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PREFACE
(i)

The present investigations have been carried out 
towards the fulfillment of the requirements for the award 
©f a Ph.D. degree in Physics of V.B.S. Purvanchal 
University, Jaunpur (U.P.), India, under the supervision 
of Dr. R.K. Tripathi, Reader and Head, Department of 
Physics, S.D.J. P.G. College, Chandeswar, Azamgarh 
(U.P.), India and Co-supervision of Dr. Virendra Singh, 
Reader, Department of Physics, T.D.P.G. College, Jaunpur 
(U.P.), India.

The thesis deals with some investigations of domain 
walls in Kaluza-Klein spacetime. It has been divided into 
four chapters. The first chapter is introductory. So, we 
have formulated and discussed some of the techniques and 
results which are relevant for our subsequent 
investigations. Hence, we have presented, connections for 
a Kaluza-Klein theory with variable rest mass, de Sitter- 
tvpe of model in five-dimensional theory of gravity, the 
anisotropic fluids generated via Kaluza-Klein spaces.

In chapter II, it is obvious from the solutions of 
case I and Case II spacetimes that they are reflection 
symmetric with respect to the wall. For a thick domain 
wall it is necessary that pressure and density decrease



on both sides of wall away from the symmetry plane and 

fall off to zero as x —> ± .

The solutions of the Case I require that p > 0, p > 

0 and (p-p) > 0 and may be satisfied by choosing the 

parameter d such that d < - (3+Vs)/2. For d = - (3+^5)/2

then p = p. It is clear that p, p fall off to zero on 
either side of the wall.

Again for the solutions of Case II (i) and case II 
(ii) the fall of condition require a > 0. For the case II 

(i) this condition would conflict with p > 0, m2/k2 > 0.
W

Hence, this family of solutions is not physically 
reliable. However, it is interesting to note that when

b = 0, p and p vanish resulting into an empty spacetime 
given as

(l) ds2 = e2nc (dt2 - dx2) - dy2 - dz2

- e2"" Cosh2 (nx) d\|/2

(ii)

where

n = k y

For the case

(3) b < 1/4 (1-Vl7)

i . e.



(iii)

2b2 - b- 2 < - ,

the solutions of case II (ii) would satisfy the 
condition

(4) a > 0 ,

(5) p > 0

(6) m2/k2 > 0 .

It would have proper fall condition as well as

(7) p - p > 0 .

Let us now discuss the dynamical behaviour of our 
models under different conditions imposed on various 
parameters occurring in the solutions. One may obtain the 
general relation for the three space volume as

(8) |g3|i2 = CoshBOb (mx) eke {a + 2(3) .

Hence, the temporal behaviour reads

(9) |g31iJ= ~ exp [kt (a + 2(3)]

Hence, it is an .important to note that when

(10) 3 = - 1/2 ,

v^e recover in Case I, the Banerjee and Das solution
(1998) . Hence, we have taken for the Case I, 3 to be 
negative. For



(iv)

(11) d < - (3+V5)/2 ,

one obtains

(12) a + 2(3 < 0.

Again if

(13) k >' 0

three space collapses while the extra dimension inflates. 
In this case, one obtains singularity because as t-»^-, p 
and p diverge. If k < 0, the 3-space inflates while extra
dimension collapses in course of time. One may also
discuss the dynamical behaviour of the domain wall
solutions corresponding to the case II (ii) on the
similar lines.

Let us now discuss the attractive and repulsive 
behaviour of thick domain wall by either through the 
timelike geodesics .in the spacetime or studying the 
acceleration of an observer who is taken at rest relative 
to the wall as presented by Wang (1992). Let us consider 
an observer with the four velocity

(14) ux = Coshu (mx) e,ikt 8ti

Hence, one may obtain an acceleration A1 as

(15) Ai = ui;k uk



(V)

= ma tan h (tnx) Cosh'2a (x) e-2akt 8XX. 

For the case I,

(16) a = i

and

if

(17) 3 V o

then Ax is positive. It shows that the observer is
comoving with the wall having to accelerate away from the
symmetry plane or it is attracted towards the wall.
Similarly if
V

(18) m < 0 ,

then the wall represents a repulsive behaviour to the 
observer. Similar results may be obtained for the domain 
wall solutions of Case II (ii). Let us assume

(19) T°0 = T% = T% = T\ = p ,

(20) T\ = - P ,

(21) T°, = 0

one obtains a domain wall solution for 

(22) p = p



But this solution be the same as obtained by Banerjee and
2

Das (1998) . If one assumes em* in place of Cosh (x) in 
the separability condition, there may not be any domain 
wall solution. But it gives five-dimensional empty 
spacetime as

(23) ds2 = e1”'*”2*2 {dt2 - dx2)

-e2n,t4Z{dy2 + dz2)

-eAnu^dy/2,

where n be the arbitrary constant. Hence, it represents 
an inhomogeneous vacuum spacetime.

Hence, we have obtained three families of exact 
solutions- of Einstein field equations containing three 
parameters.

In chapter III, by considering a non-diagonal 
cylindrically symmetric metric in the Kaluza-Klein 
spacetime we have presented a number of homogeneous and 
inhomogeneous perfect fluid solutions including the 5- 
dimensional analogue of 4-dimensional non-singular stiff 
fluid solutions. It is observed that the dimensional 
reduction is admitted only in the diagonal case.

(vi)

From the equation



(vii)

Rlk = - 871 [(p = p) Uj uk - 1/3 (p - p) gik] ,

One may obtain

Rik u1 uk = - 167t/3 (p = 2p) < 0.

So in view of the Raychaudhuri (1955) , equation, 

singularity may be avoided only when acceleration is non­

zero for a vorticity free spacetime.

Hence, it is observed that a non-singular spacetime 
requires to be inhomogeneous. In the case of diagonal 

non-singular solutions, it comes out that 5-dimensional 

non-singular analogue exists only for the p = p. Here, we 

have presented the 5-dimensional analogue of non-singular 

non-diagonal stiff fluid (p = p) solutions. It odes not 
allow the dimensional reduction. Here the parameter a 
measures the non-diagonality of the metric and b as 

inhomogeneity. The perfect fluid without p = p is allowed 
in the homogeneous case. We have presented a family of 5- 
dimensional solutions which includes 5-dimensional 

version of FRW flat solutions. All homogeneous solutions 
are expected big-bang singular.

In the last chapter, For the thick domain wall in 

curved spacetime one assumes the wall to have planar 

symmetry with two commuting Killing vectors describing 

translational invariance in the plane parallel to the



(viii)

wall and a third Killing vector related to a rotational 
symmetry about the X-axis perpendicular to the wall. It 
is symmetric about x = 0 plane. The Lagrangian for the 

scalar field is taken as L = 1/2 glk (p* cpk - v((p), where cp 
is assumed as a function of x alone. It has been 
investigated by Widrow (1985) that for such a field 
purely static metric gives unphysical behaviour at large

|x| # so long as V(<p) is positive. We have presented that 
a thick domain wall with oplaner symmetry having T°0 = T% 

= T33 * 0 and T\ = 0 may not remain in static equilibrium 

in Brans-Dicke theory of gravitation. We hope if one 

assumes T\ * 0 the result may be changed.

Every chapter has been divided in sections 
following decimal system: section (1.5) means fifth 
section of chapter first. On the same line, the equations 
in different chapters are also numbered i.e. Eq. (4.5) 
means, fifth equation of chapter four. At last references 
are given.
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INTRODUCTION
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1.1 Introduction and Motivation:

There has been long-standing expectation to 
construct a theory of gravity 'that provides the same 

physical answers when a change or coordinates is done 

(covariance) and when a change of units or scales is 

carried out (scale invariance). There are various 

reasons for this desire, some of the most cogent of 

which have to do with cosmology as presented by Wesson 

(1978, 1980). It is well known that the Einstein general 

theory of relativity is an excellent and important 

theory of gravity, but it is coordinate covariant but 

not scale invariant. This has led several authors to 

suggest an alternative theories of gravity, for example, 

Dirac (1973), Hoyle and Narlikar (1974), Canuto et al 

(1977). However, these latter theories describe rather 

drastic departures from convention, and lack convincing
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observational support. Scale invariance may be obtained 

in less drastic fashion by extending general relativity 

from four dimensions to five dimensions, where the fifth 

dimension is the mass. The space of Einstein's theory by 

which is meant the 4-dimensional version of general 

relativity, may be regarded as embedded in this 5D 

space. The scale invariance is physically reasonable and 

a 5-dimensional variable-mass version of general 

relativity is mathematically elegant and agrees with 

observation. Whether the real Universe is best described 

by the- 4D Einstein theory or the 5D scale-invariance 

theory and this question may be decided by astronomical 

observation and experiment.

Invariance of the testable consequences of the

theory under changes3 of coordinates and changes of

s cales are separate attributes, and it is useful to

recall what these kinds of invariance mean. Invariance 

under changes of coordinates is a statement of the fact 

that the physical properties of the system are not 

changed by a change of coordinates. A trivial example of 

such a change is one from Cartesians to Spherical 

polars. A non-change trivial example is an arbitrary 

change from one system of curvilinear coordinates to 

another, where the physical properties of the system are 

not affected by the device of describing them by
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tensors. Invariance under changes of scales is a 

statement of the fact that the physical properties of a 

system are not changed by a change in the standards of 

measurements or units. A trivial example of such a 

change is one where a measuring rod-graduated in metres 

is changed for one graduated in centimetres. A 

non-trivial example is given by the possibility that 

standards of measurement or scales do in fact vary from 

place to place in the Universe, and if the laws of 

physics are to be the same at all places, these latter 

should clearly be invariant under changes of scales. The 

physical properties of a system in this case may be 

preserved by the device of describing them by quantities 

sometimes called as cotensors by Dirac (1973), Canuto et 

al (1977). At least at present, there is no way to rule 

out by experiment the possibility that the sizes of the 

scale are coordinate-dependent. A review of other 

arguments for having a theory of gravity that is 

invariant under coordinate changes and scale changes is 

available as presented by Wesson (1980).

