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Quenched Eguchi-Kawai model revisited
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The motivation and construction of the original quenched Eguchi-Kawai (QEK) model are reviewed,
providing much greater detail than in the first, 1982 QEK paper. A 2008 article announced that QEK fails as
areduced model because the average over permutations of eigenvalues stays annealed. It is shown here that
the original quenching logic naturally leads to a formulation with no annealed average over permutations.
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I. INTRODUCTION

In 1982 Eguchi and Kawai (EK) [1] made the spectacular
observation that SU(N) lattice gauge theory with no matter
fields gave Wilson loop expectation values that were
reproducible on a minimal 1* lattice at leading order in
1/N. Intensive research ensued. It was found that large N
phase transitions caused difficulties in approaching the
continuum limit. Some cures were suggested. The purpose
of this paper is to make explicit the underlying logic and
definitions of one of them: the quenched Eguchi-Kawai
(QEK) conjecture [2]. It will be shown that the 2008 article
[3] does not establish failure of the general idea of quench-
ing. A determination of the validity or failure of quenched
reduction requires future extensive numerical work.

II. EGUCHI-KAWAI REDUCTION IS NOT
JUST A LATTICE PECULIARITY

At first sight EK reduction seemed to be an incredible
lattice trick. Only much more recently has numerical work
indicated that EK reduction is a property of the continuum
planar four-dimensional SU(N) pure gauge theory [4]. At
leading order in 1/N the expectation values of Wilson
loops on an infinite Euclidean four-torus are the same as
“folded” counterparts on any finite torus with a side size
larger than about one Fermi in QCD terms.

In retrospect, this sharpens the original question that
motivated [2]: how is a Coulomb-like law realized in a
finite periodic Euclidean four volume which has no room
for “Faraday’s flux lines” to spread?

Continuum EK reduction is some times referred to as
“partial reduction” because the lattices one has to use in a
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numerical simulation in order to approach the continuum
limit to reasonable accuracy must be substantially larger
than 14, “Partial” is a bad epithet because it emphasizes a
detail of implementation and conceals the physical content
of the result.

III. LATTICE FIX OF EK REDUCTION

The first conjectured fix for lattice EK reduction to an 14
lattice was the quenched EK model, QEK [2].

The main physics question was how the largeness of the
SU(N) group at infinite N could provide a placeholder for an
infinite lattice while consisting of just four unitary link
matrices. A simple calculation at one loop order showed that
the eigenvalue phases of the link matrices in the four
directions could play the role of continuous lattice momenta
in (—z, #]*—an “emerging” toroidal momentum space—and
produce the standard Coulomb’s force law on the lattice if we
summed up the contributions of a large number of saddles and
ignored their instabilities. As was very well understood from
other semiclassical calculations, fluctuations in the “flat”
directions, connecting the saddles, produced zero modes and
were easily dealt with. But, the saddles in the integral were
dominated by coalescing eigenvalues, so perturbation theory
was unstable. As a whole, the matrix integral was benign.

On an 1* lattice the eigenvalue sets of each link matrix
are gauge invariant angles. They are unique candidates for
lattice momenta.

The QEK fix consisted of a removal of the link matrices’
eigenvalues from the set of annealed variables. They were
quenched instead. This difference did not matter at large N
by a degrees-of-freedom counting argument. There were
4N angles, and order 4N? matrix elements; the angles ought
to be governed by uniform and uncorrelated distributions in
each direction if some obvious symmetries remain pre-
served as N — oo.

For strong lattice coupling (small “f#”), where EK had
been proven to work, the quenching prescription would
have no effect to leading order in % Quenched or annealed,
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the angle distributions would be frozen to continuous
uniform densities in each direction and those would be
uncorrelated. The requirement to match onto the original
EK version, which was proven to hold at strong coupling,
left little freedom for constructing QEK. The “loop equa-
tions,” on which the EK proof relied, have trivial boundary
conditions in the strong coupling limit and determine the
entire strong coupling series. That series has a finite radius
of convergence. The precise boundary conditions for the
lattice loop equations at weak coupling remain unknown to
date. They would be needed for constructing the Feynman
series for Wilson loops. The loop equations themselves
have only a relatively formal continuum limit. They do not
offer a reliable tool for analysis in continuum directly.

