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Abstract: We construct a large N matrix matrix model describing two-dimensional Euclidean string theory

compactified on a circle of radius R and perturbed by an operator creating winding modes (vortices) on the

worldsheet. The matrix model is exactly solvable and posesses an integrable structure of the infinite Toda chain

hierarchy. We give explicit expressions for its free energy in the sphere- and torus approximation. A conjecture

by V. Fateev, A. and Al. Zamolodchikov about the equivalence of the sine-Liouville and SL(2,R)/U(1)

conformal field theories implies that for particular values of the parameters (vanishing cosmological constant µ

and compactification radius R = 3
4
RKT ) the matrix model can be used to study two-dimensional string theory

in the Euclidean black hole background to all orders in string perturbation theory.
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1. Introduction

The Euclidean two-dimensional string theory is

defined by the world-sheet action

S = 1
4π

∫
Σ d
2σ[Gµν(X)∇aXµ∇aXν
+T (X) + R̂(2)Φ(X)] (1.1)

where Xµ(σ1, σ2) (µ = 1, 2) define the embed-

ding of the world-sheet Σ in a two dimensional

spacetime with metric Gµν(X), ∇a (a = 1, 2)
is the covariant derivative on Σ and R̂(2) is the

Gaussian curvature on Σ. The target space met-

ric can be considered as a background source.

The other background fields are the tachyon T

and the dilaton Φ, coupled to the area and the

curvature of the world sheet. In the following we

will denote X1 = x, X2 = φ.

The string theory compactified at radius R pos-

sesses a classical solution with the geometry of a

flat cylinder and an x-independent tachyon con-

densate,

Gµν =
(
1 0
0 1

)
,

Φ = −2φ, T = 2(φ− φ0) e−2(φ−φ0) (1.2)
∗Unité de Recherche du CNRS et de l’Ecole Normale

Supérieure.
†Member of CNRS

as well as a solution

Gµν =
(
a(φ) 0
0 1/a(φ)

)
, a(φ) = 1− e−2φ/R,

Φ = Φ0 − 2φ, T = 0, (1.3)

describing a curved target space (with curvature

R ∼ e−2φ/R) having the form of a semi-infinite
cigar with asymptotic radius R. The tachyon has

zero expectation value and the string coupling

constant is determined by the value of the dilaton

at the origin.

����

Euclidean horizon (a(0)=0)

φ
x

φ=0

asymptotically flat cylinder of radius R

The metric in the “cigar” background.

The periodic coordinate x ≡ x+2πR in (1.3)
is labeling the location around the cigar, while

φ ≥ 0 is the direction along the cigar, with φ = 0
corresponding to the tip. This geometry can be
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thought of as a Euclidean version of a 1+1 dimen-

sional black hole, with the tip of the cigar repre-

senting the Euclidean horizon [1, 2, 3]. The string

propagation in the geometry (1.3) is described

(in Minkowski space) by [SL(2,R)]k/U(1) coset

CFT on the worldsheet1, where the level k of the

representation of the current algebra is related to

the radius R by

k = R2.

The mass of the black hole is determined by the

value of the dilaton field at the tip of the cigar,

M ∝ exp(−2Φ0).
A complete solution of the 2d string theory

with the flat background (1.2), known also as

c = 1 string theory, has been obtained by re-

formulating it as a large N matrix model (see

the reviews [5] and [6]). The matrix model has

one-dimensional spacetime, the target space of

the x-component of the string position field, and

therefore is also called Matrix Quantum Mechan-

ics (MQM). The dynamics of the tachyon field is

described by the collective field theory of the sin-

glet sector of the MQM [7].

On the other hand, in spite of many attempts

(see e.g. [5, 8]), the matrix realization of the

string theory theory in the nontrivial, “cigar”,

background (1.3), was not found up to now. Our

proposal for such a matrix model [9] is based on

an observation by V. Fateev, A. Zamolodchikov

and Al. Zamolodchikov [12] which we call the

FZZ conjecture. According to this conjecture the

coset CFT describing the string theory on the

“cigar” is dual to the Sine-Liouville model, which

we describe in section 2. The latter model can be

interpreted as a Sine-Gordon theory coupled to

quantum gravity, with the cosmological constant

tuned to zero.

After being reformulated in such a way, the

string theory in the “cigar” background (1.3) can

be easily discretized. Indeed, in the T-dual the-

ory, the sine-Gordon operator creates vortices on

the worldsheet. It is well known [10, 11] how to

describe world sheets with vortices by the matrix

model: it is sufficient to extend the Hilbert space

1The background (1.3) is valid for large level k of the

SL(2,R) current algebra. For finite k there are correc-

tions found in [4]

of MQM to the nonsinglet sectors labeled by the

irreducible representations of the SU(N) group.

In this note we show explicitly how to in-

troduce vortices with any vorticity by manipu-

lating the MQM with compact time β = 2πR

and twisted periodic boundary conditions. Our

first observation will be that the vortex fugaci-

ties tm are proportional to the moments tr Ω
n

of the twisting matrix Ω ∈ SU(N). In this way
we are able to reformulate the partition function

of the string theory with the “cigar” background

as the large N limit of a simple matrix integral,

depending on the vortex couplings tm and the

cosmological constant µ.

Our second observation is that the theory is

exactly solvable and its partition function is a

τ -function of the infinite Toda-chain hierarchy.

As a consequence, the flows corresponding to the

coupling constants tm are integrable and the par-

tition function for tm 6= 0 can be calculated ex-
plicitly by solving the equations of the Toda hi-

erarchy with boundary condition at tm = 0 given

by the known partition function of the string the-

ory with flat background.