There are at least three scale invariant theories 

of gravity in existence. It is remarkable to examine 

them brtiefly to see what consequences are expected to 

follow from the requirement of invariance under changes 

of scales. The three theories are those of Dirac (1973),
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Hoyle and Narlikar ( 1974 ), and Canuto et al (1977).
These theories share the property that in them the
Newtonian gravitational parameter G and/or the masses of
objects vary with time at a rate governed by the age of
the Universe, which is of order of 10^ yr. It is not

difficult to see why G and/or masses, which are constant
in Einstein's theory, have to be variable in scale
invariant theory. Let us consider an object like a star
of mass m, surrounded by vacuum and situated in a
Universe whose background metric is evolving with time
as might be the case if it is expanding, as is the real
Universe. In Einstein theory G and C are constants, and
it is a direct consequence of the field equations that m
is also constant say M„. There are thus scales of mass

2 3Mn, length Ln = GM0/c and time T0 = GM0/c associated 
with the object, and those are constants even though the 
background metric is variable in time. In otherwords, 
the object is in some sense decoupled from the rest of 
the Universe. In scale invariant theory, it is obvious 
that scale invariance is only fully realised when there 
are no constant scales present as shown by Pulton et al 
(1962) Canuto et al (1977), Wesson (1980). This scheme 
is quite general, and was first appreciated in particle 
physics. In particle physics theories, scale invariant 
behaviour is fully realised in the limit of energies
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much larger than the energy corresponding to the rest 

mass or equivalently in the limit in which the constant 

scale corresponding to the rest mass vanishes. The 

scheme also holds in gravitational physics. In theories 

of gravity, scale invariant feature is fully realised in 

the limit of large masses, lengths and times, where 

large means of cosmological order. It means that an

object like a star is described by a solution which for 

times small compared to 1010 yr contains parameters like 

, L„, T„ which to a good approximation are constants; 

while for times comparable to 10^ yr these constant 

scales vanish. In other words, the object in some sense 

coupled to the rest of the Universe, and this is

manifested by the fact that G and/or m vary at a rate 

governed by the age of the Universe.

Experimentally, scale invariance is of

established significance in particle physics but not in

gravitational physics. This is because observations of

system where gravity is the dominant force have only

2been earned out for a time interval ~10 yr much smaller

10than the age of the Universe ~ 10 yrs. In astrophysics 

for example, it is not known if the mass of a star like

the sun is a constant over times of order 10^ yr, in

which case it is correctly described by a
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y

scale-invariant theory. In cosmology, it is observed

that systems with large sizes and ages may be described

by functions which do not contain any constant scales.

Two examples are follows: A typical cluster of galaxies

25has a radius r of order 10 cm and a density f measured

with respect to its centre which is given approximately

2 2by the scale free relation G f r /c = dimensionless

constant. The background Universe out to the light

sphere consists of many randomly-located clusters', and

has a homogeneous density which is terms of the time t

since the big bang is given approximately by the
2

scale-free relation G f t = dimensionless constant. The 

observation that cosmological systems may be described 

by functions which do not contain any constant scales 

may just be a clue to the physics to their formation in 

which case they may be correctly described by Einstein's 

theory, or may be an indication that scales vanish in 

the cosmological limit in which case they may be 

correctly described by a scale-invariant theory. Of 

course, it is feasible to carry out experiments to 

detect a possible time-variation of G and/or masses at 

the present epoch as shown by Wesson (1978, 1980). 

However, the effects involved are very small, and so far 

no results have emerged which are so clear cut as to 

allow of a choice to be made between Einstein's theory 

and the various scale-invariant theories.
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There are several objections to the 
scale-invariant theories which has already been proposed 
by Dirac (1973), Hoyle and Narlikar (1974), Canuto et al 
(1977). First, these theories allow masses to be 
variable over cosmological times, but at the expense of 
introducing a gauge function which maynot be fixed 
except by appeal to some external criterion. The most 
usual way of fixing the gauge function is to use Dirac's 
Large Numbers Hypothesis (LNH), which leads to two 
possible forms of the gauge function. This hypothesis 
has been used by Dirac and Canuto et al, and the latter 
authors have also introduced a third gauge functioin 
consistent with the LNH. However, the LNH is an extra 
hypothesis not integral to the theory of Dirac or the 
theory of Canuto et al. An alternative way of selecting 
the gauge function is that of Maeder and Bouvier (1979), 
who have shown that the condition that the Minkowski 
metric be a solution of the scale-invariant field 
equations for empty space leads to one of the two Dirac 
gauges. However, while this is plausible, it maynot be 
taken a proof. Hence, the situation is that there are at 
least three possible gauge functions, with no way to 
select between them. It is possible in theory to 
constrain the gauge function in view of observational 
data: but this is not possible in practice because no
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one gauge functiion is compatible with all observations, 

as shown by Wesson (1978, 1980), and Dirac (1979), who 

has abandoned part of his original theory because of 

conflicts with observation. The objection just presented 

may be the result of the incomplete nature of the scale- 

invariant theories which have already been proposed, but 

the objection is neverthless valid. Second, extant 

theories are often presented in a form where there are 

two metrics, one of which refers to atomic physics. It 

is related with the fact that G is assumed to vary as 

measured by an atomic clock. The two-metric view is 

mathematically clumsy and physically obscure. This 

objection is related with as two metrics are related by 

the gauge functioin and one may argue that both 

objections are not too serious because they come from 

the nature of incomplete scale-invariant theories. 

However, while this might be the case as far as 

gravitational physics is concerned the two objections 

presented here represent significant obstacles to 

further research. Third, in theories which have already 

been proposed, the Newtonian gravitational parameter G 

and the mass of an object m are treated separately, 

whereas in problems where gravity is the dominant force, 

and therefore in the cosmological or fully scale- 

invariant limit as well, these two parameters always
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occur together in the ccmbinatioin Gm. It is related 

with the fact that G is essentially plays the role of 

dimension-transposing constant for m, which latter is 

the source of the gravitational field i.e. G is on the 

same footing as c. In other words, it makes more sense 

either to regard G as the true constant and m as 

variable or to use the single parameter Gm as variable.

The above discussions indicate that scale-

invariant theory for gravity (i) is physically sensible;

(ii) implies that masses should vary slowly at a rate

governed by the age of the Universe; (iii) may be

relevant to real Universe; (iv) should be described by a

kind of theory different to those already known. These

comments provide proper motivation for further

researches in these directioins. If one thinks on these

comments, it becomes obvious that some new hypothesis is

needed in scale-invriant theory which at the same time

ensures that scale-invariance is properly taken into

account and that Einstein's theory may be recovered in

some appropriate limit as such. There is a hypothesis

which satisfies it: There is a variable with the
3dimensions of a length which may be defined as Gm/c 

where m is the mass, and this variable plays the role of 

a coordinate in a five-dimensional space, this latter
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having scale-invariant properties and containing the 

four-dimensional space of Einstein's theory. This 

hypothesis is less drastic than those on which other 

scale-invariant theories of gravity are based, and 

actually has precedents both in classical physics and 

gravity. In classical phys^.ics, quantities may be 

divided into categories depending on whether they are 

intensive meaning thereby definable or measurable at a 

point, or extensive i.e. definable or measurable with 

respect to an origin. Common quantities which come into 

che first category are pressure and density and common 

quantities which fall into the second category are space 

coordinate and time. Now mass is also a common physical 

quantity, and if it is questioned into which category it 

falls, then the answer is the second category. Hence, 

the mass is the same kind of quantity as a coordinate. 

This fact is not merely semantic, since the noted 

existence of two categories of two physical quantities 

determine to a certain extent how the equations which 

describe the physical behaviour are set up.

In general theory of relativity, it is the 

existence of constant c which underpins the logic of 

regarding ct or the time t as a coordinate, and allows 

the three-dimensional space of common experience to be

V
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extended to the four-dimensional one of conventional 

relativity. Likewise, it may be argued that existence of 

G and c underpins the logic of regarding Gm/c or mass 

as corrdinate, and allows the four-dimensional space of 

conventional relativity to be extended to the five­

dimensional one. The above discussions indicate that 

introducing a fifth coordinate and a 5-D space is no-, 

such drastic step as it may appear to be on causal 

examination. There have been, of course, 5-D versions of 

v relativity before, the most notable of which was the 

Kaluza-Klein theory, Kaluza (1921), Lein (1926), Witten 

(1981). However, in the Kaluza-Klein theory, the fifth 

dimension was introduced in order to incorporate 

electromagnetism into relativity; and the extra field 

equations which this entailed contained quantities of no 

physical significance, and so were not used. In the 

5-dimensional theory by Wesson (1983), the fifth 

dimension is introduced inorder to incorporate mass into 

relativity in a way consistent with scale invariance: 

and extra dimension field equations which this entails 

contain the familiar quantities of physics, and are used 

in order to test the theory. Hence, the Kaluza-Klein 

theory and Wesson theory have in common the fact that 

they both used a 5-dimensional Riemannian space, but are 

otherwise different.
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1.2 Connections for a Kaluza-Klein theory with 
Variable Rest Mass:

One an important reason for discussing 
theories of gravity other than that of Einstein is to 
try to present a better understanding of cosmology as 
shown by Wesson (1978, 1980). Theories of Kaluza-Klein
type are currently the subject of special interest. 
These are 5-dimensional theories, which may give a means 
of extending Einstein's theory i.e. four-dimensional 
general relativity and of unifying gravity with other 
forces of physics as presented by De Sabbata and 
Schmutzer (1983), Lee (1984). A theory of the Kaluza- 
Klein type, which may be known as an embedding for 
general relativity with variable rest mass, has been 
proposed by Wesson (1983). In the theory of Wesson 

* (1983), the conventional 4-dimensional spacetime of 
Einstein theory is extended to a 5D space-time-mass, in 
which the fifth coordinate is taken to be the rest mass. 
There are two reasons for identifying the mass as a 
coordinate, (a) It is the constant c, the velocity of 
light, which allows the time to be defined as coordinate
Ox = ct, on the same footing as the space coordinates 
12 3x , x , x . Similarly, the existence of constant G, the 

Newtonian constant of gravity, suggests that the rest 
mass m of the particle may be treated as a coordinate
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4 2 4x - Gm/c . (b) If x is a coordinate in a 5-dimensional
3

manifold, the dimensionless velocity w - (G/c ) dm/dt 

describes a variation in the rest mass of a particle 

with time.

