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Abstract: With the looming threat of quantum computers capable of breaking classical

encryption and the uncertainty regarding the security of post-quantum encryption algo-

rithms, some highly sensitive applications aim for the highest level of security in infor-

mation transfer: unconditional security. In this work we present an architecture and a

practical implementation of a user-friendly unconditionally secure file transfer client based

on quantum key distribution and one time pad cipher. We test the implementation on

the live QKD research infrastructure within POLITEHNICA Bucharest, thus proving the

approach is feasible for real information transfer use-cases.

Keywords: quantum key distribution; unconditionally secure encryption; secure file transfer;

one-time pad

1. Introduction

In the modern age of information, society relies heavily on various encryption algo-

rithms (such as AES, RSA, ECDSA, etc.) to secure data in transit, especially in applications

where security is critical, such as: governmental communication, defense secrets, patients’

private medical data, and more. However, with the looming threat of quantum computers,

classical encryption algorithms widely used at present (RSA, ED25519, etc.) are expected to

become breakable by 2035 [1]. Yet many of the secrets transmitted have a life-time that is

much longer than that; for example, government-issued information may be classified for

25–100 years, and patient data is expected to remain secret for the entire life of the patient.

The “Harvest Now, Decrypt Later” strategy enables a malicious actor to intercept and

gather currently undecryptable data until the decryption is possible (either via quantum

computers powerful enough to run Shor’s algorithm on meaningful input, but also perhaps

via theoretical breakthroughs against classical algorithms). Thus, there is a strong incentive

to replace encryption algorithms for sensitive data transmissions with a safer alternative as

soon as possible.

While post-quantum cryptography is under development and awaits to be subjected to

more comprehensive testing, quantum key distribution (QKD) [2] is the only known proto-

col for unconditionally secure (that is, it remains secure even against attackers with infinite

computation power) key exchange [3]. The keys can then be used for unconditionally secure

encryption and decryption between distant locations using an information-theoretically

secure encryption algorithm such as One-Time Pad (OTP) [4].

QKD is perhaps the first quantum technology to achieve a fully mature state, with

multiple commercial QKD hardware available and multiple small- and large-scale QKD

networks already deployed. Vendors providing QKD devices include IDQuantique (the
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first to provide commercially available QKD devices, in 2003), Toshiba, ThinkQuantum,

LuxQuanta, QTI, and several others. The first QKD network to be deployed in practice was

the DARPA Quantum Network [5], which operated between 2003–2007 and consisted of

10 nodes across Boston and Cambridge, MA (USA). The first European network was the

SECOQC project [6], operating between 2004–2008 and consisting of 6 nodes in Vienna,

Austria. QKD keys have been used intercontinentally for the first time as part of the QUESS

space mission in China [7], wherein the Micius satellite was used to establish an intercon-

tinental quantum-secure video call between Vienna, Austria and Beijing, China (over a

ground distance of 7500 km). In the European Union, in 2019, the largest international

QKD initiative to date started as the European Quantum Communication Infrastructure

(EuroQCI) [8] declaration was signed. Subsequently joined by all 27 EU Member States,

EuroQCI involves building and interconnecting national QKD networks in all EU Member

States in order to secure varied national and international use-cases, such as the communi-

cation of EU agencies, national bodies, public administrations, medical services, data center

activities, and more.

Although interaction with QKD devices is thoroughly understood in the community

(with widely-supported standards such as ETSI-014 [9] already in place), and protocols for

secure file transfer have been developed [10–12], there is still a lack of production-ready

client software that can enable non-technical users (diplomats, members of the public

administration, doctors, etc.) to leverage the security of a QKD network within their usual

communication. Our contribution in this paper is to lay the architecture for such a system,

as well as provide a practical implementation of an unconditionally-secure file transfer

client that has been tested over a real QKD link.

