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We derive the conservative dynamics of nonspinning binaries to third post-Minkowskian order, using the
effective field theory (EFT) approach introduced in [G. Kälin and R. A. Porto, J. High Energy Phys. 11
(2020) 106] together with the boundary-to-bound dictionary developed in [G. Kälin and R. A. Porto,
J. High Energy Phys. 01 (2020) 072; J. High Energy Phys. 02 (2020) 120.]. The main ingredient is the
scattering angle, which we compute to OðG3Þ via Feynman diagrams. Adapting to the EFT framework
powerful tools from the amplitudes program, we show how the associated (master) integrals are
bootstrapped to all orders in velocities via differential equations. Remarkably, the boundary conditions
can be reduced to the same integrals that appear in the EFT with post-Newtonian sources. For the sake of
comparison, we reconstruct the Hamiltonian and the classical limit of the scattering amplitude. Our results
are in perfect agreement with those in Bern et al. [Phys. Rev. Lett. 122, 201603 (2019); J. High Energy
Phys. 10 (2019) 206].
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Introduction.—The discovery potential heralded by the
new era of gravitational wave science [1,2] has motivated
high-accuracy theoretical predictions for the dynamics of
binary systems [3–5]. This is particularly important for the
inspiral phase of small relative velocities (v=c ≪ 1), cover-
ing a large portion of the cycles in the detectors’ band for
many events of interest, which is amenable to perturbative
treatments like the celebrated post-Newtonian (PN) expan-
sion [6,7]. Notably, in parallel with more “traditional”
approaches in general relativity, e.g., Refs. [8–12], in recent
years ideas from particle physics, such as effective field
theories (EFTs) similar to those used to study bound states
of strongly interacting particles [13–18], and modern tools
from scattering amplitudes connecting gravity to Yang-
Mills theory and bypassing Feynman diagrams [19,20],
have found their way into the classical two-body problem
in gravity. Although more recent, these novel tools have
made a key contribution to the knowledge of the
conservative dynamics of binary systems, in both the PN
regime as well as the post-Minkowskian (PM) expansion in
powers of G (Newton’s constant), with the present state of
the art reaching the fourth PN (4PN) [21–28] and third PM
(3PM) [29–31] orders for nonspinning bodies, respectively.
Partial results are also known to 5PN (static) [32,33] and

6PN [34,35]; radiation and spin are incorporated in, e.g.,
Refs. [36–59].
Gravitational scattering amplitudes [29–31] find a natu-

ral habitat in the PM regime of a quantum world, which, at
first, appears to bear little connection to the classical bound
states where traditional PN tools [6] and the EFT approach
[18] have been applied so far. While this can be circum-
vented by the universal character of the interaction, which
is independent of the state, one still has to extract the
classical part of the amplitude. In the framework of
Refs. [29–31], this relies on the large angular momentum
limit ℏ=J → 0 (resulting also in a series of spurious infrared
divergences removed by a matching computation). The
procedure, however, was challenged in Ref. [60], with
doubts (some addressed in Refs. [34,35]) on the validity of
the 3PM Hamiltonian in Refs. [29,30]. In light of its
relevance and demand for even higher accuracy [61], a
systematic, scalable, and purely classical approach to
observables in the PM regime was thus imperative.
Building upon the universal boundary-to-bound (B2B)

dictionary, relating scattering data directly to gauge-invari-
ant observables for generic orbits through analytic con-
tinuation [62,63], a novel PM framework was developed in
Ref. [64] using the EFT machinery and readily
implemented for bound states to OðG2Þ. (See, e.g.,
Refs. [60,61,65–68] for alternative routes.) In this Letter,
we report the next step in the EFT approach, namely, the
computation of the conservative binary dynamics to 3PM
order. This entails the calculation of the scattering angle to
next-to-next-to-leading order (NNLO) in G via Feynman
diagrams. Remarkably, we find that the associated (master)
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integrals can be bootstrapped from their PN counterparts
through differential equations in the velocity [69], as
advocated in Ref. [70], paving the way forward to
higher-order computations. For the sake of comparison,
we reconstruct the Hamiltonian as well as the (infrared-
finite) amplitude in the classical limit and find complete
agreement with the results in Refs. [29,30]. Our derivation
thus independently confirms the connection between the
amplitude and the center-of-mass (c.m.) momentum
(impetus formula) [62] and the legitimacy of the program
to extract classical physics from scattering amplitudes
[29–31,55–59,62,63,70–96]. At the same time, we explic-
itly demonstrate the power of the EFT and B2B framework
[62–64], which by design can be systematized to all orders.
The EFT framework.—The starting point is the effective

action from which we derive the scattering trajectories. We
proceed by integrating out the metric field gμν ¼ ημν þ
hμν=MPl (with M−1