IV. QUENCHING IN DETAIL

QEK was originally presented as a conjecture, and this
remains its status to date. It is uncertain whether it is valid
throughout the bridge connecting short and long distance pure
gauge theory physics. Even if it does, there remains doubt
whether it would be practical in comparison to the safer
continuum EK method which relies both on the lattice loop
equations and on some numerical, nonperturbative tests.

The QEK prescription is explained below in detail and at
an elementary level.

A. Quenching “with calculus”

The lattice variables we shall deal with are phase angles
and unitary matrices.

The first step in constructing the quenching prescription
consists of a proper change of integration variables in the
EK case. For simplicity, we consider U(N)—restricting to
SU(N) later presents little difficulty. The change of
variables requires a one-to-one relation between the old
and new, together with a matching of integration domains.
The domains in the new variables are obviously important
and will be discussed later below.

The variable change is an EK — QEK map replacing
each of the link variables U,,u =1, 2, 3, 4 by a set of
angles @ i=1,....Nand a unitary matrix Vi For four
fixed U,’s, there are multiple solutions. To determine
domains of integration in the new variables requires
selecting one unique branch among them,

(HUV,=V,D,0,); (2)U,=V,D,(0,)V, (4.1)
where
D,(0,) = diag(e®, e, ....e"% ). (4.2)
The original integration measure is
dU, where dU ,is Haar. (4.3)

n=1234

After the change of variables the integration measure is
locally given by

. 0, -0,
av, T a6.][sin® (”T”ﬂ (4.4)

ﬂ=1,2,3,4|: i=1,...N i<j

up to a constant factor determined by a normalization
convention. The Jacobian does not depend on V, only on
the angles. This is crucial for the quenching proposal
because the integration over the angles factorizes. In EK the
instability resides in the angle dynamics. The QEK model
addresses the instability directly.

The U,,’s are uniquely determined by the 8’s and V’s: the
0, exponents are the eigenvalues of U, and the columns of
V, are the corresponding eigenvectors. The multiple
solutions of equality (2) in Eq. (4.1) with given U are
all generated from each other by group transformations.
This makes the search for unique branches straightforward.
Two types of maps between solutions enter and together
they exhaust their multiplicity:

First, one may multiply equality (1) in Eq. (4.1) by a
u-dependent diagonal matrix from the right. This multiplies
each column of V, by a phase: eigenvectors are rays. The
transformations are a product of commuting U(1)"’s, one
for each direction. Second, one may multiply equality (1)
in Eq. (4.1) from the right by a permutation matrix
P € S(N) C U(N). P is a unitary matrix having a single
entry equal to 1 in each row and each column. When acting
on a column from the left, it permutes its row entries by P. P’
acts from the right on a row and permutes its column entries
by P~!. Inserting 1 = PP" on the right-hand side of Eq. (1)
in (4.1) between the V and the #-diagonal matrix replaces V
by VP onboth sides. The effect of P'.....P on the diagonal &
matrix is to permute its columns by P and its rows by P'. The
result is that the ¢/, get permuted by P along the diagonal.
Thus, the elements P € S(N) act simultaneously on the
columns of V and on their associated eigenvalues, preserv-
ing the eigenvalue-eigenvector association.

Suppose one is given a U matrix. By a probability
argument, it has distinct eigenvalues. A procedure to identify
aunique decomposition in terms of V and diag () matrices is
defined as follows: one first finds all the roots of the
characteristic polynomial of U. Then, for each eigenvalue,
one finds a corresponding unit norm column eigenvector.
Arranging the columns left to right, one gets a unitary matrix
V. This V has its columns further reordered into a canonical
form. This form will be defined below. The positions of the
angles along diagonals of the D matrices are fixed by the
order of the columns of the matrix V.