We are interested in particular in the theory

with two couplings, the cosmological constant

µ and the lowest vortex coupling λ =
√
t+t−,

t± = t±1, which is the sine-Liouville coupling
constant in the T-dual theory. Knowing the ex-

act solution at λ = 0, we can follow the flow

determined by the Toda equation to arrive at

the fixed point µ = 0 (λ → ∞), described by
the “cigar” string theory. As a by-product of

our analysis we evaluate the partition function of

the two-coupling theory (the sine-Gordon model

coupled to gravity). We will present explicit ex-

pressions for the partition function for the sphere

and the torus. Our result for the sphere repro-

duces exactly the series expansion obtained by

G. Moore [13], while the result for the torus is,

to our knowledge, new.

2. FZZ conjecture about the coset/SL

duality

The statement of [12] is that the [SL(2,R)]k/U(1)

coset CFT is equivalent to the Sine-Liouville (SL)

2
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theory

L=
1

4π
[(∂ϕ)2+(∂φ)2+QR̂(2)φ+λebφ cosRϕ]. (2.1)

The matching of the parameters is given by

Q−1 = −b = √k − 2, R =
√
k (2.2)

and follows from matching of the central charges

(1 + 6Q2) + 1 = 3k
k−2 − 1

and the requirement that the SL perturbation is

marginal,

∆SL =
R2

4 − b(b+2Q)4 = 1.

The target space in the coset CFT has the

metric of the semi-infinite cigar (1.3). Far from

the tip of the cigar. the fields φ in the two models

can be identified, while the field x of the coset

theory should be identified with the T-dual field

to the field ϕ:

x = xL + xR, ϕ = xL − xR.

The nontrivial statement of [12] is that the two

CFT’s also agree for finite φ, where the inter-

actions cannot be neglected. This is far from

obvious, since in one case the strong coupling re-

gion is eliminated by changing the topology of

the cylinder to that of the cigar (1.3), while in

the other this is achieved by turning on the po-

tential in (2.1).

The relation between the coset and Sine-Liouville

CFT’s is a strong-weak coupling duality on the

worldsheet. The semi-classical limit of the SL-

theory is achieved when Q → ∞ or k → 2 while
the classical limit of the coset theory is at k →∞
or Q→ 0.
The operators corresponding to the momen-

tum and winding modes of the cigar are repre-

sented in the SL model as combinations of elec-

tric (vertex) and magnetic (vortex) operators with

discrete spectrum of electric and magnetic charges

determined by the compactification radiusR. The

electric charge (the momentum in the string the-

ory language) is strictly conserved while the mag-

netic charge (the winding number) is broken. In

the cigar CFT the reason for that is that winding

number can slip off the tip of the cigar; in (2.1)

the interaction breaks this symmetry explicitly.

3. The sine-Gordon model coupled

to gravity

The FZZ conjecture relates one-parameter fam-

ily of coset and the SL theories satisfying the

matching conditions (2.2). The criticality condi-

tion, c = 26, determines k = 9/4 or R = 3/2. We

will however consider in the following a theory

with arbitrary compactification radius, satisfying

the balance of central charge. The correspond-

ing string theory is well defined for all R ∈ (0, 2),
but the equivalence with the coset CFT holds

only at the point R = 3/2. Whether it is possi-

ble or not to extend the black hole background

interpretation to generic values of R is still an

open question.

Q

sine-Liouville coupled to gravity

9/4

 SL(2,R)/U(1) coset CFT

k=R  2  2

  2

The SL and the “cigar” string theories

are dual only at k = R2 = 9/4.

Let us now consider a more general world-

sheet CFT, the sine-Gordon theory coupled to

quantum gravity, having two coupling constants,

the Liouville coupling µ playing the role of cos-

mological constant and the SL (sine-Liouville)

coupling λ. Both interactions should correspond

to marginal operators and the total central charge

should be equal to 26. This fixes all parameters

but one, the radius of compactification R. The

Lagrangian of the model is

L =
1

4π
[(∂x)2 + (∂φ)2 + 2R̂φ+ µe−2φ

+ λe(R−2)φ cosR(xL − xR)] (3.1)

where xL/R is the left/right component of the

compactified boson x = xR + xL.

The interpretation of this action as a defor-

mation of the c = 1 “noncritical” string theory is

the following: the field x is the periodic time co-

ordinate and the Liouville field φ defines the met-

ric on the worldsheet, ds2 = e−2φ(σ)(dσ21 + dσ22).

3
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The constant µ is coupled to the puncture oper-

ator and the constant λ is coupled to the vortex

and antivortex operators creating discontinuities

±2πR on the world sheet. The SL-term makes
sense only if compactification radius R is smaller

than the Kosterlitz-Thouless radius RKT = 2,

otherwise it would be irrelevant at large scales.

The string theory free energy (the partition func-

tion of connected surfaces) is a function of µ, λ

and the string coupling gs. The genus expansion

of the string theory free energy is

F(gs, λ, µ) =
∑
h≥0
g2h−2s F (h)(λ, µ), (3.2)

where F (h)(λ, µ) is the contribution of the con-
nected worldsheets with genus h. One of the two

couplings λ and µ must be nonzero to set the IR

scale (the typical area of the worldsheet). Then

the other coupling can be considered as a pertur-

bation. There are two perturbative expansions:

the expansion in λ2 = t+t− around the Liou-
ville critical point λ = 0, and the expansion in µ

around the sine-Liouville critical point µ = 0.

• Perturbative expansion at the Liouville critical
point.

Each term of the genus expansion (3.2) is

itself a series expansion in the dimensionless pa-

rameter

z = (R− 1)λ2µR−2. (3.3)

The exact form of the expansion for the leading

term of (3.2) was obtained by G. Moore in [13].

The partition sum of (3.1) on the sphere can be

expanded in the multiple amplitudes of the vor-

tex operators

V± ∼ : e±iR(xL−xR)+(R−2)φ : ,
calculated at the Liouville critical point

F (0)(λ, µ) = 〈e+t+V++t−V−〉
sphere

=
∑∞
n=0

λ2n

n! n!〈Vn+Vn−〉sphere .
The coefficients in this series are 2n point func-

tions of the vortex operators on the sphere, which

can in principle be computed in the c = 1 matrix

model.

