f]f }lf!l where ||fl| is the norm approprlate
to %, and E111) fg T B where for any r_there is an s>r

such that TY is nuclear i,e., Tr(TrTT )% <®, A nuclear
space is then basically characterlzed as the closure of the
countable Hilbert space ﬁ in the metric

a(f)=x7 27F| f| él+]|f|f% For example, let 9 —:2, f={z},
and define anlz f Then f€v if and on}y if nfz *0
as pe for all r The sequence £\%)=0 (in 4d), i.e.,

d(f k)—~O, p ovide% 1|f II -0 for all r, namely, provided
SUp (1) nrzn =A V=0 for 511 r.
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one would seek to make precise the realization of the con-
jugate operator and the Hamiltonian heuristically presented
in Chapter 1 in Eq. (1-3), but this is not our concern at
this point.

3.3 TRANSLATION, CLUSTER AND SCALE INVARIANCE CONDITIONS

Translation Invariance

In an effort to limit the vast number of possible rep-
resentations, let us impose several desirable physical
properties., Let us assume that we deal with a translation
invariant dynamical problem, and, correspondingly, a trans-
lationally invarisant state |0>, 1If there was a unitary
family of translation operators U(a) with the properties

U@ e@ U@ = v(x-a)
U(a) lo> = o>,
then it would follow, for all f€u and all a€RS, that
E(f) = E(f)),

where fa(g) = f(x+a). Conversely, if E(f) = E(f,) it fol-
lows that there exists a unitary set of operators U(a) with
the stated properties. This already follows from the func-
tional realization introduced earlier in which one can de-
fine

W@ (5 = ¥(E,).

The unitarity of this set of transformations, and the ex-
istence of an invariant cyclic vector all follow from the
invariance and continuity of the expectation functional
E(f).

Cluster Decomposition

Not only should |0> be translationally invariant but
in many problems it should be the unique invariant state.
Physically, this uniqueness reflects the expected statisti-
cal independence of experiments carried out in two remote
regions of space. Mathematically, this feature takes the
form of a factorization,
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<f"lu(a) [£'> - <g"|o><0|£'>,

as |al-=. Consequently, we impose on invariant expectation
functionals the requirement that

19 E(f"-l-fa’) = B(£" Yy B(£").

lg‘ —00

Since this is, by hypothesis, a total set of matrix elements
of a uniformly bounded sequence of operators the Silver Lem-
ma ensures that

w-1lim U(a) = |0><0],.

a |=e

This behavior holds independent of the direction in which
spatial infinity is approached.

In general, invariance and clustering properties se-
verely limit the class of interesting representations. It
is useful to note an alternate characterization of these
functional restrictions. Suppose we introduce

E(f) = e (D)

where L(0) = 0 and L(sf) is finite for any f€v at least
whenever s is i? some neighborhood of the origin. More
generally, if £ k)40 in v and E(f) is continuous in v as we
ass?ﬂf, then it follows that there exists a K such that
E(£\®/)# 0, for all k=K, and consequently L(f(k)) is well
defined for all k=K. Actually, in many cases of interest
L(f) is well defined for all fe€u,

The invariance condition E(f) = E(f ) evidently re-
quires that L(f) = L(f,). The cluster p?operty translates
into the requirement

Lim LCETTED) = LETY) + L(gn).
’% —00

It is perhaps worth noting the relationship of L(f) to
the truncated vacuum expectation values of the field opera-
tor. These may be introduced through a generating funct-
tional which is defined by
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<01eXD) o> = 01 0T,

Thus, it follows that

(8 = <01e®® jo>To1 =) () Lit<ole™(g) |0>T
n=1

assuming a power series expansion for purposes of illustra-
tion.

Scale Invariance

Another transformation which is occasionally intro-
duced is the scale (or dilatation) transformation., Such a
transformation makes sense for a free massless field, and
it is often assumed to hold for an interacting theory in
which only dimensionless parameters appear. 1In such cases
we assume that there exists a family of unitary operators
V(S), $>0, such that V(S)V(S')=V(SS'), with the properties

v Hs)oex,t) vis) = s o(sx,st),
v(s)lo> = |o>,

where d is called the scale dimension of the field. For a
canonical theory, by which we mean that

[¢(§,t), cb(l’t)] il 1 G(E'X):
the scale dimension has its canonical value
d, = %(s-1)

where s is the number of space dimensions, However, other
values of d arise as well,

If we set t=0, it follows that
-1
V 7(S) o(f) v(S) = CD(f(s))

where

S

- -1
flo® =57 257w,
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Consequently invariance of the expectation functional takes
the form

E(f) = E(f (3-2)

()"
for all $>0.

Unitary Equivalence of Representations

A criterion for equivalence or inequivalence of two
representations can often be established with the aid of
the expectational functional. TLet us assume that invari-
ance and cluster properties hold under the translation
group U(a). When such is the case it follows that
1W(fa)=

-1 iW(E)

e U(a) U(a)

weakly converges as |a|-* to a multiple of unity as may be
seen from the total set of matrix elements

TW(E)
<grle  *ler> - E(e g, £

and an application of the Silver Lemma. Assume, for ex-
ample, that £,f', and f'" all have compact support so that
for large enough |a| the factors commute and

E(f”-l'fa’f') - E(fu’l.fr.fa)ﬂE(fn'l.fv) E(f).

From this relation we even observe that as ‘gl o

1W(E,)

w-1im e = <oleiw(f)1o> = E(f).

This property holds for each f€v, which means that for each
f, E(f) is a '"tag' for the representation.

If two such representations are unitarily equivalent
such that

vl WD o L WD)

holds for all f€u, then it follows that as |al| -«
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W' (£)) o1 LW(EY)
E'(f) = w-1lim e = w-1lim V ~ e v

- V'L B(E) v = E(E).

But if E'(f) = E(f) for all f we are already assured that

the representations are equivalent. On the other hand, if
E'(f) # E(f) for any f, then no V exists and the represen-
tations are inequivalent.

In summary, therefore, distinct expectation functionals
label inequivalent representations. Note this argument
makes no statement regarding the reducibility or irreduci-
bility of the representation; the only ingredients are in-
variance and cluster decomposition.

3.4 INFINITELY DIVISIBLE REPRESENTATIONS OF FIELD ALGEBRAS

In this section we wish to construct expectation func-
tionals which incorporate the various features we discussed
above, We do not attempt to determine all such representa-
tions but rather those which are analogues of infinitely
divisible distributions. This is most conveniently carried
out in the framework of exponential Hilbert spaces which is
quite directly based on the Fock space methods introduced
in Chapter 2.

Exponential Hilbert Space

Consider an abstract Hilbert space b and the Fock
space © based on it,

8 =D 6",

n=0

where the symmetric subspace is implied. For each (€b we
associate the unit vector |y>€® based on the definition

_ g =% ,.®n
ly> = Négb (n!) (v )S
where N = exp [-% (¥,¥)] is a normalization factor such

that || {¥>]l=1. To each ©€Y we associate an annihilation
operator A(¢), antilinear in ¢, with the property that
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A(@) 4> = (0,¥) |v> (3-3)
Observe that the states |y> are just the coherent states
again and (3-3) expresses that they are eigenstates for
A(¥). We have the relations
1-

[A(w), A(Y) '] = (v,¥),

and
t
l¥> = 5 A o> = u@) lo>,
where
U@ = exp LA’ - AT
A bilinear operator [compare Eq. (2-7)]
W= (A,wA)
is characterized by its coherent state matrix elements,
<¢lwly'> = (v,w ¥)<vly'>,
and it follows that
oy ®
eiw = @ (eiw) n_ (3_4)
n=0 .

If w is self adjoint on b , W is self adjoint on %.

Now consider that w=w(f), ﬁ-ﬁ(f) are smeared field
operators and that the w(f) correspond to some current al-
gebra, That is, we imagine that

[w(f), w(g)]l = i w(lf,gl)

in some unspecified but fairly self-evident notation.
Then it follows that

W(E), W(g)] = (A, [w(f), w(g)Ia)
- 1w ((£,g]),

namely, that W(f) also satisfies the same algebra. As a
consequence eiW(f) and eIW(H) constitute group
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representations, and the latter is highly reducible even if
the former is irreducible. The group representation proper-
ty is preserved under a fixed unitary transformation such
that

IV - eyl eiW(f)U(g),
which, if w(f)E&€¢h, means that
W(E) = (B,w(£)B) = ([A+E], w(E)[A+E]). (3-5)

We note that

1O |y o (8T E 1m0 s

and in particular that

) s TR (6,0 (B ey, (3-6)

We have already assumed that elw(f) constitutes a
group representation and have observed that elW consti-
tutes such a representation for any U(E), i.e., for any
E€Eh, From this it follows that E(f) is infinitely divisi-
ble, that is for each positive integer m,

iw(£f)
(E®1Y™ = g (5) = /m(E,LeTT-118)
is a positive definite functional [in the sense of (3-1)].
This is clear since E  1is obtained from E simply by the
change of € to £//m, On the other hand, the analog of
DeFinetti's Theorem implies that all infinitely divisible
representations are limits of those for which Eq. (3-6)
holds, For, if we assume that E(f) is infinitely divisible,
then

m{[E(f)]l/m-l} = m{Em(f)-l}

V(D)

=m(0,,Le " -1T0)

for some representation w(f), where ||9m||=1, from which it

follows that 1/m 1w ()
m{[E(£)] -1} m(0 ,[e -116 )
E(f) = lim e =lime ™ n Tosls
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With this motivation let us study the limits of ex-
pressions of the form (3-6). We divide our study into two
parts.

Abelian Field Algebras

Suppose first that we have an Abelian family of opera-
tors -- say just the single field operator ¢(f). In that
case we may diagonalize the field in accord with the theo-
rems mentioned earlier, but this time we diagonalize in the
exponent. That is, we express (3-6) in the form

E(E) = <0]el®®) 0> - Jret M 11a0 )y

Sequences of such expectation functionals converge to an
expectation functional provided that

i(A,f
lim E_(£) = Lin ej[el( )-1]dcn(A)

converges to a continuous functional which is the analogue
of the Continuity Theorem. Tortrat has given an analogue
of the Lévy canonical formula (2-2) which reads

In E(f) = i(a,f) - (f,bf)

#ftet D 3 2B 5 o) (3-8)
1+ 7]
where a and b are real, bz0 and IIAllz can be appropriately

defined. For symmetric functionals, where E(-£)=E(f), the
general form reads

E(f) = o~ (£,b) -I[l-cos(A,f)]do(A).

(3-9)
In these expressions, f do (A) need not be finite, but rather
[HANZ el a1y do ) <o
excluding, as always, the point A=0,
Expressions of the type (3-9) can be readily con-

strained to have invariance and clustering, the latter
being rather naturally and easily imposed on the measure 0.
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For example,
E(f) = e'(f,bf) = fdgf[l-cos(A,fz)]doo(A)

fulfills the desired properties, where b=b(x-y), f _=f(x+z)
and 0, is concentrated on generalized functions with sup-
port 'mear x=o."

It should be observed in the preceding construction
that the sequence of field operators wn(f) do not neces-
sarily converge to the operator ©(f) in the '"same" Hilbert
gpace $. For this to be true we could invoke the analogue
of the Strong Operator Convergence theorem of Chapter 2.
That is, besides the convergence of En(f) to a continuous
functional, we would require the strong convergence of

(el¥(H) 43 g - ol£] €, (3-10)

which excludes, for example, the appearance of a Gaussian
part in E(f). On the other hand, if a Gaussian term is

present [or condition (3-10) otherwise fails] we would say
that wn(f) - 9(£f) in the sense of expectation functionals.

Non-Abelian Field Algebras

For a non-Abelian group representation many of the
same arguments apply, except that we cannot invoke the
Fourier transform representation theorem. Consider the
sequence of functionals
() (5o le ™ Putls )

E (£) = <0le lo> = e
which are continuous and positive definite in the sense of
(3-1). We have argued in Eq. (3-7) that every infinitely
divisible group representation can be expressed as the
limit of such functionals. Conversely, for every sequence
gn such that

iw(£
(s ,Le™ P ae

E(f) = lime ©

converges to a continuous functional, we generate a valid
group representation, which incidently happens to be in-

finitely divisible. (This latter follows because [En(f)]l/m
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is positive definite foi each n and converges to the con-
tinuous function [E(f)] /m')

These representations may be made to exhibit manifest
invariance and cluster properties as well. For this pur-
pose, let

5 =[P ag,

D
w(f) = [ " w (£,) dz
and suppose that
3
G S ) ®nz 92>
where, for example,
gnz B un(é) 5
and the function
u(z =1; |zl <n,
=0 ; 1z] 2 n+l

and falls smoothly in between. Here Eebz, which we assume
to be the 'same' vector for all z. With f constrained to
have compact support it 1s evident that

1w (£)
(g _,le -13g )
E(f) = lime O i
iw (£)

(o) z

fdz(%nz,[e -le .

[dz (E,[eiw°(fz)-1jg)
= el = z (3-11)

exists since for large enough n the sequence becomes con-

stant, The functional E(f) evidently is invariant, and if

wo,(x) has support near the origin, E(f) will also have the
cluster property. Limits of such functionals (e.g., a
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non-Cauchy sequence EnED ) lead to new, infinitely divisi-
ble representations which enjoy both invariance and cluster
decomposition,

Generally, the limit E_(f) will lead to convergence
only of expectation functio%als, and not to a convergence
of the operators in the original Hilbert space . This
may lead to the representation ''growing'' unwanted subrepre-
sentations. An example of this behavior might be the ap-
pearance of a Gaussian part in E(f). One way to suppress
such terms is to insist on the Strong Operator Convergence
condition,

(e B1y ¢ - gleley,

where @[ f] is continuous in £. This condition will at the
same time establish the convergence of the operators

Wh(f) - W(f) within one and the same Hilbert space . It
is worth emphasizing that although the algebra of operators
Wn(f) constructed in the above fashion is reducible for
each n, it can happen that the limit operators W(f) are ir-
reducible [and consequently would not possess an expansion
equivalent to (3-4)].

An example will serve to illustrate some of the fea-
ture discussed above.
Example: Consider the field algebra characterized by

(@, "(®I = 1 8(x-y) "(v), (3-12)

which is based on the two-parameter affine group with an
elementary Lie algebra

[B,P] = iP.

An iireducible representation of the affine group is given
on L“(0,®) by the prescription
(e-isPeier)(k) - e-%re-lSkm(e_r

for all o(k) € L2 (0,#). We identify this representation
as that denoted by w, in Eq. (3-11), leading to a field
representation given by

k)
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E(f,g) = <Ole-iﬂ(g) ein(f)l0>

= exp [-[dz] ¥R [e(K)-e (@) 18Dk (~EB 1417 |
o
(3-13)
For each g(k) € L2(0,°) this functional characterizes a
representation of (3-12), and for each unequal ray the rep-
resentations are inequivalent and reducible.
Consider a non-Cauchy sequence En(k) defining a se-
quence of functionals E_(f,g) which converges to a new

functional E(f,g). Fornexample, let

25
Sa(B) = K

i

astp: [ = -k—{ﬁ 1) 218¢k)

where e(k) is ¢’ and square integrable. Then it follows
that

_ -%r-isk SN
fon(r,S,k) s e gn(e k) gn(k)
converges strongly to
B0, 8,00 = el 40Ty - 8091,

while
-4r-isk

Cy

(e‘rk)-gn(k)Jdk

a9 = [ eaole €,

converges to

(r,e) = 57 (8% e R (1) -8 (e )]
(©)

18 ngtaT R0 TR, = dril 9%

This limiting expression leads to an expectation functional
E(£,8) = expl[dz J[£(2),8(2)]}

characterizing a representation of (3-12) inequivalent to
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those previously discussed and one which is irreducible in
contrast to the preceding examples.

As an example of the growth of unwanted subrepresenta-
tions, imagine that

g (k) = §(k) + 8 (k)
where
en(k) = n%e(nk).
It follows that w-1lim 6_(k) = 0, but en(k) does not con-
verge strongly. As a consequence we can anticipate only

convergence of the expectation functional, and it is a
simple matter to see that

E_(£,8) -~ E(£,8) = 32030 £(2) ,8(2)] + Y £(2),8(2)]}

where J is implicitly given in (3-13), while

tr,s) = [ e*le To(e ) - 6(l)Tdk,
o
which is independent of s [i.e., of g(z)]. Thus the limit-

ing representation of x(x) and m(y) is such that, in an ob-
vious notation,

n(@® = % (x) Duy(x)

m(x) =7 (x) DO,

namely in the ''second representation space' m(x) is repre-
sented by zero [a perfectly acceptable solution to (3-12)!].

4. ULTRALOCAL FIELD THEORIES

4,1 HEURISTIC, CLASSICAL INTRODUCTION

Covariant Motivation

Ultralocal scalar field theories are formally obtained
from covariant scalar theories by suppressing the spacial
gradient term in the Hamiltonian. They are characterized,
therefore, by a classical Hamiltonian of the form
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Ho= [On2 G + mp o2 (0] + Ve, (01)dx  (4-1)

Such models are distinguished by the property that distinct
spacial points characterize statistically independent
fields for all times. Stated otherwise, the light cone of
the covariant theories has been collapsed to a '‘vertical
line'" passing through the space point in question. Never-
theless, the topology of the original space is retained,
and indeed we still insist on a space translation generator
classically given by

B=[m @ Lo @®dx.

The ultralocal theories are expected to have a trivial
scattering matrix (S=1), and are not, by themselves, ex-
pected to provide physically significant predictions.
These models are examples of systems with an infinite num-
ber of degrees of freedom from which we hope to learn more
about such systems. Viewed in the conventional fashion
these models are nonrenormalizable, and their study by
standard perturbation techniques is frought with ambigui-
ties. Techniques other than the conventional ones are re-
quired to solve these models, and such techniques will be
provided.

Even before determining the quantum solution, we may
anticipate that it would have at least two interesting re-
lations to the corresponding solution of a covariant theory.
On the one hand, the ultralocal models and their corres-
ponding solutions should be the limit of Sovariant models
as the coefficient of the term %[ Vy,4(x)]“° vanished from
the Hamiltonian. On the other hand, it might be hoped that
the spacial gradient term could be restored by a perturba-
tion analysis. Some comments on the latter idea are pre-
sented in Chapter 6.

Alternative Interpretation

Although the ultralocal models are motivated by co-
variant models they may be interpreted in another way as
well. There is an evident, classical one degree of free-
dom problem underlying (4-1) described by the Hamiltonian

Hy(p,q) = %(p2+m(2,q2) + Viql;
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and the Hamiltonian (4-1) itself may be considered as a
continuous embellishment of H, in the sense of Chapter 1.
It is anticipated, therefore, that the ultralocal quantum
theory should be characterized, in some sense, by an under-
lying one degree of freedom problem, and we shall find this
to be the case, although the underlying problem is neces-
sarily different from the ''obvious' one.

OQur subsequent discussion of these models focuses on
a general understanding of the solution with a special em-
phasis on certain specific aspects. Several other discus-
sions of these models have been given elsewhere and should
be consulted by the interested reader in order to round out
an appreciation of the present understanding of ultralocal
scalar fields.

4.2 OPERATOR SOLUTION FOR ULTRALOCAL MODELS

Our assumptions regarding the quantum solution are
minimal and quite plausible. We expect, for each potential
V of a large class, that their exists a Hamiltonian opera-
tor ¥ = 0, and a unique ground state |0> for which 3|0> = 0.
The state |0> is also the unique translationally invariant
state and satisfies £|0> = 0, and [£,3] = 0, where P is the
space-translation generator. We suppose initially that
there exists a self-adjoint field operator

P(f) = [ £ (x)dx
defined for all fEC;. (Subsequently, we shall generalize

this assumption to a space-time smearing.) For simplicity
we assume the potential V is symmetric, i.e.,

v -CPcl(?S)] = V[q)cl(.ﬁ)] ’
and bounded below as in usual models.

Determination of Expectation Functional

We focus initially on the expectation functional
B(£) = <0]ei®® o>

defined, let us suppose, for all f(_)g)ECcn , together with
some continuity properties, the least of which is ray
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continuity. The symmetry of the potential implies that
E(-f) = E(f); while the principal symmetry fact of the

ultralocal form of the dynamics -- the independence for-
all-times of the field at distinct spacial points -- im-
plies that

B(f) = o7 {3 LE@]

From this form alone we immediately deduce that E(f) is
infinitely divisible. Since E(f) is a positive-definite
functional for all f(z)ecg, it follows that

1
- Hfax L£®))
(I -e ™
/s
_ lay E@ o1 _
e E(f(m)),
where £ y(X) = f(ml/sx) € Cr, and thus E(f)l/m is positive

definité for all m. Consequently, E(f) necessarily has the
form given in Eq. (3-9), which implies that E(f) never
vanishes. It follows in our case that L[f(x)] is defined
for all arguments.

To prove that L[s] is necessarily continuous on the
basis of our minimal assumptions we can proceed as follows.
Let u(x) € Ch, x€R, satisfy u(x) = 1, |x|<A; u(x) =0,
x| > A+1. Define

1]

ua(x) u(x), x<0

u(x+a), x 2 0

for all a such that 0 < a < A; clearly ua(x)ECB for such a.
If s=1 let fl(x)=u(x), f2(x)=ua(x). If s =2 2 let

£, = u(lxl®),

£,(0 = uy(lx!%).

The ray continuity (weak continuity of each unitary one
parameter subgroup) ensures that
is @(£.)
Cp (s) = E(s£;) = <0le = |02
i



376 JOHN KLAUDER

i=1,2, are both continuous functions of s, while the
special form of f1 and f2 imply that

C. (s)

£ -fdg{L[sfl(z)] - L[sfz(z)]} -AL[s]
—_—= = e N
C. (s)

£

where 0 < A < », Tt follows, therefore, that L[s] is con-
tinuous in s, as was to be shown.

The positivity condition
N
%
) el E(£-£) = 0
1] 1]
i,j=1

carries over by continuity to multiples of characteristic
functions,

which thus implies, for all &4 > 0, that

-ALls,-5.]
iaia"fe S

J
i,j=1
Consequently, L has the form implicit in (2-3), namely

Lls] = bs2 + J [1-cos(rs)]da (1),
x>0

We interpret the first (Gaussian) term as describing the
free, ultralocal Fock theory, but this solution is not of
interest to us at this point, For the second (non-Gaussian)
term we adopt an absolutely continuous measure,

do (A\)=c2(A)dr, leading to the relation

e—brdl{j{l-cos Uf(g)]}cz(x)dx

E(f) = (4-2)

The plausibility of this choice for Ll[s] will become clear
in our subsequent discussions, The integrability condition
on c¢(\) for this expression to exist is clearly

[A21an? 2oya < o,
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but we may (and in fact will) have Icz(X)dX=w. We refer to
c(X) as the model function.

Let us anticipate the remaining properties of the
model function so the reader may be allerted to the various
conditions as they arise., Clearly we can choose c(A) as
real and symmetric, c(-A)=c(X). We shall also find that
c(\) is nonvanishing and twice differentiable except at the
origin, Finally we will require that

[ oyan =«

suggesting the form

~y(})
c(r) = E1R |
1Y
where ¥ %s called the singularity parameter and fulfills
7o

L<y< (When we generalize to space-time smearing we
only require that % < vy.)

Field Operator
An operator realization for ¢(f) can be given in terms
of the relations established in Chapters 2 and 3. 1In the no-
tation of Section 2.5, with y=(x,\), we assert that
o) = [ AT A AN )a

+ [ ey A )

+ [ AT @) A eyar,
If we set

B(x,A) = A(x,A) + c(})

and observe Ehat for symmetric c(A) the principal value
integral Ikc (A)dA=0, we may also put

ox) = [BT(x,0) X Bx,M)dr. (4-3)

[It should be remembered that any expression of this type



378 JOHN KLAUDER

should be interpreted in terms of a limit in the manner
of Eq. (2-8).]

It is clear from our earlier discussion that with the
above choice for ¢@(x) the expectation functional E(f) co-
incides with (4-2). ©Now 9(x), being a construct of A and
at, operates within the usual Hilbert space % build by re-
peated action of the creation operators AT on the (unique)
vacuum |0>, To demonstrate cyclicity of the representation
for w(x) -- and thereby establish the uniqueness of that
representation up to unitary equivalence -- we need only
establish that the closed linear span of ¥ f)10> coin-
cides with the Hilbert space 9.

Functions of the Field

To facilitate the discussion of the cyclicity of the
representation for ®(x) let us investigate some local opera-
tors which can be constructed from the field operator.

From (4-3) we easily see that

PP = 6y JB ) 22BNy d

+ ooy !,
where ! ! denotes normal order with respect to Bf and B
(which are inequivalent to a Fock representation). The
singular coefficient of the first term (at x=y) compared to
the second term permits a test function sequence to pick
out the operator

02 = B ) VB A =20’ ()

where, formally, Z_l=6(0). This is a renormalized operator
product (hence the subscript r), where multiplication oc-
curs in '"A-space'", under the integral. This procedure may
obviously be extended further to yield

F BTG AP B yar = 2P LeP(y)

0P ()

or generally, for a broad class of functions V[A],

nt

Vo@D, = [B' G, HVIMIBGEMN = 27 V2000
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All such local operators are functions in the usual sense
of v (x).

Cyclicity of Representation

Without difficulty we can imagine the construction of
an operator

¢ = ff 8"\ hix)) Bx) dzdr,

again a construct of the field, which is well defined for
all h(g,l)écg that also vanish in a neighborhood of A=0.
The operator eG, still only a construct of the field, es-
sentially takes the vacuum into a coherent state for

ol [0 - eHBT@s,X) [P &) 13 (x, 1) dxar

&, S et

'o>
U—l}c(l)dgd)\ o>
where

g = [ c){e"EM 13cyazar.

If ¢()) never vanishes, then {eh(z’x)—l}c(X) covers a dense
set of LZ(RSXR) as h varifg in its allowed region. It fol-
lows that the span of el? )|O> coincides with % as was to
be proved.

We note in passing, and without proof, that the space
translation generator £ is given by

£f= de&fAT(z,k)(-iz) A(x,\)dh,

Structure of Hamiltonian

The form of the Hamiltonian is decisively determined by
the ultralocal form of the dynamics. Heuristically, we ex~-
pect that

% = [ %(x)dx
where the local operator X(x) has the form

w(x) = FIA (x,%), AGx,)}.
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The notation in the latter expression means, formally,
that

= @ ' t
K(E) 'z Ihn,m()\l"")\n’ Xl,-'-)‘m)
n,m=0
3 t
X ATGEA D AT ) AGA) L AGE N DA

However only the first few terms in such a series can actu-
ally enter, specifically those of the form

K@) = £get] By o) A (kM)A
+ [ AN hy ()

+ AT(E,X) hy l(X;X') A(x,\")drax',
] (4-4)

Most higher order terms are forms and not local operators
as evident in the case

- it it it 3
D(Z{_) = J. A (Z(..s)‘l) A (,}5’)‘2) A (5,>‘3) h3,0()‘1))‘2’>‘3)d AL

Smearing with a space-dependent test function, f£(x), and
taking coherent state matrix elements yields

<y ID(E) [y "> = <y |y'>
x I E@ax [ EA PV A DV )
3
X hs’o(xl,xz,XB)d AL

However, this expression is not even continuous in the co-
herent state bra, for one may choose a sequence wn(g,X)
converging strongly to ¥ (x,\) for which the right side
fails to converge. For example, let

1D = Lo 4071 £eonoy

where a is a point of support of f£(x). Thus hy =0 and
by hermitian symmetry hg 3=0 as well, A similaf argument
applies to the remaining’terms.

Only the quadratic term in (4-4) survives the integra-
tion over R®, so that we must have
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S
B

fax [ a'Gh) by 050D AL DO

10

Jax [ at(x,0) £A(x,\)ar

where £ is a self-adjoint differential operator in the X
variables alone. Observe that ¥|0>=0, and that £ 20 implies
that ¥=0. 1In order to win uniqueness of the ground state
we actually need to have £>0.

Delineation of the Hamiltonian

To further determine fz(and thereby ¥) we must inject
additional physics. We propose that

2 2
_ d = ? c""(\
h = -k 2 +vQd) = - % 7 + % 37%71

which requires that c()) not vanish and that c(X) be twice
differentiable almost everywhere. Observe that £c(2)=0

and that it is necessary that c(A)¢L% in order thatf >0,
i.e., for there to be a nondegenerate ground-state of ¥.

Two model functions which differ simply by a scale factor,
e.g., c;(A) = Nc(\), lead to the same differential operator
%, and thus to the same Hamiltonian i,

An alternate form for K is also useful, which is based
on the fact that we can write

1-
f=bb,
where

1

b=vkc®) sx e T,

With this expression for A, we can recast
.r
% = [dx [[bA(x,\)] [bA(x,\)]dr,
and since the first two operations of b are 'divide by ¢

and differentiate' we can freely add c()) to the operators
A above, Hence, we also can write
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fdﬁf[bB(z,X)]* [bB(x,r)]d\

Jax[ B' (x,0) A B(x,\)d\.

a
[}

]

Focus attention for the present on the term v(}) in 4, and
indeed on the monomial A“" contained therein. Such a term
contributes to ¥X(x) the local operator

[5G A2 By = e

illustrating the central idea in constructing the potential
term in ¥(x) from renormalized powers of the field ¢ (x).
The motivation for the second derivative term in 4 will be
given subsequently.

The Hamiltonian A corresponds to the underlying one
degree of freedom problem alluded to earlier., If we adopt
the relation ¢(*) = [A|7Y exp [-y(A)], it follows that

vy = WD BB 4 57205 - mro,

where, for example, if y(A) is an even polynomial, the lat-
ter three terms yield a polynomial contribution to v(}).
Note there is always a singular term A2 with a strength
determined by the singularity parameter Y.

The interpretation of v( ) is greatly helped by con-
sidering the special cases where
2

A0S 3

il

Y
In this case, it follows that

22
voy = ) 4 o+ w2
2\

Moreover the energy spectrum of 4 can be determined com-
pletely, The energy levels QL, 1=0,1,2..., are discrete,
two-fold degenerate (ﬁ24=ﬁ24+1) and are given by

Hop =M (2442v+1) . (4-5)

That is, apart from a y-dependent minimum energy, the
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energy levels are equally spaced reminiscent of the har-
monic oscillator problem. These levels in the ultralocal
model are interpreted as eigenlevels of an idealized,
"pseudo-free' case -- not free in the sense of the Fock
representation -- in which the interaction potential V is
"zero' but its representation changing effects have been,
in part, taken into account. The uniform ladder of levels
ﬁ& represent the excitation spectrum of,ﬁ, which is heuris-
tically the spectrum of localized energy levels. 1In the
harmonic oscillator an equal spacing of energy levels is
equated with an absence of interaction, independently of
the magnitude of the zero-point energy. By analogy, we
interpret the equal spacing of the levels ﬁL as character-
izing a sequence of '"excitation types' which are declared,
by fiat, to be 'interaction free." Such a view holds what-
ever value we choose for v.

As we change the model function from ¢(A) to a general
c(X), the potential changes from v(») to v(A) and the ener-
gy levels change accordingly. Deviations from the standard
provided by (4-5) describe positive, or negative, interac-
tion energies induced among the excitation tyEes by the new
terms in the potential. So long as y(A)za+br<, b>0, for
example, such Hamiltonians likewise have discrete, doubly
degenerate, energy levels uy, and corresponding energy
eigenstates u,(A). It is evident that we can rewrite the
Hamiltonian in the form

1-
=, [ A, G A @dx =T u, N

where

[ ayo0ae ).

Each N, is a conventional number operator (for excitation
type 1), and the spectrum of ¥ is clearly given by T u,n,,
where n,=0,1,2..., and Zn,<=. Observe that the entire
spectrum of £ is displayed in the 'one particle' subspace
where Zng=1.

A, (%)

Although we have argued the case for a discrete spec-
trum of the essential ideas are identical whatever the
spectrum of 2 is.
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Absence of Canonical Conjugate Field

Consider the expression

9 (x)

1[3¢,0(x)]
o, f B' (x,0) (-13 /1) B(x,\)d

as formally computed from the bilinear form of both ¥ and
®(x). This expression is only a form, and not a local
operator, as readily seen by setting up a sequence of the
type envisaged in Chapter 2. Nevertheless, we could for-
mally imagine the hypothetical construct

920 = [ BT e 0) (2200 %) Bz, Mar

which is seen to be an ingredient in Kﬁg); namely, that
ingredient formally corresponding to m“(x). Although such

a term is not a local operator it is greatly aided by a re-
normalization term

-2 t 1
Yool = BTy L pe
IS
which by itself is also ill defined. We interpret this
latter term as part of a necessary operatgr renormaliza-
tion to supplement the ill defined term ¢r(5) in the con-

struction of the Hamiltonian.

If we ignore the fact that ¢(x) is only a form, we
would formally compute that

[0G),5(D] = 1 8Ce-y) [ B (&,\)Bx,M)dh
which has a divergent c-number term,
16 (x-y) | cZ(yan.

Such a divergence is usually indicative of an infinite
field strength renormalization.

Time-Dependent Field

The simple relation

ix - o
eI yxny e B L g i/@tA(?&)\)
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allows us to express the time-dependent field operator in
the form

t

0(x,6) = e p(x) e I

-if

[ AT @) eMhe ™ a@,nar

ik

t Ax,\)dh
4

+ [ e e

+ [ AT @ P acoan.

For the field to become an operator with space smearing
only it is necessary that Ac(A) be square integrable near
A=0, and this property carries over to the field at any
sharp time t. However, if we permit space-time smearing
to define our operators, then we can choose model func-
tions for which Xc()\)¢L2 near A=0 and consider singularity
parameters Yy for arbitrary values y2%. We note, first,
that the definition of A (and thus of X) is valid as it
stands for any v2%. We mnext argue, in the case of a dis-
crete spectrum for A, that for suitable e(t),

Ie(t) eik

is square integrable fgr vz%. To see this we need only
consider the sum Z‘”L' where

t xe(rydt (4-6)

n

L= I e® ui()\)ejj\t Ae()drde

iugt
k, [ e(t) e™thdt

e(uyk,,
and

ky

[ up)re)ar.

Since IuL(X)| ~ |X|1+Y near A=0, k, exists for all ¢, agd
it may be estimated that k, = ¢ with aS} provided vZ 3
consonant with the_fact that Ac(A) is square integrable
provided that y < 7 But, if ®(u,) falls sufficiently
fast for large argument (equivalent to large {), the se-
quence %y becomes square summable. This demonstrates that
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(4-6) is square integrable, which is sufficient to show
that ©(x,t) becomes an operator with space-time smearing.
A similar argument applies in the cases where the spectrum
of 4, 1s not purely discrete.