Pl ≡
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
):

eiSeff ¼
Z

DhμνeiSEH½h�þiSGF½h�þiSpp½xa;h�; ð1Þ

in the (classical) saddle-point and weak-field approxima-
tions. We work with the Einstein-Hilbert action SEH and the
convention ημν ¼ diagðþ;−;−;−Þ. The gauge fixing SGF is
adjusted to simplify the Feynman rules [64]. We use the
(Polyakov) point-particle effective action:

Spp ¼ −
X
a¼1;2

ma

2

Z
dτagμνðxαaÞvμavνa þ � � � ; ð2Þ

with τa the proper time. The ellipses include higher-
derivative terms accounting for finite-size effects and
counterterms to remove (classical) ultraviolet divergences
[13,64]. As usual, we use dimensional regularization.
Impulse from action.—From the action, we read off the

effective Lagrangian at each order in G: Leff ¼ L0 þ L1þ
L2 þ L3 þ � � �. Although it may be nonlocal in time when
radiation-reaction effects are included [8,24], it is mani-
festly local with only potential modes [64]. Using the
effective Lagrangian, we obtain the trajectories

xμaðτaÞ ¼ bμa þ uμaτa þ
X
n

δðnÞxμaðτaÞ; ð3Þ

with uμa the velocity at infinity, obeying u2a ¼ 1, and bμ ≡
bμ1 − bμ2 the impact parameter. For instance, at LO,

δð1Þxμ1ðτ1Þ ¼ −
m2

8M2
Pl

½ð2γ2 − 1Þημν − 2ð2γuμ2 − uμ1Þuν1�

×
Z
k

ikνδ̂ðk · u2Þeik·b
k2ðk · u1 − i0þÞ2 e

iðk·u1−i0þÞτ1 : ð4Þ

We use the notation
R
k ≡

R ½d4k=ð2πÞ4�, δ̂ðxÞ≡ 2πδðxÞ, and

γ ≡ u1 · u2 ¼
p1 · p2

m1m2

¼ E1E2 þ p2

m1m2

; ð5Þ

where Ea ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

a

p
and �p is the incoming c.m.

momentum. Notice the factor of ðk · u1 − i0þÞ−1, with
the i0þ to ensure convergence of the time integrals, which
resembles the linear propagators appearing in heavy-quark
effective theory [97]. The pole shifts to ðk · u2 þ i0þÞ−1 for
particle 2. The impulse follows from the effective action:

Δpμ
a ¼ −ημν

Z þ∞

−∞
dτa

∂Leff

∂xνa ½xaðτaÞ�; ð6Þ

where the overall sign is due to our conventions. The
impulse can then be solved iteratively, starting with the
undeflected trajectory in Eq. (3). Notice that all of the
Lk<n’s contribute to nPM order and must be evaluated on
the trajectories up to (n − k)th order in G. We refer to this
procedure as iterations [64]. The scattering angle

χ

2
¼

X
n

χðnÞb

�
GM
b

�
n
¼

X
n

χðnÞj

jn
; ð7Þ

with 1=j ¼ GMμ=ðp∞bÞ, is obtained from the relation

2 sin
χ

2
¼ 2

�
χ

2
−
1

6

�
χ

2

�
3

þ � � �
�
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
−Δp2

a

p
p∞

; ð8Þ

where

p∞ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
Γ

; Γ≡ E
M

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðγ − 1Þ

p
; ð9Þ

with E and M the total mass and energy, respectively. We
use the notation μ ¼ m1m2=M for the reduced mass and
ν ¼ μ=M for the symmetric mass ratio.
The impulse may be further split into a contribution

along the direction of the impact parameter as well as a term
proportional to the velocities [64]. Because of momentum
conservation and the on-shell condition, we have