There is considerable interest in variable-
4

gravity theories, and the use of x and w in a 5D theory 

is superior to the device of allowing G to be 

time-variable in a 4D theory. These two reasons for 

identifying the mass as a coordinate lead to a theory 

which is mathematically straightforward. It uses a 

Riemannian space, and the field equations involve the 5D 

Einstein tensor G.., so it is in essence an extension of 

4D general relativity. The theory agrees with all 

observations provided w _< 1. In the limit w = 0, the 

fifth dimension is absent and Einstein 4D theory is 

recovered. In the real world, the consequences of the 5D 

theory may best be distinguished from those of the 4D 

theory in the cosmological domain. It was implied in 

Wesson (1983) that the relations given there could be 

used to investigate cosmological models. However, while 

those relations are correct, they are based on a 5D 

metric that is somewhat inconvenient, in that it does 

not allow of a simple comparison with the 4D metric of

conventional cosmology. Hence, a more convenient metric
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will be taken and the relations obtained in 

(1983) will be rederived for the new metric.

Let us now denote the coordinates

(1.1)
0

X = t /

(1.2) 1X = X /

(1.3) 2x - y /

(1.4) 3x - z f

(1.5) 4x = m t

where c = G = 1 . Hence, an appropriate metric

i. e. homogeneous and isotropic is

(1.6) .2 v ,, 2 wds = e dt - e (dx^+dy2+dz^) + eP dm2

where

(1.7) v = v (t, m) ,

(1.8) w = w(t, m),

Wes son

for 5D

(1.9) P = P (t, m)
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This metric reduces to that of conventional 

cosmology, namely the Friedmann-Robertson-Walker one 

with zero curvature constant, when the fifth dimension 

is absent. The nonvanishing Christoffel symbols are:

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

1*
2 r01 W*

2

r20 2
w*
2 '

w*
2

r400
-^+V v*

2
P°04 v*

2

r1
14

w*
2

w*
2

r4
04

a
2 f

- V+We
2

w p 4 
11

e-^+w
2

w*
/

0
22

-v+we
2

w r4
22

e-/n+w
2
w+

P° -33
e -v+w

2
w e-H+w

2
w*



1G

d.18) r° = - e~vtP"», r4 = #* ,44 44

where (.) and (*) denote partial derivatives with 

respect to t and m respectively.

The nonvanishing components of Ricci tensor are:

(1.19) R00 " I " + 2 + I W*2 + ^* 3v*w* v*n*
4 T"

+ ev-u ,v , v 3v*w* _ p*v1(f + j " t^r) 1

n r, .. 3 . 3ww* 3wv* 3w+*i(!.2U) R0 4 - 4 W + --4------ 4------ 4

(1.21) R w-v11 w , 3 +2 . u■sr + T W* + f-*w* v*w*
2 4

w-u , w** 3w* v*w* ja*w*
'2 4 4

ia*w* s _ > ,

(1.22) R22 R11 '

R33 R11(1.23)
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(1.24) R44
* * + *

4
* * 
VjJ
4

+ e1P -v !| + $* + | SJ * *

The Ricci scalar reads

(1.25) R
* 2 * *

5V (3w + 3w2 + fi + £ +
* * 3vw 
2

* *

— ii * *+ e* (3 w + *9 -V *3vtf + v
* * 

3wv 
2

* * + *

The nonvanishing components of the Einstein 

tensor are :

(1.26) Goo =
9 * *
- 3ro _

4 4
v-w 9 * *(| w *2, 3w + — ,

(1.27) G'0 4 f w + | ww -
*3wv

4
9* *_ 3W£
4 i

(1.28) G11 “
*9w-v 3v*e (w + —“ + ii

2
+ 2

+ £ + 4
* *
W)U
2

+ ew“
*2 * *u ,*« , 3w , v (W + — + 2

*2
+

* *
wv
2

**
nw-

* * 
f1:

r * * *
[W _ V£,

j
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(1.29) G2 2 G11

(1.30) G3 3 “ G11

(1.31)
*9 * * .. *9 **3w 3wv jj-v ,3w 3w 3vw.G44 4 4 e ^ 2 + 2 4 ' *

11.32)

In the case when the fifth dimension is absent

eP = 0 ,

and all (*) derivatives are zero, so by using a cosmic

time i,. e.

(1.33) (D
<

1! I-
*

the five-dimensional G. . reduce to four-dimensional G. .iD i]
of conventional cosmology. In this situation one obtains

(1.34)
*2r _ 3wz

Goo " 4

(1.35) w • • 3*2G11 = G22 = G33 = e (w + T w )(1.35) G
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When field equations are taken to be those of 

Einstein's theory

{1.3 fa)

and by taking Th ^ as the energy momentum tensor of 
perfect fluid with density and pressure p, then

(1.37) 8Ttf - - | w2

*2
(1.38) 8

These are usual Friedmann equations for the FRW 
models with zero curvature constant, and for

(1.39) p - 0

one obtains standard Einstein-de Sitter model.

For the case when the fifth dimension is present,
the G. , depend in general on both t and m, as do the R. . 1 j 1D
and R. This means 5D cosmology is inherently more 
complicated than 4D cosmology. Also, it is by no means 
obvious what the field equations should be for the 5D
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theory. Wesson '1983) made a suggestion which involves

(1.40) Sij = - R Slj/2> '

but this is not unique, and the field equations might

involve some other.combination of R.. and R. It is13
possible to identify the symbol m in the above with any 

physically-relevant parameter.

1.3 De Sitter-type of model in five-dimensional 

theory of gravity:

It is argued that for any theory of

cosmology to be complete it should be both covariant and

scale-invariant. With this view and several other

considerations, various modifications of the Einstein’s

theory, which is only covariant, have.; beeen proposed

where gravitational interaction varies with time as by

Wesson (1983). In this context the rest mass-varying

theory of gravity was proposed by Wesson deserves

serious attention, in which the 4D spacetime of Einstein

has been extended to a 5D space-time-mas s where the
4 2fifth coordinate is x = Gm/c with G and C retaining 

the status of true constants, while mass has been 

elevated to the status of a separate coordinate like 

space and time. The logical foundation of the theory is
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very sound in the sense that the 5D space is Reimannian 

in geometric properties and it also involves less 

drastic departures from the well known concepts than do 

others because just as the existence of c suggests that
o

x - ct be defined a coordinate, the existence of G 

suggests x4 = Gm/c2 be defined as a coordinate.

We have presented exact solutions for a 

homogeneous, spatially isotropic cosmological models in 

vacuum both with or without a cosmological constant, 

because it is in the realm of cosmology that Wesson's 

theory assumes an added significance.

Let us consider the line-element for a 5D 

homogeneous and spatially isotropic

(1.41) ds2 - eV dt2 - eW (dx2 +dy2 + dz2) + e^ dm2 ,

where v, w and p are functions of time and mass.

Due to the extremely complicated nature of the 

field equations, let us make a simplifying assumption

(1.42) eV = 1 ,

in obtain explicit solutions for £he metric 

coefficients. In this way one may obtain nonzero

components of Einstein tensor
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(1.43) G
o-2•3w

oo
* * * 2 * *

■M. _ e-p (3|_ + 3|_ . 3WH,

- A

(1.44) GX1 - G22 = G33

+ ¥+ I + f" + ¥ >
+ 2 * *, —iQ * * 3w u w+ e ¥ (w + —z— “ *-^5— )

A

(1.45) G0 4= §^* + 1 ' I A = 0

*2 . 2 ~ _ 3w u . 3 . 3w .(1.46) G44 —  ---— (~2 w + —2— ^

= - A eP

where a dot and a star denote partial derivatives with 

respect to time and mass.

In view of eq. (1.45), one obtains

(1.47) a^ A(m)
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where A(m) be an arbitrary function of mass only i.e

a. 48)
*2 w-P .. weC5» ». / \ •A(m)

★Since w ^ 0, we obtain, using eqs. (1.47) and
a.48)

(1.49)' 3A , w ,3 •• 3w2 A . n
4 + e (2 w + 2 " A ) = 0

Let us put

(1.50) ew D

and we get from eq. (1.49), on first integration

(1.51) D2 = D2 - AD + B (m)

where B as the function of mass only.

Let us discuss the different cases for the eq

i—
1

m•—
i

Case 1: A = o
In this case
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(1.52) D -AD + B

or

(1.53) eW - - At2/4 • + /3 t + T

where j3 and y are arbitrary functions of mass only 

order that the remaining two field equations 

satisfied one obtains after an extremely tedius 

straight forward calculation that

ii.54) p = r

and

(1.5 5) A = - ( fi + C/jh ) >

where C be a new constant of integration.

Case ii; /\ ^ 0

In this case, we obtain the general solution 

(1.56) 2 (-^)Js (^ e2w _ AeW +B)3*

+ iA ew - A

In 

ar e 

but
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= exp [ (-3-^)^ (+ t + p) ]

where p as an arbitrary function of mass.

For D = 0, D > 0, hence, one obtains an infinite 
expansion analogous to the 4D de Sitter model. For the 
special case

(1.57) p = w

we ge t

(1.58) P w = t

Hence, the mass-dependence vanishes and the 
solution is de Sitter like.

