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Chapter 1

Introduction

The standard cosmological paradigm of a universe with a cosmological constant (Λ) and

cold dark matter (CDM), contains six independent parameters, for which the theory

gives no definite predictions of their values. Typically, the Cosmic Microwave Back-

ground auto- and cross-correlation spectra are used to find best-fit values for these six

parameters [1], which can then be tested against other cosmological observables, such

as Baryonic Acoustic Oscillations [2]. Thus far, ΛCDM has proven robust against many

observational tests, with few discrepancies found1.

Furthermore, inflationary models can be used to calculate the initial conditions for

the ΛCDM model. While such theories (typically in tandem with assumptions about re-

heating dynamics) can provide theoretical motivation for some cosmological parameters,

such as the scalar spectral index and the tensor-to-scalar ratio described in Section 1.3.1,

these expected values of parameters are model dependent. The problem of theoretically

explaining these parameters are then diverted to properly embedding inflationary models

into a self-consistent, high energy field theory.

Worse still, two of the critical components of ΛCDM, the cosmological constant and

the cold dark matter, dominate the evolution of the universe at late times, yet continue

to evade consistent theoretical models [4] or experimental probes [5, 6, 7, 8, 9]. In

particular, a combination of large scale structure, CMB power spectrum, and Big Bang

nucleosynthesis differentiate dark matter from the Standard model. While hope remains

for detection of beyond Standard model particles in future direct and indirect detection

1Recently, much attention has been given the apparent discrepancy between measurements of the
Hubble parameter between the CMB and Type Ia supernova data [3].
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experiments, including colliders [10], at present we are left to infer the structure of

the dark sector from its gravitational interactions. This provides a vast playground to

explore new theoretical and observational probes of the dark sector.

In particular, this thesis will consider primordial circular polarization, the electron’s

electric dipole moment, and modified gravitational waveforms as probes of the dark

sector. As we will see, with recent experimental advances, these probes can provide

powerful constraints on the dark sector.

1.1 Axions and Axion-like particles

Historically, axions were introduced into the literature as the pseudo-Nambu-Goldstone

mode associated with breaking the U(1) Peccei-Quinn symmetry [11, 12, 13]. This

additional symmetry to the Standard model is imposed in order to cancel the anomalous

chiral current arising from the nontrivial QCD vacuum [14, 15]. The phenomenological

use of the QCD axion in resolving the Strong CP problem heavily restricts the number

of free parameters of the model. In particular, the mass of the axion can be related to

the symmetry breaking scale fa as

ma =
mπfπ
fa

√
mumd

mu +md
≈
(
6× 10−6 eV

)(1012 GeV

fa

)
, (1.1)

where fπ is the pion decay constant and mu,md,mπ are the masses of the up quark,

down quark, and pion, respectively.

While research has continued with the QCD axion, in particular investigating the

DFSZ [16, 17] and KSVZ [18, 19] models, much of the interest in cosmology comes from

a generalized version of the axion. To make direct connection with the Peccei-Quinn

axion described above, one may consider further modifications of the Standard model

by introducing additional anomalous U(1) symmetries [20]. Each broken symmetry

can result in a new pseudo-scalar with axion-like interactions. More generally, these

axion-like particles (ALP) can arise from a variety of high energy theories, including the

compactification of higher dimensions in string theory [21, 22].

The properties of the ALP may contain physical quantities which are currently not

observed, such as the energy scale fa in Eq. (1.1), which significantly expands the allowed

parameter space of the “low” energy theory. Instead, the ALP interactions are treated
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as an effective field theory, with the phenomenological goal of constraining particular

interactions at a given energy scales. This perspective endows ALP with tremendous

versatility in cosmological settings, such as models of inflation [23] and dark matter

[24, 25, 26, 27].

1.2 The Horizon Problem and Inflation

Current observations [28] of the Cosmic Microwave Background (CMB) verifies the

cosmological principle that the early universe was nearly homogeneous and isotropic.

Furthermore, the redshifting of light from supernova [29] provides strong evidence for

the expansion of space. With these observations, the universe is well described by the

Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, given in comoving Cartesian

coordinates as

gµν =



−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2


, (1.2)

where a(t) is the scale factor. For a given stress-energy tensor Tµν , the Einstein equations

can be used to find evolution equations for the scale factor.

If the only matter content of the universe is a collection of perfect fluids, each with

energy density ρi and pressure pi, the nonzero components of the Einstein equations can

be written explicitly as the Friedmann equations:

H2 =
1

3M2
p

∑
i

ρi, (1.3)

Ḣ +H2 = − 1

6M2
p

∑
i

ρi + 3pi, (1.4)

where dots represent time derivatives, H ≡ ȧ/a is the Hubble parameter, and the Planck

mass is given by M−2
p = 8πG. When the universe is dominated by a single fluid with

equation of state w = p/ρ, the Friedmann equations can be solved to give the scale
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factor as a function of time as

a(t) =


a0( tt0 )

2
3(1+w) w 6= −1,

a0e
H(t−t0) w = −1,

(1.5)

where t0 is the some initial time, and the initial scale factor is given by a0 = a(t0).

The comoving particle horizon can be used to find regions which was, at some time,

in causal contact. The particle horizon is given as the conformal time

η(t) =

∫ t

0

dt ′

a(t′)
∝ t

1+3w
3(1+w) , (1.6)

for ω 6= −1. For a universe dominated by either matter or radiation (or w > −1/3), the

particle horizon monotonically increases in time. Thus, the largest scales observed today

could not have been in causal contact at the surface of last scattering. Furthermore,

using the physical size of the particle horizon d = a(t)η(t), the observed angular scale

of the causal patches in the CMB should be approximately 2◦. The homogeneity across

the entire sky manifests as an initial condition problem, called the horizon problem [30].

One possibility for alleviating the horizon problem is to have in initial era where the

dominant form of energy density had an equation of state w < −1/3. At sufficiently

early times, large length scales were inside the Hubble radius (aH)−1 and thus in causal

contact. Eventually, these modes will leave the horizon due to the decreasing Hubble

radius. Radiation and matter dominated epochs follow this period, where the Hubble

radius increases and modes begin reentering the horizon. Because these scales were in

causal contact in the early universe, one expects the CMB to be homogeneous.

Inflation [31] was the first model to address the horizon problem2 using an exponen-

tially growing scale factor. Generally, models of inflation rely on a homogeneous scalar

field φ with a potential V (φ). The equation of state for the field can be written as

w =
1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (1.7)

When the potential term dominates the kinetic energy, φ̇2 � 2V (φ), the equation of state

is approximately w = −1, resulting in an exponentially growing scale factor in Eq. (1.5).

2As well as the flatness and monopole problems.
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In order to exit this deSitter phase, without considering interactions, the rolling of the

scalar field must eventually decrease the potential energy such that the equation of state

in the universe w ≥ −1/3, and the Hubble radius begins to increase again. In order to

guarantee that the all observed length scales were in causal contact during inflation, the

scalar field must not be accelerating rapidly. In terms of the equation of motion

φ̈+ 3Hφ̇+ V,φ = 0, (1.8)

we must additionally require |φ̈| � |3Hφ̇|, |V,φ|. Typically these conditions are written

in terms of two slow-roll parameters

ε =
3

2
(1 + w) =

φ̇2

2M2
pH

2
, η = − φ̈

Hφ
. (1.9)

Inflation continues as long as the slow-roll conditions ε, η � 1 are valid.

We note, in order to obey the slow-roll conditions, the potential must be extremely

flat,

V �MpV,φ and M2
pV,φφ, (1.10)

which requires a weakly interacting scalar field theory. These small couplings are rare

in particle physics, unless fine tuning is introduced. One important exception is the use

of Nambu-Goldstone bosons in models with high symmetry breaking scale [23]. Thus,

one can use axions as a natural inflationary model, with a potential typically given by

V (φ) = Λ4

[
1± cos

(
φ

fa

)]
, (1.11)

where Λ is a mass scale associated with the nonperturbative gauge field configuration.

After the slow-roll conditions are violated, the universe undergoes a period of re-

heating, where the energy density of the inflaton scalar field is deposited into other

degrees of freedom. In axion-inflation models, the inflaton retains the axion-like inter-

action to CP-odd combinations to fermions and gauge fields, which can provide a rich

phenomenology during reheating. We will discuss these possibilities in chapter 2.
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1.3 Previous Detection Methods

We now review methods applied for detecting axions and their interactions with Stan-

dard model particles. In particular, we will consider constraints on (axionic) inflationary

models from the CMB, cosmological constraints on axion-photon couplings, as well as

laboratory experiments for axions.

1.3.1 Inflationary Perturbations

Using a deSitter background, we consider the theory of metric perturbations during

inflation. In the comoving gauge, the scalar (R) and tensor (hij) metric perturbations

are given by

gij = a2 [(1− 2R)δij + hij ] , (1.12)

where the tensor perturbations are transverse and traceless. To first order in perturba-

tion theory, the equations of motion for the scalar and tensor fluctuations can be written

as

v′′k +

(
k2 − z′′

z

)
vk = 0, u′′k +

(
k2 − a′′

a

)
uk = 0, (1.13)

where primes denote derivatives with respect to conformal time, k-subscripts denote a

Fourier transform, z = aφ̇/H, and the scalar and tensor perturbations are given by

v = zR and u = aMphs, for each polarization s of tensor perturbations. When the

wavelength of the Fourier mode exceed the Hubble radius, the modes are called super-

horizon with k � aH, and the metric perturbations cease to evolve. Due to this “freeze-

out”, calculating properties of modes as they leave the horizon act as initial conditions

for the same modes that reenter the horizon in the late universe. In particular, the

power spectra of fluctuations as they leave the horizon are calculated.

In terms of the two-point correlation function, the power spectrum PO(k) can be

written as

〈OO〉 =

∫
PO(k)d log k . (1.14)

Typically, the power spectra will be power law functions of the scale k, the exponent

given in terms of the spectral indices

PR(k) ∝ kns−1, PT (k) ∝ 2Ph(k) = knT , (1.15)
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Figure 1.1: Marginalized joint 68% and 95% CL constraints on tensor-to-scalar ratio
at k = 0.002 Mpc−1 and primordial (scalar) spectral tilt, reproduced from Planck 2018
[33]. For comparison, various theoretical predictions for inflationary models are also
displayed.

where the factor of two in the tensor power spectra comes from the two polarizations of

gravitational waves. Promoting the Fourier modes vk, uk to quantum operators, these

scalar and tensor fluctations acquire a nonzero variance. The power spectra of scalar

and tensor modes can be calculated by defining the vacuum such that, in the asymptotic

past, the energy of sub-horizon modes is minimized [32]:

PR =
1

8π2

H2

εM2
p

∣∣∣∣
k=aH

, PT =
2

π2

H2

M2
p

∣∣∣∣
k=aH

, (1.16)

and the spectral indices can be found as

ns − 1 =
d logPR
d log k

= 2η − 4ε, nT = −2ε, (1.17)

where ε, η are the slow-roll parameter given by Eq. (1.9). Finally, the tensor-to-scalar

ratio is defined as the ratio of power spectra:

r =
PT
PR

= 16ε. (1.18)
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Typically different inflationary models will result in different spectral tilts and r,

thus measurements and constraints of these parameters provides valuable constraints

for the inflationary model. The scalar spectral index and tensor-to-scalar ratio can be

rewritten in terms of the potential as

ns − 1 = 2M2
p

[
V,φφ
V
− 3

2

(
V,φ
V

)2
]
, r = 8M2

p

(
V,φ
V

)2

. (1.19)

The most sensitive measurements of these parameters by [33] are then used to constrain

the inflationary potential and particular models. From Fig. 1.1, the predictions of Nat-

ural inflation [23] are disfavored on length scales k = 0.002 Mpc−1, posing a 2 − 3σ

deviation from observation.

1.3.2 Axion-Photon Coupling

One of the most constrained axion interactions is an effective couplings to photons

through the Lagrangian term

gaγγ
4
φFµνF̃

µν ⊂ L, (1.20)

where F̃µν = 1
2ε
µνρσFρσ and the coupling gaγγ ∝ f−1

a has inverse mass dimension. With

this coupling, the axion acquires a decay into two photons and in the presence of off-shell

photons (Primakoff process), an axion and photon can interconvert.

The decay timescale of the axion can be calculated as

τ =
64π

g2
aγγm

3
a

= 1025 s

(
gaγγ

10−10 GeV−1

)−2 ( ma

1 eV

)−3
. (1.21)

If the decay timescale corresponds to the periods between the onset of BBN and last

scattering, the injection of photons will manifest in the abundance of elements, spectral

distortions, or the dimishment of number of neutrinos in the CMB [35]3. These cosmo-

logical constraints are shown as blue shaded regions in Fig. 1.2. Theories with decays

timescales shorter than the age of the universe will not correspond to the observed dark

matter [36], although these constraints remain important for particle physics searches

for axions. Thus, axionic dark matter models must be either very light or very weakly

coupled.

3For light axions decaying during BBN, the additional photons produce more subtle effects [35], such
as a difference in baryon-to-photon ratio at BBN and CMB.
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We note, the QCD axion is guaranteed to couple to photons [37], due to the inter-

action with quarks. This coupling can be written as

gaγγ ∼
(
1.45× 10−10 GeV−1

) ( ma

1 eV

)
. (1.22)

For masses less than O(10 eV), or fa ≥ 107 GeV, the QCD axion will not could not

decay into photons within the age of the universe, and remains a viable dark matter

candidate.

One particular experimental probe of the axion-photon coupling is the microwave

resonant cavity experiment, ADMX, which can be seen in Fig. 1.2 as the only low mass

experiment probing the QCD axion. In this experiment, the application of an external

magnetic field allows the Primakoff process to interconvert axions into resonant electro-

magnetic modes of the cavity. Since the axionic dark matter should be nonrelativistic
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(cold), the resonant frequency of the cavity must closely match the mass of the axion.

Under this resonant condition, the power associated with the microwave signal can be

written as [38]

Psig ≈
1

2
g2
aγγ

(
ρa
ma

)
B2

0V CQL, (1.23)

where ρa is the local density of axions, B0 is the external magnetic field, V is the volume

of the cavity, QL is the loaded quality factor, and C is some mode-dependent form factor.

Crucial to this experiment is the large quality factor needed to improve sensitivity to low

axion-photon couplings, at the cost of probing only a narrow window (for a particular

cavity configuration) in the axion mass range.

1.4 Outline

This thesis attempts to fill in some of the void left by ΛCDM on the nature of the dark

sector. It explores the theoretical application of ALP on new observational windows

into the dark sector though circular polarization [39], electron electric dipole moments

[40], and modifications to the gravitational waveform [41].

In Chapter 2, we begin with a review of the reheating epoch after inflation. Applying

these dynamics to a generic axion inflation, we predict the electromagnetic spectrum

following reheating and decompose these modes into Stokes parameters. In particular,

we find the primordial power spectrum for circular (V-mode) polarization and resulting

in a blue-tilted spectral index.

We then turn to axionic dark matter models where the axion has an effective cou-

pling to fermions. Chapter 3 calculates the non-relativistic effects manifesting from this

coupling. In particular, for a reasonable laboratory setup, the dominant effect for an

axion-electron is an oscillating electric dipole moment (EDM). We show that for an ide-

alized spin-precession experiment, this oscillating EDM can be measured by a SQUID

magnetometer.

Chapter 4 considers a generic dark matter model where the (charged) dark matter

has accumulated within compact objects, such as neutron stars or a black holes. The

build-up of dark charge will manifest in a violation of Keplar’s laws. Beginning with

an overview of gravitational wave physics, we derive the corrections to the gravitational

waveform due to the accumulation of dark charge. Using a Fisher matrix analysis, we

10



are able to constrain generic properties of the dark sector, including axionic dark matter

models.

We conclude with Chapter 5, where we discuss future work to be done on each of

the aforementioned theoretical and observational probes.
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Chapter 2

Circular Polarization

2.1 Introduction

One of the cornerstones of CMB physics is the prediction of linear polarization of the

E-modes (gradient-type) from the intrinsic quadrupole temperature anisotropy, which

has been measured in the CMB [42]. Inflationary models also predict B-mode (curl-

type) polarization which is generated from tensor metric perturbations and induces

non-vanishing off-diagonal components of the polarization matrix. This greatly increases

the amount of ‘fundamental physics’ that can be extracted from the CMB, for example,

in the simplest models of inflation, a detection of primordial B-modes will probe the

energy scale of inflation.

While often forgotten, the final Stokes parameter, V-modes, can contain a wealth of

information about early universe, in particular parity violation. In the chiral polarization

basis, these V-mode describe a net circular polarization of the photons [43] as

V =
1

a4

(
|A′+|2 − |A′−|2

)
, (2.1)

where A± are the projections of the photon into chiral polarization basis, and ′ is the

derivative with respect to conformal time, and the corresponding brightness temperature

perturbation can then be constructed in an analogous manner to E and B [44, 45]. The

V-mode polarization is usually assumed to be zero because Thomson scattering does

not intrinsically source V, unless a magnetic field is present [45].

In this chapter, we will consider the generation of circular polarization in the context
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of axion inflation [23, 46, 47, 48, 49]. The inflationary (and reheating) generation of

circular polarization could be quite a general phenomenon provided that the inflaton

field sources chiral symmetry breaking either directly in the photon sector [50, 51, 52] or

indirectly through coupling to fermions [53]1, and we will study both these scenarios. In

the former case, there is a direct production of one polarization state during inflation,

while in the latter case, the pseudoscalar sources a left-right asymmetry in a charged

fermion which is subsequently transferred to circularly polarized photons [55]. These

mechanisms for generating CMB circular polarization are qualitatively different from the

generation of E- and B-mode polarization, as well as the generation of V by background

magnetic fields [45], as in the former case the polarization is generated during inflation

and reheating, while in the latter cases the polarization is only generated upon horizon

re-entry of primordial scalar and tensor modes.

