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The thesis deals with some investigations of domain
walls in Kaluza-Klein spacetime. It has been divided into
four chapters. The first chapter is introductory. So, we
have formulated and discussed some of the techniques and
results which are relevant for our subsequent
investigations. Hence, we have presented, connections for
a Kaluza-Klein theory with variable rest mass, de Sitter-
type of model in five-dimensional theory of gravity, the

anisotropic fluids generated via Kaluza-Klein spaces.

In chapter II, it is obvious from the solutions of
case I and Case II spacetimes that they are reflection
symmetric with respect to the wall. For a thick domain

wall it 1s necessary that pressure and density decrease



(i)
on both sides of wall away from the symmetry plane and

fall off to zero as x — * =,

The solutions of the Case I require that p > 0, p >
0 and (p-p) > 0 and may be satisfied by choosing the
parameter d such that d < - (3+V5)/2. For 4 = - (3+V5)/2

then p = p. It 1s clear that p, p fall off to zero on

either side of the wall.

Again for the solutions of Case II (i) and case II

(ii) the fall of condition require a > 0. For the case II

(i) this condition would conflict with p > 0, m’/k> = 0.

¥

Hence, this family of solutions is not physically

reliable. However, it 1s interesting to note that when

b = 0, p and p vanish resulting into an empty spacetime
given as
(1) ds® = €™ (dt® - dx’) - dy® - 4z’
g™ Cosh’ (nx) 4y’
where
{2) n = XkyY

For the case

(3) b < 1/4 (1-V17)



(iii)

2b° - b- 2 < -,

the solutions of case II (ii) would satisfy the

condition

(4) a>o0 ,
{5) p >0 ,
(6) m/k* > 0

It would have proper fall condition as well as

(7) p-p 20

Let us now discuss the dynamical behaviour of our
models under different conditions imposed on various
parameters occurring in the solutions. One may obtain the

general relation for the three space volume as

(8) lg;|** = Cosh™™ (mx) e* (a + 2B)

Hence, the temporal behaviour reads
(9) lg,|** =~ exp [kt (o + 2B)]

Hence, it is an important to note that when
(10) B =-1/2

we recover in Case I, the Banerjee and Das solution

(1998). Hence, we have taken for the Case I, [ to be

negative. For



(iv)
(11) d < - (3+V5)/2 ,
one obtains

{12) o + 2 < 0.
Again if
(13) k > 0 ,

three space collapses while the extra dimension inflates.
In this case, one owutains singularity because as t—>%, p
and p diverge. If k < 0, the 3-space inflates while extra
dimension collapses 1n course of time. One may &lso
discuss the dynamical behaviour of the domain wall
solutions corresponding to the case II (ii) on the

similar lines.

Let us now discuss the attractive and repulsive
behaviour of thick domain wall by either through the
timelike geodesics .in the spacetime or studying the
acceleration of an observer who is taken at rest relative
to the wall as presented by Wang (1992). Let us consider

an observer with the four velocity
(14) u, = Cosh" (mx) e"™* &%,
Hence, one may obtain an acceleration A' as

(15) At =y, U



v)

= ma tan h (mx) Cosh?®* (x) e-2%* &,.

For the case I,

(16) a = 1 ,
and
if
(17) m > 0 .

then A* is positive. It shows that the observer is
comoving with the wall having to accelerate away from the
symmetry plane or it is attracted towards the wall.

Similarly if
i
(18) m < 0

then the wall represents a repulsive behaviour to the
observer. Similar results may be obtained for the domain

wall solutions of Case II (i1i). Let us assume

(19) T =T, =T, =T, =p,
(20) Tll = - P '
(21) ™, = 0 ,

one obtains a domain wall solution for



(vi)
But this solution be the same as obtained by Banerjee and

Das (1998). If one assumes e”" in place of Cosh (x) in
the separability condition, there may not be any domain
wall solution. But it gives five-dimensional empty

spacetime as
(23) axs.’. — e2nI+n'.\"(dt2 _ de)

—@Zmng(dy24'd22)
____e-tnuxfé—dw 2

where n be the arbitrary constant. Hence, it represents

an inhomogeneous vacuum spacetime.

Hence, we have obtained three families of exact
solutions. of Einstein field equations containing three

parameters.

In chapter III, by considering a non-diagonal
cylindrically symmetric metric in the Kaluza-Klein
spacetime we have presented a number of homogeneous and
inhomogeneous perfect fluid solutions including the 5-
dimensional analogue of 4-dimensional non-singular stiff
fluid solutions. It 1is observed that the dimensional

reduction is admitted only in the diagonal case.

From the equation



(vir)
R, = - 87 [(p =p) u, u - 1/3 (p - p) gu),

One may obtain

L

R, u* u* = - 16n/3 (p = 2p) < 0.

So in view of the Raychaudhuri (1955), equation,
singularity may be avoided only when acceleration is non-

zero for a vorticity free spacetime.

Hence, it is observed that a non-singular spacetime
requires to be inhomogeneous. In the case of diagonal

non-singular solutions, it comes out that 5-dimensional

non-singular analogue exists only for the p = p. Here, we

have presented the 5-dimensional analogue of non-singular

non-diagonal stiff fluid (p = p) solutions. It odes not
allow the dimensional reduction. Here the parameter a
measures the non-diagonality of the metric and b as
inhomogeneity. The perfect fluid without p = p is allowed
in the homogeneous case. We have presented a family of 5-
dimensional solutions which includes 5-dimensional
version of FRW flat solutions. All homogeneous solutions

are expected big-bang singular.

In the last chapter, For the thick domain wall in
curved spacetime ore assumes the wall to have planar
symmetry with two commuting Killing vectors describing

translational invariance in the plane parallel to the



(viii)

wall and a third Killing vector related to a rotational
symmetry about the X-axis perpendicular to the wall. It
is symmetric about x = 0 plane. The Lagrangian for the
scalar field is taken as L = 1/2 g* ¢, ¢, - v(p), where ¢
is assumed as a function of x alone. It has been
investigated by Widrow (1985) that for such a field

purely static metric gives unphysical behaviour at large
|x|, so long as V(¢) is positive. We have presented that
a thick domain wall with oplaner symmetry having T°, = T,
iy T, # 0 and T', = 0 may not remain in static equilibrium
in Brans-Dicke theory of gravitation. We hope if one

assumes T', # 0 the result may be changed.

Every chapter has ©been divided in sections
following decimal system: section (1.5) means fifth
section of chapter first. On the same line, the equations
in different chapters are also numbered i.e. Eqg. (4.5)
means, fifth equation of chapter four. At last references

are given.



CONTENTS

Section Page
Preface
CHAPTER-I
INTRODUCTION
1.1 Introduction and Motivation
1.2  Connections for a Kaluza-Klein theory with

Variable Rest mass.

1.3 De Sitter-type of model in five-dimensional
theory of gravity

1.4 The Anisotropic Fluids Generated via

Kaluza-Xlein Spaces.

CHAPTER -II
THICK DOMAIN WALLS IN FIVE DIMENSIONAL KALUZA-
KLEIN SPACETIME

N
[

Introduction

Ry

2.2 The Field Equations

o
98}

The Solutions

2.4 Concluding Remarks



o

o

. CHAPTER-III
CYLINDRICALLY SYMMETRIC METRIC IN
KALUZA-KLEIN SPACETIME

Introduction

The Metric and Field Equations
Inhomogeneous Solutions

Homogeneous Stiff-fluid Solutions
Homogeneous Perfect Fluid Solutions

Concluding Remarks

CHAPTER -IV
DOMAIN WALLS IN BRANS-DICKE THEORY

Introduction

Cosmological solutions in the Brans-Dicke Theory
Field Equations for domain wall in

Brans-Dicke Theory

Concluding Remarks



$95855 55558955955 555555 555585550855 39559559555599589885%5

CHAPTER -1

INTRODUCTION

5555955555555555530559555555559555555555355555555555385¢




$ SS9 555009 0899950005859 90588500559999999959595898889

INTRODUCTION

$85559595855585555955585955555955555558555595558955888558¢

1.1 Introduction and Motivation:

There has been long-standing expectation to
construct a theory of gravity <that provides the same
physical answers when a change o:f coordinates is done
(covariance) and when a change of units or scales 1is
carried out (scale invariance). There are vacrcious
ceasons for this desice, some of the most cogent of
which have to do with cosmology as presented by Wesson
(1978, 1980). It is well known that the Einstein general
theory of relativity 1s an excellent and important
theory of gravity, but it 1s coordinate covaciant but
not scale invariant. This has led several authors to
suggest an alternative theories of gravity, for example,
Dirac (1973), Hoyle and Naclikar (1974), Canuto et al
(1977). However, these latter theories describe rather

drastic departures from convention, and lack convincing



obsecvational support. Scale invariance may be obtained
in less drastic fashion by extemding general relativity
from four dimensions to five dimensions, where the fifth
dimension is the mass. The space of Einstein's theory by
which 1is meant the 4-dimensional version of general
relativity, may be regarded as embedded in this 5D
space. The scale invariance is physically ceasonable and
a 5-dimensional variable-mass version of general
relativity is mathematically elegant and agrees with
observation. Whether the real Universe is best described
by the 4D Einstein theory or the 5D scale~-invariance
theory and this question may be decided by astronomical

observation and experiment.