We learned that the domain of integration in V and 6
variables is the S(N) right coset space [5],

[UWN)/UM)Y x U)]/S(N). (4.5)
Factoring by S(N) defines an equivalence relation ~ in the
space of the new variables which partitions U(N)/U(1)N x
U(1)" into equivalence classes. The domain of integration
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consists of one specific representative of each class.
The intention is to make a choice that has a chance to
protect the perturbatively emerging momentum space
from the instability: We choose in each class a represen-
tative element of the matrix component, V, close to the unit
matrix. This element consists of an ordered set of column
eigenvectors of the corresponding U-matrix. It can also be
viewed as a choice of an ordered orthonormal basis whose
elements correspond to a set of N angles determining the
eigenvalues of the corresponding U matrix. The order of
the eigenvalues is determined by the order of the columns
of V. The solution for V and 0 of equality (2) in (4.1) has
become unique.

The prescription suggested here is that V have the entry
of maximal absolute value along the portion of each row
from the diagonal to the right on the diagonal. Equal
absolute values are ignored for probability reasons. That
entry is made real positive by a phase choice for the
corresponding column. A given V can be brought into this
configuration sequentially, starting from the top row and
bringing the desired entry to the (1,1) location by permut-
ing through N columns, and then continuing to the next row
and permuting through the N — 1 remaining columns to
bring the desired element of the row to the (2,2) location
and so on. Real positivity fixes the phase of each column. It
mods out the factor U(1)" in the “numerator” of (4.5). For
the lack of a better term, let us call this ordering “diagonally
right row entry dominant”. This clumsy name avoids
confusion with the standard term “diagonal dominance.”
With probability one, this choice is unambiguous.

In the EK case, at any finite N, which specific choice of
representative was made does not matter because the
integral over ordered angles and bases is done on one
common integrand and the U(1)" and S(N) are symmetries
of the integrand. In the QEK case however, the integral
over the angles occurs at a later stage, with a modified
integrand and the choice does matter because S(N) acts
simultaneously on #’s and V’s. At finite N quenched
expectation values depend on which representative of each
equivalence class was chosen. This is a crucial feature of
quenching.

The correct ranges of integration in QEK are over a set of
four V’s, all in “canonical” order. A criterion for choosing
the canonical order is that the V representative be “per-
turbative.” There are no restrictions on the angles. Different
orders of the same set are included as separate contribution.
There exist other prescriptions that are equally valid. To be
sure, for large lattice # couplings the reduction validity of
QEK remains a conjecture.

Permutations of eigenvectors must be eliminated in order
to perform a correct variable change in EK with no
overcounting at any coupling. That is just applied multi-
variate calculus.

To motivate the ordering prescription for the V matrices,
consider the simple case of U(2)/S(2). The two U(1)?

terms in the “numerator” of Eq. (4.5) are ignored. Up to an
irrelevant overall phase, any V € U(2) can be written as

w ZF
(5 0)
-z w

where |w|? + |z|> = 1. §(2) = {1,, 6, } using Pauli’s nota-
tion. Let V' be given by the same expression with w, z
replaced by w',7. The equation V = V's, defines an
equivalent pair V'~ V. In components, 7/ = —w* and
w' = —z*. For V to be “diagonally right row entry dom-
inant” we need |w| > |z|; then V' is not “diagonally right
row entry dominant” because |w'| < |Z’|. The split of U(2)
into “halves” is explicit. The half containing the identity
makes up the QEK integration domain for V. As usual,
ambiguous cases are ignored for probability reasons.

U(N) can be restricted to SU(N) by adding a factor
of 6,,(3°; 0.,) in the 0 integral for each direction. &, is the
2z-periodic 6 function. Mentally, one can imagine the V’s
to be also fixed by an overall phase, restricting to SU(N);
this phase does not enter observables dependent only on
the U’s.

Once the change of variables in the EK integrand is
correctly implemented one can replace each U, by equality
(2) in Eq. (4.1) in the EK model and nothing has changed.
The integral for the partition function can be done succes-
sively, first integrating over all the columns of the V,, in the
pair [0/, ith column of V,] with local Haar measure at
fixed, ordered, angles at each u. Next, one integrates over
all of the possible ordered angle sets for each u.

