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Abstract: We examine the interaction between quantum test particles and the gravitational field
generated by a black hole solution that was recently obtained in the consistent 4-dimensional Einstein—
Gauss—-Bonnet gravity. While quasinormal modes of scalar, electromagnetic, and Dirac fields have
been recently studied in this theory, there is no such study for the quasibound states. Here, we
calculate the spectrum of quasibound states for the test fields in a spherically symmetric and asymp-
totically flat black hole solution in the consistent 4-dimensional Einstein-Gauss-Bonnet gravity. The
quasispectrum of resonant frequencies is obtained by using the polynomial condition associated
to the general Heun functions. We also discuss the stability of the systems for some values of the
Gauss-Bonnet coupling constant.
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1. Introduction

The quasibound states, quasinormal modes, and shadows of black holes are among
the most interesting characteristic of such an astrophysical objects in the observational
(measurable) spectra. In addition, some physical phenomena have been observed in
modern experiments involving condensate matter and optical systems. In order to interpret
these data, it is used the general theory of relativity. However, since some fundamental
questions, as for example, the issues related to the quantum gravity phenomenon [1-5],
cannot be solved with the Einstein’s theory, some alternative theories of gravity have been
proposed. Among these alternative approaches, we can mention the f(R), the Lovelock,
and the Einstein-Gauss—Bonnet theories of gravity, where the last two deals with higher
curvature corrections [6,7].

The Einstein-Gauss—-Bonnet (EGB) theory is one of the most promising approaches
developed to deal with the higher curvature corrections that appears in the standard
Einstein’s theory (see Ref. [8] and references therein). The EGB theory is quadratic in the
curvature and leads to non-trivial corrections of the equation of motion when the Gauss-
Bonnet (GB) term is coupled to a matter field, which can be, for instance, a dilaton. On
the other hand, Aoki—-Gorji-Mukohyama (AGM) [9] developed the so-called consistent
theory of 4-dimensional (4D) EGB gravity, where they used the Arnowitt-Deser-Misner
(ADM) decomposition [10] to construct the Hamiltonian and then this theory has not
infinite coupling.

In the present paper, we will use a black hole metric that is an exact solution of the
(well-defined truly) 4DAGM theory. However, it is worth emphasizing that this black
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hole solution is also a (particular) result of the dimensional regularization suggested in
the (controversial) work by Glavan and Lin [11]. Henceforth, the black hole metric under
consideration can be safely used, since it is considered as a consistent solution [12]. Here,
we will investigate the test fields, namely, the scalar, electromagnetic, and Dirac fields,
which means that we will solve the Klein-Gordon, Maxwell, and Dirac equations in the
background under consideration.

In this sense, we can also mention some works on the regularized/consistent 4DEGB
gravity, as follows. Motivated by the recent results on searching for the metric solutions of
the 4DEGB gravity in the spherically symmetric spacetime, as well as in the Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime, it was proved that, in a cylindrically sym-
metric spacetime, the novel 4DEGB gravity always has the same solutions as the ones in
its regularized counterpart. Thus, these solutions satisfy the equations of motion in the
novel 4DEGB gravity. In these works, the nontrivial effect of the GB coupling constant on
the energy scale of the second order phase transitions (which give rise to cosmic strings)
is also shown [13-18]. In addition, the innermost stable circular orbit and shadow of the
4DEGB black hole were studied by Guo and Li [19], where was pointed out that a negative
GB coupling constant is allowed to retain a black hole in 4DEGB gravity and gave the
allowed range.

In this paper, we calculate the spectrum of quasibound states, and their corresponding
radial and angular wave eigenfunctions, for scalar, electromagnetic, and Dirac particles
in an asymptotically flat 4-dimensional Einstein-Gauss—Bonnet black hole (4DEGBBH) by
using the polynomial condition of the general Heun function. We show that the quasibound
states depend on the GB coupling constant, a, and that all the test fields constitute stable
systems, when 0 < a < 1/2. In addition, we also compute both radial and angular wave
eigenfunctions of the test fields in the 4DEGBBH spacetime.

The paper is organized as follows. In Section 2, we introduce the metric corresponding
to the 4DEGBBH spacetime. In Section 3, we solve the master wave equations in the
background under consideration. Section 4 is devoted to the quasibound states of the test
fields. In Section 5, we provide both radial and angular wave eigenfunctions, by using
some properties of the general Heun functions. Finally, in Section 6, we summarize the
obtained results. Here we adopt the natural units where G =c =% = 1.