Invariance of the testable consequences of the
theory under changes of coordinates and changes of
scales ace separate attributes, and it 1is useful to
recall what these kinds of invariance mean. Invaciance
under changes of coocdinates is a statement of the fact
that the physical properties of the system are not
changed by a change of coordinates. A trivial example of
such a change 1is oné from Cartesians to Spherical
polars. A non-change trivial example 1is an arbitrary
change from one system of curvilinear coordinates to
another, where the physical properties of the system are

not affected by the device of describing them by



tensors. Invariance under changes of scales 1is a
statement of the fact that the physical properties of a
system are not changed by a change in the standards of
measurements or units. A trivial example of such a
change is one where a measuring rod-graduated in metcres
is changed for one graduated in centimetres. A
non-trivial example 1is given by the possibility that
standards of measurement or scales do in fact vary from
place to place in the Universe, and 1if the laws of
physics are to be the same at all places, these latter
should cleacly be invarciant under changes of scales. The
physical properties of a system in this case may be
pceserved by the device of describing them by gquantities
sometimes called as cotensors by Dirac (1973), Canuto et
al (1977). At least at present, there is no way to rule
out by experiment the possibility that the sizes of the
scale are coordinate-dependent. A review of other
arguments for having a theory of gravity that 1is
invariant under coordinate changes and scale changes is

available as presented by Wesson (1980).

THere are at least three scale invariant theories
of gravity in existence., It is remarkable to examine
them brtiefly to see what consequences are expected to
follow from the requirement of invariance under changes

of scales. The three theories are those of Dirac (1973),



Hoyle and Narlikar (1974), and Canuto et al (1977).
These theories share the property that in them the
Newtonian gravitational parameter G and/or the masses of
objects vary with time at a rate governed by the age of
the Universe, which is of order of 10lO yr. It 1is not
" difficult to see why G and/or masses, which are constant
in Einstein's theocy, have to be variable in scale
invariant theocy. Let us consider an object like a star
of mass m, sucrounded by vacuum and situated in a
Univecrse whose background metric 1is evolving with time
as might be the case if it is expanding, as is the real
Universe. In Einstein theory G and C are constants, and
it is a direct consequence of the field equations that m
is also constant say M,. There are thus scales of mass
M,, length L, = GM,,/c2 and time T, = GM,,/c3 associated

with the object, and those are constants even though the
background metric is variable in time. In otherwords,
the object is in some sense decoupled from the rest of
the Universe. In scale invariant theory, it is obvious
that scale invaciance is only fully cealised when there
are no constant scales present as shown by Fulton et al
(1962) Canuto et al (1977), Wesson (1980). This scheme
is quite general, and was first appreciated in particle
physics. In particle physics theories, scale invarciant

behaviour is fully <rcealised in the 1limit of energies



much larges than the energy corresponding to the rest
mass or equivalently in the limit in which the constant
scale corresponding to the rest mass vanishes. The
scheme also holds in gravitational physics. In theocies
of gravity, scale invariant feature is fully realised in
the limit of large masses, lengths and times, where
large means of cosmological order. It means that an
object like a star is described by a solution which for

0

times small compared to 10t yr contains parameters like

M,, L., T, which to a good approximation ace constants;
while for times comparable to lOlo yr these constant
scales vanish. In other words, the object in some sense
coupled to the <rest of the Universe, and this 1is

manifested by the fact that G and/or m vary at a rate

governed by the age of the Universe.

Experimentally, scale invariance is of
established significance in particle physics but not in
grévitational physics. This is because observations of
system where gravity is the dominant force have only
been carried out for a time intecval:;'lo2 yr much smaller
tﬁan the age of the Universe x lOlO yrs. In astcophysics
for example, 1t is not known if the mass of a star like

10

the sun is a constant over times of order 10 ve, in

which case it is correctly described by a



scale-invariant theory. In cosmology, it 1s observed
that systems with large sizes and ages may be described
by functions which do not contain any constant scales.
Two examples are follows: A typical cluster of galaxies
has a radius r of order 1025cm and a density f measured
with respect to its centre which is given approximately
by the scale free relation G ¢ rz/c2 = dimensionless
constant. The background Universe out to the 1light
sphece consists of many randomly-located clusters, and
has a homogeneous density which is terms of the time ¢t
since the big bang 1is given approximately by the
scale-free relation G f t2 = dimensionless constant. The
obsecrvation that cosmological systems may be described
by functions which do not contain any constant scales
may just be a clue to the physics to their'formation in
which case they may be correctly described by Einsteéin's
theory, or may be an indication that scales vanish in
the cosmological 1limit in which case they may be
correctly described by a scale-invariant theocy. Of
course, 1t 1is feasible to carry out expercriments to
detect a possible time-variation of G and/or masses at
the présent epoch as shown by Wesson (1978, 1980).
However, the effects involved are vecy‘small, and so far
no results have emerged which are so clear cut as to
allow of a choice to be made between Einstein's theéry

and the various scale-invariant theories.



Thece are several objections to the
scale-invariant theories which has already been proposed
by Dirac (1973), Hoyle and Narlikar (1974), Canuto et al
(1977). First, these theories allow masses to be
variable over cosmological times, but at the expense of
introducing a gauge function which maynot be fixed
except by appeal to some external criterion. The most
usual way of fixing the gauge function is to use Dirac's
Lacge Numbers Hypothesis (LNH), which 1leads to two
possible forms of the gauge function. This ‘hypothesis
has been used by Dirac and Canuto et al, and the latter
authors have also introduced a third gauge functioin
consistent with the LNH. However, the LNH is an extra
hypothesis not integral to the theory of Dirac or the
theory of Canuto et al. An alternative way of selecting
the gauge function is that of Maeder and Bouvier (1979),
who have shown that the condition that the Minkowski
metric be a solution of the scale-invariant field
equations for empty space leads to one of the two Dirac
gauges. However, while this is plausible, it maynot be
taken a proof. Hence, the situation is that there are at
least three possible gauge functions, with no way to
select Dbetween them. It 1is possible in theory to
constrain the gauge function in view of observational

data: but this is not possible in practice because no



one gauge functiion is compatible with all observations,
as shown by Wesson (1978, 1980), and Dirac (1979), who
has abandoned part of his original theory because of
conflicts with obsecvation. The objection just presented
may be the result of the incomplete nature of the scale-
invaciant theories which have already been proposed, but
the objection 1is neverthless valid. Second, extant
theories are often presented in a form where there are
two metrics, one of which refers to atomic physics. It
is related with the fact that G is assumed to vary as
measured by an atomic clock. The two-metcic view is
mathematically clumsy and physically obscuce. This
objection is related with as two metrics are related by
the gauge functioin and one may acgue that both
objections are not too serious because they come from
the nature of incomplete scale-invariant theories,
However, while this miéht be the case as far as
gravitational physics 1is concerned the two objections
presented here cepresent significant obstacles to
further research. Third, in theories which have already
been proposed, the Newtonian gravitational parameter G
and the mass of an object m are treated separately,
whereas in pcoblems where gravity is the dominant force,
and therefore 1in the cosmological or fully scale-

invariant limit as well, these two parameters always



occur together in the combinatioin Gm. It is related
with the fact that G is essentially plays the role of
dimension-transposing constant for m, which latter is
the soucce of the gravitational field i.e. G is on the
same footing as c. In other words, it makes more sense
either to regard G as the true constant and m as

variable or to use the single parameter Gm as variable.

The above discussions 1indicate that scale-
invariant theory for gravity (i) is physically sensible;
{ii) implies that masses should vary slowly at a rate
governed by the age of the Univecrse; (iii) may be
relevant to real Universe; (iv) should be descrcibed by a
kind of theory different to those already known. These
comments provide propec motivation for further
researches in these directioins. If one thinks on these
comments, it becomes obvious that some new hypothesis is
needed in scale-invriant theocy which at the same time
ensures that scale-invariance 1is properly taken into
account and that Einstein's theory may be recovered in
some appropciate limit as such. Thecre is a hypothesis
which satisfies 1it: There 1is 'a variable with the
dimensions of a length which may be defined as Gm/c3
whecre m is the mass, and this variable plays the role of

a coordinate in a five-dimensional space, this latter



having scale-invariant properties and containing the
four-dimensional space of Einstein's theory. This
hypothesis 1is less drastic than those on which other
scale-invariant theories of gravity are based, and
actually has precedents both in classical physics and
-gcavity. In classical phys=ics, quantities may be
divided into categories depending on whether they are
intensive meaning thereby definable or measurable at a
point, or extensive i.e. definable or measurable with
respect to an origin. Common guantities which come into
che first category ace pressure and density and common
gquantities which fall into the second category are space
coordinate and time. Now mass is also a common physical
quantity, and if it is questioned into which categocy it
falls, then the answer is the second category. Hence,
the mass 1is the same kind of quantity as a coordinate.
This fact 1is not merely semantic, since the noted
existence of two categories of two physical gquantities
detecmine to a certain extent how the equations which

desccibe the physical behaviour are set up.

In general theory of <relativity, it 1is the
existence of constant ¢ which underpins the logic of
regarding ct or the time t as a coordinate, and allows

the three-dimensional space of common expecience to be
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extended to the four-dimensional one of conventional
crelativity. Likewise, it may be argued that existence of
G and ¢ underpins the logic of regarding Gm/c2 or mass
as corcdinate, and allows the four-dimensional space of
conventional relativity to be extended to the five-
dimensional one. The above discussions indicate that
intcoducing a fifth coordinate and a 5-D space is no-
such drastic step as it may appear to be on causal
examination. There have been, of coucse, 5-D versions of
celativity before, the most notable of which was the
Kaluza-Klein theory, Kaluza (1921), Lein (1926), Witten
(1981). However, in the Kaluza-Klein theory, the fifth
dimension was introduced in order to incocporate
~electromagnetism into relativity; and the extra field
equations which this entailed contained quantities of no
physical significance, and so were not used. In the
5-dimensional theocry by Wesson (1983), the fifth
dimension is introduced inorder to incocporate mass into
relativity in a way consistent with scale invaciance:
and extra dimension field equations which this entails
contain the familiacr quantities of physics, and ace used
in order to test the theory. Hence, the Kaluza-Klein
theory and Wesson theocry have in common the fact that

they both used a 5-dimensional Riemannian space, but ace

otherwise diffecrent.



