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Abstract In this article, we present exact solutions to Ein-
stein’s field equations through a process known as minimally
gravitational decoupling (MGD). Our study posits strange
quark matter (SQM) as the initial seed source and intro-
duces pseudo-Isothermal (PI) dark matter (DM) as the new
source. We derive the metric potentials, deformation func-
tions, and physical quantities of gravitating compact objects,
thoroughly analyzing the MGD effect on these quantities.
By applying Herrera’s cracking concept and the adiabatic
condition, we demonstrate that the anisotropic stellar sys-
tem we studied, influenced by two interconnected sources,
achieves stable equilibrium. Focusing on models related to
the mass gap identified in the GW200210 event (2.83+0.47

−0.42)

and the “black widow” pulsar PSR J0952-0607 (2.35+0.17
−0.17),

the fastest known spinning neutron star in the Milky Way, we
constrain the mass–radius relationship and moment of inertia
values under the MGD effects within the framework of gen-
eral relativity (GR). Our findings indicate that the maximum
allowable mass tends to increase in the lower mass gap region
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as the MGD effect parameter β and the central DM density
σ1 rise. Conversely, this maximum mass decreases with an
increase in the bag constant Bg, which correlates with the
surface density of SQM in our model. Interestingly, when
the stellar structure undergoes deformation due to MGD, it
responds differently to the density profiles of DM and SQM.
Specifically, as Bg increases, SQM tends to inhibit the for-
mation of supermassive compact stars (CSs) governed by
MGD and PI-DM. Notably, supermassive CSs can exceed 2
M� for values of Bg ≤ 62.5 MeV fm−3. Finally, we con-
clude that a maximum mass of approximately 3 M� in the
mass gap region can be attained by incorporating DM and
adjusting the MGD effects within the stellar structure under
GR. The elevated moment of inertia values suggests a stiffer
equation of state (EOS) for the current anisotropic system.
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1 Introduction

In the wake of the first confirmed observation of gravita-
tional waves (GWs) from a binary black hole merger [1],
a new period in the field of astrophysics has begun. Subse-
quently, another breakthrough in the detection of GW170817
and Gamma-ray burst (GRB 170817A) from the merger of
a binary neutron star (NS) by LIGO and Virgo detectors [2]
has profound impact on the study of astrophysics and cos-
mology [3]. In this connection, a recent study [4] claimed
that the generation of GW echo from GW170817 can be
associated with the features of strange stars (SSs) and conse-
quently SS could be the source of GW echo. Hence, the EOS
of quark matter has the possibility to be explored in the light
of observed GWs generated from SS [5]. Particularly, values
of strange quark mass and bag constant are constrained with
the confirmed observation of f and lowest ωI I mode in GW
events. Therefore, it would be interesting to investigate the
characteristics and features of SS leading to keen implica-
tions for astrophysics and cosmology in the new era of GW
astronomy.

SS is composed of SQM which comprises deconfined up,
down, and strange quarks. It is remarkable to note that SQM
is considered to be the absolute ground state of matter [6–
10] according to the SQM hypothesis. In this regard, EOS of
strange matter inside the SS is proposed by MIT bag model
[11] which consists of a bag constant. In particular, the bag
is referred to the color confinement of the quarks. Physically,
one can obtain energy density by adding the bag constant to
the kinetic energy of quarks [12]. Again, the quark pressure
reduces due to enhancement in the value of the bag constant.
Since the value of the bag constant is important in the configu-
ration of an SS, the MIT bag model first proposed the standard
value to be ≈ 55 MeV fm−3. Later, a range of bag constants
have been suggested in various studies [11,13,14]. Over the

past three decades, different researchers have examined the
features of SSs [15–23] due to its profound importance in
strong interaction between physics and astrophysics.

Some studies suggest [24,25] that the DM and the stable
nugget of SQM can be associated to each other where DM
has become an enigmatic issue intriguing the scientific com-
munity for the past few years. This keeps various researchers
from solving the puzzle of DM by proposing different mod-
els that basically represent axions, axion-like particles, and
fermions as the most probable candidates of DM. Further,
it has been suggested that self-interacting DM can exist in
stellar configurations such as compact stars (CSs). In par-
ticular, research works [26,27] investigated different prop-
erties of boson stars where the bosonic DM particles have
been considered with self-interaction. Other investigations
[28,29] have taken self-interacting fermionic DM particles
as constituents of a CS into account to explore the various
features of CSs. In this connection, a recent study [30] indi-
cates that the masses as well as the interaction strength of the
DM particles along with the accumulation of cosmological
structures play a crucial role in favor of the construction of
CSs composed of self-interacting DM particles. Eventually,
different features of astrophysical objects such as NSs, SSs,
and white dwarfs (WDs) are significantly influenced by the
occurrence of DM in stellar structures. As a consequence, in
their quest for DM, researchers [31–33] are inclined to treat
CSs as significant tools that are essentially useful to explore,
analyze as well as constrain the characteristic features of DM.
In this regard, mass–radius relation is considered to be one of
the important aspects of CSs which can be influenced by the
composition of stellar matter. The presence of DM in addi-
tion to normal matter or SQM in CSs can effectively show an
impact on the mass–radius relations with respect to observa-
tional constraints. For instance, a research work [34] showed
that the considerations of DM interactions can influence the
physical features of quark stars.

In literature, there are various meticulous studies [35–40]
which comprehensively examined and analyzed the impact
of the presence of DM (Bosonic or Fermionic) on the prop-
erties and the compact structures of NSs considering the fact
that the DM may or may not be self-interacting. In this field
of study, researches indicated that exotic compact objects
(COs) such as dark compact planets [41] could possibly exist.
Further, GW sensors would be such well-equipped and com-
petent currently and in the foreseeable future that it could
probe and analyze the possible existence of DM [42–44] in
NS mergers by adapting self-interaction strength and mass of
the DM particle in the process of GW events. Moreover, with
the advancement of GW astronomy, GW events from CO
mergers can be detected in the not-too-distant future. Subse-
quently, the physical features of exotic COs that are made of
DM can be examined and analyzed to unveil the mysteries
about DM [45–47]. As a result, the detection techniques in
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GW astronomy eventually will bring new prospects in the
field of astrophysics like distinguishing the exotic objects
from other CSs such as NS and BH on the basis of measur-
ing differences in the observational aspects of COs [48].

In general, the dynamics of fluid-like configurations such
as CSs are governed by the non-linear field equations in any
gravity theory. A well-behaved non-singular and exact solu-
tion to the field equations which satisfies the necessary phys-
ical conditions represent a stable stellar structure. Among
several techniques to solve the field equations, gravitational
decoupling or geometrical decoupling (GD) emerges as an
efficient method [49–62] to develop physically valid stel-
lar models with a seed solution in addition to a new source.
This effective technique can be utilized in two different ways
which are (i) minimally gravitational decoupling (MGD) and
(ii) complete gravitational decoupling (CGD) on the basis of
physical requirements. As compared to the process of MGD,
there is an exchange of energy between the seed source and
the new source in CGD.