2.2 Circular Polarization Preliminaries

We have expressed V in Eq. (2.1) as a difference in the photon polarization states; this

will be the most useful definition for our analysis. This definition is related to the more

conventional definition V = 2 Im[E∗xEy] by the change of basis to {x+, x−} coordinates,
√

2x̂+ = x̂ + iŷ,
√

2x̂− = x̂ − iŷ 2. This can also be expressed in terms of components

of the ‘polarization matrix’ as

V = −i(ρ12 − ρ21) (2.2)

where ρij is the polarization matrix defined by [44]

ρ =
1

2

 I +Q U − iV

U + iV I −Q

 (2.3)

= I I +Qσ3 + U σ1 + V σ2 , (2.4)

where in the second line we have used the Pauli matrices σi.

The V defined above has units of intensity. Anisotropies in V can be converted to a

1Note that our analysis differs from that of [54], which studied Majorana fermions. These are not
useful for generating gauge fields, since the vector current Jµ vanishes identically for Majorana fermions.

2In this basis,
√

2Ex = E+ +E− and
√

2Ey = i(E+−E−), which gives V = 2 Im[E∗xEy] = E2
+−E2

−.
In an FRW spacetime, this is precisely Eq. (2.1).
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fractional temperature fluctuation, which we denote ΘV , via the rescaling [56, 57, 58],

ΘV ≡
δVT
T

=
δV

I
, (2.5)

where VT is the V stokes parameter in units of temperature, I ≡ 1
a4

(
|A′+|2 + |A′−|2

)
is the intensity stokes parameter, and T is the background blackbody temperature.

One can then construct the CV Vl as the coefficients in the multipole expansion of the

two-point function 〈δVT δVT 〉.

The quantity we compute in this paper is the polarization present at the end of

inflation and reheating, which serves as the initial condition for the subsequent evolu-

tion to last scattering. In the case of E and B, the initial polarization is ignored, for

good reason: it is heavily suppressed by scatterings and is negligible compared to the

polarization produced by primordial scalar and tensor perturbations. In contrast, for V

(in the absence of a magnetic field) there is no signal generated by primordial scalar and

tensor fluctuations, so the only inflationary V will be a relic of that produced during

inflation. However, a mechanism is still required to circumvent the suppression from

scatterings. We will not fully develop this mechanism here, but will discuss possibilities

in Section 2.6.

Analogous to the primordial scalar spectrum, the (dimensionless) primordial power

spectrum of V-mode polarization is given by

PΘV (k) =
1

I2

k3

2π2
|δVk|2. (2.6)

This can be parametrized in a similar way to the primordial scalar spectrum [28, 59] as

PΘV (k) = AV
(
k

k0

)nV −1

(2.7)

where AV is the amplitude of primordial V-mode anisotropies at a reference scale k0,

and nV is the spectral index.
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2.3 Background Dynamics: Axion Inflation

We will study axion inflation coupled to a low energy U(1) gauge-fermion system with

a triangle anomaly cancelling term. The action for this model is given by

S =

∫
d4x
√−g

[
M2

Pl

2
R− 1

2
(∂φ)2 − V (φ) + ψ(iγµDµ −mψ)ψ (2.8)

−1

4
FµνF

µν +AµJ
µ +

C

f
∂µφJ

µ5 +
α

f
φFµνF̃

µν

]
.

In the above, Fµν is the usual field strength tensor of the photon, Dµ is the covariant

derivative with respect to the spin connection, and the vector current Jµ and axial vector

current Jµ5 are given by

Jµ = g ψγµψ , Jµ5 = ψγµγ5ψ. (2.9)

The fermion ψ is a 4-component Dirac spinor charged under the standard model gauge

group, though we will only consider the effective coupling to U(1)EM.

The background cosmology of this model is dictated by the Friedman equation,

H2 =
1

3M2
Pl

[ρφ + ρA + ρψ] , (2.10)

where ρφ is the inflaton energy density, which we will assume is dominant during in-

flation, while ρA and ρψ are the effective background energy density in the gauge field

Aµ and the fermion ψ respectively. This is in addition to the equation of motion of the

inflaton, given by

φ̈+ 3Hφ̇+ V,φ = −C
f
∂µJ

µ5 +
α

f
FµνF̃

µν . (2.11)

While the mechanism we consider here is independent of the choice of inflationary po-

tential, for concreteness we will consider the classic example of

V (φ) =
1

2
m2
φφ

2, (2.12)

with a benchmark value for the mass of mφ = 10−6MPl. Similar potentials for an axion

arises in monodromy models, such as the F-term axion monodromy model of [60].

Provided that backreaction is not significant during inflation, such that we can ignore
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the source terms on the RHS of (2.11), inflation ends once the slow-roll conditions

are violated. For m2φ2 inflation [61] this occurs at φend =
√

2MPl. At this point

(1/2)φ̇2 = M2
PlH

2, which follows from ε = (1/2)φ̇2/(M2
PlH

2), and hence the value of φ̇

is given by

φ̇end = mφMPl =
1√
2
mφφend. (2.13)

After inflation, and in the absence of expansion and backreaction, the field φ begins to

oscillate, triggering the ‘preheating’ phase. In this phase the field is described by,

φ(t) = φend sin(mφt). (2.14)

The maximum field velocity in this phase is thus φ̇pre = mφφend, which is roughly a

factor of
√

2 larger than the maximum value of the field velocity during inflation.

During inflation there will be production of fermions and gauge fields due to the

interactions in the Lagrangian. The relative strength of these interactions is controlled

by the ratio of parameters C/α. We will consider the regimes |C/α| � 1 and |C/α| � 1

separately.

2.3.1 Charged Fermion and Gauge Field Production during Inflation

with ∂µφJ
µ5

In the region of parameter space |C| � |α|, the dominant interaction for φ is with

fermions. To describe the fermion dynamics, it will be convenient to decompose the

4-component Dirac spinor ψ into two 2-component Weyl spinors ϕ and η, via

ψ =

(
ϕ

η†

)
, (2.15)

in terms of which the fermion currents take the form

Jµ = g
(
ϕ†σµϕ− η†σµη

)
, Jµ5 = ϕ†σµϕ+ η†σµη. (2.16)

Working in the comoving time FRW metric, we can reduce the covariant derivative to a

partial derivative by rescaling the fermion fields by a−3/2 to absorb the factor of
√−g,
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as in [53]. The fermionic action then takes the form:

Sf =

∫
d4x

[
iϕ†σ̄µ∂µϕ+ iη†σ̄µ∂µη −mψ(ϕη + ϕ†η†) (2.17)

+
C

f
∂µφ(ϕ†σ̄µϕ+ η†σ̄µη) + gAµ(ϕ†σµϕ− η†σµη)

]
.

Neglecting the φFF̃ interaction, the dynamics of the gauge-fermion system are dic-

tated by the gauge field equation of motion,

∂ν
(√−gFµν) = Jµ, (2.18)

and the fermion equation of motion,

iσ̄µ∂µϕ+

(
C

f
∂µφ + gAµ

)
σ̄µϕ = mψη

†, (2.19)

iσ̄µ∂µη +

(
C

f
∂µφ− gAµ

)
σ̄µη = mψϕ

†. (2.20)

During inflation the time-variation of φ leads to a violation of adiabaticity for the

fermions, leading to non-perturbative particle production wherein one helicity of the

fermions is preferentially produced [53]. The results of [53], which did not include gauge

fields, apply to our case at times when gauge field production on the fermion equation

of motion is negligible, or more precisely C
f φ̇ � gA0 , gAi. This assumption eventually

breaks down and the analysis must be done numerically. For our purposes, we will

use their results for the fermion production and study the corresponding gauge field

production.

The fermions can be expanded in mode functions as

ϕα(x, t) =
∑
λ

∫
d3k

(2π)3

[
xλαk(t)a

λ
ke
ikx + yλαk(t)b

λ†
k e
−ikx

]
, (2.21)

ηα(x, t) =
∑
λ

∫
d3k

(2π)3

[
xλαk(t)b

λ
ke
ikx + yλαk(t)a

λ†
k e
−ikx

]
,

and further decomposed into a helicity basis via the definition

xλk(t) = Xλ
k (t)ξλ(k) , yλ†k (t) = Y λ∗

k (t)ξλ(k). (2.22)
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where λ = ± denotes the (+) and (–) helicity states. Explicit expressions for the helicity

eigenspinors ξλ can be found in [62].

The particle number is then defined in terms of these mode functions as [53],

nλk =
1

ωλ(k̃λ + ωλ)

[
|Ẋλ

k |2 + ω2
λ|Xλ

k |2 − 2ωλ Im(Xλ
k Ẋ

λ
k )
]
, (2.23)

where the modified dispersion relations are,

ω2
λ(t) = k̃λ(t)2 +m2

ψ, k̃λ(t) =

(
k

a
λ+

C

f
φ̇

)
. (2.24)

After matching to the Bunch-Davies vacuum, the mode functions have the form3,

X+
k (kτ) = − imψ

H

eiθe
π
2
ϑ

√
2kτ

W− 1
2
−iϑ,µ(2ikτ), (2.25)

X−k (kτ) =
eiθe−

π
2
ϑ

√
2kτ

W 1
2

+iϑ,µ(2ikτ),

Y +∗
k (kτ) =

eiθ
′
e
π
2
ϑ

√
2kτ

W 1
2
−iϑ,µ(2ikτ),

Y −∗ik (kτ) = − imψ

H

eiθ
′
e−

π
2
ϑ

√
kτ

W− 1
2

+iϑ,µ(2ikτ),

where Wx,y(z) are Whittaker functions, and we have defined,

ϑ = −C
f

φ̇

H
, µ2 = −

(
m2
ψ

H2
+ ϑ2

)
, (2.26)

and θ, θ′, are arbitrary phases. The particle number on large scales is then given by

n±k = e
−π
(
∓ϑ+

√
m2
ψ

H2 +ϑ2

)
sinh

[
π

(√
m2
ψ

H2 + ϑ2 ± ϑ
)]

sinh

[
2π

(√
m2
ψ

H2 + ϑ2

)] . (2.27)

At strong coupling ϑ� mψ/H this simplifies to

n+
k ≈ 1 , n−k ≈ 0. (2.28)

There is thus a large asymmetry in the helicity states. This is similar to inflation with

the coupling φFF̃ , wherein one polarization of the gauge fields is amplified and other is

3Where we have corrected for a typo in the normalization stated in [53].
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negligible.

Finally, the helicity asymmetry in the fermions will be transferred to the photon via

perturbative processes, namely Bremsstrahlung. In the case of single-Bremsstrahlung,

this process allows a (+1
2) spin fermion to convert to a (−1

2) fermion via the emission

of near-collinear (+1) spin photon, and a (−1
2) spin fermion will convert to a (+1

2)

fermion via the emission of near-colinear (−1) spin photon. In our case, inflation and

preheating will produce a large number of (+) helicity fermions, leading to production of

(+) photons. The modern theoretical framework to describe this process is the spinor-

helicity formalism for gauge theories, as reviewed in e.g. [63, 64]. The emission of

Bremsstrahlung in this framework was first studied in [65, 66], where the amplitudes for

all relevant processes were computed. In our work we will take mψ/H small but finite,

such that helicity is approximately conserved on large scales and V/I ∼ O(1) for the

produced photons4.

2.3.2 Gauge Field Production during Inflation from φFF̃

If instead |α| � |C|, the dominant interaction term is that between the inflaton and the

gauge field, φFF̃ . This mechanism for the production of gauge fields from the coupling

has been considered in many work [49, 50, 67]. The equation of motion for Aµ is

d2Ak±
dτ2

+

(
k2 ± 2k

ξ

τ

)
Ak± = 0 , (2.29)

where ξ is given by

ξ =
2αφ̇

fH
. (2.30)

The parameter ξ plays a similar role to ϑ in the fermionic case, and there is production

of one of the polarization states on scales with k less than a critical value set by ξ. In

this case, Ak+ modes which satisfy

k

aH
< 2ξ, (2.31)

4Where I is the intensity stokes parameter, which determines TCMB and the TT power spectrum.
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experience a tachyonic instability and are amplified during inflation, while Ak− is unaf-

fected. The mode function prepared by inflation is

A
(0)
k+ =

2−1/4

√
2k

(
k

ξaH

)1/4

eπξ−4ξ
√
k/2ξaH (2.32)

A
(0)
k− ≈ 0,

where the + mode on large scales is amplified by a factor of eπξ.

Current CMB observations bound the value of ξ at the moment the CMB pivot scale

k? exits the horizon to be ξ? ≤ 2.2 [59], which corresponds to a (model-dependent) bound

on the coupling (α/f) . 110M−1
Pl −125M−1

Pl for m2φ2 inflation [50]. When we refer to the

‘strong coupling’ regime of this model, we mean the range 1M−1
Pl . (α/f) . O(102)M−1

Pl .

2.4 Preheating

After inflation, the oscillatory behaviour of the inflaton can lead to instabilities and

explosive particle production for fields directly coupled to the inflaton. This phenomenon

is known as “preheating”, originally discovered in [68, 69, 70, 71, 72, 73]. For both the

couplings ∂µφJ
µ5 and φFF̃ , the physical origin of non-zero V is the definite sign of

φ̇ during inflation, which produces a net circular polarization on super-Hubble scales.

However, after inflation, the field φ oscillates and both polarizations are produced,

making the predictions for V-mode polarization sensitive to the detailed dynamics of

preheating. This is in contrast to most other CMB observables, for example ns and r,

which are largely decoupled from the details of (p)reheating. With this in mind, we will

undertake an analysis of preheating which seeks to uncover the extent to which circular

polarization produced during inflation will survive preheating.

For the case of the direct coupling φFF̃ between the axion and gauge fields, the

preheating dynamics are straightforward. It was shown in [50, 51] that gauge fields are

copiously produced and preheating terminates quickly provided that the coupling is suf-

ficiently large. Preheating into fermions via Yukawa couplings was originally studied in

[74], and subsequently analyzed in many works, including [53, 75]. However, preheating

into charged fermions via ∂µφJ
µ5, which then produces photons, is more subtle, and has

not been studied thus far. We dedicate the following section to this issue. That is, we
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will work in the regime,
∣∣C
α

∣∣� 1. More details of the competition between inflationary

interactions will be discussed in Section 2.4.2.

2.4.1 The Structure of Preheating into Charged Fermions

In this section, the basic mechanism we would like to consider is the non-perturbative

production of fermions, which is instantaneous and occurs once an inflaton oscilla-

tion, and the subsequent perturbative production of photons. The simplest scenario

is that preheating terminates after one half-oscillation of the inflation, such that φ̇ never

switches sign, and the maximal helicity asymmetry of fermions, and consequently cir-

cularly polarization of photons, is achieved.

We will show that this occurs provided that the requisite ‘new physics’ (as measured

by (C/f)−1) occurs near the GUT scale, but at a sufficiently high scale that backreaction

does not prevent preheating from occurring. For smaller values of the coupling (i.e.

a higher energy scale for new physics), preheating lasts for multiple or many cycles

allowing for production of both helicity states, which suppresses the circular polarization.

In all cases, the conversion to photons then takes place via perturbative processes,

occurring within a single Hubble time. Perturbative reheating continues after this point,

operating on sub-Hubble scales, until the universe reaches near-thermal equilibrium and

the radiation phase of standard big bang cosmology begins.

Before we proceed with preheating, let us recall that if the dominant interaction is

between the gauge field and fermion current, the general solution of the gauge field is:

A±k (τ) ∼ i
∫

dη

a(η)
Gk(η, τ)J±(Xλ

k , Y
λ
k ), (2.33)

where J± is the (+/−) helicity piece of the vector current, and Gk is the Green’s function

of Ak. We can define the relative chirality to be

A+ −A−
Atot

= Arel. (2.34)

So as long as there is some linear polarization present the total amount of gauge fields

will be non-vanishing, Atot 6= 0. We can express the relative photon chirality as:

Arel(X
λ
k , Y

λ
k ; τ) = iA−1

tot

∫
dη

a(η)
Gk(η, τ)[J+

k − J−k ]. (2.35)
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Note that during preheating, we can construct the chiral currents J± as a quadratic

form of the eigenmodes produced during preheating, Xλ
k and Y λ

k . We immediately see

that if inflation produced a preponderance of left handed photons, then as long as the

difference between left and right handed current are O(1) of the total current, then the

chirality of the photons will be non-vanishing. Therefore under reasonable assumptions,

the backreaction of the fermion production during preheating will not wash out the

initially large photon helicity produced during inflation from potential lepton chirality

flipping transitions. To get an explicit computation of the percentage of chirality that is

retained during reheating detailed numerical analysis is necessary and we plan to pursue

this in a future work.

The structure of preheating is revealed by comparing time-scales in the problem.

The time-scale for fermion production is the oscillation period of the inflaton, which is

smaller than the Hubble time by roughly a factor of 10. Meanwhile, the time-scale for

the production of photons is given by,

τγ = 1/Γγ (2.36)

where Γγ is the usual rate of QED-like interactions at finite temperature, given by

Γ = nσv = g2T, (2.37)

where T is the effective temperature of the QED-like sector, which is roughly given by

T ≈ ρ1/4
ψ . The time-scale for production of photons is then given by

τγ =
1

g2ρ
1/4
ψ

. (2.38)

The relevant scale for comparison is the Hubble-time, which after the first production

event is given by τH = MPl/
√
ρψ. Hence the ratio of the time-scales is given by

τγ
τH

=
ρ

1/4
ψ

g2MPl
= O(1), (2.39)

where the second equality follows from the expressions and numerical values already

used, in addition to g ∼ αEM ∼ 10−2. Thus the production of photons takes place in
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roughly a Hubble time after the fermions are produced and preheating is terminated.

Smaller values of g will lead to a longer time-scale for photon production, which will not

substantially alter the structure of preheating.

With this in mind, we now study the production of fermions during preheating. The

inflationary solution for the fermion mode functions is no longer valid during preheating,

as the background is no longer adiabatically varying. These solutions were studied in

the past and we will make some general remarks about the following WKB solutions for

the different helicity eigenmodes:

Xλ
k (t) =

√
1 +

k̃λ
ωλ
ei
∫
ωλdt , Y λ

k (t) = −
√

1− k̃λ
ωλ
ei
∫
ωλdt (2.40)

where k̃λ and ωλ are given in Eq. (2.24).