O
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1.2 Connections for a Kaluza-Klein theory with

Vaciable Rest Mass:

One an important reason for discussing
theories ©of gravity other than that of Einstein is to
try to pcesent a better understanding of cosmology as
shown by Wesson (1978, 1980). Theories of Kaluza-Klein
type are currently the subject of special interest.
These are 5-dimensional theories, which may give a means
of extending Einstein's theory 1i.e. four-dimensional
general relativity and of unifying grcavity with other
forces of physics as prcesented by De Sabbata and
Schmutzer (1983), Lee {1984). A theory of the Kaluza-
Klein type, which may be known as an embedding for
general relativity with variab;e rest mass, has been
proposed by Wesson (1983). In the theory of Wesson
(1983), the conventional 4-dimensional spacetime of
Einstein theory is extended to a 5D space-time-mass, 1in
which the fifth coocrdinate is taken to be the rest mass.
There are two reasons for identifying the mass as a
coordinate., (a) It 1is the constant ¢, the velocity of
light, which allows the time to be defined as coordinate
X = ct, on the same footing as the space coordinates
xl,‘xz, x3. Similarly, the existence of constant G, the
Newtonian constant of gravity, suggests that the rest

mass m of the particle may be treated as a coordinate
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x4 = Gm/cz. (b) If x4 is a coordinate in a 5-dimensional

manifold, the dimensionless velocity w = (G/c3) dm/dt
describes a variation in the rest mass of a particle

with time.

There 1is considerable interest in varciable-
gravity theories, and the use of x* and w in a 5D theory
is superior to the device of allowing G to be
time~variable in a 4D theory. These two reasons for
identifying the mass as a coordinate lead to a theory
which 1is mathematically straightforward. It uses a
Riemannian space, and the field equations involve the 5D
Einstein tensor Gij' so it is in essence an extension of
4D general relativity. The theory agrees with all
obsecrvations provided w < 1. In the limit w = 0, the
fifth dimension 1is absent and Einstein 4D theory is
recovered. In the real world, the consequences of the 5D
theocy may best be distinguished from those of the 4D
theory 1in the cosmological domain. It was implied in
Wesson (1983) that the relations given there could be
used to investigate cosmological models. However, while
those relations are correct, they are based on a 5D
metcic that 1s somewhat inconvenient, in that it does
not allow of a simple comparison with the 4D metric of

conventional cosmology. Hence, a more convenient metcic



will be taken

14

crelations obtained 1in Wesson

{1983) will be rederived for the new metric.

Let us now dencte the coordinates

where ¢ = G =

an appropriate metric for

i.e. homogeneous and isotropic is

(1.5) ds? =
where

(1.7)

{(1.8)

(1.9)

Yo (ax?+dy?+dz?) + eF am?

(t, m) '

5D



This metric reduces to that of c¢conventional
cosmology, namely the Friedmann-Robertson-Walker one
with zero curvature constant, when the fifth dimension

is absent. The nonvanishing Christoffel symbols are:

. R 3 “«
(1.10) RS A N

0 01

2 * 3 *
(1.11) [”32 = 3, ["03 = 3 ,

1 _ w* 2 w*
(1.13) s =3, N = 7 ,
14 24
(1.14) \"'73 :%* , l—14 - % ,
34 04
’ - - e— H
11 2 11 2
-Vtw - -utw
(1.16) Mo s v, ot 9—}1—-2——-&— .
22 22
0 e VTV g 4 e PV s
(L.17) K = S——, = S ,
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-vip - *
(1.18) T A L
44 44
where (.) and (*) denote partial derivatives with

respect to t and m respectively.

The nonvanishing components of Ricci tensor are:

*2 _ 3v*w* _ V*}l*

. 3 . 1 3 .2
(1.19) ROO =5 W+ % t 7 w*e o+ 7 7 3
v-u Vv v*2 3vrw* p¥y*
te (3 +7 *+ 73 g
_ 3 3ww* _ 3wv* _ 3w*a
_ o WeV W 32 prwk yrw*
(1.21) Ry = e (5 + 3w + = )
_ ew__u (yl-&-* + ;ﬁ*f_ v*w* p*w*)
2 4 4 T4 !
(1.22) R,yp = Ry g
R = Rll 1

{(1.23) 33
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3**'f_' * & 3*2 *9 34.—* * %
= 2W Y SW., v o2wp o vp
(1.24) R44 > +A2 + 7 + 7 Z 7
p-v é éz 3 x* 3;
( = - uv
+ e (5 + T + 7 Wu 2 .
The Ricci scalar reads
*2 * % * % d &

2

(1.25) R = 8" (30 + 3w’ « [ + &4 2 2w _ o,

* % * o % +2 *
et (3w o+ 3wt v+ % + 3ﬁ%

3** * %
W V
% - %

The nonvanishing components of the

tenscr are

Einstein

3-2 3** 3 %% 3*2 3**
i _ -3w"_ 3wp _ _v-w 3 3w’ 3pw
3 -% 3 .%  34v  3wA
= 2 ¢ 2 ooy - SWV SWA
3*2 ve *2 * k. * % * %
= oWV 2w U wa _ vw _ Vv
(1.28) Gyy = e (Wt =+ 5+l +3 5 - )

* * k
WY (o 3, S A - i
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{1.29) G,, = Gyp '
3we 3 v 3w , 3w’ 3vw
.- 2W_ WV M 2W o 2W 2V

In the case when the fifth dimension is absent

(1.32) eP = 0o |,

and all (*) derivatives acre zero, so by using a cosmic

time i.e.

(1.33) - e = 1,

the five-dimensional Gij reduce to four-dimensional Gij

of conventional cosmology. In this situation one obtains

32
(1.34) GOO = - 4 ]
_ - _ W v é. *2
(1.35) Gll = G22 = G33 = e (w + 7w )
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When field equations are taken to be those of

Einstein's theory

{1.30) G, . = - T,.
1] 1]

and by taking Tij as the energy momentum tensor of

perfect fluid with density £ and pressure p, then

(1.37) 8P = :%;2 !
*2
(1.38) gTp = - Wy,

These are usual Friedmann equations for the FRW

models with zero curvature constant, and for

(1.39) o = 0
one obtains standard Einstein-de Sitter model.

For the case when the fifth dimension is present,
the Gi* depend in general on both t and m, as do the Rij
J
and R. This means 5D cosmology 1is inherently more

complicated than 4D cosmology. Also, it is by no means

obvious what the field equations should be for the 5D
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theory. Wesson (1983) made a suggestion which involves

(1.40) Gy = (Ryy = R g;s/2)

but this is not unique, and the field equations might
involve some other combination of Rij and R. It is
possible to identify the symbol m in the above with any

physically-relevant parameter.

1.3 De Sitter—-type of model in five-~dimensional

theory of gravity:

It 1is argued that for any theory of
cosmology to be complete it should be both covariant and
scale-invaciant. With this view and several other
considerations, various modifications of the -Einstein's
theory, which is only covariant, have:; beeen proposed
where gravitational interaction varies with time as by
Wesson (1983). In this context the rest mass-varying
theory of gravity was proposed by Wesson deserves
serious attention, in which the 4D spacetime of Einstein
has been extended to a 5D space-time-mass where the

4 - Gm/c2 with G and C retaining

fifth coordinate is x
the status of true constants, while mass has been
elevated to the status of a separate coordinate like

space and time. The logical foundation of the theory is
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very sound in the sense that the 5D space is Reimannian
in geometric properties and it also involves less
drastic departures from the well known concepts than do
others because just as the existence of ¢ suggests that
xo = ¢t be defined a coordinate, the existence of G

suggests x* = Gm/c2 be defined as a coordinate.

We have presented exact sclutions for a
homogeneous, spatially isotropic cosmological models in
vacuum both with or without a cosmological constant,
because it 1is in the realm of cosmology that Wesson's

theory assumes an added significance.

Let us consider the line-~element for a 5D

homogeneous and spatially isotropic

(1.41) as? = e¥ at?® - ¥ (ax? +ay? + dz?) + &” dm?

’

where v, w and p ace functions of time and mass.

»

Due to the extremely complicated nature of the

field equations, let us make a simplifying assumption

(1.42) el = 1 ,
in obtain explicit solutions for the metric
coefficients. In this way one may obtain nonzero

components of Einstein tensor



3’2 3 3** 3*2 3**
_ ~3w_ =3wp B 3w W Swp
(1.43) G, = —= T S 5+ =3 )
= - A\ ,
(1.44) Gll == G22 = G33
2 . .2 o
= 3w_ . n R
= (w + -t 5t % + —Eﬁ )

= /\ ,
3 . 3 ¥ 3 % _
(1.45) G04 =3 W + YWV IR = 0 P
*2 .2
< = . 3w _ o p 3 3w
{1.46) G44 = e (2 w + 5
== A el .

where a dot and a star denote partial derivatives with

respect to time and mass.

In view of eqg. (1.45), onhe obtains

(1.47) w2 ¥ = M amm)
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whecre A{m) be an arbitrary function of mass only i.e.

11.48) el = w__£& .

*
Since w # 0, we obtain, using egs. (1.47) and

(1.48)

.2
(1.49) 2By (% w o+ ég— -/AN) =0

Let us put

(1.50) eV =

and we get from eqg. (1.49), on first integration

(1.51) 52 = 2N 52 _ap 4+ B (m)

H

whecre B as the function of mass only.

Let us discuss the different cases for the eq.

(1.51).
Case 1: /\ = 0

In this case
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-AD + B

il

(1.52) D

or

(1.53) ew T - At2/4 + /3 £+ -7/ ,

where p and Y acre arbitrary functions of mass only. In
order that the remaining two field equations are
satisfied one obtains after an extremely tedius but

straight forward calculation that

(1.54) po= 7

and

(1.55) A == (P HC/p)

where C be a new constant of integration,

Case ii: /N #0

In this case, we obtain the genecal solution

(1.56) 2 (39)% (3%1 eV _ ae¥ +B)%
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= exp [ (-2‘—[}‘)1/2 (+ t + p) ]

whecre p as an arbitrary function of mass.