1.4 The Anisotropic Fluids Generated via Kaluza- 
Klein Spaces;

The generating algorithm of Wainwright, Ince 
and Marshman (1979) may only produce perfect fluid 
solutions obeying G = p. Ibanez and Verdaguer (1986) 
investigated a scheme to bypass this limitation, to some 
extent. The method is based on the paper by Belinskii 
and Ruffini (1980) in which the authors showed how the
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Bel inskii-Zakharov generation algorithm may be applied 

in a 5-dimensional space and used to generate solutions 

of the Einstein-Maxwell equations. The algorithm was 

later extended by Diaz, Gleiser, and Pullin (1987}, to 

include an additional scalar field in 5-dimensional 

space, and its current version is as follows:

1. As presented by Belinskii and Ruffuni (1980),

those solutions of the Einstein equations for 

which the source is of the form

(1.59 Rik = f t

(1.60) 0 ,

are vacuum solutions in the 5-dimensional Kaluza-Klein 

theory, with Sj) being the Kaluza-Klein scalar field. 

There exist perfect fluid solutions for which R., has
3. K

the form (1.59) and (1.60), an example is the flat FRW 

model with

(1.61) e = 3p ,

which is the starting point of the procedure.
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2. As stated above, the Belinskii-Zakharov
generation algorithm applies also in 
five-dimensions. Diaz, Gleiser and Pullin (1987) 
observed that the algorithm of Wainwright, Ince 
and Marshman (1979) works in 5-dimensions, too, 
giving solutions of the 5-dimensional Einstein 
equations with a scalar field source out of 
vacuum solutions. Applying the two algorithms 
successively to a 5-dimensional vacuum seed 
metric, a metric is obtained that obeys:

(1.62) Rab x^a X(B ,

where x be the new scalar field and

(1.63) A, B = 0 ..... 4 .

After reduction to 4-dimensions, the solution of 
eq. (1.62) will obey the Einstein equations with

(1-64) Rik = f1 hik + x,i x,k •

3. The energy momentum tensor of any perfect fluid
may be represented as a sum of the stiff perfect
fluid with
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(1.6 5) Sjj - ps ,

and the radiative perfect fluid with 

(1.6 6) er = 3pr

with

(1.67) er = 3 (e - p)/2

(1.68) es = 3p/2 - e/2

After ' performing such a decomposition, a 

5-dimensional scalar field solution is obtained 

corresponding to the initial metric.

4. The vacuum part of the 5-dimensional metric is 

identified by applying the Wainwright-Ince- 

Marshman (WIM) algorithm in reverse.

5. The Belinskii-Ruffini generation algorithm is 

applied to that vacuum part.

6. The WIM algorithm is used to obtain a new scalar 

field solution from the vacuum solution obtained

in step 5. The resulting scalar field is actually 

the same that was discarded in step 4.
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7. The reduction from 5 to 4 dimensions by the usual
Kaluza-Klein procedure gives the final solution.

Ibanez and Verdaguer (1986) applied this method 
in the subcase X - 0 to the flat FRW model with € = 3p, 
and obtained the historically earliest solutions from 
this family. The solutioins are solitonic perturbations 
travelling on the flat FRW background. They have 
anisotropic pressure with three different eigen values 
p^, ^2 and £*3' one which obeys p^ = €, in the
direction of the soliton’s propagation. One limitation 
of WIM algorithm is thus bypassed, but at the price of 
making the pressure anisotropic, and the perfect fluid 
limit of all solutions obtained in this way is only the 
FRW model with

(1.b 9) 6 = 3p

The authors of all the paper described below did 
not provide a hydrodynamical interpretations of the 
source. Since all the solutions presented here have a 
2-dimensional Abelian symmetry group with spacelike 
orbits and are orthogonally transitive, they are of 
extrinsic type not more general than in the scheme of 
Wainwright (1979). For determining the intrinsic type or 
delimiting the extrinsic type more exactly, not enought 
informatiion is obtained from these papers.
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The most elaborate solution of this family was 

presented by Diaz, Gleiser and Pullin (1988b) as

(1.70) ds2 = f(t,r) (-dt2+dr2) + g22dz2 + g^dtjJ2 

where

(1.71) f = ctn 2 r 2 (cr^-cr-2)U ^ (o i o~2) ^+2

[(t+ a'1r) (t+cr 2r)® X

x [(l-o-12) (1- cr22)]"u/2 (1- a-1 o-2)2

2-q
(1.72) g22 = tn (CT“1 €3 2) r

(1.73) g33 = tn (cr*^ <T"2)“p ,

(1.74) u = 2(q2 + p2 + pq) ,

(1.75) Q - -(9/2) (3n-2) - (p/2) (3n-4) .

The functions cr-^ and <x~2 are defined as

=-(2tr)_1{w2+t2+r2 +[(w2+t2+r2)2-4t2r2]** }(1.76)
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(1.77) 0"i = o-i

(1.78) 2 = °±2

where and w2 are arbitrary constant and C the 

constant reads

(1.79) „ ,2 2 > 2 , 2Q
C = (w2 “ wx> /wl

and the two scalar fields are

(1.80) , 1-n , - \(P+q)/2t (o i o 2)

1.81) X = [3n (2-n)/2 ] 2 lnt.

The source of solutions is an anisotropic fluid 

with energy density € and the eigen values of pressure

P , P and Pn are r z n

(1.82) 6 = - a

P = a r
+(1.83)
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a-84> p2 = f;2Z/(fg22 )

(1.85) 5I|J “ f ,ljH|/(fg33‘

where

(1.86) a— = (2f)-^ (

v

4 I •

The source could become a perfect fluid if

(1.87) Pr = Pz = P

This may happen in two cases :

(1.88) q = p = 0

or

w2
1

2w 2(1.89)
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In both the cases the solution reduces to a flat 
FRW model. Hence, this is the only perfect fluid subcase 
of the solution.

Properties of the travelling solitons are 
discussed in considerable detail by Diaz, Gleiser and 
Pullin (1989). A solution of similar kind, describing 
4m solitons travelling on a flat FRW background, was 
obtained by Cruzate, Diaz, Gleiser and Pullin (1988). It 
is rather complicated, and authors did not comment on 
its relations to other solutions. Pullin (1990) 
discussed the Cruzate et al (1988) with

(1.90) m = 1 ,

and also another one which describes a density wave 
unaccompanied by a gravitational wave. The Diaz, Gleiser 
and Pullin (1987) solution is the subcase defined

(1.91) P = q = - 2/3 .

When further

(1.92) n =2
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i.e. when the second scalar field disappears, the 

Ibanez-Verdaguer (1986) solution is obtained. Another 

solution of Ibnez-Verdaguer (1986) results from the 

above as the limit

(1.93) n = 2

(1.94) p = 4/3, . q = -2/3

In this family, there is one more solution by 

Diaz, Gleiser and Pullin (1988a) i.e.

(1.95) ds2 - f(t,r) (-dt2 + dr2) + (o~1 a~2)2(n_1)/3

,n , , 2 , 2 ,„2.t (dz + r dU )

where

(1.96) f = C tn“2 r 2(0~1-Cr2)2/3 (o~1 o 2 

. [ (t + cr^r) (t+cr*2 r)]2 x

x [(1- o21) (l-^)]-473 (I" °~2)_2

2(2+n)/3

/
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°1 and °2 are deflned as before, and c, w,

are arbitrary constants,

and

★ "kit ic "k
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2.1 Introduction;

Vilenkin (1985) observed that the phase 
transitions in the early Universe, due to spontaneous 
breaking of a discrete symmetry could have generated the 
topological defects such as domain walls, strings, and 
monopoles. Hill, Schramm and Fry (1989) have presented 
that light domain walls of large thickness may have been 
generated during the late time phase transitions such as
those oceuring after the decoupling of matter and
radiation. The study of thick domain walls and
associated spacetimes have attracted due to their
application in the structure formation in the Universe. 
Vilenkin (1981), first obtained that the gravitation 
field of an infinite thin domain wall with planar



37

symmetry may not be represented by a static metric 
Widrow (1989) showed that nor could a thick domain wall 
be described by a regular static metric.

The all above considerations show that non-static 
metrics are more suitable to describe the field of a 
thick domain wall. Many workers have described 
non-static solutions of the Einstein scalar field 
equations for thick domain walls such as Widrow (1989), 
Goetz (1990), Mukherjee (1993).

But these solutions presented peculiar behaviour. 
It is observed that in these solutions the energy scalar 
is independent of time whereas the metric tensor depends 
on both space and time. Letelier and Wang ( 19 93 ) have 
described exact solutions to the Einstein field 
equations representing the collision of plane thin 
walls. Wang (1994) obtained a two parameter family of 
solutioins of the Einstein field equations describing 
gravitational collapse of a thick domain wall. Thick 
domain walls are described by the energy momentum tensor

2.1) Tik = S’ <9ik + Wi wk) + P «i wk

i
t(2.2) w. w 1 1
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where p be the . energy density of wall, p as the 
pressure in the direction normal to the plane of the 
wall and w^ be a unit spacelike vector in the same 
direction. In the case of Wang solution, the energy 
scalar and the metric tensor both are functions of space 
and time coordinates.

There are two methods to study the thick domain 
walls. In first method one studies the field equations 
as well as the equations of domain wall as the self- 
interacting scalar field. In the second method one uses 
the energy momentum tensor in the form (2.1) - (2.2) and 
then field equations are solved.

In this work we have adopted the second method 
which seems easier and applied it to a more general five 
dimensional Kaluza-Klein spacetime. The researches in 
supergravity in 11-dimensions and superstring in 10- 
dimensions show that higher dimensionality of space is 
apparently a good reflection of the dynamics of 
interactions over the distances where all forces unify.
Chodos-Detwciler (1980) were first present ed the
implications of higher dimensions and they have
discussed Kasner-■type vacuum solutions in a five
dimensional spacetime. Their solutioins show the feature
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of dimensional reduction. Banerjee and Das (1998) have 
obtained thick domain walls in higher dimensions. So, it 
is worthwhile to investigate the time dependent thick 
domain walls in a five dimensional Kaluza-Klein 
spacetime. Here we have investigated some other new 
exact solutions of the Einstein field equations 
describing gravitational field of thick domain walls in 
five dimensional spacetime.

2.2 The Field Equations:

Let us consider the general five-dimensional
plane symmetric metric with ione additional Killing 
vector

(2.3) 2 2 2 2 2 2 2 ds = (dt -dx ; - D (dy +dz^

where

(2.4) A = A (x,t)

(2.5) D D (x, t)

(2.6) E E (x,t)

and U be the fifth coordinate.



