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ABSTRACT We present the error rate performance of quantum-annealing-aided multiuser detection
(QA-aided MUD), a signal detection approach that combines quantum annealing (QA) with conventional
iterative multiuser detection (MUD). This method utilizes QA to compute log-likelihood ratios (LLR),
improving signal detection and enhancing connectivity in power-domain nonorthogonal multiple access
(PD-NOMA) systems. However, owing to the limited computational resources of the QA hardware,
a detailed error-rate analysis was not performed. In this study, we extend QA-aided MUD to digital
annealing techniques and evaluate the error rate performance of uplink PD-NOMA systems. Block error rate
(BLER) analysis demonstrates that QA-aided MUD outperforms the conventional successive interference
cancellation (SIC) method when difference of received signal strength corresponding to devices at base
station is small. Moreover, we revealed that tuning the annealing parameters is crucial to obtain such better
BLER performance. Additionally, we conducted evaluation on a bit error rate (BER) with a few instances
to compare the performance of the QA hardware and digital annealing techniques. The results indicate that
signal detection can be achieved using all the annealing techniques. Finally, we present the latest challenges,
including an over-the-air (OTA) experiment using QA-aided MUD.

INDEX TERMS Multi-user detection, power-domain nonorthogonal multiple access, quantum annealing.

I. INTRODUCTION
In recent decades, quantum annealing (QA) has evolved into
an innovative computational technique. QA is a versatile
algorithm for solving combinatorial optimization problems
and efficiently exploring optimal solutions by leveraging
quantum effects [1], [2], [3]. Several studies have shown that
QA outperforms the classical simulated annealing (SA) [4],
[5], [6]. Notably, the QA protocol was implemented on a real
device known as the D-wave quantum annealer (D-Wave).
D-wave provides solutions to optimization problems with
ultrahigh speed and extremely low power consumption [7].
Owing to these advantages, D-Wave has been applied in
various practical applications, such as traffic optimization
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[8], scheduling and logistics [9], machine learning [10], and
finance [11]. Thus, advances in QA technology will have a
significant impact on the society.

Signal processing techniques that utilize QA have been
actively studied in wireless communications [12], [13], [14],
[15]. Recently, a new quantum-digital hybrid method called
QA-aided multi-user detection (MUD) was proposed [16].
MUD is one of crucial techniques to enhance capabil-
ity of multiple access in radio systems, especially when
nonorthogonal multiple access (NOMA) [17] is introduced.
In particular, iterative MUD [18] has potential to enhance
massive connectivity more effectively than successive inter-
ference cancellation (SIC) [19] since iterative MUD does
not require any difference in received signal strength.
However, one of drawbacks of iterative MUD is to require
a significant computation load to calculate the log-likelihood
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FIGURE 1. Block diagram of the uplink power-domain NOMA (UL PD-NOMA) with QA aided MUD.

ratio (LLR) accurately. Thus, we have developed QA-aided
MUD to overcome this weak point, and shown that our
method successfully reduce the computational speed by using
D-wave. Furthermore, a previous study demonstrated that,
in an uplink NOMA (UL-NOMA) system with seven
connected users, QA-aided MUD achieves performance
comparable to that of the original iterativeMUD by analyzing
bit error rate (BER) and convergence behavior [16]. Thus,
QA-aidedMUDhas significant potential for enhancing future
massive machine-type communication (mMTC) services.
However, the computational resources of D-Wave are limited
and the detailed error rate performance of QA-aided MUD,
such as the block error rate (BLER), has not been clarified.

In this study, we examined the error rate performance
of QA-aided MUD in uplink (UL) power-domain NOMA
(PD-NOMA) systems [17]. Using both QA and digital
annealing techniques, including simulated QA (SQA), sim-
ulated annealing (SA), and vector annealing (VA), we per-
formed BLER analysis to assess the intrinsic performance of
QA-aided MUD. Moreover, we evaluated the average BER
in a few instances, comparing the performances of D-wave
and digital annealing techniques. We further analyzed how
the annealing parameters affected the error rate performance
of QA-aided MUD. The contributions of this study are as
follows:

• We extend the previously proposed QA-aided MUD to
the digital annealing techniques and test it in PD-NOMA
systems that does not introduce any other low-density
signatures (e.g., interleaving [20]) except difference on
received power at base station.