During preheating the inflaton field oscillates about its potential minimum and adia-

baticity can be violated. A simple calculation reveals that this occurs when the effective

wave-number k̃λ vanishes

k

a
λ+

C

f
φ̇ = 0. (2.41)

Adiabaticity is violated for every k-mode twice an oscillation, once when φ̇ is positive

(which produces (+) helicity fermions) and once when φ̇ is negative (which produces (–)

helicity fermions). This violation of adiabaticity leads to the production of particles.

The fields produced by preheating depend sensitively on the time at which preheating

ends. This occurs once the ‘preheat fields’ disrupt the inflaton equation of motion or else

become comparable in energy density to the inflaton and thus take over the background

dynamics. This provides two conditions for non-termination of preheating,

V,φ � −
1

a3

C

f
〈∂µJµ5〉, (2.42)

and

ρφ � ρψ + ρA. (2.43)

We will focus on the second condition, as this suffices to provide a lower bound on C/f

such that preheating terminates after one production event (i.e. one half-oscillation).
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The energy density in fermions is given by

ρψ =
∑
λ

∫
d3k nλkωλ(k), (2.44)

where nλk is the number density and ωλ(k) is the energy-per-particle. After one produc-

tion event, and before conversion into photons, the number density in (–) helicity states

vanishes while the number density in (+) helicity states is given by

n+
k =


exp

(
−π mψ√

k2c−k2

)
, k < kc

0 , k > kc.

(2.45)

where the ‘critical wave number’ kc is defined by

kc ≡
C

f
|φ̇pre|. (2.46)

The same number density applies at the end of inflation, with φ̇pre being replaced by

φ̇end.

The above expressions simplify in the limit ϑ � mψ/H. In this case, the energy

density in fermions can be computed explicitly and is given by

ρψ =
πk4

c

3

(
1− π(3π − 8)

mψ

kc
+O(mψ/kc)

3/2

)
, (2.47)

where terms of O(mψ/kc) will be neglected. Meanwhile the energy density in the inflaton

during preheating is given by

ρφ ≈
3

4
m2
φφ

2
end. (2.48)

One can now easily compute the lower bound on C/f such that backreaction does

not shut off preheating before it begins. Using the value of kc during inflation, the

condition (2.43) can be rewritten as a constraint on C/f , as

C

f
<

1√
mφφend

(
9

π

)1/4

. (2.49)

For C/f violating this bound, backreaction is already significant during inflation and

preheating does not occur. During the first half-cycle of preheating the critical wave
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number changes by a factor of
√

2, which modifies this condition to

C

f
<

1√
mφφend

(
9

4π

)1/4

. (2.50)

For C/f violating this bound, preheating terminates after one production event. Putting

in the canonical values form and φ, and re-interpreting C/f as a scale of new UV physics,

C/f ≡ 1/ΛUV , we then find that preheating will terminate either before or immediately

after one production event provided ΛUV is below an upper bound given by

ΛUV < 10−3MPl ∼ 1015 GeV. (2.51)

In this regime there are no (–) helicity fermions produced, giving a maximal helicity

asymmetry. This can be rephrased as the condition ϑ > 103 during preheating.

In the opposite regime, ΛUV > 1015 GeV, preheating lasts for many cycles and the

number density is modified from the expression (2.45). The key difference from the

previous regime is that there is now a production of (–) helicity fermions, and hence

gauge fields, which occurs when φ̇ is negative. In this case, the expansion of the universe

causes kc to redshift, which not only changes the maximum k which is populated but

also decreases the efficiency of particle production on large scales.

A thorough study of this regime must rely on numerics, as was done by [53]. However,

we can make some analytic progress. The particle number on large scales following the

ith production event is roughly

nik = e
−π

mψ
kc(t0)

(
a(ti)

a(t0)

)3/2
, (2.52)

where the helicity (±) of the produced particles is dictated by the sign of φ̇ at the ith

event. The impact of the redshift factor, and the remaining helicity asymmetry on large

scales k � kc, depends sensitively on the ratio mψ/kc.

For ΛUV > 1015GeV and mψ/kc � 1, the redshift factor (a(ti)/a(t0))3/2 (which for

the first complete oscillation is roughly 2) is irrelevant and the production of (–) fermions

is just as efficient as the production of (+) fermions. The residual asymmetry present

after the subsequent oscillations is thus expected to be small, though a quantitative

estimate requires numerical analysis. If instead mψ/kc ∼ O(1), the production of (–) is
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much less efficient but the initial n+
k is only e−π ∼ .04. From this we conclude that the

regime ΛUV > 1015GeV will not lead to a helicity asymmetry on large scales.

There does however remain a spatially averaged net helicity asymmetry in this

regime, as computed in [53], which occurs due to modes with k ∼ kc at the beginning of

preheating which decouple once kc becomes larger than k. However, for ΛUV ∼ 10−4MPl

these modes are on a much smaller length scale than is of interest for CMB observations.

2.4.2 Competition of couplings

We would like to argue that there exists a regime in which the inflaton-fermion in-

teraction is dominant for the production of circular polarization, while inflaton-gauge

preheating has a subleading role.

Consider the gauge field with the usual QED interaction in addition to a Pontryagin

coupling with the inflaton. There is also a derivative coupling between the chiral fermion

current and the axion. The action for the gauge field is given by

S =

∫
d4x
√−g

[
−1

4
FµνF

µν +AµJ
µ +

α

f
φFµνF̃

µν

]
. (2.53)

Then, the equation of motion for the gauge field with different helicities can be written

as (
∂2
τ + k2 ± α

f

φ̇

a(τ)
k

)
A±k (τ) = − 1

a(τ)
J±k (τ) (2.54)

where the fermions have been rescaled, as in [53]. We are interested in the magnitude of

the contributions of the two interaction term with the gauge field. By defining ξ = α
f
φ̇
H ,

then we can rewrite the equation of motion as

(
∂2
τ + k2

)
A±k (τ) = − 1

a(τ)

(
J±k (τ)± ξHkA±k (τ)

)
(2.55)

and we are interested in calculating the relative magnitudes of the two terms on the

right side.

If we impose that the QED interaction between the gauge field and fermions domi-

nates during inflation, we have the general solution to the gauge field equation of motion

as

A±k (τ) ∼ i
∫

dη

a(η)
Gk(η, τ)J±k (η) (2.56)
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where Gk is the Green’s function and we omit the background solution as it is assumed

small. The Green’s function has been found [55] to be

Gk(η, τ) =
−i
k

sin (k(τ − η)) θ(τ − η) (2.57)

Then, the condition we must satisfy becomes

|J±k (τ)|2 ≥ ξ2H4

∣∣∣∣∫ dη η sin (k(τ − η)) J±k (η)

∣∣∣∣2 (2.58)

To find an upper bound on the integral, we assume that the growth of the current

is slower than the change in comoving Hubble radius aH. Then, the integrand has an

envelope that is monotonically decreasing, so the integral is dominated when the current

is turned on at the initial time, some τi. Hence,

|J±k (τ)|2 ≥ ξ2H4τ2
i τ

2|J±k (τi)|2 (2.59)

We then have the condition on the coupling strength for the φFF̃ term as

|ξ| ≤ a(τi)a(τ)
|J±k (τ)|
|J±k (τi)|

� 1. (2.60)

The direct coupling between the axion and the gauge field must remain small. The

initial time cannot be small (near the end of inflation) as this would contradict the

statement that the background gauge field is small, since the field would evolve under

the Pontryagin term for a long period of time during inflation. Intuitively, this is a

statement that the direct decay rate of the axion into the photons must be small so that

the preferred decay mode is through fermions.

Then, if the Pontryagin term is to dominate after the end of inflation, we need to

satisfy the equation

|J±k (τ)|2 ≤ (ξHk)2|A±k (τ)|2. (2.61)

Here, we know the field will grow due to tachyonic instabilities, and have generally

exponential growth from some initial value.

|A±k (τ)|2 = exp(λτ)|A±k (τ0)|2 (2.62)
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where τ0 is given at the end of inflation. We have already that the gauge field at the

end of inflation should behave as

|A±k (τ0)|2 =

(
H

k

)2

τ2
i τ

2
0 |J±k (τi)|2. (2.63)

The condition that needs to be satisfied becomes:

|J±k (τ)|2 ≤
(

ξ

a(τi)a(τ0)

)2

|J±k (τi)|2eλτ . (2.64)

Since the previous condition on ϑ, given by Eq. (2.60), should be saturated around the

end of inflation, the new condition becomes

|J±k (τ)|2 ≤ |J±k (τ0)|2eλτ (2.65)

Hence, the exponential growth factor has a bound given by

λ ≥ 2

τ
ln

( |J±k (τ)|
|J±k (τ0)|

)
(2.66)

Note, although τ is defined to be the time since the end of inflation, there should be

some finite time for the phase transition near the end of inflation. Therefore, these

considerations must take place some finite τ after the end of inflation.

The weak coupling of ξ may end up complicating this calculation. For weak cou-

pling, there should be an extended period of reheating where the axion will undergo

many oscillation in its potential. This will cause the ratio of circular polarization to

total intensity of light to diminish after each successive oscillation. Furthermore, the

exponential factor λ will generally depend on the k value that is being amplified. As a

result, there will be some cutoff in k where this condition will no longer be satisfied. In

general, this will favor the large k values, where we do not expect a large generation of

circular polarization. Taking the solution for λ from [51],

λk = (3.6× 10−3)

(
k

Λ

) 1
2

mpl (2.67)

where 1
Λ = ξ

4
√

6mpl
. From this, Eq. (2.66) becomes a constraint on the amount of time
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needed for the phase transition, given by the minimum allowed value of

τmin ≥
2

λk
ln

( |J±k (τ)|
|J±k (τ0)|

)
∼
(
109 s

)(mpl

ξk

) 1
2

(2.68)

The minimum desired value of k then sets the transition time. The smaller value the

k, the longer the transition will take and the assumption that the Pontryagin term will

dominate during reheating no longer becomes valid. Therefore, it is not valid to produce

circular polarization during inflation through a fermion chiral current and amplify the

gauge field during reheating though the Pontryagin term. Based on these arguments,

we will consider separately the case of preheating where the fermion-inflaton interaction

dominates and when the Pontryagin-inflaton interaction dominates.

2.5 The Spectrum of Circular Polarization on Large Scales

Now we come to the primary goal of this paper: to compute the large scale circular

polarization, and in particular, the spectrum. For both production channels we work

in the ‘strong coupling regime’, such that preheating terminates before any (–) helicity

particles can be produced.

2.5.1 Indirect production via ∂µφJ
µ5

This computation of V is in principle a tedious calculation involving integrals over

fermion mode functions (which we indeed compute in the supplemental Section 2.7),

but there is a intuitive shortcut that can be used to extract the spectral tilt of the

V-mode spectrum: provided that the helicity asymmetry in the fermions is efficiently

transferred to the gauge field, then the energy density in the gauge fields is precisely

equal to the V-mode polarization, i.e.

ρA = |Ȧ+|2 + |Ȧ−|2 ≈ |Ȧ+|2, (2.69)

and

V = |Ȧ+|2 − |Ȧ−|2 ≈ |Ȧ+|2 = ρA. (2.70)

Moreover, at linear order in energy density perturbations and metric perturbations, and

provided the energy transfer from fermions to photons is via perturbative processes (as
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opposed to, say, a parametric resonance instability), the spectrum of energy density

fluctuations δρ will be unchanged as energy is transferred from the fermions to the

gauge fields. This follows from the lack of mode-mixing in linear perturbation theory. It

follows from this that (up to an overall normalization) we can equate the Fourier modes

of the energy density in fermions and gauge fields:

δρψk ∝ δρAk, (2.71)

where the proportionality is up to a time-dependent normalization describing the trans-

fer of energy from the fermions to gauge fields.

The spectrum of fermion energy density fluctuations is encoded in the number density

and effective frequency, as the fermion energy density in a given Fourier mode is, up to

a random phase, given by

δρψk =
∑
λ

nkλωkλ. (2.72)

As per our previous discussions, the number density at large coupling and on large scales

is k-independent, as is ωkλ ∼ (C/f)φ̇. From this it follows that |δρAk|2 on large scales

is independent of k, and the V-mode Fourier modes are given by

|δVk| = N , (2.73)

for a time-dependent constant N . This result is confirmed via explicit computation in

Section 2.7, where we find the result,

|δVk|2 =
16g4f2

h

a8(τ)
(ϑaH)9 I(τ), (2.74)

which applies for scales k � kc. The coefficient fh ≡ 1 − (|A−|/|A+|)2, while I(τ) is a

time-dependent function which is an integral over the photons Green’s functions.

The power spectrum of V-mode polarization is then

PΘV (k) =
1

I2

1

2π2
k3|δVk|2 =

N 2

I22π2
k3, (2.75)

corresponding to a spectral index of V-modes nV , defined by PV ∝ knV −1, given by

nV = 4 Thus we find a deeply blue spectrum of V-mode polarization. The amplitude of
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the power spectrum depends sensitively on the parameters g, ϑ, fh, and the numerical

value of the integral I(τ). For an estimate of the amplitude, we turn to the other

production mechanism: the coupling φFF̃ .

2.5.2 Direct production of photons via φFF̃

The preheating production of gauge fields via φFF̃ was studied by one of the authors

in [51]. The mode functions prepared by inflation are amplified, with the production

occurring on a characteristic scale. For modes on much larger length scales, the (scalar)

energy density fluctuation after the first oscillation is k-independent, with an amplitude

that is proportional to the effective background energy density 〈ρA〉 deposited in the

gauge field,

|δρAk|2 '
〈ρA〉2

(2ξaendHend)3
. (2.76)

The value of 〈ρA〉 is in turn bounded by backreaction considerations, which ultimately

gives for the fluctuations, in the strong-coupling regime,

δρAk ∼
V (φend)

(2ξaendHend)3/2

ΛUV
MPl

for ΛUV ≡ (α/f)−1 < MPl .

As in the fermionic preheating scenario, this region of parameter space causes preheating

to terminate after one production event, such that a maximum polarization asymmetry

is achieved.

In this case the spectrum of super-Hubble V-mode polarization is identical to the

spectrum of energy density fluctuations,

δVk = δρAk. (2.77)

The power spectrum of V-mode anisotropies at the end of reheating 5 is given by

PΘV (k) =
1

2π2

(
ΛUV
MPl

)2( k

2ξaendHend

)3

. (2.78)

This is again blue-tilted with a spectral index nV = 4, where nV = 1 corresponds to a

5We assume that reheating occurs instantaneously after preheating, and that the photons produced
during reheating are unpolarized. The total I at the culmination of reheating is proportional to the
total energy density of the universe ρ = 3M2

PlH
2, and this growth in the intensity I is not accompanied

by a growth in δVk, as the tachyonic instability is no longer present during perturbative reheating.
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scale-invariant spectrum.

The above expression can be written in the parametrized form (2.7) as,

PΘV (k) = AV
(
k

k0

)nV −1

, nV = 4, (2.79)

where AV ≡ AV (k0) is the amplitude at a reference scale k0
6. For k0 that exits the

horizon sometime during inflation, such that k0 = a0H0, the amplitude AV is given by

AV =
1

16π2ξ3

(
ΛUV
MPl

)2( a0H0

aendHend

)3

. (2.80)

Due to the severe blue-tilt about kend = aendHend, the amplitude is suppressed on large

scales by a factor (a0/aend)
3 = e−3N0 , where N0 is the number of e-folds of inflation

remaining when the mode k0 exits the Hubble radius. For the benchmark values of

ξ = O(1), ΛUV ≡ f/α = 10−2MPl, the amplitude is given by

AV ≈ 10−7e−3N0 . (2.81)

From this we see that the severe blue-tilt guarantees a majority of the integrated power

will reside in modes that exit the horizon in the last e-fold of inflation. Choosing the

reference scale at k0 = kend, the amplitude is given as AV ≈ 10−7.

2.6 Discussion

In this work we have found that axion inflation with the standard ∂µφJ
µ5 and φFF̃

couplings produces circular polarization with a spectral index nV = 4. Currently, there

has been no detection of V , and only upper limits on CV Vl exist, e.g. as reported by the

SPIDER collaboration [76] and MIPOL [77]. Given this, our work is in a similar spirit

to computations of the tensor spectral index nT , as primordial tensor perturbations

are in a similar position of not having been observed at all, let alone their spectral

index. However, nT is a remarkably powerful tool for distinguishing models of the early

universe: simple single-field inflation models predict nT < 0, while String Gas Cosmology

6Note that the choice of k0 is arbitrary and does not change the physical amplitude of a given k-mode.
This is analogous to the pivot scale used in the power spectra for scalar and tensor fluctuations [59]
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predicts nT > 0 [78]7. Here we have found that nV = 4 is a generic prediction of axion

inflation. It would be interesting to construct inflationary models with different values

of nV , and in particular nV = 1, corresponding to a scale-invariant spectrum of V-mode

polarization. It was shown in [45] that a nearly scale-invariant spectrum of V-modes can

be generated by large-scale magnetic fields; it will be very interesting to connect this

with models of inflationary magnetogenesis (as reviewed in [81], and analysed in [52] for

axion inflation with the φFF̃ coupling we consider here).

The polarization computed here is present at the end of inflation/reheating. How-

ever, we have not touched upon the evolution from the end of reheating to the CMB.

The evolution to last scattering is described by the Boltzmann equation [82],

V̇Al +
4

3
ΘVAl −

l

2l + 1
D〈alVAl−1〉 +DbVbAl = −neσT (VAl −

1

2
Va1δ

1
l ), (2.82)

where σT is the Thomson cross section, ne is the free electron density, Θ ≡ ∇aua is

the volume expansion, and Al is a string of indices a1..al. We refer the reader to [82]

for further details on the notation. The above equation (or rather, scalar multipole

moments of the above equation) must be incorporated into a CMB Boltzmann solver,

such as CAMB, in order to make precise predictions for the CV Vl observed by CMB

experiments. Our results serve as the initial conditions for this analysis. It will be

interesting to see if the existing upper limits on V set by MIPOl [77] or SPIDER [76]

can already place constraints on the mechanism discussed here.