ðpa þ ΔpaÞ2 ¼ p2
a ⇒ 2pa · Δpa ¼ −Δp2

a: ð10Þ
Moreover, since Δð1Þpμ

1 ∝ bμ at leading PM order [64] and
b · ua ¼ 0, we can use Eq. (10) to solve iteratively for the
component along the velocities. This allows us to restrict
the derivation of the impulse to the perpendicular
plane [64].
Feynman integrals.—To 3PM order, the Feynman topol-

ogies are shown in Fig. 1. The computation yields four-
dimensional relativistic integrals constrained by a series of
δ functions, δðki · uaÞ, which arise due to the time inte-
gration in Eq. (6) after inputting Eq. (3). Moreover, in
addition to the standard factors of 1=k2 from the gravita-
tional field, we have linear propagators, as in Eq. (4), which
are needed to compute the iterations. As we mentioned, we
restrict ourselves to the computation of the impulse in the
direction of the impact parameter. The derivation is then
reduced to a series of terms proportional to the Fourier
transform in the “transfer momentum”:

Z
q
δ̂ðq · u1Þδ̂ðq · u2ÞiqμtsMða;ãÞ

n1n2;i1…i5
ðq; γÞeiq·b; ð11Þ
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where the factor of ts, with t≡ −q2, depends on the tensor
reduction of the given diagram. We find the following (cut)
“two-loop” integrals [98]:

Mða;ãÞ
n1n2;i1…i5

ðq; γÞ≡
Z
k1;k2

δ̂ðk1 · uaÞδ̂ðk2 · uãÞ
An1
1;=aA

n2

2;
˜=a
Di1

1 …Di5
5

ð12Þ

are sufficient to 3PM order, where (=1 ¼ 2, =2 ¼ 1)

A
1;=a ¼ k1 ·u=a; A

2;
˜=a ¼ k2 ·u ˜=a; D1 ¼ k21; D2¼ k22;

D3 ¼ðk1þk2−qÞ2; D4¼ðk1−qÞ2; D5¼ðk2−qÞ2:
ð13Þ

All the integrals we encounter in our computation, includ-
ing the iterations, can be embedded into the family in
Eq. (12) with different choices of ða; ãÞ. The i0 prescription
is such the u1;2 are always accompanied by ∓ i0þ, as in
Eq. (4). The other cases are obtained by different symmet-
rizations [98]. We keep only nonanalytic terms in t which
yield long-range interactions [64]. We outline the integra-
tion procedure momentarily. The outcome is the scaling

tsMða;ãÞ
n1n2;i1…i5

∝
1

ϵ
t−2ϵ; ð14Þ

with ϵ ¼ ð4 −DÞ=2, which gives for the impulse in
Eq. (11) the expected bμ=b4 in D ¼ 4. The poles (and
log μ̄’s) in dimensional regularization accompanying the
log t’s produce contact terms that neatly drop out without
referring to subtraction schemes [64].
Potential modes.—In the framework of the PN expan-

sion, the integrals would be performed using a mode
factorization into potential ðk0 ≪ jkjÞ and radiation ðk0 ∼
jkjÞ modes while keeping manifest power counting in the
velocity [13,18,99]. The computation with potential modes
then reduces to a series of three-dimensional (massless)
integrals. In contrast, in the PM scheme we ought to keep
the propagators fully relativistic. The associated Feynman
integral still receive contributions from both potential and
radiation modes (yielding real and imaginary parts). We are
interested here in the conservative sector, and we ignore for
now radiation-reaction effects. [Hereditary tail effects,
which enter in the conservative dynamics through nonlocal
contributions to the effective action, e.g., [8,24], first
appear at OðG2a2v2Þ ∼OðG4v2Þ [28], namely, 4PM.] As
discussed in Ref. [64], to isolate the potential modes, we
adapt to our EFT framework the powerful tools developed
in Refs. [29,30,70]. Notably, we make use of the method-
ology of differential equations using boundary conditions
from the (static) limit γ → 1 [70].
On the one hand, for Figs. 1(c) and 1(d), only the