The presence of anisotropy in spherical fluid systems, i.e.,
COs was first investigated by Ruderman [63] in the back-
ground of GR. Subsequently, various researchers employed
the anisotropy feature in their studies [64–66]. In particular,
Bowers and Liang [65] have studied the impact of anisotropy
in the relativistic COs following one of Bondi’s earlier works
which utilized the pressure anisotropy aspect to the isotropic
system without assuming an EOS. The important result of
their work was that the surface redshift and maximum allow-
able mass of the spherical fluid have larger values due to the
anisotropic nature of the stellar system. The anisotropy arises
due to different values of radial pressure and tangential pres-
sure everywhere inside the system except at the center of the
star. This can happen due to the presence of superconduct-
ing states, pion condensation [67,68], highly dense core, 3 A
superfluidity, a mixture of different fluids, neutrino transport
[69], the relativistic particles with high energy, etc. With this
regard, various features of anisotropic radiating stars have
been examined by Herrera and Santos [70].

It is worth noting that one of the stability criteria, namely
adiabatic condition for isotropic systems as given by Chan-
drasekhar [71] is modified in the case of anisotropic systems
in both Newtonian and post-Newtonian approximations. Her-
rera has shown in a recent work [72] that an isotropic relativis-
tic fluid system always has a tendency to attain anisotropy
whenever it undergoes a physical process. Again, Pretel
[73] emphasized on the role of EOS which eventually mea-
sures the internal structure of the COs and constrains stabil-
ity criteria accordingly. This fact is significant with regard
to the GW170817 observation where bounds on the EOS
for neutron-rich fluid as obtained by the LIGO-Virgo team
[73,74]. Later on, measurement of tidal deformability of NS
[75–84] advocate in behalf of the essential constraints on
the EOS for nuclear densities in GW170817 event. In this

connection, the recent detection of GW events indicating the
occurrence of supermassive COs with masses greater than 2
M� is extremely relevant for constraining EOS in the study
of compact star modeling. GW190814 [85] and GW200210
[86] are two such GW events each of which have a CO of
mass 2.50–2.67 M� and 2.83+0.47

−0.42 M� respectively. These
supermassive COs happen to fall in the lower end of the mass
gap region which is considered as M ≈ [2.5, 5] M� [87], i.e.,
the mass gap between the heaviest NS and lightest BH.

Although the GD method is applied to the field equations
governing the gravitating bodies with a motivation to intro-
duce a new source via energy–momentum tensor, it has the
additional benefit of incorporating anisotropy in the gravi-
tating bodies successfully. In general, the seed system which
may be or may not be isotropic in nature can behave as an
anisotropic effective system through a mechanism of asso-
ciating with the new anisotropic source. In this process, the
seed solution in addition to anisotropic source counterparts
to the field equations obtained by MGD or CGD, can rep-
resent a physical spherical fluid system that can be related
to the observational constraints of observed COs. Further,
the decoupling constant in the GD technique has a signifi-
cant impact on the physical properties, mass–radius relations,
stability conditions, and maximum mass limit of COs [88–
90].

In a recent work [91], anisotropic CSs have been stud-
ied under the GD technique in the framework of GR where
Einstein’s Field Equations (EFE) are solved assuming null
complexity factor condition [92] and generalized Durgapal–
Fuloria metric ansatz [93] to determine the deformation func-
tions [94]. This study favors all the physical features that rep-
resent Durgapal–Fuloria type superdense anisotropic CSs. In
another work, Maurya et al. [95] have considered Pseudo
Isothermal (PI) DM density profile [96,97] with zero com-
plexity to perturb metric potentials in the process of CGD in
the framework of GR where the seed system assumed to be a
perfect fluid described in Vlasenko–Pronin space-time [98].
So, they have developed an anisotropic dark star model where
the impact of decoupling constant on the effective system
and GW echoes under CGD have been analyzed thoroughly.
Based on the above theoretical discussions on the develop-
ments in the study of SQM, DM, and GD, we are motivated
to study gravitationally deformed SQM systems by the pro-
cess of MGD with the introduction PI-DM as a new source.
Instead of considering the null complexity factor condition
and a metric potential ansatz, we utilize the density profile
given by Mak and Harko [120] for the seed system and the
PI-DM density profile for the new system. Hence, we want
to study the effective system governed by dual matter density
profiles and relate the outcomes of the present study to the
observational constraints of astrophysical COs.

The plan of the paper is arranged as follows: In Sect. 2 we
have provided gravitationally decoupled EFEs which include
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effective energy–momentum tensors representing the two
sources of SQM and PI-DM. The decoupling process is uti-
lized to obtain solutions to two sets of field equations for
the seed system and new source in Sect. 3 by assuming the
MIT bag EOS along with the density profile of SQM and
PI-DM density profile. In Sect. 4, we have presented and uti-
lized the boundary conditions to present the system. Further,
the physical features of the solutions are analyzed in Sect. 5.
The stability analysis under the cracking criterion and adia-
batic condition have been shown in Sect. 6. Moreover, MGD
effects on mass–radius relation and moment of inertia have
been examined in Sects. 7 and 8 respectively. At last, final
comments with brief discussion are given in Sect. 9.

2 Gravitationally decoupled Einstein field equation
(EFE) generated by two sources

2.1 Field equations for gravitationally decoupled system

This section offers a concise summary of the gravitationally
decoupled EFE for two distinct sources, with relativistic units
expressed as G = c = 1,

Gi j = Ri j − 1

2
gi j R = −8πCeff

i j (1)

with,

Ceff
i j = Ai j + β Hi j . (2)

The expression Ri j is used to represent the Ricci tensor,
where R stands for the contracted Ricci scalars and β serves
as the coupling constant for the field equations. The energy–
momentum tensor is represented asAi j , and additional fields,
such as scalar, vector, and tensor fields, may be defined by the
source Hi j . Preserving the effective energy–momentum ten-
sor Ceff

i j is necessary because the Einstein tensor (Gi j ) fulfils
the Bianchi identity,

∇i [Ci j ]eff = 0. (3)

For the purpose of describing the space-time within the star
system, a specific static spherically symmetric line element
is being used:

ds2 = −eK0(r)dr2 − r2(dθ2 + sin2 θ dφ2) + eX0(r)dt2.

(4)

The metric potentials X0 and K0 are merely determined by
radial distance. Considering that the internal configuration of
the self-gravitating structure, described by the effective EMT
Ceff
i j , represents an anisotropic matter distribution,

Ceff
i j =

(
ρeff + Peff

t

)
UiU j − Peff

t gi j + (Peff
r − Peff

t )Vi V j .