G. Moore conjectured a general form for these

amplitudes based on an extrapolation of the ma-

trix model results. He thus calculated the coeffi-

cients in the expansion of the string susceptibility

χ(0) = ∂2µF (0) :

χ(0)(λ, µ) = R
(
− log(µa2) +∑n Cn (−z)nn! ),

namely Cn =
Γ(n(2−R))
Γ(n(1−R)+1) .

The series has finite radius of convergence

zc =
∣∣(1−R)1−R(2−R)R−2∣∣.
We noticed that this series is the solution of

a simple algebraic equation2

µe
χ(0)/R

+ (R − 1)λ2e(2−R)χ
(0)/R

= 1. (3.4)

The perturbative expansion of the partition func-

tion on a genus h surface is, according to the

DDK-KPZ scaling, of the form

F (0)(λ, µ) =−1
2
Rµ2 log(µa2) + f (0)(z) (3.5)

F (1)(λ, µ) = −R+
1
R

24
log(µa2) + f (1)(z), (3.6)

F (h≥2)(λ, µ) = µ2−2hf (h)(z), (3.7)

where f (h)(z) are smooth functions near z = 0

and a is the UV cutoff (the elementary length on

the worldsheet). 1
µ plays the role of the string

coupling constant.

? Perturbative expansion at the SL critical point.

Beyond the convergence radius of the expan-

sion in λ2 = t+t−, the model should be consid-
ered as a perturbation of the SL (µ = 0) model,

with perturbation parameter µ. The expansion is

actually with respect to the dimensionless strength

of the perturbation

y = µ
[
(R− 1)λ2] 1

R−2 . (3.8)

The role of the string coupling constant is now

played by

gs =
[
(R− 1)λ2] 1

R−2 . (3.9)

2Note that if we parametrize χ(0) = Rζ/ρ, µ =

e
v
ρ , (R − 1)t+t− = euρ (ρ =

√
2− R),

then eq. 3.4 takes the form

e(ζ+v)/ρ + eρ(ζ+u) = 1

which is symmetric with respect to

2− R↔ (2− R)−1, u↔ v.
This symmetry can be used to transform the small λ2

expansion into a small µ expansion. Note also that the

radius R = 3/2 is dual to R = 0.

4
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The genus h free energy has the form

F (0)(λ, µ) = 1
g2s

[
A0 − 1

2
Ry2 log

(
1

gs

)
+f (0)(y)

]
,

(3.10)

F (1)(λ, µ) = C0 log
(
1

gs

)
+D0+f

(1)(y), (3.11)

F (h≥2)(λ, µ) = g2h−2s f (h)(y), (3.12)

where f (h)(y) can be expanded in Taylor series

in y.

◦ Introducing vortices with arbitrary charge
We can generalize the two-coupling theory

(3.1) by introducing a more general interaction

obtained by perturbing with an infinite series of

discrete states representing vortex operators of

vorticity m = 1, 2, . . . dressed by the Liouville

field3

L =
1

4π
[(∂x)2 + (∂φ)2 + 2R̂φ+ µe−2φ

+
∑
n6=0
tne
(|n|R−2)φeinR(xL−xR)]. (3.13)

The model (3.1) corresponds to the choice tn =

(δn,1 + δn,−1) λ.
In what follows we will construct a one-matrix

integral, for which the couplings tn are the coef-

ficient in the matrix potential, and whose sad-

dle point expansion gives the all genus partition

functions of the string theory (3.13). This in-

tegral will be obtained by evaluating the par-

tition function of the MQM with twisted peri-

odic boundary conditions. In the next section we

explain the correspondence between the twisted

MQM and the sum over discretized worldsheets

containing vortices. We will review some basic

facts from the c = 1 string theory in order to

make the text self-contained. A reader who is not

interested in the justification of the matrix/string

correspondence can skip this section.

4. A matrix model for the c = 1 string

theory with vortices

The background (1.2) corresponds to the usual

c = 1 noncritical string, which can be interpreted

3The most general case would correspond to the per-

turbation of (3.1) by all composite electric-magnetic op-

erators.

as the statistical mechanics of discretized random

surfaces. embedded in a compact one-dimensional

spacetime {x ≡ x + 2πR}. The second coordi-
nate φ is encoded in the intrinsic geometry of the

worldsheet determined by the connectivity ma-

trix of the corresponding planar graph. The dis-

cretized c = 1 noncritical string can be obtained

as the collective theory for a more “fundamental”

quantum system, a one-dimensional large-N ma-

trix field [14]. More precisely, the compactified

c = 1 noncritical string theory is contained in

the singlet sector of the one-dimensional matrix

model (MQM) compactified on a circle of circum-

ference 2πR [10]. It is necessary to project onto

the singlet sector in order to eliminate the vortex

excitations, which propagate in the sectors asso-

ciated with the higher irreducible representations

of SU(N) [6, 11].

One way to introduce vortices is therefore to

extend the Hilbert space of MQM to the sectors

corresponding to all representations of SU(N)

and understand the partition function of MQM

as a sum over all there sectors, with appropriate

weights. But then it is not possible any more

to apply the standard methods used to solve the

c = 1 string theory, because the matrix model is

no more described by a system of free fermions.

In each sector, the eigenvalues of the random ma-

trix obey a different statistics, which is neither

bosonic nor fermionic.

There is however a more efficient and explicit

way to introduce vortices in the matrix model,

namely to impose twisted periodic boundary con-

ditions on the one-dimensional matrix field. We

will introduce a matrix source coupled to the vor-

tex excitations by twisting the periodic bound-

ary condition. The twisted partition function

of MQM has been considered as an intermedi-

ate concept in [11] before projecting onto differ-

ent representations. In the discussion that fol-

lows, the twisted partition function will play a

more fundamental role: we will see that the cou-

plings for the vortex operators are actually the

moments of the twisting matrix.