For D = 0, D > 0, hence, one obtains an infinite
expansion analogous to the 4D de Sitter model. For the

special case

(1.57) M= W

we get
(1.58) po=w = V4 Eél t .

Hence, the mass-dependence vanishes and the

solution is de Sitter like.

1.4 The Anisotropic Fluids Generated via Kaluza-—

Klein Spaces:

The generating algorithm of Wainwright, Ince
and Macshman (1979) may only produce pecfect fluid
solutions obeying € = p. Ibanez and Verdaguer (1986)
investigated a scheme to bypass this limitation, to some
extent. The method is based on the paper by Belinskiil

and Ruffini (1980) in which the authors showed how the



Bel inskii-Zakharov generation algorithm may be applied
in a 5-dimensional space and used to generate solutions
of the Einstein-Maxwell egqguations. The algorithm was
later extended by Diaz, Gleiser, and Pullin (1987), to
include an additional scalar field in 5-dimensional

space, and its current version is as follows:

1. As presented by Belinskii and Ruffuni (1980),
those solutions of the Einstein equations for

which the source is of the form

(1.59) R, = ?

(1.60) ?;L ?

are vacuum solutions in the 5-dimensional Kaluza-Klein
theory, with ? being the Kaluza-Klein scalac field.
There exist perfect fluid solutions for which R., has

the form (1.59) and (1.60), an example is the flat FRW

model with

(1.61) € = 3p '

which is the starting point of the procedure.



(1.62)
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As stated above, the Belinskii-Zakharov
generation algorithm applies also in
five-dimensions. Diaz, Gleisec and Pullin (19887)
observed that the algorithm of Wainwright, Ince
and Marshman (1979) works in 5-dimensions, too,
giving solutions of the 5-dimensional Einstein
equations 'with a scalar field source out of
vacuum solutions. Applying the two algorithms
successively to a 5-dimensional vacuum seed

metric, a metric is obtained that obeys:

where X be the new scalar field and

(1.63)

After reduction to 4-dimensions, the solution of

eq. (1.62) will obey the Einstein equations with

(1.64)

3.

The energy momentum tensor of any perfect fluid
may be represented as a sum of the stiff pecfect

fluid with



il.65)

(1.66)

(1.67)

(1.68)

28

g = ps !

and the radiative perfect fluid with

with
e :3(6-}?)/2 I;

r

€S = 3p/2 - €/2

After ° performing such a  decomposition, a

5-dimensional scalar field solution is obtained

corresponding to the initial metric.

4‘

The vacuum part of the 5-dimensional metric is
identified Dby applying the Wainwright-Ince-

Marshman (WIM) algocithm in reverse.

The Belinskii-Ruffini generation algorithm is

applied to that vacuum part.

The WIM algorithm is used to obtain a new scalar
field solution from the vacuum solution obtained
in step 5. The resulting scalar field is actually

the same that was discarded in step 4.
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7. The reduction from 5 to 4 dimensions by the usual

Kaluza-Klein procedure gives the final solution.

Ibanez and Verdaguer (1986) applied this method
in the subcase X = 0 to the flat FRW model with € = 3p,
and obtained the historically earliest solutions from
this family. The solutioins are solitonic perturbations
travelling on the flat FRW background. They have
anisotropic pressure with three different eigen values
Py Py and Py only one of which obeys Py = €, in the
direction of the soliton's propagation. One limitation
of WIM algorithm is thus bypassed, but at the price of
making the pressure anisotropic, and the perfect fluid
limit of all solutions obtained in this way is only the

FRW model with

(1.69) e = 3p

The authors of all the paper described below did
not provide a hydrodynamical interpretations of the
source. Since all the solutions presented here have a
2-dimensional Abelian symmetry group with spacelike
orbits and are orthogonally transitive, they ace of
extrinsic type not more general than B3 in the scheme of
Wainwright (1979). For determining the intrinsic type or
delimiting the extrinsic type more exactly, not enought

informatiion is obtained from these papers.



The most elaborate solution of this family was

presented by Diaz, Gleiser and Pullin (1988b) as

(1.

(1.71)

(1

(1

70)

.72)

.73)

.74)

.75)

.76)

X

T

2 2

ds® = f£(t,r) (-dt"+dr™) + g,,dz" + g33dtll

where
_ .n=2 =2 _ u-2 -p+2
f = ct Fa (c‘l c‘z) (o--l 0—2)
[(t+ o=yx) (4o ,0)® X
_ 2 _ 2y4-u/2 _ 2
_ n r
= n P
u = 2(q2 + p2 + pq) ’

Q = -(9/2) (3n-2) - (p/2) (3n-4)

he functions c“l and 0”2 are defined as

1 2,2

- L
o% ==(2tr) {wi+t +r i[(wi+t2+r‘?’.)2—4t2r2]2 }
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(1.78) o . = ob ,

where Wy and w, are arbitrary constant and C the

constant reads
. 2 2.2, .2Q
(1.79) c = (w2 l) /wl '

and the two scalar fields are

(1.80) 0 = £ (- o-

[3n (2-n)/2 1% Lnt.

]

.1.81) X

The source of solutions is an anisotropic fluid
with energy density € and the eigen values of pressure

P, P and P, are

r z ?

(1.82) e = -~ a ?

(1.83) P = a ,



(1.84) PZ = ?;ZZ/(?gzz) ’

(1.85) PY = ?’?Y/(?g33)

where

-1

(1.86) a* = (2f) Qe = §ee)/) 2

2

(09, + 0,0)/9 + X0

2,%

=49, /P

The source could become a perfect fluid if

(1.87) p =P =P

(1.88) qg = p = 0
or

{1.89) \ = W

32
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(0]

In both the cases the solution reduces to a flat
FRW model. Hence, this is the only perfect fluid subcase

of the solution.

Properties of the travelling solitons are
discussed in considerable detail by Diaz, Gleiser and
Pullin (1989). A solution of similar kind, describing
4m solitons travelling on a flat FRW background, was
obtained by Cruzate, Diaz, Gleiser and Pullin (1988). It
is rather complicated, and authors did not comment on
its relations to other solutions. Pullin (1990)

discussed the Cruzate et al (1988) with

(1.90) m = 1 ’
and also anhother one which describes a density wave

unaccompanied by a gravitational wave. The Diaz, Gleiser

and Pullin {(1987) solution is the subcase defined

(1.91) p = q = - 2/3

When furthecr

(1.92) n =2 '
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i.e. when the second scalar field disappears, the
Ibanez~Verdaguer (1986) solution is obtained. Another
solution of Ibnez-Verdaguer (1986) results from the

above as the limit
{(1.93) n = 2

(1.94) p = 4/3, . q = -2/3

In this family, there is one more solution by

Diaz, Gleiser and Pullin (1%88a) i.e.

(1.95) as? = f(t,r) (-at? + dr2) + (o~ 0_2)2\n~1)/3
" (dz% + 2 dyz)
where

= ¢ ¢m2 -2 - 2/3 2(2+n)/3
(1.96) f=cCt r (07 =07,) (o~ )

[(t + o, ) (t+0— r)]2 X

1 2
-2
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o3 and oo, are defined as before, and ¢, w, and W,

are arbitrary constants,

% ok ok %k
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2.1 Introduction:

Vilenkin (1985) observed that the phase
transitions in the early Universe, due to spontaneous
breaking of a discrete symmetry could have generated the
topological defects such as domain walls, strings, and
monopoles. Hill, Schramm and Fry (1989) have presented
that light domain walls of large thickness may have been
generated during the late time phase transitions such as
those occuring after the decoupling of matter and
radiation. The study of thick domain walls and
associated spacetimes have attracted due to their
application in the structure formation in the Universe.
Vilenkin (1981), first obtained that the gravitation

field of an infinite thin domain wall with planar
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symmetry may not be represented by a static metric
Widcow (1989) showed that nor could a thick domain wall

be described by a regular static metric.

The all above considerations show that non-static
metrics are more suitable to describe the field of a
thick domain wall. Many workers have described
non-static solutions of the Einstein scalar field
equations for thick domain walls such as Widrow (1989),

Goetz (1990), Mukherjee (1993).

But these solutions presented peculiar behaviour.
It is observed that in these solutions the energy scalar
is independent of time whereas the metric tensor depends
on both space and time. Letelier and Wang (1993) have
described exact solutions to the Einstein field
equations representing the collision of plane thin
walls. Wang (199%4) obtained a two parameter family of
solutioins of the Einstein field equations describing
gravitational collapse of a thick domain wall. Thick

domain walls acre described by the energy momentum tensor

(2.1) Tik = f (gik +ow, k) TP W, W
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where f be the. energy density of wall, p as the
pressure in the direction normal to the plane of the
wall ana LA be &a unit spacelike vector in the same
direction. In the case of Wang solution, the enecgy
scalar and the metric tensor both are functions of space

and time coordinates.

There are two methods to study the thick domain
walls. In first method one studies the field equations
as well as the equations of domain wall as the self-
interacting scalar field. In the second method one uses
the energy momentum tensor in the form (2.1) - (2.2) and

then field eguations are solved.

In this work we have adopted the second method
which seems easier and applied it to a more general five
dimensional KXaluza-Klein spacetime. The researches in
supergravity in 1ll-dimensions and superstring in 10-
dimensions show that higher dimensionality of space is
apparently a good reflection of the dynamics of
interactions over the distances where all forces unify.
Chodos-Detwci ler (1980) were first present ed the
implications of  higher dimensions and they  have
discussed Kasner-type vacuum solutions in a five

dimensional spacetime. Their solutioins show the feature
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of dimensional reduction. Banerjee and Das (1998) have
obtained thick domain walls in higher dimensions. So, it
is worthwhile to investigate the time dependent thick
domain walls in a five dimensional Kaluza-Klein
spacetime. Here .we have investigated some other new
exact solutions o©of the Einstein field equations
describing gravitational field of thick domain walls in

five dimensional spacetime.