(5)

The expression for ui is articulated as: ui = eX0(r)/2δi 4,

consequently representing the four-velocity. The definition
of χ i = eK0(r)/2δi 1 indicates that the unit vector in the radial
direction is represented by the symbol χ i . As ρeff describes
the energy density of matter, Peff

r represents the pressures in
the radial direction and Peff

t represents the pressures in the
tangential direction. Moreover, the unit space-like vector ui

and the 4-velocity χ i in the radial direction met the following
requirements:

The comprehensive formulation of EFE can be articulated
as a set of differential equations corresponding to the metric
(1),

Peff
r = 1

8π

[
− 1

r2 + e−K0

(
1

r2 + X ′
0

r

) ]
=, (6)

Peff
t = 1

8π

[
e−K0

4

(
2X ′′

0 +X ′2
0 −K′

0X ′
0+2

X ′
0 − K′

0

r

) ]
,

(7)

ρeff = 1

8π

[
1

r2 − e−K0

(
1

r2 − K′
0

r

)]
. (8)

The use of the metric function facilitates the calculation of
the mass function, m(r), of a anisotropic fluid sphere,

e−K0 = 1 − 2m(r)

r
. (9)

It is also equivalent to

m(r) = 8π

2

∫
ρeff r2dr. (10)

However, the pressure gradient can additionally be
expressed as a function of X0, ρeff, Peff

r , and Peff
t via

Eqs. (6)–(8),

dPeff
r

dr
= −X ′

0

2
(Peff

r + ρeff) + 2(Peff
t − Peff

r )

r
. (11)

The generalized hydrostatic Tolman–Oppenheimer–Volkoff
equation for anisotropic celestial structure is presented in
Eq. (11) [117,118].

3 Gravitationally decoupling approach via MGD and
its solution using dual density matter profiles

Our subsequent objective is to ascertain an exact solution for
the field equations (6)–(8) that characterize the structure of
a SS. When we look at the system of field equations, we can
see that it is not linear at all, which makes it hard to solve.
This is why we use a different technique known as gravita-
tional decoupling, which makes use of the minimal geometric
deformation (MGD) approach via a particular transformation
connected to the gravitational potential [121],

X0(r) −→ Y0(r) + β Dg(r), (12)
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e−K0(r) −→ W0(r) + β Dh(r). (13)

LetDg(r) andDh(r) denote the decoupling functions associ-
ated with the temporal and radial metric components, respec-
tively. The deformation may be precisely calibrated by mod-
ifying the decoupling constant β. When β = 0, the standard
theory of GR is completely reinstated. Utilising the MGD
approach, we can ascertain that Dg(r) = 0 and Dh(r) �= 0.

This discovery indicates that the suitable transformation per-
tains only to the radial part of the metric function, whereas the
temporal component stays unchanged. This MGD approach
divides the decoupled system (6)–(8) into two separate com-
ponents. The primary system is linked to Ai j , whereas the
secondary system pertains to the supplementary source Hi j .

To establish the starting system, we analyze the energy–
momentum tensor Ai j that defines an anisotropic matter dis-
tribution represented by,

Ai j = (ρ + Pt )Ui U j − Pt δi j + (Pr − Pt )Vi V j . (14)

Specifically, ρ represents the energy density while pr and pt ,
respectively, represent the radial and tangential pressures for
the seed solution. Consequently, the effective amounts may
be articulated as follows:

ρeff = ρ + β H0
0, Peff

r = Pr − β H1
1, Peff

t = Pt − β H2
2.

(15)

Furthermore, the related effective anisotropy is,

�eff = Peff
t − Peff

r = �GR + �θ,

where, �GR = Pt − Pr and �θ = β(H1
1 − H2

2).

(16)

The two anisotropies associated with the matter distribu-
tion, Ai j and Hi j , may be combined to define the effec-
tive anisotropy. The anisotropy (�θ ) is produced by grav-
itational decoupling and has the potential to augment the
effective anisotropy. Assuming that the force arising from
the anisotropic features of the fluid is represented by the

expression 2(Peff
t −Peff

r )

r . The force is directed outward when
the pressure Peff

t is greater than the pressure Peff
r . The force

exerted is inwardly acting when Peff
t is smaller than Peff

r .

However, if the value of Peff
t exceeds that of Peff

r , the force
facilitates the development of a more compact structure in
the context of an anisotropic fluid compared to an isotropic
fluid distribution [119].
By using the transformations (12) and (13), the system (6)–
(8) may be divided into two systems. In particular, when β =
0, the initial system depends on the gravitational potentials
Y0 and W0,

ρ = 1

8π

(
1

r2 − W0

r2 − W ′
0

r

)
, (17)

Pr = 1

8π

(
− 1

r2 + W0

r2 + Y ′
0W0

r

)
, (18)

Pt = 1

8π

(W ′
0Y ′

0

4
+ Y ′′

0W0

2
+ Y ′2

0 W0

4
+ W ′

0

2r
+ Y ′

0W0

2r

)
,

(19)

Eq. (8) yields the following outcome:

− Y ′
0

2
(ρ + Pr ) − P ′

r + 2

r
(Pt − Pr ) = 0. (20)

The configuration of the system is represented by the TOV
equation (17)–(19), whose solution may be found in the
spacetime that is shown below,

ds2 = eY0(r)dt2 − dr2

W0(r)
− r2dθ2 + r2sin2θ dφ2. (21)

By turning on β, we can deduce the subsequent set of equa-
tions as follows:

H0
0 = − 1

8π

(Dh

r2 + D′
h

r

)
, (22)

H1
1 = − 1

8π

(Dh

r2 + Y ′
0Dh

r

)
, (23)

H2
2 = − 1

8π

(1

4
D′

hY ′
0 + 1

2
Y ′′

0Dh + 1

4
Y ′2

0 Dh + D′
h

2r

+Y ′
0Dh

2r

)
. (24)

The subsequent link is established using the linear combina-
tion of Eqs. (22)–(24) as follows:

− Y ′
0

2
(H0

0 − H1
1) + (H1

1)
′ + 2

r
(H1

1 − H2
2) = 0. (25)

The following formula may be used to represent the mass
distribution for each system as,

mGR = 1

2

∫ r

0
ρ(x) x2dx and mD = 1

2

∫ r

0
H0

0(x) x
2dx .

(26)

The mass functions associated with sources Ai j and Hi j are
represented by the symbolsmGR(r) andmD(r), correspond-
ingly. Next, we will go over how to use the two matter density
profiles in DM holes to determine the solutions to each set
of differential equations separately.

