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Abstract

Accelerator-based light sources require high brightness
electron beams to improve performance in exploring struc-
ture of matter. Higher acceleration gradient is the key to
generate high brightness electron beams and is more feasi-
ble with higher frequency and shorter pulse length electro-
magnetic wave according to previous empirical formulas.
A tapered rectangle waveguide structure driven by te-
rahertz (THz) wave is designed as a compact electron gun.
A nanotip is fabricated by focused ion beam (FIB) in the
centre to enhance the field and to emit electrons. The aver-
age emission charge per pulse is measured by a Picoamme-
ter, and the peak value reaches 10 fC. The max electron en-
ergy beyond 4 keV is measured from the signal of channel
electron multiplier behind a -4 kV metal girds, revealing
that maximum acceleration gradient is beyond
100 MeV/m. These results indicate promising performance
of compact THz electron gun in high brightness electron
injection. Further research will be done in the future.

INTRODUCTION

Compact terahertz (THz) electron accelerators and injec-
tors have emerged as an active research focus with the de-
velopment of strong-field THz technologies, providing the

potential for high-gradient acceleration as suggested by
previous empirical formulas [1, 2]. This capability is ben-
eficial to generating high-brightness electron bunches,
thereby enhancing the performance of accelerator-based
light sources for the investigation of matter’s structure.
THz-driven acceleration of electron beams has been
achieved with an effective acceleration gradient of
85 MeV/m and an energy gain of up to 204 keV [3]. The
electron beam emitted by THz photocathode electron gun,
with a charge of approximately 10 fC, achieves a maximum
electron energy of 14 keV [4]. This corresponds to an ac-
celeration gradient of approximately 280 MeV/m, which is
much higher than that of an X-band photogun, yet the max-
imum electron energy is significantly lower. Further re-
search is required to enhance the performance of THz ac-
celerators and electron guns.

In this paper, we report on the setup of experimental plat-
form for THz electron guns research in Tsinghua Univer-
sity. Beam experiments were carried out using the designed
compact THz field emission gun. Emission charges up to
10 fC were obtained with the maximum energy detected
exceeding 4 keV. This corresponds to an acceleration gra-
dient over 100 MeV/m, which was limited by our available
THz pulse energy. Despite the limitation, it shows promis-
ing high-gradient acceleration capabilities.
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Figure 1: The schematic layout of the experiment.
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EXPERIMENTAL SETUP

The optical path design for generating strong-field THz
radiation based on optical rectification method is shown in
Fig. 1. The initial near-infrared laser pulse with a width of
several hundred picoseconds is compressed by a dual-grat-
ing system. After pulse compression the laser pulse width
is reduced to approximately 400 femtoseconds. The laser
pulse first passes through a beam splitter. The reflected
light, a small portion of the laser pulse, serves as the probe
for THz electric field electro-optic measurements. The
transmitted light passes through three reflective mirrors to
adjust its direction and a half-wave plate to tune the energy
of the diffracted pulse. It then incidents onto a diffraction
grating with a line density of 1800 lines/mm at an angle of
approximately 38°, producing a laser pulse with a tilted
wavefront. The -1st order diffracted laser pulse passes
through a double-lens imaging system composed of two
cylindrical lenses with focal lengths of f; = 100 mm and f;
= 60 mm, respectively, which images the wavefront tilt
generated at the grating surface onto the congruent lithium
niobate (cLN) crystal surface with an image reduction fac-
tor of 0.6. Since the cylindrical lenses only focus in the hor-
izontal divergence direction of the diffracted light, the final
laser spot on the cLN crystal is laterally distributed in an
elliptical shape. The half-wave plate placed between the
grating and the cLN crystal is used to alter the laser polar-
ization direction to align it with the crystal axis, thereby
enhancing the THz conversion efficiency. In the experi-
ment, the diffraction grating, the cylindrical lenses, and the
cLN crystal are all mounted on a multi-dimensional mirror
frame to facilitate the optimization of THz conversion ef-
ficiency. The highest conversion efficiency achieved is ap-
proximately 2%o. Table 1 summarizes the parameters of the
pump laser and main optical components for THz genera-
tion via optical rectification.