However, even if v 2 2 so that time smearing is re-
quired, we can always consider the renormalized fields

o2 = B @0 2 B D

which for sufficiently large 6 again become operators with
space smearing alone. For present purposes let us adopt
an "odd" definition of A%, i.e.,

2 = (stgn ) 1%

Then, it suffices that 6 > y-%, and it follows that

. 8
2 (f) = <0]ei®r ) |o>

- Jax[{1-costh @1} 2yan.

Clearly by a change of variables this expression becomes
identical to that given in (4-2) for some transformed
model function. This means that the renormalized 6 field
power (appropriate to a model function c¢(}X) and a singu-
larity parameter Yy<6+%) is unitarily equivalent to ong of
the fields covered by Eq. (4-2)(where necessarily v< 7).

Summary

We are now in a position to recapitulate the basic
solution for the ultralocal models. For each real, even,
nowhere vanishing, twice differentiable (save at A=0)
model function of the form

for which vy = % and for 6 > y-3%,

[227a0%) Foyan <,
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we associate the Hamiltonian

= Jax [ AT @A A,

where

g
& SRS o 00
k %ax2+ 08

The (space-time distribution) local field operator is
given by

o(x,t) = [ AT oAty o-1ht A(x,))dr

iht

+ [ AT @) ePheyar

+ [ e re At pex Ayar.

As before the potential terms in the Hamiltonian are for-
mally given by renormalized field powers such as

0@ = [ B @B,

which links the representation of ©(x,t) to the Hamil-
tonian.

The connection to the motivating classical problem
seems to be best understood by temporarily reinserting the
dependence on h. 1In this case

L= - Y e = E—lﬁlill +nle + Vi )

ax ZX

where e is a constant, e=(y-%)y'"(0), and y(}) [=y(,h)] is
chosen so that

3 mgxz + VIA)

A
v 0
is h 1ndep§ndent as usual For the pseudo-free case,
y() A%/n so that h“e = h(y-¥)u and v (}) = % 24,
Observe in the general case, that the singular term A~ -2
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makes no classical contribution as h~0 [as is already
familiar from the analogous problem of a radial Schrédinger
equation for a spherically symmetric potential in which,

in the classical limit, the angular momentum vanishes when-
ever the angular momentum quantum number (the analogue of
y) is held fixed].

As is evident from the preceding discussion, the
characterization of the solution is complete apart from
specification of vy which cannot be deduced from classical
arguments alone, To determine vy we shall appeal to a very
different argument and to a very special class of models,
the scale-invariant models,

4.3 IMPLICATIONS OF SCALE INVARIANCE

Scale Invariant Models

In order to determine whether any of the ultralocal
models qualify asswmle invariant we invoke the t=0 invari-
ance criterion given in (3-2). This is most simply employ-
ed if we specialize to multiples of a characteristic func-
tion, £(x) = rx,(x). The expectation functional then be-
comes

E2(£) = c(r) = e 0Ll

and invaria cgsunder scaling [Ee(f)=E9(f(s)), where
f(S)(g) =59 £(s~1x)] takes on the form

s dy-8
-S°AL[S
e

£] o oAl

It follows directly that Llr] = klr|%, where a=s/(s-dy),
and k = L[1]., These functions lead to the (symmetric)
stable distributions discussed in Chapter 2. We noted
there that o is restricted such that 0<a<2, The case a=2
corresponded to the Gaussian, while 0<a<2 were all non-
Gaussian with c(X) being a homogeneous function.

A more direct analysis is useful as well. Scale in-
variance of the expectation functional, Ee(f)=Ee(f(s)),
requires that the expression
d, -

C]

fdzf{l-cos[XeS Sf(S-;E)]}cz(l)dX
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be independent of S. This can only be satisfied by a
homogeneous c(*), namely c(}) « IA1-Y, in which case it
follows (by a simple change of variables) that

dy = (1 - 5op)s, (4-7)

and thus the exponent o = (2y-1)/6.

We note that the only model functions describing
scale invariant theories are given by c(}) = MY (or
multiples thereof), where y>%. The functional form for
stable distributions implies that for scale invariant
theories

8
o leimr(f) ‘0> N e_kj' lf(_g) lad_?é’

where (a#2)

k = [ [1-cos 01 7 Har,
It follows that Ilwe(f)10>l| ==, 1i,e. |0> is not in the
domain of o (f). is 1s only a technical difficulty and
does not invalidate their existence (a suitable time

smeared field can be applied to the vacuum).

Determination of Scale Dimension and
Singularity Parameter

As a next step in exploring the scale invariant
models we invoke scaling with respect to time. 1In analogy
to (3-2), full space-time scale invariance, i.e.,

E'(8) = E(g(gy)>

where
d,-s-1
0 -1 -1
g(s)(z,t) =8 g(s 'x,5 "t),
leads to the easily established requirement that
s d,-s-1
[axfe ) 1-cosl [ (1% 1Rt 707" ool oLy te vy

be independent of S. Observe for c(A) = |x|=Y that
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2

ot 8 o G
3 22X

which is homogeneous in X-z. To secure full independence
as far as the variable t is concerned requires (simply
using the homogenity offg) that

dy = s-%6,
Y = stk

namely, two conditions rather than the single (compatible)
condition (4-7) obtained for t=0. Observe that by this
argument the singularity parameter is '% plus the number

of space dimensions',

We assume that this evaluation holds for y(A)#0,i.e.,
even for nonscale invariant theories. For example, with
this choice the spectrum of the pseudo-free model func-

tions 2
VRN
&) = —y
‘)‘ |S+
is given [on reference to (4-5)] by
u%’=mubm+n

which leads to a ladder of excitation levels with a start-
ing level [ (2u) (s+1)] to spacing (2u) ratio of s+1, the
number of space-time dimensions. (It is amusing to imagine
that such a property almost constitutes an '"experimental
prediction' under the hypothetical conditions for which it
applies.)

Dilation Operator

The explicit construction of the dilation operator
V(S) is straightforward in the ultralocal models. It
follows that

V(S) = exp [ (1nS)[JA" (x,0)D A(x,\) dzd\}  (4-8)
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where
= d . 3 3 3
D = %@‘gg**g-—g'zs) + 5 sy +350 M)
It is clear the V(S)|0> = |0>, and a straightforward com-

putation shows that
d

v H(s)0l (x,)V(s) = s © ol (sx,5t)

provided c(*) = A |7,

Once given the form of V(S) we may investigate the
scale transformation of a general (nonscale invariant)
field mg(g,t) described by c(A)=|A|"Y exp [-y(*)]. in
that case,

d
s ° Bo(sx,50)

U]

- 0
v H(s)0l (2, 0)v(8)
where 53 is characterized by
Ty = MY exp [-y(sTA)]

~
and by the corresponding QQ€=0). For the pseudo-free
case ¢(A), where y(A)=%1“, the transformed field corres-
ponds to a transformed mass U=S~u, a transformation which
is consistent with the conventional viewpoint lending
credence to the choice y=s+% even for nonscale invariant
theories.

Alternative Scale Transformations

Although we have fixed vy on the basis of scale in-
variance arguments it is instructive to understand the
significance of the remaining y values. We have argued
that the ultralocal models may be interpreted as the limit
of covariaat Hamiltonians in which the coefficient (a say)
of %(vo

8 )“ vanishes. It is such a term which dictates
the equaiity of the x and t scaling for covariant theories
as is evident, for example, in the wave equation

629 B 629
Btz 852
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The appropriate scaling, x-~Sx and t-St, holds for all a>0,
and it applies equally well in the limit a=0. However the
limiting equation may be obtained in a number of different
ways. Consider the wave equation defined by

2 32

378 g
—5 =0 (—3) 6, B>0, (4-9)
at2 X

which is covariant under the scaling

B

X-5x; t=S° t.

Only B=1 characterizes the relativistic case. When a=0
all these wave equations are equal and the whole class
(i.e., all B) of scaling transformations apply.

In the case of the ultralocal models, where a=0, the
whole class of scaling transformations should also apply
and not merely the special case B=1. If we repeat our
previous analysis based on the assumptions that
Vg (8) 10>=[0> and

d
-1 0 6,8 6 B
VB (S)CPrQS,t) VB(S)=S ? Cpr(SES,S t),
we would discover that

d = g-%08,

0,8

y = (s/B) + %,

which connects y to the number of space dimensions and the
presumed underlying wave equation (4-9), i.e., to B. 1In
this calculation it would follow that V;(S) has, the same
form as (4-8) ejcept that the coefficient of A 3% etc.,
in D now reads ZB'

On the basis of these arguments the singularity pa-
rameter v can be determined, at least for v>%., The case
v=% is anomalous in this regard (although it can be con-
sidered as a limiting case as B~=). We remind the reader
that the rglativistically determined vy values are y=s+%,

i.e., v = 7 T T ete,
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4.4 PASSAGE TO THE FREE THEORY

An important issue remaining to be discussed is what
might be called "turning off the coupling constant,"
namely, the passage from the interacting models to a non-
interacting, free, Fock solution for a particular mass m.,
This transformation has been disgussed elsewhere for re-
stricted singularity parameters §>Y2%. Here we discuss
the general case y=%,

Field Operator

Let us assume that c(A) is such that Xec(X)ELZ for
some 0>y-%, all of which are sufficient to overcome the
singularity at the origin. For future reference we shall
also need an upper bognd on 0, namely v+%6. With the
"odd" definition of A" we have already noted that

£ () = e—fdgf{l-cosfkef(g)]}cz(X)dX’

while the free, Fock theory of mass m is characterized by
the functional

)
i (£) - £ (x)dx
EL(£) = <0le Lo [ G *

We '"turn off the coupling constant' by choosing a sequence
of models -- hence a sequence of model functions cy(A) --
such that, as n-e,

1 .2
e 205

This is accomplished by the formal requirement that

f[l-cos(kef)]cﬁ M) -

20 2 1
SCNORE SIOF

for example, if we adopt

9
Cﬁ(k) - nz +1cz(nk)

where c(A) has been prescaled (without change of A/or X)
so that

2220y an = (2m)-1.
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Observe that any preassigned mass m can be obtained by
such a procedure,

According to the above conditions, the sequence of
expectation functionals converges to the expectation func-
tional of the free theory. Thus we may say that

vo ) - o (0)

in the sense of expectation functionals. This convergence
does not occur as operator convergence in the Hilbert
space . However, the free field mF(g) has its own well
known operator realization in an appropriate Hilbert space
Bpe

Hamiltonian

The convergence of the Hamiltonian I} to the free
(ultralocal) Hamiltonian ¥ of mass m is more compljcated.
Although o (N) is a local operator (since 0>v-%), @.(x) is
only a form (since we impose v+%20). It follows, moreover,
in a formal way, that

log@), oy = 18w [ B @0y 622D gy

which by hypothesis has a leading c-number singularity

16 (x-y) [ 62 2%-220yan

that diverges because we suppose that 0<y+%.
To remove the infinite multiple in the commutation

relation let us consider the properties that follow from
the scaled and modified Hamiltonians

= [dxf AT(?S,’\) (bTMeb)AQ{,X)dx
ey 3
where, as before, b=2""c(1) (/oA)e’ (A), and

e_ezlxz

i 222, 20-2 2
e M)an

As ¢~0, the operators ¥, converge to a form and not an
operator. We may see this most easily by taking coherent
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state matrlx elements with wave functiong

#(x,\) = A%c(Mh(x,1), where h(x,\) is €2 save at A=0
where C! suffices, and has compact support in RS. 1If |y>
and |V '> denote two such coherent states, it follows that

lim <{ |5, [¢'> = % [ h™(x,0)h' (x,0)dx<y [¢'>,
e-0

which is evidently not continuous in the bra <¢|. The

special states 5
ip (£)

[£> = e |o>

are coherent states of the usual type for which
]
A ]
vy = (@ ey =2 one,n,
and therefore h(x,0)=1if(x). Hence we learn that

lim <fl3c l£1> = % [ £(x)£' (x)dx<f|£'>,
=0

in which, although the set of states |f> are total, the
lack of continuity in the bra <f| is not so obvious.
Finally, if we let M-~ in the model functions cn(X) we
learn that

lim lim <flxc [£'> = % [£(x) €' (£)dx <fI£'>,
n-0 ¢-0

which is well known to characterize the matrix elements
F<flK?|f'>F of the free Fock Hamiltonian of mass m in the

Hilbert space ®p. In the sense of the above analysis,
Mﬁﬁ?.

For the space translation generator we immediately
find as n—= that

<f|‘1f’1 ~|f'> = <f|f'> o+ <f|f'> = <flgié‘EFAfv>
a F aFF F

In this sense, P -~ Pp.

* Here we introduce <0|f>FE Ep(f) and lf>FEeimF(f)|0>,
which form a total set for &F.
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Conclusion

It is noteworthy that a transition to the free, Fock
theory exists for all y2%, and that each theory can lead
to a free theory with any preassigned mass value.

It is remarkable how complete an understanding can be
found for the ultralocal models on the basis of simple
symmetry arguments., The power of these arguments will
again become apparent in the models discussed in the next
chapter.

5. DIASTROPHIC FIELD THEORIES

5.1 HEURISTIC, CLASSICAL MOTIVATION

The basic extension of one problem to another which
distinguishes the ultralocal fields can be applied more
generally. By way of illustration consider the classical
Hamiltonian of a covariant, ©”, theory

Hylr 1.0,4] = I{%[W21@)+Qcpc1(zg))2+m§cpzl(>~<)]

+ ¥g ot ()] dx (5-1)

and the diastrophic field theory it engenders. We enlarge
the configuration space so that m_q(x) - T,;(x,w) and

¥ (f) - wcl(g,w), where w€R, and adopt the classical

mode

H(T,15%09) = J Byl7 o 05 @, (o) ldw

2
o

n

[HEM2) G, W)+ (2o (6, )) ol (2,1)])

+ Ygor, (x,w))dzdw. ‘ (5-2)

The essential point to observe is that there is no mecha-
nism for communication of field values from one w value to
another -- distinct w values label statistically independ-
ent fields for all time. This feature is also clear in
the field equation that follows from (5-2), namely (x=x,t)

@ + md) o (W) = -gpl; (x,W) . (5-3)
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In fact, if we choose as initial values

Py &EW) =9, @ XMW,

6o (8,W) = B (&) X(W),

where X(w) is a characteristic function (say for |w| <%),
then the solution to the diastrophic model is just

Poq (FW) = 0 4 (x) X(W)

where @, (x) is the corresponding solution of the base
theory g}ven in (5-1). That is, all the solutions of the
base theory are contained in the solutions of the diastro-
phic theory. (This argument is of course independent of
the covariance of the base theory.)

Not only can we have the solution 9 (x) in the
"stratum" |w| < %, we can simultaneously %ave two quite
independent solutions in disjoint strata. To show this we
need only note that

Peq (W) = 0 (%) x(W) + 8 ;(x) K(w)

is a solution also, provided that ¢ (x) and @ (x) are
solutions of the base theory and that X (w) L(w ? . This
picture obviously extends to any number of solutions in
disjoint strata, and all solutions are suitable limits of
such multiple-strata solutions.

Suppose the diastrophic classical model (5-2) could
be quantized. For one thing it should correspond to a co-
variant theory as is evident from the equation of motion
(5-3). Moreover, since within one stratum (say lwl < %),
we can recover the entire set of classical solutions of
the base theory, it is not unreasonable that a scattering
theory could be set up, built from asymptotic states
having characteristic functions in w for test functions.

We also have another fact at our disposal, namely that if,
in the quantum theory based on (5-2), the coefficient of
the spacial gradient went to zero we must recover an ultra-
local model of tEe preceding chapter based on the configu-
ration space RST%, the latter R coming from the variable w.
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Superficially, on the basis of perturbation theory
for example, the diastrophic theory is no less singular
than the base theory. We approach their solution by non-
perturbative techniques, and, although we are only able to
present a certain '"super structure' of the solution, it is
noteworthy how much structural information can be found.
Our discussion makes heavy use of analogies, both explicit
and implicit, with the treatment of the ultralocal models.

5.2 SUPER STRUCTURE OF OPERATOR SOLUTION

As in the previous chapter our assumptions are minimal
and reasonable. For a large class of symmetric potentials
we assume there is a positive, self-adjoint Hamiltonian X,
and a unique ground state [0> satisfying %|0> = 0. Also we
assume there is a space-translation generator P satisfying
[P,%] = 0, and |0> is a nondegenerate eigenstate of P,

P{0> = 0, Likewise, we postulate the generators of the
Lorentz group for a covariant diastrophic model.

With regard to the field operator ©(x,w) = @(x,t,w)
we assume it transforms conventionally, and is self adjoint
when smeared with appropriate space (or space-time) plus
w-dependent test functions. For purposes of illustration
we shall assume that space plus w-dependent test functions
suffice, (The appropriate generalization to include time
smearing will be noted subsequently.)

Determination of Expectation Functional

We study the expectation functional for the field
operator

o(£) = [ v(x,w) £(x,w)dxdw.

The "ultralocal' nature of the dynamics with respect to
the variable w implies that

B(g) = <0| X 0> - omJaLLEC W)}

(5-4)
Here, the notation for L denotes, formally,

L{f(-,w)}= % FoolM Gy, x DG, W)L (8 ,W) K. dx .
n=o



FUNCTIONAL TECHNIQUES 399

Symmetry of the potential implies that E(-f) = E(f). Let
us assume that E(f) is defined for all f € Cy (minimally
ray continuous) and is positive definite., It follows from
the functional form in (5-4) that E(f) is infinitely di-
visible. Clearly

[E(E)1I/M = o (1/m) JawL{ £(- ,w)}

a e-j‘dW'L{f("mw')} = E(f[m])’

where f[.1(x,w) = f(x,mw) € Co. It follows that [E(f)]l/m

is an expectation functional for all m and is therefore
infinitely divisible. This property, which holds for all
f(x,w), is a consequence of the ultralocality of just one
of the variables, namely w.

According to Eq. (3-9), E(f) never vanishes and thus
L{f(-,w)} is defined for all f. Continuity of E(f) ex-
tends to product test functions of the form
fx,w) = £(x) Xp (W), where X, is a characteristic function
and £(x) is smooth. For these cases

£ = LALLEC)]

which since if must be positive definite for all A>0 im-
plies that L{f(:)} can be determined from Eq. (3-9). As
in the ultralocal models we associate the Gaussian terms
with the free (Fock representation) theory and focus in-
stead on the non-Gaussian part. Thus we have determined
that

E(f) = o-Jdwf{1-cos(h,£(w))] do (M)

where, formally, the notation means
(h,£@w) = [ Ax) £(x,w)dx.
In the present theory, the '"model function' is contained

in the measure 0. In analogy with the ultralocal case,
we shall require that f do(A) = =,
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Field Operator

An operator realization for the field can be given in
terms of the formulation presented in Section 3.4. For
this purpose we assume that

b= 2,0y x i) = £
composed of elements Yy (A,w) such that

0,0 = [awf e n,w | 2do(n) < o,

It is also convenient to employ elements of SZ(U',U) alone,
say Yy (A), for which

<¢,v> = [leny 12aon).

The round or angular brackets distinguish the two cases.
In an obvious embedding we can imagine that

V(A,w) € SZ(U',U)
for almost all w, in which case we set
<y @), @)> = 1w |Pao ).
Observe that the function '"one'" is not an element of =

[since [do(A) = =], but that IAcg)glgng, for suitable
g(x), is o-square integrable 'near the origin".

In the notation of Section 3.4 we may represent the
field operator o(x,w) as

9(x,w) = <B(w), A(x) B(w)>
[cf., Eq.(3-5) and also Eq. (4-3)]. Here we have chosen

%
B(®) = A(®) + [0 (A,w) do(A)dw,

which holds for o € £2 n 31, and which can be viewed as

the limit of unitarily equivalent operators for a non-

Cauchy sequence § (A,w) ~ 1 in the sense of Chapter 3. 1In

terms of coherent state matrix elements we have
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<y lo,w) "> / <yly'>
= [T*(A,w)+1] A(x) [v'(A,w)+1] do(h),

where |V> = N exp [A(w)T]|0>, Y€y, as usual.” 1In spite of
the abstract notation, the fundamental idea to appreciate
is simplicity itself: The representation of the field
operator is bilinear in conventional (Fock representation)
annihilation and creation operators!

Functions of the Field and
Cyclicity of the Representation

It is clear that we may write
P x,WeE",w') = s(w-w') <B(w),AE)A(x')B(W)>
+ D ox,weE',w") !,
1 !

where ! | means normal order with respect to B! and B.

As in the preceding chapter the singular coefficient of
the first term (for w=w') permits a test function sequence
to pick out the partially renormalized field product

lo@x,wo',w)] = <B(w), A@)A(E')BMW)>,

where multiplication occurs in '"A-space'. This is a par-
tial renormalization because, as x'-x, another, model de-
pendent, renormalization may be involved; however, we do
not discuss this problem,

By extension we can clearly build partially renormal-
ized polynomials composed of terms such as

[0y W) - 008, W], = <BW),AGE). . AGE)B(W)>

all of which are functions of the field o (x,w). It is
from such operators that we expect to build the nonlinear
interaction terms in the Hamiltonian just as we did in the
ultralocal models. All such terms are bilinear in the B's
(or A's)!

* We adopt, as in Chapter 4, a principal value definition
such that [A(x)do(A) = 0.
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Cyclicity of the representation can be established in
much the same manner as for the ultralocal models. 1In a
limiting fashion, let us build the operator

G = [ <B(w),h(A,w)B(w)>dw
where h(A,w) is a suitable functional, e.g.,
n(a,wy € £+ n &=,

The operator eG essentially takes the vacuum into a co-
herent state since

eG|0> = ! eI<B(W)a{eh(A’w)-l]B(w)>dw!

T
o eg+A(‘J/) l0>

o>

where g is a numerical factor, and where
VA, = (MW gy ¢ 32

in virtue of our assumption on h. As h(A,w) varies in its
allowed domain it clearly covers a dense set of elements

in &7, which thus ensures the desired cyclicity. It is
note-worthy that this remarkable cyclicity has come about
by the fact that w € R. One should never underestimate the
power of the continuum!

A Few Generators

The simplest generators to deal with generate trans-
lations in the configuration space. For example, the
operator

b = [ dw<A(w),(-1d ow)A(w)>

induces translations in the stratum variable w. The space-
translation generator P is likewise bilinear in AT and A,

e = [ dw<a(w),p A(w)>,

where 7513 a self-adjoint operator on £2 with the property
that
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4,07 =7 M.

Note that P|0>=0; But uniqueness demands there exist no in-
variant state in £°,

The form of these operators is already completely
dictated by the field operator representation since a total
set of matrix elements is given by a relation such as

<flet®E|gr> o <f£_|£'> = E(£'-£)
where

&> = 195 |05,

Structure of Hamiltonian

The operator form of the Hamiltonian is as conceptual-
ly simple as a collection of harmonic oscillators! As in
the ultralocal models we expect that X = [X(w)dw and that
¥(w) is constructed from A and AT, but only at the point
w. We are led by the same reasoning as in the ultralocal
case to the form

KX = [dw<A(w), A A(w)>

where A is a self-adjoint operator on 32. Again 3¢{0> = 0,
and to have uniqueness of the ground state and a non-nega-
tive spectrum we need# >0. That_is, there can be no time-
translation invariant state in SZ, nor, as we have already
noted, any space-translation Invariant state. Thus, with
regard to the base quantum theory -- that defined in £2 .
we deal with an unconventional field theory, one without a
normalizable, invariant state.

For the Lorentz group (when this group applies) iden-
tical reasoning demands that

=
]

Jaw < A(w), & A(wW)>,

4

[aw < a@), 4-a)>,

for the boosts and rotations, respectively. Fulfillment of
the Poincare Lie algebra by X,P,¥ and 2 is assured provided
,fb,é, i andf: already fulfill the Lie algebra on £2,
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However, in this latter case we deal with an unusual repre-
sentation since there is no normalizable state annihilated

by K,o;f.

Stratons and Excitations

We may suggestively refer to
n = fdw < A(w), A(W)>

as the ''straton' number operator, and the subspace where
N = n as the n-straton subspace. Evidently [nh,x]=0, etc.,
so that all the generators we have introduced conserve
straton number,

Straton conservation implies that we can restrict X
(and the other generators) to any particular n-straton sub-
space, It is clear from the construction that the entire
spectrum of K,is contained already in the one straton sub-
space. Hence, among the one straton states we expect to
find the one particle states of the base theory, two par-
ticle scattering states, three particle scattering states,
etc. Among the one straton states should be found a two
particle "in'' state and a (different) two particle 'out"
state, etc., which implies, as well, that the conventional
scattering theory of the base theory is already contained
in the one straton subspace. Thus, unlike the usual one
particle S-matrix (which is trivial), we expect nontrivial
scattering to exist among initial and final one straton
states.

Two straton states would describe two independent,
uncoupled scattering events conveniently pictured as taking
place at disjoint strata. Multi-straton states have a
corresponding interpretation.

Time-Dependent Field

The form of the time-dependent field operator can be
readily found using the relation

etmt<w,A(w)> Cas e <m,e_iKtA(w)> = <e

U‘tﬂp ,A(wW)>

where <¢,A(w)> 1s the annihilation operator which maps the
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coherent state [¥>, V(A,w) € 8% ynts <@, ¥ (w)> >,
1f we note that

P(x,w) = <A(W) ,A(X)A(W)>
+ <A(x),A(w)>
+ <A(W),A(x)>,
then we find (x=x,t)

elxtm(g,w)e_ﬁmt

¢ (x,w)
= Zui, J1At A(g)e-iﬂt
e (x), agw)>

+ <a(w), et (x)>.

A(w)>

+ <

It is convenient to define this as
P(x,w) = <A(W), A(x) A(W)>
+ <k(x), A(w)>
+ <A(w), K(x)>,

which introduces theznotation A(x), an operator on £2, and
A(x) an element of £%(of course when smeared). We empha-
size that the field operator, for all times, is simply a

bilinear expression in A and A'".

* The space-time field v(x,w), and the given generators for
¥ and £, would serve to characterize the theory in the
event that space-time smearing is required. This permits,
as in Chapter 4, the generalization to additional measures
o(A). These may be different in that only [ [A(x)g(x)dx]”,
6>1, may be square integrable near zero (rather than 6=1),.
These measures may a}so be different if 4 cannot be con-
structed to act on £“but requires an enlarged space; i.e.,
the field at fixed time of the base theory is not cyclic.
Even if this is the case, the given expressions for o(x,w),
K and P apply with the new measure.
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Asymptotic Fields

The bilinear form for o(x,w) is in fact preserved in
the asymptotic limit yielding '"in" and "out" operators.
Let "ex" denote either of these. Then we must have

9 (FoW) = <AG), A__(x) A(w)>

+ <Xex(x) » A(w)>

+<aw), X (x)>. (5-5)

In the simplest form of asymptotic theory we would associ-
ate the one particle states (say of mass m) with the one
straton states formed from ¢ X(x,w)|0>. The only term of
(5-5) which contributes is the last and we find

Py (X:W) 10> = <A(w), X __(x)> [0>

J R0 doqa)la,w >,
Stability of the one particle state requires that
) =T ().

The overlap of two such states is just

Ain(x) = Aout

' ' = el
<0lp_ (x,mo_ (x',w') |0> = &(w-w")
X <Xo(x), K;(x')>,
from which it follows that we should have
¥ - 2
J R COR (x")do(h) = -in, (x-x"3m").

Consider next the product o (x,w)wex(x',w') which
contains a one straton creation operator term proportional
to 8§(w-w'). To emphasize this term we appeal to our par-
tial renormalization of the product. The vector

f
(o, (ko (x',w)]_|0>

has the one straton component
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<A(W) A (O (x> 0>

f Aex(x)xg(x')dc(A)|A,w>,

which we interpret as a two particle state. These states
can differ for "in'" and "out'" and their overlap would cor-
respond to a two-particle elastic scattering amplitude.
From these examples one sees the way in which scattering
states can in fact lie in the one straton subspace.

It should be noted that the asymptotic fields gy (x,w)
are not canonical (c-number commutator) unless A X(x) = 0.
This behavior is mandatory in order to have non-trivial
scattering for otherwise win(x,w) = wout(x,w) and no scat-
tering arises.

Indeed, the form of the S-matrix must be given by

5 = eifdw <A(w), nA(w)>’

which, as usual, must fulfill

-1
S min(x,w)s = mout(x,w).

This is satisfied provided we have

-in in _
< Ain(x)e Aout

(x)
and
in— =
't (x) = T _(x),
which are quite plausible.

Truncated Vacuum
Expectation Values

On the basis of the bilinear form for the field opera-
tor, the truncated vacuum expectation values for the field
may be readily calculated. It follows directly that
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<0lp(xy W) .0 (x_yw ) (05T
= 6(w1-w2)...6(wn_1—wn)
X <K(x1) y M(ry) .. AR 1)K(xn)>.

Moreover, if we introduce

0(x) = fﬁ % (x,w) dw,

an operator appropriate to the stratum |w|<k, we find
simply

<0loxy)...0(x ) 10T

<K(x1) A (%) . . .A(xn_l)ﬁ'(xn)>

]

JRE DAY A (xR (x )do (). (5-6)

It is noteworthy that only one straton intermediate states
appear in the construction of the truncated functions. If
there are any asymptotic states (possibly requiring compos-
ite field operators), or even if there is no scattering
theory at all, these facts can, in principle, be deduced
from the truncated functions (5-6).

5.3 SPECULATION ON ADDITIONAL PROPERTIES

A number of additional properties of diastrophic
quantum fields can be postulated on a heuristic basis by
analogy with similar results for ultralocal models. We
may imagine that the dynamics and field representation are
linked through a functional differential equation '"41 = 0"
[similar toAc(*) = 0). This would lead to joint expres-
sions

i = [ dw <A(w) ,RA(w)>
= [ dw <B(w) ,AB(w)>.

In the latter form we could expect to identify renormalized
powers of the field characterizing the interaction poten-
tial appearing as monomials in A(x) within A along with
functional differential operators, 6/6A(x). If we suppose
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that the highest-order functional differential operator in
4 contributes the formal term

-3 [16%/50% )] s,
then it would follow that
loGx,w), ox',w")]
= 18 (x-x")0(w-w') <B(w), B(wW)>,
which has a leading c-number singularity
i 8(x-x") 6(w-w') [ do(n).

On this basis we also expect that ©(x',w') is only a form
and not an operator when smeared with a test function

fx',w').

The passage to the free, Fock theory of mass m_ could
presumably be arranged along lines similar to those appro-
priate to the ultralocal models. For the field operator,
for example, we could obtain convergence of the expectation
functionals basically by a suitable scaling. Consider a
hypothetical sequence of covariant measures On(A) with the
property that

: 2
[ MA@, (1) = -i] 8, G-y; mD) b (nD)dn
[pn(mz) is the two-point spectral weight] converges to

lim [ M)A (g)do, (M) -iA+(_g_c-y;mg)

i}

2b(x,y) - (5-7)
Then it follows that the sequence

B (6) = o-[au[[1-cos(n, £(w) Indo (nh)
e-fdwj{1-cos[n'1(/\,f(w))]}nzdcn(/\)

converges to

B () = o~JAw(E(W), BE(W))
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where b is the kernel defined by (5-7). This is the ap-
propriate expectation functional for the covariant diastro-
phic free field of mass m .

Pseudo-Free Models

The general formalism outlined above applies, in
principle, to,a number of covariant diastrophic theories
such as the o theory appearing in (5-2), or for other
symmetric potentials. The difficulties in computation are
not necessarily simpler in such a study -- namely determi-
nation of a suitable o0(A) -- but they may be different
ones. However, among all such models that can be studied
two types stand out as prime candidates for early attack.
In the ultralocal models, the pseudo-free cases were among
the simplest possible. The analogue of the pseudo-free
cases in the present context should yield a very different
way to view a conventional free theory, one in which the
interaction is vanishingly small but one in which its rep-
resentation changing properties have, in large measure,
been taken into account. Presumably such a pseudo-free
theory should have no nontrivial scattering, but rather it
serves to ''prepare the ground.'" Adding interaction to the
pseudo-free theory seems to be conceptually and practically
easier than adding it to the free (Fock) theory, as we
comment on in the next chapter. Indeed, in favorable
cases, the field representations of the two (i.e. pseudo-
free and interacting) are locally equivalent if the be-
havior of the ultralocal models carries over. It would
seem that a study of pseudo-free, covariant, diastrophic
quantum fields would be a useful enterprise.

A second class of interesting models could be the
scale-invariant ones, which proved so useful in the study
of the ultralocal fields. By analogy, these models would
have a number of delicate technical questions, but again,
if analogies hold true, the scale-invariant theories should
correspond to the zero-mass, pseudo-free covariant diastro-
phic fields and may most likely be obtained from the
pseudo-free models as a limit in which their only parame-
ter -- the mass -- vanishes.

* And by implication to noncovariant diastrophic theories
of many varieties although we have not discussed any as an
illustration. We trust the reader's imagination to make
the necessary changes.
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6. THE CLASSIC FUNCTIONAL TECHNIQUES REVISTED

What is the relationship, if any, of the field theory
solutions presented in these notes to the classic func-
tional formalisms as presented in Chapter 1? For the sake
of illustration we take the most understood of our models,
the ultralocal models of Chapter 4. The usual functional
formulations purport to '"solve the problem'; but what is
the true state of affairs? The explicit solutions we have
obtained can shed some light on this situation.

Diagonalization of the Field

We take the simplest ultralocal models for which

E(f) = e-fdgf{1-cos[kf(§)]}c2(X)dX

with a singularity parameter v satisfying % < vy < 2
According to the theorems presented in Chapter 3, it should
be possible to realize E(f) in the form

e = | M Damy,

where A(X)€V'. A heuristic, physical picture of the kind
of elements in V'can be given on the basis of results ab-

stracted from the theory of ''shot noise.'" We suppose that
we formally may write
-
ME) =) Ay 8Gxmxy), (6-1)
j=1

where A,, y. are independent, and identical random varia-
bles fot al j. The characteristic function for the dis-
tribution-valued stochastic variable A(x) may be given by

which we interpret to mean

i\
Lin { [ef RS TAL

where U, is a sequence of normalized measures. The appear-
ance of the Nt power is a consequence of the assumed equi-
valence of distributions for each j. Under appropriate
conditions (which we adopt) it follows that
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. N i e(y) _, N
;iz {1+ N f (e -ljduN(X,X)}

y e‘IV [ei)\ f(X)_u do ()\ ’—Y)

where 0 = lim Nu,,, Independence of X\ and y, uniformity of
the distribution in y, and symmetry and abSolute continuity
of the A distribution finally determine that

i, B _ -[dyf{i-coshE(p) Il M) ar

as desired [cf. Eq. (4-2)]. Consequently, we may formally
regard

AEE) = Z,A,8(x-y,
@ = T 6 Gemyy)
as characteristic of the elements in U',

To make this realization more plausible we note that

A(-}S)A(L{') - _‘]E,:k xj)\k 6(5"Xj)6(-§"ik)

[

2
2N, T8 (x-y. )8 (x' -y,
Y (x-y) 0 &'-xy)
+ = A A d(x-y.)0(x'- :
Iy Eiy Pl FCAC S )
Observe that the first term may also be written as
2
S(x-x') . A0 (x-y,
(-x') 25 A;0(x-y))

which suggests that
2 2
AT(x) =2, A, 60(x-y.
L) = 5] 8y

corresponds to mg(g). Higher order renormalized products
are defined analogously.