2. The Consistent 4-Dimensional Einstein—-Gauss—Bonnet Black Hole Spacetime

A crucial aspect for our studies of black hole radiation (be it an emission, transmission
and/or reflection of quasinormal modes and/or quasibound states) is such that the black
hole solution should be a solution of the truly 4DAGM theory [9], as well as of the theories
with extra scalar degrees of freedom [20-23]. Thus, we will use the description given
by Churilova (see Ref. [12] and references therein), in which all of the aforementioned
approaches are taken into account to construct the novel consistent 4DEGB theory, and
its black hole solution as well. In what follows, we briefly review the basic ideas behind
this approach.

Let us consider a 4-dimensional spacetime in which is valid the following gauge
condition [24] B

3G = VDD (/7)) =0, (1)

where Dy is the covariant derivative and 717 is the canonical momentum conjugate to ;.
Then, it can be shown that the unique gravitational action is given by

Sacm = / dt d®x N /7 LD, 2)

where N is a lapse function. The 4DEGB Lagrangian L2 is defined as

M2 ~ 8 L. .. ..
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where Mp; is the reduced Planck mass characterizing the gravitational coupling strength, 4
is the GB coupling constant, R;; is the Ricci tensor and R is the Ricci scalar. The M;; tensor
is given by

Mij = Rij + KKy — K KS, 4)

with
Kij = (1ij — 2DNj) — 1;jD*Agr) /2N, (5)

where the dot denotes the derivative with respect to the time ¢, and Agr is a gauge-fixing
parameter. It worth noticing that this consistent 4DEGB theory has a spatial diffeomorphism
invariance and a time reparametrization symmetry given by + — = #(t’). Finally, by
doing an appropriate rescaling of the GB coupling constant, an exact solution describing
the 4DEGBBH spacetime has the following form

b
f(r)

where the metric function, f(r), is given by

fi(r):1+r:(1i,/1+4‘;§”). %

Note that we have chosen the gauge-fixing parameter as Agr = 0. The parameter M is the
total mass centered at the origin of the system of coordinates.

The metric function f (r) corresponds to an asymptotically de Sitter spacetime, while
f—(r) corresponds to an asymptotically flat spacetime. Here, we will focus on the “minus”
case and hence we will set f(r) = f_(r). In this case, there are two solutions when a > 0;
otherwise, for 4 < 0 (and M > 0) the metric function is not real for sufficiently small values
of r, that is, for > < —4aM. Here, we will focus on the positive values of the GB coupling
constant and hence the surface equation can be parametrized as

ds* = —f(r) dt?* + dr? 4 1> d6? + r*sin® 0 d¢?, (6)

fr)=0=0F—=r)lr—r). ®)

Thus, the two solutions of this surface Equation (8) are the exterior, r, and interior, r_,

event horizons, and given by
ri:Mi,/MZ—%. )

For simplicity, and without loss of generality, from now on we set M = 1/2, which means
that the GB coupling constant is such that 0 < a < 1/2; that is the stability region. The
behavior of the metric function f(r), as well as the event horizons, is shown in Figure 1.
Thus, the 4DEGBBH metric is well-behaved outside the exterior event horizon, and then
we will obtain some results on quasibound states that are valid for these values of a.
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r a

Figure 1. (Left): the metric function f(r) for M = 1/2. (Right): the event horizons r+ for M = 1/2.
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dZRiF (1’)

In what follows, we will solve the equations of motion for the test fields and then
discuss the quasibound states, as well as the radial and angular wave eigenfunctions, in
the background under consideration.

3. Master Wave Equations

The general covariant equations of motion for the scalar, ®, electromagnetic, Fy,,, and
Dirac, Y, massless test fields can be written as

\/%aﬂ (" /—39,®) =0, (10)
j_fgau(F’” V-8) =0, (11)
e (aia - th>Y =0, (12)

where FH (= Ay — 3VA;4) is the electromagnetic field tensor, A, is the 4-vector elec-
tromagnetic potential, y* are the noncommutative gamma matrices, and I'y are the spin
connections in the tetrad formalism.

In order to solve these master equations, first we need to separate their angular and
radial parts. To do this, we will follow the approaches described by Konoplya et al. [25],
Churilova [26], and Aragén et al. [27] to deal with the Maxwell, Klein-Gordon, and Dirac
equations, respectively. These approaches have the advantage of avoiding square roots
of the metric function f(r), so that it will be possible to find analytical solutions for the
radial parts. However, these approaches involve too much algebra, so let us summarize it
as follows.