3.1 Seed solution of the field equations (17)–(19) for
source Ai j for SS models

To analyze the SS model, we assume that the distribution of
SQM among the unusual stars is governed by the fundamen-
tal physical MIT bag model EOS. The implementation of the
unique bag function in the bag model has maintained all mod-
ifications to the energy and pressure functions of the SQM
methodology. Our basic bag model posits that the quarks are
non-interacting and devoid of mass. The quark pressure will
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be specified as,

Pr =
∑

f =u, d, s

P f − Bg. (27)

Let P f denote the distinct pressures corresponding to the
quark flavours (u), (d), and (s). The total external Bag pres-
sure, or Bag constant Bg, neutralizes these pressures. The
amount of energy (ρ) associated with deconfined quarks
within the context of the MIT Bag model may be articulated
as follows:

ρ =
∑

f

ρ f + Bg, where ρ f = 3P f . (28)

Utilizing Eqs. (27) and (28), in conjunction with the relation
ρ f = 3P f , we can define the MIT bag EOS for strange
quark star entities in its precise formulation,

Pr = 1

3
(ρ − 4Bg). (29)

To achieve a non-singular, monotonically declining matter
density inside the spherically symmetric stellar structure, we
elect a modified form of ρ as suggested by Mak and Harko
[120],

ρ(r) = ρ0

[
1 −

(
1 − ρs

ρ0

)
r2

R2

]
. (30)

The constants ρ0 and ρs denote the highest and lowest
amounts of ρ at the center and surface, respectively. Realistic
matter density and realistic EoS have now been established
with clarity. We now concentrate on the spacetime geometries
Y0 and W0 pertaining to the initial system. The differential
equation obtained from Eqs. (17) and (30) can be described
in the following manner:

rW ′
0(r) + W0(r) + r4(ρs − ρ0) + r2ρ0R2 − 8πR2

8πR2 = 0.

(31)

Upon completing the process of integration, we determine
the potential W0,

W0 = 8πr2ρ0(3r2 − 5R2) − 24πr4ρs + 15R2

15R2 . (32)

To determine the alternative potential, we integrate the
EOS (29) with Eq. (18), resulting in the following differential
equation,

3W0rY ′
0 − [8πρr2 − 32πBgr

2 − 3W0 + 3] = 0. (33)

When integrating above Eq. (33), the value of Y0(r) may be
found as follows:

Y0(r) = 2
√

10πR(ρ0 − 6Bg)

3
√

10πρ2
0 R

2 − 9ρ0 + 9ρs

× tanh−1

⎡

⎣

√
2π
5

(−6ρ0r2 + 5ρ0R2 + 6ρsr2
)

R
√

10πρ2
0 R

2 − 9ρ0 + 9ρs

⎤

⎦

−2

3
ln

(
8πρ0r

2
(

3r2−5R2
)
−24πρsr

4+15R2
)

+F . (34)

The Eqs. (32) and (33) establish the comprehensive space-
time structure for the initial solution. Nonetheless, consider-
ing the Hi j -sector, It is important to determine the results of
the subsequent Eqs. (22)–(24). This second system has been
solved previously using the well-known techniques ρ = H0

0
and pr = H1

1 proposed by Ovalle [121–123]. Inspired by
those studies, we apply the mimic technique in our current
work to solve the system of equations (22)–(24). But it mimic
approach will be done in the context of DM density profile
rather than the well-known techniques ρ = H0

0 and pr = H1
1

proposed by Ovalle [121]. The next section focuses the pro-
cedure for determining the deformation function using the
DM density profile.

3.2 Solution of extra source Hi j using the DM density
profile

Our current objective is to build the Dark Star models through
gravitational decoupling. In light of the current conditions,
we focus on the Hi j -sector by modelling the ρθ -component
via a PI-DM density profile [124,125], expressed as,

ρd = σ1

1 + σ2 r2 . (35)

Additionally, the research findings on DM halos and
galaxy rotation curves are provided in the following pub-
lications [124,125], especially for certain parameter values
denoted by σ1 and σ2. In our present investigation, we have
treated constants as an independent variable. The density
profile ρd exhibits regularity when there are no singulari-
ties. Moreover, the function of r demonstrates a consistently
decreasing tendency throughout every finite area.

Utilising a mimicking strategy by aligning 8πH0
0 with ρd ,

we construct the subsequent differential equation in Dh(r)
as follows:

dDh

dr
+ Dh

r
= − σ1

1 + σ2 r2 . (36)
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Upon doing the integration procedure, we get the resultant
equation for Dh(r) as

Dh(r) = 8π σ1 tan−1
(√

σ2 r
)

σ
3/2
2 r

− 8π σ1

σ2
+ K1

r
. (37)

From the deformed metric function e−K0(r) = W0(r)+βDh,

it can be inferred that the deformation function Dh must dis-
appear at the centre. To fulfil the specified requirement, the
arbitrary constant K1 must be eliminated. Finally, the defor-
mation function is,

Dh(r) = 8π σ1 tan−1
(√

σ2 r
)

σ
3/2
2 r

− 8π σ1

σ2
. (38)

The formulae for the source Hi j are provided as follows:

H0
0 = σ1

r2σ2 + 1
, (39)

H1
1 = − 1

r3σ
3/2
2

(
8πρ0r2

(
3r2−5R2

)−24πρsr4+15R2
)

×
[
5σ1

(
r
√

σ2 − tan−1 (
r
√

σ2
)) (

R2
(

32πBgr
2 − 3

)

+8πρ0r
2
(
r2 − R2

)
− 8πρsr

4
)]

, (40)

H2
2 = − σ1

2r3σ
3/2
2

(
r2σ2 + 1

)H22(r)

[(
r2σ2 tan−1 (

r
√

σ2
)

−r
√

σ2 + tan−1 (
r
√

σ2
) )(

8πρ0r
2
(

3r2 − 5R2
)

−24πρsr
4 + 15R2

)[
5R2

(
16πBgr

2 − 3
)

+ 8πρ0r
4

−8πρsr
4]−32πr2

(
r2σ2+1

) (
r
√

σ2−tan−1(r
√

σ2
))

×
{

5ρ0R
2
(

112πBgr
4−8r2

(
10πBg R

2+3
)
+15R2

)

+40ρsr
2R2

(
3 − 14πBgr

2
)

+ 50Bg R
4
(

8πBgr
2 − 3

)

+4πρ2
0r

2
(

16r4 − 30r2R2 + 25R4
)

− 8πρ0ρsr
4

×
(

16r2 − 15R2
)

+ 64πρ2
s r

6
}]

, (41)

where, H22(r) = (
8πρ0r2

(
3r2−5R2

)−24πρsr4+15R2
)2

The newly deformed solution may be expressed by the fol-
lowing line element, and the gravitational potential is pro-
vided by,

ds2 =
[

8πr2ρ0(3r2−5R2)−24πr4ρs+15R2

15R2 − 8π σ1

σ2

+8π β σ1 tan−1
(√

σ2 r
)

σ
3/2
2 r

]−1

dr2 + eX0(r)dt2

−r2(dθ2 + sin2 θ dφ2), (42)

where,

eX0(r) = 2
√

10πR(ρ0 − 6Bg)

3
√

10πρ2
0 R

2 − 9ρ0 + 9ρs

× tanh−1

⎡

⎣

√
2π
5

(−6ρ0r2 + 5ρ0R2 + 6ρsr2
)

R
√

10πρ2
0 R

2 − 9ρ0 + 9ρs

⎤

⎦

−2

3
ln

[
8πρ0r

2
(

3r2 − 5R2
)

− 24πρsr
4 + 15R2

]
+ F .