Consider next the quantity

AMx) = B (-1 3) 1) b (x-xy) (6-2)
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which is formally a differential operator on the space VU'.
It follows that

[AG) A" = 16 (5-5")% 36 (x-yy)

However the quantity H(x) = 6(~-y ) is not a meaningful
random variable since (if £ # 0)

. 2
21 D), _ e-j'dgf{l-cos[f(z_{)]}c Max
due to the divergence of fcz(X)dX.

Within this framework, the (functional) differential
representation of the Hamiltonian ¥ is given by

X = j{}é[i\icg + y(y+1)/\;2@5) + 2
F L] + (MA@ D) Vdx. (6-3)

Expressed in terms of the realization (6-1) and (6-2) we
determine that

=i J‘{Zj[-;

x-y;) dx
a2
= Zj[-% M—z + V()\j)].

The similarity to the differential operator for A is clear,
but, of course, the interpretation is quite different.

The expressions given above represent the best inter-
pretation of a diagonalization of the field (at t=0), and
a realization of the Hamiltonian as a functional differen-
tial operator. It should be noted that the class of ele-
ments composing V' is of basic importance for it determines
the form of the renormalized product. Moreover, the opera-
tor -i8/8A(x) actually does not appear in ¥, but its role
is assumed by the formally similar quantity A(x). Adding
these features to the need for the uBusual and unexpected
field renormalization term ;Y(YLI)A (x) drastically re-
duces the value of the straightforward, commonly assumed
functional form like (1-3).
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T-Product Generating Functional

Consider another of the functional formulgtions of
Chapter 1, For the ultralocal models (% <y < 3) let us
construct

Q{_’]} = <0‘T ei Iw(z_(,t)j(l{’t)dz_{dtlo> (6-4)

where j(x,t) is a smooth function. This expression can be
evaluated for the ultralocal models, and one finds

0{3} = exp (fdx[ c)(T eifx(t)j(5’t)dt-1}c(X)dx),

where A (t) = elktke'rkt. Strictly speaking, this expres-

sion is not precise and should be supplemented by the gkle
that ¢c(A\) is a formal left and right eigenvector for el™t

with eigenvalue one. Thus a term like

J @M () A (e DM(E e () dr
is understood to mean

- iﬂtl ikt
J e@ne k() u . h(E, _q)e e )dr.

We discuss only a few questions based on the formula
for 0{j}. Suppose one had a particular solution corre-
sponding to one model and wished to consider the perturba-
tion to another model with a different potential. For ex-
ample, assume that we knew (0{j} based on the pseudo-free
model function é(A) = |A|7Y exp (-32°). Considering the
interaction term gr™ to be a perturbation in the potential
we could expect that a relation like (1-4) holds, namely

where Z-1=6(0) denotes the factor associated with renor-
malized field powers. To be more precise we anticipate
that Q{j} is the limit as g(x)-g, where g(x)€Cy, and

g(x)=0, of L "
R 3 :
Qg{j} - N e ife2707H () dxpigl e =)
g

This latter expression can be made meaningful provided
the field representations for ¢(A) and c(A) are locally
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equivalent, and_the condition for this to hold is just
fc(2) - ¢(A)}€L®. 1In that case Ng is neither 0 nor « and
is chosen so that Qg{O} =1,

We define the operator

@g = I g(x) 2364/6j(x)4dx

by its action on functionals of the form
= =il : :
3 =% (n!) jjAn(y;tl,...,tn)J(y,tl)...J(y,tn)dydtl...dcn

(6-6)
to be

-1
= ' o
@g?f Zn(n') ,r-'IAn+4(.Y’t’t’t>t)t19'-7tn)g(_2’t)
X j(y,tl)...j(y,tn)dydtl...dtn. (6-7)

The inclusion of the space-time cutoff g(x) removes any
support requirements on the coefficients A_; in fact, in
the case of interest A,, n>0, is independent of y. Certain
of the functjonals & would be analytic functionals for 6

-1 -i6,8
such that e 83 = 5(m!) 1(-1)™™%. The operation e =
can be extended by linearity and®continuity to additional
functionals which need no longer be analytic for 6_,. It
seems reasonable that Q{3j} is a functional of thistype,
and that (6-5) holds true. Finally 0{j} = lim Qg{j} as
g(x)-g.

One advantage of this picture is that the unusual re-
normalization A"“ in A is already included in Q, and only
the genuine interaction term A™ need be explicitly dis-
played in constructing Q. Yet we know this to be true
only because we already have the operator solution to draw
on, What exact form the renormalized interaction assumes
cannot be foretold in the general case,.

It }g noteworthy that there are many functionals on
which e & acts in a trivial fashion. For example, on
the basis of our earlier definition

-i6 ... E
o BAGED. S0
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where
G,H = [ i,t) f(x,t)dxdt

and fECE, say. One may be tempted to extend this trivial
action to other functionals by linearity and continuity --
but what is the appropriate choice of topology? For ex-
ample, an extension of the trivial action, consistent with
(6-7), can be made to the functional

. "J‘ j(’E’tl)b(tl’tz)j@’tz)dtldtzd}f
QO{J} = e ’

which is the form of (6-4) appropriate to the free Fock
representation. Yet we would not like to extend, by con-
tinuity, a trivial action to the functional Q{j}. What is
the distinction? 1In the Hilbert space characterized by
Qo{j} (e.g., in the functional Hilbert space constructed
(at sharp time) in the fashion of Section 3.2] the action
of 6_=0. On the other hand, 6, is nonzero in other func-
tion§1 Hilbert spaces such as %hat characterized by Qi j}.
Any superficial "extension by continuity' would tend to
gloss over the delicate distinction of different functional
Hilbert spaces. Clearly, considerable care must be exer-
cised in the general problem in finding the proper defini-
tion of an interaction operator.

Speculation on Covariant Models

Let us once again consider Q{j} as given in (6-4).
In analogy with (1-4) we wish to exglore the possibility
of restoring the (spacial gradient)“ to the ultralocal
models thereby giving a covariant theory. Formally, we
might anticipate that the covariant functional Q_.{j} would
be the limit of the expressions

: : 2
ch{j} = Ncg el% Ig(X)[_Yﬁ/éJ (X)]r dxﬂ{j} (6-8)

as g(x)~1l, where r stands for some unknown renormalization.
For this expression to be useful we must somehow be able
to define

Eg = = | &df g(x)[zé/éj(x)]idx
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on functionals of the form (6-6). If this could be accom-
plished we sould have the ingredients of a covariant
theory, or so it would seem. Unfortunately, no natural,
straightforward definition has been found, and one is re-
luctant to introduce momentum-space cutoffs blindly just

to get a definition. After all, momentum-space cutoffs
make the ultralocal interaction terms compatible with the
Fock representation; but there is no hope for such a scheme
because one is ignorant of the unexpected yet necessary
operator renormalization [i.e., A-2(x)as given in (6-3)].
It is not known whether or not unexpected renormalization
terms would be needed in restoring the spacial gradient
term, and if so what form they would take. On the other
hand, the inadequacy of the scheme represented by (6-8) is
by no means certain, and perhaps it should not be dismissed
so lightly.

Conclusion

It is hoped that the reader may have found in the
material presented in these notes further evidence for the
continuing appeal of functional techniques. Few can deny
the potential power and diversity of both the old and the
ever-enlarging new functional techniques in attacking the
fundamental problems of quantum field theory. So numerous
are the unsolved problems and so challenging are their
solutions that one feels a kindred relation with the Colo-
rado miner of yester-year in his tireless search for the
tiny deposits of precious ore deeply hidden the vast wil-
derness. One can only hope, as he did then, that "Surely,
there must be gold in them thar hills."
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I. Introduction

These lecture notes present an outline of the proof
of the existence of the thermodynamic limit for Coulomb
systems. A brief statement of the main results has ap-
peared previously, Lebowitz and Lieb (1969), and the full
work will appear shortly, Lieb and Lebowitz (1971). What
we have tried to do in these notes is to present the
ideas and methods used in constructing this proof while
leaving out most of the details of the analysis. In some
places, such as section III, we treat only the simplest
kind of Coulomb system: two species of charged particles
(one positive and one negative) whose only interaction is
through the Coulomb potential. In other places we simply
state various lemmas and theorems without proof.

The basic pre-requirement for the existence of a
thermodynamic limit for Coulomb systems in the Dyson-
Lenard Theorem, Dyson-Lenard (1965), which gives a lower
bound to the energy of a system of charged particles.

It is therefore very fortunate that the proof of this
theorem is presented in a particularly nice form, in
Professor Lenard's lectures which are included in this
volume.

*Supported in part by National Science Foundation
Grant GP26526
+Supported in part by AFOSR #44620-71-C-0013
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Statement of the Problem

Statistical Mechanics as developed by Gibbs and
others rests on the hypothesis that equilibrium properties
of matter can be completely described in terms of a phase-
space average, or partition function, Z = Tr {exp(-8H)},
with H the Hamiltonian and B the reciprocal temperature.
It was realized early that there were grave difficulties
in justifying this assumption in terms of basic microsco-
pic dynamics., These questions, which involve the time
evolution of macroscopic systems, have still not been
satisfactorily resolved, but the great success of equi-
librium statistical mechanics in offering qualitative and
quantitative equilibrium explanations for such varied phe-
nomena as superconductivity, specific heats of crystals,
chemical equilibrium constants, etc. have left little
doubt about the essential correctness of the partition
function method. However, since Z cannot be evaluated
explicitly for any reasonable physical Hamiltonian H, com-
parison with experiment always involves some uncontrolled
approximations., Hence, the following problem deserves
attention: 1Is it true that the thermal properties of
matter obtained from an exact evaluation of the partition
function would be extensive and otherwise have the same
form as those postulated in the science of thermodynamics?
In particular, does the thermodynamic, or bulk, limit exist
for the Helmholtz free energy/unit volume derived from the
partition function, and if so, does it have the appropriate
convexity, i.e., stability properties?

To be more precise: TLet {A.} Be a sequence of
bounded open sets (domains) in J°R® with A, becoming
infinitely large as j - ® in some 'reasonablé way' which
will be specified later. (We shall be concerned primarily
with d = 3 but many of our results are valid for all d).
The volume (Lebesgue measure) of A. will be denoted by
V(As;) and V(Aj) - ® ag j = @, Colisider now a sequence of
sys%ems consisting of S species of particles in the domains
{Aj} . Let N. = (N,~, ..., N.5) be the partjcle number
vector specif}ing the system Jin A: , i,e. Ny is a non-
negative integer and is the number” of particies of species
i contained in A, . The canonical partition function of
the jth system a% reciprocal temperature B is then given

by
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by Z(B’ Ej H Aj) = aéo exp [-B EC(. (,Nj H Aj)]
(1.1)

m

exp [V(AJ) g (Ba -E_'I 5 AJ)]

where E, (yj ; Aj) are the energy levels of the jth
system, pj = Nj/V(A-) is the particle density vector, and
-Bg~ (B, P A3) is the Helmholtz free energy/unit volume
of the jEE system. According to statistical mechanics,
knowledge of g determines all the equilibrium properties
of this system. The question to be studied is the foliow-
ing: Given a sequence of particle density vectors [p.]
which approach a limit p as j - = , does g(B, p ; Aj7
approach a limit, g(B, P), as j - © and is this limit in
some sense of the particular sequence of domains {A.} and
density vectors {p.} used in going to the limit? I% so,
does the 1imiting”%ree energy density have, as a function
of p and B the convexity properties required for thermo-
dynamic stability, i.e. is g(B,p) convex in B and concave
in p ? (With regard to B, we see from (l.1) that each
g(B, 03 ; Aj) is convex in B . Therefore, if this limit
g(B, pg exists it will automatically be convex in B
Consequently we can set 8 = 1 and omit mention of B , and
shall do so henceforth.)

The proof of the above for the free energy obtained
from the canonical ensemble and the proof that the 'same'
results are obtained, in the thermodynamic 1limit, from
the microcanonical and grand canonical ensembles as well,
have come to he recognized (by some people) as one of the
basic goals of statistical mechanics and is referred to as
proving the existence of the thermodynamic limit.

Background: Tempering and the Coulomb Potential

Various authors have evolved a technique for proving
the existence of the thermodynamic limit for systems whose
Hamiltonians satisfy certain conditions. (The different
names associated with this development are: Van Hove, Lee
and Yang, van Kampen, Wills, Mazur and van der Linden,
Griffiths, and in particular Ruelle and Fisher. The read-
er is referred to Fisher (1964) and Ruelle (1969) for an
exposition and references. For a synopsis and more
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references see also Lebowitz (1968) and Griffiths (1971).)
In particular it was necessary to assume that the inter-
action between the particles constituting the microscopic
units of macroscopic matter were short range or 'tempered'.
This means that there exists a fixed distance r_ = 0 and
constants C 2 0 and ¢ > 0 such that the inter-domain inter-
action potential energy between N; particles in a domain
Ay , N2 particles in a domain Ay ,..., and N, particles

in a domain Ay , has a bound in terms of the minimum

distances r,. between A; and Aj ,
ij J

TNy seees N = U(Nl% ...EBNK) =

K K - (d+e) (1.2)
21U @y s Ciij T35 NN,
whenever r,., 2= r, for all i # j . We have written here
U(N) = U(§1 saex.y) for [Ehe to&al potential energy of N

particles at positions x, ¢ R . (We shall generally not
indicate that the particles belong to differeng sgecies
when this is not essential and shall denote 21 N~ by N).
The requirement of tempering unfortunately excludes
the Coulomb potential which is the true potential relevant
for real matter. That a nice thermodynamic limit exists
for systems with Coulomb forces is a fact of common ex-
perience, but the proof that it does so is a much more
subtle matter than for short range forces. It is screen-
ing, brought about by the long range nature of the Coulomb
force itself, that causes the Coulomb force to behave as
if it were short range. This has the consequence, as we
shall prove in these notes, that when the sequence of sys-
tems are overall neutral then the approach of g(p. ; A.)
to its limit g(p) and the properties of g(p) are™ J
the same as thofe obtained, for systems with tempered inter-
actions (except that the p* , i =1, ..., S are con-
strained by the neutrality requirement). In particular
g(p) 1is the same for different 'shapes' of the domains
in {A,} . This shape independence disappears when the
constrdint of charge neutrality is lifted and systems
with a 'non-negligible' amount of net charge are con-
sidered. The true long range nature of the Coulomb force
now becomes manifest, leading in some cases to a shape
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dependent limit of the free energy density and in other
cases (when the excess charge is large) to an infinite
limit (cf section IV).

Background: H-stability and the Dyson-Lenard Theorem

The basic condition on the N body Hamiltonian

N
HOY =2, (BD) + U (x)50--%0) (1.3)

where m, is the mass and p,the momentum (momentum operator
in quan%um mechanics) of Eﬁe 4th particle, required for
the existence of thermodynamics is that there exists a
constant B < » , such that for all N

EO(N) 2 -BN . (1.4)

Here E (N) is the ground state gnergy of the N particle
Oy iy 2o i
system in infinite space, x;e R™ , defined by

E (M) = Inf [(¥, H(N) ¥)/(¥ , ¥)] (1.5)
b
with the ¥ (x,,..., XH) elements of a properly constructed
Hilbert spacé in which H(N) is a self-adjoint operator.

The functions ¥ (xy..., xy) have to satisfy the proper
symmetry relations whemnéver the coordinates of two par-
ticles belonging to the same species are interchanged:

¥ - Y or ¥ » -¥ for bosons or fermions respectively.
(Since the spin does not appear directly in the Hamil-
tonian we can, and do, treat particles of the same type
having different values of their spins in the z-direction
as belonging to different species.)

We shall refer to condition (1.4) as H-stability.
Heuristically, H-stability insures against collapse of
the system. Mathematically it provides an upper bound to
the sequence f{g(p: ; A:} and this bound plays an essen-
tial role in the proof.” It should be emphasized however
that H-stability does not in itself imply a thermodynamic
limit. As an example, it is trivial to prove H-stability
for charged particles all of one sign, and it is equally
obvious that the thermodynamic limit does not exist in
that case.
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We shall refer to condition (1.4) as H-stability.
Heuristically, H-stability insures against collapse of
the system. Mathematically it provides an upper bound
to the sequence {g(pj ; A:)} and this bound plays an
essential role in the progf. It should be emphasized
however that H-stability does not in itself imply a ther-
modynamic limit. As an example, it is trivial to prove
H-stability for charged particles all of one sign, and
it is equally obvious that the thermodynamic limit does
not exist in that case.

To satisfy (1.4) it is clearly sufficient that the
potential energy U (N) by itself have a lower bound of
the same form:

Inf U(fl SEE A5 EN) =2 -NB, all Kpseeos Xy oo (1.6)
Indeed for a classical system (1.6) is also necessary for
(1.4). There are a large variety of interaction poten-
tials for which the existence of the lower bound (1.6)
can be verified explicitly. The simplest of these is the
case when U(N) can be written as the sum of a positive
term and a term consisting of a sum of pair potentials

v (x; - x.) which is bounded below and has the asymptotic
behaiviiors;
1lim Isld+6 v(r) ~ + and lim |r|d+€v(r)2 0 (1.7)
lrl - 0+ - r| -~ 7
for some § > 0 and ¢ > 0 . (This result is due to Morrey

(1955) who appears to have been the first to consider

bounds of the form (1.6) for non-Coulomb potentials.)

More general types of potentials satisfying (1.6) have
been considered by other authors [3], [17]

It is clear, however, that (1.6) will not be satis-
fied by a system of point charges with charges q. of
different signs, i = 1,..., N . The interparticle Coulomb
potential has the form, for d = &4,

1 a1
U (Rpseees X0) "2‘1%' 93 44 Ix; - §j| 5 (1.8)

and the potential energy of even a single pair of oppo-
sitely charged particles has no lower bound. Interesting-
ly though, if the particles have har cores, i.e., U(N)
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contains in addition to its Coulomb part (1.8) a term
which is + » if |x; - xj| < R, then Onsager (1939)
showed that (1.6) is satisfied. Onsager's proof is so
simple that we shall pgesent it here (in a form communi-
cated to us by Penrose”): Since the particles cannot
approach each other any closer than a distance R , the
effect of the Coulomb interaction between the particles
will be the same, Newton (1687), if the charge of each
particle is distributed in any spherically symmetric way
within a ball of radius % R centered on the position of
that particle, e.g. a uniform charge density. Now, as
is well-known from electrostatics, (Kellog 1929),
N
¥ q,q, |x, - ~.|-1= ) 2 (x) dx - £ (self
i#gg -3 Tt fRd~ T =1
(1.9)
energy of the ith particle) = - NB ,

where E (x) is the electrostatic field, and B is the max-
imum self energy of any of the balls,

Onsager's results were generalized somewhat by
Fisher and Ruelle (1966). This work, however, still left
open the question of whether a system of point Coulomb
charges, which may be taken as the building blocks of
real matter, has a lower bound of the form (1.4). Now
when dealing with a quantum system of charges the non-
existence of a lower bound to -[xl - xJ| might appear
not as serious as in the classical case since we expect
that the Heisenberg uncertainty principle, which prevents
particles from having their positions 'close to each
other' without also having a large kinetic energy, will
insure the existence of a lower bound to the ground state
energy. This is indeed the case for any finite system,
(-13.5 electron volts for a system composed of one elec-
tron and one proton), and generally E; (N) > - = , for
any N, Kato (1966). We need however a bound proportional
to N and this, it turns out, the uncertainty principle
alone cannot provide. The required result was proven by
Dyson and Lenard (1967-8), who showed that (1.4) holds
for a system of point Coulomb charges when all species
with negative and/or positive charges are fermions. This
*See also Penrose's comments [ 16] on using electromagne-
tic energy considerations to establish the thermodynamic
limit for charged and magnetic systems.
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is happily the case in nature where the electrons are
fermions., (When neither of the charges are fermionms,
Dyson (1967) found an upper b097g to the ground state
energy that is proportional -N ; hence such a system
will not be thermodynamically stable.)

We note here that the Dyson-Lenard lower bound is
valid whenever the masses of the fermion particles are
finite (the masses only affect the numerical value of
B which is of no interest here). Hence it remains valid
if the kinetic energy term in the Hamiltonian is multi-
plied by some 8 , 0 < 6 < 1, e.g. 6 =% ,

Basic Inequalities and Outline of the Notes

Let us consider a system of N = (Nl,..., NS) par-
ticles in a domain A with a Hamiltonian H(N ; A)
N
HOV 3 A) = 5022 (mp)7ha+ U (x
=l RS

X

l""’~N)

(1.10)
+ UT (51 T EN)
s

Here N= ¢ N , and X, € A is the coordinate of a par-

ticle of %Eécies one for 1 < i < Nl, and of a particle

of species two for Nl < i < N+ N s @ECls,

Uc (§1,..., §§) is the Coulomb potential defi?ed in
(1.8), so tha mg =My, qp = e for 1 < i < N, etc.

with my and ey , 0 = } s5e-+5 S, the mass and charge of a
particle of the ath species. UT (. oo ) is a
tempered and stable potential satfg%ying (I?g) and (1.6)
(which is also translationally and rotationally invar-
iant). It is not altogether useless to include tempered
potentials along with the true Coulomb potentials because
one might wish to consider model systems in which ionized
molecules are the elementary particles. Although we
shall omit U, in most of these notes, it should be under-
stood that EIL the stated theorem are valid for the full
Hamiltonian (1.10). H(N ; A) is a self-adjoint operator,
defined via the Friedrichs extension. (In the physi-
cists language this corresponds to using a Hilbert

space in which the wave functions vanish on the boundary
of A .) When the statistics of the particles satisfy the
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conditions of the Dyson-Lenard theorem then H(N ; A) will
satisfy the inequality (note the factor %)

el -1
HN 5 A) < - 7 13-1 (m) "4, -N? (1.11)
with ¢ some constant, & < @ ., The canonical partition

function Z(§ ; 1) and the corresponding g(p ; A) will have
the bounds

s
o
Z(N ; A) < exp [Néjagl ZO,a (N" 5 A) (1.12a)
2 a
g3 M s e e+ T (075N (1.12b)
s
where p = ¥ pa and z (resp. g_ ) is the partition

function (tesp.-free enePg¥/unit vollde) of an ideal gas
(fermion or boson according to the statistic of species a)
of particles with masses m ' = 2m_ . The inequality
(1.13) readily yields a un form bdund on any sequence
{g(ey s A3)} whenever the pj are in a compact subset of
RS, (witll p} z 0) i

We now give a sketch of the method used in our
proof. As usual, one first proves the existence of the
limit for a standard sequence of domains. ¢he limit for
an arbitrary domain is then easily arrived at by packing
that domain with the standard ones. The basic inequality
that is needed is that if a domain A contains K disjoint
sub-domains A,, A,,..., A and if the inter-domain inter-

’ bRl
action be neg}ectéd then E
K K
Z(E N, ; A)=U Z (N, ; A.) (1.13a)
e =l < ~1i i
i=1 i=1
or
K K
g (T fi Ei ) Z.Z fi g(gi 3 Ai) (1.13b)
1=1 i=1

where £, = V(A,)/V(A) is the fraction of the volume of A
occupied by Ay~. If the distance between every pair of
sub-domains is not less than r_ , one can use (1.2) to
obtain a useful bound on the tempered part of the omitted
interdomain interaction energy, IT(Nl,...,NK).
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The normal choice for the standard domains are
cubes I'. , with T'j,, being composed of 2d copies of Fj,
together with 'corridors'. One chooses N.:,; = Zde o
Neglecting It one would have from (l.14)~%hat -
g(j+1) 5 Tj41) = gy ;3 T'y) which, since g(p, 5 Ty) 1is
bounded aboVve implies™ the %xistence of a limit. To justi-
fy neglect of IT one makes the corridors increase in
thickness with increasing j ; although Vg , the corridor
volume, approaches ® one makes Vﬁ/Vj ~ 0 in order that

£i" £, -~ las j » = . The positive € of (1.2) allows
one to accomplish these desiderata.

Obviously, such a strategy will fail with Coulomb
forces, but fortunately there is another way to bound the
inter-domain energy. The essential point is that it is
not necessary to bound this energy for all possible states
of the systems in the sub-domains; it i1s only necessary
to bound the 'average' interaction between domains which
is much easier. This is expressed mathematically by
using the Peierls-Bogoliubov inequality (Jensen's in-
equalkty in the classical case) to show that for
N =27 Ni

- K

Z(N 5 A) = exp [- (I(Nl,...NK)>] 1 A(N

ALY (1.14)
i=1 l

i3

where (I) is the average inter-domain energy in an en-
semble where each sub-domain is independent. Where (1)
vanishes, (l.14) reduces to (1.13a) and, in general,
there is a corresponding equation for g(p ; A) as in
(1.13b). )

To prove (l.14) consider the case K = 2 and let
{v.} , i =1,2,..., be a set of functions consisting of
a1l properly symmetrized and normalized functions of the
form

YjEYn,mEQn(§l"" le 0 xm(§N1+l AV, §N1+N2 9 Az) (1.15)

w@ere the {@n} a?d {xm} are a complete orthonormal set of
eigen functions in the Hilbert spaces of H(N, ; Al) and
H(N, ; A2). The {¥.,} are clearly an orthonotmal Set
(possible incompleté) in the Hilbert space of

H(N1 + N3 ;3 A) . Hence
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Z(N N, 5 A) 2 ? (Yj, {expl -H(N,+N, ; M7} Yj)

(1.16)

§(Yj,{exp[-u(nl 3 A) - H(Np3A5) - T(Np,N)I ¥L)

where the last equality follows from the fact that the
support of the {¢ } is in A, and the support of the {x }
is in A, . The convex1ty o% the exponential function .
implies” (Peierls-Bogoliubov inequality) for any pair of
self-adjoint operators A and B and any set of normalized
vectors {f, } in the domain of A and B that

T (£, (exp(atB)] £,) 2 T exp {£,, [A+B] fL)}
e 2 1 == (1.17)

2 {2 exp (f,, A £,)} exp [(B),]
v p ( Af, RIL B

3!

{Z [exp(f A £ (& B fL)}/{% exp (fé,é fé)}.
(1.18)

Applying (1.17) to (1.16) and remembering that {@ } and
{x_} are complete in the Hilbert spaces of H(Nl ;0 l)
and H(N, ; AZ) respectively yields the desired
inequalities)
Z(Ny + N, 3 A) =220, 5 A Z(N, 5 A,y 5 I)
1 2 1 1 2 2 1 (1.19)

2 ZQI1 f Al) Z(Ij2 : AZ) exp [-(I(N1 . N2>]

Here Z(N ) is the partition function of N2
partlcles 1n % w1%h a Hamiltonian

H(N2 2 I\2 3 Il) = H(N2 s A2) + Il (le +1""’§N1+N2) s
(1.20)

I, = Try {I(Nl,Nz) exp [-H(N, ; A1]]/2(§1; A, (1.21)

the subscript 1 indicating that the trace is taken with
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respect to the {& }. Hence I, is the value of the inter-
domain interaction energy for a given configuration of the
N2 particles in A averaged over the canonical ensemble of
N1 particles in Aq which are unaffected by the presence

of the particles in Ay . Similarly,

(I(Nl,N2)> = Trl’zfI(Nl,NZ)exp[-H(Nl;/\l)]exp[-H(NZ;AZ)]} i
2 (El 5 A]_) Z (Ez > Az)

(1.22)

the trace now being taken over a complete set of functions
corresponding to a system consisting of a specified set of
N1 particles in Aq and another set of Ny particles in Ay .
The quantity (I(Nj,Np)) thus corresponds to the average

of the interaction between the particles in A, and those
in A7 when the states and the probabilities o% different
states in each box are completely unaffected by the
presence of the other box. This corresponds to taking

the average of TI(N ’NZ) with a density matrix which is

a direct product o% the unperturbed density matrices in

Ay and Ay .

We now make the observation, which is one of the
crucial steps in our proof, that if A, and/or A, are
balls then, because of the rotational (and translational)
symmetry of the Hamiltonian the unperturbed density
matrices (corresponding to no interaction between A; and
Ap) are spherically symmetric about the centers of kl
and/or Ay . This implies in particular that the average
unperturbed charge density in Ay and/or A, is spherically
symmetric and hence by Newton's theorem the Coulomb con-
tribution to (I(N;,Np)) in (1.19) is the same as would be
obtained if all tﬁe charges in the ball domain were con-
centrated at its center and would vanish when the ball
is overall neutral.

This clearly generalizes to the Coulomb part of
(I(N1,...,Ng)) in (1.14) and this leads us to choose
balls, rather than cubes, for our standard domains. There
is of course a price to be paid for this since balls do
not pack into each other as nicely as cubes do and necessi-
tates our packing the standard ball domain B: not only
with balls of type Bj1 but with balls of types B,
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By, .sB:_o as well. The geometrical problem involved
in this i# handled in sec. II.

We mention here that the use of (1.14) permits us
to prove the existence of the thermodynamic limit for sys-
tems containing electric or magnetic dipoles which inter-
act with long range, i.e. non, tempered, potentials
(falling off only as Ixi-x.|'3). The average interaction
between domains will vanish since the expectation value
of the dipole moment of any particle will be zero in the
absence of an external electric or magnetic field,
Criffiths (1968)%.

For such systems it is essential, however, that the
particles have hard cores since otherwise they will not
satisfy the H-stability condition. Indeed, E,(N) will not
be bounded below. For this reason we cannot include spin-
spin couplings between the elementary charges in our
analysis. (These couplings are intrinsically of a rela-
tivistic nature and present entirely new problems;

Dyson- private communication.)

Needless to say we do not deal with the strong
(nuclear) and weak interactions. As pointed out by Dyson
(1967), the magnitude of the nuclear forces is so large
that they would give completely different binding energies
for molecules and for crystals if they played any role in
the thermal properties of ordinary matter., We are also
neglecting, of course, gravitational forces which certain-
ly are important for large aggregates of matter and thus
might be thought important in the 'thermodynamic limit'.
To quote Onsager (1967), however, 'The common concept of
a homogeneous phase implies dimensions that are large

*Griffiths' proof for dipoles does not use (1.19) but re-
lies on the complete symmetry between 'up and down'
orientations of the dipoles. Using such symmetry Griffiths
(unpublished) was able to prove the existence of the ther-
modynamic limit for a system of charged particles in which
the positive and negative particles are identical under
charge conjugation, e.g. positrons and electrons. When
such an additional symmetry is present the rotational in-
variance of the Hamiltonian becomes unimportant and it

is not necessary to use balls as we do. Unfortunately
such symmetries are not present in real systems.
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compared to the molecules and small compared to the moon.
When we speak of the thermodynamic limit which is mathe-
matically the infinite system limit we have in ?ind its
physical application to systems containing, 102 102
particles, i.e. systems which are large enough for surface
effects to be negligible and yet small enough for internal
gravitational effects also to be completely negligible,
(An external gravitational field will of course have some
effect but does not present any fundamental problem.)
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11. On Packing A Domain With Balls

In this section we address ourselves to a geometric
construction which is fundamental to our proof of the exis-
tence of the thermodynamic limit, namely the possibility of
packing a ball or a cube by smaller balls such that the
packing is both complete and rapid.

We shall always yse the word domain to mean a
bounded, open set in R°. If A is a domain and B = [Bi}
is a denumerable family of domains $uch that B A for
all i we shall say that B is packed in A i% the {By}
are all disjoint. The packing is complete if
Z%VgBi) = V(A) where V(A) is the volume (lebesgue measure
o o

d

Definition: For a domain A R” and a real number h

we define

A maimal e e dg by Eanl Eerih =10
(2.1)
={r: r€ ,A,d(r;A) < -h} forh=0 ,

where d(;) is the distance function and ~ denotes comple-
ment. We also define V(h;A) to be the volume of Ah.

We shall frequently make use of the fact (Lemma 2
of Section 8 in Fisher (1964) that the number, N_,, of
cubes of side 2y that can be packed in A satisfigs the
inequality

Ny = (2) V) - vyEN)] (2.2)

Definition: Let ¢, be the volume of a ball of unit
radius in RQ. gq = 9 is the fraction of the volume
of a cube of side 2y filled by a ball of radius y when
the ball is packed in the cube., We also define

ag = (24 - 12/d .
Clearly, for a ball B of radius r = 2y/d = 0

V(2y/d5B) = V(-25/8;B) = ag r( 9Dy (2.3
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The main theorem we wish to prove is that we can
find a ﬁequence of balls of decreasing radius, of which
the 3P type has radius r; = 8J (with 8 < 1), such that
we can completely pack a unit d-dimensional ball (r = 1)
with these and, moreover, we can do this rapidly.

Theorem 2.1l: Let p be a positive integer and, for
all positive integers _j , defi?s i?dii r. = (L +p)-J
and integers nj = pJ'l(l + p)Jie-1}, Theﬂwif
l+p=zoa4+ gd'd it is possible to pack '91 (nj balls
of radius r; ) in a unit d-dimensional, J d
ball, The packing is complete since jglnjrj =1.

Proof: We shall give an explicit construction for
accomplishing the packing stated in the theorem by using
(2.2) and (2.3). First cover the unit ball by a cubic
array of cubes of side 2r; . We shall show that there
are n; of these cubes which are contained in the unit
ball. We can place a ball of radius r; at the center
of each of these cubes. We then cover the unit ball by
a cubic array of cubes of side 2r, and show that there
are ny of these cubes which are Contained in the unit
ball and which do not intersect the first n, balls,
The argument is repeated inductively. Thus, we have to
show that after placing all balls up to and including
those of radius r. we can pack n,,q ina cubic array
into Qs , which il the interior of?' the unfilled portion
of the unit ball, (We must prove this for j = 0 , with
r, =0 .) For j = 0,

| d P j
V@ =94 - 9g i EoMTk T %aGFD

Clearly, V(ZJEfJ+1;Q.) is bounded above by M, which is
tge sum of the JV(-Z«/dr._,_l;B) for each bBall of
2 _(ng balls of radius r,) separately, plus
V(z/drj+1;B) for the unit ball. Thus, by (2.3), if
2/drs < 13 (which is true when p satisfies the
hypo%hesis)
VO 1 B DU & O N 45 ol
§4175 3 T a7 d 4+ 1 k=20 k' k
; i - 2.4)
-1 ~(i+1 (
=@ +r -0 - DA T, =y
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Using (2.2) it is sufficient to show that

(2rj+1)dnj+ < [v MJ < [v(o ) - v(2/dr, +1, ]

Inserting the relevant quantities, we require that
1L+p-(p-2)
d P-1

1= gd[p +1-a

for all j = 0. By the hypothesis p =2 2, Then p-J(p - 2) <
(p - 2) and hence it is sufficient that

1= gd[p + 1 - ad] .
which agrees with the hypothesis.
The minimum ratio of successive radii, 1 + p,
required by this construction is 27 for d = 3. We note

that the fraction of volume of the unit ball occupied by
all the balls of radius rj is

d =1 5
.05 Nty = A 2.5,
g% ISR > (2.5)
where
—pQ+p <1, (2.6)

Moreover, the fraction of volume left unfilled after the
balls of type j have been packed is AJ, This implies that
the packing is '"exponentially fast'.