4.1 Discretized strings with vortices from

the twisted MQM

The partition function of MQMwith twisted bound-

ary conditions depends on the unitary matrix Ω

5
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and is defined as the functional integral

ZN(Ω) =

∫
A(2πR)=Ω†A(0)Ω

DA e− 1h̄ tr
∫ 2πR
0

[ 12 (∂xA)
2+V (A)]dx

.

(4.1)

where A = Aji (x) is a one-dimensional Hermitian

N ×N matrix field. The twisted boundary con-
dition means that we identify the value at x = 0

of the field A with its value at x = 2πR, after

transforming it by a unitary matrix Ω in the ad-

joint representation. The simplest choice for the

potential from the point of view of the planar

diagram expansion is

V (A) =
1

2
A2 − 1

3
A3, (4.2)

which we will adopt in the following.

The 1/N expansion of the MQM free energy,

which we define as the logarithm of the partition

function

FN (Ω) = logZN(Ω), (4.3)

can be expressed in terms of connected planar

graphs embedded in the target-space circle of

radius R. The planar graph expansion is per-

formed with respect to the trivial classical vac-

uum A = 0. It is easy to see, if we rescale the

matrix field as A→ κA, with

κ =
√
h̄N, (4.4)

that the 1/N expansion of the free energy has

the form

FN (Ω) =
∑
h≥0
N2−2hF (h)(κ,Ω), (4.5)

F (h) being the contribution of planar graphs with

topology of a sphere with h handles. Each planar

graph Σ can be considered as a discretized world-

sheet, immersed in a one-dimensional spacetime.

In the following we will denote the vertices, links

and faces of a planar graph by v, ` and f , cor-

respondingly. The functional integral over the

worldsheet field X = (x, φ) is discretized as∫ DxDφ → ∑
Σ

∫ ∏
v dxv.

In order to construct the planar graph ex-

pansion, we have to invert the quadratic part

of the action in (4.1). The corresponding kernel

Gjlik(x− x′) satisfies

(−∂2x + x2)Gjlik(x) = δ(x)δji δlk,

as well as the twisted periodic boundary condi-

tion

Gjlik(x+ 2πR) = G
jl′
ik′ (x)Ω

k′
k Ω

†l
l′ .

We write the solution as a series

G(x)=

∞∑
n=−∞

e−|x+2πRn| Ωn ⊗ Ω−n (4.6)

and associate with each term in the sum a prop-

agator

x
i

k
====

n
====

j

l
x′ = e−|x−x

′+2πRn| (Ωn)ij(Ω
−n)lk.

In this way an additional integer-valued field n` ≡
n<vv′> associated with the links ` =<vv

′> of the
graph appears. The nontrivial matrix structure

of the propagator leads to a factor 1
N
tr Ωmf , as-

sociated with each face f of the planar graph,

where the integer mf , which we call vorticity, is

the winding number of the boundary ∂f of the

face around the target circle4. The vorticity is

equal to the algebraic sum of n` along the bound-

ary:

mf =
∑
`∈∂f
n`. (4.7)

The weight of a planar graph with genus h is

given by (we take into account the Euler relation

#f − 12#v = 2− 2h for the tri-valent graphs)

h̄2h−2κ#faces
∏
f

1

N
tr Ωmf

∏
`=<vv>

e−|x<vv′>+2πRn`|

We split, following the standard argument due

to Berezinski, Kosterlitz and Thouless, the sum

over the field n` into a sum over the vorticity field

mf and the gradient piece nv − nv′ . The only
effect of the sum over nv is to extend the inte-

gration over xv, which was originally restricted

to the interval [0, 2πR], to the whole real axis.

4Here we are following an argument suggested by P.

Zinn-Justin.
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v’

f

v

l=<vv’>

A piece of a discretized worldsheet

containing the face f and its boundary ∂f .

Thus the perturbative expansion of the twisted

partition function (4.1) can be interpreted as the

partition function of the c = 1 string theory with

vortices, and the fugacities of the vortex opera-

tors are proportional to the moments of the twist-

ing matrix. In order to exploit this string/matrix

correspondence, it is necessary to express explic-

itly the partition function (4.1) as a function of

the moments λn = tr Ω
n, i.e. ZN [Ω] = ZN [λ±1, λ±2, ...].

This is not easy, but we can slightly change the

problem in order to render it integrable. We

will see that the model becomes exactly solv-

able if we introduce sources tn coupled to the

moments tr Ωn and then integrate with respect

to the twisting matrix Ω. We will also consider

the Laplace transformed partition function (the

grand canonical ensemble GCE), in which the

size of the matrix N is replaced by its conjugated

variable, the chemical potential µF .

4.2 Integration with respect to the twist-

ing matrix

If we integrate with respect to the twisting ma-

trix, the moments λn = tr Ω
n become operators,

which create vortices on the worldsheet. We can

control the fugacities of the vortices by introduc-

ing in the action a set of coupling constants con-

jugated to these operators. Thus we define the

new partition function

ZN [~t]=
∫
[DΩ]

N
e

∑
n 6=0 tntrΩ

n

ZN(Ω) (4.8)

where ~t ≡ {tn}n6=0 and [DΩ]N stands for the the
Haar measure on the group U(N) normalized as∫
[DΩ]

N
= 1.

The evaluation of the integral in Ω in the

large N limit can be performed by expanding the

free energy FN (Ω) = logZN (Ω) as a sum over

connected planar graphs and re-arrange the ex-

pansion in the monomials of the moments λn =
1
N tr Ω

n. This series expansion is convergent for

sufficiently small κ.