(43)

The effective system expressions, using the aforemen-
tioned line element, assume the following form.

ρeff = βσ1 + (
r2σ2 + 1

) (
r2(ρs − ρ0) + ρ0R2

)

R2
(
r2σ2 + 1

) , (44)

Peff
r = 1

3r3R2σ
3/2
2

(
8πρ0r2

(
3r2−5R2

)−24πρsr4+15R2
)

×
[

− 15βR2σ1

(
r
√

σ2 − tan−1 (
r
√

σ2
)) (

R2(3

−32πBgr
2)+8πρ0r

2
(
R2−r2

)
+8πρsr

4
)
−r3σ

3/2
2

×
(
−24πρ0r

4 + 40πρ0r
2R2 + 24πρsr

4 − 15R2
)

×
(
−4Bg R

2 + ρ0

(
R2 − r2

)
+ ρsr

2
) ]

, (45)

Peff
t = Pt1(r)

2r3σ
3/2
2

(
r2σ2+1

)
Pt2(r)

− 1

Pt3(r)

[
ρ0R

2
(

128πBgr
4

−10r2
(

8πBg R
2 + 3

)
+ 15R2

)
+ 2ρsr

2R2(15

−64πBgr
2) + 20Bg R

4
(

8πBgr
2 − 3

)
+ 8πρ2

0r
2

×
(

2r4 − 5r2R2 + 5R4
)

− 8πρ0ρsr
4
(

4r2 − 5R2
)

+16πρ2
s r

6
]
. (46)

4 Boundary conditions for SS models under
gravitational decoupling

To create a plausible compact stellar model, defined by a
restricted and finite matter distribution with a specific mass
M and radius R, it is crucial to link the internal geometry
M− at the surface � = r = R with the external space-time
M+ that envelops the structure. Within the framework of the
GR system, the external manifolds are mostly identified as
Schwarzschild vacuum space-time, particularly in the case
of uncharged, non-radiating, and static compact objects. It
is essential to analyse the attributes of the supplementary
component of the energy–momentum tensor, namely theHi j -
sector. This new expression may change the material content
of the external space-time. The exact geometry defining this
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outer manifold may be expressed as,

ds2 =
[

1 − 2M
r

]
dt2 − dr2

1 − 2M
r

− r2d
2. (47)

To effectively connect the internal structure with the exte-
rior one, the ID junction circumstances require to make use
of both the first and second fundamental forms. The first
fundamental form establishes the continuity of the metric
potentials at the σ boundary. The first fundamental form is
outlined below:

eY
−
0 (r)|r=R = eY

+
0 (r)|r=R, (48)

and

e−X−
0 (r)|r=R = e−X+

0 (r)|r=R . (49)

In this context, the symbols “−” and “+” denote the inner
and outer structures, respectively. The second fundamental
form relates to the continuity of the extrinsic curvature Kμν

induced by the components M− and M+ on the surface of
the object. The continuity of the Krr component across the
boundary results in
[
P(eff)
r (r)

]

r=R
=

[
P(eff)
r (r) − β θ1

r (1)
]

r=R
= 0. (50)

Utilizing the aforementioned condition, we establish the
quantity of the bag constant as,

Bg =
[
ρs R

3σ
3/2
2

(
16πρ0R

2 + 24πρs R
2 − 15

)
+ 15βσ1

×
(

8πρs R
2 + 3

) (
R
√

σ2 − tan−1 (
R
√

σ2
)) ]/[

4R2

×
(
Rσ

3/2
2

(
16πρ0R

2 + 24πρs R
2 − 15

)
− 120πβσ1

×
(

tan−1 (
R
√

σ2
) − R

√
σ2

) )]
. (51)

5 Physical analysis of density, pressure and anisotropy

The physical quantities such as density (ρeff), the effective
pressure both in radial (Peff

r ) and tangential (Peff
t ) directions,

and the anisotropy (�eff) will be analysed in this section
to investigate the physical acceptance of the present stellar
model including dual matter densities for SQM and PI-DM
decoupled via MGD in the framework of GR. The variation
of the physical quantities with respect to radial distance for
different values of β have been shown graphically in Fig. 1
which indicates the solution to the field equations is well
behaved and non singular throughout the stellar configura-
tion.

One of the necessary requirements for a physical system
which is satisfied in the present model as shown in Fig. 1 is
that all the physical quantities must be finite and non negative
inside the star. It is to be noted that density and pressure
are maximum at centers and decreases monotonically for

increasing radial distance towards the surface of the star. The
effect of dual matter density along with MGD in the effective
stellar system maintains the vanishing condition of radial
pressure which eventually identifies the boundary of the star.
The numerical values of density at center and surface, central
pressure have been provided in Table 1. It can be seen that the
values of the central density and surface density are the order
of 1014 g cm−3 whereas the values of central pressure are
the order of 1034 dyne cm−2 obtained within the physically
acceptable range for different values of β.

An essential feature of an anisotropic stellar model is the
equality of radial pressure and tangential pressure to be hold
at the center of the system. This feature well established in
the present model as anisotropy panel in Fig. 1 shows that the
values of Peff

r and Peff
t do not differ at the center for various

values of β or the MGD effect. Since anisotropy of the sys-
tem is measured as the difference in values of Peff

r and Peff
t ,

central anisotropy of the system remains zero for increasing
values of β. As one approaches towards the surface of the star
from the center, the difference of Peff

r and Peff
t becomes pos-

itive and grows monotonically. Hence, anisotropy increases
throughout the star and reaches its maximum value at the
boundary of the star. The positive �eff plays a significant
role to stabilize the system as it appears to be the repulsive
anisotropic force which acts opposite to the attractive gravita-
tional force to offer a stable equilibrium to the stellar system.

6 Stability analysis

6.1 Stability for stellar COs using cracking criterion

First of all, we have investigated whether the causality is
maintained in the present stellar model. For this we have
presented graphically the variation of square of the sound
speeds in both radial and tangential directions with respect
to radial distance in Fig. 2 which ensures that both the sound
speeds (v2

r and v2
t ) are less than the speed of sound or unity

for all increasing values of β. Apparently, the MGD effects
in GR do not violate causality.