It can be shown that Theorem 2.1 is also true if
"unit d-dimensional ball" is replaced by ''d-dimensional
cube of volume Od :
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III. Thermodynamic Limit for Spherical Domains

In this section we shall prove the existence of
the thermodynamic limit for a two component system of
charges e, > 0, e, < 0 and |e; /e, | is rational and that
the particles interact via the Coulomb potential alonme.
To do so we shall define a sequence of standard balls
{Bj} of increasing radii {Rj}, ji=0,1,

Definition: Let 1 + p satisfy the condition of
Theorem 2.1 and be even. (The fact that 1 + p is even

will not be used until later.) Choose an R_> 0 . The
balls, B , B1, ..., forming the standard sequence, are
chosen to have radii
- i
Rj Ro(l + p) 3.1

The volume of Bj will be denoted by Vj.

The packing described in Theorem 2.1 will be
referred to as the standard packing of the ball BK with
balls {BJ.}, j=0,1, ..., K-1,

Filling of Balls with Particles

In the following we shall fill the standard balls
with particles in various ways. However, we shall always
observe the following convention: Each ball will have
charge neutrality. We take q particles of type 1 and
4 particles of type 2 such that qe; + te, = 0, and such
that q and <& have no common divisor, as the fundamen-
tal unit and this will be referred to simply as a multi-
plet. Densities and (multiplet) numbers will be in terms
of this unit.

We define
-1
: = (V, tnZ(N = pV,;B, 32
gJ(P) ( J) nZ( PVys J) s (3.2)

where N is the number of multiplets and where we have
set B =1 for convenience.
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Since N must be an integer, an obvious restriction
is thereby placed on p . However, following Fisher
(1964) we can define g for all p by linear interpo-
lation as follows:

Definition: Let f(N) be a function from the in-
tegers to the reals. If n=N+n , with N an integer
and 0 < n < 1, we extend £(*) to the reals by
£ (n) f(N) + nlf(W + 1) - £(N)].

{1/

The usefulness of this definition is made manifest
by the following lemma,

Lemma 3.1: Let z* be the non-negative integers,
IR the non-negative reals, and R the reals. Let

f, hy, hy, ..., be functions from Z = to IR and let
£ 5 il sl s hgl e the extended functions from R " to
IR as it_'} the above definition. Let N; ¢ Z1 and

my € BT, I eeEMN,) = oh.(N.) for all (N, then
if (Elnj) = %y j(nj) for all {nj]

The proof follows by induction on M . The case
M =1 is obvious and M = 2 is proved in Fisher (1964),
footnote 25.

Let us now consider a standard packing of BK and
place N, multiplets in all balls of type j, j = 0, 1,
...y, K= 1, The total number of multiplets in B, is then

K
_ ~K-1
H = T Iy . (3.3)
so that
~  pelettly Ray
o= N/VK P %, ij (3.4)

Our fundamental inequality on the partition function of

a subdivided domain, together with the vanishing of the

average Coulomb interaction for neutral balls implies:
Theorem 3.1: Let PyseesPr_q be non-negative reals

and let p=p_12§_1ijk 3. Then
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K-1
£ K g (p) (3.5)
j=0

e

gK(o) 2

Limit of gk(p) as k -

Our next task is to use Theorem 3.1 to establish the
thermodynamic limit of g, (p) for the standard sequence of
balls. To accomplish this we define, for each j = 0, a
standard density sequence (depending on p) as follows:

oy = o for § > 05 py = 0(1-)"} for j = 0

It is understood that when p = 0, g.(O) =

With p held fixed, let us denote g (p ) simply by g
Then, from Theorem 3.1,

zy .g. (S (3.6)

for k > 0, where ¢, is a non-negative real number.

k

The solution of (3.6), valid for k > 0, is easily
found to be

[/

= ve, + (1-v)

j Cj + (1‘Y)g0 (3'7)

g
2 1
Equation (3.7) establishes a limit for g, because: (3) g,
is finite; (b) As each c. 2 0, and as we know that gk ha8
an upper bound by H-stabiiity, the sum involving the c's
must converge. This implies that c¢, - 0 and hence (3.7)
must have a limit. We shall call tﬁis limit g(p).

Further examination of (3.7) leads to a lower bound
for g which is proportional to p for sufficiently small p.

Our analysis of (3.6) thus yields

Theorem 3.2: Let p be a fixed multiplet density.

Th .
- 8(p) = lim g, (o)
k-



COULOMB SYSTEMS 443
exists and is finite. Furthermore, there exists a p, > 0
such that for p in the closed-open interval [0,p.), g(p)
is bounded below by ap with o finite and indepen&ent of p.

Convexity of the Free Energy

With the limit, g(p), in hand we can next establish
convexity. It is here that we use the fact that 1 + p was
chosen to be even. This permits us to place den31t1es o:
correspondlng to a final density p’ (with o —p "(1- Y)'
pJ—p , j > 0) in half the balls of each type and den51t1es

"

pj in the other half. Taking the limit j - « yields

8G o' +307) 2380 +386". (3.8)

We can now follow the standard arguments used for
non-Coulomb systems to establish the concavity and hence
continuity of g(p). Similarly, the approach of g.(p) to
g(p) can be shown (by means of Dini's theorem) to be uni-
form on any closed interval [0,p’], p’ < =,

Neutral Multicomponent Systems with Coulomb and Tem-
pered Interactions in General Domains

Thus far we have established the limit and the con-
vexity of the free energy/unit volume for an overall neu-
tral system composed of two species of charged particles
interacting with Coulomb forces only and confined to the
standard sequence of balls. This permitted us to deal
with a neutral multiplet as though it were a single parti-
cle.

We shall now state the general theorem on the proper-
ties of the free energy/unit volume for an overall system
composed of S species of particles with charges e ,..

We suppose these charges to be rational fractions of eacﬁ
other so that, in appropriate units, the e; may be taken
to be integers. In nature all elementary charges are in
fact integral multiples of the electron charge. The e,
may not be all of one sign, but we do allow some of thém
to be zero. We shall represent particle numbers by a vec-
tor N = (N*, NS), so that charge neutrality is repre-
sented by N E=0withE = (e;,...,e_ ). In a like man-
ner we shall represent partlcle den51t1es by a vector p.
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The particles comprising our system may have, in
addition to their Coulomb interactions, other kinds of in-
teraction potentials as long as those interactions are tem-
pered and the full Hamiltonian is H-stable (this will al-
ways be true when the additional interactions are them-
selves stable). When these tempered interactions include
hard cores, there will be some convex domain inIRS in which
a vector p must lie in order for the density to be less
than the close packing density. We shall denote the fact
that o is in this domain by writing |p| < P

We consider a general sequence of domains {A.} tending
to infinity in a reasonable way. To define reasonable we
intrgduce the following conditions on a sequence of domains
inIR®:

A. A sequence of domains {A.} tends to infinity in the
sense of Van Hove if V(Aj) 4« and V(h;Aj)/V(A.) - 0 as
j - « for each fixed h. ~(For definitionssee (é.l)).

B. A sequence of domains {A.,]} satisfies the ball condition
1f there exists a & > 0 such that

V(Aj)/V(Bj) =%, (3.9)

where Bj is the ball of smallest radius containing Aj'

C. A sequence of domains {A.} tends to infinity in the
sense of Fisher if V(A:) —-”= and if there exists a con-

tinuous function m: IR 3]R1, with n(0) = 0 such that

V(a[V(Aj)]l/d;Aj)/V(Aj) ) (3.10)
for all o and all j.

Obviously, condition C implies A. It also implies
condition B as shown in Fisher (1964). On the other hand,
neither condition A nor B implies the other, nor do condi-
tions A and B together imply C.

Definition: A regular sequence of domains, {A:}, in R
is one satisfying conditions A and B if only strohgly tem-
pered potentials (in addition to the Coulomb potential) are
present. If weakly tempered potentials are also present
then the stronger condtion C must be satisfied.
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OQur final result for neutral systems, which we state
here without proof, is

Theorem 3.3: Let {A.} be a regular sequence of domains.
Let 1y.f be a sequence-of non-negative, integer valued
particie number vectors satisfying thelneutrality condi-
tions, Ny " E= 0, and let L = V(Aj)' gj. IE }EQ L5 = &

with |p] < P then’

(i) lim g(gj;Aj) = g(p) exists and is independent of
J—O&
the sequence of domains or particle numbers.

(ii) g(p) is continuous and concave in the convex do-
main D={p:|g| < o, lg:p - E=0} and g(0) = 0.

(iii) Let K be a compact subset of D, Suppose that for
each ¢ € K we have a sequence Lg.(g)} and the cor-
responding sequence ﬁg.(g)} with)the additional
hypothesis that E.(E)fﬂ uniformly on K. Then

gj(gj(g)) -~ g(p) uniformly on K.

IV. Systems With Net Charge

In the last section we showed that a sequence of sys-
tems of charged particles has a thermodynamic limit when
the finite systems in the sequence have no net charge,
that is N. * E = 0. The free energy density in this
limit, -g{g), is independent of the shape of the domains
A. and depends only on the limit of the particle density
vdetor N/V(Ap) .

It is intuitively clear that this condition of strict
charge neutrality, N. + E = 0, is unnecessarily restric-
tive. We expect tha% a Vsmall' amount of uncompensated
charge will have no effect on the free energy density in
the thermodynamic limit while a 'large' amount of uncom-
pensated charge will lead to a divergent free energy den-
sity in that limit. The dividing line between 'small' and
'large' should be when the excess charge Q;, in a domain
A:, increases in proportion to the 'surface area' of A,
as j » ». In this case we expect the thermodynamic 1i%it
of the free energy density to exist but that its value de-
pends also on the limiting shape of the domains Aj.
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These expectations come from macroscopic electro-
static theory (Kellog (1929)) which shows that the lowest
energy configuration for any net charge Q confined to a
domain A is obtained when Q is concentrated at the bounda-
ry of A. This configuration of the charge is described in
electrostatics by a two dimensional charge density o (x),
X € Sp, where Sp is the surface of A. (We shall onl§ con-
sider three dimensional systems here, that is A R7).
This surface charge density will be such as to make the
electrostatic potential constant in the interior of A,
i.e., there will be no electric field in A. The electro-
static energy of this surface layer is equal to %QZ/C(A)
where C(A) is the capacitance of A.

Fpr a given domain shape, C(A) is proportional to
[V(A)]® and the electrostatig energy per unit volume will
thus be proportional to [Q/V5]2, the square of the 'aver-
age surface charge density'. Hence for a sequence of do-
mains {A:} with volumes {V:} and capacitances {C:} each
contajning a net chagge Qi such that as j — «, V 5
Cj/Vj3 - ¢ and Qj/V-§ - 05, the minimum electrostdtic ener-
gy per unit volume Ej will also approach a limit,

= Rl =y il ),
e = lim ej =50 /c (4.1)

Joe

. — ™

Note that (4.1) refers solely to the macroscopic
electrostatic energy per unit volume of the charge Q in
the domain A or on the surface Sj. We shall now state a
theorem which shows that in the thermodynamic limit the
difference between the free energy densities of a neutral
system, obtained in Section III and of a system containing
some extra charged particles is given precisely by (4.1).
For technical reasons the theorem is proved only for a
sequence of domains whose shapes approach ellipsoids in
the sense defined below. This is more restrictive than is
desirable or (probably) necessary as will be clear from
the derivation of the theorem.

Definition: Let E be an open ellipsoid of unit volume
and capacity cp. A sequence of domains [l i N= RN A5
will be called asymptotically similar to E"if V(A:;) - =
and if there exist ellipsoids {E:] and {E”} similar to E
such that Ei © A, © Ef and V(E§)7V(E;) -~ 1 as j » @ . The

capacity ofJAj will ciearly lie betwgen the capacities of
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by
Ej and Eqi These latter capacities are cE[V(E3)35 and
cE[V(Eg).]3 respectively.

Theorem 4.1: Let {A;} be a sequence of domains asymp-
totically similar to an”ellipsoid E, and let {N:}, and
{n:} be sequences of integer particle number vettors such

thit §j - E =0, g5 E = Qj, and

2)
lim N./V(A,) = g, lim n./V(A,) = 0, lim Q.[V(A,)17° =o.
J.ig}NJ/ () =2 i B;/V(A) =0, e QA

Then if |g| < Py

2

/e

. i = e
lim g([N; +Bj]/V(Aj’Aj) g(g) - 5 9 /eg.

j—-»oo

Remarks: (i) Since E{ © A, © E%, it follows from the
basic inequality that Z(Nj +‘%j;E§g 2 z(gj +,3j3Aj)
= Z(Nj + n.; Eé). Moreover, since V(E@)/V(Ej) - 1 as j-e
it is sufficient to prove the theorem %or a sequence of
ellipsoids {E.} similar to E, whose volumes are the same
as that of the {A.}. With each E. we associate a pair of
homothetic ellips%ids, ET and E! dimilar to Ej such that
E3 = Ej c gt and V(Ef)/V(EE) - 1 as J » @, The volumes

and capacities of ETg E:., and E; will be denoted by

(LE)S, L?, (L;)B and CE, Cj’ C; respectively. Clearly
C%=cEL% and C-=cEL.. The interiors of the ellipsoidal

sﬂellsJEf\E. and E.\E, will be called DT and D; respec-
tivel 1 317 J J
Ve

(ii) The reason for the introduction of el-
lipsoidal domains, is their well known electrostatic prop-
erty (Kellog (1929)) that a uniform three dimensional
charge density 1 in an ellipsoidalzsheilzsuch as DT (de-
fined above) has a self energy 77 v(DI)“/c{ and p%oduces
a constant potential TV(DT)/Cj fn the interlor of Ej’
with cpL; < EJ. < ch s cgli. This fact will enable us to
obtain bounds on the partition functions for the domains
{E.} in a simple manner. Identical methods would work

aldo for any other sequence of domains for which there



448 LIEB AND LEBOWITZ

: with the above men-

are shell domains surrounding each AJ

tioned properties of the shells Dﬁ.

(iii) The proof of Theorem (4.1) will proceed
by establishing bounds on the free energy of these systems.
For this we shall need the free energies of two kinds of
neutral systems: the first kind consists of N. particles
in E;; the second kind is of system in Et which contains
an a&ditional species of particles so that it has alto-
gether S + 1 species. The new specie, which, following
Aristotle, we shall call hyle will be labeled by the index
zero. Its charge ey will be *1 (in units in which all ey,
i=1,..., 8§, are integers). The sign of e, will be cho-
sen as the opposite of the sign (which we shall take to be
independent of j) of the excess charge Q,, that is e Q;<0.
The new neutral system will have an S T i component patti-
cle number vector Nj + n; + n? = (n'?,Nj + n},...,Nﬁ + nd)
with n® = |Q.], n?e0 = -Q; so that %he system is overal
neutral. Th% hyle particies will only have Coulomb inter-
actions and will be fermions in order to comply with the
Dyson-Lenard theorem.

Lower Bound on the Partition Functions
of Charged Ellipsoids

We consider a packing of E: with balls and we dis-
tribute the N: particles, N. - é = 0, among the balls such
that each bali is neutral ahd call the resulting partition
function Z(g.;B(EE)). The remaining n: particles we place

in D5. It then follows from our basic inequality and the
fact™ that each ball is neutral that
Z(N. + n.;E.) = Z(N,;B(E}))Z(n,;D.). 4.2
W + 2B = ZQBEDIZ@D).  (4.2)

It can be shown, using Theorem 3.1, that the packing
for each j can be chosen so that upon taking the logarithm
of (4.2) and dividing by V(Ej) one obtains

. -1 -
;._1.21 1nf{g([yj+gj]/v(Ej);Ej) - VEH] z,gz(nj;nj)} 2 g(p).
(4.3)
Since nj/V(Ej) ~ 0, the only contribution from

LnZ(g.;DT)/V(Ej) which survives when j - « is the Coulomb
self energy of the charges in DE. We now use the
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following general inequality for the partition function of
a system of N particles in a somain A, with a Hamiltonian
Hj

-1

J
tnZ(N3A) 2 -J a§1(¢a,H¢a) s (4.4)

where {¥ }, a = 1,..., J is any properly symmetrized and
normalizdd set of functions of the N particle coordinates

B> i=1,..., N and spins, which vanish unless Xy € A.
Applying (4 4) to Z(n. D ) with a choice of ¢a which cor-
responds to the n 3 %tlcles being situated in little balls

centered on the vertlces of a cubical lattice covering Dj
we obtain a lower bound on this self energy correspondlng
to a uniform distribution of the charge Q in DJ,

; _1.
}ig sup[V(Ej)] an(gj,Dj z-30 /cE. (4.5)

This yields

lim inf g(N; + ;}/V(E))SE) = £(o) - 3 2/cE
J—voo
(4.6)
Upper Bound on the Partition Functions
of Charged Ellipsoids

Let Z(N; + n, + n9;EY) be the partition function of a

system in the domain E} having S + 1 species with ng=|Q-|
hyle particles of charge e = -Q; /|QJ| as in remark (iii)
after Theorem 4,1. The masses m_ of the hyle particles
may be chosen arbitrarily. We then have

- -+
Z(y, +5;.’;EJ.) > Z(N +gj;Ej)z(n‘j’;Dj WL (4T

Here Z(n%; ;ptew, ) is the partition function of n% particles
of speci%s % whose Hamiltonian consists of a kinetic
energy term, a Coulomb pair interaction term, and an ex-
ternal one-body electrostatic potential wi(x;), i=1,..
produced by the (canonical ensemble) averige charge densl-
ty of the NJ + n; partlcles in E. Taking logarithms in
(4.7) and d1v1ding by V(E ) giveg the upper bound

lin suplg([N, +n, J/V(E )3E] )+[V(E y1° mz(ng’;v*j':wj)}Sg(g).
J—vm
(4.8)
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Here, too, the only contribution from LnZ(n?;Df:Wj) which
survives in the limit is the Coulomb energy which now comn-
sists of two parts: the self energy of the charges in D3
and the mutual electrostatic energy between the charge
- in DT and Q. in E.. Now if the charge -Q. were smeared
ou% unifgrmly in Dt tﬁen, because of the propérties of the
ellipsoidal shells mentioned in remarkz(ii), the sume of
these two energies would be %Q?2/¢! - Q-/Cj with C; and C,
both approaching C. as j - =, JIthan ge shown in&eed byJ
using inequality (&.4) with a suitable choice of {Wa},
that
L -1 o .+ 1 2
;D W)= = . (b
}ig 1nf[V(Ej)] LnZ(nj,Dj.WE) 50 /cE (4.9)

Combining this with (4.8) and (4.6) yields Theorem 4.1,

When the magnitude of the charge contained in
A, Qj = M. - E, (vhere M. is an intgger particle numbey
vector) , iﬁcreases faster than V(As;)E, 1i.e., |Q-|V(Aj)'3*w,
then it is possible to show that g%N%/V(Aj);A-) - -o" for

)
any regular sequence of domains {AjT.

V. Grand Canonical Ensemble

The grand canonical partition function for a system
of S species in a domain A. with chemical potentials
Mg, 1 =1,...,8, is defined as
@

RQ3A,) =N1§_o... SEOexp[g . y]z(y;/\j), (5.1)

N

where j = (ul,...,us), and we have set B = 1. The grand
canonical préssure is defined as

m(ashy) = V(Aj)-lx,nE(E;Aj). (5.2)

We also define the neutral grand canonical partition
function £, by restricting the summations in the right
side of (5.1) to neutral systems for which N - E = 0. The
The function &’ will clearly depend only on that part of
the vector y which is perpendicular to E, i.e., on
4= - ( - EE/(E - E), and will thus be a function of
only S - 1 independent variables,

a'@;/\j) = E'(E';/\j) =%...% explp’ NIZ(N;A.).
-E=0) 1 (5.3)

=
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Similarly,
sty = m@sAy) = V(Aj)-ll,nE'(H';Aj) (5.4)
is the neutral grand canonical pressure.

As in section IV, we shall convine our attention here
to domains AJ- c R,

Remark: As is well known, if p > o, the grand canonical
partition function Bose gas is infinite for large j (Bose-
Einstein condensation). One can prove, Ruelle (1969),
that if the particles interact with a tempered super-stable
potential then this pressure does exist for all u, while
for a tempered potential which is only stable the pressure
exists only for small values of u (depending on B), i.e.,
o< £(B).

For Coulomb systems to be H-stable the Dyson-Lenard
theorem requires that all charged bosons have charges of
the same sign. We can show that if the only bosons present
are charged ones then lim m(L;As) exists for all values of

the py, (-® < p; < «,i=1,...,8); see Lemma 5.3. If, how-
ever, our systems contains some species of neutral bosons,
say e] = ey = ... =e, = 0, £ = S - 2, then the correspond-
ing ug, £ = 1,..., ¢+ will have to be appropriately small
unless the tempered potentials involving these uncharged
particles satisfy some super-stability condition. Since
the part of the proof which involves the uncharged compo-
nents does not differ from the standard ones we shall
assume from now on that all the species are charged with

€1,...,€5 > 0 and €aplrr 28 < 0. We shall assume that
species a + 1,...,8 are fermions and that some or all of
species 1,...,a may be bosons.

We shall now state the main theorem of this section.
Theorem 5.1
For any regular sequence of domains {A:},

m(w) = lim m(u;A3) = lim ”’Qil;Aj) = n'(4’) exists and is
related]to the Helmholtz free energy density by
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@) = suplpg - u’ +g@l, (5.5)
lel<pe

the supremum being taken only over values of p for which
e E=0.

Proof: The proof that lim m'(u’; Aj j) exists and is
given by (5.5) is analogous to Fisher' s (1964) proof of a
similar result for one component systems interacting only
with tempered potentials with the additional result that
the . are arbitrary even if some of the components are
bosons. (The reason for this is that if the boson density
is large then the fermion density must also be large to
insure charge neutrality. See Lemma 5.3.) The new ele-
ment enterlng Theorem 5.1 is the equality of m(g;A;) and

' ;A.) in the thermodynamic limit. This means in es-
sence tﬂat the terms in the grand partition function for
which N: - E # 0 do not contribute to the pressure in this

limit and hence 11m m(;A;) depends only on § - 1 varia-

bles. Now since nQﬁ,A Y=z m (g ;A:), Theorem 5 1 will be
established if we can prove that n{ DS (A + 6
with 6. - 0 as j » . This is accomplished w1th %he heip
of the” following three lemmas which we shall give here
without proof (assuming for simplicity that there are no
hard cores).

Lemma 5.1: Let M = (M1 MS) be an integer particle
number vector such that M. E = Q. It is then possible to
decompose M into a "neutral' part N and a ''charged'" part
n, M=N + n such that (i) N and n are both integer parti-
cle number vectors, (ii)) N - E = 0, n J E = Q5 (iil) It As
impossible to decompose n into a non-zero neutral part and

s ¢
a charged part; (iv) |n| Ei§1n1 < A|Q| with X a constant.

Lemma 5.2: Let {A.} be a regular sequence of domains
with V(A ) = Vs and lét K be a compact subset of p. Let
K be a flxed cﬁemlcal potential. Then there exists a se-
quence of numbers f{e.} (depending on K and ), tending to
zero as j - ®, such %hat

1

- ]
B ~5vj + g(,MVJ- ;/\J-) 2 g(y;l\j) < €5 (5.6)

wheneveryvg1 € Kand M =N + n as in Lemma 5.1.
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Lemma 5.3: Let {A:;} be a sequence of regular domains
with volumes {V.}. Then there exists some fixed, strictly
positive consta%ts k and a independent of j such that

M
a s il i
ZQEsh,) < {ingz’i(Mi;/\j)}{i=g+l(Mi.) [v,1 )

s -3 y)
exp{kiglMi - an (- E)7}

for j sufficiently large. Here, Z+ ;1 (Mj545) is the ideal
Bose gas partition function of M; dsons o% species i in
the domain Aj.

The proof of Theorem 5.1 now proceeds as follows:
Using Lemma 5.3 we establish that

v.,/v 1 [v,/v]
BEQusA,) < 2 35 % 000 Jn @ exply - MlZQM3AL) (5.7)
2 Ml=o MS=0 - J

for j sufficiently large, where v, is some fixed small
volume. The inequality (5.7) is easily obtained for non-
Coulomb systems when the interactions among the bosons is
superstable. The physical content of Lemma 5.3 is that
the Coulomb energy is as efficacious as a superstable in-
teraction in this respect; the Coulomb energy discourages
a large excess of bosons over fermions. The number of
terms in (5.7) is at most (1 + V-/vo)s. If we now write
M=N+n as in Lemma 5.1 and use (5.6) we readily find
that,

B (g;/\j) < E(g;/\j) <

. lvs/v, 1 [v./v.] Z(N+n;A.)
T TR s Bzsn,y Tz ... 9 O KB Z(;IX
(E'E=°) J nl=o ns=o (~, J)
s iy
<2(2 + Vj/vo) [exp(ejVj)]& Q$’Aj)’ (5.8)

so that

w'()g;/\j) SR CHI n’(g;/\j) +os, (5.9
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and 6. - 0 as j - . Equation (5.9) proves the equiva-
lence” of n'Qﬁ;A.) and m(d;A:) in the thermodynamic limit.
The proof of thé existence %f n'(g) and (5.5) is identical
to that for systems with tempered potentials.

Remark: Theorem 5.1 shows in a striking way the special
nature of the Coulomb potential. In the absence of the
Coulomb potential, but for any tempered potential, one can,
by properly choosing the various chemical potentials My,
induce essentially any desired ratio of the densities o,
of the various species. For Coulomb potentials, on the
other hand, only neutral densities are permitted in the
thermodynamic limit. To Ee more specific, it can be
readily shown that (Q).VE - o where (Q). is the expecta-
tion value of the charée in Ay, for an arﬂitrary choice of
the chemical potentials My IFR=REE S B Sl

An interesting question arises aboui the behavior of
the charge fluctuations ([Q - (Q),12).Vit as j » =. Tt
seems certain on the basis of our”previpus results that
this will approach zero (probably as V3§) when j - =, but
we have not established this rigorously.

VI. The Microcanonical Ensemble For Neutral Systems

In the foregoing pages we discussed the existence
and properties of the canonical and grand canonical free
energies per unit volume. The microcanonical ensemble is
and ensemble of even more physical and historical impor-
tance. From it the requisite thermodynamic properties of
the canonical and grandcanonical ensembles may be deduced
directly on general grounds, but the converse is not true.
The microcanonical partition, function Q(E,N;A), is a
function of energy, E, the domain, A, and the particle
number vector N. There are many ways to define Q, but in
any case one defines an entropy/unit volume, o, as a func-
tion of density, p, and energy/unit volume, €, by

o(e,p;A) = V-anQ(eV,BV;A), (6.1)

where V = V(A). 1In addition to showing that ¢ has a
thermodynamic limit which is concave in (¢,p), one also
has to show that the various definitions of Q yield the
same limiting o function. [See Ruelle (1969) and refer-
ences quoted therein.]
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Instead of following the usual route of first defin-
ing ¢ and then its inverse function ¢ (o,p;A), we define ¢
directly to suit our purposes. We then show that it has
all the requisite thermodynamic properties for neutral
systems in general domains as we did in Section III for
the canonical free energy. It can also be shown that our
definitions of ¢ and o (which is defined to be the inverse
of our ¢ function) agree with the usual definitions in the
thermodynamic limit. The 'equivalence' of the microcanoni-
cal ensemble to the canonical and grand-canonical ensem-
bles in this limit is a consequence of the general argu-
ments developed for non-Coulomb systems (cf. Ruelle, 1969).

The Microcanonical Energy Function, €

Definition: Consider a quantum system in a domain A (of
volume V) with particle density p. Let Ej < E, < ... be
the eigenvalues of the Hamiltonian arranged in increasing
order (including multiplicity). Let o € R! and let # = 1
be the smallest integer = exp(cV). Then the energy func-
tion is defined by

(0,030 = (VL)'liélEi y (6 2)

Remarks: (i) H-stability provides the lower bound
€(o,03M) = |gle , (6.3)
for some constant, 2.

(ii) The range of Ve(o,g;A) is [Eq,*] since
the Hamiltonian is unbounded above.

(iii) It is clear from the definitions that
€ is non-decreasing in o. Hence, the energy function has
a pseudo-inverse called the entropy function which will be
denoted by o(e,p;A). It is given explicitly by

o(e,p,A) = supfo: €(g,p3A) < e} . (6.4)

Tmplicit in Eq. (6.2) is the notion that each E; is
defined for all p by linear interpolation. Thus, the
definition, (6.4), of 0 is not the same as one would ob-
tain if one defined o for non-integral particle numbers



456 LIEB AND LEBOWITZ

by linear interpolation of o. In other words, we have
given priority to the energy function. It is also to be
noted that while the domain of ¢ (in o) is (-»,»), the do-
main of o (in €) is [E;/V,=].

We now use the minimax principle which states that if
v, 1,..., & is a set of ¢ orthonormal functions
(called variational functions) in the domain of the Hamil-
tonian, H, and that if we form the t-square Hermitian ma-
trix A whose elements are Aj; (wi,HwJ), and label the
eigenvalues of A as Ay = Xy ; .=}, then X; = Ej for
i=1,...,4. In particular, for integral particle numbers,

e@,030) = (V1) lrra, (6.5)
where exp(oV) = 4. This formula shows the advantage of
our definition of ¢ because all we need to know are the
diagonal elements of A.

To apply this principle, let A 2 A, U Ap, with Ay and

Ay disjoint, and let N = + Np be the respectlve particle
number in thﬁ various doma ns. 1If {wi,E Y, 1= 15,07
(resp. {v? } 1,...,n,) are the first n; (resp. np)

eigenfunc%ions and eigenvalues in Ay (resp. A ), we can
form thi setzof nyngy variational functions in A by

¢1J = Vs To evaluate the right hand side of (6.5)
we need consider only AiJ i3 and this is given by
’

1 2
Aij,ij Ei + Ej + Uij 5 (6.6)
where U;: 1s the expectation value of the inter-domain
part of ihe potential energy. Obviously, (6.6) generalizes
in a trivial way when A contains more than two disjoint
subdomains.

The average interaction, Usss consists of a non-Cou-
lomb, but tempered part and a Co&lomb part. The former
can be easily bounded and we shall ignore it in these
notes, Bounding the Coulomb part i is slightly more
complicated.

Suppose that A, in the previous discussion is a ball,
B. Each index i denoting the eigenfunctions and eigen-
values of the Hamiltonian in B can best be written as a
pair (a,m) where o denotes the principal quantum numbers,
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including the angular momentum, L(a) (irreducible repre-
sentation of the rotation group), and m denotes the mag-
netic quantum number (row of the representation). The
energy E% depends only on o and not on m. Suppose further

that nl s such that for every a all the levels (a,m) with
-L(a) m < L(a) appear in the list 1,...,n, if any one
(% ,m’) does. 1In that case we shall say tha% n; is perfect.

i ., which is part of the sum in (6.5), we have

m=~L (C’- sm) 4 j
to evaluate an average charge density in A; which involves
integrals over all but one of the N; particle coordinates

in B, such as

L 2
I () = =§Lj e 1|¢ (umy & rz,...,5N1)1 qu...QENl
B

Clearly I_ depends only on the distance of ¥ from the cen-
ter of B. If, in addition, we postulate that Ny - E= 05
i.e., that A, contains a neutral mixture of particles,
then the average Coulomb potential outside of Ay will
vanish by Newton's theorem. That is

T -0 for all j (6.7)
i=1"1j

regardless of the shape of A, and of its constituent parti-
cles. 1If n; is not perfect, it lies between two perfect
numbers 4 and v, 4 < nqy < v, v - 4 = 2L(a) + 1 = t, where

a is the last principle quantum number appearing in the

"
first n; levels. The sum ileQ. = 0 and can be ignored.

1]
n n
) 1 c_. 2. ¢
We are then left with U = z U where U; = T U,,.
i=u+1 1 4=1 13
The key fact is that we can relabel the lsst t levels in
v such that U < 0. This is so because = Ug =0,
i=n+1
Writing, for i = 1, 2, Xy = Vi/V and exp(c V.) = ny,
then if exp(oV) = mny we have 0 ="X,04 + X,0 if we

now denote the energy function of A, by ey an if Al is a
ball, then the preceding discussion shows that

(6.8)
€ (310 PXY0 9 TR PR R H) = X8 (0740958045925 (09,03A)
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It can be shown that (6.8) is true even when ny, n,, Ny
and N, are not integral and that it generalizes to more
than %wo subdomains provided all but one of them is a ball,
Thus, we have established precisely the analogue of the in-
equalities on the g function of Section III. Therefore,
the same analysis as that given in Section III will lead

to the same conclusions for the energy function.

Our results are summarized in the following theorem:

Theorem 6.1: (i) Let {Aj,g.} be a sequence of regular
domains and integer valued par%icle number vectors satis-
fying the neutrality condition N: - E = 0 and such that

o; = V(Ao)'¥y. satisfies [g| < p.. Let a sequence of en-
t}opies {0.} d1s0 be given and suppose that p - p with

|£| < p, and 0; -~ 0. Then, the energy functions €(0.,p.;
A con%erge to a function €(0,p) which is independent 3f

the particular sequence,

(ii) €(o,p) is continuous and convex in
(0,p) in the domain

Die= {(O’B): ,Q! S PC’B'E =0, < g < =}

It is also non-decreasing in o,
(iii) €(o,0) = 0.

(iv) Let K be a compact subset of D.
Suppose that for each (0,p) € K we have a sequence
{o0:(0,0),0:(9,0)} which approaches (0,p) uniformly on K.
Then e(oj,ﬂj;Aj) approaches €(0,p) uniformly on K.

(v) The entropy function, o(e,p,A), also
approaches a limit o(¢,p) uniformly on compacts.