Integrals of the type∫
[dΩ]N tr Ω

n1 ...tr Ωnk

can be easily evaluated if the sum of all powers

is less than N :5

∫
[dΩ]

N
tr Ωn = Nδn,0∫

[dΩ]N tr Ω
mtr Ωn = |m|δm+n,0 (4.9)

(m 6= 0), etc. The generating function for all
such integrals is∫
[dΩ]

N
e

∑
n 6=0 xntr Ω

n

= e
∑

n>0
nxnx−n . (4.10)

The formula (4.10) is valid to all orders in the

1/N expansion provided xn grow less than lin-

early in N . When xn ∼ N , the formula is valid
only until some critical value of xn/N where a

Gross-Witten phase transition occurs. The mean-

ing of this formula is the following. If the inte-

grand is a function of the moments that grows

slower than exponentially, then the integration

with respect to the U(N) Haar measure can be

replaced (up to terms O(e−N )) by independent
gaussian integrations with respect to the moments

λn = tr Ω
n:∫

[dΩ]
N
=
∏
n>0

∫ ∞
−∞

dλndλ−n
π

e−
1
nλnλ−n .

(4.11)

Therefore we can rewrite the integral in (4.8) as a

simple Legendre transformation with respect to

the moments λn = tr Ω
n:

ZN [ ~t ] =
∏
n6=0

∫ ∞
−∞

dλn√
π
e
−λnλ−n

2|n| +λntnZN [ ~λ ],

(4.12)

5The most elegant way to do it is by using the repre-

sentation of the moments of the unitary matrix bosonic

oscillator modes [15]. Replacing Tr Ωn → α−n + ᾱn,
where {αn} and {ᾱn} satisfy the canonical commutation
relations [αm, αn] = [ᾱm, ᾱn] = mδm+n,0, integrals of

products of traces can be calculated as expectation values

with respect to the vacuum satisfying αn|0〉 = ᾱn|0〉 = 0
when n > 0.

7
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which can be written also as

ZN [ ~t ] = e
∑

n>0
ntnt−n eT̂ZN [ ~λ ] e

−T̂ (4.13)

with

T̂ =
∑
n≥1

(
n∂λn∂λ−n + tn∂λ−n + t−n∂λn

)
.

(4.14)

In the leading order, the two free energies are

related by

logZN [ ~t ] =
∑
n6=0
λntn−

∑
n>0

1

n
λnλ−n+logZN [~λ]

where the r.h.s. is evaluated as the saddle point
~λ = ~λs.p.(~t), given by the solution of the equation

tn =
1

n
λ−n − ∂

∂λn
logZN [~λ]. (4.15)

Explicit relations between the observables in the

two ensembles can be written for any given genus.

For example, the vortex-antivortex correlation

functions on the sphere

Gn[ ~t ] = n∂
2 logZN [ ~t ]
∂tn∂t−n andGn[ ~λ ] = n

∂2 logZN [ ~λ ]
∂λn∂λ−n

are related by

Gn[ ~t ] = (1 −Gn[ ~λ ])−1. (4.16)

The perturbative expansion of the new en-

semble involves planar graphs with microscopic

“necks” obtained by identifying the boundaries of

two faces with equal number of sides but opposite

orientations and vorticities and then removing

the faces6. If the two faces belong to two surfaces

of genus h1 and h2, the result is a surface with

genus h1+h2. If the two faces belong to the same

surface of genus h, the result is a surface of genus

h + 1. The surfaces contributing to the spheri-

cal free energy, F (0), look like trees of spherical

bubbles (“cactuces”). Such necks have nontrivial

vorticities defined by the number of times they

wind around the target circle. The conservation

of vorticity allows to express the first derivative

in (4.15) as ∂
∂λn
logZN [~λ] =

1
n
Gn[ ~λ ] λ−n and

write it, using (4.16), as

λn = nGn[ ~t ] t−n. (4.17)

6Such configurations can be also visualized as Eu-

clidean wormholes in the two-dimensional universe.

4.3 The grand canonical ensemble (GCE)

We will also perform the Legendre transforma-

tion with respect to the size N of the matrix

field

Z[µF ,~t]=
∞∑
N=0

e2πRµFNZN [ ~t ] , (4.18)

which means that we are considering the grand

canonical ensemble in which N becomes an op-

erator coupled to the chemical potential µF . In

particular, when ~t = 0, the integral (4.18) gives

the standard matrix formulation of the c = 1

string theory (see, for example, [6]).

Let us see what happens with the planar

graphs in the grand canonical ensemble. The

relation between the two ensembles can be ob-

tained by performing the quasiclassical expan-

sion around the saddle pointN = Ns.p.(µF ). The

saddle point equation for κ = κs.p.(µF ) can be

written, in the genus-zero approximation, as

µF = −∂[N
2F (0)(h̄N,Ω)]
2πR ∂N = − 1

2πh̄R
∂[κ4F (0)(κ)]
2κ ∂κ ,

where F (0)(κ,Ω) is the leading term in the genus

expansion (4.5). This means that the cosmolog-

ical constant µF in the GCE is proportional to

the tadpole in the CE, i.e. the contribution of the

spherical surfaces with one pinned point. In the

planar limit the surfaces in the grand canonical

ensemble are trees (cactuces) made of the spheri-

cal surfaces of the original model. The expansion

around the saddle point in the sum over N is or-

ganized by a set of Feynman rules with propaga-

tor − 1
∂2
N
(N2F (0))

, tadpole µF = ∂N (N
2F (0)), and

vertices ∂nN (N
2F (h)) with n+ 2h ≥ 2 represent-

ing the contribution in the CE of the surfaces of

genus h with n punctures. The propagator can be

visualized as a microscopic tube connecting two

punctures and the diagrammatical expansion can

be thus as the sum over surfaces with microscopic

wormholes.

We have seen that the integration in Ω and

the sum over the size N have similar effects: they

introduce contact interactions due to microscopic

tubes, connecting two surfaces or different points

of the same surface in the original string theory.