Another aspect of studying variation of sound speeds
inside the star is to evaluate the equilibrium status of the
present system which may be stable or unstable configura-
tions subject to cracking concept given by Herrera [112].
This criteria identifies the stable and unstable regions in the
stellar system depending on the following conditions

−1 ≤ v2
t − v2

r ≤ 1

=
{−1 ≤ v2

t − v2
r ≤ 0 Potentially stable

0 < v2
t − v2

r ≤ 1 Potentially unstable

}
. (52)

In Fig. 3 we have shown the variation of the difference
between the v2

r and v2
t with respect to radial distance for
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Fig. 1 Nature of effective density (ρeff-top left panel), radial pressure
(Peff

r -top right panel), tangential pressure (Peff
t -bottom left panel), and

anisotropy (�eff-bottom right panel) against radial coordinate r with

ρ0 = 0.0003 km−2, ρs = 0.00024 km−2, σ1 = 0.002 km−2, and
σ2 = 0.001 km−2 for different values of β

Fig. 2 Nature of radial velocity (v2
r -left panel) and tangential velocity (v2

t -right panel) against radial coordinate r with ρ0 = 0.0003 km−2,

ρs = 0.00024 km−2, σ1 = 0.002 km−2, and σ2 = 0.001 km−2 for different values of β
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Fig. 3 Nature of stability factor (v2
r − v2

t ) against radial coordinate r
with ρ0 = 0.0003 km−2, ρs = 0.00024 km−2, σ1 = 0.002 km−2, and
σ2 = 0.001 km−2 for different values of β

increasing β to determine stable regions in the star. It can be
seen from Fig. 3 that the whole region inside the star satisfies
condition for stable equilibrium for 0 ≤ β ≤ 0.06. Interest-
ingly, values of β larger than 0.06 lead the effective system
to fall in status of unstable equilibrium. This confirms that
MGD has a significant role to stabilize the system with some
constrained values of β. So, the value of β can not be arbitrar-
ily large on account of the stability of the effective system. In
the state of stable equilibrium the v2

r remains greater than the
v2
t in the stellar system. So, with presence of dual matter den-

sity connected via MGD, the sound speeds satisfy Herrera’s
inequality in the stellar system to achieve stable equilibrium.

6.2 Adiabatic condition for stability

There is another way to determine the stability of a stel-
lar configurations that is known as adiabatic condition. This
condition [113,114] states that the adiabatic index defined as

� =
(

1 + ρeff

Peff
r

) (
dPeff

r

dρeff

)
(53)

can not be smaller than 4/3 in case of stable equilibrium
of an isotropic stellar configuration. On the other hand, the
revised stability condition [115,116] for an anisotropic stellar
configurations is given by

� >
4

3
+

[
4

3

(Peff
t − Peff

r )

|(Peff
r )′|r

]
. (54)

Since the present stellar model is anisotropic in nature
with presence of dual matter, we have shown variation of
� with respect to radial distance for increasing β in Fig. 4.
Interestingly, � is non-negative finite throughout the star for
increasing β. It is always much larger than 4/3 at the center
of the star and has an increasing nature with respect to radial

Fig. 4 Nature of adiabatic index (�) against radial coordinate r with
ρ0 = 0.0003 km−2, ρs = 0.00024 km−2, σ1 = 0.002 km−2, and
σ2 = 0.001 km−2 for different values of β

distance to reach its maximum values at the surface of the
star. The central values of � which are greater than 5.33
have been listed in Table 1. So, the present model with MGD
effect continue to be in stable equilibrium under the adiabatic
condition in background of GR.

7 Impact of dual density profiles on the mass–radius
relations

In the present work, assuming density profiles for SQM as
well as for PI-DM with anisotropy, stellar configurations
for anisotropic CSs are developed in the framework of GR.
With regard to mass gap region we have considered observed
stars like PSR J1614-2230 [99] and PSR J0952-0607 [100],
GW190814 [85] and GW200210 [86] as SS candidates to
evaluate the limit of maximum mass of NSs. So, we have cor-
related the observed masses of the stars to the mass–radius
curves drawn with respect to varying model parameters in
the present study. In particular, the M−R curves for different
values of β representing the effect of MGD and σ1 implying
the influence PI-DM have been shown in the left and right
panels of the Fig. 5 respectively. Again the M−R curves with
respect to bag constant Bg indicating the impact of SQM is
shown in the left panel of Fig. 7.

Each peak of the M−R curves depicts the maximum mass
(Mmax ) which can have larger values towards the lower mass
gap region for increasing β, σ1 and decreasingBg. The corre-
sponding radius to each peak is also increased with the same
effect of the parameters. It is interesting to note that Mmax

increases with increasing effect of MGD and the central den-
sity for DM but decreases with increasing bag constant which
is related to surface density for SQM in the present model.
When the SS is deformed with MGD, the effective system
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Fig. 5 M−R curves for different values of β and σ1 for ρ0 = 0.0003/km2, ρs = 0.00024/km2, σ1 = 0.002/km2, σ2 = 0.001/km2 and
ρ0 = 0.0003/km2, ρs = 0.00024/km2, β = 0.005, σ2 = 0.001/km2

Fig. 6 M−R curves for different values of β and σ1 for ρ0 = 0.0003/km2, ρs = 0.00024/km2, σ1 = 0.002/km2, σ2 = 0.001/km2 and
ρ0 = 0.0003/km2, ρs = 0.00024/km2, β = 0.005, σ2 = 0.001/km2

Fig. 7 M−R curves for different values of Bg for ρ0 = 0.000277/km2, ρs = 0.00024/km2, σ2 = 0.001/km2

Table 1 The numerical values
of the physical parameters in
respect to decoupling parameter
β

Parameters Peff
r0 (dyne/cm2) ρeff

0 (gm/cm3) ρeff
s (gm/cm3) �

β = 0.00 2.42983 × 1034 4.04888 × 1014 3.23911 × 1014 5.33334

β = 0.02 3.15339 × 1034 4.58874 × 1014 3.71101 × 1014 5.48944

β = 0.04 4.22869 × 1036 5.12859 × 1014 4.1829 × 1014 5.57613

β = 0.06 5.74134 × 1036 5.66844 × 1014 4.6548 × 1014 5.68951

123



  321 Page 12 of 17 Eur. Phys. J. C           (2025) 85:321 

responds to two density profiles for DM and SQM in a con-
trary manner to each other. In particular, with increasing Bg,

SQM acts in such a way in the present dual matter effective
system that it has inclination towards opposing the develop-
ment of supermassive CSs governed by MGD and PI-DM.
Notably, the supermassive CSs can have a mass larger than
2 M� for the values Bg ≤ 62.5 MeV fm−3. Hence, we can
infer that Mmax ≈ 3 M� in the mass gap region can be
achieved by incorporating DM content and tuning the MGD
effect in the SS with the background of GR.