2.2 The Field Equations:

Let us consider the general five~dimensional

plane symmetric metric with ione additional Killing

vector

(2.3) ds? = a°% (dac®-ax?) - p%(ay®+az?) - EdeZ
where

(2.4) A = A (X,t) P

(2.5) D = D (x,t) '

(2.6) E = E (x,t) '

and Y be the fifth coordinate.
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Let us introduce the pentad

(2.7) 6° = A dt
(2.8) ot = A dx
(2.9) 92 = D dy

3 -
(2.10) 8 = D dz

4 -
(2.11) e = B d? .

Hence, the metric assumes

(2.12) ds? = (8%)% - (oh)? -

One may easily obtain the

of Ricci tensor R, .
ab

the form

nonvanishing components

2 _A_ 20 E_A A, 20 E
(2.13) a Roo =3 + 5 + 5 "y (A + 5 + E)
AH A' Dl E' A'
ol wll e S
2g. . - AL, 2D" _E* A" A' 2D _ E'
(2.14) A Rll A + 5 + 5 % (A + B + = )
A A 2D E A
[z+x S5+ 8- 37 ¢



{2.15) ATR = A"R

2 E" _ 2E'D' E = 2DE
(2.16) A R44 = ED (E+'ﬁ) ,
2 _ 2D E' _ A 2D E'
(2.17) A Ry, = S5+ 5 -3 (55 + )
A' ,2D . E
-5 (5t ,

where prime denotes decivatives with respect to x and

dot for derivatives with respect to t.

Now the Einstein field equations are

1

(2.18) Ry, =-8 [T, - 3Tqg; 1 .

ik

This domain walls are characterised by the energy

momentum tensor

(2.19) Ty = f’(gik + wiwk) tpw,oW



(2.20) W, w-o= - 1 ,

For the thick domain wall the energy stress com-

ponents in the comoving coordinates are

(2.21) 0, = Tg = Tg - e,
(2.22) Ti - - ,
(2.23) ® =0,

(2.24) Ti = 0 '

where f denotes the energy density of wall which is also
equal to the tension along y and z directions in the
plane of the wall, p reads the pressure along
x-dicection. Ti being the stress component corcesponding

to extra dimension, which is taken as zero. In view of

the egs. (2.21) - (2.24), the equations (2.18) read
(2.25) ROl = 0 [
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(2.27) 3R22 t+ Ryy =~ Ryy = 0,
(2.28) 8p = 3R22 '
(2.29) gmyf = - (Rll + 2R22) :
2.3 The Solutions:

It is quite difficult to obtain the general
solutions of the above system of equations. So, one has
to make the following separability assumptions for the

metric potentials

(2.30) A = Cosh® (mx) e Lkt ,

(2.31) D = Coshb (mx) ePJkt p

(2.32) E = Coshd (mx) e Tkt :

where a, b, d, « , P Y, m and k are real constants.

In view of the above relations eq. (2.25) gives

(2.33) 2 lb(b—a) - £ (d+2b) + Y (d-a) = 0
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The eq. (2.25) leads to

(2.34) (a=b) m% [ (2b + d-1) sech® (mx) - (2b+d) ]

2 2

T RS LYE - Y (X+p)-2«p ] =0,

The eg. (2.27) gives on simplification

(2.35) m2 [8b2—2ab—ad + bdl + m2 sech2 (mx)

[a+5b - 8b%+ 2ab + ad-bd ]

2

=k“ (2B +7) («+ 3P -7

The eq. (2.28) gives the physical pacameter p

(2.36) %JL pA% = bm? [(2b+d) + (1-2b-d) sech? {mx)]

= P (ZP +Y) kz ’

and the eq. (2.29) also reads the physical paca-

meter



(2.37) 87T FP A% = m® (6b°+d%-2ab + bd-ad)

2

+ mzsech2 (mx) [—6b2—d +2ab

+ ad-2bd + a+d+4b]

- (d+ 2P) (2R +7) k2 .

Now from eq. (2.33), we obtain

{2.,38) Y (d-a) = cc:d+2b)—2f} (b-a)

It is obvious from eq. (2.34) that

(2.39) (a-b) (2b+d-1) = 0 '

which will imply either

(2.40) a = b

or

(2.41) 2b + d

i
=

Hence, correspondingly we have the following two

cases.
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Case I: a = b

In view of the above, oue obtains from equations

(2.33) - (2.35)

(2.42) a =b =1 ,
(2.43) p? = -“-‘; ,
k
2.49) L= P
(2.45) Y = P a ,
where d, ]2 . and k are arbitrary parameters.

In view of the above, the pressure p and the

energy density read
12.46) 87 p = - 3m® (d+l) sech? (mx)e”? ¥ Kt
(2.47) 8P = m? 1d%-2) sech? (mx) e 2% Kt
Hence,
2
(d"-2)
(2.48) P - aa
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Hence, we have obtained a three parameter family

~of solutions representing thick domain walls. Foc

(2.49) P=-% = ok o,

it reduces to the two parameter family

solutions as presented by Banerjee and Das (1998).

Case II:

{2.50) 2b + 4 = 1
or

(2.51) 2b = 1-4d

In case we obtain

(2.52) 4 = 1-2b
(2.53) a = b (3b-2)
(2.54) X = 6b (1-b) B+ (1-3b2)Y

(2.55) ~3b(1-b) m? = k% (YZ2-2a P - <Y - BY ),

of
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(2.56) -3b(1+b) m? = k? (Y- « = 3p) (2p+ T )
In view of egs. (2.55) - (2.56), we get
e (Y224 P -7 = P7)

(2.57) =35 = -
k 3b(1l-Db)

(Y-« -3B) (2P +7)

3b{1l+b)
which gives
2. p2 2, P .2
(2.58) (b-1) (1-4b7) "= 4+ b (l+2b=4b") — =b” = 0.
Y2 7

The eqg. (2.58) gives the following two roots

P _ b b’
(2.39) 5= = 155" (I°B) (2b+5)

In view of the above two roots, we have two se-

parate cases.

Case II (1)

In this case, one obtains
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(1-2b.+ 3b2)Y

(2.60) & 2.t 3 ’
(2.61) g = 1 -2

(2.62) B = T_g;’ ,

(2.63) a = b(3b-2)

(2'64>. f; = g%;g§4?512b{72

In view of the above, one obtains the pressure

and density as

2.2 .2 2
(2.65) grp = oK b Y (3b-4b -2) . ..p

(1-2b)% (1+D)

2a

(2.66) 8TF = b Y%k> (1+3b°) (8b°-12b+7) 2a ~2kw t,

3 sech {mx)e
(1-2b)° (1+Db)

which gives

2 2
(2.67) Prp = L1307 (82 12b+7)

ob (3b-4b" - 2)




and 1t is a constant.

Case II (ii):

In this case one obtains

| . _ (1-b) (1+3b)

(208 %= (1+2b) '
27‘
- - b
(2.69) F T
(2.70) d = (1-2b) ,
(2.71) 2 = b(3b-2) ’
(2.72) m®  _  (b(2b%-b-2) 2
. 5 _
k (b-1)“ (2b+1)

In this case the pressure and density read

2.2 2,2
(2.73) 8yp = =Bk éY (2b —%b 3) sech?? (mx)e 2% Kt
(b-1)% (2b+1)
2.2 (-db°+6b%+4b3-b2+4b+1) 2a 2« kt
(2.74) 87§ =Yk sech”“(mx)e :

(b-1)% (2b+1)2
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Again the ratio of /p is a constant

4 .3 .2
3b"( 2b” - 2b - 3)

5

Hence, we have obtained two and three parameter
families of solutions for domain walls, the parameters

are b, Y - and k.

2.4 Concluding Remarks:

It is obvious from the solutions of Case 1
and Case II spacetimes that they are reflection
symmetric with respect to the wall. For a thick domain
wall 1t is necessary that pressure and density decrease
on both sides of wall away from the symmetry plane and

fall cff to zero as X —> + oo .

The solutions of the Case 1 require that £ > 0,
p > 0 and (f -p) » 0 and may be satisfied by choosing
the parameter d such that 4 < - (3+ [/5)/2. For 4 = -
(3+ /5)/2 then f= p. It is clkear that p o+ p fall off

to zero on either side of the wall.

Again for the solutioins of Case II (i) and Case
II (ii) the fall of condition require a > 0. For the
case II (i) this condition would conflict with > 0,

m2/k2 > 0. Hence, this family of solutions is not
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physically reliable. However, it is interesting to note
that when b = 0, p and p vanish resulting into an empty

spacetime given as

(2.76) gs? = 20t (at2-dx?) —dy2 - dz®

- eZnt Cosh2 (nx) d?z

where
(2.77) n =Xkvy
For the case
(2.78) b <3 (1- vI7)
l.e.
26 - b-2 < 0

the solutions of Case II (ii) would satisfy the condition

(2.79) a > o ,
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(2.80) § > 0 '

(2.81) n?/k% > 0

It would have proper fall condition as well as

(2.82) £f-r 2 0 .

Let us now discuss the dynamical behaviour of our
models under different conditions imposed on various
parameters occuring in the solutioins. One may obtain

the general relation for the three space volume as

Y _ a+2b

(2.83) |g5]* = Cosh (mx) ekt (X+2P)

Hence, the temporal behaviour reads
(2.84) {g3l%,\, exp [kt (o(+2}3)] .