The evolution of circular polarization after horizon re-entry was discussed in [55],

where it was found that there is an exponential suppression of V due to QED inter-

actions. At a temperature scale below the mass of the electron, Thomson scattering

washes out any net photon helicity due to the large optical depth at this scale. Even

with an initial V/I ' 1, the standard cosmological treatment of the radiation Boltzmann

equation could potentially render primordial circular polarization undetectable in the

CMB.

There are, however, potential mechanisms to subvert this exponential decay. As

the universe expands, the efficiency at which Thomson scattering can suppress circular

polarization diminishes. Hence, there is a temperature scale Tc below which circular po-

7Blue-tilted super-horizon tensor modes can also be realized in certain non-minimal inflation models,
see e.g.[79], and also in axion inflation coupled to gauge fields [80].
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larization will receive negligible corrections due to Compton scattering, and a window

is provided between Tc and last scattering during which sources of circular polarization

may be present and detectable in the CMB. As an example, [45] shows that magnetic

fields present in the plasma at last scattering can source circular polarization. Alter-

natively, a more direct late time production can be found if the axion’s velocity, φ̇, is

nonzero at late times. Finally, work on cosmic birefringence [83] has suggested that a

rotation angle between E and B-mode polarization can arise from a Chern-Simons term.

This rotation angle relies on late time dynamics of the pseudo-scalar field, hence one

should also expect a late time production of circular polarization.

Each of these three mechanisms for preventing the decay of V can be described in

terms of physical phenomena in the plasma at last scattering. For a constant mag-

netic field, the dielectric constant becomes dependent on the helicity of the propagating

photon. The Chern-Simons term causes a relative change in the dispersion relation of

the photons. Finally, the chemical potential in fermions will induce different plasma

frequencies for each photon helicity. In each case, if the mechanism is present in the

plasma sufficiently early, the full Compton cross section can conserve photon helicity in

interactions, preserving some primordial V-mode polarization. We leave a more detailed

description of these phenomena for future work.

There are many other directions for future work that we have not touched upon

here. Foremost among this is the analysis of cross-correlation of V with other CMB

observables. For example, it is known that φFF̃ yields a characteristic tensor mode

signal [80]; it will be interesting to study the cross-correlation of V and B in this model.

Such a complete analysis will maximize the information that can be extracted from

future CMB experiments, and the constraints on axion inflation that can derived.

2.7 Appendix: Computation of δVk

We want to study Fourier modes of the stokes parameter V . However, since V ∼ Ȧ2 ∼ ψ4

is a composite operator, we have to be careful in how we proceed.

Let’s first consider a general (real) operator O(x, t). This can be split into a back-

ground and fluctuation piece via the definition

O(x, t) = 〈O〉(t) + δO(x, t), (2.83)
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where < .. > denotes a classical ensemble average or quantum vacuum expectation value,

on super- and sub-Hubble scales respectively. The fluctuation piece can be expanded

into plane waves as

δO(x, t) =

∫
d3k

(2π)3
δOk αk eikx, (2.84)

where αk are classical random variables, or quantum mechanical annihilation/creation

operators, with αk = α∗−k (which allowed us in the above to combine the positive and

negative frequency modes into one term). The mode functions δOk are then given

|δOk|2 =

∫
d3xe−ikx

[
〈O(x)O(0)〉 − 〈O〉2

]
. (2.85)

As an illustrative example, one can consider O = φ2 for a scalar field φ. In this case,

(2.85) leads to

|δ(φφ)k|2 = 2

∫
d3k′

(2π)3
|φk′ |2|φk−k′ |2. (2.86)

For the case of interest for the current work, the mode functions are given by

|δVk|2 = 2

∫
d3x e−ikx

[
〈V (x)V (0)〉 − 〈V 〉2

]
(2.87)

Using the expressions of the previous sections, a two-point function 〈V (x)V (y)〉 is given

in terms of a 4-point function of fermion currents 8,

〈V (x)V (y)〉 =
f2
h

a8

∫  4∏
j=1

dηj a(ηj)G
′(ηj , τ)

 〈Jµ(x, η1)J†µ(x, η2)Jν(y, η3)J†ν(y, η4)〉.

(2.88)

where fh ≡ 1− (|A−|/|A+|)2 is the efficiency of helicity transfer from the (±) fermions

to the (±) circularly polarized photons: if fh = 1, then helicity is conserved at every

interaction, and only + photons are produced. This, in turn, is an 8-point function of

fermions (note that (ψγµψ)† = ψγµψ):

〈Jµ(x, η1)J†µ(x, η2)Jν(y, η3)J†ν(y, η4)〉 (2.89)

= g4〈(ψγµψ)x,η1(ψγµψ)x,η2(ψγνψ)y,η3(ψγνψ)y,η4〉
8Note: this expression already implicitly assumes that only one photon polarization is amplified
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This 8-point function can be computed using the fermionic version of Wick’s theorem,

keeping track of factors of (−1) from shuffling the fermions. We can begin by decom-

posing it into 4-point functions:

1

g4
〈Jµ(x, η1)J†µ(x, η2)Jν(y, η3)J†ν(y, η4)〉 (2.90)

= 〈(ψγµψ)x,η1(ψγµψ)x,η2〉 · 〈(ψγνψ)y,η3(ψγνψ)y,η4〉

+ 〈(ψγµψ)x,η1(ψγνψ)y,η3〉 · 〈(ψγµψ)x,η2(ψγνψ)y,η4〉

+ 〈(ψγµψ)x,η1(ψγνψ)y,η4〉 · 〈(ψγµψ)x,η2(ψγνψ)y,η3〉

The first term is precisely 〈V 〉2, leaving only the last two terms to determine δVk.

Additionally, since the integral is invariant under the exchange η3 ↔ η4, the last two

terms will give identical contributions. Returning to our expression for δVk, we now

have

|δVk|2 = 4g4f2
h

∫
d3xe−ikx

1

a8

∫  4∏
j=1

dηj a(ηj)G
′(ηj , τ)

 (2.91)

× 〈(ψγµψ)x,η1(ψγνψ)y,η3〉〈(ψγµψ)x,η2(ψγνψ)y,η4〉.

The remaining four-point function can be split into two-point functions using Wick’s

theorem. However it is convenient to decompose the four-component fermion ψ into

two-component spinors ϕ, η since

1

g
〈Jµ(x, η1)〉 =

1

g
σµab〈Jab〉 = σµab

(
〈ϕ†aϕb〉 − 〈η†aηb〉

)
= 0 (2.92)

becomes automatically imposed. The product of four-point functions appearing on the

second line of (2.91) can be written as

〈(ψγµψ)x,η1(ψγνψ)y,η3〉〈(ψγµψ)x,η2(ψγνψ)y,η4〉 (2.93)

=
1

g4
〈Jµ(x, η1)Jν(y, η3)〉〈Jµ(x, η2)Jν(y, η4)〉
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and the remaining four-point function has the form

1

g2
σµabσνcd〈Jab(x, η1)Jcd(y, η3)〉 (2.94)

= σµabσνcd〈
(
ϕ†aϕb − η†aηb

)
x,η1

(
ϕ†cϕd − η†cηd

)
y,η3
〉

= σµabσνcd
(
〈ϕ†aϕbϕ†cϕd〉 − 〈η†aηbϕ†cϕd〉 − 〈ϕ†aϕbη†cηd〉+ 〈η†aηbη†cηd〉

)
.

Again, Wick’s theorem can be used to split the fermion four-point function into two-

point functions as

〈ϕ†aϕbϕ†cϕd〉 = 〈ϕ†aϕb〉 · 〈ϕ†cϕd〉 − 〈ϕ†aϕd〉 · 〈ϕbϕ†c〉 (2.95)

〈η†aηbϕ†cϕd〉 = 〈η†aηb〉 · 〈ϕ†cϕd〉+ 〈η†aϕ†c〉 · 〈ηbϕd〉 (2.96)

〈ϕ†aϕbη†cηd〉 = 〈ϕ†aϕb〉 · 〈η†cηd〉+ 〈ϕ†aη†c〉 · 〈ϕbηd〉 (2.97)

〈η†aηbη†cηd〉 = 〈η†aηb〉 · 〈η†cηd〉 − 〈η†aηd〉 · 〈ηbη†c〉. (2.98)

The first term on the right hand side of these four-point functions will factor to 〈Jab〉〈Jcd〉.

The fluctuation piece of the four-point function can then be written as

1

g2
〈Jµ(x, η1)Jν(y, η3)〉 = 2σµabσνcd

(
〈ϕ†a(x, η1)ϕd(y, η3)〉 · 〈ϕ†c(y, η3)ϕb(x, η1)〉

+ 〈η†(a(x, η1)ϕ†c)(y, η3)〉 · 〈ϕ(d(y, η3)ηb)(x, η1)〉〉
)
, (2.99)

where round brackets (..) around indices denotes symmetrized indices. The two-point

functions appearing above can be written explicitly in terms of fermion mode functions,

which have the general form9

〈ϕ†a(x, η1)ϕd(y, η3)〉 =
∑
λ

∫
d3k

(2π)3
ξλa (k)ξλ†d (k)eik·(x−y), (2.100)

×
[
X−λ∗k (η1)X−λk (η3)− Y λ∗

k (η1)Y λ
k (η3)

]
〈η†a(x, η1)ϕ†c(y, η3)〉 =

∑
λ

∫
d3k

(2π)3
ξλa (k)ξλ†c (k)eik·(x−y) (2.101)

×
[
Y λ∗
k (η1)Xλ∗

k (η3)− Y −λ∗k (η3)X−λ∗k (η1)
]

9Using the relation ξλ(k̂) = ξ−λ(−k̂), which follows from the explicit form of the eigenspinors, given
in [62].
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On large scales we can expand the fermion mode functions as

X+
k (kτ) = −

(mψ

H
Γ(−2iϑ)

)
(1− i) 2−1+iϑ eikτ+πϑ(−kτ)iϑ, (2.102)

X−k (kτ) = −(1 + i) 2−1+iϑ e−ikτ (−kτ)iϑ, (2.103)

Y +∗
k (kτ) = −(1 + i) 2−1−iϑ e−ikτ (−kτ)−iϑ, (2.104)

Y −∗k (kτ) = −
(mψ

H
Γ(2iϑ)

)
(1− i) 2−1−iϑ eikτ−πϑ(−kτ)−iϑ. (2.105)

We then define the quantities:

Aλk(ηi, ηj) =
[
X−λ∗k (ηi)X

−λ
k (ηj)− Y λ∗

k (ηi)Y
λ
k (ηj)

]
, (2.106)

Bλk (ηi, ηj) =
[
Y λ∗
k (ηi)X

λ∗
k (ηj)− Y −λ∗k (ηj)X

−λ∗
k (ηi)

]
. (2.107)

In general, neither Aλk , B
λ
k are nonzero, however we can order them for small mψ/H,

A+ ∼ O(1) , B± ∼ O
(m
H

)
, A− ∼ O

(
m2

H2

)
(2.108)

To lowest order in mψ/H, the fermion four-point function takes the form

1

g2
〈Jµ(x, η1)Jν(y, η3)〉 = 2σµabσνcd

∫
d3k1

(2π)3

d3k2

(2π)3
A+
k1

(η1, η3)A+
k2

(η3, η1) (2.109)

× ξ+
a (k1)ξ+†

d (k1)ξ+
c (k2)ξ+†

b (k2)ei(k1−k2)·(x−y)

where the next order correction is O(m/H)2. Therefore, the product appearing on the

second line of (2.91) can be written in the form (now dropping the + superscript from

the ξ’s):

1

g4
〈Jµ(x, η1)Jν(y, η3)〉〈Jµ(x, η2)Jν(y, η4)〉 (2.110)

= 4σµabσνcdσrsµ σ
tu
ν

∫ ϑaH

0

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

d3k4

(2π)3

×
[

exp[i(k1 − k2 + k3 − k4) · (x− y)]

×A+
k1

(η1, η3)A+
k2

(η3, η1)A+
k3

(η2, η4)A+
k4

(η4, η2)

× ξa(k1)ξ†d(k1)ξc(k2)ξ†b(k2)ξr(k3)ξ†u(k3)ξt(k4)ξ†s(k4)

]
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where the function A+
k (η1, η2) can be explicitly written as

A+
k (η1, η2) = i sin (k(η1 − η2)) exp

[
−iϑ log

(
η1

η2

)]
. (2.111)

Finally, the mode functions of the circular polarization (using the inflationary fermion

mode functions and taking the lowest order in mass) are given by:

|δVk|2 =16g4f2
h

1

a8(τ)

∫  4∏
j=1

dηj a(ηj)G
′(ηj , τ)

∫ d3x (2.112)

×
∫ ϑaH

0

d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

d3k4

(2π)3

[
exp[i(k1 − k2 + k3 − k4 − k) · x]

× sin (k1(η1 − η3)) sin (k2(η1 − η3)) sin (k3(η2 − η4)) sin (k4(η2 − η4))

× ξ(k1)σµξ†(k2) · ξ(k2)σνξ†(k1) · ξ(k3)σµξ
†(k4) · ξ(k4)σνξ

†(k3)

]
.

We can now perform the x-integration and one of the ki-integrations. If we choose i = 4,

this sets k4 = k1−k2 +k3−k. For k/aH � 1, the remaining k-integrals are dominated

by the upper bound ki = ϑaH.

|δVk|2 ≈
16g4f2

h

a8(τ)
(ϑaH)9

∫  4∏
j=1

dηj a(ηj)G
′(ηj , τ)

 sin (ϑaH(η1 − η3)) (2.113)

× sin (ϑaH(η1 − η3)) sin (ϑaH(η2 − η4)) sin (ϑaH(η2 − η4))

×
∫
|ki|=ϑaH

dθ1dφ1dθ2dφ2dθ3dφ3ξ(θ1, φ1)σµξ†(θ2, φ2)

× ξ(θ2, φ2)σνξ†(θ1, φ1) · ξ(θ3, φ3)σµξ
†(k4) · ξ(k4)σνξ

†(θ3, φ3),

where the final line is an integral over the angular variables of the ki at |ki| = ϑaH,

(recall that ξλ(k) depends only on k̂), and k4 ≈ k1 − k2 + k3 is evaluated at |k1| =

|k2| = |k3| = ϑaH . Again we note that all ξ’s appearing above are ξ+. This result has

the schematic form,

|δVk|2 =
16g4f2

h

a8(τ)
(ϑaH)9 I(τ) (2.114)

where I(τ) is integral over Green’s functions given above, and the angular integral over

the helicity eigenspinors. As per the discussion in Section 2.4, the above |δVk|2 (valid

on large scales) is k-independent.
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Chapter 3

Oscillating Electric Dipole

Moment

3.1 Introduction

While the idea of axionic dark matter is not new, the Invisible Axion and ALP have

evaded detection in both astrophysical and Earth-based experiments. Some experiments

have capitalized on enhancing detection in a resonant cavity with a strong external mag-

netic field [84, 85, 86]. Others have exploited the possibility of detecting the change in

flux from a carefully oriented external magnetic field [87, 88]. Typically, these experi-

ments rely on the modification to Maxwell’s equations [24, 25, 89] by the axion-photon

interaction of the form δL ∝ φE · B. In contrast, we consider a new possibility of

detecting the axion directly from its interaction with electrons.

Previously, various authors considered couplings of the axion to matter fields in the

standard model [37, 90, 91, 92]. When considering the QCD axion, it is possible for the

electron to have direct couplings and radiatively induced couplings to the axion. This

interaction manifests by distinguishing the axion from the longitudinal Z0 after spon-

taneously breaking electroweak symmetry [37]. The axion-electron effective interaction

will then take the form of

L ⊃ 2X ′eme

fa
φΨ̄eiγ

5Ψe, (3.1)

where X ′e is related to the electron’s Peccei-Quinn charge. Without restricting to a par-

ticular axion-like model, we will treat this coupling coefficient as an effective parameter.
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As we will see, the relativistic axion-electron interaction will induce a non-relativistic

interaction that involves an axion, electric field, electron coupling which will cause spin

precession in the electron wave function; an electric dipole moment. This effect is similar

to how a spin-magnetic field coupling can lead to spin precession. Similar mechanisms

have been considered [93, 94] and find similar forms for an induced electron electric dipole

moment. In this chapter, we consider new interactions and the quantum mechanics of

electrons in the presence of axion dark matter and an external electric field. We will

find that there is an induced change in magnetic flux that is in principle detectable for

realistic background field values. Finally, we propose an idealized experiment, similar

to [95], which may detect such a change in flux.

3.2 Non-relativistic Axion-Electron Dynamics

Consider dimension-four operators coupling a U(1) gauge field Aµ, fermion Ψ, and real

pseudoscalar φ that retain gauge invariance and shift-symmetry. A simple example,

analogous to the simplest realizations of Invisible Axion scenarios, contains an extra

Higgs singlet is introduced whose phase is the axion Φ = ρeiφ/f . Yukawa couplings to

quarks and leptons yield the following shift symmetric axion couplings:

Lφ = −1

2
∂µφ∂

µφ− µ4

[
1− cos

(
φ

f

)]
+ λf sin

(
φ

f

)
Ψ̄iγ5Ψ + ..., (3.2)

where λ is the dimensionless Yukawa coupling of the singlet Φ and fermions Ψ, and

µ is a parameter related to instanton effects. For a detailed description of low energy

fermionic coupings for the QCD axion, see [96].

We will be studying ultra light axion dark matter solutions, given in Eq. (3.10),

where φ � f . This will reflect a symmetry breaking, where the axion acquires a mass

by settling into one of the degenerate minima of its (effective) cosine potential. Without

loss of generality, we assume the axion settles into φ = 0 minima, and the small field

expansion for φ/f is applied to the Lagrangian.