The nature of variation of the M−R curves in Figs. 5
and 7 shows a quark matter type EOS with respect to the
variation in the parameters. This is in concurrence with the
MIT bag EOS that we have assumed in the seed system. So,
the effective system behaves like the seed system from the
perspective of mass–radius relation but shows constraints on
measurements of Mmax and radius due to the impact of MGD
and DM. The fact that M−R curves are found to be within
the Buchdahl limit establishes the physical validity of the
present model.

Different techniques involved in determining the radii of
COs are apparently challenging to process in comparison
with the measurements of the mass of COs [101,102] based
on the observed parameters. However, at present, there are
some new methods available to probe the radii of COs. For
instance, one can determine the estimated radii of COs by
examining hotspots of NSs as observed by NICER [103,104].
In particular, an investigation by NICER and XMM-Newton
related to the patterns of hotspots of the rotating NSs led to
the measurement of the estimated radius of PSR J0740+6620
to be 13.70+2.6

−1.5 km [105] with 68% credibility. Again, the
determination of tidal deformability factor in connection to
GW events [106] is another way to probe the radii of COs.
In order to examine the influence of MGD, density profiles
of SQM, and DM, the predicted radii from the present study
have been tabulated in Tables 2 and 4 by considering the
observed masses of the four SS candidates. The predicted
radius of the secondary companion of GW190814 falls in
the range of [12.99 km, 14.02 km] subject to variation of all
the parameters.

8 Effect of dual density profiles on moment of inertia

Some studies suggested that the moment of inertia is an antic-
ipated observational quantity to be determined with good
accuracy [107,108] pertaining to the detection of double NSs
in the near future. An empirical expression for the moment of
inertia (I ) formulated with total mass and radius for a static
solution is given by Bejger and Haensel [109] in the form as

I = 2

9

(
1 + 5(MNR/RNR)km

M�

)
MNRR

2
N R, (55)

with a constraint given as

(MNR/RNR)(km/M�) > 0.1.

Here MNR and RNR are termed as the mass and radius
of the non-rotating (NR) star respectively. This empirical
formula is utilized to determine the moment of inertia of the
present system and to examine its dependence on the total
mass of the stellar system for variations in the parameters
β, σ1 and Bg. The moment of inertia-total mass relation has
been shown in the form of the I−M curves with respect to
parameters β and σ1 in both panels of Fig. 6. Again, the I−M
curves with regard to the values of Bg have been shown in
the right panel of Fig. 7.

Each maximum point of the I−M curves refers to the
maximum moment of inertia (Imax ) which can have greater
values for increasing β, σ1 and decreasing Bg. The corre-
sponding total mass to each peak of I−M curves is also
enhanced with the same effect of the parameters. It is worth
noting that Imax tends to get higher values with increasing
effect of MGD and the DM central density parameter but
decreases with increasing bag constant in the present model.
Similar to the M−R relation, the effective system responds
to two density profiles for DM and SQM in the case of the
I−M relation. In order to investigate the impact of MGD,
density profiles of SQM and DM, the predicted moment of
inertia from the present model have been tabulated in Tables 3
and 4 for the four SS candidates.

One of the motivations for studying M−R as well as
I−M relations is to assess the stiffness of an EOS. In this
case, the I−M curves seem to be more sensitive than the
M−R curves to measure the stiffness of the EOS precisely.
For example, if the Mmax of a star becomes twice the ini-
tial mass theoretically due to the transition of EOS towards
a stiffer EOS, the Imax increases by seven times to initial
values [111] for the same transition. In a work [63], the val-
ues of the moment of inertia were found to be in a broader
range [0.007, 0.7] × 1045 g cm2 because of the uncertainty
present in the EOS at high densities. In case of supermassive
SSs, we determined the range of values of I from Table 3
as [2.33, 4.30] × 1045 g cm2 for 0 ≤ β ≤ 0.008 and as
[2.25, 4.35] × 1045 g cm2 for 0 ≤ σ1 ≤ 0.006. Table 4
indicates the range of I to be [2.37, 3.93] × 1045 g cm2 for
55 MeV fm−3 ≤ Bg ≤ 65 MeV fm−3. So, the present model
presents higher values of the moment of inertia for the super-
massive SSs. In this relation, we can mention a work [110]
which considered various EOS like RP, FP, CDK, BJ, and TI
with increasing stiffness and central density of the order of
1014g/cm3 to show the values of Imax of the PSR 1937+21
falling in range of [1.1, 2.4] × 1045 g cm2. Hence, we can
infer that the stiffer EOS corresponds to higher values of I in
a stellar model. In our model, the higher values of I indicate
that the supermassive SSs are governed by stiffer EOS.
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9 Concluding remarks

In the present analysis of the anisotropic CSs in the back-
ground of GR, we have examined the impact of MGD on
the effective system in the presence of SQM and PI-DM.
Firstly, we considered EFEs which include effective energy–
momentum tensors representing the sources of SQM and PI-
DM decoupled with MGD parameter β. The decoupling pro-
cess is utilized to obtain two sets of field equations for the two
sources present in the system. We have obtained a solution to
the metric potentials for the seed system by assuming the MIT
bag EOS along with the density profile of SQM. In MGD,
the radial component of the spacetime metric is deformed
by some new function that appears in the field equations
for the new source. We got the solution for the deformation
function by considering the PI-DM density profile. In most
cases, MGD can be useful to introduce anisotropy to the per-
fect fluid solution. However, we have considered the MGD
approach to investigate the impact on the anisotropy of the
seed system for including the DM source. At last, we have
analyzed the physical features of the solutions to EFEs and
mass–radius relation with respect to parameters.

The nature of variation of the physical quantities such as
ρeff, Peff

r , Peff
t and �eff with respect to radial distance for

different values of β shown graphically in Fig. 1 have con-
firmed that the solution to the EFEs is well behaved and non-
singular throughout the stellar configuration. In this regard,
all the physical quantities are finite and non-negative inside
the star. Density and pressure having maximum values at cen-
ters are seen to decrease monotonically for increasing radial
distance towards the surface of the star.

The effect of dual matter density along with MGD in the
effective stellar system does not violate the vanishing condi-
tion of radial pressure in the present study. The numerical val-
ues of density at center and surface, central pressure provided
in Table 1 are the order of 1014 g cm−3 and 1034 dyne cm−2

respectively for different values of β.

The vanishing of central anisotropy is well established in
the present model under the MGD approach for various val-
ues of β which is shown in the anisotropy panel in Fig. 1.
The anisotropy becomes positive and grows monotonically
towards the surface of the star from the center. It reaches a
maximum value at the boundary of the star for various values
of β. The positive �eff plays another significant role to sta-
bilize the system as it appears to be the repulsive anisotropic
force that counterbalances attractive gravitational force.