However, as we shall discuss in the next section,

only the the microscopic tubes with zero vorticity

will survive in the large N limit.

8
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4.4 The scaling limit

It is relatively easy to calculate the functional

integral with respect to the matrix field A(x) at

fixed Ω, once we are interested only in the scal-

ing limit. In this section we will try to give an

intuitive picture of the scaling limit and extract

the relevant piece of the the integrand of (4.1)

before performing the integral. We will consider

in detail the geometrical meaning if the scaling

limit in terms of planar graphs, since such a dis-

cussion cannot be easily found in the published

literature. Let us first consider the scaling limit

of the theory with no vortices.

◦ The scaling limit in the singlet sector of MQM:
the canonical ensemble

Consider first the ensemble with N fixed,

which we call canonical (CE), saving the word

grand canonical (GCE) for the ensemble with

fixed µ. In the ensemble with N fixed, the scal-

ing limit is achieved in the vicinity of the critical

value κ = κc of the coupling (4.4), for which the

sum of planar graphs diverges. The size of a typ-

ical planar graph grows as

#faces ∼ (κc − κ)−1.

We assume that each link has length a and take

the limit a→ 0 so that the area

A = a2(#faces)

of the discretized worldsheet remains fixed. The

corresponding constant is then defined as

∆ =
κc − κ
a2 κc

. (4.19)

The scaling limit is approached by letting a→ 0
so that ∆ remains finite. Then the area of the

typical planar graph will be of order 1/∆.

The integration with respect to Ω projects on

the singlet representation of MQM, in which the

wave function Ψ(a1, ..., an) should be totally an-

tisymmetric with respect to permutations of the

eigenvalues A1, ..., AN of the matrix A. Then the

matrix model is reduced to a system of N nonin-

teracting one-dimensional fermions in a common

potential V (A). The scaling behavior is reached

when the fermi level becomes close to the top of

the matrix potential V (A) = − 12A + A3/3. The
piece of the potential relevant to the scaling limit

is Gaussian (with the wrong sign). The nongaus-

sian part of the potential plays the role of a cutoff

wall placed at distance of ∼ 1/√h̄ from the top.
Since we are going to pass to the GCE, we

return to the original parameter h̄ and denote its

critical value by h̄c. Then κ
2
c = h̄cN . It will be

convenient to denote h̄c as

h̄c =
1

Nc

and choose the cutoff as a2 = 1
Nc
. Then the

renormalized cosmological coupling is simply

∆ = Nc −N.

Dirac   sea

2

scaling limit: 
gaussian with the wrong sign

A

µ
µ

c

F

3

Perturbative vacuum: A=0

µ

V(A)= A  /2 - A  /3

The Dirac sea near the top of the potential.

Once the energy levels εn of the HamiltonianH =
− 12∂2A + V (A) are known, the partition function
is given by

ZN =

N∑
n=1

e−
1
h̄ 2πRεn .

The quasiclassical fermionic levels are obtained

by the Bohr-Sommerfeld quantization condition∮
pn(A)dA = 2πnh̄, with pn =

√
2[εn − U(A)].

Then the leading term of the free energy in the

scaling limit is (see, for example, [6])

F (0)(∆) = R

2g2s

∆2

log(a2∆)
, (4.20)

where gs is some finite constant. In the following

we will rescale the cutoff a so that gs = 1. Eq.

4.20) means that the number of genus zero dis-

cretized surfaces of area A grows as

eNcAA−3(logA)−2.

9
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◦ The scaling limit in the singlet sector of MQM:
the grand canonical ensemble

In the grand canonical ensemble (4.18), the

partition function becomes

ZN (µF ) =
∞∑
N=1

e
1
h̄ 2πR(µF−εN).

The cosmological constant is now

µ = µc − µF
where µc = 1/6 is the energy at the top of the

potential. In our normalization, the role of string

coupling constant is played by 1/µ: the contri-

bution of the surfaces of genus h > 1 is given by

the coefficient in front of the term µ2−2h, which
is the statement of the double scaling limit in this

case. The genus expansion in the scaling limit is

(see eqs. (3.30) and (9.12) in [6]):

F(µ) = −R
2
µ2 log (µa)−R+

1
R

24
log(µa)

+ R

∞∑
h=2

µ2−2h)f (h) (4.21)

where

f (k) = (2k − 3)! 2−2k∑kn=0 ( 1R)2n (22(k−n) − 2)
(22n − 2)|B2(k−n)B2n|([2(k − n)]![2n]!)−1
and Bm are the Bernoulli numbers.

Eq. (4.21) means that in the grand canoni-

cal ensemble the contribution of the genus zero

surfaces with area A grows as
eµcAA−3,

i.e. there are no logarithmic scaling violations7.

Note that the genus zero free energies in the two

ensembles have opposite signs. This fits to the

general observation by I. Klebanov and collab-

orators [17, 18] that surfaces with critical self-

touching interaction (microscopic necks) are de-

scribed by the non-convenient branch of the Li-

ouville exponent. As a consequence, at the point

when the self-touching interaction becomes criti-

cal, the string susceptibility exponent γstr jumps

to a positive value

γstr → γstr

γstr − 1 .
7The grand canonical ensemble is in fact the simplest

realization the “modified c = 1 matrix model” considered

in [16, 17].

In the limit γstr → 0 relevant for our discus-

sion, this means that the genus zero free energy

changes its sign:

F (0) ∼ ∆2−γstr−∆2
γstr

→ −F (0).
The cosmological constants in the two ensembles

are related to the value of the Liouville field at

the origin in the flat background (1.2) as

∆ = 2φ0e
2φ0 , µ = e2φ0 .

In this way the CE of fermions (MQM with N

fixed) describes a gaussian field coupled to a Li-

ouville theory with potential ∼ 2φe−2φ, while the
GCE (µ fixed) describes a theory with potential

∼ e−2φ.