For the scalar field, we will use the subscript “s” (Bosonic, for simplicity but without
loss of generality) and set the following ansatz for the wave function:
® = 1u,(r) P (cos )ePe~wst Here, u,(r) = Ry(r)/ris the scalar radial function, P (cos )
are the associated Legendre functions, wj is the scalar frequency, m < 0 (€ Z) is the mag-
netic quantum number, and v (€ C) is the degree (or azimuthal quantum number). Thus,
the bosonic radial function R () satisfies the following equation,

@Ry(r) 1 df(rdRe(r) 1 f , . A 1df(r) L
dr? +f(1’) dr dr +f2(7’){ B f(){ + }}RB() 0, (13)

2 r dr

where A is the separation constant.

For the Maxwell field, we will use the subscript “&” (Electromagnetic, for simplicity
but without loss of generality) and expand the four-vector electromagnetic potential A,
in terms of the vector associated Legendre functions, as well as assume the time depen-
dence as e ! where w; is the electromagnetic frequency. Here, u:(r) = Ry(r) /7 is the
electromagnetic radial function. Thus, the electromagnetic radial function R.(r) satisfies
the following equation,

d2R,(r 1 df(r)dRy(r 1 A
i ) ra s f2<r){°"13 - “)LZHRE”):O' "

“_r

For the Dirac field, we will use the subscript “r” (Fermionic, for simplicity but without
loss of generality) and set the following ansatz for the wave function: Y = ui:(r) ®
c(0,¢)e ™t Here, us,(r) = Ray(r)/rf'/4(r) is the fermionic radial function, the signs
+ label the spins, w; is the fermionic frequency, and ¢(6, ¢) is a two-components fermion.
Thus, the fermionic radial function R () satisfies the following equation,

dr?

+3

f(r)

050 o[ e oo o
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Indeed, these three radial equations can be condensed in a single one, which is labeled
according to the spin, s, of the test fields, such thats = (0,1,1/2) = (s, r), where we are
choosing the “plus” spin. Thus, Equations (13)—(15) can be rewritten as

PR(r) | [N 1 df(r)  4s(1—9)VdR(r) . 1,
Az + [(2) f(r) dr + r } dr +]‘2(1*) [ws = Vs(r, wo)IRs(r) = 0, (16)
where the effective potential, Vs (7, ws), is given by
A 4is(1—s)ws 2(s—=1)(s —1/2)  4is(1 —s)ws | df(r)
Vi = - — . (17
(r,ws) f<r){r2 r * { r * 2f(r) dr (17)

In fact, the effective potentials V_ 1 and V_ 1 can be transformed one into another by
using the Darboux transformation, Wthh means that both potentials will give the same
spectrum of resonant frequencies.

Now, by following the Vieira-Bezerra-Kokkotas (VBK) approach [28,29], we can pro-
vide an analytical solution for the radial Equation (16) in terms of the general Heun
functions [30]. It is given by

Ré(x) _ x%[7724s(571)] (x . 1>%[5724s(571)] (x B b)%[eféls(lfs)] [Ci ]/]1 (X) + Cé y]z(x)]’ (18)
where C]1' and Cé are constants to be determined, and j = {0, 1, b, oo} labels the solution at
each singular point. The new radial coordinate, x, and the singularity parameter, b, are
defined as

r—r_
= 1
x PR— (19)
r_
b = R (20)
Thus, the pair of linearly independent solutions at x = 0 (r = r_) is given by
¥ = HeunG(b,q;u,B,7,0;x), (21)
v = x'""HeunG(b, (b6 +e)(1 —7) +qa+1—7,B+1—79,2—17,6x). (22)
Similarly, the pair of linearly independent solutions corresponding to the exponents 0 and
1—-Jatx =1 (r =r4)is given by
yi = HeunG(1—b,ap—gap,6,71-x) (23)
¥ = (1-x)'""°HeunG(1—-b,(1—-b)y+e)(1—-08)+ap—qa+1—-05,p4+1-62—06,71—x). (24)
The pair of linearly independent solutions corresponding to the exponents 0 and 1 — € at
x = b (|b| < 1)is given by
b b apb—q. b—x
vy, = HeunG(—b_l, — ,a,ﬁ,e,&,b_l), (25)
b b—x\'"€ b (b(6+v)—7)1—€) apb—q B o b—x
Yy = (b—l) HeunG b1 - + b1 ;a+1—€,p+1—¢,2 e,&,—b_l . (26)