We have depicted that the causality is maintained in the
present stellar model by showing the variation of the square
of the sound speeds in both radial and tangential directions
graphically in Fig. 2. This means that both the sound speeds
are less than the speed of sound for different values of β. So,
MGD effects in GR follow causality.
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Table 3 The predicted radii of few high mass CSs corresponding Fig. 6

Objects M
M� Predicted I × 1045 (g-cm2) Predicted I × 1045 (g-cm2)

β σ1

0 0.002 0.004 0.006 0.008 0 0.002 0.004 0.006

PSR J1614-2230 [99] 1.97 ± 0.04 2.33 2.33 2.33 2.33 2.33 2.25 2.27 2.30 2.30

PSR J0952-0607 [100] 2.35 ± 0.17 3.13 3.17 3.23 3.22 3.24 – 3.07 3.13 3.17

GW190814 [85] 2.5−2.67 – – 3.71 3.77 3.81 – – 3.67 3.75

GW200210 [86] 2.83+0.47
−0.42 – – – – 4.30 – – – 4.35

Table 4 The predicted radii of few high mass CSs corresponding Fig. 7

Objects M
M� Predicted radius Predicted I × 1045 (g · cm2)

Bg Bg

55 57.5 60 62.5 55 57.5 60 62.5

PSR J1614-2230 [99] 1.97 ± 0.04 13.24+0.06
−0.08 13.19+0.04

−0.06 13.06+0.04
−0.05 12.72+0.02

−0.01 2.47 2.43 2.37 –

PSR J0952-0607 [100] 2.35 ± 0.17 13.80+0.17
−0.24 13.64+0.08

−0.18 13.07+0.25− – 3.35 3.25 – –

GW190814 [85] 2.5 − 2.67 14.02+0.08
−0.07 13.72+0.01

−0.10 – – 3.93 – – –

GW200210 [86] 2.83+0.47
−0.42 14.17−

−0.03 – – – – – – –

In Fig. 3 the variation of the difference between the v2
r and

v2
t with respect to radial distance for increasing β shows that

the whole region inside the star satisfies Herrera’s condition
for stable equilibrium for 0 ≤ β ≤ 0.06. Interestingly, the
MGD effect constrains the higher values of β larger than
0.06 as the effective system becomes unstable. Therefore, the
MGD effect along with the presence of dual matter density,
the sound speeds satisfy Herrera’s inequality in the stellar
system to achieve stable equilibrium.

We have shown a variation of � with respect to radial
distance for increasing β in Fig. 4 which indicates that � is
non-negative and finite positive slope throughout the star for
increasing β. It has much larger values than 4/3 at the center
of the star as it can be seen from Table 1 where the central
values of � greater than 5.33 have been listed. As a conse-
quence, the present model with the MGD effect continues to
be in stable equilibrium under the adiabatic condition in the
background of GR.

In the present work, in connection to the mass gap region
we have considered observed stars like PSR J1614-2230 [99]
and PSR J0952-0607 [100], GW190814 [85] and GW200210
[86] as SS candidates and correlated the observed masses of
the stars to the mass–radius curves drawn with respect to
varying model parameters to examine the limit of maximum
mass of NSs. The M−R curves for different values of MGD
parameter (β) and DM parameter (σ1) have been shown in
the left and right panels of the Fig. 5 respectively. Again the
M−R curves with respect to bag constant Bg indicating the
impact of SQM have been shown in the left panel of Fig. 7.
The nature of variation of the M−R curves in Figs. 5 and 7

shows a quark matter type EOS with respect to the variation
in the parameters. The fact that M−R curves are found to be
within the Buchdahl limit establishes the physical validity of
the present model.

The peaks of the M−R curves imply that the maximum
mass (Mmax ) can have larger values towards the lower mass
gap region with increasing effect of MGD and the central den-
sity for DM but decreases with increasing bag constant which
is related to surface density for SQM in the present model.
The corresponding radius to each peak is also increased with
the same effect of the parameters. It is interesting to note that
Mmax increases When the SS is deformed with MGD but
with increasing Bg, SQM acts in such a way in the present
dual matter effective system incline to oppose the develop-
ment of supermassive CSs. Notably, MGD constrains the Bg

to be greater than 62.5 MeV fm−3 in case of the supermas-
sive CSs having mass larger than 2 M�. Therefore, it can be
inferred that Mmax ≈ 3 M� in the mass gap region can be
achieved by incorporating DM content and tuning the MGD
effect in the SS with the background of GR. We have exam-
ined the influence of MGD, density profiles of SQM and DM
by measuring the predicted radii which have been tabulated
in Tables 2 and 4 by considering the observed masses of the
four SS candidates in the present study. The predicted radius
of the secondary companion of GW190814 falls in the range
of [12.99 km, 14.02 km] subject to variation of all the param-
eters.

The I−M relation has been shown with respect to param-
eters β and σ1 in both panels of Fig. 6 and with regard to the
values of Bg have been shown in the right panel of Fig. 7. It
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is important to note that Imax tends to get higher values with
increasing effect of MGD and the DM central density param-
eter but decreases with increasing bag constant in the present
model. So, the effective system responds to the I−M relation
as similar to the M−R relation for dual matter density. The
predicted moment of inertia from the present model has been
tabulated in Tables 3 and 4 for the four SS candidates. In case
of supermassive SSs, we determined the range of values of I
from Table 3 as [2.33, 4.30]×1045 g cm2 for 0 ≤ β ≤ 0.008
and as [2.25, 4.35]×1045 g cm2 for 0 ≤ σ1 ≤ 0.006. Table 4
indicates the range of I to be [2.37, 3.93] × 1045 g cm2 for
55 MeV fm−3 ≤ Bg ≤ 65 MeV fm−3. So, the present model
presents higher values of the moment of inertia for the super-
massive SSs. Hence, we can infer that the stiffer EOS corre-
sponds to higher values of I in a stellar model in connection
to a work [110] which considered various EOS like RP, FP,
CDK, BJ, and TI with increasing stiffness and central density
of the order of 1014 g/cm3 to show the values of Imax of the
PSR 1937+21 falling in range of [1.1, 2.4]× 1045 g cm2. In
our model, the higher values of I indicate that the supermas-
sive SSs are governed by stiffer EOS.

As a final point, it is important to note that the present
investigation explores the salient features of a well-behaved
physical solution to the EFEs representing the impact of
MGD on anisotropic and uncharged matter distribution with
density profiles of SQM and DM. In the future, there is scope
for studying MGD effects on anisotropic and charged stellar
configurations with dual matter density profiles in the frame-
work of GR and other modified theories of gravity.
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