(vi) o(e,p) is continuous, and concave in
the domain D = {(e,p): lgf < pgsp * E=0,e1(p), where
€1(g) = lim El(gj;Aj)V(Aj)'lana E;(g;A) is the lowest
J-—iw

eigenvalue of the Hamiltonian in A, It is also non-de-
creasing in € and its range is not bounded above.

(viii) o(e,p) and e(0,p) are inverse
functions.
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DISSIPATIVE SYSTEMS AND DIFFERENTIAL ANALYSIS

e
David Ruelle
Institute for Advanced Study
Princeton, New Jersey

Introduction

In these notes we make a sketchy description of the
application to dissipative systems of the qualitative
theory of differential equations. One might say that the
subject to be described is largely non-existent., Indeed,
much remains to be understood about the qualitative be-
haviour of solutions of differential equations in finite
dimension. Furthermore the differential equations for
the time-evolution of dissipative systems are in infi-
nite dimension, and an existence and uniqueness theorem
for their solutions is usually not known. On the other
hand, dissipative systems exhibit some of the most fasci-
nating of natural phenomena (think for instance of the
flow of liquids), and obviously degerve the growing inter-
est devoted to them (see Prigoginels, Thomza).

Chapter 1. The physical principles.

1. Nature of dissipative systems.

Dissipative systems are macroscopic systems de-
scribed in terms of macroscopic variables in such a
manner that time evolution leads to a continual
dissipation of microscopic information (entropy pro-
duction). More precisely, we consider a dissipative
system as extended in physical space, and such that
its state in small regions of space may be approxi-
mated by a thermodynamic equilibrium state. This

*This is a short version of lectures given in spring and
summer 1971 in Brandeis and Boulder respectively. 1 hope
to publish later an extended treatment of the same subject.
**Permanent address: THES, 91, Bures-sur-Yvette, France.
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state (described by a finite number of parameters)
varies in general in space and time, and the system
as a whole is not in equilibrium.

The time evolution of a dissipative system is
given by a differential equation

dg

_d?= X(g) (1.1)
on a suitable manifold M. Here § is a vector field
over physical space, the components of which are, at
each point, the parameters describing the local ther-
modynamic equilibrium state. The r.h.s. of (1.1) is
a vector field X on the infinite dimensional manifold
M. The vector field X is locally of a rather unre-
stricted character, and therefore there is usually
no useful variational principle associated with dis-
sipative problems. On the other hand, the unrestric-
ted nature of X makes the qualitative behaviour of
dissipative systems less complicated in general than
that of conservative (Hamiltonian) systems: the Kol-
mogorov-Arnold-Moser phenomena do_not occur here
(see for instance Arnold and Avez<).

2. Evolution equations.

Consider a continuous system consisting of a
fluid mixture of a finite number of constituents
which may participate in chemical reactions. The
following processes lead to entropy production:

(i) internal friction due to viscosity

(ii) heat transfer

(iii) diffusion of matter

(iv) chemical reactions

Processes (i), (ii), and (iii) are called transfer
processes. The evolution equations for the system
under consideration are obtained by expressing the
conservation of the masses of the various constitu-
ents and the conservation of the fluid momentum and
energy.

We shall write the evolution equations in the
special case of a system with only one constituent:
the processes (iii) and (iv) are then not present.
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We let p be the density, p the pressure, T the temper-
ature, ¢ resp. s the energy resp. entropy per unit
mass of fluid. All these variables satisfy the equi-
librium thermodynamic relations. The velocity of the
fluid is denoted by v = (v;). The following quanti-
ties are also associated with the dissipative proces-
ses (i) and (ii):
(i) viscosity stress tensor 0 = (oij)
(ii) heat flow q = (qi)
The evolution equations are then as follows

(a) Mass conservation (continuity equation)

3p _ o)
T T (B U N B

(b) Momentum conservation

s 3

= i ij [Pvivj + (péij-cij)] L)

(c) Energy conservation

|OJ

Go v +0p¢)

o

t

o)
Sy = e
axi [ (% ov® + pe)vi + (p 13 oij)vj+qu+G

The source terms E,F=(Fi),G have been introduced for
greater generality. They are functions of the posi-
tion x and of the thermodynamic variables and the
velocity at x. Notice that we may rewrite (c) as

dv,
i

3 d
ﬁ(p C)—' a—xi-(p €Vi+qi)'(P 6ij-cij) axj
=
s E V' +Fv, +C
The entropy s satisfies

T ds =d ¢ - gy dp

hence, omitting the source terms in (a), (b),(c),
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) 3
T [ﬁ(ps) + _axi (psvi)J = pT (S'E + vy 3;1)

= |2& . op e _ 3p
“p[at %"atJ”’iaxi %’-Viax]

i
dv, aq ov,
e st L. _1 1
=3t %) +axeevy) + o 537 == 5%, + 944 5%,
i i i
Therefore
dv
d 3 2 4. 1 3T, 1 i
L5gles) + axi(psvi)] it axi(T_)“ ™ U 5% *t 7% 5%

The r.h.s. is the rate of internal entropy production.
It is positive and may be rewritten as

J X =20
m m m
ar Vi
where the are forces —, —— and the J, are
—— 3x,’ 0%, k
fluxes or currents. i j

The fluxes J, depend on the forces X 6 and vanish
when the latter vanish (at equilibrium). In the
linear approximation we have thus phenomenological
laws

J =YL X
m 0 mn n

where the coefficients depend on the thermodynamic
variables. From the reversibility of the microscopic
laws of motion one derives the Onsager reciprocity
relations of the type

L =1L
mn nm

Furthermore some coefficients Lm vanish identically
as a consequence of physical invariance laws.

In our case 0., and q; are given by the phenome-
nological laws
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dv, 3v, 2 ka avk
ST Call bl R ITE -l LIPS
i 3 i i ox i
q = X E%— (Fourier's law)
i
The entropy production is
dv
1 3T 1 i
T Y15k, YT 4 5k,
J
_afor N o (2 )P o (Y
T’axi 2T \ox, ~ 3x, 3 ij 3% T\ 3%,

hence A\, n, ¢ 2 0; A is the thermal conductivity and
n, ¢ are the viscosity coefficients.

For an incompressible fluid, the evolution equa-
tions are

where n and A have been assumed constant, and the
source terms have been omitted.
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3. Remarks on the time evolution of dissipative sys-
tems

Because of entropy production, an isolated dis-
sipative system will "die out' i.e. tend to equilib-
rium. A more interesting situation is that in which
the system receives a steady negative entropy flow
from the outside; in that case non equilibrium re-
gimes will be established, which may be stationary
or non stationary.

The evolution equations have to be supplemented
by boundary conditions. In particular, the velocity
v of a viscous fluid at a solid boundary is that of
the boundary (the fluid sticks). The boundary con-
ditions and the source terms in the evolution equa-
tions both contribute to the entropy balance of a
dissipative system. A stationary non equilibrium
state can thus be achieved in spite of a strictly
positive internal entropy production.

A mathematical theory of solutions of the evolu-
tion equations has been developed only in very special
cases. In general, compressibility leads to charac-
teristic physical phenomena: sound waves and shock
waves, and the existence of shock waves necessitates
the introduction of special prescriptions to supple-
ment the evolution equations. The situations is bet-
ter for an incompressiblgvfluid but the non linear

== t of a t
3% are not o ype

treated by standard methodg. In the well-studied
case of the Navier-Stokes equation for 3-dimensional
flows, no general existence and uniqueness theorem is
known.

terms - in particular vy

The idealization process which leads to the
mathematical description of dissipative systems uses
various approximations, 1In particular, in specific
problems some dissipative processes are considered,
and others disregarded. Apart from that the follow-
ing approximations play an important role
(i) Macroscopic approximation. This implies in par-
ticular that the '"mean free path'" of molecules is
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small in comparison with macroscopic lengths (a con-
dition usually not satisfied in plasma physics).

(ii) Linearity of phenomenological laws. This is gen-
erally assumed for transfer processes but not for
chemical reactions (where use is made of the nonlinear
"mass action law'). Nonlinear phenomenological laws
have been considered for incompressible viscous fluids
in order to make the problem of existence and unique-
ness for the evolution e%uations more amenable to
study (see Ladyzhenskaja 2, supplement p. 193).

(iii) Constant phenomenological coefficients and
thermodynamic functions. This is assumed for mathe-
matical convenience.

4. Examples of dissipative systems.

We can only sketch the wealth of intriguing
phenomena occuring in dissipative systems. In the
next section we consider the viscous flow between ro-
tating cylinders. For the flow of a viscous fluid
past an obstacle see Feynman’ II Section 41-4, For
the onset of convexion in a fluid layer heated below
(Bénard problem) see Chandrasekhar®,

A simple and interesting example of dissipative
system is provided by a homogeneous solution of chemi-
cal reactants. Here the evolution equation

3—2 = X(c) %1

describes the change in time of a vector ¢ in a fi-
nite-dimensional concentration space,

A stationary state (or steady state) is a con-
stant solution of (4.1): c(t) = c, i.e. X(c)) = 0.
By maintaining the concentrations of some of the re-
actants at non equilibrium values, a non equilibrium
stationary state is usually obtained. In some cases
a periodic state with period t_ appears, i.e. a non
constant solution of (4.1) sucg that c(t+ty) = c(t),
we observe then chemical oscillations. An example
of chemical oscillations is easily realized at room
temperature in the Beloussov reaction; the following
mixture being alternatively yellow and colorless:
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Malonic acid 0.3 Molar
Cerous nitrate 0.005 - 0.01 M
H, SO, 3.0 M

Na Br Os 0.05 - 0.01 M

More colors are obtained by adding a little Ferroin.

5. Viscous flow between rotating cylinders.

Two coaxial circular cylinders with radii R, and
R, rotate with constant angular velocities Q; and Q,
(Fig. 1). The space between them is
filled with a viscous incompressible
fluid, and the flow of the fluid is
investigated for various choices of
Ql) 02'

The evolution equations are the
Navier-Stokes equation

@

[or]

v v

R A, L R e

3l i 3
5t - " V3%, "k, tVA Y
7 S
! (where v = n/p is the kinematic vis-
| cosity) supplemented by the incompres-
S P
e sibility relation
avi
Fig. 1 — =0
axi

We 1introduce cylindrical coordinates r, ¢, z, the
boundary conditions are then

oo o 0 Y$ = MR for r = Ry
B = o, v¢ = Q,R, for r = R,

It is also required that there be no net flow of the
fluid along the vertical direction. This problem
has a simple steady (time-independent) solution, the
rotating Couette flow given by
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v =R - UR L (0 -0 )RIRE 1
® R; - R} R; ~-RYf r (5.1)

The flow between rotating cylinders has been ex-
tensively studied experimentally, the fluid being air
or water (with suspended particles for visibility),.

A variety of flow patterns are obtained. We describe
some of them, but warn the reader that new experiments
might change details in the following descriptions
(see Fig. 2).
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~
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Fig. 2.

(i) The Couette flow (5.1) is observed for small

o, 1,10,1, and also when QRZ > 1R} > 0

(ii) For higher values of 2, the Couette flow is re-
placed by another steady flow, the structure of which
has been theoretically and experimenEglly investi-
pEA R gated by G. I. Taylor Here the
fluid column is vertically divided in
cells - Taylor cells - and a vertical
a& and radial motion is superimposed on
the (horizontal) Couette flow (Fig. 3).
The new flow is still time independent
and rotationally symmetric, but has
lost the invariance under vertical
translations (translations along the
Fig. 3. z-axis). We have here a beautiful
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example of symmetry breakdown in physics.

(iii) when the cylinders turn in opposite directions,
instead of a transition Couette flow - Taylor cells,
one may observe a transition Couette flow - helical
wave form. The helical wave form consists in that
the Taylor cells, instead of being annular, are join-
ed to form a structure which w}nds helically between
the two cylinders (see Snyder2 ) Here the time in-
variance and the rotational invariance of the flow
have both been destroyed.

(iv) In other situations the Taylor cells retain
their general shape but loose their rotational in-
variance, which is replaced by an angular periodicity

with period = (m = 1,2,...) - the boundaries of the

cells undulate with this period - and time invariance
is lost. These flows are called doubly periodic.
Notice that the experiments are made with cylinders
of finite height L (one can idealize this situation
by restricting one's attention to solutions of the
Navier-Stokes equation which are periodic with period
L with respect to the z ordinate). Let n be the to-
tal numbeg of cells. It has been shown experimental-
ly (Coles”) that, for each choice of Q,,0, in a cer-
tain region, there exist several possible flows char-
acterized by different values of m and n and stable
under small disturbances.

(v) There is a domain of values of the pair (Q.,Q,)
which leads to turbulent flow. Here is an egperi-
mental (!) description (extracted from Coles”’) of the
onset of turbulence:; '...The ensuing motion then re-
mains laminar and doubly periodic for a time, as suc-
cessively higher-order harmonics of the basic frequen-
cies are excited. At sufficiently high speeds how-
ever, the flow becomes noticeably no longer quite
laminar, in the sense that irregularities have begun
to appear, especially in the motions of smallest
scale. Further increases in speed then increase the
degree of irregularity until finally the flow can only
be described as fully turbulent."




DISSIPATIVE SYSTEMS 471

Chapter 2, Differential analysis,

6. Qualitative theory of differential equations.

In the next chapter we propose to use the quali-
tative theory of differential equations to study the
evolution equation

dx _

ac - X(®)
of a dissipative system. It is not possible here to
reproduce all the necessary background of differen-
tial analysis - ancient and modern - and we shall
mostly limit ourselves to some bibliography.

Calculus in Banach space, in particular the inp-
plicit f%gction theorem, is described in Dieudonné®.
See Lang for manifolds, vector fields, and the ba-
sic existence and uniqueness theorems for differen-
tial equations. The ck vector fields on a manifold
have (usually) a natural topology of Banach or
Fréchﬁt space 1%; a property of vector fields is cal-
led eneric if it is satisfied on,a residual set
of X™., This is discussed in Abraham™, which is also
referred to for the study of closed orbits of a vec-
tor field and their associated Poincaré maps.

Remarkable progress has been made recently in
understanding the structure of orEits of vector
fields or diffeomorphisms. Smale is the basic re-
ference in this area; it discusses the main results
on the nonwandering set of a diffeomorphism and gives
in particular examples of strange attractors. In
section 7 below we give some indications on the work
of Hirsch, Pugh, and Shub concerning the center mani-
fold theorem, and invariant manifolds with normally
hyperbolic diffeomorphism.

7. Some results on invariant manifolds.

Let 0 be a fixed point of a ck diffeomorphism £
of the Banach space E. We suppose that the spectrum
of the derivative Df(0) is disjoint from the unit cir-
cle, i.e. 0 is a hyperbolic fixed point. The
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points x such that lim fPs = 0 form a ck manifold

called stable manifold and tangent at O to the linear
space corresponding to the part of the spectrum of
Df(0) which is inside the unit circle. Similarly the
unstable manifold consists of those x such that

lim f%x=0 and corresponds to the part of the spec-

n-»-co
trum of Df(0) which is outside the unit circle. The
situation for vector fields is analogous.

Clearly, the stable and unstable manifolds are
invariant under f. If f is not hyperbolic but has a
finite number of isolated eigenvalues of finite mul-
tiplicity on the unit circle, various invariant mani-
folds can still be defined under suitable conditions:
stable, centerstable, center, centerunstable, and un-
stable. The center manifold will interest us most:
it is tangent to the subspace of E corresponding to
the part of the spectrum of Df(0) which is on the
unit circle. The existence of a center manifold
which is Ck, k < + », is asserted by the center mani-
fold theorem, for which see Hirsch, Pugh, and Shub®,
There is no uniqueness: there may be several center
manifolds.

We shall use the center manifold to study a dif-
feomorphism fu’ depending on the real parameter \,
when one or several eigenvalues of Dfu(O) cross the
unit circle, say for u=0. It is then convenient to
add one dimension to E and to consider the diffeo-
morphism (x,u) - (£, x, 1) of E XTR at the fixed
point (0,0). The new diffeomorphism has just one
more eigenvalue (1) on the unit circle.

Similar results hold if 0 is a critical point of
a vector field X : X(0) = 0. The role of Df(0) is
taken by the Jacobian and that of the unit circle by
the imaginary axis.

Let f be a diffeomorphism of a manifold, which
leaves invariant a compact submanifold V. It is
sometimes possible to say that a diffeomorphism f£'
close to f has a compact invariant manifold V' close
to V., This is the case if f is normally hyperbolic
to V. Roughly speaking, this means that f is more
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hyperbolic (i.e. contracting or expanding) in direc-
tions normal to V than tangent to V._ For a precise
statement see Hirsch, Pugh, and Shub or?.

8. Normal forms.

If we want to study a vector field near a criti-
cal point, or a diffeomorphism near a fixed point, it
is generally useful to choose the coordinates so that
the lower order terms in the expression for the vec-
tor field or diffeomorp?}sm take a simple form. Fol-
lowing Jost and Zehnder~~ we shall make use of such
normal forms in discussing bifurcation problems.

Here we state a typical result,

Theorem. Let Xu = (Xui) be a vector field in ]qu
depending on the parameter 1 € IR and such that
XH(O) =0, (x, u) = Xu(x) is Ck while x - Xu(x)

L2
is ¢ for all pu, 3 < k<4 < 4+, Let A=(A ..)
e — 4 uij

be the Jacobian of Xu ag or

oX

T
S Tepee ()
J

We let Au have 2q complex eigenvalues )\1"' ")\q’
Xl""’xq' We assume that there is no linear
relation of the form

> A n !

n=1 (Sn n+tn n) el

(L=< 1is q) for any choice of integers sn,tnz 0

such that ¥ (sn+tn) = 2 or 3, except relations
i

of the form Xi+>\j+xj=>»i (this exception permits

the )‘j to become pure imaginary). There is then

a change of coordinates R29 -g9 such that

(x,1)~¥,x is ck-3 and, for each u,x -~ \IJ“x J';g_Cm.
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In the new coordinates z z the vector

G uts B
field Xu takes the form (zl,...,Zq):

= q 2
g = O+ by lz Pz + 0

where the Xi are Ck-1 and the b.n are Ck-3 func-

tions of u; (x, M) - z,; is ck-3 and, for each
=
X W2 .. 481 G
M i

Chapter 3. Bifurcation theory of dissipative systems.

9. General principles.

Let again the evolution equation of a dissipa-
tive system be

g% - X(x) (9.1)

For most dissipative systems this is a differential
equation on an infinite dimensional manifold. Fur-
thermore the vector field X is often not well be-
haved so that the standard theory does not apply.
Under these circumstances it will be convenient to
think of (9.1) as a differential equation on a finite-
dimensional manifold. This will be sufficient for

the intuitive picture we want to give here - some re-
ferences will be given to precise results.

We consider a dissipative system subjected to a
time-independent external action described by a real
parameter U. Equation (9.1) then becomes

g—’é = Xu(x) (9.2)

where we assume that (x,u) - Xu(x) is ¢k (1 s k = =),
The study of changes in the structure of orbits of a

differential equation as a parameter is varied is the
object of bifurcation theory. We are thus interested
in the bifurcation theory of dissipative systems.
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For u = 0, we suppose that the external action
on the system vanishes. (9.2) has then a solution
x = 8, corresponding to equilibrium, and all solu-
tions x(t) of (9.2) tend to &, when t - + @, We as-
sume therefore that &, is an attracting critical
point of the vector field X, in the sense that the
eigenvalues of the Jacobian have strictly negative
real parts., The Jacobian A = (Aij) defined by

aXoi
Bz ™=
ij ij

(0)

is then an invertible matrix, and therefore the im-
plicit function theorem shows the existence of a
smooth function 4 - & such that X (§ ) = 0 for u in
a neighbourhood of 0. For suffici%nt%y small u the
eigenvalues of the Jacobian of at £ have strictly
negative real parts (by continuity) and ¢ is thus an
attracting critical point for . We may interpret

£ as a steady state of the dissipative system de-
scribed by the vector field X,; it is stable in the
sense that small perturbations are damped off (expo-
nentially) as time tends to + ®. As pu increases, one
or more eigenvalues of A(u) may cross the imaginary
axis, § then '"looses its stability'", In hydrodynam-
ics the  operator corresponding to A is unbounded and
its stud¥qis the basis of linear stability theory
(see Lin™ ", SattingerlS),

10. Loss of stability of a steady state and Hopf bi-
furcation.

As above let A, be the Jacobian of the vector
field A, at the critical point g€ . TFor small p, &
is attracting. As P increases a real eigenvalue
A (4) may cross 0, or a pair of complex conjugate
eigenvalues A (1), X (1) may cross the imaginary axis
(it is intuitively clear that other possibilities are
not generic).

If the real eigenvalue XA (u) crosses 0 for u=u,,
AH is clearly not invertible. Therefore the implic-
it function theorem which we used to prove the exis-

tence of &, does not apply. What happens generically
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is that, for u=y,, the attracting critical point &
coalesces with a saddle type critical point §'u and,
for 4 > uy, there is no attracting set close to &
(Fig. 4). This possil
bility is relatively un-
interesting. We shall
= see in a moment that,
£ when two complex conju-
gate eigenvalues of A
cross the imaginary axis,
the steady solution &
is replaced by a periodic
solution. It remains
thus to understand how,
in the flow between ro-
Fig. & tating cyclinders for in-
: stance (see Section 5) a
steady flow (Couette) can loose its stability and be
replaced by another steady flow (Taylor cells). What
happens here is that, because of the symmetry of the
system (invariance under the group of vertical trans-
lations and reflections) the vector field has a
non generic behaviour. The study of systems with an
invariance group has therefore to be made separately;
it may lead to bifurcations from one steady flow to
other steady flows.

Suppose now that two complex conjugate eigen-
values A (1), KN (2) of A, cross the imaginary axis for
M=ty , There exists then, in a neighbourhood of (gul,
M1) a one-parameter family of closed stits of 3
This fact was first proved by E., Hopf™", and the as-
sociated transition from critical point to periodic
orbit is known as Hopf bifurcation.

It is easy to understand how the Hopf bifurcation
takes place in 2 dimensions. For p < pi (resp.u > u,)
the integral curves of X, spiral
inward towards §, (resp. outward
from § ). This is true very close
to & .  Some distance away from
gu, the transition from spiraling
inward to outward may be delayed
(see Fig. 5) or advanced, and this
leads to a closed orbit.
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The original proof of Hopf assumes tEat (x,u)~
Xu(x) is real analytic. A proof in the C* case
(3 < k <+ =) is obtained as follows. First use the
center manifold theorem to reduce the problem to 2
dimensions. Then put the vector field in the normal
form

Z=0@ +bdbWlzP)lzl + os
The vector field Z-os has the closed orbit
|z| = (-Re A () /Re b(u))%

Using the theorem of Hirsch, Pugh and Shub on invari-
ant manifolds with normally hyperbolic diffeomorphism
(or vector field) one can show that this closed orbit
is not destroyed by the perturbation os.

The Hopf bifurcation explains the occurence of
periodic oscillation in hydrodynamic systems after
loss of gtability of _a steady solution (see Bru$-
linskaja”, Sattinger 9). 5t explains also chemical
oscillations (see sel'kov? , I am indebted to
J. P. Eckmann for explaining this reference to me).

11. Other bifurcations.

The bifurcations of a closed orbit can be studied
by investigating the corresponding Poincaré map @.
The closed orbit is attracting if the eigenvalues of
D2 (0) are in the open unit disk. Loss of stability
occurs when the unit circle is crossed either by a
pair of complex conjugate eigenvalues or by a real
eigenvalue at *1, Crossing at +1 generically leads
to a destruction of the closed orbit. The other pos-
sibilities may lead to the replacement of the origi-
nal attracting closed orbit by one or several at-
tracting closed orbits the periods of which are an
integral multiple of the original period. In particu-
lar in the case of a real eigenvalues crossing at -1,
one has a doubling of the period. It is interesting
to remark that such a doubling of period is apparent-
ly observed in sng chemical oscillations (see Fig. 6
in Pye and Chance~®).
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It is difficult to have a complete picture of
the structure of orbits of (9.2) when Y becomes
large. It is however possible to obtain some idea
of what happens by using the normal forms of section
8. We assume thus that § 1is a critical point of
and that, as p increases, success1ve ¥airs of complex
conjugate eigenvalues A, X, ,. cross the
imaginary axis from left to rlght By using somehow
the center manifold theorem and then introducing
suitable complex coordinates Z1,...,2gq We may assume
that the vector field Xu has the form

(Zl,...,Zq) =(Z1',...,Zc’1)+oa
e q 2
2i = Oy 27 by 2,1 2y

We consider first the equations

They imply

= q 2 2
dt |z, 1= 2(Re M+ B Re by lz %) 1z, |

Therefore the manifolds defined by the equations
Re A, + 74 Re bin jz 12 =0 or |z,]2 =0
n=1 n i

for each i are invariant for Z'. 1Tt is easy in spe-
cific cases to discuss the attracting, saddle-type,
or repulsive character of each one of these manifolds.
For instance if q=2 the following possibilities exist
(among others which are less interesting)

(a) The following two one-dimensional invariant
manifolds (closed orbits) are attracting:

2 _ 3
Re X\, +n£i Re blnlznl = 0, |25 | 0
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and
lz, 1= 0, Re A, + Ef Re b2nlzn|2 =0
n=1
(b) The following two-dimensional invariant mani-
fold (torus) is attracting

2=
Re XAy +ﬁ£i Re bln|znl 0,

Re Ay + ¥ Re b, |z _|2=0
n=1 2n'n

If the perturbation o; is sufficiently small, one
finds (see section 7) that Z (and hence X ) has a-
gain two attracting closed orbits in case (a) or
one attracting 2-torus in case (b).

The interest of case (a) is to show that a dis-
sipative system may conceivably have several differ-
ent attractors. Which attractor is chosen by the
system depends then on initial conditions. An ex-
perimental example of this situation was mentioned
in Section 5 where several '"doubly periodic' flows
may coexist.

One can see that case (b) corresponds to the
bifurcation of a closed orbit (as discussed above)
when two complex conjugate eigenvalues of D?(0) cross
the unit circle._  Using Peixoto's theorem (see for
instance Abraham1 one finds that the attracting in-
variant 2-torus carries a finite number of attracting
closed orbits.

We consider now the analog of case (b) when ¢>2,
We have here an attracting g-dimensional torus, and
the problem is to understand the nature of the orbits
on this torus. As it turns out very complicated or-
bit structures may occur; in particular strange_at-
tractors arise for q =2 4 (see Ruelle and Takens 7).
The integral curve of a vector field near a strange
attractor has an apparently irregular and chaotic
appearance, and depends very sensitively on initial
conditions. It was proposed by Ruelle and Takens
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that the phenomenon of turbulent flow in a viscous
liquid is described by an integral curve of the equa-
tions of motion which is asymptotic to a strange at-
tractor., This proposal is in agreement with the
qualitative properties of turbulent flow and, as we
have just shown, is not unreasonable from the point
of view of bifurcation theory.
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COMPOSITE PARTICLES IN MANY-BODY SYSTEMS

Arthur Y. Sakakura
Colorado School of Mines
Golden, Colorado

I. Introduction

In these lectures a second quantized formalism for
composite particles in many-body systems will be presented,
In order to explicitly define our terms we consider a sys-
tem of N protons and N electrons interacting through the
coulomb potential, At non-relativistic energies the proton
and the electron are elementary particles, whereas the H-
atom, Hy-molecule, H™-ion, etc. are the composite particles,
which we will indiscriminately call the atoms.

It is well known! that when composite particles are
far apart, they may be considered as integral entities with
internal structures and obeying definite statistics, i.e.,
H-atoms and Hjy-molecules are bosons, and H™-ions are fer-
mions, When they are close together, the indistinguishabil-
ity of the constituent elementary particles negates the no-
tion of individual atoms. Yet, the concept of atoms as en-
tities has been most useful, so we wish to express the
hamiltonian and other observables in terms of atomic, pro-
tonic, and electronic creation-annihilation operators from
first principles.

The emphasis is important, for one can always write
the atom-atom interaction with a phenomenological potential.
First principles means: given a system of protons and elec-
trons interacting through the coulomb potential and taking
into account that these particles are fermions, derive sys-
tematically the atom-atom and other composite particle in-
teractions.

The important problem of deriving the interactions a-
side, it is an advantage to introduce the composite parti-
cles in the zero order. This means that the hamiltonian

483
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will explicitly describe processes such as
B ekl [H 8 e

wt+e m (1-1)

etc.,, so that the equilibrium and non-equilibrium properties
relating to various chemical constituents can be calculated
in the zero order without recourse to many-particle green
functions.

II. Statement of the Problem

To further simplify the admittedly involved formalism,
the only atom to be considered will be the H-atom. This
choice does not alter the problem, but merely precludes the
explicit appearance of terms involving Hy, H™, etc. How
these are to be incorporated will be indicated later, The
proton coordinates including the spins will be denoted by
Xq.....%Xy, the electron coordinates by y,... and the
entire set by xy. The hamiltonian in the Schroylnger rep-
resentation is

N N
Hg = B (T, (D+T_(D) s [V(l )+V(1y y 11
Nz s
..i,}J;=1V( xj £ ) (I1.1)

where v is the repulsive coulomb potential, and T, and T_
are the kinetic energy operators of the proton and the elec-
tron, respectively.

The hilbert space in which Hg operates is spanned by

IEZ > = !xl Zoes

> ..lyN > (11.2)

whereas the physically admissible states ('physical states'’)
form a subspace defined by

ANl@ > =3 > (1I1.3)
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where
~2
= [
Aglzy > = 772 ol >euufmpy > Iy >eilypy >
= 2 Z 5| Pxy > (11.4)

and where P is the product, (permutation of the N proton
coordinates) X (permutation of the N electron coordinates).
6p is the signature of P. Ay is then the operator which
skew symmetrizes the state with respect to the N proton
coordinates and the N electron coordinates simultaneously,
It is hermetian and idempotent, and commutes with all the
operators of the system observeables.

The standard representation, which we will call the

elementary particle representation, is the second quantized
one, wherein

Hy = [ 4@y ax + [y T_i(ndy
5 VDT eV Ry K, ) ) ¥ () 8 (x) ) dx, dx,

= [ Ve ) vAE-F1) ¥ ()Y () dxdy
o oV VAT Y, DY (5, (7)) dy,dy,  (IL.5)
and
ag = fvept epvopt aoptlean?

<Ol (yy) .. ¥y ¥ (). . ¥ (x)) dxy (11.6)

where §(x) and y(y) are the usual wave function operators
for the proton and the electron, respectively, and |0> is
the normalized vacuum state, The operation, |dx, means in-
tegration over the space coordinates and summation over the
spin coordinates, whereas the operation, fg§z, means the in-
tegration and summation over the coordinates of all the par-
ticles. The | obey the normal commutation relations:
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6,4 ()T, =65 Lh(n) 4T ()1, =6 (r,y")
0=L¥ (), 4 (x) 1, =¥ g ) L =L¥ e T o) 1 =Le (), 4 () D1,
0=04 (), ¥ (N 1, =L ¥ DT, =11 Ty DY =lv e LY 1,

(GLT.17))

The last set of relatlons enables the product, Y (y)V¥(x), to
commute with both ¥ (x’) and ¥(y’), thus partaking a useful
characteristic of an independent bose operator.

Two points need emphasizing. The hamiltonian, Hp, con-
tains no explicit references to composite particles, and Ay
is the identity operator for the sub space containing N
particles each of two different fermions,

Girardeau? introduced atoms via the basis

-1
> 1
I(Il. . .G.N (N.) g J"d_}szl _)_(1_> cpaRl (xlyl) . .cpa‘RN(XNyN)
(11.8)
where @ 1is the complete set of atomic wave functions, and
R is a permutation of N objects. One now introduces the

creation and annihilation operators for the state, o, obey-
ing the bose commutation relations:

[aa,az,] = 6(a,a’), [aa,aa/]=[a:,a:/]=0 (11.9)

Girardeau obtained

+ + r e t_ e

H,= % E a a +% o (a Vv, la;'a,da,a
A a a o 1a2a11a2 0.1 2 1| ' 1 2 2 2
(I1.10)

where E; is the energy of o including the center of mass
energy, and Vp, is the coulomb interaction energy of two
atoms:

vy, = vllx -2, +v(|y,-7,1)-v %, -y, 1) -v(|7,-%,1)
A 2 2 1 2 1 72 (I1.11)

We will call this the atomic representation.

A, however, is not the identity for the subspace of N
atoms, so the physical states must obey the subsidiary
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condition (II.3) or its equivalent, the satisfaction of
which presents a formidable problem,

Another source of difficulty is the necessary inclu-
sion of the continuum atomic states for completeness. By
treating these states as atoms, recombination and ioniza-
tion terms do not appear in H,. A mixed representation
with a basis of bound atomic states and free electron and
free proton states will explicitly display these desired
terms. This, however, opens a new Pandora's box of prob-
lems associated with orthogonality and completeness. The
lectures by Brittin3, Girardeau®, and myself are all con-
cerned with different approaches to the problems of orthog-
onality and completeness and of the elimination of the sub-
sidiary condition in the mixed representation.

In these lectures, a complete orthonormal set in the
mixed representation will be shown with one curious feature:
every orthonormal subspace, except one, contains a continuum
boson, the remainder of the particles being bound atoms and/
or free electrons and protons., The elimination of the con-
tinuum bozog is equivalent to the strong orthogonality of
Girardeau™>~,

We avoid the subsidiary conditions by utilizing o~
Giradeau's® observation about the projected hamiltonian, H,

H = ANH = HAN = ANHAN (11.12)
The eigenstates of H are the physical states of H. So in-
stead of examining H (and other observables) in the physical
subspace, we consider H in the entire hilbert space. 1In
other words, the burden of symmetry is to be carried by H,
rather than by the state.

Unfortunately, the eigenstates belonging to the zero
eigenvalue of H include all the unphysical states so that
the solution of the Schrddinger equation,

in|s>=H1| 3> (11.13)
may contain a large time-independent component of the un-

physical states, But the physically interesting quantities
are thermal averages of observables, 0, which can be written,
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{0) = Trace over physical states p 0
Trace over all states Ayp 0

Trace over all states 7 O (11.14)

where p is the density matrix with the normalization
Trace over all states p = 1 (I1.15)
and where p and 0 are related to p and 0 by equation (II.12).

We will determine H and A, and demonstrate a systematic
procedure for determining O.

II1I. The Mixed Representation

The representation of the projected operator, 5, is
carried out in the space, S¢» which is the union of the or-
thogonal subspaces, S,,, where the number of bound atoms, M,
ranges from zero to Ng The subspace, Sy, contains N bound
bosons. The remaining subspaces, S,, with M less than N,
contain M bound bosons, one continuum boson, N-M-1 protons
and N-M-1 electrons., The space is a subspace of the origi-
nal hilbert space but is ''large enough' to contain the
physical states (see, III.23). The presence of the single
continuum boson is necessitated by the requirement of com-
pleteness and orthogonality in the original hilbert space.
(see, II1.5 et seq).