• Through BLER analysis using SQA and SA, we demon-
strate that QA-aidedMUDoutperforms the conventional

SIC when difference of received signal strength corre-
sponding to devices at base station is small.

• We conduct evaluation on BER with a few instances
using SQA, SA, VA, and D-Wave. We demonstrate that
all annealers can achieve an error-free performance.

• We reveal that tuning the annealing parameters, espe-
cially the number of samplings, is crucial to obtain better
error rate performance in QA-aided MUD.

• We present our latest challenge: demonstration of
QA-aided MUD through an over-the-air (OTA)
experiment.

The remainder of this paper is organized as follows.
We describe our PD-NOMA system employing iterative
MUD in Section II. We explain QA-aidedMUD in Section III
and then present a brief review of the annealing techniques in
Section IV. In Section V, we present the results of BLER and
BER analysis. We discuss these open issues and the future
outlook in Sections VI and VII, respectively. Section VIII
summarizes this study.

II. SYSTEM MODEL
A. UL PD-NOMA
Figure 1 illustrates a block diagram of the UL PD-NOMA
systems, where a base station (BS) employs QA-aided
MUD [16]. We denote the number of user equipment
(UE) as K . We assume that all K UEs send data to BS
simultaneously through the same frequency channel.

For the k-th UE, a sequence of information bits denoted by
bk = [bk (1), · · · , bk (D)] is padded with cyclic redundancy
check (CRC) bits and encoded using an error correction
code (ENC). The codeword bits obtained with N bit lengths
are represented by ck = [ck (1), · · · , ck (N )]. The codeword
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ck is mapped to a sequence of modulated signals at
modulator (MOD) with M constellation points as xk =

[xk (1), · · · , xk (L)], where L = N/ log2(M ). The received
signal at BS, r = [r(1), · · · , r(L)], is given by the
superimposition of the transmitted signals as

r(i) =

K∑
k=1

hkakxk (i) + w(i). (1)

We represent the amplitude of the transmitted signal from
the k-th UE as ak and the channel coefficient as hk = ejφk .
In addition, w = [w(1), · · · ,w(L)] represents the additive
white Gaussian noise (AWGN) with zero mean and standard
deviation σw. In error rate analysis, pathloss between BS and
UEs are included in signal-to-noise ratio (SNR) determined
by σw.

B. ITERATIVE MUD
Iterative MUD is a method for mitigating interuser inter-
ference at BS in which iterative processing between the
MUD block and DECs is executed [18], [21], [22], [23],
as shown in Fig. 1. We define the LLR corresponding to
the n-th transmitted codeword bit from the k-th UE, ck (n),
as follows:

LMUD(ck (n)) = log
Pr[ck (n) = 1|r]
Pr[ck (n) = 0|r]

. (2)

Using Bayes’ theorem, (2) can be rewritten as

LMUD(ck (n)) = log
Pr[r|ck (n) = 1]
Pr[r|ck (n) = 0]]

+ log
Pr[ck (n) = 1]
Pr[ck (n) = 0]]

= LeMUD(ck (n)) + LaMUD(ck (n)). (3)

The first and second terms represent the external and
a priori LLR, respectively. The second term LaMUD(ck (n)) was
calculated from the feedback from the DEC. First, we set
LaMUD(ck (n)) = 0 ∀n, k . Equation (3) is expressed as follows:

LMUD(ck (n)) = log

∑
x∈X1

k,n
Pr[r|x] · Pr[x]∑

x∈X0
k,n

Pr[r|x] · Pr[x]
, (4)

where X = {x1, · · · , xK } represents the set of transmitted
signals from all UEs. Additionally, X1

k,n and X
0
k,n denote the

subsets X when ck (n) = 1 and ck (n) = 0, respectively. After
obtaining LMUD(ck (n)) based on (4), the extrinsic LLR can be
computed using LeMUD(ck (n)) = LMUD(ck (n))−LaMUD(ck (n))
as shown in (3). Subsequently, LeMUD(ck (n)) is sent to the
k-th DEC as an a priori LLR.

In the k-th DEC, the LLR of ck (n) is computed as

LDEC(ck (n)) = log
Pr[ck (n) = 1|LaDEC(ck (n)]

Pr[ck (n) = 0|LaDEC(ck (n)]

= LeDEC(ck (n)) + LaDEC(ck (n)), (5)

where the first and second terms represent the extrinsic
and a priori information, respectively, and LaDEC(ck (n)) is
equivalent to LeMUD(ck (n)). The information bit sequence for
the k-th UE, b̂k , is estimated based on the signs of LDEC(bk )).