◦ The scaling limit in presence of vortices

The scaling behavior of the vortex couplings

λn = tr Ω
n is dictated, according to the KPZ-

DDK scaling arguments, by the dimension of the

m-vortex operators:

λn = λ̂n ∆
1− 12 |m|R (4.22)

with λ̂n being dimensionless constants.

Generically the wormholes are not critical,

and the original partition function (4.1) and its

Legendre transform (4.8) will have the same scal-

ing limit, up to a finite rescaling of the cou-

pling constants. This change is not dramatic un-

less the the matrix potential are specially tuned

so that the relation (4.16) becomes singular, i.e.

Gn[ ~λ ] = 1 for some n. At such critical point, if

we assume that it exists, the scaling dimension of

the vortex operators V±n will change from
|n|R
2

to − |n|R2 . We will assume that no such criti-
cal point is nearby. This is certainly true when

the couplings tn are small, because otherwise the

wormholes along the handles on a higher genus

surface would alter its critical behavior, which is

not the case in the c = 1 string theory.

We also assume that vortices do not change

the UV behavior of the worldsheet theory and

therefore the continuum limit of our generalized

theory is also described by the inverse gaussian

potential. One can come to this conclusion after

the analysis of the twisted matrix model made

in [11]. We thus rescale A → A−1√
h̄
and retain

10
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only the gaussian part of the potential partition

function (4.1):

ZN (Ω) =

∫
A(2πR)=Ω†A(0)Ω

DA e− 12 tr
∫ 2πR
0

[(∂xA)
2−A2]dx

. (4.23)

If we integrate first in Ω and then in A, the

result will depend logarithmically on the cutoff

a, which was absorbed in the definition of the

functional measure. However, the cutoff is not

necessary if we perform first the integration in X

and then in Ω, as suggested in [11]. The integral

in Ω can be regularized by adding a small imagi-

nary part to R and consider the integration with

respect of the eigenvalues of Ω as a contour inte-

gration. In the case ~t = 0, such analytical regu-

larization reproduces the result 4.21) for the free

energy [11], up to the logarithmic dependence of

the UV cutoff a, which is a consequence of our

analytical regularization.

5. Integrability of the scaling limit

It has been already pointed out that at the self-

dual radius, the integrable structure of the c =

1 string theory is described by the Toda lattice

hierarchy [20, 21, 22, 23] We will see that this is

the case for any compactification radius. For that

we will need to write explicitly the GCE partition

function in terms of the eigenvalues z1, ...zN of

the twisting matrix Ω.

5.1 The GCE partition function as a Fred-

holm determinant

Let us evaluate the integral (4.23). First we inte-

grate with fixed boundary conditions A = A(0)

and A′ = A(2πR), which gives the propagation
kernel of the inverse oscillator:〈
A

∣∣∣∣∣
(
−∂2

A
−A2
2

)−1∣∣∣∣∣A′
〉
=
exp

(
i
(Aq1/2−A′q−1/2)2

q−q−1

)
[−iπ(q−q−1)]N

2
2

.

Here and below we use the shorthand notation

q = e2πiR. (5.1)

Then we impose the twisted boundary condition

A′ = Ω−1AΩ

and integrate with respect to the initial value A

of the matrix field. The result depends only on

the eigenvalues zj of Ω:

ZN (Ω) =
N∏

j,j′=1

1

|zjq1/2 − zj′q−1/2| . (5.2)

The same holds for the integral (4.8) and we can

replace the integration measure [dΩ]N by its di-

agonal part

∫
[DΩ]

N
=
1

N !

N∏
k=1

∮
dzk

2πizk

∏
j<k

|zj − zk|2.

(5.3)

As the integration goes along the unit circle, the

absolute value can be dropped out. This allows

us to consider the integral as a multiple contour

integral, in which case we can regularize it by

adding a small imaginary part to R = 1
2iπ log q.

It will be convenient to rescale the couplings

tn in the definition (4.18) of the partition func-

tion ZN [ ~t ] as tn → 2itn sin(nπR). Using the
Cauchy identity, we represent the canonical par-

tition function as

ZN [~t] =
∮ N∏
k=1

∮
dzk

2πizk
det
jk

eu(zjq
1/2)−u(zkq−1/2)

zjq1/2 − zkq−1/2

where

u(z) =
∑
n6=0
tnz

n. (5.4)

The GCE partition function

Z[µ,~t ] =
∞∑
N=0

e−2πµRNZN [ ~t ]

can be represented as a Fredholm determinant

Z[µ,~t] = Det(1 + e−µ2πRK̂), (5.5)

where the operator K̂ is defined as

(K̂f)(z) =

∮
dz

2πi

eu(zjq
1/2)−u(zkq−1/2)

q1/2z − q−1/2z′ f(z′).

Such Fredholm determinants have been studied

by many authors (see for example [24, 25, 26,

27]), and it is well known that they contain the

integrable structure of the Toda chain hierarchy

[30].

11
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5.2 Toda equation and KPZ-DDK scaling

It can be shown following the same arguments

as in [27], that our Fredholm determinant with

the normalization of the coupling constants we

adopted, is almost a τ function of the Toda chain

hierarchy with t0 = −iµ:

τl[−iµ,~t] = e−
∑

n≥1 ntnt−nZ[µ,~t]. (5.6)

The matrix model in the scaling limit is there-

fore characterized by an infinite set of commuting

renormalization flows associated with the cou-

plings tn and its partition function satisfies the

PDE of the Toda hierarchy. The dispersionless

limit of the Toda hierarchy describes the genus

zero approximation of the string theory given by

the leading term at µ→∞.
In the following we will concentrate on the

lowest equation of the hierarchy, the Toda lattice

equation

τ(t0)∂+∂− log τ(t0) +
τ(t0 + 1)τ(t0 − 1)
τ(t0)τ(t0)

= 0.