We will first derive the expression for the projected
operator, 0, in §_  (ITI.1). Then we will isolate the fac-_
tors containing thie continuum boson operators and express 0
in terms of ﬁ, the corresponding operator in the space con-
taining no continuum bosons. Finally, we will exhibit the
relationship between Girardeau's "strong orthogonality'" and
the present formulation,

We will first show that the operator 0 can be written
in the form
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N Bound States Continuum States
0= g % z

‘
MM =0 alo..aM 3M+1,B Ml+1
G.I (1/
100. M/

I 7 ! ,
J x5 dypgy -« -dxdydx’ e ody e dxgdy
+

1%
aal... Ma = (xM+2)w (yM+2)..¢ (XN)W (Y y | o>{M! M i

)
X 0|0 (T V(D) e (T o) U ( YA A ...A 0_(ND
N ¥ ¥y w22 ¥ o Bygps Ogp g E
+ + + 4+, + ek LI A
X Agreeehyt He U OV Gyrig) e ¥ G (y 10>

x [M'!M_;_!M:!]-}E(O]W(y&)ll!(x&)...‘¥(y};/+2)¢(x§1/+2)

, (II1.1)

EELW
|

E”+1 M

The a and the | have already been introduced and obey the
commutation rules, (II 7) and (II.9). In addition the bose
operators, a+ a, s at » ag, commute with both § and

Moreover, both a 5 a+ commute with both a; and aB. That
is, the continuum bosons and the bound bosons are treated as
kinematically independent. We will always employ the con-
vention that o will run over the bound states and B over the
continuum states so that the summation ranges will not be
explicitly stated hereafter, Og is the second quantized
form of 0 in the elementary particle representation. Aa

and AB are defined as follows,

= fwj(xy)¢(y)W(X)dxdy, Ag = Iw;(XY)W(y)¢(x)dxdy

il + (111.2)
whereas Aa and Aﬁ are their hermetian conjugates.

M,, the number of proton operators appearing as factors
on the left hand side of a given term, and M_, the number of
electron operators appearing as factors on the left hand
side of a given term, are both equal to N-M-1 when M # N,
and are equal to zero when N = M, The primed quantities
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refer to the right hand factors (annihilation operators)
with the same restrictions.

Note that there is a single continuum boson in all
states except when M or M’ are equal to N. Then there is
no continuum boson.

The kets on the left, including the factor,
(M!M !M_!)'%, are the normalized basis vectors for states
containing M bound bosons, one or zero continuum boson, M,
heavy fermions, and M_ electrons. These basis vectors are
orthogonal for different values of M, and together, they
span the space in which

M+ M o+ (Oor 1) =N=M+M + (0 or 1). (II1.3)

where the number of continuum bosons is zero when N = M and
one otherwise.

Note carefully that the operators are ''reflected"
across [0){0] at both ends of the expression. This simpli-
fies sign manipulation when the summation is actually car-
ried out.

The starting point is really a definition owing to the
completeness of |xy).

~

0 = [dxy dx'y’|xy) (xy|A0 A lx'y M (x'y’] (a0 )

The trick is to rewrite the identity operator, incorporating
atoms and taking advantage of some properties of Ay. Con-
sider the one atom projection operators,

Ig(1,1°) = E o, (k)0 (x),y; ) (111.5)
o * '
I (L,17) = I(1,1)+T; (1,17) = 6(x;,%1)8(y;,¥;)

(I1T1.7)

with the properties
[1,,191 ', 1 axdy’ = 1.(1,1") (111.8)
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fIB(l,l')IC(l',l")dx'dy' 0 (II1.9)

IIC(I,l')IC(l',l”)dx'dy’ 1,(1,17) (111.10)

Now construct the projection operator, IyM, whose matrix
elements are

I

<3§1_11N]x’z’> IB(1,1’)...1B(N,N’)

<}_<1|IMIX'z') IB(1,1’)...IB(M,M')IC(M+1,M+1’)

X T(M+2,M+2°).. . I(N,N), 1sMs N-1

(xy| Iolx'z') Ic(l,l')...I(N,N') (II1.11)

From the above, one can show
Ly lyr = 8 (M,M") (I11.12)

and

Mgo I, = Jdxy|xy) (xyl (I11.13)

which is the unit operator for the entire hilbert space.
The orthogonality, (III1.12) is a weak one since it depends
upon integration over the entire configuration space. It
depends critically upon the position of the single Iq in
(IIT.11). We now rewrite

~ N
0= =0 rnOstNy (1I1.14)

and introduce the projection operator, M’ with the matrix
elements
(H]PMIX'2'> = (MMM .')'}5 T GS(_)_(XI sx'y" (I11.15)

- S

Where S is the product, (permutation of the M couples

L SPANRRRES yM) X (permutation of the proton coordinates,

Ky oo - XN) X (permutation of the electron coordinates,
4N ), and bg is the product of the signatures of

tE+ electron and the proton permutations. It can be shown

that
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2 % +
BB L e (111.16)
Py = AyPy = Ay (I11.17)
0 e o (111.18)

The last property results only because the single continuum
boson is treated as a different particle and is not mixed
in the permutation, S. We now write

oG N
0 = M,M;=0 IMPMANOSANPMIIMI
N
= o P IMA 0,A
M,M’=q M N'S'N

N
= % [IMxy) (xylA 0.4 |x'yYM'x'y |dxy dx'y’ (I11.19)
M,M,=0f y) (xy| A\OAy xy

where

| Mxy) = PMIMI:_cz> (III.20)

The orthogonality and completeness relations are,
ORNAN) - 0%
M'xly’|Mxy) = &'yl T0PR T | xy)

= &'y'|pp/ 1T P xy)

a. A ’
= &y'Ip, TP xy) 6 (4", M) (111.21)
and
JIMxy) GeyM” | dxy =[BT | xy) Cxy| TP /dxdy
= PMIMIM’PM'
o !
= PMIMPMG(M,M ) (I11.22)
Clearly, P is the idempotent projection operator onto

the subspace M, so the entire space, S,, is the union of
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orthogonal subspaces. The identity for Sas which is "smal-
"
ler" than the original hilbert space, is given by ZOIM?M M

The space contains all the phys1ca1 states, for

Ay M§ Lbvlu = Ay MEO Py = A OIM = Ay (II1.23)

as one might have expected.

In second quantization,
ieyd = QUMM D TE Py eyt 0 m) T G )
XW+(XM+2)W+(yM+2)--.¢+(xN)w+(yN)d§x|0> (II1.24)
where

SR * i o I * +

¢'(X,y) i E wa(xy}’)aa, ‘JJC(X,Y) =z QPB(st)aB
(I11.25)
are the wave function operators of the bound and continuum

bosons respectively. The order, or the pairing, of the free
proton and electron operators is due to the paired form of

1(3,3i7).

Finally, the matrix element,

[

Gey] B0 'y = (N1 TR0 ¥ Grp) L ¥ (¥ (- ¥ (7 O

N'S N

X YT pTE Y D 0

() 204 (7 ¥ () - ¥ (y ¥ (D0,

M CH MO G AR AT [
(IIL.26)

allows pairing of the particles without a change in sign,
since the primed and unprimed operators are moved symmetri-
cally with respect to the 'reflection' across O,. Here, we
have made a transition from the Schrddinger Og to the Of in
the elementary particle representation.
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Upon combining (III.2, 19, 24, 25, 26), we obtain
(I11.1).

We will now achieve simplification by isolating the
effect of the continuum bosons.® We will show that (111.1)
can then be written as

T=ntTa (111.27)
where
% .oy N-1
A ="Py,0,0" % % A M )° MEO Py, N-M, N-M
A= + Nzl P MRyE s At 1.8
= Py,0,0 Moo | M,N-M,N- MMM) 5 “8%8 (111.28)

which are complex conjugate quantities. The very important
operator, U, is given by (III.1) except that there are no
continuum boson operators. That is, instead of

0=t ...a;...|0>(0|...A

B’BI .|0><0|...asl

(II1.1)

there is
¥ = [ 7195 418 g ¥ GV Gpgg) 1O
3 PR TCNRD TN PR AL I Tar AN PR [
Ol .o N Yo DVE ) - (111.29)

where all the irrelevant (for the moment!) debris have been
suppressed. Hence ¥ is defined in the subspaces with M
bound bosons, N-M each of electrons and protons, and no con-
tinuum bosons. The union of these orthogonal subspaces from
M=0 to M=N is the space, SB'

In (III.28), M, and M_ are number operators for the
proton and the electron, respectively. P, is the identity
operator for the subspace containing r bounﬁ bosons, s pro-
tons, t electrons, and no continuum bosons. Explicitly,
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~ + +
P = by, Idxl...dysdyl...dytaOL ceea
Gpoeely i

r
ACR PR M CRTACH WAL (R R [

[r!s!t!]-1(0|¢(yt)...W(yl)W(xs)...w(xl)aa .
r

%1
(I11.30)
with the properties
_ ’ ¢ 13
PrstPr's't' = 8(r,r' )8(s,s )6 (t,t )Prst
aaPrst - Pr-lstaa

ll[(X)Prst = Prs—ltw(x)

VP = Pgpe 1Y (M) (I11.31)

We now derive (II1.27). Consider the left hand portion of
(III.1) in the neighborhood of the wvacuum state projection
operator, |0)(0]|.

+ + -+ + +
2 J iy 589y Ay - 8gh (g )V (ygyp) ¥ G ¥ () 10
XEM!(N-M-l)!(N-M-l)!]"%<0|¢(yN)¢(xN)...W(yM+2)¢(XM+2)AB~--

- Ly L1y vem-1) 1%L

+
8%0,N-M-1,N-M-1%8 "

i v"l ' v%
coaghgP oy noyt (1D T (M) (NM-1) T

+ YRy '}2' 1yl 1 l%
coaghg (M M) PO’N_M’N_M[(M.) (N-M) L(N-M) 1],
2

S v (D T L0 1% (111 32)

|
@M M M M

R s ey
. aghg (MM ) 7P

Upon restoring the bound state operators in the above,
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+ +
z fd dy ...dx dya ...a a
SRR E w2 w2 NN ay oy

X 1 gy IV 0pg) -V ¥ 0 1O)

4k
B

x [M!I(N-M-1) ! (N-M-1) !]'15

X COJ¥(y ¥ () oo ¥ (T ) ¥ (R ) AgA oA
Mo %1

='§ a;AB(ﬁ+ﬂ_)'f % . azl...a P

1" %y M

+

2
0,N-M,N-M

=3

x [y Ln-My ! (N-m) 1 THE

+ S
=T a A, (MM) “p 7z a ...a
BB TMN-MN-M G T Ty Ty

L i %
Py, N-,N-pt Q1) (=20 D (N2 | ]

3 T ¥
3 E aghAg (MM ) “Py NoM,N-M

T~ J a1 8y - - By
e
+ + + +
MM WYL S ER A S TR

x [(M!) (N-M) ! (N-M) .']'%

X <0|¢(yN)¢(xN)...W(yM+1)¢(xM+l)AaM...Aal...
(IT1I.33)
Proceeding similarly with the factors clustered about the
vacuum state projection operator on the right hand side of
(II1.1), one obtains ]
’ ‘ Vg +
nZ ; Zl‘rdxMI+2dyMl+2“'dXNdyN"'AG,'"'Aa’/AB’
L RRRL B 1 M

X w+(x&:+2)¢+(y§:+2)...¢+(xﬁ)¢+(yé)[M'!(N-M'-l)!(N-M'-l)!]-%

X <0|4r(yN)w(xN)...w(yM/“)w<xM,+2)aB,a%,],...ami
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' ¢ D + +
ST g Ay g dxedy o A A
8" M 1 M

x

AL I PR A AT A AT [

x

[M'!(N-M')!(N-M')!]_%

X <0|¢(Y,N)¢(X'N)---¢(Yﬁ/+1)¢(x§/+l)aa;’...aai
M
A A _% +
X ZB:IPMI’N_M/ ,N-MI(M+M-) AB/aBI (I11.34)

Sandwiching O between the two and summing over M and M
yields (III.27,28). We finally write

B = 2T
+
Mo o e Iy
s
al...aM/
’ ’ r ¢ + +
X dxM'+1dyM'+1"'dedyNaa ceedy

1 M

X ¥ Gy )8 ) - G ¥ () [0V T (v £ (1) 17

x <O|¢(YN)¢(XN)...¢(yM+l)¢(xM+1)AaM...AaloE(N!)-z

x Azi...A;&/¢+(x§/+l)¢+(y§;+l)...¢+(X&)¢+(y&)|0)

X [M'!(N-M')!(N-M')!]—%

s ’ ’ ’
X <Ol¢(yN)¢'(KN) - '“’(ym’+1)“"m1)aa}'4, - .aaiA (1I1.27).
The problem now reduces to the determination of 0.

Before doing so, we will exhibit the relationship be-
tween the present formulation and Girardeau'saas; wherein
the states are in Sp, the sub space containing no continuum
bosons. Only the pﬁysical states are considered by using
Ay as the metric operator. 1In addition, the physical states
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satisfy the ''strong orthogonality' condition,

alv) =19 (I11.35)

Note that the operator, A, maps any state of S. into a
subspace of Sy, which we will call S.'. Similarly, At maps
any state of Sy into a subspace of Sg, which we will call
SB'. In both mappings, distinct vectors map into distinct
vectors, but the two mappings are not inverses of each other
in general. But for physical states, one can define a one-
one correspondence, a consequence of which is (III.35).

From the identity

Ay = A (I11.36)
and the definition,
ay ™ AEAT (111.37)
it follows that
0 = ME@-aYE)a, 0 = At EhHEt  (111.38)

That is, both S.’ and SB' are composed of two mutually or-
thogonal subspaces. The case of ', this is nothing more
than the decomposition of Ay. Let |¥) be a vector in 8¢
and |V) be its image in Sy’ defined by

[4) = Alv) (1I1.39)

We will always used the angular kets for vectors in S and
the rounded ket for vectors in Sg-

The physical states satisfy

AN|¢> = |y (I11.40)
so that
WDy = 1w (I11.41)
and
A = 1o (111.42)
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The last equation is the necessary condition that |¥) be an
image of a physical state.

Consider now the states in SC' satisfying
v =1n (111.43)
These will have images in the physical states given by
lv) = a A" Ely) (IT1.44)
which in turn will have images in SC' given by

)

AANA+X|¢) (II1.45)

D (D 1)

(MR ¥

by the idempotency of AR in SC'. Consequently, if we now
require that

R (I11.46)

the transformation becomes one-one. Together with (III.43),
then

sy = 1n (I11.47).

In S.’, the above equation is a consequence of condition
(III.43). 1In the larger space S,, both conditions
(I1I1.43,46) serve to define the physical state. From the
identity

sos Lt +
M+M_ = g ABAB + 2 AaAa (I11.48)
we write
iF + o 01y e o1y F
ANV = 1- % A (M +1) *(M+1) °A (I11.49)
o ot 4 - a
so that the condition (III.47) becomes
Aly =o0 (111.50)

which is the strong orthogonality condition.



500 ARTHUR SAKAKURA
To recapitulate, solving the following problem in 8¢
d -
ihg by = H| ¢ (III.51)

is equivalent to solving the following problem in Sg.

. d

inge lo) =Ho), ale =0 (1I1.52)
IV. The Determination of ﬁ.

Previously7, the direct summation of (III.27) was
given wherein the matrix elements appearing in it were ex-
panded in analogy with the Ursell expansion in statistical
mechanics. Here we will give a simpler derivation yielding
the same forms for the low order terms, but will not yield
without much manipulation, the normal ordered exponential
form of the previous work,

One observes from (III.27) that the matrix elements of
T are given by

(! (N, -M) L (N_-1) M’! (N+-M’) fN_-M") .']'%

x <0l¥(yy) .- Oy ¥ Oy ) Oy 3 - .aal’ﬁ'
)T O Ty )Ty )10

+ + ’
X a@i.'.aa{,[/w(xN_'_
-1
=(N, !N D70y, ). .Uy IW(x, ... 0( YA ...A O
+ - N_ N_-w W e ey R

P it ‘ = ¢+ ¢ ot ‘

X Aai...Aa,lw(xN )G Yy ) ¥ (g )10
M + + - -

(1v.1)

where we have generalized by allowing the number of protons,

N, , and the number of electrons, N_, to take different
values.

We baldly assume the existence of the normal ordered
expansion
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OR=] wis: 5 dx....dx dx!...dx',dy,...dy dy....dy’,
st AUpeey I 1 s 1 s 1 ot t
rst 7 1]
al...ar/
+ + . F + + +
xa ...a ¥ (xl)...¢ (xs)w (yl)...v (yt)
1 T
? [ 7 1 4 !
X (yt...ylxs...xlar...all0|al...ar/xl...xsfyl...yt:)c
X ¢(Yé/)---¢(yi)W(xi)aa/...aal
e 1
x (rle'elr’ts’le’ )L (1V.2)

where the ''comnected' matrix elements ()c, are skew sym-
metric in the interchange of coordinates, x, x', y, y’, and
symmetric in the interchange of a,a’. These are evaluated
by considering (IV.l) for the few particle states. Observe
that the terms containing no bose operators (r,r’=0, or
M,M’'=0) merely yield O_, and need not be explicitly evalu-
ated. The first few non-trivial terms are

[ _ +
{a]0la >c = <O|Aa0EAa'!O>
N+=N_=M?M'=l (1V.3)
’ +
(yx|0]a’)e = €Ol (y)¥ (x)0gA | 0)

N+=N_=M'=1,MF0 (1v.4)
(y|0|y')c(a|a/> + (y|y')(a|0]a')c + (ya]OIa'y')c

_ ,=1 + Wt
= 27740] ¥ (y)A,0pA ¥ (y")7]0)
N+=M?M'=1,N_=2 (Iv.5)
<x|0|x'>c<a‘a') + (x'lx')(GIO‘a')c + (xa10|a'x'>c
_ o~k 9P Wt
=2 <OIW(x)AaoEAa,¢(x Y | 0)

N_=M?M'=1,N+=2 (1v.6)



502 ARTHUR SAKAKURA

27 (Ca,l0lag) ooy la]) + Caylolald (aylas)
+ (a2|aé)<a1|0|ai)c + (azlai)(a1[0|a{)c
+ (a2a1|0|a]'_cxé)c}

= 2'2<0lA A 0_A LA .0
0, 0, B «a o

271 1 2
N+=N_=M=M'=2 (Iv.7)

Clearly, every connected matrix element can be expressed in
terms of the corresponding and lower order ordinary matrix
elements.

For the case of ¥, we have,

<0|AaHEA:/|0> = @ln,la’) = Es(,a”) (1V.8)

where H, is the atomic hamiltonian, and the bracket is the
matrix element in our original hilbert space of distinguish-
able particles. Moreover,

(0|W(Y)¢(X)HEAa/|O) = (xy|HA|a') = Ea;ma/(xy) (1Iv.9)

and

(014 (y)A HAT 11 (y) | 0)=(yal (1-1) (4T +7, )a’y "
(1v.10)

where T_ is the kinetic energy of the extra electron, V,_ is
the coulomb interaction between the atom and the electron,
and I_ is the electron exchange operator.

(0|¢(X)AQHEA;,¢(X')[O)=(xa|(1—I+)(HA+T++VA+)|a'x'>
(1v.11)

where T, is the kinetic energy of the extra proton, V, is
the coulomb interaction between the proton and the atom, and
I, is the proton exchange operator. Finally,



COMPOSITE PARTICLES 503

©ola a waat, o
a, oy E ay az

(azall(1—1_)(1-I+)(HA(1)+HA(2)+VAA)Iaiaé)
= {agaql (=T, 1 ) (1-1_) (H, (1)+H, (2)+V,,) lajo)
= (ogay | (1-1_) (8, (1)+H, ()47, ,) |aqay)

+ oga,| (1-1) (H, (1)+H, ()47, , |ajay) (Iv.12)

where H,(1) and Hp(2) are the hamiltonians of the first and

A 3 : A
second atoms, respectively, and V p is the coulomb inter-
action between the two of them. Qe have used the idempotency
of the exchange operators and the fact that I_I, has the
effect of exchanging an electron-proton pair.

Thus,

{ald o’ Eaﬁ(a,a') (1v.39)

(yx|8 o’} Ea/wa,(xy) (Iv.4")

(ya|1+la'y'>c 2_1<ya|(1-1_)(HA+T_+VA_)|a'y/>

-(yalT_]a'y')-(yaIHAIa'y')

(ya|VA_la'y'>

=
+ya] ( 5=

)(HA+T_+VAA|a'ya)
= (ya]VA_la'y')+<ya|I’HA_la'y'> (Iv.5%)

where we have introduced some obvious notations., Similarly,

{xa|H |a'x'>c (xa|VA+|a'x')+(xa!(:E%E*D(HA+T +V, da‘x")

+ A+

s 7 ’ 7 ' 7
(xa|VA+|a X )+<xa|I+HA+|a x") (1v.6")
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Finally,

(ay0q|Hlaas) = 2'l<a2all(1-1_)(HA(1)+ H, (2)4V

rs ’
1%27¢ AA)|“1“2>

+

2" Maa, | (1-1) (8, (1)+(1, (247, ) |afa))
- <a1a2|(HA(1)+HA(2))|aéai>

- {aqa,H, (1)+H, (2) [ajay)

= (azallvAA|aiaé)

+ Cagey | (522 (1, (D, ()49, ) ados)

+ (a1u2|VAA|aiaé>

* ooyl (R (1, (D41, (2047, ) lajag)

’ ’ ’ ? 7
(a2a1|VAA|a1a2>+(a2a1|I_HAA|ala2)

’

s 7 ' s
+ (ala2|VAA|ala2>+(a1a2]I HAA]ala2>

(1v.7")

We thus obtain,

H=u +:2Ea'a
E o aaa

==
+ T E (alA +A a)
aaaa a a

v, t + ' oL ’
+d?alfdxdx ¥ (x)aa(xa|VA++I+HA+|a x 0 (x )a

+ +
a

+, ’ v ’
+&?a,fdydy VD alv, +17H, o'y Dy Da
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+ ‘ v
1
+ zaz a, a (a2a1| (VAA+I_HAA)|a1<x2>aOL/aa/
;(12 1 2 2 1
%1% (IV.13)

The first term is the ion-electron hamiltonian (II.5).
The second term is the free atom hamiltonian. The third
term describes the process

He p+ e (IV.14)
which was first obtained by Stolt and BrittinS.

The fourth term describes the process

H+p&s H+p (Iv.15)

and consists of two parts, the direct coulomb interaction
Ve, and I H,,, which does not agree with the E__ of Stolt
g St SNy ga ;
and Brittin, who have the operator I, rather than I,. Our
result is in partial agreement with Girardeau? and is physi-
cally reasonable for it corrects the total hamiltonian by
eliminating the part of the atom-proton hamiltonian which is
symmetric in the exchange of the two protons. The fifth
term is the analogous one for the electron-atom scattering.

The last term describes the process,
H+H®% H+ H (1v.16)

which again consists of the direct part, V,,, and the cor-
rection, I:HAA. These terms were first obtained by
Girardeaub except that the atomic states included the con-
tinuum states-

Terms corresponding to processes such as p+H & ptpte”
were omitted as we were only concerned with two body proc-
esses, The inclusion would be trivial, for one only needs
the connected matrix, (xlalHIy'xéxi).

The expansion of X is a bit more subtle. The M=M'=0
term of (III.27) with 0O, set equal to one is nothing more
than Po,N,N» the identigy in the subspace with no bound
atoms. 'Thus, instead of the expansion (IV.2), one needs
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. ! ! 4 ?
A_1+rs% a--?a fdxl...dxsdxl...dxs,dyl...dytdyl...dyt/
rIS/tI ) tl,
Oy o5 s
T
- + + + +
X aal...aar¢ (). (x )Y (v ¥ (v)

I 4 7 4 1 s
X (yt...ylxs...xlar...GllAlal...ar,xl...xt/yl...yt/>c

X w(yé/)...¢(y1)¢(xé/)...w(xi)aaé,...aai (1V.17)

which differs from (IV.2) by the presence of the identity.
The definition of the connected matrix elements are then

<0]aaaa,|0)+(a|A|a'>c = <0|AQA:}]0> = §(a,a’)

N+=N_=M'=M=1 (1v.18)

Ol () ¥ ay J0+Cyxlalx") = QLK E@ATN0) = o (xy)
N, =N_=M'=1,M=0 (1v.19)

(OIw(y)aaa:,w+(y')|0)+(a[Ala’>c<yly'>+(a|a')(ylA|y'>c

+ (ya[Ala'y')c

27M0lu () AT 4T (57 0)

2_1(ya|(1-I_)]a'y'>
N+=M=M'=1,N_=2 (1V-20)

(Olw(x)aaa:/¢+(x')|O>+(a|A|a')c<x|x'>+(a|a'><x[A|x')c

I 7
+ {xalA|la’x )C

2'1<0|¢(x)AaA:/¢+(y')|0>

2—1(xa|(1-1+)|a'x')
N_=M=M'=1,N+=2 (IvV.21)
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N

-1 U ’ ’
{<O|aazaalaaiaaé|0)+(a2|A|a2)c(a1]al>

+

(azlAIai)c(a1|aé>+<a2|aé)c(al|A|ai>c+(a2|ai><a1|A|aé>c

+

(a2a1|A|aiaé)c}

2720|a a_ ATt 0
%9, '8 ;%o

= 2_2<a2a1|(l-I_)(l-I+)|aiaé>

-2 -2
2 <a2a1|1-1_|aiué)+2 (a1a2|1-1_|aiaé>

N+=N_=M?M'=2 (1v.22)
We then have
<a|A|a')c =0 (Iv.18")
{yx|Ala )C = ¢a/(xy) (1v.19")
(ya[Ala'y')c = Lyal I |a"y" (Iv.20")
<xa|A|a'x')c = <xa]I;|a'x'> (1v.219)

7 I ’ I ? ? s 4
<a2a1|A|a1a2>c (a2a1|I_[a1a2)+(a1a2|1_|a1a2
(Iv.22°)
In the derivation of (III.20°) and (III.21’), we used the
fact that (x|Alx’) and (y|Aly’) were zero respectively,

since the projection of A into the subspace with no bound
atoms is the identity.

Thus, we have
A=1+c% (a'a +4aMa)
o oo a a

+ a?a,fdxdx'az¢+(x)<Xa|ILIa'x')W(x')aQ,
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+ 3 Jaydy’a 6" () (el T la'y V¥ (VA
a

+
+% = at a (azalllilaiaé>a Ty
aq0, G O oy ay
7
aja

N SN

(1Iv.22)

V. Concluding Remarks

We have obtained expressions for the projected hamil-
tonian, AyH, and A itself in the mixed representation,
which exp§101t1y display terms corresponding to the ioniza-
tion, recombination, scattering, etc., of elementary and
composite particles. Two representations were shown. The
one involves the solution of the Schrddinger equation

d o
hge [ =1 (V.1

where

e AL v.2)

operating in Sg, and the other involving the solution of
the Schriddinger equation,

in g ln =" (v.3)
with the subsidiary condition
ale) =0 (V.4)
operating in S;. 1In either representation, the hamiltonian

serves to project the wave function into the physical space
except for the subspace belonging to the zero eigenvalues
of the respective hamiltonians. These must be supplemented
by the relations

Alvy = | (V.5)

or

Al

[ ¥) (V.6)
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The form (V.2) is not as formidable as it appears, for
its effect is to replace a proton-electron pair operator
with a continuum boson operator, i.e.,

AW A =T At (v.7)

where 0 is simply related 0 by the above mentioned replace-
ment and ATA yields one when operating upon a physical
state. Explicit form has been reported earlier’.

Since one must eventually calculate either the thermal
averages or expectation values, it may be more profitable
to directly evaluate Trace A,p0, rather than explicitly
finding ANO as we have done here. In fact, the arguments
leading to (III.27) results in some interesting expressions
for Ays which will facilitate the trace operations.

Finally the presence of more than one composite specie
can be taken into account by the generalization of (III.1ll)
et seq. One introduces the bound and continuum projection
operators for H, molecules, say, and decompose the product
of the free electron and proton operators in the same way
that the entire hilbert space was decomposed by means of the
H atom projection operators. This and the above matter will
be reported elsewhere.
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ERGODIC THEORY IN ALGEBRAIC STATISTICAL MECHANICS

G. L. Sewell
Queen Mary College
London El1 4NS England

1. Introduction

The C*-algebraic formulation of statistical mechanics
provides a framework for the study of properties of assem-
blies of particles in the thermodynamical limit. The use
of this limit constitutes an idealization which permits
sharp mathematical characterizations of properties that
would otherwise be masked by finite-size effects.

The object of the present course is to formulate a
unified approach, within the algebraic framework, to the
following statistical mechanical problems:- (a) the charac-
terization of pure thermodynamical phases; (b) the charac-
terization of phase transition, especially with regard to
symmetry changes; and (c) theory of the approach to equi-
librium. Our treatment of these problems will be centered
on a non-commutative generalization of classical ergodic
theory and also on the celebrated KMS conditions.

The subject matter will be presented as follows. 1In
section 2, we shall present, in summarized form, the mathe-
matical equipment we need: this will consist of defini-
tions and standard results concerning C*-algebras, abstract
ergodic theory and KMS conditions. 1In section 3, we shall
outline the algebraic formulation of states, observables
and space-translational ergodic theory for "infinite vol-
ume" physical systems. In section 4, we shall adapt the
formalism of section 3 to statistical mechanics. In par-
ticular, we shall formulate the Gibbs state and the time
translations in the islands of those states according to

¥ By the island of a state ¢ on an algebra G, we mean the
set of states of the form {om, where | is a normal state on
the image of G under the ¢-induced GNS representation T,

511
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the scheme proposed by Dubin and myself1 (DS). This will
lead us to a characterization of the pure phases and of
symmetry breakdown in equilibrium states (section 4.7).

In section 5, we shall apply the formalism of section 4 to
the theory of the approach to equilibrium in the island of
a Gibbs state. I think that the results of this section,
though of a familiar form, are new at least as consequences
of the DS scheme., In section 6, we shall apply the same
formalism to the study of phase transitions, with particu-
lar reference to symmetry breakdown and, in the case of
transitions of the second kind, the divergence of a cor-
relation length (appropriately defined) at the critical
point. Our study of phase transitions will be largely
centered on a new a%gebraic treatment, due to Maria
Marinaro and myself”, of a class of Ising models which, in
the specific case of the soluble two-dimensional one,
leads to the required characterizations of the phase tran-
sitions.

2. Mathematical Equipment

2.1 T-systems

We define a T-system to be a triple (G,S,a(G)), where
G is a C*-algebra , S the set of all states on G and a a
homomorphism of a group G into Aut G, the automorphisms of
G. The set of all pure states on G will be denoted by S_.
We define a* to be the representation of G induced in S gy
ar- (@*(g)9) (A) = ¢(a(g)A), VAEG, ¢€S, gEG.

Let ¢€S. We denote by (¥g, Ty, Q¢) the GNS triple
(representation space, representation, cyclical vector) in-
duced by the action of ¢ on G. Correspondingly, we define
3(¢), the island of states associated with ¢, to be the
set of states of the form § = Jomy where § is a normal
state on 1y (G): thus I(¢) corresponds to the set of densi-
ty matrices in ¥y -

We denote by C. the set of all G-invariant states on

a, i.e. Cg = {ol0€q; a*(g)s = ¢, vgeG}. For $€Cg, we de-
fine Uy to be the representation of G induced in ¥y by a:-

U, ()0, = 05 T (@(8)A) = U ()T (A)U,(g™N); VACG, geG
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We define P, to be the projection operator for the maximal
subspace of ¥y that is stable under U (G).

The set C, is convex and w*-compact. We denote by Eg
the extremal elements of this set. Adopting a usual ter-
minology, whose significance will become manifest in sec-
tions 2.4, 2.5, we refer to the elements of E; as the G-
ergodic states.

2.2 Classical T-systems

We term a Z-system (G, S, a(G)) classical if G is
abelian and possesses an identity element. On the other
hand, we define a C-system to be a pair (K, T7(G)), where
K is a compact space and T a homomorphism of the group G
into the automorphisms of K.

It follows from these definitions that, corresponding
to a given C-system (K, T(G)), there exists a classical
Z-system (G, S, a(G)) such that G = #(K), the set of all
bounded, continuous, complex-valued functions on K, with
supremum norm; and (a(g)A) (k) = A(T(g'l)K), VAEB (K) , k€K,
g€G, Further, the state space S corresponds to the set
P(K) of all probability measures (positive measures of
total mass 1) on K; i.e. if ¢€S,d a unique probability
measure Wy on K such that ¢(4) = fA(k)du¢(k),VA€B(K).

K

Conversely, it follows from the Gelfand isomorphism
that every classical Z-system (G, S, a(G)) may be con-
structed from a C-system in this way, with K = S, (equip-
ped with the w*-topology) and T(g) = a*(g), yg€G. Hence
there is a one-to-one correspondence between C-systems
and classical I-systems. We note that in this correspond-
ence between (K, T7(G)) and (G, S, a(G)), G is separable if
and only if K is metrisable.

2.3 Amenable groups4

Let G be a locally compact group; and let 8(G) be the
C¥*-algebra of all bounded, continuous, complex-valued func-
tions on G, with supremum norm. Let a be the homomorphism
of G into Aut 8(G), defined by:-(a(g)A)(g')=A(g"lg"),
VAEB(G); g,8'€G. Then if A€B(G), we define 0(A), the or-
bit of A, to be {a(g)A; g€G}. The set W(G), of weakly
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almost periodic functions on G, is defined® to be the set
of elements A, of 8(G), for which 0(A) is relatively com-
pact in the weak topology of 8(G). W(G) is then a closed
subspace of the Banach space 8(G).

The group G is said to be amenable if there exists at
least one state ng on 8(G), such that ng is invariant un-
der a*(G). n, is then termed an invariant mean (more pre-
cisely a left-invariant mean) on 8(G). 1In general, an
amenable group G will possess more than one invariant mean.
However, these means all coincide on W(G).

Examples of amenable groups are:- compact groups,
Z(the integers),R(the reals), finite-dimensional Euclidean
groups; but not the Lorentz group. In the particular case
of R, all invariant means ng reduce, on W(R), to the form:-

T

e
M, (ay = %_1‘;3 = g dt A(t).