In each iteration, after decoding at DEC, error detection is
executed by CRC. Subsequently, LeDEC(ck ) is fed back to
the MUD block as LaMUD(ck ). The iterative MUD executes
the exchange of the LLRs between MUD and DECs until
all the information bit sequences pass the CRC-check or until
the number of iterations reaches the maximum.

To perform iterative MUD, we must calculate Pr[r|x]
in (4). As (1) shows, the probability can be expressed as
Pr[r|x] =

∏L
i=1 Pr[r(i)|x(i)], where x(i) = [x1(i), · · · , xK (i)].

Becausewe consider anAWGNchannel with block fading hk ,
Pr[r(i)|x(i)] is defined by a complex Gaussian distribution as

Pr[r(i)|x(i)] =
e

−1
2σ2w

E(x(i))

∑
x(i)∈X(i) e

−1
2σ2w

E(x(i))
, (6)

where X(i) denotes the set of possible values of x(i). Here,
the energy E(x(i)) in (6) is defined as

E(x(i)) =

∣∣∣∣∣
∣∣∣∣∣r(i) −

K∑
k=1

hkxk (i)

∣∣∣∣∣
∣∣∣∣∣
2

. (7)

When we employ QPSK (M = 4), the computational com-
plexity is O(MK ) = O(4K ). Consequently, the computation
time for (6) increased exponentially with an increase in K .

III. QA-AIDED MUD
A. OVERVIEW OF QA
QA is a metaheuristic method to solve optimization prob-
lems [1], [2]. A QA system comprises two parts: the target
and the driver. The target part represents the optimization
problem we aim to solve, whereas the driver part introduces
quantum fluctuations and creates a superposition of all
possible solution states. To initiate QA, we set the driver
part as the dominant part and explored diverse solutions.
Then, we gradually reduced the influence of the driver,
guiding the system towards a solution. The time required
for this process is called the annealing time Tanneal. When
Tanneal is sufficiently long, and the system suffers no external
interferences, it can reach an optimal solution. A previous
study reported that QA outperformed classical simulated
annealing under ideal conditions [4], [24].

B. D-WAVE QUANTUM ANNEALER
D-Wave is designed to solve the Ising-type energy function
as

EIsing(z) =

∑
i<j

Ji,jzizj +
∑
i

hizj, (8)

where zi = {+1, −1} and z = [z1, · · · , zNIsing] represent the
Ising variable and vector of Ising variables with NIsing length,
respectively. Unfortunately, the current D-Wave hardware
cannot directly handle all types of Ising models due to
limitations in the connectivity between quantum bits [25].
Consequently, the embedding and unembedding techniques
are essential [26], [27], [28]. The embedding maps EIsing(z)
into a solvable format on D-Wave, and the umembedding
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remaps QA results into the original Ising-format. Thus,
D-Wave is available for arbitrary Ising models through the
use of the embedding and unembedding.

Notably, D-Wave is a sampler rather than a solver. The
QA system can achieve the lowest energy solution of
z∗ = argminzEIsing(z) if noise effects are absent and the
annealing time is sufficiently long. However, random noise
significantly affects actual quantum devices [29], [30]. Thus,
the D-wave system generates various approximate solutions
stochastically. In fact, previous studies have reported that
samples obtained using D-Wave are distributed around the
lowest-energy solution [31]. Here, we introduce the essential
techniques to obtain lower-energy solutions: minimize-
energy and greedy steepest method [32]. The minimized-
energy method performs an unembedding process while
computing the local Ising energy. The greedy steepest
descent method recalculates the Ising energy and updates the
obtained solutions. These methods are post-processing steps
performed on digital computers after QA.

C. ISING MODEL FOR UL PD-NOMA
When we employing QPSK modulation (M = 4), the
k-th user symbol can be represented with two Ising variables
z(i) = [z(1)k (i), z(2)k (i)] as xk (i) = (z(1)k (i) + jz(2)k (i))/

√
2.