The resulting effective Lagrangian can be written as

L = Ψ̄ (iγµDµ −m) Ψ− iλφΨ̄γ5Ψ + Lkin (3.3)
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where Dµ is the U(1) gauge covariant derivative, and Lkin contains the kinetic terms for

the pseudoscalar and the gauge field. In particular, we consider interactions between

electromagnetism, electrons, and the axion. The equation of motion for the fermion

field Ψ is found as (
iγµ∂µ −m+ gγµAµ − iλφγ5

)
Ψ = 0. (3.4)

We want to find a non-relativistic form of the equation of motion, analogous to the

Schrodinger equation.

Working in the Dirac basis, define A0 = ϕ and decompose the Dirac fermion four-

spinor Ψ into two component spinors. Then, the equation of motion gives coupled

differential equations for the two-component spinors

(E + gϕ−m) Ψe = −
(
−iλφ+ ~σ ·

(
~p+ g ~A

))
Ψē, (3.5)

(E + gϕ+m) Ψē =
(
−iλφ− ~σ ·

(
~p+ g ~A

))
Ψe. (3.6)

In taking the non-relativistic limit, the limit gϕ � m is imposed, as well as the usual

approximation E ≈ m. Taking these approximations, the equation for Ψē becomes

2mΨē ≈ − (iλφ+ ~σ · ~π) Ψe, (3.7)

where we have defined ~π = ~p + g ~A. For λφ � m, the amplitude of the positron Ψē

is suppressed when compared to the electron’s amplitude Ψe. This condition naturally

arises due to the small coupling between the axion dark matter and standard model

fermions, and the small expectation value for the axion due to symmetry breaking.

After redefining the energy as the non-relativistic energy E → E+m, solving for Ψē

gives the uncoupled equation for Ψe can be found. Given that the fermion mass is the

largest parameter in the problem, we expand the equation of motion in orders of 1/m.

To lowest order, the non-relativistic equation of motion is

EΨe =

[
1

2m

(
i~∇+ g ~A

)2
+ 2

( g

2m

)
~S · ~B − gϕ

]
Ψe (3.8)

+ 2
( g

2m

)[
~S · ~∇

(
λ

g
φ

)]
Ψe +

(λφ)2

2m
Ψe.

Written this way, it appears that spatial gradients of the axion field can act as an
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effective magnetic field for the electrons with value ~Beff = λ
g
~∇φ.

Inclusion of the next order corrections introduces many important phenomena to

the quantum mechanical description of the electron, including the spin-orbit coupling.

Additionally, terms will appear in the non-relativistic Hamiltonian for an electron inter-

acting with electromagnetic fields and axions. In particular, the new axion interaction

terms, to second order, are given by

Haxion =
λ

m

(
1− gϕ

2m

)[
~S · ~∇φ+

1

2
λφ2

]
+

(
gλφ

2m2

)
~S · ~E , (3.9)

where the electric field is defined as ~E = −~∇ϕ.

We want to understand which is the dominant term. In the non-relavistic regime,

gϕ� m, hence the first term in Haxion can be looked at as simply the 1/m dependence.

In other words, we want to compare the magnitudes of λ~∇φ and gλ
m φ

~E . The first term

is a quantity set by the axion field, which we cannot control. However, the second term

depends on the external electric field. Hence, we want to find some condition on the

electric field magnitude. We do not consider the λ2φ2 term as it will only produce a

uniform shift in the energy of the electron.

Consider a model where the axion φ is the principal component of our local dark

matter energy density ρDM . We approximate the axion field, as in [97], by

φ(t, x) ≈
√

2ρDM
mφ

cos [mφ (t− ~v · ~x)] (3.10)

where mφ is the axion mass, ~v is the virial velocity in our galaxy |~v| ∼ 10−3. Then, the

critical value of the electric field is

E =
me

g

∇φ
φ
∼ (3× 109 V/m)

( mφ

1 eV

)
. (3.11)

Most dark matter model use values of mφ ≤ 10−6 eV, giving the E ∼ 1 kV/m. Above

this value, the ~S · ~E term is the dominant axion-electron interaction term. For the

remainder of the calculation, we assume that we are above this critical electric field and

consider only the additional term

Haxion =

(
gλφ

2m2
e

)
~S · ~E . (3.12)
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3.3 Spin-Precession and Electric Dipole Moment

For now, we consider what happens for a single electron subject to electromagnetic fields.

The axion field term is considered to be a perturbative addition to the Hamiltonian,

H1. We ignore the spin-orbit coupling term for simplicity, however in the presence

of a magnetic field, we expect this term will be at least as important as the axion

correction term. Furthermore, we wish to isolate the effects of the new axion interaction

by explicitly setting the magnetic field to zero. Written explicitly, we consider the

following Hamiltonian for the electron:

H = − 1

2me
∇2 − gϕ+

gλ

2m2
e

~S · ~E φ(~x, t). (3.13)

We take constant electric field ~E = E ẑ. We want to find the commutator

[
p2

2me
− gϕ, gλE

2m2
e

Szφ(~x, t)

]
=
gλE
4m3

e

Sz
[
p2, φ(~x, t)

]
(3.14)

where we note the Hilbert space associated with the spin is disjoint from the spatial

dependence. The remaining commutator is in general nonzero. Using the form of the

axion field from Eq. (3.10), each spatial gradient of φ is suppressed by a factor mφv �

10−8 eV. As a result, we approximate the axion field as spatially homogeneous φ(~x, t) =

〈φ〉, giving
[
p2, φ(~x, t)

]
= 0. Therefore, we use a basis that simultaneously diagonalizes

the Hamiltonian, ψn(~x) |±〉 defined by

H0ψn(~x, t) = Enψn(~x, t), (3.15)

H1 |±〉 = ± gλE
4m2

e

〈φ〉 |±〉 . (3.16)

The axion interaction Hamiltonian results in splitting in the electron energy spectrum.

As an example, consider some initial state

Ψ(~x, t = 0) = ψn(~x, 0)

( |+〉+ |−〉√
2

)
(3.17)
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such that
∫
|ψn(~x, 0)|2 = 1. The expectation values of spins in each direction at some

later time t is given by

〈Sx〉 =
1

2
cos

(
gλE〈φ〉

2m2
e

t

)
, 〈Sy〉 =

1

2
sin

(
gλE〈φ〉

2m2
e

t

)
,

〈Sz〉 = 0. (3.18)

We recognize this as a spin precession phenomena where the electric field is aligned in

the ẑ-direction and the initial configuration of spins is in the x̂-direction. The timescale

for this spin precession, using the threshold electric field, given by Eq. (3.11), and local

dark matter energy ρDM ∼ 0.3 GeV/cm3, is

τ =
2m2

e

gλE〈φ〉 ∼
2m2

e

gE

(
mφ

λ
√

2ρDM

)
∼ 10−4s

λ
. (3.19)

Note, for a given constant electric field strength, there is still a linear dependence on

the mass of the axion. The lighter the axion, the larger this effect should be.

Consider now a collection of N electrons all prepared in the +x̂-direction, as the

single electron case. We expect the coupling λ between the axion and electrons is small,

then the timescale for the precession is large. The magnetic field in the x̂-direction varies

inversely to the square of the timescale, and thus is treated as constant. However, in

the ŷ-direction, the magnetic moment of the electrons is

µy ∼ 2µBN〈Sy〉 = µBN sin

(
t

τ

)
. (3.20)

where µB is the Bohr magneton. We now imagine a loop of wire whose norm is in the

ŷ-direction. If the loop is taken to be the same size as the collection of electrons with

cross section A, then the magnetic flux through the loop of wire will be

ΦB(t) ∼ µBµ0nA sin

(
t

τ

)
(3.21)

with n number density of electrons. For non-interacting electrons, we must ensure

the deBroglie wavelength is larger than the average distance between electrons. In

particular, nλ3
dB < 1. Saturating the inequality gives a maximum number density
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allowed. At some small time t relative to the timescale τ , the rate of change of flux is

dΦB

dt

∣∣∣∣
t=0

=
eµBµ0

2m2
e

(
λ
√

2ρDM
mφ

)
nA · E . (3.22)

The changing flux will be inversely proportional to the timescale τ . We also assume that

the electric field will not change the cross-sectional area of the collection of electrons.

Dissipation of the electrons may provide an experimental problem. However, in the

regime where the dissipation rate satisfies

dA

dt
� A

t
, (3.23)

the flux change due to a decrease in number density is a subleading effect.

Including the axion-electron interaction results in a classical electric dipole moment

for the electron, as seen in Eq. (3.12). In general, an electric dipole term can be written

in the form [98]

H =
de
S
~S · ~E . (3.24)

The electric dipole moment induced by the axion can be found, by comparison, as

de =
eλ

m2
e

√
2ρDM
mφ

cos(mφt) (3.25)

While the Standard Model predicts a nonzero electron electric dipole moment due to

loop correction, the current experimental bound is given de ≤ 8.7 × 10−29e·cm [99].

Converting this bound to one on the parameters λ,mφ gives

λ

(
1 eV

mφ

)
≤ 10−10. (3.26)

Saturating the bound, the change in flux given by Eq. (3.22) can be found as

dΦB

dt
∼ 10−18 Wb/s (3.27)

for number density n ∼ 1021 m−3, electric field E ∼ 105 V/m, and cross sectional area

A ∼ 1 m2.

The frequency of oscillation of the electric dipole moment from Eq. (3.25) matches
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Figure 3.1: Low mass constraints (90% CL) on axion-electron coupling, gae = λ, from
various solar axion experiments XMASS [102], EDELWEISS [103], XENON100 [104],
and LUX [105]. The dashed blue lines indicate indirect astrophysical bounds from
solar neutrinos [106] and red giants cooling [107]. The solid black line coincides with the
electron electric dipole moment bound found in Eq.(3.26). The DFSZ (with cosβDFSZ =
1) and KSVZ axions are darker yellow lines bounding the shaded region.

the previous results of [93], which rely on different interaction terms. This frequency

is a universal feature of treating the axion as a classical oscillating field. In our analy-

sis, however, we treat the pseudoscalar Yukawa interaction as a necessary term in the

effective field theory. For axion models solving the strong CP problem, [96] provides a

comprehensive analysis for finding the low energy interactions of the axion, including

the particular value of λ.

More generally, the dimensionless coupling constant λ is determined by the particular

ALP model. In string theory, where there are many axions λ = Cieme/fai where the

index i denotes the number of axions [100]. In models of many axions this coupling

could be larger than models of only one axion [27]. For example in the KSVZ and DFSZ

model [37],

λ =
2X ′eme

fa
, with X ′e


≈ 10−3 , KSVZ,

≤ 0.2 , DFSZ.

(3.28)

Evaluating the bound in Eq. (3.26) for the axion mass in Eq. (1.1), we find constraint
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X ′e . 3. The current experimental limit on the electron’s electric dipole moment are

nearly one order of magnitude away from probing the standard QCD axion parameter

range. Current axion-electron coupling constraints are shown in Fig. 3.1. In the low

mass regime (ma ≤ 10−2 eV), the electric dipole moment can provide more stringent

constraints on the axion-electron coupling than modern (model-independent) solar axion

detectors [101, 102, 103, 104, 105]1.

3.4 Discussion

A CP conserving interaction between the axion and electrons contributes multiple axion

correction terms to the non-relativistic electron Hamiltonian. The prominent feature

found is the emergence of a spin-electric field coupling that depends on the magnitude

of the axion field. Contrary to other axion couplings, the presence of an interaction

absent of derivatives proves robust against a wide range of axion masses. In particular,

if the axion is a major component of the local dark matter energy density, experiments

looking for axion-electron interactions can probe the lower spectrum of axion masses.

The dominant correction to the non-relativistic electron Hamiltonian, the electric

dipole term given by Eq. (3.12), will result in a classical electric dipole moment. When

subject to an external electric field, the dipole will exhibit spin precession. For reasonable

values of physical parameters, the induced changing magnetic flux can be the same order

as the sensitivity of SQUID magnetometers. Experiments measuring electron electric

dipole moment, such as [99], use methods with heavy molecules to cause spin precession

in the presence of both electric and magnetic fields. However, these experiments measure

fluorescence emissions, not a direct detection the flux change due to precession.

We have primarily considered the resulting electron electric dipole moment, however

this is not unique to axion-electron interactions. Many models, including the Standard

Model, predict finite electric dipole moments due to quantum effects. Collider experi-

ments and dark matter direct detection provide relativistic avenues to search for axion

interactions. However, subleading terms in Eq. (3.9) provide additional predictions.

In particular, the gradient of the axion need not be as small as previously stated. In

general, the dark matter energy density will have fluctuations, possibly amplified due

1Better limits can be placed by these experiments when axions account for all of the local dark matter
is axion, however these constraints are limited to keV axion masses.
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to an astrophysical production of axions. These gradient terms can induce additional

energy shifts of the electron as well as modifying the path of cosmic rays. Such exper-

iments will introduce measurements with different dependencies on the parameters in

the theory than what we have presented.

In particular, the axion solution in Eq. (3.10) is a background solution for cold dark

matter axions, where interactions are treated as negligible perturbations. Adding the

usual axion-photon coupling,

L ⊃ α

fa
φ~E · ~B, (3.29)

with α the fine structure constant and fa the energy cutoff for the effective field theory,

the ambient electric and magnetic fields can induce an additional axion field gradient.

Then the gradient term in the non-relativistic electron Hamiltonian becomes dominant

when the ambient magnetic field projected in the direction of the electric field is above

the cutoff

B|| =
(
1012 T

)(1 eV

mφ

)(
1 m

L

)(
fa
Mpl

)
(3.30)

where Mpl is the Planck mass and L is the size of the experimental apparatus. For dark

matter axion mass at 10−6 eV and the energy scale fa for the Pontryagin term is taken to

be 1015 GeV, the threshold magnetic field is B ∼ 1015 Tesla. Furthermore, the induced

gradient only dominates the when ~E · ~B ≥ 1030 T·V/m. Instead, we may also consider

the situation where the axion field is screened by baryonic matter. In this case, φ ∼ 0

and the electric dipole moment term will be proportional to the perturbation of the

axion field. The dominant term only depends on the electric field, similar to Eq. (3.11),

differing only in an additional dependence on the size of the experimental apparatus. For

small experimental setups, the electric field can be weaker for the dominant phenomena

to be the electric dipole term. Again, unless the field strengths are large, such a situation

will only further suppress the expected phenomena.

To achieve sufficiently large number for the predicted flux change in Eq. (3.27), as

well as suppress external magnetic fields, superconductors may provide a useful test bed

for experiments looking for the spin precession because magnetic fields should be sup-

pressed. However, suppressing external magnetic fields may not be necessary to detect

the precession due to the electric dipole moment. As an idealized example of differ-

ential measurement, in the presence of both electric and magnetic fields, the rotation
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axis for the spin precession is given by the weighted (by dipole moments) average of the

magnetic and electric fields. If these fields are constant and orthogonal to one another,

there should be an observed change in flux in the direction of the magnetic field. This

magnetic field can not be attributed to the magnetic spin precession. The observed

flux change in the direction of the magnetic field will have the same magnitude as in

Eq. (3.22), but it will oscillate with the frequency of the magnetic spin precession.

Because thermal fluctuations can induce a changing flux in the direction of the

magnetic field, thermal effects will be important for similar experiments. Furthermore,

a collection of electrons in a mixed state will not produce the desired spin precession.

Therefore, the collection of electrons must be kept at a low temperature. For finite

temperature, the number density of electrons in Eq. (3.21) can be replaced by the net

number density of electrons.

50



Chapter 4

Gravitational Waves

4.1 Introduction

With the observation of black hole binary mergers [108, 109, 110, 111, 112] and a neutron

star binary merger [113], gravitational wave astronomy is rapidly emerging as a powerful

probe of fundamental physics [114]. These observations provide an exquisite confirma-

tion of General Relativity in the extreme gravity regime, placing severe constraints on

extra dimensions [115, 116, 117, 118], modifications to gravity [119], and ruling out large

classes of dark energy models invoked to explain the current acceleration of the universe

[120, 121, 122].

The connection of binary mergers to dark matter arises through the possibility that

dark matter is gravitationally bound inside of neutron stars [123, 124, 125, 126, 127,

128, 129, 130, 131, 132, 133, 134, 135, 136, 137]. If the dark sector includes a light

force mediator, then this naturally leads to an additional force between neutron stars,

similar to that experienced by compact objects in scalar-tensor gravity, where the role of

accumulated mass is played by a scalar field-dependent modulation of the inertial mass.

This additional force modifies the gravitational wave signal from neutron star binary

mergers, which can potentially probe the underlying dark matter model [138, 139, 140,

141, 142]. Probing these modifications by precise interferometer measurements requires

building analytic templates of the modified waves and a detailed statistical analysis. In

this chapter, we undertake precisely this task, focusing on modifications that induce a

Yukawa-type modification to the gravitational potential, and with a particular focus on

dark matter. We emphasize that this conclusion is completely general and it does not
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depend on a specific dark matter model.

The amount of dark matter inside neutron stars is subject to considerable theoretical

uncertainty, since this does depend, not only on the dark matter model, but also on the

formation and entire lifetime of the neutron star. Estimates of the fraction of the

neutron star mass in dark matter range from a few percent [143] to one part in 1015

[138]. Remarkably, we find that gravitational wave observations can probe dark matter

even at mass fractions below the latter estimate.

4.2 Dark Matter Model

For the sake of concreteness, we here provide a specific example which produces mod-

ifications to the gravitational waveform. We emphasize, nonetheless, that the results

presented in this paper are generic and not dependent of the specific features a partic-

ular dark matter model.