40

Let us introduce the pentad

(2.7) 8° = A dt

(2. 8) 91 - A dx

(2.9) 82 = D dy

(2.10) 83 = D dz

(2.11) 0 4 = E dy

Hence, the metric assumes the form

(2.12) ds2 = (0°)2 - (01) 2 - ( 02) 2 - (03)2 - (Q4)2.

One may easily obtain the nonvanishing components 

of Ricci tensor R ,

( 2. 13) A2R
oo

2D E 
D E

A
A

2D E, 
D E'

[hi + (2D1 + El _ A1lA A 1 D E A ' J

2d A" . 2D" ^ E" A’ , A1 ^ 2D’ E'
2,14 A R11 = A" + — + E" " A" (iT + “O’ +

r A , A . 2D E A. ,~ [ A + A ~D + E ~ A '
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2. 15 ) A2R
22

2A R33

= £1 + £1 , £1 E* rD D D ED + D D + E D + D D + E ^

„ i ^x , 2 „ E" , 2E'D1 ,E 2DE,2.16) A R44 e ed + DE '

> 2 = 2D1 £.A / 2DJ_ E\(2.1/) A RQ1 d + e A D ^ E

V ,2D E. A D + E

where prime denotes derivatives with respect to x and 

dot for derivatives with respect to t.

Now the Einstein field equations are

(2.18) Rlk = - 8 [Tlk - i Tgik ] .

This domain walls are characterised by the energy 

momentum tensor

(2.19) Tik = f (gik + w. wk) + P W. wv ,ik i k' i k



42

(2.20) - 1 /

For

ponents in

the thick domain wall the energy stress com- 

the comoving coordinates are

(2.21) T°o - Tj = Tj = f

(2.22) = - P

(2.23) T° = 0

' (2.24) = 0

where j3 denotes the energy density of wall which is also 
equal to the tension along y and z directions in the 

plane of the wall, p reads the pressure along
4x-direction. being the stress component corresponding 

to extra dimension, which is taken as zero. In view of 

the eqs. (2.21) - (2.24), the equations (2.18) read

(2.25) RQ1 = 0

R22 = " R00( 2.26 ) 7



43

(2.2?) 3R22 + R11 ~ R44 0 '

l2.28 ) 8-rrp = 3R22 ,

(2.29) 8H f = - (Ri;l + 2R22) .

2.3 The Solutions:

It is quite difficult to obtain the general 

solutions of the above system of equations. So, one has 

to make the following separability assumptions for the 

metric potentials

(2.30) * „ .a , . <ktA = Cosh (mx) e

(2.31) D = Coshb (mx) e ^kt ,

(2.32) E = Coshd (mx) e Tkt

where a, b, d, d , p> , y , m and k are real constants. 

In view of the above relations eq. (2.25) gives

(2.33) 2 jMb-a) - <<(d+2b) + T(d-a) = 0
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The eq. (2.25) leads to

(2.34) (a-b) m2 [ (2b + d-1) sech2 (mx) - (2b+d) ]

+ k2 [ r2 - -y (c< + p) - 2 ] = o.

The eq. (2.27) gives on simplification

(2.35) m2 [8b2-2ab-ad + bd] + m2 sech2 (mx)

[a+5b - 8b2+ 2ab + ad-bd ]

= k2(2/3+7)(<*+ 3 P - 7 ) .

The eq. (2.28) gives the physical parameter p

(2.36) pA2 = bm2 [(2b+d) + (l-2b-d) sech2 (mx)]

- p (2 P> + T) k2

and the eq. (2.29) also reads the physical para­
meter
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(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

•8 Trf A2 =-- m2 (6b2+d2-2ab + bd-ad)

+ m2sech2 (rax) [-6b2-d2+2ab 

+ ad-2bd + a+d+4b]

~ ( oi+ 2 ) (2 fi + T) k2 .

Now from eq. (2.33), we obtain

7(d-a) = ®C d+2b)-2 fb (b-a)

It is obvious from eq. (2.34) that

(a-b) (2b+d-l) = 0

which will imply either

a = b

or

2b + d - 1 .

Hence, correspondingly we have the following two

cases.
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Case I: a = b

In view of the above, one obtains from equations 
(2.33) - (2.35)

(2.42) a =* b = 1

(2.43 )

•,2.44) d(d-l)
(d+2)

(2.45) y - p> d

where d, , and k are arbitrary parameters.

In view of the above, the pressure p and the 
energy density read

i 2.46 ) 8TT p

(2.47) 8Ttf

3m^ (d+1) sech4

2 2 4in id -2) sech*

(mx) e

(mx) e

-2 =4 kt

-2 * kt

/

Hence,

(2.48) j3 (d2-2)
3(d+1) p
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Hence, we have obtained a three parameter family 
of solutions representing thick domain walls. For

(2.49) jb = - = x/m/k ,

it reduces to the two parameter family of 
solutions as presented by Banerjee and Das (1998).

Case II:

(2.50) 2b + d = 1

or

(2.51) 2b = 1-d

In case we obtain

(2.52) d = l-2b

(2.53) a = b (3b-2)

(2.54) < = 6b (l-b)p + (l-3b2)7

(2.55) -3b( 1-b) m2 = k2 (y2-2<Xp - - /37 ),
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(2.56) -3b( 1+b) m2 = k2 (J - - 3 f ) (2 /2> + 7* )

In view of eqs. (2.55) - (2.56), we get

2
(2.57) ^

k

( T2-2-«<r - Pr )
3b(1-b)

(-r _ ^ _ 3 /a ) (2fi+r)
3b(1+b)

which gives

(2.58) (b-1) (l-4b ) t
y

2 + b (l+2b-4b2) -^r -b2 = 0,

The eq. (2.58) gives the following two roots

(2.59) ±y b
l-2b' (1-b) (2b+l)

In view of the above two roots, we have two se­

parate cases.

Case II (i)

In this case, one obtains
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(2.60)
(l-2b.+ 3b2)Y

(l-2b)

(2.61)

(2.62)

(2.63)

d

a

1 - 2b

bY
l-2b

b(3b-2)

t

r

(2.64)
m2 = (l-b+4b2) -y2
k2 (1+b) (l-2b)

In view of the above, one obtains the pressure 

and density as

(2.65) 8 IT P
6k2b2 T2(3b-4b2-2) sech2a 

(l-2b)2 (1+b)
(mx)e-2ko< t

(2.66) = bX2jdj.„l+3b2J..UbLl2b±.Z), sech2a <mx)e-2X«t,
(l-2b)2 (1+b)

which gives

(2.67)
(l+3b2) (8b2-12b+7)

6b (3b-4b2 - 2)
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and

Case II

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

it is a constant.

(ii) :

In this case one obtains

(1-b) (l+3b)
(l+2b)

- b2 r
(b-1) (2b+l)'

d = (l-2b)

a = b ( 3 b- 2 )

m2 = (b( 2b2-b-2) -y 2
k2 (b-1)2 (2b+l)

In this case the pressure and density read

8 TT P
3b2k2 T2(2b2-2b-3) ___ 2a---- 5------ 5--- - sech
(b-ir (2b+l)

(mx) e- 2 < kt J

8-n-f
_ 2 2 (-db5+6b4+4b3-b2+4b+l) ,2a, . -2*kt

y k ^ '         ^^g v mx / ©
(b-ir (2b+l)
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Again the ratio of /p is a constant

2.75) T/p
(-6b5+6b4+4b3-b2+4b+l)

3b2( 2b2 - 2b - 3)

Hence, we have obtained two and three parameter 

families of solutions for domain walls, the parameters 

are b, y , and k.

2.4 Concluding Remarks:

It is obvious from the solutions of Case 1 

and Case II spacetimes that they are reflection 

symmetric with respect to the wall. For a thick domain 

wall it is necessary that pressure and density decrease 

on both sides of wall away from the symmetry plane and 

fall off to zero as x —> + oo .

The solutions of the Case 1 require that ^ > 0, 

p > 0 and ( f -p) > 0 and may be satisfied by choosing 

the parameter d such that d < - (3+ v/5)/2. For d = - 

(3+ s/5)/2 then f = p. It is clkear that j» , p fall off 

to zero on either side of the wall.

Again for the solutioins of Case II (i) and Case

II (ii) the fall of condition require a > 0. For the

case II (i) this condition would conflict with f > 0,

2 2m /k _> 0. Hence, this family of solutions is not
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physically reliable. However, it is interesting to note 

that when b - 0, f> and p vanish resulting into an empty 

spacetime given as

2 2nt 2 2 2 2(2.76) dsz = ez ^ (dt -dxz) -dy^ - dzz

2nt _ ,2 , . ,.,2e Cosh (nx) dl"f

where

(2.77) n = k 7'"

For the case

(2.78) ,b < ~ (1- y/17)

i . e.

2b2 - b- 2 < 0

the solutions of Case II (ii) would satisfy the condition

(2.79) a > 0
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(2.80) f > 0

(2.81) m2/k2 > 0

It would have proper fall condition as well as

(2.82) f - p ^ 0

Let us now discuss the dynamical behaviour of our 

models under different conditions imposed on various 

parameters occuring in the solutioins. One may obtain 

the general relation for the three space volume as

tn or, s i i h. ~ ,a+2b , s kt ( <* +2 A)(2.83) I g.J = Cosh (mx) e '

Hence, the temporal behaviour reads

(2.84) g3 | ^ ~ exp [kt (<<+2 ) ]

Here, it is an important to note that when

P = - * '(2.85)
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we recover in Case I, the Banerjee and Das solution 
(19 98). Hence, we have taken for the Case I, to be 
negative. For

2. 86 ) d < - (3+ A)/2

one obtains

2. 87) oC + 2 < 0

Again if

(2.88) k > 0

three space collapses while the extra dimension inflates. 
In this case, one obtains singularity because as t —> 
f> and p diverge. If k < 0, the 3-space inflates while 
extra dimension collapses in course of time. One may 
also discuss the dynamical behaviour of the domain wall 
solutions corresponding to the Case II (ii) on the 
similar lines.