Substituting this representation into (7), we obtain the Ising
model for the UL PD-NOMA system as [16]

E(z(i)) =

NIsing∑
k

H1
k z

1
k (i) + H2

k z
2
k (i)

+

NIsing∑
k<l

J11k,l
(
z1k (i)z

1
l (i) + z2k (i)z

2
l (i)

)

+

NIsing∑
k<l

J12k,l
(
−z1k (i)z

2
l (i) + z2k (i)z

1
l (i)

)
, (9)

where NIsing = log(M )K = 2K . The coefficients H1
k , H

2
k ,

J11k,l , and J
12
k,l are given by:

H1
k = −

√
2ak {Re(r(i))Re(hk ) + Im(r(i))Im(hk )} (10)

H2
k =

√
2ak {Re(r(i))Im(hk ) − Im(r(i))Re(hk )} (11)

J11k,l = akal {Re(hk )Re(hl) + Im(hk )Im(hl)} (12)

J12k,l = akal {Re(hk )Im(hl) − Im(hk )Re(hl)} , (13)

respectively.

D. LLR APPROXIMATION WITH QA
After sending the Ising model to the D-Wave cloud service,
QA is performed. As noted, because the current quantum
annealer is treated as a sampler, D-wave returns a set of
solutions referred to as a ‘‘sample set.’’ Each sample mainly
includes the following information.

• Spin pattern z(i), e.g. z(i) = [+1, −1, −1, · · · , ]
• Ising energy E(z(i))

We denote the set of spin patterns obtained from the sample
set as ZDW(i) and approximate Pr[r(i)|x(i)] as follows:

PrDW[r(i)|z(i)] =
e

−1
2σ2w

E(z(i))

∑
z(i)∈ZDW(i) e

−1
2σ2w

E(z(i))
. (14)

Here, we replace x(i) with z(i) in the above equation. The key
aspect of QA-aided MUD is a reduction of computational
load to obtain the Gaussian distribution by introducing
QA. Calculating PrDW[r(i)|z(i)] requires the computational
complexity O(|ZDW|), where | · | means the size of a
set, whereas Pr[r(i)|x(i)] does O(MK ). Furthermore, |ZDW|

strongly depends on the annealing parameters, such as the
number of samplings in QA. Consequently, QA-aided MUD
can potentially accelerate iterative MUD by tuning the
annealing parameters.

IV. OTHER ANNEALING TECHNIQUES
A. OVERVIEW
In the previous study, QA-aidedMUDwas proposed based on
using QA on D-wave. However, digital annealing techniques
are stochastic algorithms; therefore, we can apply digital
techniques such as SQA, SA, and VA to approximate
Pr[r(i)|x(i)]. Table 1 summarizes the characteristics of each
annealing technique.

1) SQA
SQA is a classical algorithm used to simulate the QA
processes on digital computers. The basic principle of SQA
is to map a QA system to a classical system and explore
solutions based on Monte Carlo algorithms [4]. Thus, SQA
utilizes a statistical approach to replicate the probabilistic
nature of quantum mechanics and its time evolution. Crossen
and Harrow reported that SQA can search for solutions more
efficiently than SA or QA [33].

2) SA
SA is a probabilistic algorithm for searching for optimal
solutions to optimization problems [34]. This method utilizes
the thermal fluctuations derived from the physical annealing
process in metallurgy. The SA algorithm starts at a high
temperature, allowing the system to explore diverse solutions.
As the temperature decreases, the system gradually converges
to an optimal or near-optimal solution. If the SA process is
performed with a sufficiently slow decrease in temperature,
the system can reach an optimal solution.

3) VA
VA, also referred to as a quantum-inspired digital annealer,
is a supercomputing system developed by NEC Corpora-
tion [35]. The basic principle of VA is nearly the same as
that of SA; however, its software incorporates the proprietary
algorithm of NEC on the vector supercomputer ‘‘SX-Aurora
TSUBASA.’’ Note that VA is a supercomputer designed
to solve large-scale problems and its execution incurs a
computational overhead.
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TABLE 1. Summary on annealing techniques.

B. ANNEALING PARAMETERS
The representative annealing parameters are summarized as
follows [32], [36].

• Nsamp: The number of samplings indicates how many
times the annealing process is performed. While
increasing Nsamp extends the computation time, it also
enhances the diversity of acquired samples, improving
the likelihood of obtaining lower-energy solutions.

• Tanneal: The annealing time of QA. A longer Tanneal
ideally increases the likelihood of finding the optimal
solution; however, it also extends computation time
and makes the QPU more susceptible to external
interferences [3].