Here, it is 'an important to note that when

(2.85) P
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we recover in Case I, the Banerjee and Das solution
(1998). Hence, we have taken for the Case I, P to be

negative. For

(2.86) d < - (3+/5)/2 ,
one obtains

(2.87) L+ 2 F <0

Again if

(2.88) k >0 r

three space collapses while the extra dimension inflates,
In this case, one obtains singularity because as t —> o<,
f and p diverge. If k < 0, the 3-space inflates while
extra dimension collapses in course of time. One may
also discuss the dynamical behaviour of the domain wall
solutions corresponding to the Case II (i1i) on the

similar lines.

Let us now disucss the attractive and repulsive
behaviour of thick domain wall by either through the

timelike geodesics in the spacetime or studying the
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acceleration of an observer who is taken at rest
relative to the wall as presented by Wang (1992). Let us

consider an observer with the four velocity

(2.89) u, = Cosh® (mx) e"u<t SE

. . i
Hence, one may obtain an acceleration A~ as

(2.90) at = ul_k uk

= ma tan h (mx) Cosh™ 2% (mx) e 2%kt g i
For the case I,
(2.91) a =1 ,

and

if

(2.92) m >0 '
then A% is positive. It "shows that the observer 1is

comoving with the wall having to accelerate away from

the symmetry plane or it is attracted towards the wall.

Similarly if
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(2.93) m< 0,

then the wall represents a repulsive behaviour to the
observer. Similar results may be obtained for the domain

wall solutions of Case II (ii). Let us assume

o _ .2 _ .3 _ 4 _
(2.94) T, =T5; =T3=T, = f ,
(2.95) T =-p ,

(2.96) Tg = 0

one obtains a domain wall solution for

(2.97) f = p

But this solution be the same as obtained by Banerjee

2
and Das (1998). If one assumes e™* in place of Cosh

(mx) in the separability condition, there may not be any
domain wall solution. But it gives five-dimensional

empty spacetime as

2 _ 2nt+n2x2
= e

(2.98) ds (dt2-dx?)

_ o2t/ VB (502 4 g2

oAt/ VB g2

¥ '
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where n be the arbitrary constant. Hence, it represents

an inhomogeneous vacuum spacetime.

Hence, we have obtained three families of exact

solutions of Einstein field equations containing three

parameters.

% k% % *
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3.1 Introduction:

Several efforts have been made to obtain
solutions of Einstein's equatioin in higher dimensions
in the context of the early universe both from
cosmological considerations as well as particle physics
points of view. It 1is discussed that the extra
dimensions are not observable at the present time, due
to their size being assumed of the order of the Planck
length, perhaps they may be relevant for the very early
Universe as presented by Appelquist (1987). It is
expected that as t 1increases extra dimensions shrink
rapidly.to leave us with 4-dimensional Universe. Chodos
and Detweiler (1980) presented the 5-dimensional Kasner

vacuum solutions in which the extra dimension shrank
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while the usual 3-space expanded with time t. Chatterjee
et al (1993), Chatterijee et al (1994), Banerijee et al
(1994) have sﬁudied 5-dimensional spacetimes in the
context of inhomogeneous cosmologies. Inhomogeneous
cosmologies are important for several reasons, basically
to have general generic initial conditions and to
facilitate formation of large scalelstructures in the
Universe. Sahdev (1984), Ishiibara (1984), Chatterjee
and Bhui (1990), presented several Kaluza-Klein
extensions of the Friedman-Robertson-Walker (FRW) models
in higher dimensions, but they are all big bang

singular.

They important property of inhomogeneous
spacetime 1is that they permit nonsingular family of

models satisfying the strong energy condition

(3.1) p+3p >0,

with equation of state

(3.2) f=P ’

as presented by Ruiz and Senovilla (1992), Dadhich,

Patel and Tikekar (1995). Banerjee, Das and Panigrahi
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(1995) obtained 5-dimensional generalisation of
nonsingular family in Kaluza-Klein (KK) spacetime. There
has been attempt by Dadhich (1995) to study the
nonsingular models in general diagonal metric which is
separable in space and time in the comoving coordinates.
Mars (1995) investigated a non-diagonal singularity free

model with equation of state § = p. The metric reads

2

(3.3) ds® = %@ T (cosh (2at) (dt%-dr?) -r

Cosh (2at) d92

- Cosh“l

(2at) (dz + ar2 d9)2

where a and ¢ are constants.

3.2 The Metric and Field Equations:

Let us consider the metric in non diagonal
form (3.3) keeping time dependence free to be evaluated.

The 5-dimensional analogue of the Mars (1995) metric

reads

| 2 .2 2 2.2p 2
ol - -
(3.4) gs? = p2% g2br” (atf-ar®) - rrT ag

- p2F (dz+ar2d?)2 _ 28 de
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where T(t) and all other parameters are consand and T be

the Kaluza-Klein parameter with
(3.5) 0 < ? < 21TR

where RS be the radius of Kaluza-Klein circle. The

metric is globally regular for the whole range of the

other four coordinates i.e.

(3.6) 0O < & ) ’
(3.7) - 00 < t '

(3.8) z < oo ,

(3.9) o < ? < 27 .

2 ,

(3.10) ot = g% GPr dr '

(3.11) 02 =P (az + ac? a9)
3 y

-~

(3.12) 0~ =r7T d?



(3.13)

(3.14)

(3.15)
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which gives

9ik

("lr

and hence forth all the quantities are taken to this

frame.

In the orthonormal tetrad frame the nonvanishing

R,

ik read

(3.16)

(3.17)

(3.18)

(3.19)

B

2

15

Ri1

Ro2

B2R

rl

- p [2br (P+7Y +86) + & =7 ]
r

|

- o(p - AL (p+ Y +T) P2+2a2T2(P'7)

-Bp- Bpry +8) poza?r? BV

33 YR Y (R+T +6 )

2

2 .2 (P-7)

+ 2a” T ’

!

’
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(3.20) BR,, = - 5 [p + (+Y+8)rp°1

2 .
(3.21)  BRgg = -4b + (& + Y+ &) p

+ [P (pP) +Y (7r-«) + &(&-x) ]}12 '
where
2 2< _2br?

(3.22) B = T e
(3.23) ,U = T/T ’
(3.24) T = dT/dt

Let us consider the matter distribution as the

perfect fluid with energy momentum tensor

(3.25) T.p = (p+p) U, U - P 9y
Hence, the Einstein equations read

1
(3.26) Rip == 8T [ (g+p) u u-3 (p-p) g, 1.

Let us consider the comoving coordinates to obtain
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(3.27) uw, = (0, 0, O, 0, 1) .

In view of eq. (3.27), one obtains from equation

(3.26)
(3.28) Ry = o,
(3.29) Rll = R22 = R33 = R44 ’
(3.30) §TP = - = (R.. + 4 R, )

. 7 ‘Rgg 22 '
(3.31) 8T p =% (-R.. + 2R..)

y P 2 55 22 .

In view of the field equations and egs. (3.28) -
{3.31) it is obvious that for b # 0 only ¢ = p, stiff
fluid is allowed, showing that inhomogeneous perfect
fluid with equation of state different from P = p may
not be sustained by the metric (3.4). However, for b = 0
i.e. spacetime is homogeneous, perfect fluid f = p as
well as for P # p is admitted. The situation P=p

implies that

(3.32) R = 0 .
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One may now obtain from field equations

(3.33) AL =77 ,

(3.34) b

il

0 or Y + P + & =0,
(3.35) & pd + oL(B+ 7 +8) PZ - 28272 BT _
(3.36) pp +P(p+T+S) p? + 2a° p2(P7) _
(3.37) StAp +(p+r 8?1 =0

Again in view of
(3.38) L =Y
(3.39) R,;, = R

Now let us consider the two cases b #¥ 0 and
b = 0 separately and they will give inhomogeneous and
homogeneous solutions respectively. The expansion scalar

8 associated with four velocity us reads
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(3.40} B8 = p (L+ P+ Y +38) .
.2

(3.41) B = 1% M

3.3 Inhomogeneous Solutions:

Let us consider b # 0, then

{3.42) Y+ P+ & =0 |,

from eg. (3.34)

The othei egs. (3.33) - (3.37) lead to

t3.43) «f = 052 p2 (P =Y

(3.44) P A= 282 2 (PTY)
(3.45) §p - 0o,

(3.46) (oL + B ) F = 0 .

In view of the above we have two following cases:

(3.47) (i) «L=-p =%, §=0 and T = Cosh 2at

»
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(3.48) (ii) p =0, a=20and T = ettt

Case (i): In this case the density and pressure read
2, -abr? -1

(3.49) 8P = 8xnp = (2b-a")e Cosh (2at)

being positive for
+3.50) 2b > a ’

and one obtains the 5-dimensional singularity free non-

diagonal spacetime.

The metric reads

2
(3.51) ds? = e2PY Cosh(2at) (dt?-dc?) -r? Cosh(Zat)d?z

- Cosh—l {2at) (dz+a52d?)2 - d?z

It is 5-dimensional generalisation of the 4-dimensional

Mars :1995) stiff fluid solutions (3.3) for ? = constant,
The behaviour of the model is typical than non singulac
models of Ruiz and Senovilla (1992) and Dadhich e: al

v1995). It shows
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£3.52) f > 0 as t

or

(3.53) L ——> o0 ,

a8 t 1increases f increases with the contraction, at
t = 0 contraction turns to expansion and f—> 0 as

£ —> 00 .

Again for a = 0, the metric becomes diagonal and
static describing a static stiff fluid solution with ¢
being maximum at r = 0. IOt is 5-dimensional analogue of
the 4-dimensional stiff fluid solution of Bronikov

(1979) and Raychaudhuri (1955) and the metric reads

3

2

(3.54) ds? = P ge2-gr?) -r d?‘ ~dz2—dY2 i

Case (ii}: For a - U, T = e .

In such case one obtains

2
(3.55) 8mf=28mp =% [4b-k2( o2+ 82 +«§ )] ¥Ktgm2bc

In order that f_z 0, one has
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(3.55) 4b > k2 (<2 + 8% + 48) > 0.