Consider then a model of asymmetric dark matter [144] coupled to an Abelian gauge

field V µ (the “dark photon”), as has been considered previously in [138, 145]. The dark

sector Lagrangian1 is given as

LDS = −1

4
VµνV

µν +
1

2
m2
vVµV

µ + χ̄ (iγµDµ −mχ)χ, (4.1)

where Dµ = ∇µ + igVµ is the gauge covariant derivative, Vµν is the dark photon field

strength tensor, and the fermion χ has dark charge g and mass mχ. The dark photon

mass mv can arise through a Higgs or Stueckelberg mechanism, but such completions

of the theory will produce negligible effects on our analysis. Further, one can generalize

this Lagrangian to non-Abelian gauge fields, but the lightest, massive gauge field will

typically produce the most noticeable change in gravitational waves.

The range of dark photon masses that can be probed by gravitational waves are

extremely light, mv . 10−10 eV, and gauge invariance is approximately conserved. This

implies that a charge asymmetry for χ must be balanced by an opposite charge asym-

metry for a second fermion, analogous to standard electromagnetism and the protons

and electrons in our current universe. This opens up the possibility that some fraction

of the dark matter will form neutral bound states, the precise value of which depends

1With the exception of the Lagrangian, we will use geometric units throughout our analysis.

52



sensitively on the value of the dark photon’s fine structure constant [145]. Capture of

these bounds states in compact objects will contribute to that object’s dark dipole mo-

ment at lowest order, however we only consider the corrections due to its dark monopole

moment here.

In order to produce a nonzero dark monopole moment, a net charge asymmetry will

be required for neutron stars. Neutron stars can receive dark matter from two sources:

(1) dark matter accreted from the surrounding halo, and (2) dark matter contained in

the progenitor. The former has been studied in detail in [123, 124, 125, 126, 127, 128,

129, 130, 131, 132, 133, 134, 138, 143]. The latter has been argued to open up the

possibility of anywhere from a few percent to an O(1) fraction of the mass of a neutron

star to be dark matter, a so-called “Admixture Neutron Star” [146, 147].

If one considers only the accretion of dark matter by neutron stars, the number

of dark matter particles2 with mχ & 1 GeV that are captured can be estimated as

[128, 139],

Nχ ' 2.3× 1044

(
100 GeV

mχ

)(
ρχ

103 GeV/cm3

)(
σB

2.1× 10−45 cm2

)(
tNS

1010 yr

)
, (4.2)

where tNS is the age of the neutron star, and σB is the lesser of the DM-neutron elastic

scattering cross section σn and the effective geometric scattering cross section. For

lighter dark matter, the number of accreted particles is independent of the dark matter

mass [128]. Therefore, if there is a mass difference between the two dark matter fermions,

and at least one is lighter than a GeV, a net charge can accumulate and the accretion

is predominantly into the heavier χ fermions.

From the number of dark matter particles accreted, the fraction of the neutron

star mass in the form of dark matter fDM = Nχmχ/mNS can be approximated to

fDM ' 10−11 assuming standard parameters. Similar estimates have been made in the

literature, with varying levels of precision. The most recent estimate is given by [138],

which gives a more conservative bound of fDM . 10−15.

As we will show in Section 4.5.4, gravitational waves can still probe these small charge

accumulations in compact objects. The relative strength of the dark photon’s Yukawa

interaction compared to gravity can compensate for the small dark matter fraction. This

2Considering a neutron star with mass 1.44M� and radius 10.6 km.
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relative strength can be approximated as

α ≈ 1.18× 1033g2f2
DM

(
100 GeV

mχ

)2

. (4.3)

Even using the conservative bound f ∼ 10−15, we see that the dark Yukawa interaction

can remain relatively strong for weakly coupled (g � 1) dark fermions.

4.3 Modifications to Gravitational Wave Physics of Binary

Inspirals

Given our simple dark matter model, we now consider the dynamic effects that manifest

with a net dark charge on the binary system. During the early stages of the inspiral, the

binary constituents are treated as point masses/charges. In this regime, the interaction

between the two compact object via the dark photon can be approximated as a tree-level

scattering. This interaction will manifest as a Yukawa correction to the potential energy

of the binary system, given by

VYuk(r) = α
m2η

r
e−r/λ, (4.4)

where λ = m−1
v is the length scale of the Yukawa interaction, m = m1 + m2 is the

total mass of the binary, η = m1m2/m
2 is the symmetric mass ratio, r is the orbital

separation, and the relative strength of the Yukawa potential α, from Eq. (4.3), can be

defined in terms of the neutron star properties as

α =
q1q2

m1m2
= q̃1 q̃2 (4.5)

where q̃i = qi/mi is the dark charge to mass ratio of each star. For the asymmetric dark

matter model we consider, both compact objects should acquire the same sign of net

dark charge, thus we work in the regime where α > 03.

This modification to the potential ultimately leads to a violation of Kepler’s laws

which will be functionally distinct from General Relativity corrections. For (nearly)

3For a scalar mediator, the argument presented would give α < 0, i.e. an attractive interaction.
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circular orbits, the modification will manifest as4

ω2 =
1

mηr

dV

dr
=
m

r3

[
1− α

(
1 +

r

λ

)
e−r/λ

]
. (4.6)

Furthermore, the potential is no longer a power law, hence the Virial theorem takes a

more complicated form when evaluating the total energy of the binary. The latter can

be calculated as

Etot = −m
2η

2r

[
1− α

(
1− r

λ

)
e−r/λ

]
. (4.7)

The repulsive Yukawa potential results in both a decrease in the orbital frequency and

magnitude of the total energy of the system at a given orbital separation.

These kinematic variables dictate the rate at which energy is radiated away from

the system in the form of gravitational radiation. The power emitted in the form of

gravitational radiation can be computed from the quadrupole moment as

PGW =
D2
L

32π

∫
dΩ 〈ḣTTij ḣijTT 〉 =

32

5
η2m2ω6r4 =

32

5
η2v10, (4.8)

where the dot represents a time derivative, DL is the luminosity distance, and v = ωr

is the orbital velocity for a quasi-circular orbit.

When gravitational waves are the only form of emitted radiation, the balance law,

PGW = − d
dtEtot, can be used to find the rate at which the orbital separation decreases

as

dr

dt
= −64η

5

(m
r

)3
[
1− α

(
1 + r

λ

)
e−r/λ

]3
1− α(1 + r

λ − r2

λ2
)e−r/λ

. (4.9)

While the power emitted in gravitational radiation is reduced due to the repulsive

Yukawa interaction, this need not translate into a longer coalescence time than the

Newtonian/General Relativity predictions. Instead, the decrease in energy of the sys-

tem in Eq. (4.7) can overcompensate for this decrease in radiation leading to a quicker

inspiral phase.

4.3.1 Dark dipole radiation

Up to this point, we have ignored the on-shell emission of the dark photon due to

the orbital motion of the charged compact objects. However, this dipole radiation

4Our formula differs from [140] by an additional factor of the Yukawa term, agreeing with [138].
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introduces an important, and potentially dominant, source of energy dissipation to the

binary system. The effect of dipole radiation on the binary dynamics has been studied

in [140, 148]. In our context, the additional power radiated is given by5

Pdark =
2

3
γη2m2ω4r2

(
1 +

1

2(λω)2

)(
1− 1

λω

) 1
2

,

=
2

3
γη2v8

(
1 +

1

2(λω)2

)(
1− 1

λω

) 1
2

, (4.10)

where

γ ≡ (q̃1− q̃2)2 (4.11)

is the squared difference between the charge-to-mass ratios of the binary stars6. Clearly,

the effects of dipole radiation will only manifest when the dark matter mass fraction of

the compact objects differ.

The other two functions of λω can be approximated as the Heaviside step function

θ(λω − 1), but note that the functional form is not actually of Heaviside form; Section

4.4.4 computes the corrections between the above functional form and the Heaviside

approximation. The argument of the step function determines the activation of dipole

radiation. This relation can be written in terms of the Yukawa length scale λ and the

gravitational wave frequency f as

λ ≥ 9.5× 103 km

(
10 Hz

f

)
. (4.12)

For dipole radiation to be active, the Yukawa interaction must have a length scale much

larger than the orbital separation of the binary. As we will see in Section 4.5.4, this will

have important consequences in one’s ability to place constraints on the parameters α

and γ.

Taking the ratio of the power emitted between dark dipole radiation and the gravi-

tational radiation,

Pdark

PGW
≈ 5

48

( γ
v2

)
θ(λω − 1), (4.13)

5Relative to [140], we include an additional factor of two for the vector mode dipole radiation,
consistent with the results of [148].

6As further explained in Section 4.4.4, the dipole radiation power used here is for the emission of a
vector mode. If the constraints in Section 4.5.4 are applied to a scalar mediator, one must account for
an additional factor of two in the definition of γ. Explicitly, γ = γV or γ = 2γS .

56



we see the dipole corrections will be largest early in the inspiral phase, immediately fol-

lowing the activation of the step function. This will manifest as a negative PN correction

to the gravitational waveform.

The inclusion of dipole radiation will not change the orbital frequency or the total

energy of the system. Instead, correcting the balance law to include the dark radiation

− d
dtEtot = PGW + Pdark will introduce an additional factor to the evolution of the

orbital separation in Eq. (4.9). Using Eq. (4.6), the equation for ṙ can be rewritten as

an equation for the time derivative of the orbital frequency. Including the dark dipole

radiation term, ω̇ can be found in terms of the orbital separation

ωω̇ =
96ηm4

5r7

[
1− α

(
1 +

r

λ
+

r2

3λ2

)
e−r/λ

]( [
1− α

(
1 + r

λ

)
e−r/λ

]3
1− α(1 + r

λ − r2

λ2
)e−r/λ

)

×
(

1 +
5γr

48m

θ(λω − 1)

1− α
(
1 + r

λ

)
e−r/λ

)
. (4.14)

As we will see in Section 4.4, this equation for the orbital frequency evolution will be

necessary when calculating the gravitational waveform. In particular, the waveform will

acquire separate terms for the Yukawa corrections and the dipole radiation corrections,

which can be used to constrain the parameters α and γ as a function of the Yukawa

length scale.

4.3.2 Connection to Scalar-Tensor theory

While we have primarily consider the Yukawa potential and dipole radiation in the con-

text of a dark matter model, the kinematic corrections described above are a general

feature of most fifth force models. Scalar-tensor theories have received a lot of attention,

in part due to its connection with string theory[149]. Scalar-tensor theories are a mod-

ification to general relativity where an additional scalar degree of freedom is coupled to

the trace of the energy momentum tensor (in the Jordan frame), and have been shown

[150, 151, 152] to produce the same Yukawa and dipole modification considered here.

In these theories, the “charge” accumulation is not due to the accretion of charged

particles, but instead a scalar field dependent variation of the inertial mass ma(φ) of

the compact object [151]. When the scalar field theory is written in the Jordan frame

[150, 151, 153, 154], the dipole radiation and Yukawa corrections can be written in terms
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of the sensitivity of the body,

sa = −∂ logma

∂φ

∣∣∣
φ0
. (4.15)

In particular, the γ parameter for dipole radiation can be written in terms of the sensi-

tivities as

γST = (s1 − s2)2

2
(

1− s1+s2−2s1s2
2+ωBD

)2

2 + ωBD

 , (4.16)

where ωBD is the Brans-Dicke coupling constant. One can recover General Relativity by

taking ωBD →∞, and thus, using that ωBD > 40, 000 from observations of the Shapiro

time delay with the Cassini spacecraft [155], we can approximate

γST ∼
2(s1 − s2)2

ωBD
. (4.17)

The additional factor in the square bracket arises from the sensitivity dependence in the

gravitational constant, as well as a conversion between scalar “charge,” defined in the

Einstein frame and the sensitivities, defined in the Jordan frame.

4.4 The Gravitational Waveform

We now consider the gravitational waveform using the standard amplitude from General

Relativity, and apply the results to the case of a binary system with some dark charge. In

principle, corrections to the response function will also arise from additional gravitational

wave polarizations that may be sourced by the dark sector we consider in this paper;

however, since multiple detectors (or a space-based detector) are needed to detect such

additional polarizations, we will neglect them here. We will follow the methods described

in [156, 157].

The plus and cross polarizations of a gravitational wave in General Relativity are

given by

h+(t) = −
(

1 + cos2 ι

2

)
A(t) cos (2φc + 2φ (t− tc;m, η)) , (4.18)

h×(t) = − (cos ι)A(t) sin (2φc + 2φ (t− tc;m, η)) , (4.19)
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where the gravitational wave amplitude in the time domain is

A(t) =
4ηm

DL
ω2(t)r2(t) , (4.20)

and where the prefactor is a geometric factor related to the inclination angle ι, i.e. the

angle between the angular momentum of the binary and the observer, while tc and φc

are the time and phase of the binary at coalescence, with φ the orbital phase of the

binary at some time, found by integrating the orbital frequency.

A given detector will have different response functions F+ and F× to the different

plus- and cross-polarizations of gravitational waves, which will depend on some addi-

tional geometric factors. In the case of second-generation ground-based instruments, the

timescale on which these functions change is much larger than the gravitational wave

signal, and thus, they can be treated as constant. The strain induced on the detector is

then given by

h(t) = F+h+(t+ tc − t0) + F×h×(t+ tc − t0), (4.21)

= −A(t+ tc − t0)

[(
1 + cos2 ι

2

)
F+ cos 2φ̄(t) + cos ιF× sin 2φ̄(t)

]
, (4.22)

where t0 is the time when the detector records the coalescence, and φ̄(t) ≡ φc+φ(t− t0).

The strain can be rewritten as a single oscillating function by incorporating the geometric

functions into a shift in the phase and a deviation in the luminosity distance:

Deff = DL

[
F 2

+

(
1 + cos2 ι

2

)2

+ F 2
× cos2 ι

]−1/2

, (4.23)

φ0 = φc − arctan

(
2 cos ι

1 + cos2 ι

F×
F+

)
. (4.24)

The strain is then given as the function

h(t) = −4ηm

Deff
ω2r2 cos (2φ0 + 2φ (t− t0;m, η)) . (4.25)

A matched filtering calculation requires that we compute the Fourier transform of the

time-domain waveforms, which can be estimated in the stationary phase approximation.
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The Fourier transform of the strain can be written as

h̃(f) = −2ηm

Deff

∫ ∞
−∞

dt ω2r2
(
ei(2φ0+2φ(t)−2πft) + e−i(2φ0+2φ(t)+2πft)

)
, (4.26)

where the cosine has been expanded in exponentials. We note that the orbital frequency

is monotonically increasing and a positive function (for all cases we consider), properties

inherited by φ(t).

The stationary point is defined as the time ts when ω(ts) ≡ φ̇(ts) = πf . The

stationary phase approximation allows one to compute the integral as

h̃(f) = −2ηm

Deff
(πf)2r2(ts)

(
π

|ω̇(ts)|

)1/2

(4.27)

× exp
[
−i
(

2πfts − 2φ0 − 2φ(ts)−
π

4
sgn(ω̇(ts))

)]
,

where we expect sgn(ω̇(ts)) = 1 in all cases we consider. One is then required to find

the functions r(ts), φ(ts), and ts as a function of the Fourier frequency. To find the

remaining functions in the phase, we define the quantity τ(ω) = ω/ω̇. The functions φ

and t can then be rewritten as

φ(ω) =

∫ ω

τ(ω′)dω′ , t(ω) =

∫ ω τ(ω′)

ω′
dω′ . (4.28)

The binary’s phase and time can then be found by φ(ω(ts)) = φ(πf) and ts = t(πf).

Therefore, once the functions r(ω) and ω̇ are computed for a given model, Eq. (4.27)

can be applied to find the gravitational waveform.

4.4.1 Small deformation

Although the function ω̇(r) is given in Eq. (4.14), the calculation of the orbital separation

r(ω) requires the inversion of Eq. (4.6). The relative strength of the Yukawa potential

α must be smaller than unity in order for the binary to merge. Furthermore, to remain

consistent with the linear (in α) expansion of the potential in Eq. (4.4), we wish to

find a solution for r(ω) to linear order in α. Such a solution will correspond to a small

General Relativity deformation limit. This inversion can be done to find the separation,
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and subsequently ω̇(ω), as

r(ω) =
(m
ω2

)1/3 [
1− α

3

(
1 +

m

λ
(mω)−2/3

)
exp

(
−m
λ

(mω)−2/3
)

+O(α2)
]
, (4.29)

ω̇ =
96

5
M5/3ω11/3

[
1 +

5γ

48
(mω)−2/3θ(λω − 1) (4.30)

− 2α

3

(
1 +

m

λ
(mω)−2/3 +

2m2

λ2
(mω)−4/3

)
exp

(
−m
λ

(mω)−2/3
)]
,

where M = η3/5m is the chirp mass, and the time derivative of the orbital frequency

is found by expanding Eq. (4.14) to linear order in α where the orbital separation is

evaluated with Eq. (4.29).

In the inversion of Eq. (4.30), we have dropped terms of O(αγ). Neutron stars should

naturally accumulate relatively small charge-to-mass rations q̃� 1, hence γ ≤ q̃2 � 1.

Explicitly, in order to expand the amplitude and phase of the waveform in Eq. (4.27) to

linear order in γ, we will require

γ � 12.5

(
m

M�

)2/3( λ

1 km

)−2/3

, (4.31)

so that the dipole radiation term is again a small correction to the General Relativity

limit.

Under these conditions, Eq. (4.27) can be applied to give the Fourier space waveform:

h̃(f) = −
(

5π

24

) 1
2 M2

Deff
(πMf)−

7
6

[
1− 5γ

96
(πmf)−

2
3 θ(πλf − 1) (4.32)

−α
3

(
1 +

m

λ
(πmf)−

2
3 − 2m2

λ2
(πmf)−

4
3

)
exp

(
−m
λ

(πmf)−
2
3

)]
e−iΨ,

Ψ = 2πft0 − 2φ0 −
π

4
+

3

128
(πMf)−5/3

[
1 +

20α

3
F3

(m
λ

(πmf)−2/3
)

−5γ

84
(πmf)−

2
3 θ(πλf − 1)

]
, (4.33)

where we have defined

F3(x) =

(
180 + 180x+ 69x2 + 16x3 + 2x4

x4

)
e−x +

21
√
π

2x5/2
erf(
√
x), (4.34)
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and erf(x) is the error function7.