• Nsweep: The number of sweeps refers to the number
of divisions used when decreasing the temperature or
quantum effects during the annealing process. AsNsweep
increases, the annealing process slows down, but the
accuracy of the results improves [36].

• NTrotter: The number of Trotter steps is a unique
parameter in SQA that governs the mapping of a
quantum system to a classical one. As NTrotter increases,
the classical system more accurately reproduces the
original quantum system [4].

These parameters play a crucial role in determining the
accuracy and computation time of annealing techniques.
Thus, we investigated the effects of the above parameters on
QA-aided MUD.

C. COMPUTATIONAL COMPLEXITY AND COMPUTATION
TIME
Table 1 lists the complexity of the digital annealing tech-
niques and the computation time of QA in D-wave. The
complexity of SQA is O(N 2

IsingNsampNsweepNTrotter), while
that of SA and VA is O(N 2

IsingNsampNsweep), where NIsing =

log(M )K . TheK 2 (orN 2
Ising) factor was derived by calculating

the Ising energy during the annealing process. Because the
QA operation on the D-Wave hardware does not involve
digital processing, we consider the computation time instead
of complexity. The core sampling time of QA is given as
O(Nsamp(Tanneal + Tread + Tdelay)) [32], where Tread and

TABLE 2. Common system parameters in the numerical experiments.

TABLE 3. Annealers and its parameters in the numerical experiments.

Tdelay are the readout and delay time, respectively. As shown
in Table 1, the core computation time of D-wave includes
only the annealing parameters, whereas the complexities of
the digital methods depend on K . This indicates that the
computation time of D-wave has little dependence on K ,
which was confirmed in [16]. Therefore, QA-aided MUD
employing D-wave can potentially operate at high speeds
even in large-K systems. Note that, however, the actual
computation time in the D-Wave system includes various
overheads derived from pre- and post-process as mentioned
in Section III-A.

V. NUMERICAL RESULTS
Table 2 lists the system parameters used in this study, which
are mainly based on previous studies [16]. We employed
the log-MAP algorithm [38]. Furthermore, we assume that
the channel coefficients {hk} and the standard deviations
of AWGN σw are ideally estimated at BS. The channel
coefficient is hk = ejφk , where φk is generated using a
uniform distribution over (0, 2π ]. The power of k-th UE, ak ,
is assigned as 10−(k−1)·1/20, where 1 in decibels represents
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FIGURE 2. Examples of probability distributions for the received signal
r (1) for K = 7 at SNR = 25 dB.

the power difference that enhances multi-user detection in
PD-NOMA.

Table 3 lists the annealers used and their parameters.
The D-Wave system used was Advance System 6.4, and
we employed the greedy method for post-processing. The
annealing time Tanneal is {0.5, 0.89, 1.58, 2.81, 5.0} µs. For
SQA and SA, we used the OpenJij library [36] and NEC’s
SX-Aurora TSUBASA was employed as VA. We set the
number of samplings as Nsample = {10, 32, 100, 320, 1000},
the number of sweeps as Nsweep = {10, 18, 32, 56, 100}, and
the trotter number NTrotter = {2, 3, 4, 5, 6}. The annealing
time Tanneal was set as {0.5, 0.9, 1.6, 2.8, 5.0} µs.
To obtain the performance of BLER over all UEs,

we generated 1000 instances, including {bk}, {hk} and w.
The same generated 1000 instances were used across all
the experiments using SQA, SA, and SIC. Additionally, the
BLER values presented in this paper were calculated for a
single transmission, meaning that no retransmission schemes,
such as hybrid automatic retransmission request (HARQ)
[39], were introduced. The average BER across all UEs was
obtained using five instances for SQA, SA, VA, and D-wave.

A. COMPARING DISTRIBUTIONS
Figure 2 illustrates examples of the probability distribution
for the first received signal r(1) in K = 7 at SNR =

25 dB. ‘‘Exact’’ denotes the result exactly computed from (6),
and the other results are calculated based on (14). We set
Nsamp = 1000, Nsweep = 100, and Tanneal = 0.5 µs.
The distribution obtained using Exact is primarily localized
around the lowest-energy solution and broadens towards the
high-energy regions. Although the distributions obtained by
the annealing techniques differed quantitatively from those
obtained by Exact, they successfully reproduced the overall
trends.