2. Prerequisites

The BB84 [2] QKD protocol works as follows. Alice generates two random series

of bits, ai and bi, which encode the polarization of a photon. For example: if both bits

are 0, then the photon is polarized horizontally (at an angle of 0 deg); if bi = 1 and

ai = 0, then the photon is polarized diagonally at an angle of 45 deg. If bi = 0 and

ai = 1, then the photon is polarized vertically (at an angle of 90 deg). If both bits are 1,

then the photon is polarized diagonally at an angle of 135 deg. Alice generates photons

sequentially following the series of bits (a quantum random number generator can be

used for the bits in order to ensure true randomness), and sends each photon to Bob. For

each photon, Bob generates a bit b′i which encodes the basis in which he will measure the

photon: if b′i = 0, then he will measure in rectilinear basis (obtaining either the horizontal

or the vertical polarization), otherwise he will measure in diagonal basis (obtaining either

the diagonal at 45 deg polarization or the diagonal at 135 deg polarization). If Bob’s b′i
matches Alice’s bi, then Bob’s measurement a′i will exactly match Alice’s ai; otherwise,

Bob’s measurement will be random. After measuring all photons, both Alice and Bob

publicly disclose the bases used (bi and b′i); then, they keep the bits ai and a′i where the

bases matched (bi = b′i). Following this, they perform an additional error correction step to

guarantee they both have the exact sequence of bits, and an additional privacy amplification

step [13] to guarantee that no eavesdropper holds any partial information about the key.

The final series of bits after error correction and privacy amplification forms the key which

can then be used to encrypt further communication. The security of the protocol lies

in the fact that any measurement performed by an eavesdropper to one of the photons

necessarily collapses its polarization to one of the eigenstates of the selected measurement

basis, thus introducing errors that Alice and Bob will be able to detect during the error

correction process; secondly, copying the state of an unkown photon and measuring it

after the public basis disclosure is not possible by virtue of the no-cloning theorem. Other
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QKD protocols may use different physical primitives (for example: E91 [14] relies on

entanglement and violating the Clauser–Horne–Shimony–Holt (CHSH) inequality), but

the security implications are the same.

We assume two users, Alice and Bob, are physically present at different end points

of a QKD network, such that secure keys may be generated between them, with an ID

mechanism which allows them to uniquely identify keys. In practice, QKD devices typically

provide a key interface API following the ETSI-014 standard [9]. In this standard, each

node in the QKD network provides a Key Management Entity (KME) which exposes the

REST endpoint Get key, which allows a Secure Application Entity (SAE) within the node

to get a number of secure key material, together with each key’s unique ID, with a different

SAE running on a different node. The requesting user would then send the key IDs to

the other SAE via any classical communication method (intercepting these IDs does not

compromise the security of the protocol). A different KME endpoint Get key with key IDs,

when called on the other node with the key IDs as received by the other user, provides

the same keys that were generated in the first step. The two users now share the secret

keys and can use them further for encryption; at the same time, the keys are discarded

and rendered inaccessible from the QKD devices. The caller’s SSL certificate data is used

in order to uniquely identify the calling SAE whenever one of the endpoints is called.

The keys themselves have a set size (which, depending on the QKD device used, may be

configurable), and are base64-encoded. The full data flow between KMEs and SAEs is

displayed in Figure 1. It should be noted here that the endpoints are only accessible from

the physical (presumably secure) premises of the QKD node; requesting the keys from a

remote location would involve the keys being encrypted with a separate protocol for them

to be transferred from the QKD node to the actual location of the user, thus rendering the

entire key distribution only as secure as this transfer protocol.

Node B

KME B

SAE B

Node A

KME A

SAE A

Step 1
(request):

Get Key
with SAE B

Step 1 
(reply):

Key:ABCD=
KeyID:f3-d4-1e

Step 3 
(request):

Get Key with ID
with SAE A

for f3-d4-1e

Step 3 
(reply):

Key:ABCD=
KeyID:f3-d4-1e

QKD QKDQUANTUM LINK

Step 2:
Send

KeyID:f3-d4-1e

INTERNET

Figure 1. Schematic of request and reply flow between KMEs and SAEs as defined in the ETSI-014

standard.

