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Fig. 1. Diamond quantum sensing under extreme condi-
tions. (a) As nanoscale quantum sensors, diamond nitrogen-
vacancy centers can work under wide ranges of temperat-
ure, pressure, and magnetic field. (b) A typical spin-based
quantum sensing process contains three parts: preparation
of the quantum state, interaction between the sensor and

the target, and readout of the quantum state.
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Fig. 2. Working principle of diamond quantum sensing:
(a) The energy level structure and optical transitions of a
diamond NV center; (b) the energy levels of NV ground
state as function of external perturbations (from top to bot-

tom: pressure, temperature, and magnetic field).
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Fig. 3. NV spin properties at low temperatures: (a) Spin relaxation rate as function of temperature ?; (b) at 3.7 K, the 7T} of an

NV electron spin reaches 1 hour 24,
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Fig. 6. Quantum control of diamond NV center under strong magnetic field *3: (a) Experimental setup of high-field ODMR;

(b) schematic of the microwave cavity resonator and (c) schematic of coplanar waveguide (CPW) transition element and diamond

loading; (d) confocal image of the CPW resonator close to the diamond; (¢) ODMR spectrum and (f) Rabi oscillation of an NV cen-

ter at 2.78 T.
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Fig. 7. Quantum control of diamond NV center under high pressures: (a) Quantum sensing inside diamond anvil cell ['; (b) energy

levels of NV ground states under pressure; (c) ODMR, spectra under different pressures; (d) dependence of zero-field splitting on

pressures; (e) zero-phonon line and (f) its dependence on pressures *%; (g)—(i) Rabi oscillation, spin echo, and spin relaxation of NV

centers under high pressures 7.
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Fig. 8. Applications of diamond quantum sensing at low temperatures: (a) Map of magnetization distribution of a 2D material, Crls,

at temperature of 7 K [; (b) magnetic vortex imaging of a thin-film superconductor, YBCO, at temperature of 4.2 K1,
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Fig. 9. Applications of diamond quantum sensing at high temperatures *: (a) ODMR spectra of a nano-diamond close to a nickel
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Abstract

Extreme conditions, such as ultra-low temperatures, high pressures, and strong magnetic fields, are critical

to producing and studying exotic states of matter. To measure physical properties under extreme conditions, the

advanced sensing schemes are required. As a promising quantum sensor, the diamond nitrogen-vacancy (NV)

center can detect magnetic field, electronic field, pressure, and temperature with high sensitivity. Considering

its nanoscale spatial resolution and ultra-wide working range, the diamond quantum sensing can play an

important role in frontier studies involving extreme conditions. This paper reviews the spin and optical

properties of diamond NV center under extreme conditions, including low temperature, high temperature, zero

field, strong magnetic fields, and high pressures. The opportunities and challenges of diamond quantum sensing

under extreme conditions are discussed. The basic knowledge of spin-based quantum sensing and its applications

under extreme conditions are also covered.
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