Note If G is an amenable group and U a strongly-continu-
ous gnitary representation of G in a Hilbert space X,

then” the function g - (V., U(g)V,) belongs to W(G),

¥¥1 ,0,€X., Further, the application to this function of an
invariant mean ng yields the value (¥1, Py;), where P is
the projector for the subspace of ¥ that is stable under
U(G): this is the mean L? ergodic theorem. Hence in the
notation of section 2.1, if ¢€C;, then the function

g ~ 6 ((a(g)A)B) (=(U, (&)1, (A*)Qy, 7, (B)Q,)) belongs to W(G),
and the action of N, on %his function yields the wvalue
(W¢(A*)Q¢, P¢n¢(B)Q¢). This result is the essential con-
stituent” of the mean ergodic theorems of sections 2.4,2.5.

2.4 Classical mean ergodic theory

Let (K, 7(G)) be a C-system, for which G is amenable,
K metrisable and T a continuous representation of G in K.
We define C, to be the set of all G-invariant probability
measures on K, i.e. GG={ulu€P(K); u=por (g) ,vg€G}l. We de-
fine €, to be the subset of elements u of Cg for which K
is indecomposable into subspaces of non-zero p-measure
that are stable under T7(G). €&, is termed the set of G-
ergodic measures on K, and corresponds to the set of ex-
tremal elements of Cy (c.f. Ref. 6, Ch. 10).



ERGODIC THEORY 515

We now note the following results of classical ergodic
theory: -

(a) (Ref. 6, Ch., 10). There is a unique integral re-
presentation of C. in 8g i.e., given p€C,,d a unique
measure m, on CG Such that mu(CG\EG = 0 and

RAY(= [ A du) = [ v(a) d m (V), VAEB(K).
c 33
G
(b) (consequence of mean L°(K,u) ergodic theorem) .

Let peCq and let m, be an invariant mean on 8(G).
Then the following statements are equivalent:-

(1) ueeg

(i1) ngt(a(-)A)B) = u(A)u(B), A, BER(K),
where a(G) is the group induced by 7(G) in Aut G,
according to the prescription of section 2.3.

In view of the one-to-one correspondence between C-
systems and classical Z-systems (c.f. section 2.2), we may
translate the above results of classical ergodic theory
into the following form. Let (G, S, a(G))be a classical
r-system for which G is separable, G amenable and o a con-
tinuous representation of G in G. Let Cer Eg be defined
as in section 2.1. Then:-

(a)' There is a unique integral representation of C
in E i.e. given ¢ECG d a unique measure Mg On CG,
such that Hy (C\Eg) = 0 and ¢ = [ od by (9).

C

(b)' Let ¢€C, and let ng be an invariant mean on B8(G).
Then the fol?ow1ng statements are equivalent:-

(1) ¢€E,
(i1) nge((«(*)A)B) = ¢(A)¢(B), VA, BEG,

i.e. ¢ is weakly clustering with respect to G.

2.5 Non-commutative mean ergodic theory

The reformulation of classical mean ergodic theory in
C*-algebraic terms has the advantage of being generalizable
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to non-commutative algebras. We now formulate the non-
commutative generalization of the theory of section 2.5.

We introduce the following standard definitions of

"quasi-commutative' properties which may serve to replace
the commutativity of G in classical ergodic theory.

(a) We say that G is G-asymptotically abelian if norm-
1ig la(g)A,B]_ =0 VA,BEG. By lim we mean the fol-

owing. Let f be a function from G into C. We say
that lig f(g) = 0 if, given € > 0, Ha compact subset

K. of C such that |f(g)| < € Vg€G\K,.
(b) We say that G is n -abelian7 if « is a strongly-

continuous representation of G in G and e is an in-
variant mean on 8(G) such that

T]G('l‘1,ﬂ¢|'c.(-)A,B]_¢?)= 0, V¥1,¥o€3; A, BEG, g€s.
(c) We say that G is G-abelian8 (resp. G-abelian in
the representation my) if Pym,(G)P, is abelian V@¢E€C

@ "o G
(resp. for the particular state ¢€Cg).

For cases where G is a C#%-algebra in a Hilbert space

¥, we introduce the following definitions:-

(a)' We say that G is weakly G-asymptotically abelian
in 3 if éig (V1,la(g)A,B] _¥,) = 05 VA, BEG; V1 ,¥,€K,

(b) ' We say that G is n,-abelian in ¥ if, for all

Y1 ,¥5€% and Ay ,A,€G, the function g~(¥,la(g)A,B] V)
is continuous; and if the application of the invari-
ant mean ng to this function yields zero.

It folllows from these definitions that, if G is G-

asymptotically abelian and a is a strongly continuous rep-
resentation of G in G, then G is m,-abelian. Further, if
G is m,-abelian or G-asymptotically abelian, then it is
necessarily G-abelian (c.f. Ref. 9, Corollary 6.2.10 and
Prop. 6.2.16).

The next two theorems generalize classical mean er-

godic theory to the case where G is G-abelian, though not
necessarily abelian.
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Theorem 2.5.1 Let G be G-abelian and norm-separable.
Then 4 a unique integral representation of Cn in EG; il e s
given ¢€C.,H a unique measure W, on Cg such ghat
iy (Cc\EQ) °= 0 and ¢ = g o duy@.
G

Proof c.f. Lanford and Ruelle8 (Theorem 3.1 and Corollary
3i52)s

Theorem 2.5.2 Let ¢€CG. Then:-

(i) If P,

(ii) If G is G-abelian in the representation ™
and if ¢€EG, then P¢ is one-dimensional.

is one-dimensional, then ¢€EG.
¢

(iii) If U, is a strongly-continuous representation
of G in , then ¢ is weakly clustering
(i.e. ng#((@(*)A)B) = ¢(A)¢(B), VA, B€G) if and
only if Py is one-dimensional..

Proof c.f. Ruelle? (Theorem 6.3.3 and Proposition 6.3.5).

Thus it follows from the above theorems that the fol-
lowing conditions suffice for the generalization of clas-
sical ergodic theory to the non-commutative case:- (a) G is
G-abelian; (b) G is norm-separable; and (c) Uy is a strong-
ly continuous representation of G in ¥,. In fact, it will
be seen in section 3 that, in cases of physical interest,
where G has a '"quasi-local' structure, one may obtain the
essential content pertinent to physics of the above theo-
rems without recourse to the separability assumption.

2.6 The KMS conditions

Let (G,S,Y(R)) be a T-system, with y a homomorphism
of the real line, R, into Aut G. Given_B(€R) > 0, we say
that ¢(€S) satisfies the KMS conditionsl¥>11512 correspond-
ing to (Y(R),B) if, for each pair A, B€G, ¥ functions f,p,
gpp On the complex plane €, such that:-

(1) £,5(6) = 2(@(OIDB); gy5(E) = #(B(a(£)A));
VA, BEG; te€R.
(ii) £ (resp. gSB) is analytic in the strip Imz

E(-B,S? (resp. ,8)) and continuous on its
boundaries.
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(1ii) £,5(2) = g, (z+iB), vzEC.

If ¢ satisfies these conditioms, thenllt- (1) ¢ is
invariant under y*(R); and (2) Q¢ is both cyclical and
separating with respect to my(G)", the weak closure of
nPs (Gl

¢

Conversely to (2), we have the following theorem, due
to Tomita.

Theorem 2.6.1 Let ¢ be a state on a C¥-algebra G, and let
Q4 be cyclical and separating with respect to n¢(G)”.
Then, given B (€R) > 0, ¥ a unique homomorphism v, : R -
Aut 1, (G)" such that, if § denotes the state on 1y (G)"
defined by ¢(*) = (04, (*)Q;), then ¢ satisfies the KMS
conditions with respect to (Y¢(R), B).

Proof c.f. Takesakilz, Theorems 13.1 and 13.2.

3. States of Physical Systems

3.1 The quasi-local algebra

Let X be a locally compact, non-compact space corre-
sponding to that occupied by the physical system under
consideration. We assume that X is either a finite-dimen-
sional Euclidean space or a lattice of points (with dis-
crete topology) in such a space: in either case X corre-
sponds to an amenable group. Let L be the set {Y} of all
bounded subsets of X. By a standard construction (Ref. 9,
Ch. 7), we assign to each YEL a C*-algebra Gy (whose self-
adjoint elements correspond to the observables for the
region Y) such that:-

(i) Gy is isotonic with respect to Y;

(ii) G commutes® with Gy if Y and Y' are mutu-
ally Xisjoint; and

(iii) denotlnngL GY by GL’ 4 a homomorphism a of

X into Aut GL’ such that a(x)GY = GxY‘

t In the case of a system of fermions; one has to define
Gy as the even subalgebra for the region Y in order to
obtain this commutativity condition.
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We define G to be the norm closure of G, and extend a(X)
by continuity from G; to G. 1In a usual way, we refer to G
as the C*-algebra of quasi-local bounded observables. The
group «(X) corresponds to space translations.

It follows easily from (i)-(iii) and our definitions
of and a(X) (€ Aut G) that G is X-asymptotically abelian,

We shall henceforth restrict ourselves to the follow-
ing standard cases:-

Lattice systems (classical or quantal). Here, G is norm-
separable, and o is a strongly continuous representation
of X in G,

Quantal continuous systems, The Gy's are Wx-algebras in a
Fock-Hilbert space Xy, and a(X) is unitarily implemented
in 3p by a strongly continuous representation Up of X

3.2 Locally normal states

Consider a quantal continuous system (G, S, a(X)),
equipped with the above-described quasi-local structure.
We denote by £ the set of all locally normal states, i.e.
the states whose restrictions to all the local algebras
{GY|Y€L} are normal. These are presumably the physically
significant elements of S, since they correspond to the
states for which there is zero probability of findigg an
infinity of particles in a bounded region of space1 5
Thus, when considering states of continuous quantal sys-
tems, we shall henceforth restrict our analysis to the
class £, (In the case of lattice systems, there is no
need to make such a restriction, since the number of parti-
cles (spins) in a bounded region is a fortiori finite.)

Let us now note the following properties of £:-

(i) If ¢€f£, then ¥, is separable (Ref. 8,
Prop. 4.3).

(ii) If ¢€C,NE&, then the unitary representation
Uy of X induced by a in ¥X; is strongly continu-
ous: this follows from the strong continuity of
Up in 3¢ and the strong continuity of ¢ on the
unit ball of each local algebra GY (i.e. the
local normality of ¢).
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3.3 X-ergodicity

Theorem 3.3.1 With the above definitions and assumptions,
the set CX has the following properties:-

(1) In the case of a lattice system,

(a) 4 a unique integral representation of Cy in Ey:
and

(b) ¢(€Cy) is weakly clustering with respect to X if
and only if ¢EEX.

(2) In the case of quantal continuous system,

(2) 4 a unique integral representation of CyN<& in
E,N&; and
X 3

(b) ¢(eC,NL) is weakly clustering with respect to S
if and only if ¢€E¢NE.

Proof Since G is X-abelian in all cases, we see that (1)
follows directly from Theorems 2.5.1-2 and our above speci-
fications concerning lattice systems (Sec. 3.1): while (2)
follows from the strong continuity of U¢, together with
Theorems 2.5.2 and Ref. 8, Theorem 4.3,

Thus, in case of physical interest, there is a unique
decomposition of any element ¢, of C,, into X-ergodic com-
ponents; and there is an identification of Ey with the
weakly clustering elements of X. Further, we note that
weak spatial clustering is arguably a property of a pure
X-invariant thermodynamical phase (c.f. Ref. 9, Ch. 6.5),
and thus the X-ergodic decomposition law, given by Theorem
3.3.1, has a physical significance: the characterization
of pure thermodynamical phases will be further discussed
in Secs. 4.6 and 4.7. )

4, Formulation of Statistical Mechanics

4,1 The I-systems Op

We shall now outline a procedure for the formulation
of equilibrium states and of dynamics of an 'infinite'
system, as limits of the corresponding quantities for
finite systems. For this purpose, we introduce an in-
creasing sequence L'= {Y_} of elements of the above- de-
scribed set L, such that Pn = X. Corresponding to each
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YnEL’ we employ the standard methods of fi?'ge-Yo}um? fta-
tistica{ Techanlcs to construct a triple (G\" = M (®)),
where G = is the algebra of observables of a

system of the particles concerned, conf ?ed to the region
Y,; S is the set of all states on G'™/; and y n) js a
homomorphism of R into Aut G(n), corresponding Eo til
tEa?slations of the system. Thus the triple (G n) »S n)

n) (R)) is a T-system, which we denote by Cpe leewise,
by standard methods, we c?nftruct the Gibbs (canonical or
grand canonical) state ¢ on (0 corresponding to the
inverse temperature B(>0).

Note 1In the quantum-mechanical casel ? (n) satisfies
the KMS conditions corresponding to (Y(n (R), %

in the case of a %oytinuous quantal system, ¢B ) is a
normal state on G2

4.2 Gibbs states on G.

Let A€G Then it follows from the constructions of
Secs. 3,1, 4 1 that, for n sufficiently large, aea(n) and
thus ¢ (n5(A) is well defined. We now introduce the fol-
lowing standard postulate (c.f. Ref. 10):-

. (n)
(1) %5g ¢B (A) exists, VAEGL
Since GL is norm-dense in G, it follows from (I) that there

exists a state ¢B on G that is uniquely defined by the pre-
scription:-

- (n)
95(A) = Lim 0" (8), vacq .

We term ¢

8 the Gibbs state of the "infinite'" system, whose
observabl

es are G.

4.3 Time-translations: the HHW scheme

The Haag-Hugenholtz-Winnink10 treatment of infinite-
volume statistical mechanics was based on (I), together
with the following postulate concerning time-translations:-

(II) Given A€G; and t€R, y (™) (£ya converges normwise in
the limit n~®, As a consequence of this postulate, one
obtains the result that there exists a homomorphism y of R
into Aut G, uniquely defined by the prescription:-
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. n

v(£)A = norm-1im v (™ (6)4, VACG,, teR.
Thus, in this scheme, time-translations of the infinite
system are taken to correspond to the group vy(R) of auto-
morphisms of G.

On the basis of assumptions (I) and (II), HHW obtained
the powerful result that, in the quantum-mechanical cases,

¢ satisfies the KMS conditions with respect to (y(R), B).

4.4 Critique of the HHW scheme

The HHW postulates (I) and (II) are known to be valid
for free fermions and also for a wide class of lattice
systemsl4. On the other hand, as shown by Dubin and my-
self (Appendices of Ref. 1), postulate (II) (though not
(1)) fails in the cases of the BCS model and the ideal
Bose gas. For this reason, we proposed the following
scheme, based on weaker axioms than those of HHW.

4,5 The DS schemel

This scheme is based on the following two postulates,
which are shown to be weaker (as a pair) than (I) and (II).

(I)' Given k (€Z,) <®; Ay,...,A €073 and ty,..., tRER,
11 25 ™ (v ™ (£)8) ... (v (£,)A, ) Yexists
n—om B [ 1 1).0.(Y k) k) ) exi1is o

(I1)' Given k, 1(€Z+); Al""’Ak+}EGL; and ti,...,t.41€R,
Aig lig ¢B(n)((v(“)(t1)A1)...(Y(n (t)A) X
(Y(no(tk+1)Ak*4)...(Y(m)(tk+1)Ak+1)) exists, and is equal
to lig ¢B(n)((Y(n)(t1)A1)-..(Y(n)(tk+1)Ak+1)).

These assumptions were shown to be valid for all the cases
considered, including the BCS model and the ideal Bose gas.
From a physical standpoint, they may be considered to have
the advantage of expressing properties of correlation
functions, rather than of abstract algebraic entities.

The principle results of the DS scheme are as follows:
(1) Trivially, the HHW postulate (I) is satisfied; and
therefore (Ref., 15, Prop. 1) the resultant Gibbs state ¢

is locally normal. We shall denote by (KB, T, QB) the P
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GNS triple induced by ¢B. Also, we shall denote by 58 the
state on HB(G)" defined by:- 68(') = (QB, (-)QB).

(2) 4 a unique homomorphism VB of R into Aut ﬂB(G)“, such
that

i o8 (D @m0 (eI B P () L mika))

W Aplys =apA tl,...,tER;k<°°,

P k

where n;(A) = T (g (8).

(3) 68 satisfies the KMS conditions with respect to
(g (R),8).

We interpret these results as signifying that, in the
island 8 (¢,), time-translations correspond to the auto-
morphisms VB(R) of mg(G)'", though not necessarily to auto-
morphisms of G itself. With this interpretation of VB(R),
we see that the results (1)-(3) constitute a recovery of
the essential conclusions of HHW regarding the island J(¢B).

The automorphisms Y5(R) are, in fact, precisely the
Tomita automorxrphisms described in Theorem 2.6.1,

4.6 Structure of J(¢B)

Let us now investigate the structure of the island
J(¢B) on the basis of the DS scheme, supplemented by the
postulate that ¢.€C,,. This last hypothesis is valid, for
example, if x€X,¢, is is unchanged if L' is replaced by
xL' (={xY_|Y_€L'}) in the construction of Sec. 4.2. 1In
fact, it may be verified that ¢, is invariant under these
translations of L' in all the tractable models mentioned
in Sec. 4.4.

Thus, we examine the structure of J(¢B) on the basis
of the following "axioms'':-

@) $5€C, .

(2) In tﬁe case of continuous systems, ¢BE£.

(3) % a homomorphism ¥, of R into Aut 14(G)", such that 53
satisfies the KMS conditions with respect to (VB(R),B).

It follows from this last axiom that §, is invariant under
Vg(R) and thus that VB(R) is unitarily implemented in g
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by a representation VB of R, uniquely defined by the re-
quirements that
VB(t)QB=QB’ and VB(t)rrB(A)VB(-t)=yB(t)nB(A); V t€R,A€EG.
Further it follows easily from the KMS conditions (specifi-
cally from the part of condition (ii)(Sec. 2.6) pertaining
to continuity om the boundaries) that Vg is a strongly con-
tinuous representation of R in Kb.
It follows from the general definition of $(¢)
(Sec. 2.1) that I(¢,) is in one-to one correspondence with
the normal states on My(G) and thus (by continuity) on
"B(G)”‘ Specifically, each V€d(¢,) corresponds to a unique
normal state § on m (G)'", such that ¢=Won8. Thus, the
automorphisms ¥, (R), of mg(G)", induce a representation Y§
of R in 3(¢B), given by:-

% _ =%
vg(E)Y Yg(t)¥omg,v teR.
Hence, Y; corresponds to time-translations in J(¢B).

Let C, be the set of states ¢=$oﬂB(EJ(¢B)) such that
¥ satisfies the KMS conditions with respect to (Y,(R),B).
C, is thus a convex, w*-compact set. We shall denote its
extremal elements by E;. As a natural generalization of
traditional (finite-vo%ume) statistical mechanics, we regard
Cg as constituting the set of thermal equilibrium states
of the system at the inverse temperature B. Thui6 ai7has
been cogently argued by Emch, Knops and Verboven™"> ,
it is natural to interpret E; as the set of states corre-
sponding to pure thermodynamical phases at that inverse
temperature.

We define C R(DC ) to be the set of elements of J(¢B)
that are stable Ender Yg(R); and we denote by Egp the set
of extremals of CBR’

Theorem 4.6.1 Let SB={¢|¢EJ(¢B);¢ < A¢g for some AER,).

Then: -
(1) 8g is uniformly dense in J(¢B); and

(ii) ¥ a unique map f:SB - KB such that
o (e)v) () = (£, VB(t)nB(A)nB),VAea, tER, Y8,
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Proof Since ¢, satisfies the KMS conditions with respect
to (yg(R), B), the required result follows easily from
Ref. g8 (Prop. 2 and Ex. 5).

Theorem 4.6.2 Let P be a central projector for m,(G)", and
let xp be the element of J(¢;) defined by x,(*) = (PQB’
ns(‘)PQB)/||PQBl|B.Then J(XP? 18 stable undir Yg(R).

Proof It follows from our definitions that J(xP) is the
subset of J(¢,) constituted by states ¥ oPn,, where ¥, is

a normal state on mMy(G)". Further, since 65 satisfies the
KMS conditions with respect to (Y¥,(R),B), it follows that
P is stable under Y¥(R)(c.f. Ref. 19, Corollary 2.5). Con-
sequently, J(XP) is stable under Yg(R).

Theorem 4.6.3 (i) There is a unique integral representa-
tion of Cg in Eg; and further, the decomposition Cg-Eg is
precisely the central decomposition of Cg into factors.
(ii) 1If m, (G)" is np-abelian (w.r.t. VB(R)) in the space
¥X,, then E; coincides with E__.

(iii) 1If wGCXﬂCB, then the measure Wy on Ey, induced by
its X-ergodic” decomposition, has support in E,NC,. Thus,
the KMS decomposition is finer than or coincident with the
X-ergodic ome.

Proof In view of our axioms (1)-(3) and subsequent defini-
tions:~

(i) follows from Ref. 12 (Theorem 15.4 and subsequent re-
mark) , together with Ref. 16, Theorem 1.2 and the fact that
p,€EL implies that J(¢,)€L (c.f. Ref. 20, Lemma 3.3).

(1i) is proved in the first sentence of the proof of Theo-
rem 3.6 in Ref. 21 (independently of the norm-separability
assumption for G); and

(iii) follows from (i), together with Ref. 22 (Theorem
3.2.1 and subsequent remark).

Corollary The Gibbs state ¢, must satisfy one of the fol-
lowing mutually exclusive properties:-

(1) Pg€R,
(ii) ¢B¢EX, and the X-ergodic decomposition of ¢B coincides

with its KMS decomposition
(iii) ¢B¢EB, and the KMS decomposition of ¢; is a refine-
ment of its X-ergodic decomposition,
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4.7 Symmetry breakdown

Let ¢€CBHCX, and let uw(resp vw) be the (unique) meas-
ure on EX (resp E;) associated with its X-ergodic (resp
KMS) decomposition, Let T be a homomorphism of a group H
into Aut G, let be the set of states in J(¢B) that are
stable under T*(H) and let Kj = 4(¢5)\Ky. Then we say
that | undergoes an H-symmetry breakdown associated with
its X-ergodic (resp. KMS) decomposition if WEKH but uw(Ké)
(resp V¢(Kﬁ)) # 0.

Thus, accepting that E; corresponds to the set of pure
thermodynamical phases at tge inverse temperature 8, it
follows from the Corollary to Theorems 4.6.3 that:-
(a) if alternative (i) is valid, then ¢, is a pure
phase and undergoes no symmetry breakdo&n;

(b) if alternative (ii) is valid, then ¢, is a mixture
of X-invariant pure phases, and may undergo a symmetry
breakdown associated with its X-ergodic decomposition;

(c) if alternative (iii) is valid, then ¢, undergoes
an X-i etry breakdown (as in the crystalline
state™”), and possibly other breakdowns also, associ-
ated with its KMS decomposition into pure phases.

The theory of symmetry breakdown in phase transitions
will be treated in section 6.

5. Temporal ergodicity and the approach to equilibrium

Assuming the axioms and definitions of section 4.7,
we obtain the following theorem concerning dynamics of
states in J(¢B).

Theorem 5 (i) T a map F: J(¢B)-'CBR such that

ng (Y5 ()¥)

oin L [ E@ae - 1), vieacs,)
T B : B
0
(ii) 1If WB(G)” is weakly assymptotically abelian with
respect to VB(R) in ¥, then

w'-lim YF(E)¥ = F(¥), V¥E€(o).

o
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(iii) 1If WB(G)" is nR-abelian with respect to VB(R) in X
then F(J(¢4))<Cg.

(iv) 1If ¢ EEs and if WB(G)" is nR-abelian in KB, then
F(J(¢B)) = {¢B}.

B

Proof (i) Let P_be the projector for the subspace of ¥
that is invariant under V,(R). By applying von Neumann's
mean ergodic theorem 4.6.& (ii), we see that

T -
lim (I) dE(VE(ON) (A) = (E(4), Bamg(A)0y), VAEG, yes,

The required result follows easily from this formula, to-
gether with Theorem 4.6.1 (i)

(ii) By theorem 4.6.3(i), 3, belongs to the w¥-convex hull
of the factor states on m (8)”. Hence, if "B(G)" is weak-
ly asymptotically abelian with respect to ¥g(R) in i, it
follows from an easy adaptation of Ref. 20, Lemma 3.2%
that

= o T
(w, Kb)-%ig VB(t) = PB = (w,KB)-%ig g dt VB(t)

Hence, by (i) and Theorem 4.6.3 (ii)

wE-lim YE(E)¥ = np (Yg()¥) = F(¥), V ¥es,.

The required result follows from this equation, together
with Theorem 4.6.1 (i).

(iii) follows from Theorem 4.6.3 (ii) and the fact that

F : J(¢B)~CBR(by (i)).

(iv) Assuming that ¢ EEB and that nB(G)" is np-abelian in
KB, it follows from Theorem 4.6.3 (ii) that ¢ EEB and
hence, from Theorem 2.5.2, that Pg is the projection for
Qq. Thus, since F(¥)(A) = (£(¥), ”B(A)QB)’ Viyedg, as
sgown in the proof of (i), it follows easily that

F(¥) = ¢B’ Vy€8,, Thus, in view of Theorem 4.6.1 (i), the
required result follows by continuity.

¥ That lemma, in its original form, referred to space
translations. However, it carries through equally well
for time-translations when the above weak asymptotic
abelian condition is fulfilled.
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Comment It follows from this theorem that, if WB(G)”
weakly asymptotically abellan with respect to Yg (R) in K
then the time-translate YB(t)w tends (w' ) to an equlllbrq
um state F(V) as t-=,

Further, in the case where ¢, is a pure phase, all states
in 4(¢y) evolve asymptoticale to ¢,;. On the other hand,
it folqows from Theorem 4.6 2-3 that any state § in the
sector J(Xp) will tend to an equilibrium state in the same
sector, i.e. F(J(x ))CJ(XP)OCB Thus a system whose ini-
tial state lies in a sector $(X,), for which Xp lacks cer-
tain of the symmetries of ¢,, will in general evolve asymp-
totically to an equilibrium state that also lacks those
symmetries. From a physical standpoint, this is a satis-
factory result: for one would anticipate, for example,
that a ferromagnet which was initially disturbed from a po-
larized equilibrium state, would eventually relax back in-
to such a state.

As regards the condition that ﬂB(G)” be weakly asymp-
totically abelian with respect to Yg(R) in ig, one knows
that this condition is fulfilled in certain tractable dy-
namical models, e.g. the ideal Fermi _gas, the ideal Bose
gas, certain Fermion lattice models?3 and the XY model
Thus, the condition is at least compatible with the general
principles of statistical mechanics.

In short, the use of the DS conditions in the alge-
braic formalism leads to a satisfactory framework for the
theory of the approach to equilibrium within the island
Jd(¢g), subject to the above realizable conditions. More-
over, a similar theory could not be obtained within the
framework of the traditional finite-volume quantum statis-
tical mechanics: for there the discrete spectrum of the
Hamiltonian renders all time-dependent expectation values
of observables quasi-periodic in t; and further the possi-
bility of super-selection rules between different sectors
such as d(xp) is precluded by the uniqueness of the Hilbert
space representation of the observables.

However, despite the advantages gained by the alge-
braic theory I still think that the present formulation of
the theory of the approach to equilibrium lacks at least
one essential ingredient which may loosely be termed
"friction'. By that I mean that the above-mentioned trac-
table models, which satisfy the asymptotic-abelian
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condition, exhibit an approach to equilibrium which corre-
sponds to nothing more than the spreading of a wave-packet
for a free particle or free field. On the other hand, the
mechanism of the approach to equilibrium of real systems
is presumably governed by some '"friction' process which
operates locally, and which acts prior to the eventual
dispersion of local disturbances (c.f. frictional term in
the Navier-Stokes equation). For this reason, I think
that the asymptotic abelian condition should be supple-
mented by some requirement of "local mixing'" (corresponding
to friction) in order to describe the approach to equilib-
rium in a more realistic way.

6. Phase transitions

6.1 General considerations

In general, phase transitions are characterized by:-

(a) a singularity or discontinuity in a thermodynami-
cal function (e.g. the specific heat) at a certain
temperature Bc'l,

(b) a spontaneous symmetry change (breakdown) on
passing through the same temperature; and, in the
case of transitions of the second kind;

(c)25 a divergence of an otherwise finite correlation
length, appropriately defined, as B-B,+0; in cases
where 11g ¢p((a(x)A)B) exists (= F B, say), one may
define this length as

AB]elxl/r'

Af;ga{rlrER;}]iiQ [95((x(x)4)B)-F =0, ¥r < r'},

The theory of the characterization (G) has been
treated systematically within the framework of traditional
statistical mechanics (c.f. Ref. 26). 1In this treatment
one formulates the properties of an intensive thermodynami-
cal potential £.(B) (via a calculation of the partition
function) for a system occupying volume V; and then one
proceeds to the thermodynamical limit (V-*) and examines
whether the resultant function £,(B) has any singularities
or discontinuities. This approach can, in principal, lead
to the characterization (a); and, indeed, it is known to
do so in the cases of certain exactly soluble models, e.g.
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the BCS model, the Bose gas and the two-dimensional Ising
model.

On the other hand, it is difficult to see how the
traditional approach can lead to a rigorous treatment of
spontaneous symmetry breakdown, as distinct from a break-
down induced by the application of some (usually ficti-
tious) external field. 1In fact, it seems evident that the
algebraic formalism provides one with the most natural
means of approach to the characterizations (b) and (c).

For this formalism is explicitly concerned with the proper-
ties of the symmetries and the correlations of the pure
phase components of the Gibbs states (cf. Section 4.7.).

Actually, the algebraic formalism has been success-
fully employed to yield a theory of the characterizat}gn
(b) for the BCS mode127,28 and for the ideal Bose gas“”’,
In both these models the Gibbs state corresponds to a pure
phase for B < B,, but undergoes a gauge-symmetry breakdown
for B > B, (here B, is the thermodynamical transition tem-
perature) .

However, it is easily verified that neither the BCS
model nor the ideal Bose gas posses the property (c). The
BCS model lacks this property because it corresponds to a
classical '"mean field" theory, and consequently its corre-
lation functions ¢ ((a(x)A)B) factorize in a way that pre-
cludes the possibility of (c¢). On the other hand, the
Bose gas has the pathology that its correlation length 4
is infinite for all B > B_, and thus the critical point is
not identified as the unique temperature where { diverges.

In a recent workz, which I shall outline below (Sec-
tions 6.2-5) Maria Marinaro and I have formulated an alge-
braic treatment of a rather wide class of (non-mean-field
theoretic) Ising models, including the exactly soluble two-
dimensional one, with the view to obtaining a theory of (b)
and (c). In the two-dimensional case we prove that the
model does exhibit the characteristics (b) and (c¢); thus
we supplement Onsager's30 result that it exhibits the prop-
erty (a). In the more general case, we expressed space-
correlation functions in terms of a certain semi-group, I,
of contractions of a certain Hilbert space, and obtained
conditions on I that sufficed to ensure that the system
had the properties (b), (c): these conditions are fulfilled
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in the two-dimensional case. In the more general case,
this formulation might be useful for the purpose of con-
structing an axiomatic approach to the theory of phase
transitions.

6.2 Ising Models?2: the algebras.

Let X, the set of sites for the spins, be of the form
T x Z, where T is a countably infinite point set and Z is
the set of integers. Thus, in the case where T = Z%,
where d is a positive integer, X corresponds to a rectangu-
lar lattice of dimension (d+1).

We denote points in T, Z, X by t, n, x = (t,n).
Translations along the Z-component of X correspond to the
group g = {u?|n€Z}, where

un(t,n') = (t,n+n'), Vt€T; n,n'€Z,

Let 0 = {-1,1}, with discrete topology. We define K
to be the topological power ¢X, K is thus a compact space
(by Tychonoff's theorem). Points in K will be denoted by
0y. The projection of 0y corresponding to x(€X) will be
denoted by 0y. Thus ¢  may be interpreted as the spin at
x; and K then corresponds to the space of spin configura-
tions in X. The group g induces a group G = {UM|n€z} of
K:-

(Uncx)x = aunx’ Vx€X, n€Z.
Let C(K) be the C*%-algebra of bounded, continuous,
complex-valued functions on K, with supremum norm. We
take C(K) to be the algebra of observables, G, for the sys-
tem. We define the homomorphism a, of Z into Aut G, corre-
sponding to translations along the Z-component of X, by

(@(n)4) (@) = A(U'“cx), Vn€zZ, A€G,
where U was defined above.
Corresponding to each finite point subset, Y, of X
we define G,, to be subalgebra of G consisting of functions

A on K, sucg that the value of A(0,) is independent of
{cx|x€X/Y}. By the Stone-Weierstrass theorem, the union
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Gy, of such algebras is dense in G. Thus, G has the quasi-
local structure described in Section 3.1,

For each finite point subset Y of X we define PY(EGY)
by:~-

Py@p) = Jevx
Thus one easily proves that Oy is the vector space of
linear combinations of {Py,|Y'©Y}. Hence, defining G to
be the set of all PY's, for finite point subsets Y of X,
it follows easily from our constructions that G is a linear
basis for G; i.e. G corresponds to the norm closure of the
set of finite linear combinations of elements of G. We de-
fine 50 to be the subset of G consisting of elements Py
for which Y consists of an odd number of points.

We now introduce an auxiliary (non-commutative) alge-
bra, 8, of Pauli spins over T. Thus, we assign to each
t€T a two-dimensional Hilbert space X,.. Corresponding to
each finite point subset M of T, we define Gy = E®M Kt.
Thus K@HM' = ® o 1fMN M' = ¢. We then define By
to be e C*-algebra &f bounded operators in ¥, with
uniform norm. We identify B(€By) with B ® Tyi\(€By,) for
M < M', Thus B, is isotonic wigh respect to M; and the
union, over all finite point subsets M(€T) of the ﬁM's is
a normed *-algebra. We define 8 to be the norm closure of
this union.

6.3 The Interactions.

As usual the Gibbs states on G are constructed as
limits of 'finite-volume' Gibbs states, which in turn are
specified by finite-volume Hamiltonians. 1In the present
case, we define these as follows.

Let m (resp. N) be a system of finite point subsets
of T (resp. Z) whose union covers T (resp. Z). We shall
always take the elements N of N to be of the form
[n1,n;](={n[n€Z,msnsn,}).

In the two-dimensional case, where T = Z, we take the
elements, M, of m to be of the same form.
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We assign to the region M x N (with MéEm, Neh) a

Hamiltonian EGM x N' In the two-dimensional case, this
will take the form

HMN(OX) = -JngN mgM(om,nUm,n+1+cm,ncnwl,n)’

where J>0; and where, for M = [m; ,m;] and N = [n; ,n,], we
identify m,+1 with my, and ny+l with n, in the above sum-
mation (cyclical bounded conditions).