To ensure the perfect secrecy property of OTP encryption, the following conditions

must be met:

1. The key length must be at least equal to the length of the plaintext.

2. The key must be truly random.

3. No part of the key may be reused.

4. The key must be kept completely secret and must not be stored after it has been used.

Condition 1 implies that the number of key bits must exactly match (or be greater

than) the number of bits in the plaintext message to be sent. Condition 2 is guaranteed

by virtue of using QKD-generated keys. To ensure conditions 3 and 4, the key must be
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generated on the spot for each piece of the file to be sent, must be used only once, and then

must be deleted from the memory of the device.

Additionally, to ensure the authenticity and integrity of the message, a message

authentication code (MAC) should be appended as part of the message transmission.

One may think a potential attacker does not have physical access to the QKD node, and

hence cannot generate valid keys that would produce a valid message; this is correct.

Moreover, since keys are discarded from the QKD device after the request, replay attacks

are impossible because sending the same key IDs that have been sent before would result

in an error for the user requesting them via the Get key with key IDs endpoint. Thus, not

including a MAC does not compromise the perfect secrecy of the file transmission (that

is, the ciphertext conveys no information about the plaintext); however, it does prevent a

denial of service attack wherein the attacker submits randomly crafted messages trying to

impersonate a counterparty (missing message authenticity), as well as message tampering

which would result in the file getting transmitted incorrectly (missing message integrity).

To achieve both integrity and authenticity, we must add an information-theoretic secure

MAC, such as Wegman-Carter MAC [15]. It computes a universal hash function of the

message which it then encrypts with a OTP key, using an additional QKD key per message.

A discussion is perhaps needed on the choice of OTP for encryption, as opposed to

other symmetric encryption algorithms such as AES. It can be noted that as long as the key is

generated with a trusted QKD system, the resulting system is quantum resistant. However,

the goal is to achieve information theoretic security (unconditional security) for the file

transfer—that is, security which does not rely on assumptions of limited computation power

of the adversary. While this may seem to be an overkill for day to day communication,

there are plenty of historical examples where OTP was used in diplomatic or military

communication [16]. One obvious disadvantage of OTP is the fact it requires keys as long

as the message to be transmitted; thus, the rate of transmission is necessarily, at best, as high

as the rate of secret key generation. With today’s commercial QKD devices providing key

rates of 1–2 kbps on average, this is severely limiting. However, software algorithms have

been proposed to alleviate the issue by optimal key forwarding and redistribution [17].

3. Architecture

The architecture for the unconditionally secure file transfer system, shown in Figure 2,

is composed of three separate zones: Alice’s secure location (in purple), Bob’s secure

location (in blue), and the central public broker (in green).

Client Alice wishes to securely send a file to client Bob, with whom she is connected

via a quantum link within a QKD network. To this end, Alice requests N + 1 keys of size

S from her QKD device using the Get Key endpoint, where N is the number of blocks

sent per message. One key (displayed in orange) will be reserved for the MAC algorithm,

while the rest of the keys are concatenated into a message key of size NS. She splits the file

into blocks of size S each (padding the last block with zeros, if necessary) and generates

the current message plaintext by concatenating the next N blocks of the file. To produce

the ciphertext, she bitwise XORs the message plaintext with the concatenated key. The

plaintext together with the MAC key are passed into the MAC algorithm, which produces

the message MAC. The final message consists of the ciphertext, the message MAC, the ID

of the MAC key, and the list of IDs of the keys used to build the message key (preserving

their order).
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Figure 2. The system architecture for unconditionally secure file transfer.

Although the message could be sent directly to Bob, we decided to use a centralized

message broker in order to prevent network address translation (NAT) issues. The role of

the broker is to maintain an open connection with Alice and Bob and relay any message

from one to another without any check on the authenticity of the messages. With this

approach, even if neither Alice nor Bob have a public IP address and they can’t connect to

each other directly, they will still be able to send and receive files from each other. It should

be noted here that since the ciphertext is encrypted with perfect secrecy, the messages can

be treated as public with no impact on the security of the system; thus, introducing a broker

does not compromise the security of the protocol.

In order to integrate the broker, an additional field is required in the message to specify

to the broker that the message is to be forwarded to Bob.