In this case the metrsic ceads

2 24 kt 2_,.2,_ 2 2«kt 2
{3.57) d52 = eZb* e (de“=de®)-c% e d?

We again obtain 4 pacameters, k, b, « and § free.
If one selects k§ < 0, ?—dimension will reduce

exponentially leaving 4-dimensional spacetime. -

We obtain a vecy interesting case « = 0, which

gives pcessuce and density as

2
(3.58) 8P = 8T p =k (4b k> § 2) e 2PF
and metric (3.57) cseduces to
2 2pu? 2. 2.2 ~28kt .2
\3.59) ds’=e (ae-ac®) - ay e a
28kt 2

It is observed that though the metric time

dependent yet ¢ 1s independent of time. It is the
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non-static generalisation of the metric {3.54),

resulting for

then we get the matter-free limit of (3.59) as 5-dimens-

ional empty space and the metcic is given by

52 2 |
(3.62) as? =e* ™% (at?-ac?)- c2d$2 - e 2N g,2

22t 4.2

-e d? '

where

(3.53) 2= Sk .

It is an inhomogeneous and anisotrsopic vacuum
spacetime which is evecywhere cegular, The dimensional

reduction is possible for XM < 0, 2= 0 implies that

(3.64) ds? = (at?-ac?) - rzd?Z - dzz-dtf2
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which 5-dimensional flat spacetime.

3.4 Homogeneous Stiff—-fluid Solutions:

In this case

and

(3.66) b = 0 .

In view of the above one obtains

2

i
[
L)

(3.68) pois+p +8)p

Hence, we get two cases:

Case (i) & = 0. For this case one obtains

(3.69) (x+p ) p+ (x+ pr2p? =0,

If (4 + p) # 0 showing that a = 0 which makes the
metric diagonal. As o= T/T, so by solving eg. (3.%59),

we get
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(3.70) P o= AP

and the corresponding density and pressuce read

-1
(3.71) gmp = 8T p = 22X 22« AP
oc+,3
and the metric is given by
d_ B .
(3.72)  ds® = £2% /% TP (ae?-ar?) -z24¢2 /*<+Fd?2

2P sap (dz—arzd(P)z -dtfz .

Again for &.= 0, one obtains 5-dimensional non-

diagonal vacuum metcic

2

-d-c) - :quz -t (dz—a:zd?)z

The metric {(3.73) has big-bang singularity at

(T

0. On the otherhand if

i

(3.74) N +‘p = 0 ’

then
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{3.75) T = COSh%* f2at) ,
but

{3.78) f o - a ’

Hence, it is ruled out.

Case (ii) for o # 0, we get two following subcases:
Subcase (i) £ tp #0
(3.77) X FPOYT o,

a = 0

In this case the metric reads

(3.78) as? = 23/ {dtz—drz—czd?z) - t2}3/n dz?
~
_ t2c:~ /n

S0 eyt

where

The pressure and density are given by
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An+2«& (n-K)+2 2 (n- % -3)
n2t2 (1+ X/n)

(3.80) 8 wp=8Tf =

In this case it is possible to select « , P &
such that ¢ > 0. For O = 0, the metric (3.78) reduces
to {3.72). It allows coordinate reduction for g/n < 0.

The vacuum spacetime is obtained foc

(3.81) L(L+ 3p +39 ) +2p8 =o0.
ror
(3.82) oL +p = 0o
we get
(3.83) a = 0
and
(3.84) T o=t /8 ,

so the metric

2 2k /g 2 - 2%
= t o

(3.85) ds (dt2-dr —rzd?z) -t dz

- 2 d?2 ,
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and the corcesponding pressure and density read

. oL
(3.85) gy =8 p = T (LtE) .
82t2(l+°()
Again for A= - 1, f becomes constant > 0
pcovided 1 2;8 . Here, it is interesting to note that
the metric 13.85) satisfies one of the Kasnecian

constants, Py + b, + Py + Py - Pg = 1 but not the other.
Vacuum spacetimes are obtained for X = 0 or « + 5 = 0.

When ¢ = 0, 4-dimensional spacetime is flat.

3.5 Homogemeous Perfect £luid Solutions:

In this case b = 0 and we obtain

(3.87) R15 = ( ,
{3.88) Rll = R22 = R33 = R44 , S0, one obtains

. M 'B._
(3.89) (P-x%) p+ (p-o) (Prot+ 5 )p? + 4a202(F =,

(3.90) (P-5) o+ (B-5) (p+x+8) p2e2a2p2(P ~<) g,
and

(3.91) 4 =YY ’
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(3.92) p o= T/T
The above equations lead following two cases:
(3.93) (i) P+ (p+&+8)p° =0, 28% < +p

(3.94) (1i) (p-«) (a+38p?) + 4a202(F %) g

(3.95) 28 = < + B
Case (1) For this, we get
(3.96) T =t '
(3.97) A §3§i§ '
(3.98) p= 832'1 ,
(3.99) S= éé§i£

The pressure and density cead as

1 2 5 _ 8a2+ll
{3.100) 8 mp = TE {4a™+1) (11-8a”) t 3



5 _ 8a’+11
+11) t 3

(3.101) 8ng = (4a’+1) (32a

ot 1
S

Now p and ¢ ace positive for a’ < 11/8

for a2 # 11/8, one obtains

2
(3.102) P = i&iéég__
11-8a

o 2

for a = 11/28, we get
(3.103) f"': 3p I;

and for a = 0
(3.104) £ = P

78

Again

Case (1ii) If & = p . as= 0, one obtains pressure

and density as

13.105) 8p = 3 §/83 ,

(3.105) gnp = 43X -1 8-

where
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{3.107) T (t) = 8{t)

It is now obvious that

(3.108) s < 0 ,
and

(1.109) o > 1/3
or

(1.110) K« 0 .

Again for S = t, we get dust distcibution,

3.0 Concluding Remarks:

By considering a non-diagonal cylind:ically
symmetric metric in the Kaluza-Klein spacetime we have
presented a number of homogeneous and inhomogeneous
perfect fluid solutions including the 5-~dimensional
analogue of 4-dimensional’ non-singular stiff fluid
solutions. It is obsecved that the dimensional reduction

is admitted only in the diagonal case.

from the equation
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1 .
Rix =~ 8" g+ p)uyu -3 (P-p) gyl
One may obtain

R, uu = - 8T (p4 2p) < o0.

So in view of the Raychaudhuri (1955), equation,
singularity may be avoided only when acceleration is

non-zecro for a vorticity free spacetime.

Hence, it 1is observed that a non-singular
spacetime requires to be inhomogeneous. In the case of
diagonal non-singular solutions, it comes out that
5-dimensional non-singular analogue exists only for the
f= p. Here, we have presented the 5-dimensional
analogue of non-singular non-diagonal stiff fluid (p =p)
solutions. It does not allow the dimensional reduction.
Here the parameter a measures the non-diagonality of the
metric and b as inhomogeneity. The perfect fluid without
p = f 1is allowed in the homogeneous case. We have
presented a family of 5-dimensional solutions which
includes 5-dimensional version of Fﬁw flat solutions.
all homogeneous solutions are expected big-bang

singular.

P kok ok
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DAMAIN WALLS IV BRANS-DICKE THEORY

4.1 Introduction:

Brans, C. and Dicke, R.H. (196l) presented
an interesting alternative to general theory of
relativity based on Mach's ptincip}e. To understand the
reasons leading to their field eqguations, we first note
that the concept of a variable inertial mass itself
leads to a problem of interpretation. We need an
independent unit of mass against which increase or
decrease of a particle mass may be measured Such unit is

given by gravity i.e. the so-called Planck mass

(4.1) Be)% ~ 2.16 x 107° g.

Hence, the dimensionless gquantity
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4.2) X =m (gé-)}i

measured at different spacetime points may  tell us
whethe; masses are changing. Or, alternatively, if one
insists on wusing mass units that are the same
everywhere, a change of X would tell. us that G 1is
chaning. We could of course assume that i and c also
change. However, by keeping #i and ¢ constant one follows
the principle of least modification of existing
theories. hence, special relativity and quantum theory
are unaffected if one keeps i and ¢ fixed. This is the
conclusion Brans and Dicke arrived at in their approach
to mach's principle. They observed for a framework in
which the gravitational constant G arises from the
structure of the Universe, so that a changing G could be
looked upon as the Machian conseguence of a cmangihg

Universe.

Sciama (1953) presented general arguments leading
to a relationship between G and the large-scale

structure of the Universe.

3n2

(4.3) Fo = =-—— g,.
4TG

where
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(4.4) = = H, )
the present value of Hubble's constant, and

(4.5) 2 = - qt) [H(R))P

(4.6) H{t) = a/a ’

with their present values by ¢, and H,, the g, is called

the deceleration parameter. If one put

(4.7) R, = ¢/H, '

as the characteristic length of the Universe and
(4.8) M, = 4Tf  R/3

as the characteristic mass of the Universe.then one

obtains
M M
1 ° -1 ° m
(4.9) = =— g ~N — o~y e,
G ROCZ ° R:CZ rcz

Brans and Dicke used this relatioin as one that

determines G~ % from a linear superposition of inertial
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contribution m/rc2 being from m at a distance r from the
point where G is determined. Since m/r is a solution of
a scalar wave equatioan with a point source of strength
m, Brans and Dicke postulated that G behaves as the

reciprocal of a scalar field ?:?
(4.10) G ~ Cf T

where ? is expected to satisfy a scalar wave equation’

whose source is all the matter in the Universe,

The Brans-Dicke action principle reads

(4.11) A = S (?R+wcr~l?k » (-g)% a%x + A .