(5.7)

It is easy to see that due to the symmetry of

the measure, the τ -function depends only on the

product λ2 = t+t−. In terms of the grand canon-
ical free energy F(µ, λ) = logZ(µ, λ), the Toda
equation reads

∂+∂−F (λ, µ)+ eF (λ,µ+i)+F(λ,µ−i)−2F(λ,µ) = 1. (5.8)

Since we are interested in the dispersionless limit

µ → ∞, we write this equation in a differential-
operator form

∂+∂−F(λ, µ) + e−4 sin
2( 12

∂
∂µ )F(λ,µ) = 1 (5.9)

and expand the equation in a series in 1/µ. This

equation is of second order in λ and has unique

solution satisfying the boundary conditions

∂λF(λ, µ)|λ=0 = 0 and F(0, µ) = F(µ),
with F(µ) given by (4.21).
It is remarkable that equation (5.9) is is com-

patible with the KPZ-DDK scaling, i.e. with

the expansions (3.5)-(3.7) and (5.17)-(3.12), if we

take a = 1. Let us remind that the definition of

the τ -function implies that the integration with

respect to the eigenvalues zi is considered as a

contour integration, after adding a small imagi-

nary part to the compactification interval. With

such analytic regularization the partition func-

tion does not depend on the cutoff.

Since we are mainly interested in the critical

point y → 0 or λ → ∞ with µ finite, we will
use the expansion (5.17)-(3.12). Than the Toda

chain equation (5.8) gives a nonlinear ODE for

f (0)(y) and a triangular system of linear second

order ODE for the functions f (h≥1)(y).
The boundary condition (4.21) defines the

asymptotics of solution at y →∞. It can be sat-
isfied only if we choose a = 1. Indeed, the free

energy calculated from the τ -function does not

depend on the UV cutoff a. The integrals over

the eigenvalues of the twisting matrix entering

in the definition of the τ -function should be un-

derstood as contour integrals, otherwise the in-

tegrable structure will be destroyed. No trace of

a cutoff is left in such an analytic regularization.

Substituting (5.17)-(3.12 in (5.9), we get for

the universal part of the free energy

f(gs, y) =

∞∑
h=0

g2h−2s f (0)(y) (5.10)

the equation

(1 − ω2)g2s(y∂y + gs∂gs)2f + 4e4 sin
2( gs2 y∂y)f = 0

(5.11)

where we denoted

ω =
R

2−R. (5.12)

It is evident that this equation can be developped

in a Taylor series in g2s .

5.3 Partition functions on the sphere and

on the torus

Genus zero

In the leading order in gs, eq. (5.11) reduces to

a non-linear ODE for f (0)(y)

(1− ω2)(y∂y − 2)2f (0) + 4e∂2yf(0) = 0. (5.13)

Its solution is given, in terms of the universal

part of the susceptibility

X0 = ∂
2
yf
(0) (5.14)

by

y = e−
1
RX0 − e 1−RR X0 , (5.15)

12
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which is equivalent to (3.4), with χ(0) = X0 +

R log gs. Integrating twice in µ we get for the

partition function itself

F (0)(λ, µ) = λ2 + 12 1g2s y
2 (R log gs +X0(y))

+ 1
g2s
R
(
3
4
1
R−1e

−2R−1R X0(y) + 34e
− 2
RX0(y)

)
− 1
g2s

R2−R+1
R−1 e

−X0 , (5.16)

with X0(y) defined by (5.15), and the string cou-

pling is related to λ by

gs =
[
(R− 1)λ2] 1

R−2 .

In the limit y → 0, or µ → ∞ with λ fixed,
we reproduce from (5.16) the known asymptotics

of the c = 1 string theory unperturbed by vor-

tices:

F (0)(λ, µ) = −1
2
Rµ2 logµ+ λ2(1− µR) + ...

For R finite, the term λ2 in the free energy can

be dropped, but when R → 0, this term assures
that the the free energy also vanishes. The free

energy calculated from the τ -function does not

depend on the UV cutoff, therefore we have to

add by hand the term µ2 log a.

In the “black hole” limit y → ∞ or λ → ∞
with µ fixed, we obtain the asymptotics

F (0)(λ, µ) ∼ Aλ4/(2−R), (5.17)

with A = − 14 (2−R)2(R− 1)R/(2−R).
For the black hole case (R = 3

2 ) we get

F0 ∼ λ8. (5.18)

Genus one

The linear in g2s term of (5.11) gives the lin-

ear equation

(1−ω2)(y∂y)2f (1)+4eX0∂2y
(
f (1) − 1

12
X0

)
= 0.

(5.19)

The solution whose large y asymptotics is com-

patible with (4.21), is

f (1) =
R+R−1

24R
X0 − 1

24
ln
(
1− (R− 1)e 2−RR X0

)
.,

and the value of the constant C0 in (3.11) is

− 124 R+1R . Therefore

F (1) ∼ − R+R
−1

12(2−R) lnλ, λ→∞. (5.20)

5.4 Nonperturvative ambiguities

It is easy to see that the terms

∆F =
∑
n≥1
(Cn logλ+Dn)e

−2nπµ

can be always added to F(µ, λ) and it will still
satisfy the eq. (5.8). As usual, the string loop ex-

pansion is defined up to these exponentially small

terms ∼ e−2πµ which are negligible in the string
perturbation theory. This nonperturbative am-

biguity is related to the ∼ (2h)! divergence of the
coefficients fh in the genus expansion. It is pos-

sible in principle to fix them directly from the

matrix integral, as it is the case in the known

large N matrix models. At the c = 1 critical

point they are not essential, but they can become

important at the “cigar” critical point, where µ

is kept finite. These terms in the free energy de-

serve further study, because they should describe

the nonperturbative states at the Euclidean hori-

zon (tip of the cigar), where vortices are created

and annihilated.
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