Mð1;1Þ
n1;n2;… in Eq. (12) are needed, with ðn1; n2Þ ≤ 0, plus

mirror images. These integrals, which contribute to the one-
point function of a (boosted) Schwarzschild background,
can be computed in the rest frame:

u1 ¼ ð1; 0; 0; 0Þ; u2 ¼ ðγ; γβ; 0; 0Þ; ð15Þ

with βγ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
[64]. At the end of the day, they turn

into the same type that appear in the static limit of the PN
expansion; see, e.g., Ref. [21]. For Figs. 1(e)–1(g), on the

other hand, the Mð1;2Þ
n1n2;… are required instead, also with

ðn1; n2Þ ≤ 0. Remarkably, the associated integrals for all
these diagrams can be decomposed into a basis involving

only the Mð1;2Þ
00;… subset [98]. Furthermore, using integration

by part (IBP) relationships [100,101], the contribution from
Figs. 1(e) and 1(f) reduces to integrals with i3 ¼ 0. It is then
straightforward to show that both diagrams vanish in
D ¼ 4. (This is reminiscent of the fact that they do not
enter at 2PN either [21].) Using the IBP relations and the
aid of FIRE6 [102] and LiteRed [103], as well as symmetry
arguments, the calculation of the remaining (so-called H)
diagram in Fig. 1(g) is reduced to the following basis [98]:

fI11111; I11211; I01101; I11011; I00211; I00112; I00111g; ð16Þ
with Ii1…i5 ≡Mð1;2Þ

00;i1…i5
. For the computation, we follow

Ref. [104] and various tools, e.g., epsilon [105], to
construct a canonical basis h⃗ ¼ fhn¼1…7g such that the
velocity dependence is obtained via differential equations:

∂xh⃗ðx; ϵÞ ¼ ϵMðxÞh⃗ðx; ϵÞ ð17Þ
with γ ¼ ðx2 þ 1Þ=ð2xÞ, as advocated in Ref. [70]. Because
the set in Eq. (16) contains up to five (quadratic) propa-
gators only, the associated boundary conditions in our case
are then reduced to the same type of integrals that appear in
the PN regime at two loops (kite diagrams; e.g., Ref. [25]).
It turns out that only a handful contribute to the H diagram
in D ¼ 4, featuring the much anticipated factor of log x
observed in Refs. [29,30,70].
To complete the derivation, we have to include the

iterations. Surprisingly, the set in Eq. (16) is (almost)
sufficient for all the contributions. For instance, iterations
involving the deflection due to Fig. 1(a) at LO order for the
impulse due to Fig. 1(b), and vice versa, follow from
Eq. (16). Yet, for the deflection from Fig. 1(a) to NLO,

FIG. 1. Feynman topologies to 3PM [64].

PHYSICAL REVIEW LETTERS 125, 261103 (2020)

261103-3



additional integrals are needed, resembling other (cut)
topologies in Refs. [30,70]. In our case, we need the
following two:

fMð1;1Þ
11;11100;M

ð1;2Þ
11;11100g: ð18Þ

In principle, we find all �i0 combinations. Naively, due to
the lack of “crossing” (e.g., u1 → −u1) in the potential
region, the connection between them is not obvious; see
Ref. [70]. Yet, we can show that these integrals are related in
the static limit (see below). The upshot is that various �i0
choices differ by relative factors of 2. These turn out to be
crucial to ensure the cancellation of intermediate spurious
infrared poles ∝ t−2ϵ=ϵ2 [98]. Because of the presence of
divergences, however, their computation is somewhat
subtle. For the first one, we can readily go to the rest frame
in Eq. (15) producing a D − 1 integral. We then use the
symmetrization described in Ref. [70]. Alternatively, it may
be computed using the prescription inRefs. [29–31] in theu2
frame. Both can be adapted to all �i0 choices. The result is
proportional to (twice) the standard one-loop bubble inte-
grals with static PN sources [21], although in D − 2
dimensions. The same trick does not apply to the latter,
but it can be easily incorporated into the canonical basis to
obtain its γ dependence. Yet, due to a divergence in the static
limit, we need some care with the boundary condition. This
is accounted for in the canonical basis by pulling out the
relevant factor of β (and ϵ). Once again, we perform the
integral in the rest frame, expand in small velocity, and retain
the leading term in 1=β. In this limit, theMð1;2Þ

11;… integral turns
out to be equivalent (modulo different �i0 choices) to the
Mð1;1Þ