Finally, the pair of linearly independent solutions corresponding to the exponents « and
at x = oo is given by

(B-5) - ”’-a,a—wl,w—ﬁﬂ,é;i), 27)

0 _ 1
Y o= x ”‘HeunG(b,tx(,B €)+ b

™ @\ =

A xﬁHeunG(;,ﬁ(oc—e)—f— (a—a)—Z;ﬁ,ﬁ—yﬂ,ﬁ—aﬂ,&i). (28)
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Kg

Bs

Ts

€p

s

Here, HeunG(b, q;u,B,7,9; x) denotes a general Heun function, which is analytic in the

disk |x| < 1, and has a Maclaurin expansion given by

HeunG(b, g;a, B,7,6;x) = ) _ cux”,
n=0

with
—qeo+bycy = 0 (co=1),
Pncnfl_(Qn+q>Cn+chn+1 =0 (ﬂzl),
and
P, = (n—1+a)(n—1+p),
Qun = n[(n—=1+79)(1+0b)+bd+e,
X, = (n+1)(n+1)b.

(29)

(30)
(31)

(32)

In these solutions, the parameters &, 8, 7, J, €, and g are given according to each value

of the spin s, as follows. For scalar fields, we have

5 1 41 2iwy

— 1+ - ==

2 2 rer— g —7T—

11 14 4A - 2iwy ,
2 2 rer— Ty —7_

1 2iwyg ,

Yo —7r—
1_ 2iwy ,

Yo —r—

4A
1 - 1 + 7
r4r—
1

W{Ziwg[\/rir (AA+ryr_) + 3\/r+r§ (4A + 77 )]

+r_ [\/rir, (4A +ryr_) + 3\/r+r5, (4A +rir)]

4)
_r+{\/rir_(4)x +ryr) +3\/r+r5,(4/\+r+r_) - r4_< 1+ oy +4>

472 [3\/r+r, (4A + 147 ) — 8w? — 6] + 6ir_w; \/mr, (AN +ryr_) + 14ir3a)B}

—rtro 2l (A 2rE —ir_wy) + [3\/r+r_ (4A +ryr_) — 6% +10ir_wy — 6A]

4 4
r5( 1+/\+1> 2ir4wB( 1+ A 3) 2r3()\+4w§)}.
r4r— r4r—

For electromagnetic fields, we have

(33)

(34)

(35)

(36)

(37)

(38)
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Kp

Pr

Ye

€r

e

Kg

P

Ye

€k

e

_ 3 1 2iwy
2 2 7’+r_ re—r.’
_ 11 iwy
22 7’+77 ry — r_’
. 2iwy
N 1’+ — 1’_
— 1 2iwy ,
Yo —r—

T

ror—

1 .

- W{Zzwg[\/ﬂr(4/\+r+r)+3\/r+r5(4)\+r+r)]

7 [\/rir, (A +ryr )+ 3\/r+r5, (4A +ryr )]

4)
_r+{\/rir(4A+r+r)+3\/r+r5(4/\+r+r)+r4 (4— 1+ o )

+r2 [3\/r+r, (4N +77_) — 8w? — 6A] + 6ir_w \/mr, (AN +ryro) + 14ir3a)E}

+riro 423 (A =22 —ir_w;) + i [3\/r+r, (4A +ryr-) 4+ 6r% + 10ir_w; — 61

4 4
5( T +1>2ir4wE( 142 3)2r3(/\+4w§)}.
r4r— r4r—

Finally, for Dirac fields, we have

A 2iwy

N W
|

rer—  ry—r.’

A 2w

rer— re—r’

21wy

7
Yo —r—
21wy

NI~ N|IW N~
|

<
+
|
<
|

>

—_
|
N
-
+
r

. ( T {24\/)Lr5+r3 + 8w\ AT+ 2r . — 364/ A3 S —24sz\/Ar

[AF? [A¥7
3 _ 042 _ Qi 2 2 . . . - g — 7
+r7 (4N — 9% — 8ir_w;) +rir_ (15r_ + 32ir_wy 12)\) 6 —” 8iwy —hr + 244/ Aryr”

6\//\1’er,

+24iwe [ Ar 1S 4yt (124 — 1172 —40ir_wF+16w§)+3r5_+16ir‘£wF—4r3_(A+4w§)}.