B. BLER ANALYSIS
1) BLER VERSUS SNR
Figure 3 illustrates the BLER performance for 1 = 1 dB
obtained using SQA and SA for K = 5. Here, we set

FIGURE 3. BLER curves for 1 = 1 dB and K = 5 with Nsamp = 1000,
Nsweep = 100, and NTrotter = 4.

FIGURE 4. BLER curves for 1 = 1 dB and K = 7 with Nsamp = 1000,
Nsweep = 100, and NTrotter = 4.

Nsamp = 1000, Nsweep = 100, and NTrotter = 4. For
comparison, we show the results obtained by SIC as a
conventional method [19] and the original iterativeMUD [18]
denoted as ‘‘Original.’’ The BLERs of Original, SQA, and
SA decreased with an increase in SNR, whereas the BLER of
SIC did not improve, even in high-SNR regions. Such BLER
performance of SIC, where the improvement in BLER with
increasing SNR is not observed, has also been reported in
the previous study [19]. This is because the power difference
given by1 is insufficient to decode the first UE. Furthermore,
SQA and SA exhibited BLER performances comparable to
those of the original. Fig. 4 shows the BLER curves of SQA,
SA, and SIC for K = 7. When K = 7, QA-aided MUD could
successfully perform signal detection, which was difficult for
the original iterative MUD. The BLER curves demonstrate
that SQA and SA significantly outperform SIC over all SNRs
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FIGURE 5. BLER vs. K with 1 = {1, 2, 3} dB, where SNR = 15 dB.

FIGURE 6. BLER versus Nsamp with Nsweep = 100, NTrotter = 4, and
1 = 1 dB, where SNR = 15 and 25 dB for K = 5 and 7, respectively.

for K = 7. Furthermore, SQA and SA have comparable
performance for K = 5 and 7.

Figure 5 illustrates the K -dependence of the BLERs using
SQA and SA. The SNR was set to 15 dB and the results
are shown with a power difference 1 = {1, 2, 3} dB. The
results demonstrate that the BLER performance of SQA
and SA degrades with an increase in K . However, when 1

increases, the BLERs of both annealers improve. Notably,
the BLER performance of the SA remained below 10−1 over
all K values when 1 = 3 dB. These results indicate that
QA-aided MUD can potentially detect transmitted signals
from up to 10 UEs when 1 is sufficiently large.

2) BLER VERSUS ANNEALING PARAMETERS
Figure 6 shows the Nsamp-dependence on the BLER per-
formance of QA-aided MUD with 1 = 1 dB, where
Nsweep = 100 and NTrotter = 4. We set SNR=15 dB for

FIGURE 7. BLER versus Nsweep with Nsamp = 1000, NTrotter = 4, and, and
1 = 1 dB, where SNR = 15 and 25 dB for K = 5 and 7, respectively.

FIGURE 8. BLER versus NTrotter with Nsamp = 1000, Nsweep = 100, and
1 = 1 dB, where SNR = 15 and 25 for K = 5 and 7, respectively.

K = 5 and SNR=25 dB for K = 7. For K = 5, the BLERs
improve significantly when Nsamp ≥ 100. Furthermore, the
BLERs show a sharp improvement at Nsamp = 1000 for
K = 7. The results indicate that a larger Nsamp is necessary
for achieving accurate BLER performance with an increase
in K . Fig. 7 illustrates the BLER performance versus the
number of sweeps, Nsweep. For K = 5, no Nsweepdependence
was observed; however, the BLERs gradually improved with
increasing Nsweep for K = 7. We show the dependence of
the BLER on NTrotter in Fig. 8, where Nsamp = 1000 and
Nsweep = 100. Although NTrotter is a unique parameter
for SQA, we present the results obtained using the SA for
comparison. The results show that the BLER reached a
minimum atNTrotter = 4 forK = 7, whereas no improvement
was observed for K = 5.

VOLUME 13, 2025 56677



K. Yonaga et al.: Error Rate Analysis of Quantum-Annealing-Aided Multi-User Detection in PD-NOMA

FIGURE 9. Average BER performance for K = 5 with Nsamp = 1000,
Nsweep = 10, NTrotter = 4, Tanneal = 0.5 µs, and 1 = 1 dB.

FIGURE 10. Average BER performance for K = 7 with Nsamp = 1000,
Nsweep = 100, NTrotter = 4, Tanneal = 0.5 µs, and 1 = 1 dB.