We see that inclusion of dipole radiation manifests as a -1PN correction. The magni-

tude of this contribution can become very large at early times, however the step-function

modulates this behavior by abruptly shutting off the contribution when Eq. (4.12) is

not satisfied. In contrast, the Yukawa-type modifications to the waveform do not easily

separate into a post-Newtonian expansion as a functions of x = m
λ (πmf)−2/3. Both the

amplitude and phase functions remain bounded for all positive (physical) values of x,

thus these corrections remain well behaved throughout the binary inspiral.

4.4.2 Mass range of the dark photon

If we could observe the inspiral over its entire evolution (starting at infinite separation),

m
λ (mω)−2/3 would start arbitrarily large and eventually decay to the limit where r � λ.

In this scenario, one needs to use the full waveform found in Eq. (4.32) and Eq. (4.33)

in order to properly incorporate the non-perturbative behavior of the solutions. During

the inspiral phase, however, the binary will emit gravitational waves at low frequencies

for a longer period of time than at higher frequencies. For observations beginning at

a gravitational wave frequency f0, we can then look at the limiting behavior of the

waveform when x0 � 1 (the heavy limit) and when x0 � 1 (the ultra-light limit), where

we have defined x0 ≡ m
λ (πmf0)−2/3. In these limiting studies, we ignore the dipole

radiation term, as it remains uncoupled from the Yukawa corrections, and does not

simplify in any limit involving x0.

As we will see, degeneracies arise in the limiting regimes which are not present in the

full waveform. These degeneracies will play an important role in our ability to constrain

the relative Yukawa strength α in Section 4.5.4.

A heavy dark photon

For sufficiently large dark photon masses, x0 � 1 throughout the observational window.

In this case, the nonperturbative exponential functions suppress these corrections below

any detectable range, as these terms remain proportional to e−x0 . In this regime, the

7The error function can be represented approximately by

erf(
√
x) ≈ 1−

(
1 + a1x

1/2 + a2x+ a3x
3/2 + a4x

2
)−4

,

with a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108, if one wishes.
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amplitude of the waveform, given by Eq. (4.32), does not acquire any corrections to

linear order in α. The phase in Eq. (4.33) only receives linear α corrections from the

error function. However, one can see from the integral definition,

erf (
√
x0) =

2√
π

∫ √x0
0

e−t
2
dt → 1 +

2√
π
e−x0 + ... (4.35)

that the only non-exponential correction from the error function will be a constant,

degenerate with the phase φ0. As a result, the Yukawa corrections for a heavy dark

photon becomes completely degenerate with the General Relativity waveform.

An ultra-light dark photon

We now consider the case where observation of the binary begins after the binary has

entered the range of the Yukawa interaction. In this case, r � λ, and the Yukawa

potential can be Taylor expanded. Of course, this implies that we cannot take the

infinite orbital separation limit and that the above condition will only be satisfied for a

set of masses. This condition can be explicitly written in terms of the Yukawa length

scale λ, or equivalently the dark photon mass, as

λ� (520 km)
(

1− α

6

)( f0

10 Hz

)− 2
3
(
m

M�

) 1
3

, (4.36)

mv �
(
3.8× 10−13 eV

) (
1 +

α

6

)( f0

10 Hz

) 2
3
(
m

M�

)− 1
3

. (4.37)

Due to the extremely light mass required for the dark photon, we call this the ultra-light

dark photon limit, corresponding to x0 � 1. In this limit, the gravitational waveform

can be written as

h̃ul(f) = −
(

5π

24

) 1
2 M2

Deff
(πMf)−

7
6

[
1− α

3
+

5αm2

6λ2
(πmf)−

4
3

−7αm3

9λ3
(πmf)−2 +O

(
m4

λ4
(πmf)−

8
3

)]
e−iΨul , (4.38)

Ψul = 2πft0 − 2φ0 −
π

4
+

3

128
(πMf)−5/3

[
1 +

2α

3
+

10αm2

27λ2
(πmf)−

4
3

−200αm3

693λ3
(πmf)−2 +O

(
m4

λ4
(πmf)−

8
3

)]
. (4.39)

The Fourier amplitude does not pick up any corrections to first order in the dark
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photon mass. The two paramount functions for calculating the amplitude and phase,

Eq. (4.6) and Eq. (4.14), only contain corrections of the form
(

1 + r
λ +O

(
r
λ

)2)
exp

(
− r
λ

)
.

Taking the r � λ expansion of these equations will result in no linear order correction.

This property is inherited by the separation function during the inversion of Eq. (4.6)

due to the term-by-term matching of the perturbative series.

The leading order correction in both the phase and amplitude appears at -2PN, with

corrections to this appearing at more negative post-Newtonian orders. This is consistent

again with the expansion requirements of this section, namely r � λ. One can for

example check that the -2PN order term is actually larger than the -3PN order term

because m
λ � (πmf)2/3 ∼ v2 ∼ m/r. Therefore, when including λ corrections, the usual

post-Newtonian order counting is not applicable. Instead, the model presented above is

a bivariate expansion in both v � 1 and r � λ.

We note that the first correction to both the amplitude and phase of the waveform is

independent of λ. This introduces a degeneracy between the chirp mass and the Yukawa

strength parameter α. It is ultimately this degeneracy that is explored in [140]. This

degeneracy is lifted by the -2PN correction. However, both amplitude and phase depend

only on the quantity αm2/3λ−2, which implies there is a 100% degeneracy between α and

λ. This degeneracy is again lifted when we include the -3PN correction, which depends

on a different combination of α and λ. This is analogous to the degeneracy between the

component mass m1 and m2 in General Relativity at Newtonian order, which is lifted

when one includes 1PN corrections.

4.4.3 Relative magnitude of Yukawa and dipole corrections

We now consider the region of parameter space where the dipole radiation modifications

of the waveform dominate over the Yukawa modifications. Due to the particular sensitiv-

ity of gravitational wave interferometers to the phase of the gravitational wave, we focus

on the phase modifications presented in Eq. (4.33). The dipole radiation modifications

will be dominant under the condition

5γ

84αv2
θ

(
λ

m
v3 − 1

)
≥ 20

3
F3

( m

λv2

)
. (4.40)
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The requirement of a valid post-Newtonian expansion (v � 1) can be combined with

the requirement that the step-function condition is satisfied to find

m

λv2
≤ v � 1, (4.41)

which corresponds to the ultra-light dark photon limit. Therefore, after removing bound-

ary terms, the dipole corrections to the waveform are only present in the waveform from

Eq. (4.38) and Eq. (4.39). The condition that dipole radiation dominates over the

Yukawa modifications can be rewritten as

v2 ≤ 5γ

56α
+O

(
m2

λ2v4

)
, and v3 ≥ m

λ
. (4.42)

The second of these conditions is precisely the condition in Eq. (4.12), requiring the

step-function to be active. The only significant deviations from these approximate re-

quirements come when the orbital velocity approaches unity, which also allows the min-

imum λ/m to approach unity. In this regime, of course, the post-Newtonian expansion

is valid no longer and a full numerical analysis is required.

4.4.4 Corrections to dipole radiation step function

We now consider how the corrections to the Heaviside step function in the activation

of dipole radiation modifies the gravitational waveform, for both a scalar and vector

mediator. We begin with the time-averaged power radiated through dipole emission of

a vector or scalar source given by [148]:

〈ĖS〉 =
1

3
η2m2ω4r2gS(mS , e)(q̃1− q̃2)2, (4.43)

〈ĖV 〉 =
2

3
η2m2ω4r2gV (mV , e)(q̃1− q̃2)2, (4.44)

where q̃i is the charge-to-mass ratio of the compact object, and the gi functions are

dependent on the eccentricity e of the orbit and the mass of the additional degree of
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freedom. Explicitly written,

gS(mS , e) =
∞∑
n=1

2n2

[
J ′2n (ne) +

(
1− e2

e2

)
J 2
n (ne)

]
×
[
1−

(mS

nω

)2
]3/2

, (4.45)

gV (mV , e) =
∞∑
n=1

2n2

[
J ′2n (ne) +

(
1− e2

e2

)
J 2
n (ne)

]
(4.46)

×
[
1−

(mV

nω

)2
]1/2 [

1 +
1

2

(mV

nω

)2
]
,

where Jn is the nth order Bessel function. By taking the e → 0 limit (circular orbits),

we can use the identity

lim
e→0

[
J ′2n (ne) +

(
1− e2

e2

)
J 2
n (ne)

]
=

1

2
δn,1, (4.47)

to rewrite the time-averaged power radiated in the simple form

〈ĖS〉 =
1

3
η2m2ω4r2(q̃1− q̃2)2θ (ω −mS)

(
ω2 −m2

S

ω2

)3/2

, (4.48)

〈ĖV 〉 =
2

3
η2m2ω4r2(q̃1− q̃2)2θ (ω −mV )

(
ω2 −m2

V

ω2

)1/2(
ω2 +m2

V

2ω2

)
. (4.49)

Note that if we ignore the “corrections” to the Heaviside step-function θ at high angular

orbital frequencies (ω � mS,V ), dipole radiation of a vector mode emits twice that of a

scalar mode, but has the same functional form.

We now calculate the waveform including the dipole radiation term for either scalar

or vector modes. A more useful form will be as a ratio of PGW :

〈ĖS〉
PGW

=
5(q̃1− q̃2)2

96m2/3ω2/3

(
λ2
Sω

2 − 1

λ2
Sω

2

)3/2

, (4.50)

〈ĖV 〉
PGW

=
5(q̃1− q̃2)2

48m2/3ω2/3

(
λ2
V ω

2 − 1

λ2
V ω

2

)1/2(
2λ2

V ω
2 + 1

2λ2
V ω

2

)
, (4.51)

where λi = m−1
i is the length scale associated with the additional scalar or vector degree

of freedom. The introduction of dipole radiation will manifest as an additional factor in

the equation for ω̇. In particular, we assume (q̃1− q̃2)2 � 1 so that dipole radiation is

a small correction to the usual gravitational radiation. Then,

ω̇−1 =
5

96
M−5/3ω−11/3

(
1− 〈Ėi〉

PGW

)
. (4.52)
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In order to calculate the phase of the gravitational waveform, we must integrate the

function

2ωt− 2φ = 2

∫ ω ω − ω′
ω̇′

dω′ (4.53)

=
5

48
M−5/3

∫ ω

(ω − ω′)ω′−11/3

(
1− 〈Ėi〉

PGW

)
dω′.

Including the corrections to the Heaviside step function, the dipole term results can be

integrated in terms of hypergeometric functions. However, we wish to find a power series

expansion for the integral. We expand each function as

〈Ėi〉
PGW

= Ciθ (λω − 1)

∞∑
n=0

(−1)nai(n) (λiω)−2n , (4.54)

where i = S, V denote the type of dipole radiation, and

Cs =
5(q̃1− q̃2)2

96m2/3
, (4.55)

Cv =
5(q̃1− q̃2)2

48m2/3
, (4.56)

as(n) =
3
√
π

4Γ[5
2 − n]Γ[n+ 1]

, (4.57)

av(n) =
3
√
π(1− n)

4Γ[5
2 − n]Γ[n+ 1]

. (4.58)

The integral in Eq. (4.53) is then evaluated as

2ωt− 2φ = 2ω [t0 − δt0θ(λiω − 1)]− 2 [φ0 − δφ0θ(λiω − 1)] +
3

128
(Mω)−5/3

×
[

1− 20Ciω
−2/3θ(λiω − 1)

∞∑
n=0

(−1)nai(n)

(3n+ 5)(6n+ 7)
(λiω)−2n

]
. (4.59)

We note, the corrections to the coalescence time t0 and inspiral phase φ0 include non-

trivial frequency dependence through the step function. In principle, these additional

step function corrections can be important for the matched filter process. However,

these corrections enter at 2.5PN and 4PN order for the phase and coalescence time,

respectively, and should be small for most observations.
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Finally, the waveform is written as

h̃(f) = −
(

5π

24

)1/2 M2

Deff
(πMf)−7/6e−iΨ

×
[

1− 1

2
Ci(πf)−2/3θ(πλif − 1)

∞∑
n=0

(−1)nai(n) (πλif)−2n

]
, (4.60)

Ψ = 2ω [t0 − δt0θ(πλif − 1)]− 2 [φ0 − δφ0θ(πλif − 1)]− π

4
+

3

128
(πMf)−5/3

×
[

1− 20Ci(πf)−2/3θ(πλif − 1)
∞∑
n=0

(−1)nai(n)

(3n+ 5)(6n+ 7)
(πλif)−2n

]
. (4.61)

Due to the step function, 1 ≤ πλif , the infinite sum converges (to the same hypergeo-

metric functions stated before) for both scalar and vector modes. In the case of vector

mode dipole radiation, av(1) = 0, hence the first correction to the step function occurs

at second order, (πλif)−4. Then, the −1PN correction to the waveform from the step-

function dipole term is modified by a small −7PN correction for vector mode radiation

or a −4PN correction for scalar mode radiation (small in the sense that (πλif)−2n ≤ 1).

4.5 Constraints on Dark Matter Model Parameters

4.5.1 Fisher analysis basics

The Fisher information matrix is a standard statistical tool used to estimate the accuracy

to which parameters can be measured in gravitational wave physics in the large signal-to-

noise ratio limit [158, 159]. The inverse of the Fisher information provides a lower bound

on the error of any unbiased estimator (the Cramer-Rao bound), and hence provides

an optimistic set of forecasted constraints, as compared to a Bayesian analysis. The

appeal of this approach is the computational efficiency; it requires orders of magnitude

less computing power then a Markov-Chain Monte Carlo analysis.

The Fisher information matrix Γab is defined as a weighted inner product of deriva-

tives of the waveform with respect to parameters θa and θb. That is,

Γab ≡
(
∂h

∂θa

∣∣∣∣∣ ∂h∂θb
)
, (4.62)
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where the inner product is defined as

(h1|h2) ≡ 2

∫ fhigh

flow

h̃1h̃
∗
2 + h̃∗1h̃2

Sn(f ′)
df ′, (4.63)

with Sn(f) the spectral noise density of the detector, and h̃(f) the Fourier transform of

the time-domain response h(t). From this definition, one can quickly see that the signal

to noise ratio (SNR) is given by

ρ2 ≡ (h|h) = 4

∫
dlogf

f |h̃|2
Sn(f)

. (4.64)

The bounds of integration in Eq. (4.63) are discussed in detail in Section 4.5.2.

The Fisher matrix is equivalent to evaluating the second derivative of the likelihood

L

Γab = −E

[
∂2L
∂θa∂θb

]
, (4.65)

at the maximum likelihood estimate for θa, where L is given by

L(θ) = exp

[
−1

2
(s− h(θ)|s− h(θ))

]
, (4.66)

given a signal s and a gravitational waveform h. Hence, the inverse of the Fisher

matrix can alternatively be viewed as the frequentist error of the maximum likelihood

estimator. A third interpretation of the Fisher information matrix is a Bayesian one:

the inverse Fisher matrix is the covariance of the posterior probability distribution of

the true parameters, as would be inferred by a Bayesian analysis of a single experiment,

assuming constant prior probabilities, a high SNR, and Gaussian noise.

From these definitions, one can estimate the sensitivity of a detector to a given

parameter. The root-mean-squared (1σ) error on a parameter θa can be estimated by,

∆θa ≤
√

Σaa, (4.67)

where Σaa is defined as the (a, a) component of the covariance matrix Σij ≡ (Γij)
−1.

In this work we will use Eqs. (4.62) and (4.63) to compute the above error, which we

interpret as the projected sensitivity of a given detector to a parameter θa. To prevent

(numerically) singular Fisher matrices, we follow the method of [114], where we use a
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working precision of one hundred decimal places and invert the Fisher matrix by the

Cholesky decomposition.

4.5.2 Range of frequency integration

The limits of integration in the Fisher analysis dictate the range over which our waveform

in Eq. (4.32) remains valid and detectable above detector noise. For the detectors we

consider (see Section 4.5.3), typical binary neutron star and mixed black hole-neutron

star inspirals will merge within the detector’s frequency window. The high frequency

limit will then remain independent of the particular detector, given instead by physical

quantities of the binary. However, the low frequency limit will depend on the sensitivity

of a particular detector.

For the low frequency limit, we follow [114], defining

flow = max [flow−cut, flratio] , (4.68)

where flow-cut is a detector dependent cutoff frequency given as 1 Hz for the Einstein

Telescope (ET), and 5 Hz for the remaining detectors we consider in Section 4.5.3.

The frequency flratio is defined as the lowest frequency where the amplitude of the

gravitational wave signal is 10% of the detector noise spectrum. Below this frequency, the

integrand in Eq. (4.64) is less than O(10−2), and can thus we neglected when computing

the signal-to-noise ratio.

At high frequencies, our waveform becomes invalid [160, 161] due to a lack of stable

circular orbits, assumed in the orbital frequency in Eq. (4.6) and the complete breakdown

of the post-Newtonian approximation. The frequency of gravitational waves [162] emit-

ted at the innermost stable circular orbit (ISCO) (for a test particle in a Schwarzschild

spacetime of mass m) is given by

fISCO = (4.4× 103 Hz)

(
m

M�

)−1

. (4.69)

However, when the binary contains a neutron star, the waveform must be terminated

before contact. The contact frequency [163] can be approximated as the gravitational
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wave frequency at which the separation is equal to the sum of the radii of the two stars:

fcontact = (4.4× 103 Hz)

(
m

M�

)−1

(6C̃)3/2 (4.70)

C̃−1 =
m1

mC1
+

m2

mC2
, (4.71)

where Ci is the compactness of the ith star8, and C̃ acts as an effective compactness for

the binary. The high frequency limit must be taken as the minimum between these two

frequencies,

fhigh = min [fcontact, fISCO] . (4.72)

As discussed in [164], enforcing this high frequency cut-off can lead to incorrect

results for the accuracy of parameter-estimation. This particularly affects parameters

that depend sensitively on the merger time, such as the total mass, and thus is par-

ticularly relevant for higher mass systems. In contrast, the accuracy to which dipole

and Yukawa modifications can be constrained builds up during the early inspiral phase,

and further, in this work we study only low mass systems. Hence we do not expect

parameter-estimation to depend sensitively on the merger phase.