Let us now disucss the attractive and repulsive 
behaviour of thick domain wall by either through the 
timelike geodesics in the spacetime or studying the
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acceleration of an observer who is taken at rest 
relative to the wall as presented by Wang ( 199 2). Let us 
consider an observer with the four velocity

(2.89) u^ = Cosh* (mx) e

Hence, one may obtain an acceleration A1 as

(2.90) A1 = u1 . uk
} K

v. , x „ .-2<* , x -2«ikt ri = ma tan h (mx) Cosh (mx) e b X

For the case I,

(2.91) a = 1

and
if

(2.92) m > 0 ,

then Ax is positive. It 'shows that the observer is 
comoving with the wall having to accelerate away from 
the symmetry plane or it is attracted towards the wall. 
Similarly if
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(2.93) m < 0 ,

then the wall represents a repulsive behaviour to the 
observer. Similar results may be obtained for the domain 
wall solutions of Case II (ii). Let us assume

(2.94) T° = = T3 = T4 = f

(2.95) = - p

(2.96) = 0

one obtains a domain wall solution for

(2.97) f = P

But this solution be the same as obtained by Banerjee
2mxand Das (1998). If one assumes e in place of Cosh 

(mx) in the separability condition, there may not be any 
domain wall solution. But it gives five-dimensional 
empty spacetime as

(2.98)
, 2 2nt+n^x^ , 2 , 2.
ds = e (dt -dx )
2nt/ s/6 ,.,,2.-2.e (dy + dz )

- e4nt/ /6 dB2
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where n be the arbitrary constant. Hence, it represents 
an inhomogeneous vacuum spacetime.

Hence, we have obtained three families of exact 
solutions of Einstein field equations containing three 
parameters.

* ★ * ★ if

v
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3-1 Introduction;

Several efforts have been made to obtain 
solutions of Einstein's equatioin in higher dimensions 
in the context of the early universe both from 
cosmological considerations as well as particle physics 
points of view. It is discussed that the extra 
dimensions are not observable at the present time, due 
to their size being assumed of the order of the Planck 
length, perhaps they may be relevant for the very early 
Universe as presented by Appelquist (1987). It is 
expected that as t increases extra dimensions shrink 
rapidly to leave us with 4-dimensional Universe. Chodos 
and Detweiler (1980) presented the 5-dimensional Kasner 
vacuum solutions in which the extra dimension shrank
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while the usual 3-space expanded with time t. Chatterjee 
et al (1993), Chatterjee et al (1994), Banerjee et al 
(1994) have studied 5-dimensional spacetimes in the 
context of inhomogeneous cosmologies. Inhomogeneous 
cosmologies are important for several reasons, basically 
to have general generic initial conditions and to 
facilitate formation of large scale structures in the 
Universe. Sahdev (1984), Ishiibara (1984), Chatterjee 
and Bhui (1990 ), presented several Kaluza-Klein 
extensions of the Friedman-Robertson-Walker. (FRW) models 
in higher dimensions, but they are all big bang 
singular.

They important property of inhomogeneous 
spacetime is that they permit nonsingular family of 
models satisfying the strong energy condition

(3.1) f + 3p >_ 0 ,

with equation of state

(3.2) f = p

as presented by Ruiz and Senovilla (1992), Dadhich, 
Patel and Tikekar ( 1995). Banerjee, Das and Panigrahi
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(1995) obtained 5-dimensional generalisation of 

nonsingular family in Kaluza-Klein (KK) spacetime. There 

has been attempt by Dadhich (1995 ) to study the 

nonsingular models in general diagonal metric which is 

separable in space and time in the comoving coordinates. 

Mars (1995) investigated a non-diagonal singularity free 

model with equation of state f = p. The metric reads

2 2
(3.3) ds2 = eCa r Cosh (2at) (dt2~dr2) -r2

Cosh (2at) dQ2

- Cosh ^ (2at) (dz + ar2 d9)2 ,

where a and c are constants.

3•2 The Metric and Field Equations;

Let us consider the metric in non diagonal 

form (3.3) keeping time dependence free to be evaluated. 

The 5-dimensional analogue of the Mars (1995) metric 

reads

(3.4) ds2 = T2* e2br2 <<*2-dr2) - rV' dljl2

- T2 P (dz+ar2d(j))2 - T2^ dljl2 ,
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where T(t) and all other parameters are consand and Ijl be 

the Kaluza-Klein parameter with

(3.5) 0 if < 2TTR5

where R^ be the radius of Kaluza-Klein circle. The 

metric is globally regular for the whole range of the 

other four coordinates i.e.

(3.6) 0 < r < so

(3.7) oo < t

(3.8) z < oo

(3.9) < 27f

(3.10)

(3.11)

(3.12)

Let us now introduce the orthonormal tetrad

81 = T-< ebr2 dr ' '

9^ = T ^ (dz + ar^ do)

3 Y0J = rT' dO
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(3.13) 94 = dy ,

(3.14)
• „5 br2 _

9 = T e dt ,

which gives

(3.15) %k = I"1' -1- -1' -1' 15

and hence forth all the quantities are taken to this 

frame.

In the orthonormal tetrad frame the nonvanishing

R., read lk

(3.16) B2R15 = - ja [2br {p+y+S)+aL-T ]
r

(3.17) S2r11 = - < p - a((Ji+Y+S') p2+2a2T2(^'T 5 ,

(3.18) b2r22 = ^ ( P + 7 + s ) p2-2a2T2 {^~Y) ,

(3.19) b2r33 = --yp-r(p + T+ S' )

ju2 + 2a2 T2 < P'r >
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(3.20) b2r44 = ~ $ [p + ( F + T + o ) p.2 ]

(3.21) b2r55 = - 4b + (<* + (iy + S’ ) ji

+ [ p (p-oO +/(r-x) + ?(£-*) ] p2 ,

where

(3.22) B2 = T2< e2br

(3.23) fd = T/T ,

(3.24) T = dT/dt

Let us consider the matter distribution as the 
perfect fluid with energy momentum tensor

(3'25) Tik “ ( f+ f > ui uk - P 9ik •

Hence, the Einstein equations read

(3.26 ) Rik = - 8 TT [ ( f + f> ) ui uk~ ^ (f - p) gik3 .

Let us consider the comoving coordinates to obtain
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(3.27) ui = (0, 0, 0, 0, 1)

In view of eq. (3.27), one obtains from equation

(3.26)

(3.28)

(3.29)

(3.30)

(3.31)

R11 R22 R33 R44 '

8lry = - i (R55 + 4 R22 ) ,

81T P ’ § <-R55 + 2R22> •

In view of the field equations and eqs. (3.28) -

(3.31) it is obvious that for b f 0 only f ~ p, stiff 

fluid is allowed, showing that inhomogeneous perfect 

fluid with equation of state different from f = p may 

not be sustained by the metric (3.4). However, for b = 0 

i.e. spacetime is homogeneous, perfect fluid f = p as 

well as for f f- p is admitted. The situation f = p 

implies that

R2 2(3.32) 0
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One may now obtain from field equations

(3.33) oC = y

(3.34) b = 0 or y + + € = 0,

(3.35) +0((fl+r+S)}i2- 2a2T2( } = 0

(3.36) fip +/^(/i + r+S‘)/a2 + 2a2 T2( P~r) = o

(3.37) S[ jj + ( f- + r +S )ji2 ] =0

Again in view of

(3.38) ^ = Y

(3.39) Rn = ^33

Now let us consider the two cases b f 0 and 
b = 0 separately and they will give inhomogeneous and 
homogeneous solutions respectively. The expansion scalar 
9 associated with four velocity u^ reads
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(3.40) bo- s ^ ( «t + p> + y + S ) ,

(3.41)
_ _ mo^ br^
B = T e

3.3 Inhomogeneous Solutions:

Let us consider b f 0, then

(3.42) ~r -t- p> + S' —4 o ,

from eq. (3.34) .

The other eqs. (3.35) - (3.37) lead to

(3.43) „ p = 2a2 T2 < P ^ ) .

(3.44) p p = -2a2 T2 < rr 1 .

(3.45) S jci - 0 ,

(3.46) ( o£ + p ) p = 0

In view of the above we have two following cases

(3.47) (i) <£ - - p> - hr £ = 0 and T = Cosh 2at
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(3.48) (ii) ju = 0, a - 0 and T = ekt

Case (i): In this case the density and pressure read

O _ a — "1
(3.49) 8 Tt f = 8trp - (2b-a )e Cosh (2at) ,

being positive for

\3.50) 2b > a2

and one obtains the 5-dimensional singularity free non­

diagonal spacetime.

The metric reads

3.51) ds2 = e2br Cosh(2at) (dt2-dr2) -r2 Cosh(2at)dC2

-1 x2- Cosh (2at) (dz+ar d(j)) - dy‘

It is 5-dimensional generalisation of the 4-dimensional 

Mars (1995) stiff fluid solutions (3.3) for y = constant. 

The behaviour of the model is typical than non singular 

models of Ruiz and Senovilla (1992) and Dadhich et al

\ 19 95 ). It shows
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!. 3.52 ) f —> 0 as t > + Oo

or

(3.53) > oo

as t increases f increases with the contraction, at

t - 0 contraction turns to expansion and j3--- > 0 as

t --- * oo .

Again for a - 0, the metric becomes diagonal and 

static describing a static stiff fluid solution with f 
being maximum at r = 0. 10t is 5-dimensional analogue of 

the 4-dimensional stiff fluid solution of Bronikov 

(1979) and Raychaudhuri 11955) and the metric reads

2

Case (ii) ; For a - 0 T = ekt

In such case one obtains

(3.55) 8tlf =- 8 n p = h [ 4b-k2 ( <*2+ S2 + ) ]e-2<kt -2br e
2

In order that _> 0, one has
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(3.56) 4b > k2 ( *c2 + S2 + ) > 0 .