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Next, we will use these analytical solutions of the radial equations in the 4DEGBBH
spacetime, and the properties of the general Heun functions, to compute the spectrum of

resonant frequencies related to the quasibound states.
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4. Quasibound States

The quasibound states, also known as quasistationary levels or resonance spectra, are
a kind of wave phenomena occurring near the black hole exterior event horizon, that is,
they are localized in the black hole potential well. The definition of quasibound states
means that there exist a flux of particles crossing into the black hole, so that the spectrum
of quasibound states is constituted by complex frequencies, which can be expressed as
w = wg + iwy, where wg and wr are the real and imaginary parts, respectively. By using
these results, it is possible, in principle, to get some information about the physics of black
holes as well as to validate some alternative/modified theories of gravity.

The real part of the resonant frequency is the oscillation frequency, while the imaginary
part determines the stability of the system. Thus, the wave solution is said to be stable
when the imaginary part of the resonant frequency is negative (w; < 0), which means a
decay rate with the time. Otherwise, the wave solution is unstable when the imaginary part
of the resonant frequency is positive (w; > 0), which means a growth rate with the time.

In order to compute the spectrum of quasibound states, we need to impose two
boundary conditions, which are related to the asymptotic behavior of the radial solution.
First, it should describe an ingoing wave at the exterior event horizon. Second, it should
tend to zero far from the black hole at asymptotic infinity, that is, the probability to find
such a particle in the spatial infinity must be zero.

To derive the characteristic resonance equation, many authors have been using a
method which consists of solving the radial equation in two different asymptotic regions
and then matching these two radial solutions in their common overlap region. However,
in this work, we will use the VBK approach (for details, see Refs. [28,29]) to derive the
characteristic resonance equation and then find the spectrum of resonant frequencies related
to quasibound states. This approach consists in (i) obtaining the ingoing wave solution
at the exterior event horizon, (ii) imposing the polynomial condition of the general Heun
functions, and then (iii) computing the resonant frequencies.

Thus, in the limit when r — r, which implies that x — 1, the radial solution given by
Equation (18) behaves as

(s=1)]

. 115 _n4s(s—1) _1li5_nds
Jim RY(r) ~ Cf (r =) 20250 4G (r ) 202, (51)

where C] and C% include all remaining constants. On the other hand, from Equations (36), (42)

and (48), we get

1 S(S—
5[(5_24( ] =—

where « is the gravitational acceleration on the exterior event horizon and given by

iws

T (52)

1df(r) Ty =T
2 |, ~ 2 53)

Then, we can rewrite Equation (51) as

lim R} (r) ~ Cf Riy(r) + C3 Row(r), (54)

r—=r4

1

out(7), wave solutions are given by

where the ingoing, R (), and outgoing, R

Ri(r>ry) = (r—ry) >, (55)
Rowt(r >14) = (r—ry)>. (56)
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Therefore, in order to fully satisfy the first boundary condition, we must impose that Ci = 0

in Equation (54), as well as in Equation (18). Finally, we obtain the radial wave solution

describing ingoing test particles at the 4DEGBBH exterior event horizon, which is given by
: 1 1 pl

Jim R (r) ~ C1 Rip(r > r4). (57)

On the other hand, in the limit when r — oo, which implies that x — oo, the radial
solution given by Equation (18) behaves as

lim R (r) ~ CF* 7, 58)

with s = D; — a5, where the coefficients D; are given by

1 1 41 2iwy
D, = —-—=.1 _
’ 2 o\t rer—  ry—r.’ 9
1 1 4A 2iwy
D, = —-—=.1 _
: 2 o\t ryr— rp—r_’ (60)
Dy = 141 (,/M—,/”)‘—zi%). 61)
Yo —7r— ry r—

Thus, the sign of the real part of o5 determines the asymptotic behavior of the radial solution
far from the black hole at asymptotic infinity. Therefore, the radial solution tends to zero if
Re[os] < 0 and then it will fully satisfy the second boundary condition, which describes
the quasibound states. Otherwise, if Re[os] > 0, the radial solution diverges. The final
asymptotic behavior of the radial solution will be determined when we know the values of
the frequencies ws.