We summarize the effects of the annealing parameters
on QA-aided MUD. As shown in Fig. 6, increasing Nsamp
significantly improves the BLER performance of QA-aided
MUD. This improvement is because we can obtain divergent
solutions and reproduce Pr[r|x] accurately whenNsamp is suf-
ficiently large. Further, increasingNsweep enhances the BLER
performance, although its impact is less significant compared
to Nsamp. For SQA, an appropriate NTrotter slightly improves
performance. Consequently, we demonstrate that Nsamp has
the most significant effect on the BLER performance of
QA-aided MUD.

C. COMPARISON OF BER AMONG DIFFERENT
ANNEALING TECHNIQUES
1) BER VS SNR
Figure 9 and 10 illustrate the BER performance using SQA,
SA, VA, and D-Wave for K = 5 and 7, respectively.
Here, the average BER was calculated using only a few
instances; therefore, we show the results using error bars.
We set Nsamp = 1000, NTrotter = 4, and Tanneal = 0.5 µs,
and Nsweep is set to be 10 and 100 for K = 5 and 7,
respectively. For K = 5, all BERs gradually decreased with
an increase in SNR, reaching zero at SNR = 12.5 dB. For
K = 7, all annealers achieved error-free performance at
SNR = 25 dB. The results demonstrate that D-Wave and VA
exhibit performances comparable to those of SQA and SA.

2) BER VS ANNEALING PARAMETERS
Figure 11 illustrates the dependence of the average BER on
Nsamp. The annealing time Tanneal was 0.5 µs, and we set

FIGURE 11. Average BER versus Nsamp with Nsweep = 100, NTrotter = 4,
Tanneal = 0.5 µs, and 1 = 1 dB, where SNR = 15 and 25 dB for K = 5 and
7, respectively.

FIGURE 12. Average BER versus Nsweep and Tanneal with
Nsamp = 1000 and 1 = 1 dB, where SNR = 15 and 25 dB for K = 5 and 7,
respectively.

FIGURE 13. Comparison of the distributions for K = 5 obtained using the
VA with Nsweep = {10, 32, 100} and 1 = 1 dB.

Nsweep = 10 and 100 for K = 5 and 7, respectively. For K =

5(7), the BERs of SQA, SA, and D-Wave improve with an
increase in Nsamp, reaching BER = 0 at Nsamp = 100(1000).
However, the BER of VA shows no dependence on Nsamp,
achieving an error free performance even with Nsamp = 10.
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Figure 12 displays the average BER as a function of
Nsweep and Tanneal, where Nsamp = 1000. The BERs of
the D-wave remained at zero regardless of Tanneal for K =

5 and 7. Furthermore, the BER performance of VA shows
no dependence on Nsweep for K = 7, whereas it degrades
significantly at Nsweep = 100 for K = 5. Here, we further
investigate the Nsweep-dependence of VA. Fig. 13 illustrates
examples of the distribution forK = 5, which are obtained by
VA with Nsweep = {10, 32, 100}. For comparison, we show
the exactly calculated distribution. When Nsweep = 10, the
distribution of VA is agreed with the exact result. However,
as Nsweep increases, the distribution in the high-energy
regions disappears and becomes concentrated around the
lowest-energy solution. In general, the larger Nsweep, the
more accurate the digital annealing techniques become. That
is, the probability distribution becomes concentrated in the
lower-energy regions because the likelihood of reaching
the optimal solution increases. Consequently, the annealing
results of VA were overly accurate and failed to reproduce
the exact distribution when Nsweep for K = 5. To avoid this
performance degradation, careful tuning of Nsweep is required
for VA.

VI. DISCUSSION
A. ADVANTAGES OF QA-AIDED MUD
We highlight the differences between QA-aided MUD
and other schemes. Current MUD techniques primarily
rely on linear detection methods, such as linear minimum
mean-square error (LMMSE), zero forcing (ZF), and max-
imal ratio combining (MRC) detectors. In particular, for
coded NOMA schemes like interleave division multiple
access (IDMA) [20], the LMMSE detector can achieve
optimal MUD performance. However, these techniques
require additional implementations on the transmitter (Tx)
side, such as using an interleaver. Conversely, QA-aided
MUD performs signal detection solely based on signal power
differences between users without introducing additional
functionality. Thus, QA-aided MUD eliminates the need for
complex Tx-side implementations, providing a significant
advantage in practical applications.