We can further simply fhigh as follows. Stable neutron stars have roughly the same

radius RNS, given by their equation of state [165], and therefore the compactness of the

individual star is given by Ci ≈ mi/RNS. The effective compactness C̃NS-NS can then

be rewritten as

6C̃NS-NS ≈
3m

RNS
= 0.44

(
m

M�

)(
RNS

10 km

)−1

. (4.73)

Similarly, we take the black hole compactness to be C = 1
2 , so the effective compactness

for a black hole - neutron star binary can be written as

6C̃BH-NS ≈
6m

2mBH +RNS
. (4.74)

For a particular neutron star equation of state, the effective compactness for various

binaries systems can be calculated. Figure 4.1 displays the range of 6C̃ for various

neutron star equations of state. We see that the effective compactness is greater than

unity for all but low mass binary neutron stars.

8For a non-rotating black holes, the compactness is taken as C = 1
2
, while neutron stars have the upper

bound C ≤ 4
9
. For stable neutron stars, the compactness [165] is typically in the range C ∈ (0.1, 0.2).
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Figure 4.1: Effective compactness of neutron star binaries and mixed black hole-neutron
star binaries, for various neutron star equations of state [165]. We have taken the
minimum black hole mass as 5M�. The vertical, dashed black lines correspond to the
total masses we will consider in Section 4.5.4. In both cases, we see that 6C̃ ≥ 1.

When 6C̃ > 1, the contact frequency occurs after fISCO. Therefore, the high fre-

quency limit is written as

fhigh = (4.4× 103 Hz)

(
m

M�

)−1

(6C)3/2, (4.75)

C = min

[
C̃,

1

6

]
. (4.76)

For the binaries we consider in Section 4.5.4, 6C = 1, thus our analysis will always take

the high frequency limit as fISCO.

The mass-radius relations of neutron stars used in Fig. 4.1 does not include the

effects of a dark matter core. However, recent work [143] has shown that for a particular

equation of state, the same total mass neutron star will typically have a smaller radius

when a dark core is included. This implies that including dark matter will increase the

compactness of a particular neutron star, further increasing the effective compactness

6C̃. Therefore, fhigh = fISCO remains valid for the binary systems of interest.
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4.5.3 Future detectors and sensitivity curves

In this work we compute forecasted constraints on dark sector modifications for a set

of 10 ground-based detectors: aLIGO at design sensitivity [166], aLIGO with squeez-

ing (A+/A++ [167]), Voyager [167], VRT [167, 168], Cosmic Explorer 1 (CE1) and 2

narrow-band and wide-band configurations (CE2n and CE2w respectively) [167], and the

Einstein Telescope in its single interferometer configuration (ET-B) and in “xylophone”

configuration ET-D [169, 170].

For a detailed overview of the detector sensitivities we refer the reader to [171]. Here

we briefly summarize the salient details of each detector:

A+, A++: Upgrades to LIGO to minimize quantum and thermal noise, operational

starting around 2020.

Voyager: An upgrade to LIGO, which replaces glass mirrors and suspensions with silicon

parts, and will operate at a cryogenic temperature of 123K. To be operational in 2027.

Vrt: The same as Voyager, but operated at room temperature, instead of at cryogenic

temperatures.

Cosmic Explorer: Aims to observe binaries at high redshift (z > 1), using 40km long

detectors. CE1 is built on A+ technology, while CE2 (in narrow band and wide band

configurations) is built on Voyager technology. Projected start date of 2035.

Einstein Telescope: Designed to improve upon low-frequency (f < 10 Hz) noise levels.

To be built underground, operational in 2030-2035.

For each of these detectors, we find an analytic fit to the tabulated projected sensi-

tivities. These fitting functions will greatly accelerate the computation of Fisher matrix

elements. The functional form we use is

1

2
logSn(f) =

9∑
i=1

pi

(
x− p10

p11

)9−i
+

p12√
(x− p13)2 + p2

14

(4.77)
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Figure 4.2: Projected spectral noise density (solid) and analytic fits (dashed) for each
detector we consider. The curves are truncated at the particular detector’s cutoff fre-
quency flow-cut.

where x ≡ log f . The final term is only included when the detector obtains a large

resonance at small frequencies near flow-cut. This resonance does not occur in CE2

(narrow and wide) and the Einstein Telescope, hence we set p12 = 0 for these four

fit functions. While the shift and rescaling parameters p10, p11 are redundant in this

expansion, p10 will manifest as a “characteristic” frequency, similar to previous work

[150]. The fitting parameters are given explicitly in Table 4.2. The tabulated and

analytic fit sensitivity curves are shown in Fig. 4.2.

4.5.4 Constraints on dark sectors

We now apply the Fisher analysis discussed in Sec. 4.5.1 to the most general waveform,

calculated in Eq. (4.32), and include the General Relativity corrections, up to 2PN order,

calculated in [172]. In particular, we will look at a binary neutron star and a mixed

black hole-neutron star binary, evaluated at the parameters found in Table 4.1. The

maximal list of parameters we consider is given by

θ = {logA, tc, φc, logMc, log η, χs, χa, α, γ} , (4.78)
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Name m1[M�] m2[M�] (χ1, χ2) Deff

[Mpc]
SNR

(aLIGO)

NSNS 2.0 1.4 (0.01, 0.02) 100 25
BHNS 5.0 1.4 (0.2 , 0.02) 150 25

Table 4.1: Representative systems used in our Fisher analysis. The signal-to-noise ratio
is given for Adv. LIGO at design sensitivity.

where χs = (χ1 + χ2)/2, χa = (χ1 − χ2)/2, and χi is the dimensionless spin parameter

for the ith star. Our Fisher analysis, thus, will include all covariances between the

parameters listed above. We also note that our set of parameters does not include spin

precession or tidal parameters, as these enter at higher PN order.

When projecting future constraints, we will assume that future gravitational wave

observations are consistent with General Relativity. This implies that when computing

the Fisher matrix elements, we will take the General Relativity limit Γab|α,γ→0. A by-

product of this is that we lose the ability to constrain the length scale of the Yukawa

interaction λ separately, and thus, this parameter does not appear in Eq. (4.78). This

can be seen directly in Eq. (4.32), noticing that any derivative with respect to λ is

proportional to either α or γ. Instead, the constraints placed on each of these parameters

will have a functional dependence on the Yukawa length scale. This has the added

benefit that the Fisher analysis will not have numerical errors due to the sharp features

manifesting from derivatives of the Heaviside function in dipole radiation.

In the case of the mixed binary, the black hole should not be charged under the

massive dark photon [173], and thus we expect α = 0. For this reason, we do not include

α in the list of parameters when considering the mixed binary in a Fisher analysis. This

parameter, however, could be included in the future as a test of black hole no-hair

theorems. While nonzero α can also be attributed to a dark matter cloud surrounding

the black hole, tidal effects may become relevant before the fhigh considered here.

Similarly, when dipole emission is not present in the waveform, the parameter γ will

be removed from the parameter list. This occurs when Eq. (4.12) is not satisfied, forcing

the step function to vanish and removing the dipole radiation terms from the waveform.

The parameter γ can only be constrained when the step-function is active sometime

before the end of the observation, given by the frequency fhigh. Using the definition of
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fhigh in Eq. (4.75), we find the minimum length scale as

λ ≥ (22 km) (6C)−3/2

(
m

M�

)
, (4.79)

for which we include γ as a parameter in the Fisher analysis.

Under these considerations, we estimated projected constraints for γ from both bi-

nary systems, as shown in Fig. 4.3. The earlier dipole radiation activates, the more sig-

nificant its contribution becomes to the signal-to-noise ratio. Thus, as the Yukawa length

scale increases, the constraint on γ becomes more stringent, until λ ∼ O
(
104 − 105 km

)
.

At this length scale, the step function is activated before the low frequency bound, given

by Eq. (4.12). Approximating the low frequency limit as flow-cut, we find this critical

length scale to be λ ≈ 105 km for ET, and λ ≈ 2 × 104 km for the remaining detec-

tors. Above this length scale, the length scale λ only enters the waveform through the

Yukawa-corrections. For BHNS binaries, we have no Yukawa corrections, thus the con-

straint is independent of the length scale. For NSNS binaries, these Yukawa corrections

maintain a (weak) lambda dependence, causing the constrain to asymtote to a particular

(detector-dependent) value.

The relative Yukawa strength α can also be constrained from future binary neutron

star observations, as shown in Fig. 4.4. We find that significant constraints can be

placed on the relative Yukawa strength above λ ∼ 5 km. Below this length scale, the

exponential suppression of the Yukawa interaction leads to minuscule corrections to

the waveform through the inspiral. Surprisingly, even when the Yukawa length scale

is comparable to the radius of the neutron star (RNS ∼ 13 km), we are still able to

constrain α ≤ 10−2. Once one crosses into the ultra-light regime, λ & O(103 km), we

again see a rapid decline in the strength of the constraint due to the small Yukawa

corrections shown in Eq. (4.38). It is during this regime that the dipole radiation terms

can begin to dominate for a significant period of the inspiral phase. Again, once dipole

radiation activates throughout the entire detection window, α is only constrained below

the consistency bound α < 1 by the more sensitive CE and ET detectors.

In the ultra-light regime, λ & O(103 km), all previous figures show an increase in the

variance of estimated parameters, see e.g. the variance of α in Fig. 4.4. The variance of

the estimated astrophysical parameters, like the chirp mass, also increases in this regime,
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Figure 4.4: Projected constraints on the relative strength of the Yukawa interaction α
between neutron stars. The dashed line at α = 1 corresponds to the physical requirement
that the total energy in Eq. (4.7) remains negative throughout the inspiral.

as we can see in Fig. 4.5, which for illustrative purposes focuses on a NSNS merger. The

reason for this increase in the variance is a similar increase in the correlation between

the α parameter and the chirp mass; we have indeed verified that this element of the

correlation matrix approaches unity as λ & O(103 km). We can see the growth of this

correlation analytically in Eq. (4.39): as λ becomes large, the 1/λ2 and the 1/λ3 terms

in the Fourier phase become small, and the leading order term in the phase depends

not on just the chirp mass, but rather the product of the chirp mass and a (1 + 2α/3)

factor. This makes the Fisher matrix nearly degenerate, which then leads to a very large

variance upon inversion. In this regime, parameter estimation with GR templates could

be subject to “fundamental theoretical bias” [174].

We now return to dark matter. One can convert the bounds on α, γ into an upper

bound on the charge to mass ratio q̃ of the neutron star via

q̃ ≤
√
γb +

√
γb + 4αb

2
, (4.80)

where αb, γb are the bounding functions given in Figs. 4.3 and 4.4 for a particular

detector. This relation follows straightforwardly from the definitions of α and γ. We
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Figure 4.5: Projected sensitivity to the chirp mass in a binary neutron star merger, with
and without dark sector modifications. Dashed lines are the sensitivity predicted by the
GR waveform, while the solid lines are the sensitivity once dark sectors are included.
Colors are as in previous plots.

note, that for the mixed black hole-neutron star system, the assumption that α = 0

provides the stronger constraints q̃ ≤ √γb. To date, no gravitational wave observations

have been made of a mixed binary, so we will focus on the binary neutron star case

below instead.

Using the dark matter model described in Sec. 4.2, the constraint on the charge-to-

mass ratio can further be converted into a more useful constraint on the dark matter

mass fraction of the neutron star

q̃ ≡ 1.22× 1017fDM

(
g2

4π

)1/2(
100 GeV

mχ

)
. (4.81)

The value of the self-interaction g2/4π is constrained primarily by astrophysical con-

straints on dark matter self-interactions, e.g. morphology of galactic halos. In particu-

lar, the ellipticity of large halos constrains g2/4π . 10−3 [145]. Saturating this bound,

we see from Fig. 4.6 that for sub-TeV mass dark matter, gravitational waves can probe

even the extreme dark matter mass fraction fDM ∼ 10−15 predicted in [138].
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Figure 4.6: Projected sensitivity to dark matter mass fraction from an NSNS binary
merger, found from Eq. (4.80), with g2/4π = 10−3 and for varying mass mχ. Colors
are as in previous figures. At length scales below λ ∼ 70 km, dipole radiation is not
activated, and Eq. (4.80) provides no constraint on the dark matter mass fraction. One
can provide optimistic constraints below this regime by assuming the mass fraction for
the two neutron stars are comparable (γ � α).

4.6 Discussion

Current gravitational wave interferometers have been a remarkable success, and the

observations of black-hole binary mergers [108, 109, 110, 111, 112] and a neutron star

binary merger [113] have already place strong constraints on fundamental physics. The

third generation of detectors will improve on LIGO sensitivity by up to two orders of

magnitude, which provides ample cause for excitement at the prospect of further probing

fundamental physics with gravitational waves from binary mergers.

In this work we have quantified these expectations, and have studied dark sector

modifications to the gravitational waves emitted in binary inspirals. We have considered

Yukawa corrections to the gravitational potential, and the associated dipole emission,

as both arise in dark matter models with massive gauge bosons, and any modification

of gravity that introduces a new scalar degree of freedom. We have explicitly computed

the waveform, and performed a Fisher information matrix analysis to compute projected

sensitivities of ten next generation gravitational wave detectors.
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The projected sensitivities to the Yukawa interaction coupling α and the dipole

emission parameter γ are shown in Figs. 4.3 and 4.4. The Einstein Telescope is found

to be the most sensitive to such dark sector modifications, with sensitivity as good as

O(10−5) and O(10−7) for α and γ respectively. We project that constraints can be

placed provided the Yukawa length scale λ > O(10) km, and they are optimal when

λ ∼ 102 − 103 km and ∼ 104 km for α and γ respectively. The degree to which we can

constraint these parameters is dependent on the signal-to-noise ratio of the gravitational

wave detection. Thus, parameters such as the masses of the binary constituents and the

effective luminosity distance will play a significant role in the ability to constrain α, γ.

Because the dark sector corrections considered here are not degenerate with higher PN

corrections of GR, the spin parameters will not noticeably change the constraints.

We emphasize that for a large range in λ, the Einstein Telescope gives the most

stringent constraints for both α, γ parameters, due to the increased frequency range in

the integration of the Fisher elements. One may expect that the use of lower frequency

detectors, such as LISA, may significantly improve these constraints. But these space-

based detectors will observe near-monochromatic binaries, so it is not clear whether

these detectors will be effective at constraining dark sector modifications.

When written as a constraint on a specific dark matter model, we find these ob-

servations can detect even a minuscule amount of dark matter stored in neutron stars.

For a GeV dark matter candidate with a gauge coupling g2/4π = 10−3, the bound on

the fraction of the NS mass in dark matter can easily be better than 1 part in 1015, as

shown in Fig. 4.6. More generally, the constraints on α and γ, shown in Figs. 4.3 and

4.4, probe dark photon masses in the range mv . 10−10 eV, with optimal constraints

around mv ∼ 10−12 eV.

We interpret these results as quantitative confirmation that gravitational wave as-

tronomy is a powerful probe of fundamental physics. However, the work is not over,

and there are indeed new directions for future work in every step on this analysis. In

particular, one could improve upon theoretical estimates of the dark matter fraction of

neutron stars, extend the statistical analysis to include space-based detectors such as

LISA (using extreme mass-ratio inspirals that include a neutron star component), and

recompute the projected sensitivities by performing a full Markov-chain Monte-Carlo

analysis. The last of these is a necessary step to properly quantify the degeneracy with
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astrophysical parameters, as well as the ‘fundamental theoretical bias’ [174] introduced

by the use of GR waveforms and neglecting the modifications studied here.
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Chapter 5

Concluding Remarks

In this thesis, we consider three potentially observable signals from beyond Standard

model particles. While each field is introduced to solve a specific problem, such as

the Strong CP problem or the naturalness of the inflationary potential, the breadth of

theoretical uncertainty associated with these additional fields manifests as a large energy

gap between the different effects. Yet central to the resolutions are axion-like particles.

Furthermore, taking advantage of the pseudoscalar couplings provides unique avenues

to probe these ALP models.

In the context of natural inflation, interactions between the inflaton, charged fermions,

and photons lead to a large deposition of energy into a particular handedness of photons.

As a result, large amounts of V-mode polarization should exist in universe following re-

heating. Using standard computational techniques for inflationary perturbations, we are

able to find the spectral tilt of the primordial V-mode power spectrum. In order to make

contact with observation, modes drawing from this initial spectrum must be transferred

to the CMB. Without introducing additional sources to the Boltzmann equation, the

initial circular polarization will be exponentially damped due to the high conductivity

of the early universe. Thus, any detection of circular polarization would pose a difficult

problem of disentangling the initial circular polarization from new interactions.

Alternatively, the possibilitiy of axion-like dark matter prompts the investigation of

effective interactions between ALP and standard model particles. We show that the

axion-electron coupling gives rise an oscillating electric dipole moment for the electron.

While experiments such as EDELWEISS and XMASS can provide model-independent

constraints on the axion-electron current, more stringent constraints can be placed for
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low-mass axion by the amplitude of the electron’s electric dipole moment. Within a

factor of two improvement in current experimental techniques, electric dipole constrains

will probe into the QCD axion regime. However, these experiments do not utilize the

oscillating nature of the axion-induced electric dipole moment.

Finally, we consider the capture of axions (more generally, some dark matter par-

ticle) into neutron stars and black holes. In a binary system, long range interactions

between the collections of dark matter will modify the total energy and orbital angular

frequency of the binary. During the inspiral and merger phase of the system, these

kinetic modifications will manifest in the gravitational waveform emitted. Calculating

these corrections, we perform a Fisher analysis to generically constrain dark matter in-

teractions as a function of the light mediator’s mass. However, with the detection of

gravitational waves from a neutron star binary, more sophisticated techniques, such as

Markov-chain Monte Carlo simulations can be applied in the future using the template

calculated.
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