11;… counterpart. We have checked all these relationships
explicitly via a standard α parameterization [106]. At the
end, as expected, the associated divergences cancel out in the
final answer without subtractions.
The above steps culminate in the derivation of the master

integrals in the potential region via differential equations.
Using various arguments, the boundary conditions are
reduced to the master integrals that appear in the static
limit of the PN expansion at the same loop order. See
Ref. [98] for a more detailed discussion.
Scattering data.—The result for the impulse now follows

from basic algebraic manipulations, and we arrive at

Δð3Þpμ
1 ¼

G3bμ

jb2j2
�16m2

1m
2
2ð4γ4 − 12γ2 − 3Þ sin h−1

ffiffiffiffiffiffi
γ−1
2

q
ðγ2 − 1Þ

−
4m2

1m
2
2γð20γ6 − 90γ4 þ 120γ2 − 53Þ

3ðγ2 − 1Þ5=2

−
2m1m2ðm2

1 þm2
2Þð16γ6 − 32γ4 þ 16γ2 − 1Þ
ðγ2 − 1Þ5=2

�

þ 3π

2

ð2γ2 − 1Þð5γ2 − 1Þ
ðγ2 − 1Þ2

G3M2μ

jb2j3=2
× ½ðγm2 þm1Þuμ2 − ðγm1 þm2Þuμ1�: ð19Þ

The last term, which does not feature in the deflection angle
at this order, is obtained from Eq. (10) and the result in
Ref. [64]. Hence, using Eq. (8), the 1PM angle (cube), and
the 2PM impulse along the velocities in Ref. [64], we find

χð3Þb

Γ
¼ 1

ðγ2 − 1Þ3=2
�
−
4ν

3
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

q
ð14γ2 þ 25Þ

þ ð64γ6 − 120γ4 þ 60γ2 − 5Þ½1þ 2νðγ − 1Þ�
3ðγ2 − 1Þ3=2

− 8νð4γ4 − 12γ2 − 3Þ sin h−1
ffiffiffiffiffiffiffiffiffiffi
γ − 1

2

r �
; ð20Þ

which, using χð3Þj ¼ ðp∞=μÞ3χð3Þb ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=ΓÞ3χð3Þb , is

in agreement with the derivation in Refs. [29,30]; see
also Ref. [61].
B2B map.—The scattering data allow us to construct the

(reduced) radial action [62,63]

ir ¼
p∞ffiffiffiffiffiffiffiffiffiffi
−p2

∞
p χð1Þj − j

�
1þ 2

π

X∞
n¼1

χð2nÞj

ð1 − 2nÞj2n
�
; ð21Þ

via analytic continuation to γ < 1. As we discussed in
Refs. [62,63], the natural power counting in 1=j in the PM
expansion requires the (so far unknown) χð4Þj coefficient. The
latter can be written, using the results in Refs. [62,63], as

χð4Þj ¼ 3π

8M4μ4

�
P1P3 þ

1

2
P2
2 þ p2

∞P4

�
; ð22Þ

with the Pn’s from the expansion of the c.m. momentum

p2 ¼ p2
∞ þ

X∞
n¼1

PnðEÞ
�
G
r

�
n
: ð23Þ

The Pn’s can also be obtained from the scattering angle, as
described in Refs. [62,63]. For instance, inverting the
relation

χð3Þj ¼ 1

M3μ3p3
∞

�
−
P3
1

24
þ p2

∞
P1P2

2
þ p4

∞P3

�
; ð24Þ

together with Eq. (20) and the results in Ref. [64], yields

P3

M3μ2
¼

�
18γ2 − 1

2Γ
þ 8ν

Γ
ð3þ 12γ2 − 4γ4Þ

sin h−1
ffiffiffiffiffiffi
γ−1
2

q
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p

þ ν

6Γ

�
6 − 206γ − 108γ2 − 4γ3

þ 18Γð1 − 2γ2Þð1 − 5γ2Þ
ð1þ ΓÞð1þ γÞ

��
: ð25Þ

This compact expression encodes all the information at 3PM
order. It can be analytically continued to negative binding
energies (γ < 1) to derive observables for binary systems via
the B2B map. Because of the factor of p2

∞ in Eq. (22), and
sinceEq. (23) has awell-defined static limit, the contribution
in Eq. (21) from P4 is subleading in the PN expansion. This
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allows us to perform a consistent PN truncation by keeping
thePn≤3 terms in Eq. (22) (ignoring also higher orders in 1=j
which are PN suppressed). This is carried out in detail in
Refs. [62,63] and shown to agree with the literature in the
overlapping regime of validity.
Amplitude and Hamiltonian.—It is instructive to use the

B2B dictionary to also reconstruct both the classical limit
of the scattering amplitude as well as the Hamiltonian for
the two-body system in the c.m. (isotropic) frame. Using
the relationship found in Ref. [62],

p2 ¼ p2
∞ þ 1

2E

Z
d3rMðp∞; qÞeiq·r; ð26Þ

we immediately read off from Eq. (25) the (infrared-finite
part of the) scattering amplitude in the classical limit, which
agrees with the result in Ref. [30] [see Eq. (9.3)]. For the
PM expansion of the Hamiltonian,

Hðr; p2Þ ¼
X
i

ciðp2Þ
i!