Table 1: Summary of Parameters for THz Generation

Parameters Value

Laser energy Sm]

Pulse width 400 fs
Diffraction grating 1800 I/mm

cLN crystal 25mm*25mm*35mm, 63°

fi =100 mm, f; = 60 mm
d=25.4 mm@800 nm

The THz transmission optical path and electron beam ex-
perimental layout are also shown in Fig. 1. The THz wave
radiated from the cLN crystal first passes through two as-
sembled gold-coated mirrors to adjust the transmission
height and direction. This step is primarily aimed at con-
verting the polarization of the THz wave to a horizontal
direction, which is beneficial to the subsequent arrange-
ment of the electron gun beamline. This method is more
efficient than THz half wave plate in polarization conver-
sion. The THz wave then passes through two gold-coated
off-axis parabolic (OAP) mirrors. The first one is used to
form a THz focus for the purpose of using a THz camera
to observe the THz transmission direction and transmission
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efficiency. The second one is used to form a parallel THz
beam to achieve efficient transmission over long distances.
An OAP with hole is mounted on an electrical translation
stage for THz measurement when it’s in the transmission
path of the THz wave, using a ZnTe crystal and the bal-
anced photodiode for THz time signal measurement or Go-
lay Cell for THz energy measurement. A CF63 TPX win-
dow is mounted on the vacuum chamber for its high trans-
mission for THz wave. The final OAP is used to form a
THz focus which is coupled into the THz electron gun for
field emission and acceleration of electrons.

In the vacuum chamber, the THz electron gun is posi-
tioned at the THz focal point with the nanotip axis parallel
to the direction of the terahertz electric field. This nanotip
as shown in Fig. 2 is fabricated by utilizing an annular fo-
cused ion beam (FIB) to etch a small cylindrical substrate.
Field emission is determined by the main tip according to
simulations. The peak electron energy is roughly measured
via a channel electron multiplier (CEM) positioned around
2 cm away from the tip along the emission axis with a stop-
ping potential (-4 kV) applied to a grid placed before the
CEM. By replacing the energy analysis setup with a metal
plate connected to a Picoammeter, the emitted charge can
be quantitatively measured.

Figure 2: Nanotip fabricated by annular FIB.
THz ELECTRON GUN DESIGN

The THz electron gun in our experiment as shown in
Fig. 3 is designed as a horn gun [5] to enhance the field
both in the electric field direction and the magnetic field
direction. This structure will induce dispersive effects, and
to suppress dispersive effects the length of the rectangular
waveguide interaction region [ is reduced to 100 pm. The
length of the broad side of the rectangular waveguide is a
for the tapered coupler and a, for the interaction region,
and the length of the narrow side of the rectangular wave-
guide is b and b, respectively. The narrow side b, is
equivalent to the sum of the tip height h adding the elec-
tron flight gap d. The tip height h~30 um is selected to be
the effective length which is ~0.06A [6]. A~670 um is the
THz central wavelength used here. d~30 um is chosen as
the optimal flight distance through simulation using CST
[7]. The electrons emitted at the strongest field time travels
the whole distance without experiencing the deceleration
cycle in the condition that the THz energy is 4 uJ and the
tip radius is around 400 nm. Then we get by~60 um.

ag~ EA is used for the trading off between coupling effi-
2

ciency and field enhancement. Within the tapered wave-
guide coupling section, the dimension b conforms to the
variation law of Gaussian beam envelope. The equivalent
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Rayleigh length is chosen to achieve the highest coupling
efficiency. To minimize reflection, we maintain a constant
characteristic impedance throughout the tapered section,
and the wave impedance at the entrance is designed to be
approximately equal to the vacuum wave impedance.

Figure 3: Schematic diagram of the THz electron gun.

RESULTS AND SIMULATION

The THz signal we measured in the experiment is shown
in Fig. 4. Different from the THz signal that we use in THz
gun design, the central frequency is ~300 GHz. We use the
measured THz signal in subsequent CST electron dynam-
ics simulations.
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Figure 4: THz signal in experiment.

Emission charge are measured using a metal plate con-
nected to a Picoammeter. Results are shown in Fig. 5. The
dashed line illustrates the result calculated by Fowler-
Nordheim (F-N) field emission formula. In other research
[6, 8], THz field emission also roughly obeys F-N formula.
These discrepancies require further analysis.
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Figure 5: Measured and calculated emission charge.
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We show distinct CEM signals with THz on and off in
Fig. 6(a). This is the evidence of electrons energy
exceeding 4 keV, corresponding to an acceleration gradient
over 100 MeV/m across the flight distance d~30 um.
Fig. 6(b) shows the simulated electron spectrum.
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Figure 6: (a) CEM signals with THz on and off, (b) The
simulated electron spectrum.

CONCLUSION

In this paper, we report on the THz electron gun experi-
ment setup in Tsinghua University. THz wave is generated
using a tilted wavefront laser pulse with central wavelength
at 800nm and then transported to the vacuum chamber.
Principle and parameter for designing an electron gun
driven by single cycle THz are presented. Beam character-
ization experiments are carried out. Average emission
charge per pulse reaches 10 fC, and the max electron en-
ergy exceeds 4 keV. Considering an acceleration gap of
around 30 pm, this corresponds to an acceleration gradient
over 100 MeV/m. The result shows promising high-gradi-
ent acceleration capabilities of such THz compact field
emission gun. More work will be done in the future.
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