Now, to find the characteristic resonance equation, we match these two asymptotic
radial solutions in their common overlap region by imposing the polynomial conditions of
the general Heun functions, which are given by

(62)
Cn+1(q) = 0 (63)

=
|
|
=

wheren =0, 1,2,...is the overtone number, which can be, without loss of generality, called
the principal quantum number. From the first polynomial condition, given by Equation (62),
we can find the frequency eigenvalues. On the other hand, from the second polynomial
condition, given by Equation (63), we can determine the values of the separation constant A
for each value (mode) #, and then write the radial and angular wave eigenfunctions. Thus,
by imposing Equation (62) on each parameter &, we obtain the exact analytical spectrum
of quasibound states for massless test fields in the 4DEGBBH spacetime. They are given by

Wy = —1i\/1—2a<5+2n—\/a+118)\>, (64)
1
i 4i\/12a<3+2n\/a—;8}\>, (65)

Wy = —ii\/1—2a<3+2n—\/8{;\). (66)

On the other hand, by imposing Equation (63) on each parameter g5, we determine the exact
analytical value of the separation constant A, (for details, see Refs. [31-33]). However, the
final expressions are quite long, and for this reason no insight is gained by writing them
out. Thus, instead of doing this, we will present some of their features in what follows.
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In Table 1, we present some values of the quasibound state ws;, as well as the corre-
sponding separation constants Ag, and coefficients o5, = Ds;; + 1, as functions of the GB
coupling constant a. We also show the behavior of the quasibound states ws, in Figure 2,
as functions of the GB coupling constant a. From these results, we can conclude that all
solution for the massless resonant frequencies ws, are physically admissible in the fun-
damental mode, which represents the spectrum of quasibound states in the 4DEGBBH
spacetime. In this scenario, the radial solution given by Equation (18) tends to zero far
from the 4DEGBBHs at asymptotic infinity, since Re[os,] < 0. In addition, we can see
that the motion of all the test fields are overdamped (with purely imaginary frequencies).
Furthermore, all the test fields may describe stable systems, since there is no change in the
sign of the imaginary part of their massless resonant frequencies in the stability region, that
is, when 0 < a < 1/2. We can also see that the imaginary part of the massless resonant
frequencies wsy (for all the test fields in these modes) decreases (in modulus) as the GB
coupling constant a approaches to 1/2.

It is worth noticing that we cannot determine the quasibound states ws;, nor the
separation constants A, and the coefficients oy, for the particular case when a = 0, which
corresponds to the General Relativity (GR) limit. This is due to the fact that when we
set a = 0, the singularity parameter b goes to 0 and hence the radial solution must be
recalculated in this scenario, since it will occur a confluent process involving the already
existing singularity at the point x = 0 with the ones in the point x = b — 0, which will
lead to a new radial solution given in terms of the confluent Heun functions, with totally
new parameters. Henceforth, for the case of scalar fields, we can compare this result with
the one obtained by Muniz et al. [34], where the spectrum of quasibound states for the
Schwarzschild black hole (a = 0, standard GR case) is such that w, = —i(n+1)/2, for
M = 1/2; we see that there exist a peculiar difference between the found solutions.

Finally, we can also discuss the time dependence of the wave eigenfunctions, ¥, () =
e st which is shown in Figure 3. From this plot, we can realize the “final flight” of the
test particles when crossing into the 4DEGBBH exterior event horizon.

Table 1. The quasibound states ws,;, the separation constants Asj;, and the real part of coefficients
Osnyy- We focus on the fundamental mode n = 0.

a Wso Aso;+  Re[oyo] W0 Aw;+  Re[o] Wro Avo+ Re([cy0]
0.05 —0.711512i 0.018750 -3 —0.474342i 0 -2 —0.249342;  0.023734  —2.500000
0.10 —0.670820i 0.037500 -3 —0.447214i 0 -2 —0.247214i  0.044861 —2.500000
0.15 —0.627495i 0.056250 -3 —0.418330i 0 -2 —0.243330; 0.063250  —2.500000
0.20 —0.580948i 0.075000 -3 —0.387298i 0 -2 —0.237298i  0.078730  —2.500000
0.25 —0.530330; 0.093750 -3 —0.3535531 0 -2 —0.228553i  0.091069  —2.500000
030 —0.474342i 0.112500 -3 —0.316228i 0 -2 —0.216228;  0.099934 —2.500000
035 —0.410792i 0.131250 -3 —0.273861i 0 -2 —0.198861i 0.104801  —2.500000
040 —0.335410i 0.150000 -3 —0.223607i 0 -2 —0.173607i  0.104721  —2.500000
045 —0.237171i 0.168750 -3 —0.158114i 0 -2 —0.133114i  0.097451  —2.500000
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Figure 2. The quasibound states ws;, in the 4DEGBBH spacetime. The plot shows the decay rate
Im[wsy] for the fundamental mode n = 0, as a function of the GB coupling constant 4.
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Figure 3. The time dependence of the test fields in the 4DEGBBH spacetime for 2 = 0.15. We focus
on the fundamental mode n = 0.