In the above equation the coefficient of R is
c3?/l67r ; instead of c3/l6'n G as in the Einstein-
Hilbert action., The reason for this 1lies in the
anticipated behaviour of G as given in (4.10). The
second term, with ?k = 9?/H>Xk, ensures that ? will
satisfy a wave equation, while third term includes,
through a Lagrangian density L, all the matter and
enecgy present in the spacetime region V. The energy

momentum tensor T X is related to /\,
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(4.12) S/\ = %g— ( TJ('];\) (-g)}i 8 9ix d4x '

and w being a coupling constant.-

The variation of A for small changes of glk leads

to the field equations

- L
T3 (930 ~ % 9y 9 9y )

o

—|

Similarly, the variation ? leads to

A A T ol B
and finally one obtains
87
4.15) = r
k []? (2w+3)c4 '

whece T be the trace of T; . Hence, eq. (4.15) leads to

the anticipated scalac wave equation for ? with sources
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in matcer, [T being the wave opecator. As it contains a
scalar field ? in addition to the metric tensor Iix* the
Brans-Dicke theory is often known as the scalar-tensor
theory of gravitation. It is obvious from these field
equations that as w —> the Brans-Dicke tends to
general relativity. FPor w = 0 (1) the theory gives
significantly diffecent results from genecal relativity

in a number of solar system tests.

The topological defects come in pictuce through a
series of phase transition in the early OUniverse. One
such defect is a domain wall, which is formed when a
discrete symmetry is spontaneously broken. Windrow
{1985), Goetz (1990), Mukherjee (1990) studied the
domain walls with finite thickness due to the proposal
for a new scenario of galaxy formation due to Hill,
Schramm and ~frcy (1989). The gravitational field of
infinitely thin walls has been computed by Vilenkin
(1981l), Tpser and Sikivi (1984). rfor a thick domain wall
in cucrved spacetime, one assumes the wall to have planar
symmetcy with two commuting Killing vectors desccribing
translational invariance in the plane parallel to the
wall and a third Killing vector related to a cotational
symmetcy about the x-axis pecpendicular to the wall. It
is symmetcic about x = 0 plane. The Lagrangian foc the

scalar field reads
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(4.17) L=k gtk

?i ?k - v(?) /

where P is assumed to be a function of x alone. It has
been observed by Widrow that for such a field purely
static metric exhibits unphysical behaviour at large
|x|, so long as V(?) is positive. One may wonder if it
is possible to obtain such a static thick domain wall in
the Brans-Dicke theory. It 1is considered in the first

step Tg = Tg = Tg # 0 and Tl = 0. Such form of energy

1
momentum tensor has been wused by Raychaudhuri and
Mukherjee (1987), who have given in a general way that

such walls in Einstein theory maynot remain in static

equilibrium.

4.2 Cosmological solutions in the Brans—-Dicke Theory:

Let us consider the homogeneous and
isotropic cosmological solutions in the Brans-Dicke
theory. let us also consider the Robertson-Walker line

element and the energy momentum tensor for a perfect

fluid. The line element reads

| 2
(4.18) ds?=c?at? -a?(t) | QE-Q + rz(d82+sin296?2)].
1-kr

Let us set



(4119)_ X = ¢t
(4.20) Xt = r
(4.21) x°¥= @
(4.22) x> = 9

ik
The non-zero comonents °f~gik and g;, are

2
(4.23) 9npn = 1, gy, = = =2 '

00 11 T-kr2
(4.24) 9yp = a2r2 v 933 = - a2r2 sin29

00 11 1-kr?
(4.25) g =1, g5 =- =— ,

a
R i v A s w e
a“r a“r“sin“0
2.2 .. 2
(4.27)  (-g)f = 2Esip? :
(1-kr*“)

The nonrzero components of [’;l are

]

(4.28) {"él = sz {-,3 N - S
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n . 2
0 aa 0 aar 0 n IR
(4.29) "7, = =232 — , [T, = , 79, = ¢
11 c(1__](]:2) 22 c 33
aar?sinZe
c
= 1 __kl’.' 2\__ 3 _ .
1-kr
(4.31); T7;2 = - r(l-krz), [ §3 = - r (l-krz) sin2@
(4.32) T’§3 = - sin® Coso, [ 3; = cot 6.
The non-zero components of Ri are
o _ 3 a
(4.33) Ry = 5 3 '
c
1 _ 2 _ 3
(4.34) Ry = R = R3
_ L&, 2ateae?
2 a 2
c a

From these, one obtains



o

(4.35)

(4.36)

(4.39)

(4.41)

' 6 ,a a2+ xc2
R = -3 (3 + - 2 r
c a
and hence
1 _ .2 _ 3 1
Gy = G, = Gy = Ry ¥ R
__ 1 2d, afe?
b 14
c2 a a2
.2 2
GO = RO - ;5 R = = _3.... (2-—_.—)+kc -
0 0 c2 2
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In view of the we obtain nontrivial equations

25 , a’+kc® _ 871G 1 _ 8T¢
a 2 2 1° T 2
a C C
. 2
a“+kc 870 G 0
2 > To .
a 3c

In view of (4.39), one obtains
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(4.42) Ty = € .

The scalar field ? is a function of time only.

Hence, the field equations assume the form

¢ . .2 e
(4.43) Zg , a2ke? _ _smp _ 292 _ w9

2 ?cz 7a 2?2 9 '

. . 2
aZexc? _sme _ 2 W)

(4.44) = .
a? 3cPc2 9a 6?2

The conservation equation reads

(4.45) S (ead) + 3pa’ = 0
. Py .

In additioin, one obtains the field equation
for ?
(4.46) o & (?aB) -8 . (e~

a (2w+3)c

One anticipates that big bang solutions will
emerge from these equations and keeping the big bang

epoch at t = 0. The eqg. (4.66) gives
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-+

(4.47) ?a3 = 8T | (e -3p)adat +0p

(2w+3)c2

where D is constant. Two types of solutions are obtained

depending on D = 0 or D ¥ O.

Case (1) D = 0 .
Let us consider the simplest case with k = 0,
p=0and € = °¢f 02. Hence, this solution is analogous

to the Einstein-de Sitter of general relativity. Let us

put

(4.48) a = a, (%:)A

(4.49) § = ?o (t/t,)B ,
so that

(4.50) pox TR

and the field equations provide

_ 2w+2
(4-51) A - —3'w+4 '
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(4.52) B = ’

and

(4.53) F o= Lﬁﬂiiliﬁii

It may be shown that as w —>% this solution =

tends to the Einstein-de Sitter model.
Case (ii) D # 0
In this case one obtains

+
g
(4.54) - (€ -3p) a
(2w+3)c

3 at << |p|

o

for the cases both of dust and of radiation. For p = 0,

we get
(4.55) 3 A+B =1

. a, 9,B
(4.56) t, = = .

Again for p = % e we obtain
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2
(4.57) G wB

Hencoe,

1l
wtl + [(2w/3) + 1]4_

(4.58) A =
(3w+4) !
1+ 3 [(2w73)+1]%
(4.59) B = —
(3w+4) '

The plus sign holds when D > 0 and minus sign
when D < 0. For D > O, ? —> 0 when a —> 0, while for
D < 0, ? e OO for a —> 0. These results hold
irrespective of the values of k or the equation: of
state. Since G ?—1, a time-dependent Q means a time-

dependent gravitational constant . For D = 0

G _ 2 1 _ _ _H
(4.60) ¢ = - T35a) T T T Dy
4.3 Field Equations for domain wall in Brans-Dicke
Theory:

Let us consider the general static metric

with planar symmetry of the form
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(4.61) gs? = o2% g2 - 2B gx2_(P-<)
(ay? + az?)
where
(4.62) L = oL (%) ,
(4763) p= !2, (x) .

The energy momentum tensor for a static scalar

field reads

0 _ .2 _ .3y _

? + V(?) '
and

(4.65) T] = - % o 2P ?2 + V()

The field equations in Brans-Dicke theory

assumes the form



! '
n8w 0 wrl 2P oL Y
(4.66) oA =—r [TO T Swi3 T] e - (f

i / ! / 1
(4.67) P+ % (L+ p) (&= P)

>
- %{' 17 - gy el
2 / ' "
- w?( . [2 Y _ ? )
4 [
(4.68) 2 (4= p) = - §$_ (12 -l oy 2P

2

v 2op- <) %—

where ? denotes the Brans-Dicke scalar field.

The Bianchi identity reads

(4-69) Tl;k = 0 !

which gives

(4.70) p= 0
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for a nontrivial case.

Let us consider the case

(4.71) T = 0

-2p .2
e

i
X

(4.72) \Y (?)

In view of the above the eq. (4.65) reads

/

(4.73) <" + <Y gmp 3(wtl), 2P

= [ 1- =x¥r2)

ﬁJ P (2w+3) * © e

and the eq. (4.67) gives

/

Cod s <Y )= - 81 rp_ 3wrl), 2F

{(4.74)
LP LP (2w+3)

o

Now, it 1is observed that equations (4.73) and

(4.74) are clearly inconsistent showing that a static
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domain wall with planar symmetry and
(4.75) T = 0 ’

does not exist in Brans-Dicke theory. The result will be
changed if one assumes T% # 0. We hope T% - 0 will

provide some new result.

4.4 Concluding Remarks:

For the thick domain wall. in curved
spacetime one assumes the wall to have planar symmetry
with two commuting Killing vectors describing
translational invariance in the plane parallel to the
wall and a third Killing vector related to a rotational
symmetry about the X-axis perpendicular to the wall. It
is symmetric about x = 0 plane. The Lagrangian for the
scalar field is taken as L = % gik ?i ?k - V(?), where ?
is assumed as a function of x alone. It has been
investigated by Widrow (1985) that for such a field
purely static metric gives unphysical behaviour at large
|x|, so long as v(?) is positive. We have presented that

a thick domain wall with oplanar symmetry having TO = T2

0 "2
= Tg ¥ 0 and Ti = 0 may not remain in static eqguilibrium
in Brans-Dicke theory of gravitation. We hope 1if one

assumes Ti # 0 the result may be changed.

* dk kK
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