In the more general case, take

= ¥ 2
HMN fM,n + gM,n,n+1

neEN néN
where
EM,n n+1(cX) L2 “t,n’t,ntl
bl ’ tEM ’ H
G 5 icti ;
and where fM,ne Mx{n} Further restrictions are imposed

on fM n to ensure that it corresponds to a potential energy

in a hhyperplane" Mx{n}, in which each spin is coupled to
only a finite number of other spins.

6.4 Gibbs States.

We define the finite volume Gibbs state ¢MN on G

by:- B Mx N

85 (8) = By () /Eg (D)

where

E_(A) = by A(c,)exp(-BH, (0.)), VAEG
MN (o |xem x N x)exp (P (O ¢ Mx N

We prove that for any AEGL, &3@ &ig ¢gN(A) exists, and

thus defines a Gibbs state $g on G, as in section 4.2,
Further, this state is invariant under the group a*(Z),
induced in the state space of G by the group a(Z), defined
in section 6.2.
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6.5 Properties of 9g.

Using an extension of Onsager's transfer matrix for-
malism, we prove the following properties for ¢5 in terms
of the basis set & and the auxiliary algebra 8, both de-
fined in section 6.2:-

(1) The state ¢, induces a map 9,:G-8 and a state {, on 8

such that ¢ =¢BOGB on G. Further the properties of ¢B, 8

are completely determined by the infinite-volume limiting

properties (appropriately defined) of the Onsager transfer
matrix (for transfer along the Z-component of X).

(2) Let (ﬁs,ﬂs,w ) be the GNS triple corresponding to ¥
Then 3 a quadruple (us,g ,gg,vs) such that:-
(i) Ms(aws) is a closed subspace of MB

g

(iiz €B(=n oeB),Eg are maps of & into Xg, such that
EB(G)(EEE(E)) is a linear basis set for ¥g.

(iii) vg is a positive self-adjoint contraction in MB and
VBt

(1v) 9g(8) = (vg,85(A)) = (EF(A),wg), VAEG

(v) Given A, A'€G, Hn, = ny(A',A).

b.(A'a(n)a) = (E¥(A"),ve OF_(a)), VA,A'€d, n>n
B B b B B 3 3 ’ fo]

Thus the structure of the state are determined by the
quadruple (Mﬂ,gs,gg,va), which in turn is determined by
certain limiting properties of the finite-volume transfer
matrices. In particular, space-translations in the Z,

(and likewise the Z ) direction corresponds to the one-
parameter semi-group {vnln€Z+} of positive self-adjoint
contractions of ¥X,. The formulation of correlations in
terms of such con@ractions has obvious advantages for pur-
pose of obtaining the asymptotic (e.g. the cluster) proper-
ties of such functionms.

For the case of the two-dimensional model, in the
absence of any external field, we utilize the properties
of the finite volume transfer matrix, as obtained by
Schultz, Mattis and Lieb31; and thereby obtain the follow-
ing results:-
(1) For B#8_., there is a gap A(B) between the principal eigen-
value (unity) of vg and the rest of its spectrum. This
gap - 0 as B - Bci%.
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(II) For B<B _, the subspace of X, that is invariant under
vg consists of the scalar multiples of w,.

(I11) For B>Bc, the principal eigenvalue (unity) of vg be-
comes degenerdte. Further, the principle eigenprojector
of v, is not orthogonal to the subspace of MB generated by

ga(ﬁo)(sgg(&o)), with ao defined as in section 6.2,

It is a simple matter to infer the following results
from (I) - (III):-
(A) For B<B_,, ?g is Z-ergodic (and therefore X-ergodic);
while, for §>B , ¢, undergoes a symmetry breakdown, corre-
sponding to spin inversion (0-~-0), associated with its Z-
ergodic decomposition
(B) lim ¢B(Aa(n)B) exists (=F§B, say), B#8_,. Further, de-
fining the correlation length & (8) asAsggG {r|reR;

E]

%iQ (¢B(Aa(n)B) - FgB)en/r'= 0,Vr < r'}, we see that

L(8) = [4n(1-a(8))™ 1™ . Thus, 4(B) is finite for B#8,
and tends to infinity as B*BciO.

Thus, the model exhibits the characteristics (b, (c¢),
as well as (a). Since (b) and (c) are consequences of
(I)-(II1), it is tempting to propose these latter state-
ments as "axioms' not merely for the two-dimensional case
but for the wider class of models that we consider. We
have, in fact, formulated a framework for the 'scaling
laws', even in the presence of an external magnetic field,
on the basis of (I)-(III), together with a supplementary
assumption coancerning the spectral projection for Vg .
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p0=:{:“f5 +m2

this is not so for m% < 0. As long as only real energies
are considered, i.e. as long as

we are restricted to momenta for which

52 = -m2 > 0

This spells trouble for locality since it takes an integral
over all momenta to achieve spatial localization.

In view of these difficulties we shall base tachyon
quantization on a manifestly covgriant and local expression.
It has Eeen emphasized by Tanaka~ and especially by
Schroer™ that such a starting point is provided by the
commutator equation

[A(X): A(y)] = iA(X'Y, m)'
Inspection of

BGr,m) = - 5 e (xy) {8Gx7) - e(xz)T‘“? Jl(m\/;T)}
X

shows that there is a well defined continuation to imagi-
nary m where

bxstlnl) = - 5 e {s Gy - o) Eif%} 1, (Il Vi)

As an aside it is worth msntioning that any such theory

will be canonical: for @(X) = A(x) and T (y) = g__ A(y) at
3 . = y

some fixed time ¥y = Yo we have 0

lo@), 1(H] = i $3E-5).

While it is challenging to speculate about regions of
strongly attractive pgtgntials as a natural habitat for
tachyonic excitations””™% we shall here concentrate on
quantizations with a ground state invariant under space
time translations.
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It turns out that this requirement imposes an indefi-
nite metric on the representation space (one example each

of representations with positive and indefinite metric
have been constructed by Schroer™).

The further requirement of rotation invariance rules
out all irreducible representations. The condition of
Lorentz invariance, finally, will leave us with a one pa-
rameter family of causal, Poincaré invariant quantizatioms.

2. The Two-Point Function

We are interested in free field representations which
are characterized by a translation invariant two point
function

W,y (x-y) = (0]A(x) A(y)|0).

Hence we make the ansatz
3 :
Wy (x) = [z_rﬂ /dBR [elkx el G(E)]

K +m ifﬁ2+m2>o

0
eV I m2 1.£ Ez + m2 < 0.

We note for comparison that for the tardyon Fock represen-
tation we would have

with

. - S
PFock g “Fock T (2T

The first thing to do will be to impose the commutation
relation

Wy(x-y) - Wy(y-x) = i8(x-y,m)
on our ansatz. By comparing
Wy (%) = W, (-x)

with
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3 e .
iA (x,m) = [_2%] fd3I€ JLelkx [_ z_ﬂ " e—lkx[iu]j]}

we find that

1 -
o = k
(k) m-*ﬂ()
is necessary and sufficient for the commutation relation
to hold in the space generated by W,. This condition shows
clearly that to obtain the correct %ocal commutation rela-
tions, contributions from all momenta are required. 1In
particular we may not simply set
p=o‘=0

in the region of imaginary energies.

Having thus eliminated o from our ansatz we proceed
similarly to invoke hermiticity

AT () = A
for the field operator.
For the two-point function this implies
%
wz(-x) = wz(x)

or in terms of p

o (K) if w® >0
p* (k) =

1 - . 2

T p (-k) if w” < 0.

To explore the metric properties of the representation
space we focus on

llp (£) |0 SiI2 =/d3ﬁ (%) v”chcp(ﬁ) (K

and

I (e o >)2 =fd3R F®ow ®E®.
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Here

o (£) =fd3i o (F) £(®)

(
3/2 e
By = [Z—T}] fd3§ = )

and consequently

Ww() =0(K) +p(-K) = +p(R) +0(-B)

and

K)

¥ €

z[c(fé) + p(-ﬁ)]
wz[-ﬂl + p(K) + p(-l‘é)]

Evidently the 'norms"

o (E) 10 112 = (0l (£) ©(£)]0)
and

im (£) o >I1%

Ofm(£) m(£) [0

are real (positive, zero) if and only if the kernels ﬁ¢®
and ﬁﬂﬁ are real (positive, zero) almost everywhere.

While reality of the kernels, and hence of the norms
is a consequence of the hermiticity condition imposed on
p we observe that for w® < 0 the kernels cannot both be
positive, i.e.

All translation invariant representations of the
tachyon commutation relations are endowed with a1 an indefi-
nite metric.

Actually this is true for the larger class of theories
which have a ground state invariant under spatial transla-
tions and for which the time translations are generated by
operators U(t) (while not necessarily U(t) |0 > = [0 >).

We plan to discuss such representations elsewhere.

At this point and before restricting our ansatz further
by requiring rotational or full Poincaré invariance of the
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ground state we pause to give an explicit construction of
the field algebra.

3. Field Algebra and Hamilton Operator

Being mainly interested in the peculiarities brought
about by w2 < 0 we ghall consider only the Fock represen-
tation as long as w® > 0, i.e,

p(k) = 0 for all [&k| > [ml.
One verifies straightforwardly that the ansatz

3/2 g5 . .
Ax) = [Z—T}] f ) %’2‘% [a(K) e Ix | 2 ®) elkx]
W 0

>

3/2 ‘
] Bl de, o % k
+[z_n] fz a7k 1[0(16) b (-K) + 0" (-K) b+(k):| e

w” <0

+[x(-§) b (k) + x(k) b’j(-i)] etk

with

! 1 if p(R) # 0

x (k) = { -
0 if p(k) =0

and
b, (k)10 > =0
[b, (R), b, (R")] = 0 [b, (), b, (K")] = 0
(b, (K), b (K")] =0 [b, (&), bi(k")] = 83(&-k")

gives rise to the correct commutation relation and n-point
functions.
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To disentangle the algebra of b, it is useful to
introduce

a, (® =;7§ (b, (&) + b_(K))
so that
e * o2y g !
la, (8), a,(K")] = #5”(R-K").

%
Since furthermore a; and ai commute with a_, a , the repre-
sentation space is the direct product of three Fock spaces

H=H ®H, ®H
w2>0 + -

where, however, H is endowed with an indefinite metric:

2F@®) a, B - z2® av@) &% e Wl PSR
<0| e + + |O> ey ZIMl

M will be specified below.

To ensure that the representation thus constructed is
the one that arises from the generating functional

(o] 1A s [ £ W, (x-y) £(y) axdy
e = e

we have to verify that it is cyclic.

To this end we note that the field algebra as well as
the canonical algebra of ® and ™ are generated by

a®, a* @ for B 5l =nt
and by
p(B) b (-K) + 0™ (-R) DY), x(-K) b_(K) + x(&) b¥(-K)

for Qz < -mz.
Hence the field algebra generates states

a*(®) 10 ) and a¥(¥) [0 )
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from the vacuum, the latter if Kk ¢ supp p(-ﬁ) = M. By
iteration of this procedure one obtains the higher order
states.

With this choice of M, then,

H=H ® H, @ H
w2>0 + =

is the cyclic representation space for the field A(x).
If there is a set G & R3 of non-zero measure on which
x(®) = x(-kK) =1
then any operator
— — X - —
| @ o, B + v ) @R
+ +
G
will commute with A(x).

On the other hand, if there is no such G, the operators
given above as generators of the field algebra specialize
to

a(®), a*@®
and

= * - - -
b, (-k), b_(-k) or b (k), b_(k)

then we can build the a (k) for keM. Hence:
The canonical and field algebras are irreducible if and
only if p(ﬁ)'p(-ﬁ) = 0 for almost all k with Ez < -mz.

depending on whether we %Q?o§e -ﬁeNLor keM. From these
£

In particular, rotation invariant representations with

o(k) = p(|k]) are always reducible.

We note that
o(B) = —6(k3)(2w)_1 for w?<0

provides an example of an irreducible representation.
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The Hamiltonian, for which

101¢,A(x) ] % A(x)
0

and

1|0 )

I
o

is given by

K = J‘ d3i{. o - 3—0 - * - -
= w(k) a*®) a@ + [ @G, E b0
M
w >0

% = -
-b- (&) b, (X)) .
*
We recognize the b, (k) as creatign operators for energy
eigenstates with eigenvalues *w(k).

4. Lorentz Invariance

To obtain a Lorentz invariant two-point function one
might think of proceeding in analogy with our discussion
of the tachyon commutator iA(x,m). However

3 . osin wx
1A (x,m) =[51;] Jad otk

depends on w2 only and hence

0
w

A(x,ilm]) = A(x,-i|m]).

On the other hand this is not so for

. m

1,09 =3 (1) +8,(0) =280 +
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as one sees quite easily from

3 == COS WX
e 32 ikx 0
Aﬁ’”'[ﬁ?]fdke -

As a result we have two A, - functions from which to con-
struct a Lorentz invariant two-point function: The ansatz

Wy(x) = a d (x,ilm]) + B 8 (x,-1]m])
amounts to

c’(f<‘)=z—w p(ﬁ)=-%u—) fiow W = 0

on which we have to impose the restrictions from the com-
mutation relation

o () -p(k>=%; L Gl

and further from hermiticity

p*(®) - o(-K) = r de. B 4B -1
Hence
cr(ﬁ) = Zwia p(ﬁ) = - l—i-u-f—a for w2 <0
and
o(ﬁ) = %G p(ﬁ) =0 for wz >0

with arbitrary real a give rise to a one parameter family
of Poincare invariant quantizations. (Evidently we are
dealing with pseudounitary representations of the Poincaré
group.)

5. Summary

Tachyon quantizations are obtained by constructing
representations of the tachyon commutation relations.
These are causal: field operators at spacelike separation
will commute with each other. The construction proceeds
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from an ansatz for the two-point function; all higher
truncated Wightman functions are set equal to zero.

Insistence on a translation invariant ground state
necessitates an indefinite metric for the representation
space in the imaginary frequency regime.

An explicit realization of the algebra in terms of
creation and annihilation operators shows that e.g. rota-
tion invariance of the ground state is sufficient to make
the canonical algebra reducible. In contrast to reducible
representations encountered elsewhere, the reducibility is
not lifted by the action of the Hamiltonian: the space
time algebra is not larger than the canonical one at a
fixed time, and the field obeys the appropriate equation
of motion:

(H2) A(x) = 0,

While the explicit construction of the field algebra is
anything but patently covariant it encompasses a one-para-
meter subfamily of Poincaré invariant representations.
Thus consistent causal Poincaré invariant quantizations of
the free tachyon field are obtained in a systematic way.
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LOCALITY AND COVARIANCE IN QED AND GRAVITATION
GENERAL PROOF OF GUPTA-BLEULER TYPE FORMULATIONS

F. Strocchi
Princeton University
Princeton, New Jersey

The aim of the present paper is to discuss the quan-
tization of the electromagnetic and gravitational field in
the framework of Wightman's theoryl. The motivation for
this is to clarify the difficulties arising from the zero
mass in connection with the gauge group. All the known
ways of quantizing the e.m. and the gravitational poten-
tial have in fact some unpleasant features, For example,
the local and covariant Gupta-Bleuler formulation® of QED
requires an indefinite metric Hilbert sgace whereas the
Coulomb or radiation gauge quantization- uses non-local
and non-covariant fields. The natural question is whether
these difficulties arise because one insists on some un-
necessary assumptions or there is some general property
which makes them unavoidable. The impression one gets
from the literature is that the difficulties connected
with the quantization of the electromagnetic potential
have a rather accidental origin. It seems in fact that
all the troubles arise because one tries to impose the
Lorentz condition 3,4 = 0 and to work in a positive met-
ric Hilbert space. None of the above conditions are real-
ly necessary. Even classically, there is no need for im-
posing the Lorentz condition in the Maxwell's equations

Vv
0 -3 3 =0
Ay w A

Similar considerations hold for the quantization of the
gravitational potential with the Hilbert-Lorentz condition
3 WY + 0d3Vh! = 0 playing essentially the same role as
the Lorentz condition in QED”. The literature on the sub-
ject is very rich, but all the formulations are based on
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some definite choices or assumptions and one might hope
that different choices may provide better solutions and
avoid the unpleasant features of the known formulations,
One should perhaps add that even in the free field case,
there is a large freedom in the representation of the
field operators because of the zero mass and one may con-
sider representations which are not equivalent to the Fock
representation.

The purpose of this paper is to provide general
statements about the quantization of the e.m. and gravi-
tational field without assuming the spectral condition,
the temperedness of the fields, the uniqueness of the
vacuum state, the Fock representation, the positive defi-
niteness of the metric in the Hilbert space and consequent-
1ly the unitarity of the Poincaré representation. Each of
these assumptions could in fact turn out to be unnecessary.
We will show under very general assumptions that the char-
acteristic features of Gupta-Bleuler formulation like in-
definite metric and unphysical states are in fact unescap-
able features of any local and/or covariant quantization
of the electromagnetic potential. Conversely, any quanti-
zation avoiding indefinite metric and unphysical states
like the Coulomb or radiation gauge formulation must be
based on non-local and non-covariant fields. Similar
statements are proved for the quantization of the gravi-
tational potential.

1. Basic assumptions

The basic assumptions which serve as a definition of
the problem are the following. (We consider the electro-
magnetic case first.)

i) The fields (x), ©+ = 0,1,2,3, may be defined as

operator valued distributions (not necessarily tem-

pered), for which the Fourier transform may be de-
fined, They are supposed to act in a Hilbert space

X equipped with a nondegenerate™ sesquilinear her-

tean form n = n' (t denotes the Hilbert space ad-

joint.)

ii) There exists a representation {a}-U(a) of the

space time translation group in X such that

U(a)Au(f)U(a)'l = A (), f£,(0=E(x-a)
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and the operators U are unitary with respect to n

UJr nu =n

i1ii) There is a vector Yo, called the vacuum state,
in the domain of the fields Au(f), invariant under
U(a).

U(a)bo = Vo

A few comments on the above assumptions may be useful,
Assumption (i) is nothing but the statement that (x) can
be defined as quantum fields. No assumption is made about
the type of distribution except for the requirement that
the Fourier transform exists. For example Auéx) could be
a strictly local field in the sense of Jaffe °., The in-
troduction of the sesquilinear form m is done in order to
cover the most general use, It might be necessary, in the
quantization of the electromagnetic potential, to define
all the physically meaningful quantities such as transi-
tion probabilities, vacuum expectation values, etc., in
terms of a '"product" (,) defined by

(\VI. ,‘1‘2) =] <n ¥a ,\V3>

where <,> is the natural scalar product in K. Assumptions
(1i) and (iii) look rather mild and it seems difficult to
think of a quantum field theory in which they do not hold.

2, Quantization of Maxwell's equation and Lorentz covari-
ance

The assumptions made up to now apply to a general
vector field (for example a massive vector field). The
connection with free quantum electrodynamics is given by
the Maxwell's equations

o P -0 euvpcavaa =0 (@1

They have the advantage of not involving unphysical states
or subsidiary conditions. It is therefore reasonable to
try to impose egs. 2.1, and see which of the basic assump-
tion of quantum field theory conflict with them.
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The first property we want to discuss is covariance
under the Lorentz group. Up to now no assumption was
made about the transformation properties of Au(x) under
the Lorentz group. (A, (x) could be a non-covariant field
like in the Coulomb or radiation gauge.) We will there-
fore try to assume that

iv) The two point function (Vo ,A,(X)A,(V)Vo)=W (x-y)
transforms covariantly under the Lorentz group
-la -18

W G0 = AT AT

One may then prove the following:

Statement 1.7 In any quantum field theory satisfying con-
ditions (i), (ii), (iii), (iv) (weak local
commutativity is not required).

(a) The Maxwell's equations cannot even hold as weak
equations on the vacuum state

Y Vpo
2 Fho=0, V% F v =0 (2.2)

Otherwise the two point function (Yo,F (X)F _(y)¥o)

vanishes. A po

(b) If the Maxwell's equations are required to hold
as mean values in D, = { set of vectors obtained
by applying polynomials in the smeared fields
Fw(f) to Yo}

v
(@,a“F“ (£HH¥) = 0, Va,y€D,
then the metric m cannot be positive definite in
Do, and there is a subspace X" < D, of vectors of
vanishing n-norm
(2,8) = (ng,) =0 vée 3"
and
auFuv(f)Do &
(¢) the metric m cannot be semidefinite (n = 0) in ¥;

i.e., there must be vectors in ¥ with negative
N=-norm: (‘l‘,‘l') - <'ﬂ¢,‘1’> <0
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Proof.

(a) One considers the two-point function

(Yo, A, GOF (Vo) = F  (x-3) (2.3)
Eqs. (2.2) imply
GJF“v)(f)¢o=[au(BF)v-aV(aF)u]Wo+BTeTuvo(BFd)ow°=o
((aF)v = p\),(BF ) XcaBFaB)' Therefore
one has

= 27 -
OF po(®) =0, PF (P =0,

where F denotes the Fourier transform of F.
Hence
supp ¥ S +U A
Mpo
Now the forward and backward cone are regularly
separated8 with respect to their intersection

(the origin), which is a compact set. Then by
Malgrange's theorem’ one may write

Floa® = Llpo(p) + Fupc(p) (2.4)
where
—t ~— —_
supp Fupc Vs supp Fupc cv

The Fourier transform of eq. (2.4) gives

upc(x) = F c(x) + F;po(x)

and both Fupc transform covariantly under the
Lorentz group, since by assumption iv) so does

upo
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Because of the support properties Fz c(x)
may be regarded as boundary values® of two ana-
lytic functions i o(z), F* being analytic in the

forward tube 3+ and F~ being analytic in the
backward tube §~

+
3i5{z, - < Rez < ®, TmzeV }

According to assumption iv ), F:po(z) yield two
representations of the complex Lorentz group
1y (C) and by the Araki—HepplO theorem, they may
be written in the following form

+
Fs (2)

+ s £2
Fro(®) = 8,,2,F1 (2) + 8,2 F. () + &

z
1o p 00 1

A+ +

+ ® 1pon® Fy (2), for zel
+

where &1y is the metric tensor and Fi (z) are in-

variant functions

Fii(z) - Fi*(Az), AEL,(C)

By using Tisentially the same argument discussed
elsewhere™ = and the antisymmetry of F,5(x) one

may write F:pc(z) also in the following form

3 <} + ) +
Fﬁpc(z) 8.0 azp “Bup oz, F (z)+eupcx azx G (2z)

and by going to the boundary value one has

X
= d - 3 9 '
Floo () = (8,42,78,9,)F + €, 536 (2.5)
where F(x) = F (x) + F (x) and G = G (x) + G™(x)
are Lorentz invariant distributions.

Now if one imposes the Maxwell equations, in
the weak form

2, Y (H)¥,70, M F*% (£) 40 =0

€
HVpo
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one obtains the following restrictions for F and
[}
=9 = -3 3 2,
0 =2, (x) = (g, 2,) F(x) (2.6)

Avpe

0=c¢ avag(x) = q:gxu-axau)c(x) (2.7)

The above differential equations for the Lorentz
invariant distributions F i&d G have no solution
apart from the trivial one

F(x) = const G(x) = const (2.8)
Eqs. (2.8) imply

(o Fy () Foo(3) ¥a) = 0 (2.9)

If Maxwell's equations are required to hold only
as mean values on D, one gets

&, 3, P =0 Ve, yem

Then by choosing & = aqu°(f)w. one has
(8,%) =0 (2.10)
Since for Y=y, one cannot have
% = auF“v(f)wo =0 V test function f

as discussed at point a), eq. (2.10) proves that
there are vectors in D, with zero m-norm and that

auFuV(f)Do c Kn

This follows from the following remark. A non-
degenerate hermitean sesquilinear form m in a
Hilbert space ¥ cannot have vanishing expectation
value on a non-zero vector, unless n is indefi-
nite. One has in fact
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(VA2 Y4 8) = (¥, 0)+IN |® (8,2)+2Re[ N (¥,2)]
=(¥,¥)+2Re[ X (V,9)] (2.11)

for any vector ¢, if & € X", The left hand side
is clearly indefinite unless (¥,%) = 0, Now, one
cannot have

,%) =0 Yy € K

because m is non-degenerate. Thus, eq. (2.11)
implies that there are vectors in ¥ with negative
n-norm.

The content of Statement 1 is slightly
strengthened by the following

Corollary If the metric n is semidefinite (n 2 0) in Do
and Fuv(f) is hermitean with respect to 7 (F&v(f)n=ﬂFHv(f),
t denoting the Hilbert space adjoint), then eq. (2.2) im-
plies that all the Wightman functions of Fuv vanish,

Proof. Since, by Statement 1, the two-point function of
Fuv vanishes

F (Vo € %"

Now, if ¢ € D, and (2,%) = 0, then (V,%) =0 Y € Dy, pro-
vided that n is non negative in Dy . Therefore

(Vo Fyy (£2) o F g (£ Vo) =

=(Fy, (E ). F  (F)Vo, F (£ )¥0) =0

Remark. Statement 1 proves that any quantization of Max-
well's equations satisfying conditions i), ii), iii),

in which the potential A (x) transforms as a four vector,
must share all the essential features of Gupta-Bleuler
formulation. These results make use of very general
properties of quantum field theory and may be regarded as

a proof13 that the Gupta-Bleuler formulation is inavoid-
able if one wants a covariant theory.
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3. Quantization of Maxell's equations and weak local

commutativity

The next property we want to investigate is Weak
Local Commutativity (WLC), which was not assumed up to
now, We will discuss the possibility of writing the Max-~
well's equations in the weak form (2,2), in terms of a
weakly local field operator A (x). We will not assume
that A (x) transforms covariantly under the Lorentz group

but only that

v) The two-point function F (x-y)E(wo,Fuv(x)Fpo(y)

uv,po
Vo) transforms covariantly under the Lorentz group
_ ami0 -1 -1y =10
FHV,DO' =) Au A\J Ap Ac FQB,Yé(A(X )

Moreover we will assume that

vi) (Yo, [A (D), A,(8)]1¥) =0

whenever the supports of the test functions f and g
are spacelike to one another.

The above equation may be empty unless one makes
some assumption on the class of test functions for
which Au(f) is defined, We will therefore assume
that A, (x) are operator valued distributions for
which WLC may be defined. For example the strictly
local fields introduced by Jaffeb satisfy this condi-
tion.

One may then prove the following

Statement 2.14 In any quantum field theory satisfying
conditions 1), ii), iii), v), and vi),

(a) The Maxwell's equations cannot even hold as weak
equations on the vacuum state

v vpo
a“F“ Yo =0, eHVP 3 Fg¥e = 0 (2.2)

Otherwise the vacuum expectation value
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Proof.

(a)
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(o, [F,, G0, Fop (1) T40)

should vanish
b) and c¢) of Statement 1 also hold.

One considers the following commutator

(o, [A, (), Fpo (o) = F o (x-5)
The first step is to show that F po (x-y) trans-
forms covariantly under the Lorentz group, i.e.

-1gq ,-1B -1y
= = A A A o
Fupc(x y) " 7 - FaBY(A(x 7)) (2.12)

To this purpose it is convenient to introduce the
following distribution

B

= & o -
A=A -
oo (R M=A T AT AT Fog (A 1) - Fy e (0)

so that eq. (2.12) is proved by showing that gupc
vanishes. An immediate consequence of assumption

iv is that the four dimensional curl of & .4,
with respect to the index 4, vanishes., This im-
plies that &,,; may be written in the following
form

3“pc(x,A) = au3pc(x,A)

Eqs. (2.2) imply that the supp i o 1s contained
VEUV' and therefore by Malgrange™s theorem one may
split 3pc in the following way

4+
3po(x) gpo - Epc

where
supp §t° S Vi

3,5 (x) are therefore boundary vzlues of analytic
functions 3?0(2), analytic in ¥ respectively.
(5* denote the forward and backward tube).
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Moreover by condition vi)

+
3pc(x) = gpc

(x) for ¥* < 0

Then, by a known theoremls, there is an analytic
function Gpc(z) such that

+ +
Gpo(z) - EQo(z) for z € §
= J;G(z) for z € §

Furthermore G c,(z) is analytic in a neighborhood
of Jost's points and by Streater's theorem!’
Gpo(z) can be analytically continued to §', the
extended tube.

We may now show that Gpc(z) = 0. To this
purpose we note that

(o
2z Gy (2) = 0 (2.13)

p,o0=0

since Goo is antisymmetric in p,0. Therefore,
putting

=0
we have
3
2 2’ F,(2) = 0 in §' (2.14)
0=0
Now 3' contains the intervals of the form

c
{20=0, zY#O, zJ=0, j4i} and on those intervals
eq. (2.14) becomes

ziFi(z) =0 (no sum over 1')(2.15)
i.e.
F,(z) = 0 (2.16)
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By analyticity, eqs. (2.16) hold throughout &'
and by eq. (2.14) one also gets F, (z)=0 through-
out §'. 1In a similar way one also proves that
Gpg (2)=0.

Having proved that F c(x) transform covari-
antly under the Lorentz group one may repeat the
argument given in Statement 1 and conclude that
eqs. (2.2) imply

Fupo(x) =0

and

Fuv’pc(X-Y)E(Wo,[Fuv(x),Fpo(y)]¢o)=0 (2.17)

This concludes the proof of a); b) and c) follow
in the same way discussed in Statement 1. It is
clear from eq. (2.17) that if eqs. (2.2) hold one
would get a trivial theory and therefore one is
forced to abandon eqs. (2.2). The conclusion can
be strengthened if one assumes that the Fourier
transform of the two-point function (Vo ,F v(x)

F c(y)ll!o) has support in VF. Eq. (2.17) implies
in fact Fuv’pc(p)=0. Therefore, if one writes

~ ~t ~-
= 2.18
By oo® =T o0 +F, (219
with
i~
supp Fuo < Vi
one has
ok
Fuv,pc(p) =0 (2.19)
Now the two-point function
Wy oo () = (o B, (OF o (5)¥0)

satisfies the spectral condition

—t
supp W,,, o (P) €V
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~t
and therefore F v,p0 in eq. (2.18) are the Fourier
transforms W ozx-y) and -W (y-x), respec-

[NV
tively. Then, by eq. (2.19)

(Yo ,F,, (IF ; (¥)¥0) = 0

In conclusion, by combining Statement 1 and 2, any
quantization of the Maxwell's equations using a weakly
local and/or covariant potential A, (x) has all the essen-
tial features of the Gupta-Bleuler formulation. In this
respect, Statement 1 and 2 are a general proof of Gupta-
Bleuler formulation. Conversely any theory in which Max-
well's equations hold as operator equations must necessar-
ily use a non-local and non-covariant potential. Thus a
result which was known for the Coulomb or radiation gauge
is shown to hold in general, whenever eqs. (2.2) hold.

4, Quantization of Einstein's equation: locality and co-
variance

To -simplify the discussion we will consider the
Einstein's equations in the weak field approximation in
vacuo, This does not seem to be a limitation of the argu-
ment since one expects that the general theory will admit
the weak field approximation as a limit

Ruv(f)¢o=0 when Tuv(f)¢o=0

The assumptions which define the problem in this case are
the same as those discussed in Section 2 with (x) re-
placed by the gravitation potential h“v(x) and F), (x) re-
placed by the Einstein's tensor R,,5(x). One may then
prove the following.

Statement 3. In any quantum field theory satisfying condi-
tion 1), 1i), 1ii), with the gravitational potential
defined

either as a covariant operator (assumption iv))
or a weakly local operator (assumptions v), vi))

(a) The Einstein's equation cannot even hold in the
weak form

Ru\)(f)‘l’o =0
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Otherwise the two-point function (Yo, R e
RaB 6(g)tl!o) vanishes. [

(b) If the Einstein's equations are required to hold
as mean values in D,= {set of vectors which are
obtained by applying polynomials in the smeared
fields, vapo(f) to the vacuum}

(8,R,, (DY) =0 v&,¥ €D,

(£)

then the metric n cannot be positive definite in
Do, there is a subspace X" € Dy of vectors of
zero M-norm and

Ry (D) Do <7

(¢) The metric m cannot be semidefinite (nz0) in ¥,
i.e. there must be vectors ¢ with negative
n-norm.

Proof.

The proof is similar to that of Statement 1 and 2.
For details we refer the reader to reference (18).

5. Remarks

A possible objection to the difficulties encountered
in a local and/or covariant quantization of the free Max-
well's and Einstein's equations may be that: a) one may
quantize the Maxwell's equations in a local and covariant
way by using only the fields F, (x), without introducing
the potential (x) and the indefinite metric is not neces-
sary. b) even if A, (x) is introduced, as suggested by the
second Maxwell's equation (e“vpcBVch = 0), one may think
that the interacting case is totally different from the
free field theory and the above difficulties may disappear.

There are indications that the above remarks do not
get into the core of the problem for the following reasons:
a') One does not know how to formulate a local interacting
theory (even in the Lagrangian approach) in terms of F
only. Thus, even if the free field case can be formulated
in terms of F,, only, there is little chance that this will
be possible in the interacting case. Actually, there are
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strong indications that S-matrix elements must involve A

in order to account for bremstrahlung processes. b') If%

as one reasonably hopes, the interactin§ 7heory will allow
the definition of asymptotic fields, A,'" out(x) should be
free fields and for them Statements 1 and 2 apply. The argu-
ments a') and b') can be supplied by a rigorous statement

To this purpose, let j¥Y(x) denote the electromagnetic cur-
rent, associated with the local charge operator so that

[[3° (%, D) £, (R £, % dxo , (8)1=qp (g) (2.20)
[+ o
for R sufficiently large, where j fd(x Ydx = 1 ,
fR(?<)=1 for |x| < R, fR(§)=o for |%| >R+e, £4(x°)=0

for |x | > d, and ©(x) is local field carrying charge q.
Then one may prove the following

Statement 4, In any quantum field theory in which a
charged field v is defined as a local field in a
Hilbert space ¥ equipped with a non-degenerate metric
n, the Maxwell's equations

v DV v [+
au#‘ (5)=1"(5), € vpo® FP2 (£)=0

cannot hold as operator equation in X, Moreover, if
%' is a linear manifold © ¥, stable under aV(f) =

3,V (£)-3"(£)
a’(£)K' < K
and such that n 2 0 in X' and
v
) = \£] (215380
(3,a° (DY) = 0 X,y eD

then n cannot be positive definite in X' and/or semi-
definite in ¥ unless

@,0(H)Y) =0 Vé,y € X!
(this means that X' has zero charge).

The above statement confirms that in any quantum field
theory in which charged fields are local, the Hilbert space
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must be equipped with an indefinite metric m, and unphysi-
cal fields a¥(x) must be introduced. (In the Gupta-Bleuler
formulation avV=3V3 AM(x)). Thus any local theory must
share all the essential features of the Gupta-Bleuler for-
mulation. It may be worthwhile to remark that Statement 4
is proved under very general assuptions and that nowhere
the existence of a field A“(x) has been used,
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