In this case the metric reads

„ 2 2 at kt , .2 ,2* 2 2 kt ,p2_ ,2 2bx e (dt -dr )-r e dfl 3.57) ds = e

e-2(^+S ) kt dz2_e2S- kt dy2 _

We again obtain 4 parameters, k, b, aC and & free. 

If one selects k S' <• 0, IjJ-dimension will reduce 

exponentially leaving 4-dimensional spacetime. •

We obtain a very interesting case d = 0, which

gives pressure and density as

13.58) 8 Trf 8 ir p - h (4b-k2 S 2) e_2br'

and metric (3.57) reduces to

cn> , 2 2br , , 2 , 2> 2,., 2
vj.59) ds =e vdt -dr )-r dQ - e ■2 S’ kt dz ‘

2 S' kt e

It is observed that though the metric time 

dependent yet f is independent of time. It is the
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iion-static generalisation of the metric (3.54), 

resulting for

(3.60) 0

If we put

(3.61) 4b = k2 S'2

then we get the matter-free limit of (3.59) as 5-dimens­

ional empty space and the metric is given by

(3.62) ds2 = e^ *2r2 2 2 (dt -dr )- 2,TT2r dljl •2 *t dz‘

2H-e f

where

(3.63) > = S k

It is an inhomogeneous and anisotropic vacuum 

spacetime which is everywhere regular. The dimensional 
reduction is possible for > < 0, X = 0 implies that

(3.64) ds2 = (dt2-dr2) dz 2 2
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which 5-dimensional flat spacetime.

3.4 Homogeneous.Stiff-fluid Solutions;

In this case

(3.65) il
and

(3.66) b = 0 .

In view of the above one obtains

(3.67) S' = 0

(3.68) jii ( * + p + S ) p2 =0.

Hence, we get two cases:

Case (i) S' = 0. For this case one obtains

(3.69) ( aC + p> ) p. + ( ^ + p )2 jl2 = 0 .

If (<?(. + p) ^ 0 showing that a = 0 which makes the
metric diagonal. As p. = T/T, so by solving eq. (3.59),
we ge t
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(3.70) _ .1 / * + f>— u '

and the corresponding density and pressure read

(3.71) 8TTf = 8 T p 2qC t-2[2oC + )

* +P

and the metric is given by

(3.72) ds2 = t2<< / * +P (dt2-dr2) -r2+t2oC ^ * +^d(j)2

- 12^’/^4f (dz-ar2d(j))2 - dt|J2 .

Again for *-•= 0, one obtains 5-dimensional non­

diagonal vacuum metric

(3.73) ds2 = ( dt2-dr2 ) - r2d(j2 - t2 (dz-ar2d(j») 2

- dU2 .

The metric (3.73) has big-bang singularity at 

t = 0. On the otherhand if

(3.74) < + = 0

then
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(3.75) Cosh^ (2at) ,

but

(3.75) f <"n-' - a

Hence, it is ruled out.

Case < ii) For S' j- 0, we get two following subcases

Subcase (i) oL + p> / 0

(3.77) T + P _ t

In this case the metric reads

(3.78) ds2 = t2</n (dt2-dr2-r2d(j)2) - t2 ^ /n dz2

- t2^ /n d(j)2

where

(3.79) n - od + + S

The pressure and density are given by
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( 3.80 ) 8 7T P - 8Tf <*-n+2 ^ (n- )+2 p (n- «- - ft )
n2t2 (1+ </n)

In this case it is possible to select u , ji> t S' 

such that f >_ 0. For. o = 0, the metric (3.78) reduces 
to (3.72). It allows coordinate reduction for £/n < 0. 

The vacuum spacetime is obtained for -

(3.81) «*(<*+ 3p + 3 S' ) + 2 p>£ = 0.

For

(3.82) oC + p> = 0 ,

we get

(3.83) a = 0

and
V

(3.84)

so the metric

(3.85) ds - t 2 <*../£■ (dt2-dr2- 2 2 •r a(j) )
- 2*—— 9t ? dz^
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and the corresponding pressure and density read

(3.86) 8TT f = 8 IT p = * —.) .
£2t2(l+ * )

Again for oC = - 1, j3 becomes constant > 0 
provided 1 _> S • Here, it is interesting to note that 

che metric (3.85) satisfies one of the Kasnerian 

constants, p^ + p^ + p^ + ~ P- = 1 but not the other.
Vacuum spacetimes are obtained for * = 0 or «'+S' = 0. 

When < = 0, 4-dimensional spacetime is flat.

3.5 Homogenaeous Perfect gluid Solutions:

In this case b = 0 and we obtain

(3.87) R15 = 0

(3.88) Rj^ = R22 = R33 = **44 / so, one obtains

(3.89) ( fb - «< ) p + ( fi-ol) (? + d+ S )p2 + 4a2T2( ^ * ] =0,

(3.90) ( -$ ) p +( ji - S ) ( j* + * + S') p2+2a2T2(/i }=0,

and

< =(3.91) r /
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(3.92) ji = T/T

The above equations lead following two cases

(3.93) (i) fi+(^ + ^+S)p.2 = 0, 2 &V ^ ,

(3.94) (ii) ( £ - * ) (/i+3Sja2) + 4a2T2(^ " *5 = 0

(3.95) 2 8 s * + f

Case (i) For this, we get

(3.96) T = t

(3.97)
, _ 8a2+5
* 6

(3.98)
jx_ 8a2-l

(3.99)
o _ 4a2+l
b - 3

The pressure and density read as

, o - 8a2+l1
(3.100) 8 r P = (4a +1) (ll-8a^) t 3
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i9 o 8a2+ll
(3.101) 8 it f = jj (4aZ+l) (32a +11) t 3

2Now p and p are positive for a <_ 11/8 . Again
2for a / 11/8, one obtains

(3.102) f =
1l+32a2
Ll-8a2 9 •

/or a2 = 11/28, we get

(3.103) r = 3P

and for a = 0

(3.104) f = P

Case (ii) If */ = p> , a = 0, one obtains pressure 

and density as

(3.105) 8 -rrp 3 S/s‘

(3.105) 8TTf (3* -1)

where
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(3.107) T (t) = S< t)

It is now obvious that

(3.108) S < 0

and

(1.10 9) oc. > 1/3

or

(1.110) 0 .

Again for S = t, we get dust distribution.

3.6 Concluding Remarks:

By considering a non-diagonal cylindrically 
symmetric metric in the Kaluza-Klein spacetime we have 
presented a number of homogeneous and inhomogeneous 
perfect fluid solutions including the 5-dimensional 
analogue of 4-dimensional' non-singular stiff fluid 
solutions. It is observed that the dimensional reduction 
is admitted only in the diagonal case.

From the equation
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R., ik Sir [ { f + p) uiuk
l
3 f - P) gik]

One may obtain

Rik uluk = “ f f+ 2P) 1 °-

So in view of the Raychaudhur.i f 1955) , equation, 

singularity may be avoided only when acceleration is 

non-zero for a vorticity free spacetime.

Hence, it is observed that a non-singular 

spacetime requires to be inhomogeneous. In the case of 

diagonal non-singular solutions, it comes out that 

5-dimensional non-singular analogue exists only for the 

p. Here, we have presented the 5-dimens.ional 

analogue of non-singular non-diagonal stiff fluid (=p) 

solutions. It does not allow the dimensional reduction. 

Here the parameter a measures the non-diagonality of the 

metric and b as inhomogeneity. The perfect fluid without 

p = f is allowed in the homogeneous case. We have 

presented a family of 5-dimensional solutions which 

includes 5-dimensional version of FRW flat solutions. 

All homogeneous solutions are expected big-bang 

singular.

+ **■ -k -k "k
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DdWffl WALLS US) BEEANS—DICKE THEORY

4.1 Introduction:

Brans, C. and Dicke, R.H. 119 61) presented 
an interesting alternative to general theory of 
relativity based on Mach's principle. To understand the 
reasons leading to their field equations, we first note 
that the concept of a variable inertial mass itself 
leads to a problem of interpretation. We need an 
independent unit of mass against which increase or 
decrease of a particle mass may be measured Such unit is 
given by gravity i.e. the so-called Planck mass :

(4.1) (§-)^ ^ 2.16 x 10“5 g.

Hence, the dimensionless quantity
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14.2) X = m l—)*

measured at different spacetime points may .tell us 

whether masses are changing. Or, alternatively, if one 

insists on using mass units that are the same 

everywhere, a change of X would tell, us that G is 

chaning. We could of course assume that fi and c also 

change. However, by keeping -ft and c constant one follows 

the principle of least modification of existing 

theories, hence, special relativity and quantum theory 

are unaffected if one keeps -fi and c fixed. This is the 

conclusion Brans and Dicke arrived at in their approach 

to mach's principle. They observed for a framework in 

which the gravitational constant G arises from the 

structure of the Universe, so that a changing G could be 

looked upon as the Machian consequence of a changing 

Universe.

Sciama ( 1953) presented general arguments leading 

to a relationship between G and the large-scale 

structure of the Universe.

4TTG

where
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(4.4) H,

the present value of Hubble's constant, and

(4.5) | = - q(t) [H(t)]2
d

(4.6) Hit) = a/a

with their present values by qc and H0, the qD is called 
the deceleration parameter. If one put

(4.7) R0 = c/H0

as the characteristic length of the Universe and 

(4.8) M0 = 4TTfo R^/3

as the characteristic mass of the Universe.then one 
obtains

M„° -1 O XT' m-- ■ QJ2 2 •

R0C RfaC rc

Brans and Dicke used this relatioin as one that 
determines G-1 from a linear superposition of inertial
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2
contribution m/rc being from m at a distance r from the 

point where G is determined. Since m/r is a solution of 

a scalar wave equatioin with a point source of strength 

m, Brans and Dicke postulated that G behaves as the 

reciprocal of a scalar field 0:V

(4.10) >-1
i

where (j> is expected to satisfy a scalar wave equation' 

whose source is all the matter in the Universe.

The Brans-Dicke action principle reads

(4.11) A = c
16

V

(-g)3* d4x + A .