Transition Frequency

In addition, we can calculate the transition frequency, Aw, between two highly damped
(n — o) neighboring states [35]. It is given by

Aw =~ Im[a)s(n,l)] — Im[wsn] =Ky = %\/ 1—2a. (67)

On the other hand, the natural adiabatic invariant quantity, I,4, for a test field-black hole
system with total energy E, is given by

L. — dE [ TudSpn _ hSpu
ad ™ | Aw Aw 2’

(68)

where Ty is the Hawking temperature and Spp(= A4 /4%h) is the Bekenstein-Hawking
entropy, with A, being the surface area of the exterior event horizon. In this limit, the
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Bohr-Sommerfeld quantization condition applies and hence I,4 is a quantized quantity,
namely, I, = nf. Thus, from Equation (68) we get

SBHp = 27TN. (69)
Therefore, the area spectrum is given by

Ajn = 8mnh, (70)
so that its minimum change becomes

AATN = 87t (71)

From Equations (69) and (70), we can conclude that both entropy and area spectra are
equally spaced. Furthermore, they do not depend on the black hole parameters. Finally,
Equation (71) shows that the 4DEGBBH exterior event horizon is made by patches with
equal area.

Next, we will use the polynomial conditions of the general Heun functions, as well as
the frequency eigenvalues, to discuss both radial and angular wave eigenfunctions.

5. Wave Eigenfunctions

In this section, we continue to use the VBK approach (for details, see Refs. [31-33]) in
order to present both radial and angular wave eigenfunctions describing the quasibound
states of massless test particles propagating in the 4DEGBBH spacetime.

5.1. Radial Eigenfunctions

The quasibound state radial wave eigenfunctions are given in terms of the general
Heun polynomials, which can be denoted as HeunGpnw(b, q; —n,B,7,6;x), where the
parameter 7 is related to the appropriate determination of the accessory parameter g = g,
via the second polynomial condition given by Equation (63), which are the solutions that
cut (in a certain order) the power series describing the general Heun functions; it is such
thaty =0,1,2,...,n. In our case, the general Heun polynomials depend also on the spin s
and hence they should be denoted as HeunGpsn;,] (b, Gsnz; —1, B, Y, 6; x).

Therefore, the quasibound state radial wave eigenfunctions for massless test particles
propagating in the 4DEGBBH spacetime are given by

Rsn () = Conyy x2lr=2567) (x — 1)%[57245@71)] (x — b)%[eJ‘s(lfs)] HeunGps,,., (b, gsny; =1, B, 7,6, %), (72)

where Cgy; is a constant to be determined. Thus, the full quasibound state radial wave
eigenfunctions, s, (r), are given by

Usny (1) = M, (73)

Ugny (1) = w, (74)
Ry,

Upnyy (r) = rfl/z((:)) (75)

The squared full quasibound state radial wave eigenfunctions are presented in Figure 4,
as functions of the radial coordinate r for some values of the GB coupling constant
a. From these results, we can conclude that all the resonant frequencies ws;, given by
Equations (64)—(66), describe massless quasibound states in the 4DEGBBH spacetime, since
the radial solutions tend to zero at asymptotic infinity and diverge at the exterior event
horizon. Note that these eigenfunctions reach a maximum value (at the exterior event
horizon 4 = 0.994975 for a = 0.01, r1 = 0.853553 for a = 0.25, and r = 0.570711 for
a = 0.49) and then cross into the 4DEGBBH, as shown in the log-scale plots.
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Figure 4. (Top) panel: the squared full quasibound state radial wave eigenfunctions (left) and their
log-scale plot (right) for 2 = 0.01. (Middle) panel: the squared full quasibound state radial wave
eigenfunctions (left) and their log-scale plot (right) for 2 = 0.25. (Bottom) panel: the squared full
quasibound state radial wave eigenfunctions (left) and their log-scale plot (right) for a = 0.49. We
focus on the fundamental mode n = 0, and the units are in multiples of Cs;;.