�
G
r

�
i
; ð27Þ

the coefficients can also be expressed iteratively in terms of
the Pn’s in Eq. (23) [62]. To 3PM order, we find

c3ðpÞ
3!

¼ −
P3ðEÞ
2Eξ

þ ð3ξ − 1ÞP2ðEÞP1ðEÞ
4E3ξ3

þ ½P2ðEÞP0
1ðEÞ þ P0

2ðEÞP1ðEÞ�
4E2ξ2

−
ð5ξ2 − 5ξþ 1ÞP3

1ðEÞ
16E5ξ5

−
ð9ξ − 3ÞP2

1ðEÞP0
1ðEÞ

16E4ξ4

−
P2
1ðEÞP00

1ðEÞ
16E3ξ3

−
P1ðEÞ½P0

1ðEÞ�2
8E3ξ3

; ð28Þ

where a prime denotes a derivative with respect to E and
ξ≡ E1E2=ðE1 þ E2Þ2. Inputting Eq. (25) and P1;2 from the
2PM results [64], we exactly reproduce the c3 in
Refs. [29,30]. Notice, however, that the relevant PM
information to compute observables through the B2B
map is (more succinctly) encoded in Eq. (25) at two loops
and, ultimately, the (yet to be computed) scattering angle at
4PM order.
Conclusions.—Using the EFT approach and B2B dic-

tionary [62–64], we derived the conservative dynamics for
nonspinning binary systems to 3PM order. Our results,
purely within the classical realm, are in perfect agreement
with those reported in Refs. [29,30], thus removing the
objections raised in Ref. [60] against their validity. Even
though, unlike the approach in Refs. [29,30], our derivation
entails the use of a Feynman diagram, because of the
simplifications of the EFT and B2B framework, just a
handful are required (two of which are zero) at this order;
see Fig. 1. Moreover, only massless integrals appear, and,
as was already illustrated in Ref. [64], we do not encounter
the (superclassical) infrared singularities which have, thus
far, polluted the extraction of classical physics from the
amplitudes program. By adapting to our EFT approach the

methods in Refs. [29–31,70], we found that the contribu-
tion from potential modes to the master integrals can be
computed to all orders in velocities using differential
equations (without the need of the PN-type resummations
in Refs. [29,30]). Remarkably, the boundary conditions are
obtained from the knowledge of the same master integrals
which appear in the static limit with PN sources to two
loops, albeit in D − 1 and D − 2 dimensions. This implies
that the PM dynamics can be bootstrapped from PN
information (at least to NNLO). This is not surprising
for the evaluation on the unperturbed trajectory, which
serves as a stationary limit of the PM regime, but strikingly
the same occurs for the iterations. Since master integrals for
the PN expansion are known to four loops [25], boot-
strapping integrals through differential equations could
potentially give us up to the 5PM order.
We note also that the infusion of data from outside of PN

and PM schemes can further simplify the computation. For
instance, the test-particle limit in a Schwarzschild back-
ground provides us the value of the Mð1;1Þ master integrals
in the iterations. In turn, these are related to the Mð1;2Þ
family in the static limit. This would then allow us to read
off their boundary condition directly from the test-body
limit and, subsequently, the entire velocity dependence with
the differential equations. The fact that we get extra mileage
from the probe limit is not surprising [62]. What is
remarkable, and more so due to the lack of crossing
symmetry (while the spurious infrared poles from the
master integrals ultimately cancel out, crossing may be
restored by implementing the zero-bin subtraction to
remove the overlap with other “soft” regions, as with
potential and radiation modes in the PN case [26,107]), is
the connection to OðνÞ corrections through the static limit
and differential equations. Likewise, information from the
gravitational self-force program [108,109] may be also
used to aid the calculation in the PM expansion, e.g.,
[35,60,61,65–67,110–113]. Irrespectively of the weapon of
choice, the B2B dictionary [62,63] is imploring us to
continue to even higher orders. The derivation of the
needed 4PM scattering angle is ongoing in the EFT
approach, which we have demonstrated here is a powerful
framework, not only for PN calculations [13–18], but also
in the PM regime [64,114].
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