In the above equation the coefficient of R is 
3 3c (^/16Tr , instead of c /16 TT G as in the Einstein-

Hilbert action. The reason for this lies in the 

anticipated behaviour of G as given in (4.10). The 

second term, with (j)^ = ensures that (jl will

satisfy a wave equation, while third term includes, 

through a Lagrangian density L, all the matter and 

energy present in the spacetime region V. The energy 

momentum tensor T is related to A/



86

(4.12) 5A = i— f Tlk (-gS gik d4x
2G J (A) IK

and w being a coupling constant.7

i ]cThe variation of A for small changes of g leads 
to the field equations

14.13) Rlk - % 9lk R Tik-

l?l?k ' ' *ik Jl 1

- | «f;ik - 9lk Of)-

Similarly, the variation (j) leads to

2F? - % f =1- f

and finally one obtains

14.15) DO = ---- j-- T
‘ (2w+3)c

where T be the trace of . Hence, eq. (4.15) leads to 
the anticipated scalar wave equation for (j) with sources



in matter, being the wave operator. As it contains a 
scalar field (j> in addition to the metric tensor g^/ the 
Brans-Dicke theory is often known as the scalar-tensor 
theory of gravitation. It is obvious from these field 
equations that as w —> oa the Brans-Dicke tends to 
general relativity. For w = 0 (1) the theory gives
significantly different results from general relativity 
in a number of solar system tests-.

Ihe topological defects come in picture through a 
series of phase transition in the early Universe. One 
such defect is a domain wall, which is formed when a 
discrete symmetry is spontaneously broken. Windrow 
11985), Goetz (1990), Mukherjee (1990) studied the 
domain walls with finite thickness due to the proposal 
for a new scenario of galaxy formation due to Hill, 
Schramm and Fry ( 1989). The gravitational field of 
infinitely thin walls has been computed by Vilenkin 
(1981), Tpser and Sikivi (1984). For a thick domain wall 
in curved spacetime, one assumes the wall to have planar 
symmetry with two commuting Killing vectors describing 
translational invariance in the plane parallel to the 
wall and a third Killing vector related to a rotational 
symmetry about the x-axis perpendicular to the wall. It 
is symmetric about x = 0 plane. The Lagrangian for the
scalar field reads
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(4.17) L = h glk (j)k - V((j))

where j) is assumed to be a function of x alone. It has 
been observed by Widrow that for such a field purely 
static metric exhibits unphysical behaviour at large 
| x | , so long as V(<p) is positive. One may wonder if it 
is possible to obtain such a static thick domain wall in 
the Brans-Dicke theory. It is considered in the first 
step T° = i- 0 and = 0. Such form of energy
momentum tensor has been used by Raychaudhuri and 
Mukherjee ( 1987 ), who have given in a general way that 
such walls in Einstein theory maynot remain in static 
equilibrium.

4.2 Cosmological solutions in the Brans-Dicke Theory:

Let us consider the homogeneous and 
isotropic cosmological solutions in the Brans-Dicke 
theory, let us also consider the Robertson-Walker line 
element and the energy momentum tensor for a perfect 
fluid. The line element reads

222 2 2 dr 2 2 2 2(4.18) ds =c at^ -az(t) [--- 7 + r (d8 +sin ydEjj ) ] .
1-kr 1

Let us set
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(.4.19) x = ct

(4.20)

(4.21)

(4.2 2)

x ' = r 

x2^= 9

..3

The non-zero comonents of g^ and g.ik are

(4.23) g00 ~ l/ g a
11 - 2 '
L 1-kr^

(4.24) g 2 2 2 2 . _2,

22 a r , g^3 = - a r sin 9 ,

,, 00 _ . 11 (4.25) g = 1, g l-kr"

(4.267 g 22 1 3 3
2 2 ' a r 2 2 2 a r sin9

(4.27) (-g)'
2 2 . 2 oa r sm 9

(l-kr2)1/2

The nonrzero components of are

(4.28) - ?l2 = r2
02 03 ca

V*
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(4.29) r? aa 011“ 2 ' 22 1 c(1-kr ) ^
aar

aar2sin2 0

(4.30) 1
11

kr
1-kr'

2
12 r 3

13

(4.31)) n 1
22 - r (1-kr2), P

33

(4.32) H 33 = - sin0 Cos9, p 3
33

The non-zero components of are

(4.33) R

(4.34) R33

1
2

• 2 2 ,a , 2a +2kca + 2a

p 0 _ . n' 1 33 “

-- 1/r

(1-kr2) sin20

Cot 0.

From these, one obtains
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(4.35) R =
6 ,a . a2+ kc2(_ +---
c a

and hence

(4.3 6) = G22 = G3 ~ h R

, 2a . a2+kc2% ( __ + 2 )

(4.38) G Rq - h R = a2+kc2

In view of the we obtain nontrivial equations

v (4.39)
.2 2_2a , a^+kc

a _ 2a
8t» G ml 8TT G _2 8ir G m3 
c2 1 = o2 2 = ~c2 3'

(4.40)
•2^. 2 a +kc 8T? G T 0

0

In view of (4.39), one obtains

(4.41) = T 2 = T3 = -p
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(4.42) T e

The scalar field (j) is a function of time only. 

Hence, the field equations assume the form

(4.43)
.2 22a . a +kc

(4.44)
• 2^, 2 a +kc

2a

8 it e _ + w(f
3 (j)c2 *fa 6 (j)2

The conservation equation reads

(4.45) (6a3) + 3pa2 = 0

In additioin, one obtains the field equation

for Q

(4.46) 8 rr (e - 3p)
(2w+3)c2

One anticipates that big bang solutions will 

emerge from these equations and keeping the big bang 

epoch at t = 0. The eq. (4.66) gives
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(4.47) 8 IT
(2w+3)c^

( -i

(e -3p) 3a dt + D
J
0

where D is constant. Two types of solutions are obtained 

depending on D = 0 or D i- 0.

Ca se (i) D = 0

Let us consider the simplest case with k = 0,
2p = 0 and S = f c • Hence, this solution is analogous 

to the Einstein-de Sitter of general relativity. Let us 

put

(4.48) a - a0 A

(4.49) (j) = (J0 (t/t0)B

so that

(4.50) f * t ^

and the field equations provide

(4.51) 2w+2 
3w+4 '
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(4.52) 3w+4

and

(4.5 3) fQ (2w+3) B?0
8 7? t3

It may be shown that as w ---->^p this solution
tends to the Einstein-de Sitter model.

Case (ix) D ^ 0 .

In this case one obtains

(e -3p) a3 dt << 1D| ,

o

for the cases both of dust and of radiation. For p = 0 
we get

(4.55) 3 A + B

(4.56) t0 =

Again for p = ^ e

= i

ao ?0B 
D

(4.54) 8TT
(2w+3)c"

we obtain
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(4.57) A = A.B
2wB

6

Hence ,

(4.58) = w+1 + [(2w/3) + 1] 
(3w+4)

(4.59) B
1+3 [(2w/3)+133$

_____

lh e p lus sign holds when D > 0 and minus sign
when D < 0. For D > 0 0 when a —> 0, while for
D < 0, 0--- $oo for a --- > 0. These results hold
irrespective of the values of k or the equa ti on:n of
state. Since G o( f1, a time-dependent (j) means a time-
dependent gravitational constant . For D = 0

(4.60) | 2 1 H
(3w+4) t (w+1)

4.3 Field Equations for domain wall in Brans-Dicke 
Theory:

Let us consider the general static metric
with planar symmetry of the form
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(4.61)

(4.62)

(4.63)

field

(4.64)

(4.65)

. 2 2* -.2 2/0 A 2 ( IZ-°C )ds = e dt - e r dx -e '

(dy^ + dz^)

where

<=<. = <=C (x) ,

p>= p (x)

The energy momentum tensor for a static scalar 

reads

T 0
0 r

= h e
-2ii r/2

+ V(0) t

and

T 1
1

'2

The field equations in Brans-Dicke theory

assumes the form
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" 8TT rm0 w+1 m1 _2P _ tL' V'
(4.66) ~ y [To 2w+3 T] e'

Y

(4.67) p>" + h ( 4+ ft ) ( * - f!)

II- [Ti -V
«yi2 ji1 u1

r y
JCy

(4 . 68) 1 11 n."(- M 8 TT
y

CT2 - w±i T1 e2P
12 2w+3 J e

< tI T - * 1 y11

where y denotes the Brans-Dicke scalar field.

The Bianchi identity reads

(4.69) 0 /

which gives

P /(4.70) 0
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for a nontrivial case.

Let us consider the case

(4.71} 0

i. e.

(4.72) V ((jl) r 2

In view of the above the eq. (4.65) reads

(4.73)

y
87r P

T
3(w+l), 
(2w + 3) J

2P

and the eq. (4.67) gives

(4.74) 1
2

u
( * +

817 f

T a- 3 (w+1),
(2w+3)J

Now, it is observed that equations (4. 

(4.74) are clearly inconsistent showing that

73) and 

static
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domain wall with planar symmetry and

(4.75) = 0 ,

does not exist in Brans-Dicke theory. The result will be 

changed if one assumes T^ f 0. We hope T^ ^ 0 will

provide some new result.

4.4 Concluding Remarks;

For the thick domain wall in curved 

spacetime one assumes the wall to have planar symmetry 

with two commuting Killing vectors describing 

translational invariance in the plane parallel to the 

wall and a third Killing vector related to a rotational 

symmetry about the X-axis perpendicular to the wall. It 

is symmetric about x = 0 plane. The Lagrangian for the

scalar field is taken as L = 9ik h fk - V( tj)) , where (j

is assumed as a function of x alone. It has been

investigated by Widrcw (1985) that for such a field

purely static metric gives unphysical behaviour at large

| x | , so long as V( (j)) is positive. We have presented that
0 2a thick domain wall with oplanar symmetry having T^ =

3 1= T3 # 0 and T^ = 0 may not remain in static equilibrium 

in Brans-Dicke theory of gravitation. We hope if one 
assumes T^ ^ 0 the result may be changed.
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