On the receiving end, Bob builds an array of all key IDs (the message key IDs and

the MAC key ID), and triggers a call to the Get key with key IDs endpoint of his QKD

devices with the array of IDs as parameter. If the IDs are correct, Bob will receive a list of

keys from the QKD device that exactly match the keys used by Alice. Bob isolates the MAC

key for later usage; the rest of the keys are concatenated in the same order provided by

Alice to build the message key. Bob then bitwise XORs the message key with the ciphertext

received from Alice to obtain a plaintext candidate. By applying the MAC algorithm using

the computed plaintext and the MAC key, Bob is able to compare the result with the MAC

received from Alice; if the two MACs match, the message is accepted, otherwise it is

rejected. If accepted, the plaintext blocks are appended to the received file.

Additional file metadata may be needed to be transferred between Alice and Bob. For

example, Alice may want to include the name or type of the file. Additionally, for Bob to

know when the communication has ended and the file has been successfully saved, Alice

should transmit to Bob either the total size of the file (if known in advance), or a special

control string to mark the end of the transmission. If any such metadata is required, we

consider it part of the plaintext that Alice generates, and thus it does not require additional

fields or headers in the message.

If Bob’s connection is not point-to-point (i.e., there are potential senders other than

Alice), then, in order for Bob to know with whom he must call the Get key with key IDs end-

points, some identification element of Alice should be appended to the message. This could

be a unique ID or name for Alice’s node, or perhaps a classical authentication certificate.

4. Practical Implementation

For the practical implementation, we have built a user-friendly GUI client following

the architecture outlined above. The implementation is written in Python 3.10 with PyQT5

for the graphical user interface, and is publicly available on Github [18,19].
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The message broker is a CLI server which should be run on a publicly accessible,

static IP machine. The broker supports incoming connections from clients using ZeroMQ

sockets bound to a listening port. We have decided for using ZeroMQ due to its high

performance, support for the multi-part request-reply messaging pattern, and its ability to

handle asynchronous messaging and robust socket abstractions. Each message received

by the broker is expected to be a multipart message consisting of the client’s ID and a

command, with optional data following. The commands supported by the broker are

the following:

• Register—allows a new client to record its unique client ID (which must be different

from all other registered clients).

• List Clients—allows a client to query the list of registered clients and see the client IDs

of each.

• Relay—instructs the broker that the message is to be relayed to another client, specified

by their client ID as part of the command.

The client GUI starts with a connection screen (displayed in Figure 3), prompting the

user to fill in the broker’s IP address and port, as well as the client’s unique name. Upon

connecting, the client makes a Register call to the broker, and the GUI switches to the main

interface (displayed in Figure 4), which resembles the interface of a FTP client. A sidebar

on the left allows the user to browse the system files and see their name, size, and file

type. In the main section, a Refresh Client List button triggers a call to the broker with the

List Clients command, and refreshes the list of clients in the dropdown below. With a file

selected in the file explorer sidebar and a client selected in the dropdown list, the user can

click the Send button to initiate the file transfer. The progress towards sending or receiving

a file is displayed with a green progress bar. A status bar at the bottom of the main interface

displays the current action (sending or receiving), the counterparty, and the time elapsed

since the start of the action. If no action is currently underway, the message “Status: Ready”

is displayed instead.

Figure 3. Connection screen of the file transfer client.

In order to ensure the GUI is not blocked while a send or receive is in progress,

two separate threads (implemented using QThread from PyQT5) handle file sending

and receiving.

The sending worker thread keeps a list of files currently being sent, with each file’s

path, QKD nodes location, counterparty client name, and file sending progress. While there

are files remaining in the list, the worker requests the keys from the QKD device using the

Get key endpoint, performs the XOR operation, computes the MAC, sends the message

to the broker, and locks sending for this file until an ACK message is received from the

receiving counterparty (via the receiving worker thread).
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The receiving worker thread listens for messages from the broker and processes each

message as it arrives. If the message is an ACK for a file currently being sent, it notifies

the sending worker accordingly. If the message is a new part of a file, then it requests the

respective keys from the QKD using the Get key with key IDs endpoint, performs the XOR

operation to generate the plaintext, computes and validates the MAC, stores the result, and

sends an ACK to the sending counterparty.