Furthermore, the key aspect of QA-aided MUD is its
ability to efficiently compute the LLR from samples obtained
through annealing techniques, making it widely applicable
in digital communication technologies. For example, we uti-
lized turbo coding in this study; however, the method can be
extended to other coding schemes, such as low-density parity-
check (LDPC) codes or Polar codes.

B. CHALLENGES
We discuss the computational complexity and computation
time of the annealing techniques. The complexities of
SQA, SA, and VA depend on K 2 as shown in Table 1,
whereas that of LMMSE detector is O(K 3). However, the
complexities of the digital annealers depend not only on
K but also on annealing parameters such as Nsamp, Nsweep,

FIGURE 14. Demonstration of the QA-aided MUD with D-wave in UL
PD-NOMA (K = 4 and 1 = 3 dB in average).

and NTrotter. Furthermore, the numerical results demonstrated
that these annealing parameters significantly influenced the
BLER and BER performances of QA-aidedMUD. Therefore,
an efficient method for tuning annealing parameters is
necessary to balance the required accuracy and computation
time.

For D-Wave, the QA sampling time depends on the
annealing parameters; therefore, the computation time can
remain constant, even as K increases. However, as discussed
in Section III-B, D-Wave involves pre- and post-processing
steps such as embedding, unembedding, and the greedy
steepest descent method. These additional steps introduce
significant overhead, thereby increasing the total computa-
tion time of QA-aided MUD. The recent development of
low-noise hardware with new architectures has gradually
mitigated this overhead [40]. Thus, with advancements in D-
Wave, QA-aided MUD will be further accelerated.

Finally, we discuss the performance of VA. The numerical
results show that QA-aided MUD using VA can reach an
error-free performance with smallNsamp or smallNsweep. Fur-
thermore, a CPU version of theVAhas recently been released,
which significantly reduces the computation overhead in its
execution. Thus, VA has great potential for enhancing the
accuracy and computation speed of QA-aided MUD.

VII. FUTURE OUTLOOK
One of the challenges in realizing a massive communication
system with the proposed QA-aided MUD is related to
implementation. To demonstrate the feasibility of QA-aided
MUD in a static environment, we applied it to PD-NOMA
through OTA experiments. A photograph of the experiment
is shown in Fig. 14. The setup for this experiment was the
same as that shown in Fig. 1, with four UEs (K = 4) and
a BS equipped with a single antenna. The UL PD-NOMA
signal used in this experiment had a frequency bandwidth
of 1.4 MHz and a center frequency of 2295 MHz. The
modulation and coding scheme (MCS) was the same as
that shown in Table 2. The 1 value, which determines ak ,
was set to 3 dB based on the results shown in Fig. 5. The
transmit power control was manually applied by evaluating
the channel state information derived from the reference
signals transmitted by the UEs. The distance between the UEs
and the BS was approximately 50 m. Under these conditions,
the SNR for the UE transmitting at the highest power level
was approximately 26 dB. Fig. 14 illustrates the evo lution
of the average BER for each UE after each iteration in
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QA-aided MUD. In this experiment, D-Wave was employed
as the annealing technique. The OTA experiment confirmed
that QA-aided MUD successfully achieved signal separation
in UL PD-NOMA. In UL PD-NOMA, the transmitted signals
from each UE undergo individual distortions owing to radio
propagation characteristics such as delay spread and Doppler
shift in mobile channels. Becau se compensating for these
distortions at the BS is not straightforward, an open problem
remains in identifying an efficient compensation method that
integrates both QA and digital computing.

VIII. SUMMARY
We extended the previously reported QA-aided MUD to
digital annealing techniques and evaluated its error-rate
performance in UL PD-NOMA. Through BLER analysis
using SQA and SA, we demonstrated that QA-aided MUD
significantly outperformed conventional SIC through the
BLER analysis using SQA and SA. Additionally, we con-
ducted a BER analysis using SQA, SA, VA, and D-Wave
with a limited number of instances. The results indicated
that the signal detection was achived across all annealers
in high SNR regions. Furthermore, we demonstrated that
annealing parameters, particularly the number of samplings,
significantly impacted the BLER and BER performances of
QA-aidedMUD. These findings suggest that VA holds strong
potential for enhancing the performance of QA-aided MUD.
Finally, we present the results of an OTA experiment using
QA-aided MUD.
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