Quenching replaces the EK by QEK. In QEK the integral
for the partition function is replaced by an integral with the
same measure and action, but at fixed angles in all
directions. The QEK partition function is a function of
these angles, Z(6). For a Wilson loop observable one uses
Z(0) as normalization, now in the denominator, obtaining
averages of the observable at a fixed ordered 6 set. Next,
these annealed V-averages are integrated over the angles
with weight given by the Jacobian in Eq. (4.4). The 6
variables are treated as a set of random couplings, akin to
the J-couplings of a spin-glass model.

The traditional choice for angle ordering is descending
along the diagonal with values in the segment (—z, z]. Such
an ordering makes the distribution equal to the derivative
of a smooth approximation to the angle dependence
on the index in each direction separately.' But, this is
not permitted in QEK. The order of the angles cannot be
restricted in any way. One has a diagonalizing ordered
basis, and one can assign to each eigenvector an eigenvalue
on the unit circle, distributed just according to the Jacobian
factor. The Jacobian measure is invariant under direction
dependent permutations. They are not induced by annealed

(4.6)

'See Eq. 10 in [6].
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generation of permutations among the columns of V
because two distinct “diagonally right row entry dominant”
V-matrices cannot be related by a nontrivial permutation.

There is no invariance under the hypercubic group at
fixed 6. It could happen that new large N transitions occur,
to phases where the hypercubic symmetry is spontaneously
broken. Such phases indeed do occur in the EK model [4].
If they persist to the quenched case, QEK fails. It also could
happen that it is practically impossible to attain high
enough values of N because prohibitively large samples
of the eigenvalue sets are needed for a reasonable accurate
estimate of the final angle integral.

The ordering of V determines that of V. V7 is not
“diagonally right row entry dominant.” The action con-
trolling the V average depends only on the six combina-
tions V,, = Vz,, = VZ V, for y > v [2]. These are overlap
matrices of ordered eigenvector-sets corresponding to the
angles in the p, v directions. The common canonical
ordering of the V,’s induces some preference for the
V,’s to be closer to identity with no direct feedback on
the angles—unlike in the EK situation. The hope is that
angles are now free to take on the role of an “emergent”
lattice momentum space.

V. “GAUGE INVARIANCE” IN QEK

On an 1* lattice, gauge theory has a symmetry under
simultaneous conjugation by the same matrix of all link
matrices. These matrices can be thought of as Polyakov
loops. Evidently, on a one site lattice there can be no
geometrically open contours.

This symmetry acts on the V-matrices from the left and
therefore commutes with the action on V by the S(N) we
had to mod out by. A permutation gauge transformation
will permute the rows of each V. After its action each V
needs to be reordered back to canonical order. The end
result is that gauge transformations which happen to be
permutations do not change anything. We might as well
forget about them altogether.

A. Conclusion of section

This paper contains the full description of the original,
with no shortcuts allowed, QEK model. There are many
ways and points of view in which QEK can fail. To the
limited extent I understand it, the Bringolz-Sharpe paper [3]
has not analyzed a precise enough version of the originally
intended QEK model. If T am right, the problem of in-
principle validity of QEK remains open. Numerical tests
might discover a new candidate problem with QEK in the
future which could invalidate the quenching approach in
principle.

VI. FINAL COMMENTS

In this paper algorithmic issues in the QEK case have not
been addressed. Clearly, the U(2) example was presented
with traditional SU(2) Monte Carlo updates in mind. An
HMC (hybrid Monte Carlo) version might be also worth
looking into.

From the extensive and ultimately successful work on
the twisted EK model [7], TEK, it is known that for TEK to
work, the large N limit needs to be approached with care
and one needs to go to truly large values of N. By the law of
“conservation of difficulty” QEK may also need further
nontrivial refinements. The problem of annealed permuta-
tions Bringoltz and Sharpe [3] found, at least at the
theoretical level, seems harmless to me because the basic
rules of calculus would tell you to eliminate permutations
in the quenching approach and how to do it.
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