Figure 4. Main interface of the file transfer client.

When needed, the worker threads notify the main thread via PyQT signals (for ex-

ample, to notify the sender thread that an ACK has been received, or to update the file

sending or receiving progress). To track progress and to have the receiver know when

the communication has ended, whenever a file transfer is initiated, the first part of the

plaintext consists of the metadata of the file which includes the file name and size. This

approach allows, both on the client and the broker side, for multiple concurrent transfers,

even between the same clients.

To separate the unconditionally secure file transfer logic from the interface provided by

the specific QKD devices used (in our case, ETSI-014), the calls to the QKD endpoints have

been implemented in a separate module QKDGKT (QKD Get Key Tool). The QKDGKT

module has a JSON configuration in which the user specifies the KME hostnames and

the SAE names for each accessible node in the QKD network, the location of the current

user, as well as the required authentication certificates for interacting with the QKD device.

Following the ETSI-014 standard, calls for Get key are performed as GET requests to https:

//[KME_hostname]/api/v1/keys/[SAE_ID]/enc_keys, which returns a key container

message that consists of an array of base64-encoded keys and their IDs. Calls for Get key

with key IDs are performed as POST requests to https://[KME_hostname]/api/v1/keys/

[SAE_ID]/dec_keys, with a JSON body consisting of an array of key IDs to be requested. If

the key IDs are correct, the response is identical with the response obtained for the call to

https://[KME_hostname]/api/v1/keys/[SAE_ID]/enc_keys
https://[KME_hostname]/api/v1/keys/[SAE_ID]/enc_keys
https://[KME_hostname]/api/v1/keys/[SAE_ID]/dec_keys
https://[KME_hostname]/api/v1/keys/[SAE_ID]/dec_keys
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Get key. Both requests include a SSL certificate of the requesting user, which is configured

in the QKD device as part of its consumer path.

The file transfer architecture and client are designed to work with any QKD infrastruc-

ture that supports key requests via the ETSI GS QKD 014 interface, which is implemented

by all major QKD vendors. The file transfer client was tested in practice on the QKD infras-

tructure of the National University of Science and Technology POLITEHNICA Bucures, ti,

achieving the first Romanian unconditionally secure file transfer using QKD and OTP in

July 2023. The broker was deployed on a publicly accessible virtual machine within the

university’s computing cluster, while the two file transfer clients were opened between

two buildings (“Precis” and “Rectorat”) on the university campus. These locations are

connected via an ID Quantique Cerberis XGR QKD link, as illustrated in Figure 5.

Quantum Channel

PRECIS Rectorat

Point to point

connection

QKD A QKD B

Broker

First Romanian Unconditionally-Secure File Transfer

with OTP and QKD at UPB

Figure 5. Architecture for the first Romanian unconditionally-secure file transfer with OTP and QKD

(left) performed over the QKD infrastructure at POLITEHNICA Bucharest (right).

The IDQ Cerberis XGR system operates using the Coherent One-Way (COW) QKD

protocol, with a dedicated fiber for the quantum channel and a separate line wherein

three signals (service, management, and KMS channels) are multiplexed over a Dense

Wavelength Division Multiplexing (DWDM) fiber in the C-band. The vendor datasheet

specifies a key generation rate of up to 2 kbps at a security parameter of 4 × 10−9, with a

maximum fiber distance of 60 km at 12 dB loss. In our experimental setup, we successfully

transferred a file between the two locations using OTP encryption with QKD-derived

keys. The observed file transfer rate was approximately 0.5 kbps, which we attribute

to factors such as QKD key buffer depletion, network protocol overhead, and message

synchronization delays.

5. Conclusions

In this paper we have provided the architecture for an unconditionally-secure file

transfer application, and we have explained the approach we have taken to implement it in

practice when conducting the first unconditionally-secure file transfer with QKD and OTP

in Romania. We conclude that leveraging QKD-generated keys for secure file transfer is

feasible practically, even for non-technical users.
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