5.2. Angular Eigenfunctions

It is known that the angular solution must be regular at its two boundaries, namely,
when 6 = 0 and 8§ = 7. This requirements single out a discrete set of angular eigenvalues
A, which couples the angular and radial equations. In our case, we can obtain the values
for the angular eigenvalues Ay, + by substituting the first polynomial condition, given by
Equation (62), into the second polynomial condition, given by Equation (63). The £signs
denote the positive and negative solutions; Here, we choose the positive values, in order to
express all the angular solutions in terms of the associated Legendre functions.

For the fundamental mode n = 0, the eigenvalues gs0,; must obey the relation ¢; = 0,
where ¢ = q/b7y. Thus, we have gy, = 0, which implies that there exist only on solution
for g, namely, g50,0 = 0, and hence we can obtain the values for the angular eigenvalues
As0:+- They are presented in Table 1. As it was expected, the angular eigenvalues A, are in
the set of real numbers R, and hence the eigenvalues for the associated Legendre functions
can be written as A = v(v + 1). Therefore, we present the behavior of the quasibound
state angular wave eigenfunctions in Figures 5-7, for the scalar, electromagnetic, and Dirac
fields, respectively, as functions of the new angular coordinate z = cos 6 for some values
of the GB coupling constant a. It is worth calling attention to fact that (i) the numerically
satisfactory solutions of the associated Legendre equation of general (includng complex)
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degree v are given in terms of the Ferrers functions of the first kind P, ™ (—z) and P, "(z),
in the interval —1 < z < 1, and (ii) these solutions are regular at the two boundaries 8 = 0
(z=1)and 0 = (z = —1).
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Figure 5. (Top) panel: the first three squared scalar quasibound state angular wave eigenfunctions
for a = 0.01. (Middle) panel: the first three squared scalar quasibound state angular wave eigen-
functions for a = 0.25. (Bottom) panel: the first three scalar squared quasibound state angular wave
eigenfunctions for 2 = 0.49. We focus on the fundamental mode n = 0.
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Figure 7. (Top) panel: the first three squared Dirac quasibound state angular wave eigenfunctions
for a = 0.01. (Middle) panel: the first three squared Dirac quasibound state angular wave eigen-
functions for a = 0.25. (Bottom) panel: the first three Dirac squared quasibound state angular wave
eigenfunctions for 2 = 0.49. We focus on the fundamental mode n = 0.
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6. Final Remarks

In this work, we obtained exact analytical solutions of the master wave equations for
the test fields in a 4-dimensional Einstein-Gauss—Bonnet black hole spacetime, where the
radial solution is given in terms of the general Heun functions, and the angular solution is
given in terms of the associated Legendre (Ferrers) functions (of the first kind).

We imposed two boundary conditions on the radial solution in order to study its
asymptotic behaviors, which led to the quasibound state phenomena. Near the exterior
event horizon, the radial solution describes ingoing waves, which reachs a maximum
value and then crosses into the black hole. On the other hand, far from the black hole at
asymptotic infinity, the radial solution tends to zero, that is, the probability of finding any
particles in the spatial infinity is null.

The spectrum of quasibound states for the test fields was obtained by using the
polynomial condition of the general Heun functions. In fact, that is a new (analytical)
approach developed by Vieira, Bezerra, and Kokkotas [28,29]. It is worth pointing out that
these massless resonant frequencies were obtained directly from the general Heun functions,
and, to our knowledge, there is no similar result in the literature for the background
under consideration. In addition, it is worth emphasizing that all the numerical/graphical
computations performed in this work were carried out by using the standard package for
the general Heun functions installed in Wolfram Mathematica 12.3.

Finally, we have discussed the stability of the system. All the systems are stables in the
fundamental mode, and present an overdamped motion, in the range 0 < a < 1/2. We hope
that our results, which describe an unquestionably phenomenon associated with purely
quantum effects in gravity, may be used to fit some astrophysical data in the near future,
as for example, the ones related to the observations of some spectrum of thin accretion
disks with present and future X-ray facilities [36], as well as from the secondary object in
GW190814 which is compatible with being a slowly-rotating neutron star in EGB theory of
gravity [37], and hence shed some light on the physics of black holes and compact objects.

As a future perspective, it is possible to extend our results for the case of an asymp-
totically de Sitter spacetime, as well as for negative values of the GB coupling constant.
In addition, we can obtain a new acoustic curved black hole embedded in the 4DEGB
spacetime, which could be a very interesting framework within the analog models of
gravity.
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